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Abstract

Bass-Serre introduced the notion of graphs of groups. These can be described as
groups acting on simplicial trees. A natural higher dimensional analogue of graphs
of groups is the notion of complexes of groups. In this thesis, we address some
questions related to the boundaries of the fundamental group of certain complexes of
groups. In the first part of the thesis, we study combination theorems for convergence
and relatively hyperbolic groups. We prove that the fundamental group of a finite
graph of convergence groups with parabolic edge groups is a convergence group.
Consequently, we deduce that the fundamental group of a finite graph of convergence
groups with a dynamically malnormal family of dynamically quasiconvex edge
groups is a convergence group. Then we show that the fundamental group G of a
graph of relatively hyperbolic groups with edge groups either parabolic or infinite
cyclic is relatively hyperbolic and give an explicit construction of the Bowditch
boundary of G. Next, we show that the homeomorphism type of the Bowditch
boundary of the fundamental group of a finite graph of relatively hyperbolic groups
with parabolic edge groups is determined by the homeomorphism types of the
Bowditch boundaries of vertex groups.

In the second part, we look at the boundaries of coned-off spaces and deduce
the existence of Cannon-Thurston maps for certain subcomplexes of groups of
a complex of hyperbolic groups. Suppose Y is a finite simplicial complex and
(G ,Y ) is a developable complex of hyperbolic groups such that all the local maps
are quasiisometric embeddings. Let Y1 ⊂ Y and let (G ,Y1) be the complex of
groups obtained by restricting (G ,Y ) to Y1. Let H,G be the fundamental groups of
(G ,Y1),(G ,Y ), respectively. Suppose H,G are hyperbolic groups. Lastly, suppose
the natural map H → G is injective and all the local groups of (G ,Y ) are quasiconvex
in G. We prove that if the natural map from the universal cover of (G ,Y1) to the
universal cover of (G ,Y ) satisfies Mitra’s criterion then the inclusion H → G admits
a Cannon-Thurston map. Finally, we deduce a number of applications.
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Notations

R : set of real numbers

Z : set of integers

N : set of natural numbers

Mn
k : the model space, where k ∈ R and n ∈ N, see [11, Chapeter I.2].

For a metric space X , the metric will be denoted by dX .

An open ball with center x ∈ X and radius r ≥ 0 will be denoted by B(x,r).

A geodesic joining x,y ∈ X will be denoted by [x,y].

For Y ⊂ X , geodesic in Y joining x,y ∈ Y will be denoted by [x,y]Y .

For A,B ⊂ X , Hausdorff distance between A,B will be denoted by Hd(A,B).

For A ⊂ X and R ≥ 0, NR(A) will denote the set {x ∈ X | d(x,A)≤ R}.
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Chapter 1

Introduction

Geometric group theory studies groups via their actions on geometric objects. Bass
and Serre introduced one such tool to study the structure of groups through their
actions on simplicial trees. This gives us the notion of graphs of groups. A natural
generalization (in higher dimensions) of graphs of groups is the notion of complexes
of groups.

There are two parts in this thesis and we address two different problems about
complexes of groups. These are discussed in the following two sections.

Remark 1.0.1. Results discussed in Section 1.1 are published, see [73]. However,
the results discussed in Section 1.2 are part of an unpublished preprint [68].

1.1 Combination theorems for convergence groups

In this section, we are interested in the following question:

Question 1. Suppose we have a developable complex of groups such that all the
local groups have a property P . Under which condition(s) does the fundamental
group of the given complex of groups have the property P?

For us, property P is either hyperbolicity, relative hyperbolicity, or convergence
action.

Combination theorem dates back to F. Klein [45] where he proved a combination
theorem for groups which were named after him later, namely Kleinian groups.
Subsequently, Maskit ([52],[53],[54],[55]) gave far reaching generalizations of Klein
combination theorem. In [6], Bestvina-Feighn discovered its analogue in the context
of hyperbolic groups. There, they proved a combination theorem for graphs of
hyperbolic groups. Motivated by this, several authors proved combination theorems

1



2 CHAPTER 1. INTRODUCTION

for graphs of hyperbolic and relatively hyperbolic groups ([40],[61],[62],[43]). Later,
Martin [48] also proved a combination theorem for complexes of hyperbolic groups.
However, using a completely different technique, Dahmani [18] also proved a com-
bination theorem for an acylindrical graph of relatively hyperbolic groups. In fact,
he constructed a compact metrizable space on which the fundamental group of given
graph of groups acts naturally by homeomorphisms. Then he proved that this action
is in fact geometrically finite to be able to invoke a topological characterization of
relatively hyperbolic groups from [78]. The following is the main theorem of [18].

Theorem 1.1.1. [18] Suppose a finitely generated group Γ splits into a finite acylin-
drical graph of relatively hyperbolic groups with fully quasiconvex edge groups.
Then, Γ is relatively hyperbolic with respect to the collection of images of maximal
parabolic subgroups of the vertex groups.

The above theorem motivates the following natural question, which is a particular
case of Question 1:

Question 2. Let Γ be a group admitting a decomposition into a finite graph of conver-
gence groups with dynamically quasiconvex edge groups. Under which condition(s)
is Γ a convergence group?

We answer the Question 2 in the following cases:

1. When the edge groups are parabolic.

2. When the edge groups are cyclic.

3. When the collection of edge groups forms a dynamically malnormal family in
the adjacent vertex groups.

Theorem 1.1.2. [73, Theorem 1.2] Let Γ be a group admitting a decomposition into
a finite graph of countable convergence groups with parabolic edge groups. Then Γ

is a convergence group.

Remark 1.1.3. Proof of parts (2),(3),(4) of Theorem 0.1 in [18] also go through
when relatively hyperbolic groups are replaced by convergence groups, and rest of
the hypotheses remain the same. With a little effort, one can also prove Theorem
1.1.2 by combining parts (2),(3), and (4) of Theorem 0.1 in [18]. Note that, in
part (2),(3),(4) of Dahmani’s theorem, the domain (see Definition 3.1.1) of any
point in the edge boundary is infinite, but it is of star-like form. On the other hand,
we allow domains to be infinite subtrees of the Bass-Serre tree of the given graph
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of groups. For example, let Γ = G1 ∗P G2, where G1,G2 are convergence groups
and P is a common parabolic subgroup but not a maximal parabolic in G1 and in
G2, respectively. Suppose P1,P2 are maximal parabolics containing P in G1,G2,
respectively. Then the domain of the edge parabolic point is the Bass-Serre tree
of P1 ∗P P2. Thus, we generalize the technique of Dahmani [18] and give a more
direct proof of Theorem 1.1.2. In fact, we explicitly construct a compact metrizable
space (see Section 3.1) on which Γ acts as a convergence group. Also, we use this
construction for producing the Bowditch boundary for the group Γ as in Theorem
1.1.7.

The following is a more general combination theorem for convergence groups.

Theorem 1.1.4. [73, Theorem 1.3] Let Γ be a group admitting a decomposition into
a finite graph of groups such that the following holds:

1. The vertex groups are countable convergence groups.

2. The stabilizers of the limit sets of the edge groups form a dynamically mal-
normal family of dynamically quasiconvex subgroups in the adjacent vertex
groups.

Then Γ is a convergence group.

In Theorem 1.1.4, by the definition of a dynamically malnormal family (Defini-
tion 2.3.12), we see that action of Γ on the Bass-Serre tree of the graph of groups
is 2-acylindrical. Thus Γ is the fundamental group of an acylindrical graph of con-
vergence groups. When the vertex groups are convergence groups and the edge
groups are fully dynamically quasiconvex in Theorem 1.1.1, it is different from
Theorem 1.1.4. In fact, in Theorem 1.1.1, the limit sets of edge groups in adjacent
vertex groups are homeomorphic which may not be the case here. There was no
identification involved inside Bowditch boundaries of vertex groups. On the other
hand, to prove Theorem 1.1.4, we identify the translates of the limit sets of edge
groups in adjacent vertex groups with points.

Next proposition is a consequence of Theorem 1.1.4 and it also gives an answer
to Question 2 when edge groups are infinite cyclic.

Proposition 1.1.5. [73, Proposition 1.4] Let Γ be a group admitting a decomposition
into a finite graph of countable convergence groups with infinite cyclic edge groups,
which are dynamically malnormal in the adjacent vertex groups. Then Γ is a
convergence group.
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Note that infinite cyclic subgroups of a convergence group are dynamically quasi-
convex (Lemma 2.3.18). In Proposition 1.1.5, dynamical malnormality of edge
groups can be replaced by torsion-free vertex groups (see Proposition 3.3.4). Floyd
boundary was introduced by W. Floyd in [22]. One is referred to [44],[79] for related
results. We have the following immediate corollary:

Corollary 1.1.6. [73, Corollary 1.5] Let Γ be a group that splits into a finite graph
of finitely generated groups such that the following holds:

1. The vertex groups are torsion-free with non-trivial Floyd boundaries.

2. The edge groups are infinite cyclic.

Then Γ is a convergence group.

Proof. A group having a non-trivial Floyd boundary acts as a convergence group
on its Floyd boundary (see [44]). Thus, the corollary follows from Proposition
3.3.4.

In the above corollary, if the vertex groups are relatively hyperbolic then Γ is
relatively hyperbolic by Theorem 1.1.7, and hence, by [26], it has a non-trivial Floyd
boundary. However, if the vertex groups are not relatively hyperbolic, it is unclear
whether Γ has a non-trivial Floyd boundary; see Questions 3 and 4.

The following is a combination theorem for relatively hyperbolic groups which
also appears in [7].

Theorem 1.1.7. [73, Theorem 1.6] Let Γ be a group admitting a decomposition into
a finite graph of relatively hyperbolic groups such that the edge groups are parabolic
in the adjacent vertex groups. Then Γ is relatively hyperbolic. Moreover, the vertex
groups are relatively quasiconvex in Γ.

We explain parabolic structure of Γ after proof of Theorem 1.1.7 in Section 6. In
Theorem 1.1.7, if edge groups are not maximal parabolic in adjacent vertex groups
then it does not satisfy the hypotheses of [18, Theorem 0.1]. However, proof of
Theorem 1.1.7 still follows from parts (2),(3),(4) of Theorem 0.1 in [18]. Here,
we give a different proof by constructing a compact metrizable space on which Γ

acts geometrically finitely. Therefore, we have an explicit construction of Bowditch
boundary of Γ too. Note that relative hyperbolicity in Theorem 3.0.3 also follows
from the work of Bigdely and Wise [7]. Since in our situation parabolic edge groups
can be infinitely generated, the first condition of the theorem of Mj-Reeves [61] is
not satisfied. Thus, to prove relative hyperbolicity, we cannot use the theorem of
Mj-Reeves.
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Theorem 1.1.8. [73, Theorem 1.7] Let Γ be a group that splits as a finite graph of
relatively hyperbolic groups with infinite cyclic edge groups. Then Γ is relatively
hyperbolic. Moreover, the vertex groups are relatively quasiconvex in Γ.

To prove Theorem 1.1.8, we use Theorem 1.1.7. In particular, by extending the
parabolic structure on vertex groups, we convert the graph of relatively hyperbolic
groups with infinite cyclic edge groups into a graph of relative hyperbolic groups
with parabolic edge groups. Thus, we can explicitly construct Bowditch boundary
for the group Γ.

Next course of action is to study the homeomorphism type of the Bowditch
boundary of the fundamental group of a graph of relatively hyperbolic groups with
parabolic edge groups.

Theorem 1.1.9. [73, Theorem 1.8] Let Y be a finite connected graph and let
G(Y ),G′(Y ) be two graphs of groups satisfying the following:

1. For each vertex v ∈ V (Y ), let (Gv,Pv),(G′
v,P′

v) be relatively hyperbolic
groups.

2. Let e ∈ E(Y ) be any edge. Suppose v,w are vertices connected by e. Let
Pe,P′

e be parabolic edge groups in G(Y ),G′(Y ), respectively. Then either
Pe,P′

e have infinite index in corresponding maximal parabolic subgroups in
Gv,G′

v, respectively or Pe,P′
e have the same finite index in maximal parabolic

subgroups in Gv,G′
v, respectively. Similarly, either Pe,P′

e have infinite index
in maximal parabolic subgroups in Gw,G′

w, respectively or Pe,P′
e have the

same finite index in corresponding maximal parabolic subgroups in Gw,G′
w,

respectively.

3. For any v ∈ V (Y ), let Bv, B′
v be the set of translates of parabolic points

corresponding to adjacent edge groups under the action of Gv,G′
v on their

Bowditch boundaries respectively. Suppose we have a homeomorphism from
∂Gv → ∂G′

v that maps Bv onto B′
v.

Let Γ = π1(G(Y )), Γ′ = π1(G′(Y )) and let ∂Γ,∂Γ′ be their Bowditch boundaries,
respectively. Then there exists a homeomorphism from ∂Γ to ∂Γ′ preserving edge
parabolic points, i.e. taking parabolic points corresponding to edge groups of G(Y )

to parabolic points corresponding to edge groups of G′(Y ).

Remark 1.1.10. The proof of Theorem 0.1 in [18] works only for infinite edge groups.
In particular, if the edge groups are finite then the space M constructed in [18] need
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not be compact. In all of the above theorems, we also take infinite edge groups.
In [50], Martin and Świątkowski constructed the Gromov boundary for a graph
of hyperbolic groups with finite edge groups, see also [48]. If we take a graph of
convergence groups with finite edge groups then, by [10], the fundamental group of
graph of groups is relatively hyperbolic with respect to infinite vertex groups and
hence it a convergence group.

A few words on the proofs: To prove Theorem 1.1.2, we generalize Dahmani’s
technique [18]. In fact, we explicitly construct a compact metrizable space on which
the fundamental group of the graph of groups acts as a convergence group. In [18],
the primary role of fully quasiconvex edge groups and acylindrical action was to get
a uniform upper bound on the diameters of the domains. In our situation, domains
for points in the boundary of edge groups may be infinite (when edge groups are
not maximal parabolic). Therefore the space constructed by Dahmani in [18] does
not work, see Remark 3.1.9. Thus, we need to modify the space. For that, we look
at the domain of a point ξ in the boundary of an edge group. If the domain of ξ

is an infinite subtree then identify all the boundary points (in the visual boundary
of the Bass-Serre tree) of the domain of ξ with ξ itself. Thus, we get a new set
by taking the equivalence relation generated by this. Then we define a topology
on this set and see that this is our candidate space. For proving Theorem 1.1.4,
we use a result of Manning from [47]. Using this result, the proof of this theorem
boils down to the case of parabolic edge groups, which is done by Theorem 1.1.2.
To construct Bowditch boundary for Γ as in Theorem 1.1.7, in the construction of
candidate space (see Section 3.1), we take Bowditch boundaries on which vertex
groups act geometrically finitely and the rest of the things remain the same.

It is sufficient to consider only the amalgam and HNN extension case to prove the
above theorems. For a general graph of groups, say G(Y ), we may take a maximal
tree T in Y . By proving the theorems for amalgams, we are done for graphs of
groups over T . By adding the remaining edges in Y \T one by one, we are in the
HNN extension case. By proving the theorems for HNN extensions, we are done in
the general case.

1.2 Boundaries of coned-off spaces and Cannon-Thurston
maps

Given a hyperbolic space X and a hyperbolic subspace Y , it is natural to ask if
the natural inclusion Y → X extends continuously to ∂Y → ∂X (see [5],[57]). In
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particular, one may ask the same question for a pair of hyperbolic groups H < G.
Existence of such a continuous map is known as Cannon-Thurston (CT) map. The
first example of this sort was given by Cannon and Thurston in [12]. Later Mitra (Mj)
[57] gave a different proof of Cannon-Thurston’s result and generalized it for the tree
of hyperbolic spaces. Over the time, the existence of Cannon-Thurston map has been
proven in many interesting cases. A few of them are [56],[60],[63],[46],[43]. For
a detailed account of the history of Cannon-Thurston maps, one is referred to [59].
However, Baker and Riley [2] answer the general question for groups negatively.

Our starting point is the following question:

Question 3. Suppose X is a hyperbolic metric space and {Ai}i∈I is a collection of
uniform quasiconvex subsets of X. Let X̂ denotes the coned-off space obtained by
coning Ai’s. Suppose Y ⊂ X is a hyperbolic space, and a CT map exists for Y → X̂ .
Does there exist a CT map for Y → X and vice versa?

In the previous question, if Y is quasiconvex in X then, by [17, Proposition 2.11],
Y is also quasiconvex in X̂ . In general, the converse of this result is false. However,
under some additional assumptions, Mj-Dahmani [17, Proposition 2.12] proved the
converse.

Remark 1.2.1. Let X be a geodesic metric space and let {Ai}i∈I be a collection of its
subsets. The collection {Ai} is said to be locally finite if for all x0 ∈ X and D > 0
there exists N = N(x0,D) such that |{i ∈ I : B(x0,D)∩Ai ̸= φ}| ≤ N.

We give an answer to a variation of Question 3 in the following theorem.

Theorem 1.2.2 ([68]). Suppose X is a hyperbolic geodesic metric space, Y ⊂ X
which is properly embedded in X with respect to the induced length metric from X.
Let {Ai ⊂ X} be a locally finite collection of uniformly quasiconvex subsets. Suppose
Y is hyperbolic geodesic metric space and {B j ⊂ Y} is a collection of subsets such
that each B j is contained in Ai ∩Y for some i. Also, assume that B j’s are uniformly
quasiconvex in Y as well as in X. Let Ŷ denote the coned-off space obtained by
coning B j’s and let X̂ denote the coned-off space obtained by coning Ai’s. If Ŷ → X̂
satisfies Mitra’s criterion then the CT map ∂Y → ∂X exists.

Moreover, the CT map ∂Y → ∂X is injective if and only if the CT map ∂Ŷ → ∂ X̂
is injective.

For Mitra’s criterion, one is referred to Lemma 2.2.34.
The next part studies the existence of Cannon-Thurston map for certain subcom-

plexes of groups of a given complex of hyperbolic groups. As the main application
of Theorem 1.2.2, we prove the following.
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Theorem 1.2.3 ([68]). Let (G ,Y ) be a developable complex of groups over a finite
simplicial complex Y . Let Y1 be a connected subcomplex of Y and let (G ,Y1) be the
subcomplex of groups obtained by restricting (G ,Y ) to Y1. Suppose the following
conditions hold:

1. The natural homomorphism G1 = π1(G ,Y1)→ G = π1(G ,Y ) is injective.

2. Both G1,G are hyperbolic, and all the local groups of (G ,Y ) are quasiconvex
in G.

3. The natural map B1 → B satisfies Mitra’s criterion, where B1,B are the uni-
versal covers of (G ,Y1) and (G ,Y ), respectively.

Then there exists a Cannon-Thurston map for the inclusion G1 → G. Moreover,
G1 is quasiconvex in G if and only if the Cannon-Thurston map for B1 → B is
injective.

The converse of Theorem 1.2.3 is false, i.e. there are examples where the CT
map exists for G1 → G, but the CT map fails to exist at the development level, see
Example 4.4.17.

An immediate corollary of Theorem 1.2.3 is the following:

Corollary 1.2.4. Let (G ,Y ) be a complex of groups satisfying the hypothesis of
Theorem 4.2.1. Let Y1 be a connected subcomplex of Y and let (G ,Y1) be the
subcomplex of groups obtained by restricting (G ,Y ) to Y1. Suppose the following
conditions hold.

1. (G ,Y1) also satisfies the hypotheses of Theorem 4.2.1.

2. The natural homomorphism H = π1(G ,Y1)→ G = π1(G ,Y ) is injective.

3. Assume that the natural map B1 → B satisfies Mitra’s criterion where B1,B
are the universal covers of (G ,Y ) and (G ,Y ) respectively.

Then there exists a Cannon-Thurston map for the inclusion H → G. Moreover, H is
quasiconvex in G if and only if the Cannon-Thurston map for B1 → B is injective.

Remark 1.2.5. Motivated by the work of Dahmani [18], A.Martin [48] proved a
combination theorem for an acylindrical complex of hyperbolic groups. There he
explicitly constructed the Gromov boundary of the fundamental group of the given
complex of groups. It is worth nothing that the existence of the CT map in Corollary
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1.2.4 can be proved using the technique of [48] too, i.e. one can define a natural
map from Gromov boundary of H to Gromov boundary of G, and one can check
that this map is continuous. But it is a long proof. However, using the geometry
of the electrified space, we give an elegant and short proof. Also, our technique is
applicable to situations where Martin’s technique failed, see for example Theorem
1.2.3 and Corollary 4.3.3.

Further, we give an application of Theorem 1.2.3 in the context of polygons of
groups. More specifically, in Section 4.4, we prove the following:

Theorem 1.2.6. Let Y be a regular Euclidean polygon with at least 4-edges and
let (G ,Y ) be a simple complex of groups over Y . Let e be an edge of Y and let G1

be the amalgamated free product corresponding to e. Suppose (G ,Y ) satisfies the
following:

1. All the local groups are hyperbolic and all the local maps are qi embeddings.

2. In vertex groups, the intersection of the two subgroups coming from the adja-
cent edges is equal to the subgroup coming from the barycenter of Y .

3. The universal cover B is a hyperbolic space and the action of G = π1(G ,Y )
on B is acylindrical.

Then G1 is quasiconvex in G.

Using the work of Wise [77] and Theorem 1.2.6, we also prove a combination
theorem for virtually compact special groups in the setting of polygons of groups, see
Proposition 4.4.12. At the end of Chapter 4, we discuss a few interesting examples.

A few words on the proofs: To prove Theorem 1.2.2, firstly, as a set, we describe
the Gromov boundary of X and Y . Its immediate consequence is that there exists a
natural map from ∂Y to ∂X . Finally, we check the hypotheses of Lemma 2.2.37 to
be able to prove Theorem 1.2.2. We also prove a converse of Theorem 1.2.2. Next,
we discuss some group theoretical applications of Theorem 1.2.2 and deduce a proof
of Theorem 1.2.3. To prove Theorem 1.2.6, it is sufficient to show that the natural
map B1 → B satisfies Mitra’s criterion and the corresponding CT map is injective.
We prove that this map is in fact an isometric embedding. Finally, we give some
interesting examples.

Layout of the thesis: In Chapter 2, we recall definitions and results that are rele-
vant to us. In Chapter 3, we prove combination theorems for graphs of convergence
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and relatively hyperbolic groups. In particular, for a graph of relatively hyperbolic
groups with parabolic or cyclic edge groups, we give a construction of the Bowditch
boundary of the fundamental group of the graph of groups. Also, we discuss the
homeomorphism type of the Bowditch boundary of the fundamental group of a graph
of relatively hyperbolic groups with parabolic edge groups. Cannon-Thurston maps
for coned-off metric spaces are studied in Chapter 4. As the main application, we
obtain the existence of Cannon-Thurston maps for certain subcomplexes of groups
of a complex of hyperbolic groups. Finally, deduce some other interesting results
and examples too.



Chapter 2

Preliminaries

2.1 Coarse geometric notions

Let X be a metric space. Suppose x,y ∈ X . A geodesic (segment) joining x and
y is an isometric embedding α from a closed interval [0, l] ⊂ R to X such that
α(0) = x,α(l) = y. (Most of the time, we are interested only in the image of this
embedding rather than the embedding itself.) If any two points of X can be joined
by a geodesic segment then X is said to be a geodesic metric space. In this thesis,
graphs are assumed to be connected and it is assumed that each edge is assigned a
unit length so that the graphs are naturally geodesic metric spaces ([11, Section 1.9,
I.1]).

Now, we collect some basic notions from large scale geometry.

Definition 2.1.1. Let X ,Y be metric spaces and let L ≥ 1,k ≥ 1,ε ≥ 0.

1. A map f : X → Y is said to be L-Lipschitz if dY ( f (x), f (y))≤ LdX(x,y). The
map f : X → Y is said to be Lipschitz if it is L-Lipschitz for some L ≥ 1.

2. A map f : X →Y is said to be L-coarsely Lipschitz if for all x,y ∈ X , we have

dY ( f (x), f (y))≤ LdX(x,y)+L

The map f is said to be coarsely Lipschitz if it is L-coarsely Lipschitz for some
L ≥ 1.

3. Let φ : [0,∞)→ [0,∞) be a map. A map f : X → Y is said to be a φ -proper
embedding if dY ( f (x), f (x′))≤ M implies dX(x,x′)≤ φ(M) for all x,x′ ∈ X .
A map f : X → Y is called a proper embedding if it is a φ -proper embedding
for some φ : [0,∞)→ [0,∞).

11
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In all instances in this thesis, the space X is a subspace of Y and the metric
on X is the induced length metric [11, Definition 3.3, I.3] from Y and f is the
inclusion which is clearly 1-Lipschitz.

4. A map f : X →Y is said to (k,ε)- quasiisometric embedding (qi embedding)
if for all x,y ∈ X , we have

1
k

dX(x,y)− ε ≤ dY ( f (x), f (y))≤ kdX(x,y)+ ε

The map f is called quasiisometric embedding if it is (k,ε)-quasiisometric
embedding for some k ≥ 1,ε ≥ 0.

5. A map f : X →Y is said to be (k,ε)-quasiisometry if f is a (k,ε)-quasiisometric
embedding and there exists D ≥ 0 such that ND( f (X)) =Y . The map f is said
to be quasiisometry if it is (k,ε)-quasiisometry for some k ≥ 1,ε ≥ 0.

6. A quasigeodesic (resp. quasigeodesic ray) in X is a (k,ε)-quasiisometric
embedding from an interval I ⊂ R (resp. from [0,∞) ⊂ R) to X for some
k ≥ 1,ε ≥ 0.

7. Let I ⊂ R be a closed interval with endpoints in Z∪{∞,−∞}. Let J = Z∩ I
with restricted metric from R. Then a (k,ε)-qi embedding α : J → X will be
called a dotted (k,ε)-quasigeodesic. Moreover, if I = [0,∞) then a (k,ε)-qi
embedding α : J → X is called a dotted quasigeodesic ray.

8. Suppose A ⊂ X . Then the nearest point projection of X on A is a map
PX ,A : X → A such that d(x,PX ,A(x)) = in f{d(x,PX ,A(y)) : y ∈ A} for all x ∈ X .

The following lemma is standard. For the sake of completeness, we give its
proof.

Lemma 2.1.2. Suppose X ,Y are any metric spaces, f : Y → X is an L-Lipschitz and
φ -proper embedding. Suppose Z is a geodesic metric space and g : Z → Y is a map
such that f ◦g is a (k,ε)-qi embedding. Then g is a (k′,ε ′)-qi embedding where k′,ε ′

depend only on L,φ ,k,ε .

Proof. Let z,z′ ∈ Z. Since f ◦ g is a (k,ε)-qi embedding, we have the following
inequality:

1
k

dZ(z,z′)− ε ≤ dX( f (g(z)), f (g(z′)))≤ kdZ(z,z′)+ ε
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Since f is an L-Lipschitz map,
1
k

dZ(z,z′)− ε ≤ LdY (g(z),g(z′)). This implies that
1

kL
dZ(z,z′)−

ε

L
≤ dY (g(z),g(z′)). Next, we show that g is a Lipschitz map. Note that

it is sufficient to consider the case when dZ(z,z′)≤ 1. Then, dX( f (g(z)), f (g(z′)))≤
k + ε . Since f is φ -proper embedding, dY (g(z),g(z′)) ≤ φ(k + ε). Hence, g is
L′-Lipschitz where L′ depends on φ ,k,ε . This completes the proof.

In particular, when Y is a subspace of X equipped with the induced length metric
from X and Z is an interval then we obtain that any quasigeodesic of X contained in
Y is a uniform quasigeodesic in Y too.

Next, we record the following lemma which is straight forward.

Lemma 2.1.3. Suppose X is a Hausdorff topological space, x ∈ X and {xn} is a se-
quence in X. If for any subsequence {xnk} of {xn}, there exists a further subsequence
{xnkl

} of {xnk} such that {xnkl
} converges to x then {xn} converges to x.

We end this section by including the following which originates from [69].

Definition 2.1.4 (Acylindrical action). Let k ∈ N. An action of a group G on a
metric space (X ,d) is said to be k-acylindrical if whenever the pointwise stabilizer
{x,y} is infinite for x,y ∈ X then d(x,y) ≤ k. The action of G on X is said to be
acylindrical if it is k-acylindrical for some k ∈ N.

2.2 Hyperbolic spaces

In his seminal work [32], Gromov introduced the notion of hyperbolic metric spaces.
For a detailed account of the work, we refer the reader to some of the standard
references like [30], [11].

Definition 2.2.1 (Gromov inner product). Let (X ,d) be a metric space and let
p ∈ X be a fixed point. Let x,y ∈ X . Then the Gromov inner product of x,y with

respect to p is denoted by (x.y)p and defined as
1
2
(d(p,x)+d(p,y)−d(x,y)).

Definition 2.2.2 (Gromov hyperbolicity). Let (X ,d) be a metric space and let δ ≥ 0.
Suppose p ∈ X is fixed. Then X is said to be δ -hyperbolic in the sense of Gromov if
for all x,y,z ∈ X the following holds:

(x.y)p ≥ min{(x.z)p,(z.y)p}−δ .

A metric space is said to be hyperbolic in the sense of Gromov if it is δ -hyperbolic
in the sense of Gromov for some δ ≥ 0.
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Note that Gromov hyperbolicity does not depend on the choice of point p ∈ X ,
i.e. if X is δ -hyperbolic with respect to point p then it is 2δ -hyperbolic with respect
to any other point of X (see [32]).

Lemma 2.2.3. [43, Lemma 1.40] Given ε ≥ 0,δ ≥ 0,D ≥ 0 there exists δ ′ =

δ ′(ε,δ ,D) such that the following holds:
Let f : X → Y be a (1,ε)-quasiisometry. If X is δ -hyperbolic in the sense of

Gromov then Y is δ ′-hyperbolic in the sense of Gromov.

Proof. Fix an element p ∈ X . Then it is easy to verify that |( f (x). f (y)) f (p) −

(x.y)p| ≤
3ε

2
for all x,y ∈ X . Thus, for all x,y,z ∈ X , we have

( f (x). f (y)) f (p) ≥ (x.y)p −
3ε

2
≥ min{(x.z)p,(z.y)p}−δ − 3ε

2
≥ min{( f (x). f (z)) f (p),( f (z). f (y)) f (p)}−δ −3ε

Let y1,y2,y3 ∈ Y . Since f is a quasiisometry, ∃ D ≥ 0 such that ND( f (X)) = Y .
Choose x1,x2,x3 ∈ X such that dY ( f (xi),yi)≤ D for i = 1,2,3. Again it is easy to
verify that |( f (x1). f (x2)) f (p)− (y1.y2) f (p)| ≤ 2D. Therefore, we get

(y1.y2) f (p) ≥ ( f (x1). f (x2)) f (p)−2D
≥ min{( f (x1). f (x3)) f (p),( f (x3). f (x2)) f (p)}−δ −3ε −2D
≥ min{(y1.y3)p,(y3.y2)p}−δ −3ε −4D.

Let y1,y2,y3,y be arbitrary elements of Y . Let x ∈ X such that d( f (x),y) ≤ D.
Then, we see that |(yi.y j) f (x)− (yi.y j)y| ≤ 2D for i, j ∈ {1,2,3}. Hence (y1.y2)y ≥
min{(y1.y3)y,(y3.y2)y}− δ − 3ε − 4D. By taking δ ′ = δ + 3ε + 4D, we are done.

The above lemma shows that Gromov hyperbolicity is invariant under (1,ε)-
quasiisometry. In general, this is no longer true; see [43, Example 1.39]. However,
Gromov hyperbolicity is known to be invariant for length spaces under quasiisome-
tries [43]. Next, we define hyperbolic geodesic metric space (also known as hyper-
bolic spaces in the sense of Rips).

Definition 2.2.4. Let X be a geodesic metric space and let δ ≥ 0.

1. A geodesic triangle ∆ in X is said to be δ -slim if any side of ∆ is contained in
the union of the δ -neighborhood of the remaining two sides.

2. The space X is said to be δ -hyperbolic if every geodesic triangle in X is
δ -slim.

A geodesic metric space is said to be hyperbolic if it is δ -hyperbolic for some
δ ≥ 0.
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By [11, Proposition 1.22, III.H], Definition 2.2.2 and Definition 2.2.4 are equiva-
lent for geodesic metric spaces. Next, we state one of the fundamental properties of
hyperbolic spaces.

Lemma 2.2.5 (Stability of quasigeodesics). [11, Theorem 1.7, Chapter III.H] Given
δ ≥ 0,k ≥ 1,ε ≥ 0 there exists a constant D = D2.2.5(δ ,k,ε) with the following
property:

Let X be a δ -hyperbolic geodesic metric space. Then the Hausdorff distance
between a (k,ε)-quasigeodesic and a geodesic joining the same pair of end points is
less than or equal to D.

One of the consequences of the above lemma is that hyperbolicity is an invariant
of quasiisometry.

Lemma 2.2.6. [11, Theorem 1.9, Chapter III.H] Given k ≥ 1,ε ≥ 0,δ ≥ 0 there
exists δ ′ = δ ′(k,ε,δ ) such that the following holds:

Let X and Y be geodesic metric spaces and let f : X →Y be a (k,ε)-quasiisometric
embedding. If Y is δ -hyperbolic then X is δ ′-hyperbolic.

It follows from the Milnor-Švarc lemma [11, Proposition 8.19, I.8] that the Cayley
graphs of any finitely generated group G with respect to any two finite generating
sets are quasiisometric. Since hyperbolicity is invariant under quasiisometry, the
following definition does not depend on the choice of finite generating sets of G.

Definition 2.2.7 (Hyperbolic groups). Let δ ≥ 0. A finitely generated group G is
said to be δ -hyperbolic if the Cayley graph of G with respect to a finite generating
set is δ -hyperbolic.

A finitely generated group is said to be hyperbolic if it is δ -hyperbolic for some
δ ≥ 0.

Recall that a subset C of a geodesic metric space X is convex if for all x,y ∈C,
each geodesic joining x to y is contained in C. In [32], Gromov quasified this notion
and introduced the notion of a quasiconvex subset of a geodesic metric space.

Definition 2.2.8 (Quasiconvexity). Let X be a geodesic metric space and let Q ⊂ X .
Let K ≥ 0. Then Q is said to be K-quasiconvex if every geodesic with end points in
Q is contained in NK(Q). A subset of X is said to quasiconvex if it is K-quasiconvex
for some K ≥ 0.

A collection {Ai}i∈I of subsets of X is said to be uniformly K-quasiconvex
if Ai is K-quasiconvex in X for all i. The collection {Ai} is said to be uniformly
quasiconvex if it is uniformly K-quasiconvex for some K ≥ 0.
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Definition 2.2.9. Let G be a finitely generated group. A subgroup H of G is said to
be quasiconvex if it is a quasiconvex subset of the Cayley graph of G with respect to
a finite generating set.

The following lemma shows the persistence of quasiconvexity under qi embed-
ding of hyperbolic spaces. Thus it shows that quasiconvexity of any subset of a
hyperbolic group is well-defined, i.e. independent of the Cayley graphs.

Lemma 2.2.10. Given K ≥ 0,k ≥ 0,δ ≥ 0 there exists K′ = K′(K,k,δ ) such that
the following holds:

Suppose f : X → Y is a k-qi embedding of δ -hyperbolic geodesic metric spaces.
If A ⊂ X is K-quasiconvex then f (A)⊂ Y is K′-quasiconvex.

Proof. Let γ be a geodesic in X joining x1,x2. Since f is a qi embedding, f (γ) is a
quasigeodesic joining yi = f (xi) for i = 1,2. The lemma is then immediate by using
stability of quasigeodesics (Theorem 2.2.5).

Next, we record the following basic lemma.

Lemma 2.2.11. [46, Corollary 2.29] Given δ ≥ 0,k ≥ 0 there exists K = K(δ ,k)
such that the following holds:

Let X be a δ -hyperbolic geodesic metric space and let γ be a k-quasigeodesic
in X with an end point y. Suppose x ∈ X and y is a nearest point projection of x on
γ . Let β be a geodesic in X joining x and y. Then the concatenation of β and γ is a
K-quasigeodesic in X.

The following lemma is standard. For the sake of completeness, we give its
proof.

Lemma 2.2.12. Let X be a geodesic metric space and let Q be a K-quasiconvex sub-
set of X. Then, given two points x,y ∈ Q, there exists a uniform dotted quasigeodesic
path joining x and y whose image is contained in Q. Moreover, we have a uniform
quasigeodesic in X joining x and y.

Proof. We give a sketch of proof. Let α : [0, l]→ X be a geodesic joining x and y,
where l is the length of α . If l ≤ 1 then lemma follows. Suppose l > 1. Choose points
x0,x1, ...,xn on α such that xi,xi+1 are sufficiently separated (depending on K) for
0≤ i≤ n−1. Since Q is K-quasiconvex, there exists qi ∈Q such that d(xi,qi)≤K for
i = 1,2, ...,(n−1). We take q0 = x0,qn = xn. Define a map β : [0, l)∩Z∪{l}→ X
such that β (0) = q0,β (l) = qn and β (i) = qi for i = 1,2, ...,(n−1). It is immediate
that β is a uniform dotted quasigeodesic. Now, join qi and qi+1 by a geodesic αi in
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X . Then, it is easy to verify that the concatenation α0 ∗α1 ∗ ...∗αn−1 is a uniform
quasigeodesic joining x,y in X .

The following lemma shows that the finite union of quasiconvex sets is quasicon-
vex. The proof is clear by induction and hence we skip it.

Lemma 2.2.13. Given δ ≥ 0,k ≥ 0 and n ∈ N there exists D = D(δ ,k,n) such that
the following holds:

Suppose X is a δ -hyperbolic geodesic metric space and {Ai}1≤i≤n is a collection
of k-quasiconvex subsets in X such that Ai ∩Ai+1 ̸= /0 for all 1 ≤ i ≤ n− 1. Then
∪iAi is a D-quasiconvex subset of X.

In general, an arbitrary union of quasiconvex sets need not be quasiconvex.
However the following is true.

Lemma 2.2.14. Given δ ≥ 0,K ≥ 0 there is D = D(δ ,K) such that the following
holds:

Suppose X is a δ -hyperbolic geodesic metric space, {Ai} is any sequence of
K-quasiconvex sets in X and γ ⊂ X is a geodesic such that Ai ∩Ai+1 ∩ γ ̸= /0 for all
i ≥ 1. Then ∪iAi is a D-quasiconvex set in X.

Proof. Let xi ∈ Ai ∩ Ai+1 ∩ γ for all i. For all i ≤ j, let [xi,x j] denote the seg-
ment of γ from xi to x j. Clearly [xi,xi+1] ⊂ NK(Ai+1) for all i and hence [xi,x j] ⊂
NK(∪i+1≤k≤ j+1Ak)⊂ NK(∪kAk) for all i ≤ j. Note that quadrilaterals in X are 2δ -
slim. Now, given x ∈ Ai,y ∈ A j, i ≤ j, we have [x,y] ⊂ N2δ ([x,xi]∪ [xi,x j]∪ [x j,y].
Hence, [x,y]⊂ N2δ+K(∪kAk). Hence, we may choose D(δ ,K) = 2δ +K.

2.2.1 Boundaries of hyperbolic spaces and Cannon-Thurston
maps

Definition 2.2.15 (Geodesic boundary). Let X be a geodesic hyperbolic metric
space and let x0 ∈ X . Then the geodesic boundary ∂X is defined in the following
way:

∂X := {γ : γ : [0,∞)→ X is a geodesic ray such that γ(0) = x0}/∼

where two geodesic rays γ1 ∼ γ2 if and only if Hd(γ1,γ2)< ∞.

The equivalence class of a geodesic ray γ is denoted by γ(∞). If X is a proper
geodesic hyperbolic space then the geodesic boundary of X does not depend on the
choice of base point x0, [41, Proposition 2.10].
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Definition 2.2.16. Let X be a geodesic metric space. A generalised geodesic ray
is a geodesic γ : I → X , where either I = [0,R] for some R ≥ 0 or else I = [0,∞). In
the case I = [0,R] it is convenient to define γ(t) = γ(R) for t ∈ [R,∞].

Thus for a hyperbolic geodesic metric space X , X̄ := X ∪ ∂X = {γ(∞) : γ is a
generalised geodesic ray}.

Definition 2.2.17 (Topology on X̄). Let X be a hyperbolic geodesic metric space
and let x0 ∈ X . We define convergence in X̄ by : a sequence {xn} in X̄ converges
to x ∈ X̄ if and only if there exist generalised geodesic rays γn with γn(0) = x0

and γn(∞) = xn such that every subsequence of {γn} contains a subsequence that
converges (uniformly on compact sets) to a generalised ray γ with γ(∞) = x. This
defines a topology on X̄ : the closed subsets C ⊂ X̄ are those which satisfy the
condition [xn ∈C,∀n ≥ 1 and xn → x] =⇒ x ∈C.

Let X be a δ -hyperbolic geodesic metric space and let γ be a geodesic ray in X
such that γ(0) = x0. Let k > 2δ . For n ∈ N, we define the following set:

V (γ,n) := {α : α is a generalised ray such that α(0) = x0 and d(γ(n),α(n))< k}.

Lemma 2.2.18. [11, Lemma 3.6, III.H] The collection {V (γ,n)}n∈N is a fundamental
system of neighborhoods around γ(∞) in X̄ .

Next lemma shows that the topology on X̄ does not depend on the choice of base
point x0.

Lemma 2.2.19. [11, Proposition 3.7,III.H] Let X be a proper δ -hyperbolic geodesic
metric space. Then

1. The topology on X̄ is independent of the choice of base point.

2. X ↪→ X̄ is a homeomorphism onto its image and ∂X ⊂ X̄ is closed.

3. X̄ is compact.

Lemma 2.2.20. [11, Theorem 3.9,III.H] Let X and Y be proper hyperbolic geodesic
spaces. If f : X → Y is a quasiisometric embedding, then α(∞) → ( f ◦ α)(∞)

defines a topological embedding f∂ : ∂X → ∂Y . If f is a quasiisometry then f∂ is a
homeomorphism.

Next, we define Gromov boundary of a hyperbolic group.
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Definition 2.2.21. Let G be a hyperbolic group. Then, the Gromov boundary of G
is defined as the Gromov boundary of a Cayley graph of G with respect to a finite
generating set.

The previous definition is independent of the choice of the Cayley graphs as dif-
ferent Cayley graphs with respect to different finite generating sets are quasiisometric.
Thus, by Lemma 2.2.20, their Gromov boundaries are homeomorphic.

Definition 2.2.22 (Quasigeodesic boundary). Suppose X is a hyperbolic metric
space. Then the quasigeodesic boundary ∂qX is defined in the following way:

∂qX = {α : α is a quasigeodesic ray}/∼

where two quasigeodesics rays α ∼ β if and only if Hd(α,β )< ∞.

Definition 2.2.23 (Sequential boundary). Let X be a hyperbolic metric space and let
p ∈ X . Let S denote the set of all the sequences {xn} such that limi, j→∞(xi.x j)p = ∞.
Define an equivalence relation ∼ on S by declaring two sequences {xn},{yn} are
equivalent if and only if limi, j→∞(xi.y j)p = ∞. As a set, the Gromov boundary or the
sequential boundary ∂sX of X is defined as S /∼.

The above definition does not depend on the base point p. The following is a
very basic lemma.

Lemma 2.2.24. (1) If {xn} ∈S and {xnk} is a subsequence of {xn} then {xnk} ∈S

and {xn} ∼ {xnk}.
(2) If {xn},{yn} ∈ S then {xn} ∼ {yn} if and only if limn→∞(xn.yn)p = ∞.

If {xn} ∈ S then the equivalence class of {xn} will be denoted by [{xn}]. If
ξ = [{xn}] ∈ ∂sX then we say xn converges to ξ . Next, we record some of the basic
facts about boundaries of hyperbolic spaces.

Lemma 2.2.25. Suppose X is a δ -hyperbolic metric space.

1. Given a quasigeodesic α : [0,∞) → X, the sequence {α(n)} converges to
infinity. This gives rise to an injective map ∂qX → ∂sX.

2. There is a constant k0 depending only on δ such that for any x0 ∈ X and any
ξ ∈ ∂sX there is a k0-quasigeodesic in X joining x0 to ξ . In particular, the
map ∂qX → ∂sX mentioned above is surjective.

Also for all ξ1 ̸= ξ2 ∈ ∂sX there is a k0-quasigeodesic line γ in X joining ξ1,ξ2,
i.e. such that ξ1 is the equivalence class of {γ(−n)} and ξ2 is the equivalence
class of {γ(n)}.
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3. If Y is another hyperbolic metric space and f : Y → X is a qi embedding then
f induces an injective map ∂ f : ∂sY → ∂sX. This map is functorial:

(a) If I : X → X is the identity map then ∂ I is the identity map on ∂sX.

(b) If g : Z → Y and f : Y → X are qi embeddings of hyperbolic metric spaces
then ∂ f ◦∂g = ∂ f ◦g.

Topology on X ∪∂sX .
There is a natural topology on ∂sX defined in the following way:

Let ξn = [{xn
k}k] be a sequence of points in ∂sX and let ξ = [{xk}]. Then ξn → ξ

if and only if limn→∞(liminfi, j→∞(xn
i .x j)p) = ∞. Next, we include the following

basic facts that we are going to need later.
If {xn} is a sequence in X and ξ ∈ ∂sX then xn → ξ if and only if {xn} converges

to infinity and ξ = [{xn}].

Remark 2.2.26. If X is a proper hyperbolic geodesic metric space then the geodesic
boundary and the sequential boundary of X are naturally homeomorphic [11, Lemma
3.13, III.H]. When X is a hyperbolic metric space, we interchangeably write ∂X and
∂sX for the sequential boundary. We also write X̄ = X ∪∂sX .

Next lemma gives a geometric criteria for convergence of a sequence in a hyper-
bolic metric space.

Lemma 2.2.27. ([46, Lemma 2.41]) For all δ ≥ 0 and k ≥ 1 the following holds:
Suppose {xn}, {yn} are sequences in a δ -hyperbolic metric space X and ξ ∈ ∂sX.
Let αm,n be a k-quasigeodesic joining xm,xn, and let βm,n be a k-quasigeodesic
joining xm,yn for all m,n ∈N. Let γn be a k-quasigeodesic ray joining xn to ξ for all
n ∈ N. Let x0 ∈ X be an arbitrary fixed point. Then

(1) {xn} converges to infinity if and only if limm,n→∞ d(x0,αm,n) = ∞.
(2) If both the sequences {xn},{yn} are converging to infinity then {xn} ∼ {yn}

if and only if limm,n→∞ d(x0,βm,n) = ∞.
(3) xn → ξ if and only if limn→∞ d(x0,γn) = ∞.

The following lemma gives yet another criteria for convergence.

Lemma 2.2.28. Given δ ≥ 0,k ≥ 1 there exists D = D(δ ,k) such that following
holds:

Let X be a δ -hyperbolic metric space and let x0 ∈ X. Suppose α is a k-
quasigeodesic ray converging to ξ ∈ ∂sX and {xn} is a sequence in X. Let αn

be a k-quasigeodesic segment joining x0 to xn. Then xn → ξ if and only if for all
R ≥ 0 there is N ∈ N such that Hd(α ∩B(x0;R),αn ∩B(x0;R)) ≤ D+ d(x0,α(0))
for all n ≥ N.
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In reference to this lemma we shall informally say that αn’s fellow travel α for
a longer and longer time. The idea of the proof is very similar to that of Lemma
1.15 and also Lemma 3.3 of [11, Chapter III.H]. Since this is very standard we skip
its proof. One is also referred to [46, Lemma 2.41].

Lemma 2.2.29. Suppose X is a δ -hyperbolic metric space and ξ ∈ ∂sX. Suppose
R > 0 and for all integer n ≥ R there is a sequence {xn

k} in X with xn
k → ξ as k → ∞.

There is an unbounded sequence of integers {ck} and a subsequence {nk} of the
sequence of natural numbers such that {xck

nk}→ ξ .

Proof. Let x ∈ X . A sequence {xn} in X converges to ξ ∈ ∂sX if and only if
limn→∞(xn.ξ )x → ∞. Thus, given r1 > 0 there exists n1 ∈ N such that (xR+1

n1
.ξ )x >

r1. Now, choose r2 sufficiently larger than r1 such that there exists n2 > n1 and
(xR+2

n2
.ξ )x > r2. By continuing in this way, we have increasing unbounded sequences

of numbers {rk} and {nk} such that (xR+k
nk

.ξ )x > rk. Now, by defining ck = R+ k, it
is immediate that {xck

nk}→ ξ .

Definition 2.2.30 (Limit set of a subset). Suppose X is a hyperbolic metric space.
The limit set of a subset Y of X is the set {ξ ∈ ∂sX : ∃ {xn}⊂Y with limn→∞ xn = ξ}.

Lemma 2.2.31. Let δ ≥ 0,k ≥ 0 be any constants. Suppose X is a δ -hyperbolic
geodesic metric space and A is a k-quasiconvex subset of X. Suppose γ is a geodesic
ray in X. Let PX ,A be the nearest point projection of X onto A. If the diamX(PX ,A(γ))

is infinite then γ(∞) ∈ Λ(A).

Proof. We give a sketch of proof. Let D = 2k + 7δ and R = k + 5δ . Suppose
γ(0) = x. Since diamX(PX ,A(γ)) is infinite, choose a point x1 = γ(t1) for some
t1 ∈ [0,∞) such that d(PX ,A(x),PX ,A(x1))≥ D. Then, by [43, Lemma 1.120], a1 :=
PX ,A(x1) ∈ NR(γ|[0,t1]

). Thus, there exists y1 ∈ [x,x1] such that d(a1,y1) ≤ R. Note
that diamX(PX ,A(γ([t1,∞)))) is still infinite. Again choose x2 = γ(t2) for some
t2 ∈ [t1,∞) such that d(PX ,A(x2),PX ,A(x1)) ≥ D. Let a2 := PX ,A(x2). By the same
reason, there exists y2 ∈ γ|[t1,t2]

such that d(a2,y2) ≤ R. By continuing in this way,
we obtain sequences {an ∈ A} and {yn ∈ γ([0,∞))} such that d(an,yn) ≤ R. Note
that limn→∞ yn = γ(∞). Now, it is easy to check that limn→∞ an = γ(∞).

The following lemma gives the existence of a dotted quasigeodesic ray in a
quasiconvex subset A corresponding to each limit point of A.

Lemma 2.2.32. Given δ ≥ 0 and k ≥ 0 there is K = K(δ ,k) such that the following
holds:
Suppose X is a δ -hyperbolic geodesic metric space and A ⊂ X is a k-quasiconvex
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subset. Then for all ξ ∈ Λ(A) and x ∈ A there is a dotted K-quasigeodesic ray γ of
X contained in A where γ joins x to ξ .

Proof. By Lemma 2.2.25(2), there is a k0 = k0(δ )- quasigeodesic ray α : [0,∞)→ X
joining x to ξ . Since ξ ∈Λ(A), there is a sequence {xn} in A such that limn→∞ xn = ξ .
Let y1 be a nearest point projection of x1 on α . Then, by Lemma 2.2.11, the
concatenation of [x1,y1] and portion of α from y1 to ξ is a uniform quasigeodesic,
call it α1. Since xn → ∞, choose n to be sufficiently large such that nearest point
projection yn of xn on α1 lie on the portion of α from y1 to ξ . Again, by Lemma
2.2.11, the concatenation of [x1,y1], the portion of α1 between y1,yn, and [xn,yn] is a
uniform quasigeodesic joining x1,xn. Thus, by quasiconvexity of A, the portion of
α1 between y1 and yn lies in a D-neighborhood of A where D depends on k,δ . Hence
α(n) ∈ ND(A) for all large n. Thus, there exists an ∈ A such that dX(γ(n),an)≤ D
for all large n. Now, it is straight forward to check that n → an is a uniform dotted
(k0 +2D)-quasigeodesic ray in X .

Now, we are ready to define Cannon-Thurston map. For the history of CT maps
and its offshoots, one is referred to [59],[46],[43].

Definition 2.2.33 (Cannon-Thurston map). Let f : X → Y be a map between two
hyperbolic metric spaces. We say that the Cannon-Thurston (CT) map exists for f or
f admits the CT map if f gives rise to a well-defined continuous map ∂ f : ∂Y → ∂X
in the following sense:

(1) Given any ξ ∈ ∂X and a sequence {xn} in X converging to ξ , the sequence
{ f (xn)} converges to a point in ∂Y independent of {xn}. This gives ∂ f .

(2) We also require that ∂ f is continuous.

However, the Lemma 2.2.36 shows that condition (2) in the definition of CT map
follows from condition (1). In [57], Mj (Mitra) proved the following lemma that
gives a sufficient condition for the existence of Cannon-Thurston map:

Lemma 2.2.34. ([57, Lemma 2.1]) Suppose X ,Y are hyperbolic geodesic metric
spaces and f : Y → X is a coarsely Lipschitz map. Then f admits a Cannon-Thurston
map if the following holds:

Given y0 ∈ Y there exists a non-negative function M(N) such that M(N)→ ∞ as
N → ∞ and such that for all geodesic segments λ lying outside B(y0,N) in Y , any
geodesic segment in X joining the end points of f (λ ) lies outside B( f (y0),M(N)) in
X.
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Above lemma gives a sufficient condition for the existence of a Cannon-Thurston
map, it is not necessary unless the spaces involved are proper metric spaces (see [46,
Subsection 2.4]).

Remark 2.2.35. In what follows, we refer to Lemma 2.2.34 as Mitra’s criterion for
the existence of Cannon-Thurston map.

The lemma below gives a criterion for the existence of CT maps that will be
useful to us later.

Lemma 2.2.36. Suppose f : X → Y is any map between hyperbolic metric spaces
which satisfies the condition (1) of Definition 2.2.33. Then ∂ f : ∂X → ∂Y is continu-
ous too, i.e. ∂ f is the CT map.

Proof. Fix x0 ∈ X ,y0 ∈ Y . Suppose {ξn} is a sequence in ∂sX and ξn → ξ ∈ ∂sX .
We want to show that ∂ f (ξn)→ ∂ f (ξ ). Suppose this is not the case. Let ξk = [{xk

n}]
and ξ = [{xn}]. Then there is R ≥ 0 such that up to passing to a subsequence of {ξn}
we may assume that liminfm,n→∞( f (xk

m). f (xn))y0 ≤ R and liminfm,n→∞(xk
m.xn)x0 ≥ k

for all k. This implies that for all k ∈ N there is mk ∈ N such that (xk
mk
.xmk)x0 ≥ k

but ( f (xk
mk
). f (xmk))y0 ≤ R. Consequently, by Lemma 2.2.24 xk

mk
→ ξ but f (xk

mk
) ̸→

∂ f (ξ ). This gives us a contradiction.

Corollary 2.2.37. Suppose X ,Y are hyperbolic metric spaces, and f : X → Y and
g : ∂sX → ∂sY are any maps which satisfy the following property:
For any ξ ∈ ∂sX and any sequence xn → ξ where xn ∈ X for all n ∈ N there is a
subsequence {xnk} of {xn} such that f (xnk)→ g(ξ ) as k → ∞. Then g is the CT map
induced by f .

Proof. Suppose ξ ∈ ∂sX and {xn} is a sequence in X converging to ξ . Then any
subsequence of { f (xn)} has a subsequence which converges to g(ξ ). Since Ȳ is a
Hausdorff space, it clearly follows that f (xn)→ g(ξ ). Then we are done by Lemma
2.2.36.

The existence of CT maps gives the following useful criteria for quasiconvexity
and a sort of converse to Lemma 2.2.20 in the setting of groups.

Lemma 2.2.38. Suppose G is a hyperbolic group and H is a hyperbolic subgroup of
G such that the inclusion H → G admits a CT map ∂ i : ∂H → ∂G. If ∂ i is injective
then H is quasiconvex in G.

One may refer to [58, Lemma 2.5],[38, Proposition 2.13] for a proof.
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2.3 Convergence groups

The study of a convergence group was introduced by Gehring and Martin [24] in
order to describe the dynamical properties of Kleinian groups acting on the ideal
sphere of (real) hyperbolic space. Later, this notion was generalised for groups acting
on compact Hausdorff spaces by several people such as Tukia, Freden and Bowditch
[74],[23],[9].

Definition 2.3.1. Let X be a compact Hausdorff space. A group G acting by home-
omorphisms on X is said to be convergence if, whenever {gn}n is a sequence
of distinct points in G there is a subsequence {gnk}k and two points a,b ∈ X
such that gnk |X \ {b} → a and g−1

nk
|X \ {a} → b uniformly on compact subsets

of X \{b},X \{a}, respectively.

The following is the natural instance of convergence groups. Let X be a proper
hyperbolic geodesic metric space and let a group G that acts properly discontinuously
and isometrically on X . Then, we get an induced action by homeomorphism on
X̄ = X ∪∂X .

Lemma 2.3.2. [9, Proposition 1.12] G acts as a convergence group on X̄.

In particular, a hyperbolic group acts as a convergence group on its Gromov
boundary. Let G be a group acting as a convergence group on a compactum (compact
Hausdorff space) X . Given g ∈ G, we define f ix(g) = {x ∈ X : gx = x}.

Definition 2.3.3. If the order of g is finite then g is called an elliptic element. An
infinite order element g ∈ G is said to be parabolic if | f ix(g)|= 1. An infinite order
element g ∈ G is said to be loxodromic if | f ix(g)|= 2.

Next lemma gives a classification of the elements of a convergence group.

Lemma 2.3.4. [9, Lemma 2.1] Suppose G is a group that acts as a convergence
group on a compactum X. Then every element of G is either elliptic, parabolic, or
loxodromic.

The following lemma shows that a parabolic element cannot be loxodromic and
vice versa.

Lemma 2.3.5. [74, Theorem 2G] Let G be a convergence group and let g,h ∈ G.
Assume that g,h are either loxodromic or parabolic elements. Then f ix(g) and
f ix(h) are either coincide or disjoint.
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Definition 2.3.6. Suppose G is a group that acts as a convergence group on a
compactum X . A point p ∈ X is called parabolic if there exists an infinite subgroup
H of G such that H does not have a loxodromic element and H fixes p. The subgroup
H is called a parabolic subgroup and StabG(p) is called a maximal parabolic
subgroup. The point p is called a bounded parabolic point if StabG(p) acts
co-compactly on X \{p}.

Definition 2.3.7. Let G be a group acting as a convergence group on a compactum
X . A point z ∈ X is said to be a conical limit point if there exists a sequence {gn}n

and two distinct points a,b ∈ X such that gnz converges to a and for all y ∈ X \{z},
gny converges to b.

Next we record the following lemma proved by Bowditch in [9].

Lemma 2.3.8. [9, Proposition 3.2] A conical limit point cannot be a parabolic fixed
point.

Let G be a group that acts as a convergence group on a compact metrizable
space X . If every point of X is a conical limit point then G is said to be a uniform
convergence group, see [9, 8]. In [8], Bowditch proved the following topological
characterization of hyperbolic groups .

Theorem 2.3.9. [8, Theorem 0.1] Let X be a perfect metrizable compactum and
let G be a group acting as a convergence group on X. Suppose that G is a uniform
convergence group. Then, G is hyperbolic. Moreover, there is a G-equivariant
homeomorphism from X onto ∂G.

Now, we are ready to define geometrically finite convergence groups. For more
details, one is referred to [10],[78],[25].

Definition 2.3.10. Let G be a group that acts as a convergence group on a compact
metrizable space X . The group G is said to be geometrically finite if every point of
X is either conical or bounded parabolic.

Next, we define the notion of the limit set of a subgroup of a convergence group.

Definition 2.3.11. Let G be a group acting as a convergence group on a compactum
X and let H be a subgroup of G. The limit set Λ(H) of H is the set of limit points,
where a limit point is an accumulation point of some H-orbit in X .

It is well known that if |Λ(H)| ≥ 2 then the limit set can be characterized as
unique minimal non-empty closed H-invariant subset of X . The limit set of a finite
subgroup is empty.
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Definition 2.3.12. Let G be a group that acts as a convergence group on a compactum
X . Let H be a subgroup of G.

(1) H is said to be dynamically quasiconvex if

|{gH ∈ G/H : gΛ(H)∩K ̸= /0,gΛ(H)∩L ̸= /0}|< ∞

whenever K and L are closed disjoint subsets of X .
(2) H is said to be dynamically malnormal if for all g∈G\H, gΛ(H)∩Λ(H) =

/0. A collection of subgroups {Hi < G}i∈I is said to form a dynamically malnormal
family if all Hi are dynamically malnormal and for all g ∈ G, gΛ(Hi)∩Λ(H j) = /0
unless i = j and g ∈ Hi.

Lemma 2.3.13. [79, Lemma 2.6] Let G be a group acting as a convergence group
on a compactum X. Let H and J be two subgroups of G satisfying the following:

1. H is dynamically quasiconvex with |Λ(H)| ≥ 2.

2. H ⊂ J ⊂ G and Λ(H) = Λ(J).

Then, the index of H in J is finite and J is also dynamically quasiconvex.

A subgroup H of a group G is said to be weakly malnormal if |gHg−1∩H|< ∞

for g ∈ G\H. The subgroup H is said to be malnormal if |gHg−1 ∩H|= {1} for
g ∈ G\H.

Lemma 2.3.14. Let G be a group acting as a convergence group on a compactum X
and let H < G be a subgroup. If H is dynamically malnormal then H is malnormal.

Proof. Let g ∈ G\H. Let if possible |gHg−1 ∩H|= ∞. Then, Λ(gHg−1 ∩H) ̸= φ .
Since Λ(gHg−1∩H)⊂ Λ(gHg−1)∩Λ(H) = gΛ(H)∩Λ(H), we get a contradiction
as H is dynamically malnormal.

Example 2.3.15. Let G be a group acting as a convergence group on a compactum
X . Let P be a parabolic subgroup of G. Then Λ(P) is a singleton. It follows from
the definition that P is a dynamically quasiconvex subgroup of G. Also, if P is a
maximal parabolic subgroup then P is dynamically malnormal.

Let G be a hyperbolic group. Then, quasiconvex subgroups of G are dynamically
quasiconvex, see [9]. It is well known that cyclic subgroups of a hyperbolic group
are quasiconvex (see [11, III.H]). Now, we prove an analogue of this in the setting of
convergence groups.
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Lemma 2.3.16. [73, Lemma 2.5] Suppose G is a group acting as a convergence
group on a compactum X. Then infinite cyclic subgroups of G are dynamically
quasiconvex.

First of all, we record the following proposition:

Proposition 2.3.17. Let G be a group having a convergence action on a compact
metrizable space X. Let H be a subgroup of G and let ΛH be its limit set. Then H is
dynamically quasiconvex if and only if for any sequence {gn} in distinct left cosets
of H in G there exists a subsequence {gσ(n)} of {gn} such that gσ(n)ΛH uniformly
converges to a point.

For relatively hyperbolic groups, the above proposition also appears in [18,
Proposition 1.8]. We skip proof of the above proposition as it follows directly from
the definition of a dynamically quasiconvex subgroup. Before proving Lemma 2.3.16,
we prove the following:

Lemma 2.3.18. [73, Lemma 2.7] Let X be a proper geodesic hyperbolic space
and let G be a group acting by isometries on X. Suppose G acts as a convergence
group on ∂X (Gromov boundary of X). Then, infinite cyclic subgroups of G are
dynamically quasiconvex.

Proof. Let g∈G be an infinite order element. If g is a parabolic element for G↷ ∂X .
Then, clearly ⟨g⟩ is dynamically quasiconvex. Suppose Λ(⟨g⟩) = {x,y}. Suppose
⟨g⟩ is not dynamically quasiconvex. Then, by the above proposition, there exists a
sequence {gn}n ⊂ G\⟨g⟩ such that gnΛ(⟨g⟩) converges to two distinct points, say, ξ

and η . Without loss of generality, we can assume that gnx → ξ and gny → η . Since
the action of G on ∂X is convergence, there exists a subsequence {gnk}k of {gn} and
two points a,b ⊂ ∂X such that for all z ∈ ∂X \{b}, gnkz converges to a. Note that G
also acts on X ∪∂X as a convergence group with the same attracting and repelling
points. If x ̸= b and y ̸= b then both gnkx,gnky converge to a. This implies ξ = η , a
contradiction. Now, suppose x ̸= b and y = b. Then gnkx → a and gnky → η . Thus,
a = ξ . Now, all the points, except y, on a bi-infinite geodesic ray joining x and y
converge to a under the action of gnk . Now, choose a point p on a bi-infinite geodesic
ray joining ξ and η close enough to η and consider a ball around p of radius R for
some R > 0. Then this ball does not intersect the bi-infinite geodesic rays joining
gnkx to gnky for sufficiently large k. This is a contradiction as gnx and gny converging
to two different points in the boundary of a proper hyperbolic space. We get a similar
contradiction when x = b and y ̸= b. Hence ⟨g⟩ is dynamically quasiconvex for
G ↷ ∂X .
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Proof of Lemma 2.3.16: If G acts on X as an elementary convergence group,
then every infinite cyclic subgroup is dynamically quasiconvex. Now, suppose G acts
on X as a non-elementary convergence group. Let Q be the set of all distinct triples.
Then, by [8],[72, Proposition 6.4], there is a G-invariant hyperbolic path quasimetric
on Q. Thus, we can define the boundary, ∂Q, of Q as in [8]. By [8, Proposition 4.7],
∂Q is G-equivariantly homeomorphic to X . Now ∂Q is compact as X is compact.
Then, by [8, Proposition 4.8], there is a locally finite hyperbolic path quasi-metric
space Q′ (quasiisometric to Q) and X is G-equivariantly homeomorphic to ∂Q′. As
Q′ is locally finite path quasimetric space, by [8, Section 3], Q′ is G-equivariantly
quasiisometric to a locally finite graph Gr(Q′) for some r ≥ 0. As Q′ is a locally
finite hyperbolic path quasimetric space, Gr(Q′) is a proper hyperbolic geodesic
metric space. Also, ∂Q′ is G-equivariantly homeomorphic to ∂Gr(Q′). Finally, by
the above discussion, X is G-equivariantly homeomorphic to ∂Gr(Q′). Let φ be the
homeomorphism induced by quasiisometry from X to Gr(Q′). Since G acts on X as
a convergence group, G also acts on ∂Gr(Q′) as a convergence group [9]. Also, G
acts as a convergence group on Gr(Q′)∪∂Gr(Q′).

Suppose g ∈ G such that order of g is infinite. If g is a parabolic element. Then,
clearly ⟨g⟩ is dynamically quasiconvex for G ↷ X . Now, suppose g is loxodromic
for the action of G on M. Then, g is loxodromic for the action of G on ∂Gr(Q′). By
Lemma 2.3.18, ⟨g⟩ is dynamically quasiconvex subgroup of G for G ↷ ∂Gr(Q′).
Now, let if possible ⟨g⟩ is not dynamically quasiconvex for G ↷ X . Then there
exist disjoint closed subsets K,L of X such that the set {g ∈ G\ ⟨g⟩|gΛ(⟨g⟩)∩K ̸=
/0,gΛ(⟨g⟩)∩L ̸= /0} is infinite. Since φ is a homeomorphism, φ(K),φ(L) are disjoint
closed subsets of ∂Gr(Q′). Then, by G-equivariance of φ , we see that ⟨g⟩ is not
dynamically quasiconvex for G ↷ ∂Gr(Q′). This gives us a contradiction.

2.4 Relatively hyperbolic groups

The notion of relative hyperbolic groups was introduced by Gromov in [32] and has
been elaborated on by several authors, for example [21],[10],[66],[37],[25]. When
the group is countable and the collection of subgroups is finite then all definitions of
relative hyperbolicity are equivalent, see [37],[28]. Here, we use the following two
equivalent definition of relative hyperbolicity, see [10].

Definition 2.4.1. A group G is hyperbolic relative to a family H of subgroups if
G admits a properly discontinuous isometric action on a proper hyperbolic space X
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such that the induced action of G on ∂X is geometrically finite, and the subgroups in
the family H are precisely the maximal parabolic subgroups.

In the above definition, the Gromov boundary of X is canonical and is called the
Bowditch boundary of the relatively hyperbolic group G.

Definition 2.4.2. A connected graph K is said to be fine if each edge of K is contained
in finitely many circuits of length n for each n ∈ N.

Definition 2.4.3. A group G is said to be hyperbolic relative to a family H

of subgroups if G admits an action on a fine hyperbolic graph with finite edge
stabilizers, finitely many orbits of edges, and elements of H are precisely infinite
vertex stabilizers.

Suppose a group G is finitely generated and that G is hyperbolic relative to a
collection H of subgroups. Then, each element of H is finitely generated and the
collection H is also finite, see [66]. Also, in [16], the author proved the equivalence
of Definition 2.4.3 and the one given in [21].

Examples and non-examples:

1. Hyperbolic groups are relatively hyperbolic with respect to trivial subgroup.

2. The fundamental group of non-compact, complete, finite volume Riemannian
manifold with pinched negative sectional curvature is relatively hyperbolic
with respect to cusp subgroups, see [21].

3. The fundamental group of a finite graph of groups with finite edge groups is
relative hyperbolic with respect to infinite vertex groups.

4. Thick groups (or spaces) are not relatively hyperbolic, see [4].

The following theorem of Yaman shows that relatively hyperbolic groups can be
characterized in terms of geometrically finite action.

Theorem 2.4.4. [78, Theorem 0.1] Let G be a group acting geometrically finitely
on a non-empty perfect metrizable compactum X. Assume that the quotient of
bounded parabolic points is finite under the action of G and the corresponding
maximal parabolic subgroups are finitely generated. Let H be the family of maxi-
mal parabolic subgroups. Then (G,H ) is a relatively hyperbolic group and X is
equivariantly homeomorphic to Bowditch boundary of G.
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Remark 2.4.5. The assumption that maximal parabolic subgroups are finitely gener-
ated does not play any role in proving the above theorem, but it is there merely to
satisfy the hypothesis in Bowditch’s definition of a relatively hyperbolic group. Also,
by a result of Tukia [75, Theorem 1B], one can remove the assumption of finiteness
of the set of orbits of bounded parabolic points.

Definition 2.4.6. Let G be a relatively hyperbolic group with Bowditch boundary ∂G.
Let H be a group acting as a geometrically finite convergence group on a compact
metrizable space ∂H. We assume that H embeds in G as a subgroup. Then, H is
said to be relatively quasiconvex if Λ(H)⊂ ∂G is H-equivariantly homeomorphic
to ∂H.

Example 2.4.7. It is immediate that the parabolic subgroups of relatively hyperbolic
groups are relatively quasiconvex. Every cyclic subgroup of a relatively hyperbolic
group is relatively quasiconvex, see [66]. By [29], one also sees that a subgroup of a
relatively hyperbolic group is relative quasiconvex if and only if it is dynamically
quasiconvex.

In the following definition Kg denotes the conjugate of K by g, i.e. gKg−1.

Definition 2.4.8. Let (G,H ) be a relatively hyperbolic group and let K be a sub-
group of G. We say that K is full in G if, for all H ∈ H , g ∈ G, either |K ∩Hg|< ∞

or [Hg : K ∩Hg]< ∞.
A full relatively quasiconvex subgroup of G is a relatively quasiconvex subgroup

that is full.

From definition, it is clear that maximal parabolic subgroups of a relatively hy-
perbolic group are full relatively quasiconvex. Next, we recall some basic definitions
and results from [65] which are relevant to us.

Definition 2.4.9. Let G be a group hyperbolic relative to a collection of subgroups
H . A subgroup Q of G is said to be hyperbolically embedded in G if G is
hyperbolic relative to H ∪{Q}.

Suppose (G,H ) is a relatively hyperbolic group. We say that an element g of
G is parabolic if it is conjugate to an element of H ∈ H . Otherwise, it is called
hyperbolic. For any hyperbolic element g of infinite order, we set E(g) = { f ∈
G : f−1gn f = g±n}. For any hyperbolic element of infinite order, Osin proved the
following theorem:

Theorem 2.4.10. [65, Theorem 4.3] Every hyperbolic element g of infinite order in
G is contained in a unique maximal elementary subgroup E(g).
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From the proof of the above theorem, it follows that [E(g) : ⟨g⟩]<∞ and therefore
E(g) is elementary. Also, for an infinite order hyperbolic element, the unique maxi-
mal elementary subgroup is hyperbolically embedded in the relatively hyperbolic
group G, see [65, Corollary 1.7].

2.5 Farb’s electrified space

In [21], Farb introduced the notion of a coned-off Cayley graph in order to define
relatively hyperbolic groups. Using the same idea, one can define coned-off space or
electrified space.

Definition 2.5.1. Let X be a geodesic metric space and let {Ai} be a collection of
subsets of X . The coned-off space X̂ of X with respect to {Ai} is a new set defined
as follows.

X̂ := X
⊔
(⊔iAi × [0,1])/∼

where the equivalence relation ∼ is generated by (xi,1)∼ (yi,1) and (xi,0)∼ xi for
all xi,yi ∈ Ai, and for all i. Let the equivalence class of (xi,1) be denoted by ei. This
is called the cone point corresponding to the set Ai. One defines a length metric on
X̂ in the usual way and it turns out that X̂ is a metric space.

Remark 2.5.2. In this thesis, we always assume that the coned-off space of a geodesic
metric space is a geodesic metric space which is not true in general. For groups, the
coned-off Cayley graphs are always geodesic metric spaces.

Next, we record the following basic lemma that will be useful to us later.

Lemma 2.5.3. Given D ≥ 0 there exists K = K(D) such that the following holds:
Suppose X is a geodesic metric space and {Ai}i∈I and {Bi}i∈I are two collection

of subsets of X. Suppose X̂A, X̂B are the coned off spaces obtained from coning the
Ai’s and Bi’s respectively. Let φ : X̂A → X̂B be the extension of the identity map
X → X obtained by mapping the open ball of radius 1 about the cone point for Ai to
the cone point for Bi. If, for all i, Hd(Ai,Bi)≤ D then φ is a K-quasiisometry.

Now, we recall some terminology in a coned-off space X̂ with respect to {Ai}.
A path γ in X̂ penetrates a subset Ai if γ passes through the cone point corre-

sponding to Ai. A path γ in X̂ is said to be without backtracking if, for any i, γ

does not return to Ai after leaving it. Let γ be a geodesic (quasigeodesic) without
backtracking in X̂ . Suppose γ passes through the cone points e1,e2, ...,ek. For each
i = 1,2, ...,k, join the entry and exit points of γ in Ai by a geodesic, say γi, in Ai.
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Now take the concatenation of portions of γ outside Ai’s and γi’s and call it γ̂ . The
path γ̂ ⊂ X is called a de-electrification or enlargement of γ .

The following result is motivated by Farb’s ([21]) weak relative hyperbolicity.
The statement was known to be true to the specialists for a long time. However, the
first rigorous proof of it appears in [17].

Proposition 2.5.4. ([17, Proposition 2.10],[42, Proposition 2.6]) Given δ ≥ 0,C ≥ 0
there exists δ ′ = δ ′(δ ,C) such that the following holds:

If X is a δ -hyperbolic geodesic metric space and {Ai} is a collection of C-
quasiconvex subsets of X, then the coned-off space X̂ with respect to the collection
{Ai} is δ ′-hyperbolic.

The above proposition does not assume that Ai’s are "sufficiently separated".
Such a requirement is present in many versions of the above proposition available
in the literature, although this assumption is not in fact necessary and, in particular,
Proposition 7.12 in [10] does not impose the "sufficiently separated" requirement.

In addition to the above proposition the following nice result also appears in [17].

Proposition 2.5.5. [17, Proposition 2.11] Suppose we have the hypotheses of Propo-
sition 2.5.4. Then for any C ≥ 0 there is a C′ ≥ 0 such that any C-quasiconvex subset
Q of X is C′-quasiconvex in X̂ .

A form of the converse of Proposition 2.5.4 also appears in [17, Proposition
2.12]. However, this leads us to the following question. Suppose ‘quasiconvexity’
in the above proposition is replaced by the conditions that the inclusion Q → X is
a proper embedding, Q is hyperbolic, and it admits the CT map. Can one then ask
about the existence of CT map for the inclusion Q → X̂ and vice versa? The main
technical results of Chapter 4 will try to formalize these questions and obtain answers
to variations of them.

2.6 Complexes of groups

In [70], Bass and Serre described completely the groups acting without inversion
on trees. It follows from their work that groups acting without inversion on trees
arise as the fundamental group of graphs of groups. In the same spirit, one has the
following question:

Given a simplicial action of a group G on a simply connected simplicial complex
X̃ , how can one reconstruct the action with the given data on the quotient X = X̃/G?
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This leads to the theory of complexes of groups. These are natural generalization
of graphs of groups introduced by Bass and Serre. When X is a 2-simplex, we have
the notion of triangles of groups studied by Gerstein and Stallings [71]. Later general
complexes of groups was defined and studied by Haefliger [34] and Corson [14] (in
dimension 2 independently). Now, we briefly recall some definitions and results for
complexes of groups. For details, one is referred to [11].

Definition 2.6.1. A small category without loops (scwol) X is a disjoint union of
a set V (X ), the vertex set, and a set E(X ), the edge set, endowed with maps

i : E(X )→V (X ) and t : E(X )→V (X )

and, if E2(X ) denotes the set of pairs (a,b) such that t(b) = i(a), with a map

E2(X )→ E(X )

that associates to each pair (a,b) an edge ab called their composition such that:

1. for all (a,b) ∈ E2(X ), we have i(ab) = i(b), t(ab) = t(a),

2. associativity: for all a,b,c ∈ E(X ), if i(a) = t(b) and i(b) = t(c), then
(ab)c = a(bc),

3. no loop: for each a ∈ E(X ), i(a) ̸= t(a).

Example 2.6.2. Let Q be a poset. Then, we can associate a scwol to Q in the
following way. The set of vertices is Q and the edges are pairs (τ,σ) ∈ Q×Q
such that τ ⊂ σ . Define i((τ,σ)) := σ and t((τ,σ)) := τ . The composition
(τ,ρ)(ρ,σ) := (τ,σ).

For each integer k > 0, let Ek(X ) be the set of sequences (a1,a2, ...,ak) of com-
posable edges (ai,ai+1) ∈ E2(X ) for i = 1,2, ...,(k−1). By convention E0(X ) =

V (X ). The dimension of X is the supremum of all k such that Ek(X ) ̸= φ . For
each scwol X , one can define the geometric realisation of X . It is denoted by
|X |. It is a piecewise Euclidean complex. Roughly speaking it is a disjoint union of
k-simplices corresponding to each sequence (a1,a2, ...,ak) ∈ Ek(X ) with a natural
relation. For more detail, one is referred to [11, pp. 522-523, III.C]. In general, |X |
need not be a simplicial complex but its first barycentric subdivision is a simplicial
complex.

Example 2.6.3. Naturally associated to each Mk-polyhedral complex (see, [11,
Definition 7.37, I.7]) K there is a scwol X such that |X | is the first barycentric
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subdivision of K. The set of vertices of X is the set of cells of K. The set of
edges of X are the set of 1-simplices of the first barycentric subdivision K′ of K:
each 1-simplex a of K′ corresponds to a pair of cells T ⊂ S. Define i(a) to be the
barycenter of S and t(a) to be the barycenter of T .

Definition 2.6.4 (Morphisms of scwols). Let X and Y be two scwols. A morphism
f : X → Y is a map that sends V (X ) to V (Y ) and E(X ) to E(Y ) such that the
following conditions hold:

1. For each a ∈ E(X ), we have i( f (a)) = f (i(a)) and t( f (a)) = f (t(a)).

2. For each (a,b) ∈ E2(X ), we have f (ab) = f (a) f (b).

A morphism f is said to be non-degenerate if for each σ ∈V (X ), the restriction of
f to the set of edges with initial vertex σ is a bijection onto the set of edges of Y

with initial vertex f (σ).

An automorphism of a scwol X is a morphism from X to X that has an
inverse.

For a scwol X , let E±(X ) be the set of oriented edges of X , i.e. the set of
symbols a+,a− for a ∈ E(X ). For e = a+, we define i(e) = t(a), t(e) = i(a). For
e = a−, we define i(e) = i(a), t(e) = t(a). An edge path joining the vertex τ to the
vertex σ is a sequence (e1,e2, ...,en) such that i(e1) = τ, i(e j+1) = t(e j), t(en) = σ .
A scwol X is connected if any two vertices of X are joined by an edge path.
Equivalently, X is connected if and only if |X | is connected. A scwol X is called
simply connected if |X | is simply connected as a topological space.

Definition 2.6.5 (Group action on a scwol). An action of a group G on a scwol
X is a homomorphism from G to the group of automorphisms of X such that the
following holds:

1. For all a ∈ E(X ) and g ∈ G, g.i(a) ̸= t(a).

2. For all g ∈ G and a ∈ E(X ), if g.i(a) = i(a) then g.a = a.

Remark 2.6.6. Let K be a Mk-simplicial complex. Suppose G is a group that acts
simplicially on K. We say that G acts without inversion on K whenever g ∈ G leaves
a cell of K invariant, then its restriction to that cell is the identity. Let X be the
scwol associated to K. Then G acts on X as in Definition 2.6.5 if and only if G acts
on K without inversion.

Now, we are ready to define complexes of groups.
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Definition 2.6.7 (Complex of groups). Let Y be a scwol. A complex of groups
G(Y ) = (Gσ ,ψa,ga,b) over Y is given by the following data:

1. For each σ ∈V (Y ), a group Gσ called the local group at σ .

2. For each a ∈ E(Y ), an injective homomorphism ψa : Gi(a) → Gt(a). The maps
ψa’s are called the local maps.

3. For each pair of composable edges (a,b) ∈ E2(Y ), a twisting element ga,b ∈
Gt(a), with the following compatibility conditions:

(i) Ad(ga,b)ψab = ψaψb, where Ad(ga,b) is the conjugation by ga,b in Gt(a).

(ii) For each triple (a,b,c) ∈ E3(Y ) of composable edges we have the cocycle
condition

ψa(gb,c)ga,bc = ga,bgab,c.

Remark 2.6.8. 1. The condition (i) is empty if Y is 1-dimensional. The cocycle
condition is empty if dimension of Y ≤ 2.

2. A simple complex of groups is a complex of groups such that all the twisting
elements are trivial.

3. Let Y be a Mk-simplicial complex. Then, the complex of groups over Y is the
complex of groups over the scwol associated to Y . Throughout the thesis, a
complex of groups over Y is denoted by (G ,Y ).

4. Let Y be a graph. Then, the complex of groups over Y is same as the graph of
groups (see [70]) over Y .

Definition 2.6.9. Let G(Y ′) = (Gσ ′,ψa′,ga′,b′) be a complex of groups over a scwol
Y ′. Let f : Y → Y ′ be a morphism of scwols. A morphism φ = (φa,φ(a)) from
G(Y ) to G(Y ′) over f consists of the following:

1. For each σ ∈V (Y ), a homomorphism φσ : Gσ → G f (σ) of groups.

2. An element φ(a) ∈ Gt( f (a)) for each a ∈ E(Y ) such that

(i) Ad(φ(a))ψ f (a)φi(a) = φt(a)ψa.

(ii) φt(a)(ga,b)φ(ab) = φ(a)ψ f (a)(φ(b))g f (a), f (b), for all (a,b) ∈ E2(Y ).

If f is an isomorphism of scwols and φσ is an isomorphism for every σ ∈ V (Y )

then φ is called an isomorphism.
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When Y ′ is a vertex then the complex of groups G(Y ′) is simply a group, call it
G. Then, in this special case the definition of morphism will come in the following
form.

Definition 2.6.10. A morphism φ = (φσ ,φ(a)) from a complex of groups G(Y ) to
a group G consists of a homomorphism φσ : Gσ → G for each σ ∈ V (Y ) and an
element φ(a) ∈ G for each a ∈ E(Y ) such that

φt(a)ψa = Ad(φ(a))φi(a) and φt(a)(ga,b)φ(ab) = φ(a)φ(b).

We say that φ is injective on local groups if each homomorphism φσ is injective.

2.6.1 The complex of groups associated to an action

Let G be a group acting on a scwol Ỹ . Let Y = Ỹ /G be the quotient scwol (see
[11, 1.13, p.529]) and let p : X → Y be the natural projection. The complex of
groups G(Y ) associated to the action of G on Ỹ is defined as follows:

For each vertex σ ∈ Y , choose a vertex σ̃ ∈ Ỹ such that p(σ̃) = σ . For each
edge a ∈ E(Y ) with i(a) = σ , there exists a unique edge ã ∈ E(Ỹ ) such that
p(ã) = a and i(ã) = σ̃ . Choose ha ∈ G such that ha.t(ã) = t̃(a). For each σ ∈ Y ,
let Gσ be the stabilizer in G of σ̃ . For each a ∈ E(Y ), let ψa : Gi(a) → Gt(a) be
the conjugation by ha, that is, ψa : g 7−→ hagh−1

a . For every pair of composable
edges (a,b) ∈ E2(Y ), define ga,b = hahbh−1

ab . Now, it is easy to verify that G(Y ) =

(Gσ ,ψa,ga,b) is a complex of groups.
Another choice for the representatives of a vertex of Y in Ỹ and for the h′as will

give a complex of groups G′(Y ) with an isomorphism of G(Y ) on G′(Y ) over the
identity morphism of Y (see [11],[33] for details).

Definition 2.6.11 (Developability). A complex of groups G(Y ) is called devel-
opable if it is isomorphic to a complex of groups that is associated to an action of a
group G on a scwol Ỹ with Y = Ỹ /G.

Theorem 2.6.12 (The Basic Construction). [11, Theorem 2.13, III.C] Suppose
G(Y ) is a complex of groups over a scwol Y .

1. Let G be a group. Canonically associated to each morphism φ : G(Y )→ G
there is an action of G on a scwol D(Y ,φ) with quotient Y . If φ is injective
on local groups then G(Y ) is the complex of groups associated to this action
and G(Y )→ G is the associated morphism.
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2. If G(Y ) is the complex of groups associated to an action of a group G on a
scwol X , and if φ : G(Y )→ G is the associated morphism then there is a
G-equivariant isomorphism D(Y ,φ)→ X that projects to the identity of Y .

One immediately observes the following corollary that gives an algebraic condi-
tion for being a developable complex of groups.

Corollary 2.6.13. [11, Corollary 2.15, III.C] A complex of groups G(Y ) is devel-
opable if and only if there exists a morphism φ from G(Y ) to a group G which is
injective on the local groups.

Note that not every complex of groups is developable, see [11, Example 2.17(5),
II.12].

2.6.2 Fundamental group of a complex of groups

Suppose G(Y ) is a developable complex of groups. Let T be a maximal tree in the
1-skeleton of |Y |. Such a maximal tree is not unique in general. Let E±(Y ) denotes
the set of oriented edges of Y . The fundamental group of G(Y ) is a group, denoted
by π1(G(Y )), generated by a set ⊔

σ∈V (Y )
Gσ

⊔
E±(Y )

with the following relations:
(1) The relations in the local groups Gσ .
(2) For each a ∈ E(Y ), (a+)−1 = a− and (a−)−1 = a+.
(3) a+b+ = ga,b(ab)+ for every composable edges a,b ∈ E(Y ).
(4) ψa(g) = a+ga− for every a ∈ E(Y ).
(5) a+ = 1 for every a ∈ T .
Next, we describe universal cover of a developable complex of groups. We

describe it in the case when the complex of groups is over a simplicial complex. For
the general construction, one is referred to the proof of [11, Theorem 2.13, III.C].

Definition 2.6.14 (Universal cover of a developable complex of groups). Let
(G ,Y ) be a developable complex of groups over a simplicial complex Y and let
G = π1(G ,Y ). Let iT : (G ,Y )→ G be a morphism mapping local groups Gσ to its
image in G, and the edge a to a+ where each edge corresponds to an inclusion σ ′ ⊂ σ

of simplices of Y . The universal cover B associated to iT is defined as follows:

B := (G× (
⊔

σ⊂Y
σ))/∼
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where (giT (g′),x) ∼ (g,x) for g ∈ G,g′ ∈ Gσ , x ∈ σ and (g, iσ ′,σ (x)) ∼ (giT (a),x)
for g ∈ G,x ∈ σ , iσ ′,σ : σ ′ ↪→ σ is an inclusion.

The group G acts naturally by left multiplication on the first factor of B.

Theorem 2.6.15. [11, Theorem 3.13, III.C] The universal cover of a developable
complex of groups G(Y ) is connected and simply connected.

Remark 2.6.16. We do not work with the CW topology on B. We rather view B as the
quotient metric space obtained by gluing standard Euclidean simplices [11, Chapter
I.7]. This metric space is required to be a CAT(0), hyperbolic metric space in the
setting of Martin’s theorem (see Theorem 4.2.1). Moreover, we note that G-action
on B is through isometries.

Now we prove that the universal cover of a developable complex of groups over
a finite simplicial complex is a tree-graded space. A subset A of a geodesic metric
space X is said to be a geodesic subset if any two points of A can be joined by a
geodesic contained in A.

Definition 2.6.17 (Tree-graded space). [20, Definition 2.1] Let X be a complete
geodesic metric space and let S be a collection of closed geodesic subsets of X
(called pieces). The space X is said to be tree-graded with respect to S if the
following holds:

1. Every two different pieces have at most one common point.

2. Every simple geodesic triangle (simple loop composed of three geodesics) in
X is contained in one piece.

Let (G ,Y ) be a developable complex of groups over a finite simplicial complex
Y . Let G be the fundamental group of the complex of groups (G ,Y ) and let B be the
universal cover of (G ,Y ). By Theorem 2.6.15, we see that B is simply connected
simplicial complex. As the isometry type of simplices of B is finite, the universal
cover B is a complete geodesic metric space (see [11, I.7]).

Define an equivalence relation on B generated by the following:
σ1 ∼ σ2 if and only if σ1 and σ2 have a common face of dimension at least 1.

Let S be the collection of equivalence classes. We prove the following.

Proposition 2.6.18. B is a tree-graded space with respect to S .

Proof. Suppose B is not a tree-graded space. We need to consider the following two
cases.
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Case 1. Let S1,S2 ∈ S such that S1,S2 intersect at more than one vertex. Let
v,w be two vertices in S1 ∩S2. Form a new space B′ by adding an edge e at vertex v
so that B and B′ are homotopically equivalent (for adding e, we are just stretching
the vertex v). Let v1,v2 be end points of edge e. Note that v1 ∈ S1 and v2 ∈ S2. Now,
remove the interior of edge e from B′. Let B′′ be the remaining space.

Claim. B′′ is path connected.
Fix a point s1 ∈ S1 and let z be any point in B′′. If we already have a path in B′

joining z and s1 which does not pass through v then we have a path in B′′ joining
z and s1. If z ∈ S1 and we have a path joining s1,z passing through the vertex v in
B, then we get a path α in S1 joining s1 to v1. Let β be a path joining v1,z in S1.
Concatenation of α,β gives a path from s1 to z in S1 ⊂ B′′. If z ∈ S2 and we have
a path from s1 to z passing through v in B. Again, we get a path α joining s1 and
v1 in S1. Join v1 and w by a path β (say) in S1. Let γ be a path connecting w and z
in S2. Then concatenation of α,β ,γ gives a path joining s1 and z in B′′. Now, let
z ∈ B′′ \{S1 ∪S2}. Clearly, we have a path α in B′′ either from z to v1 or v2 or from
z to some common vertex w of S1 and S2. By the above discussion, we have path β

either from s1 to v1 or v2 or from s1 to w in S1 ∪S2 \{v}. Concatenation of α and β

gives a path from s1 to z in B′′. Hence the space B′′ is a path connected CW-complex.
Join vertices v1,v2 by a path β in 1-skeleton of B′′. Since the path β is a contractible
subcomplex of B′′, the space B′ and hence B is homotopically equivalent to the
wedge sum of a circle and a CW-complex (homotopically equivalent to B′′). This is
a contradiction as B is simply connected.

Case 2. Let {S1,S2, ...,Sn} ⊂ S be a collection of pieces such that they form
a cycle and consecutive pieces are intersecting at a vertex, i.e. Si ∩ Si+1 ̸= φ for
i = 1,2...,(n−1) and Sn ∩S1 ̸= φ . Choose any two consecutive pieces Si,Si+1 and
let vi = Si ∩ Si+1. As in the previous case, form a new space B′ by adding a new
edge e at any of the vertex vi so that B and B′ are homotopically equivalent. Let B′′

be the space obtained from B′ by removing the interior of edge e. Similar to the
previous case, we see that B′′ is path connected and B is homotopically equivalent
to the wedge sum of a circle and a CW-complex. Again it is a contradiction as B is
simply connected.

Next, we define complexes of spaces over simplicial complexes (see [48, Defini-
tion 1.3]).

Definition 2.6.19 (Complexes of spaces). A complex of spaces C(Y ) over a simpli-
cial complex Y consists of the following data:

1. For every simplex σ of Y , a CW-complex Cσ , called local space.
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Ỹ Y

B Y

Figure 2.1:

2. For every pair of simplices σ ⊂ σ ′, an embedding φσ ,σ ′ : Cσ ′ →Cσ called a
gluing map such that for every σ ⊂ σ ′ ⊂ σ ′′, we have φσ ,σ ′′ = φσ ,σ ′ ◦φσ ′,σ ′′ .

The realization of a complex of spaces C(Y ) is the quotient space

|C(Y )|= (
⊔

σ⊂Y
σ ×Cσ )/∼,

where (iσ ,σ ′(x),s) ∼ (x,φσ ,σ ′(s)) for x ∈ σ ⊂ σ ′, s ∈ Cσ ′ and iσ ,σ ′ : σ ↪→ σ ′ is the
inclusion.

Given a complex of groups (G ,Y ) over a finite simplicial complex Y , for each
simplex σ of Y one takes any simplicial complex (generally a K(Gσ ,1)-space), say
Yσ with a base point such that

(1) π1(Yσ )≃ Gσ .

(2) For every pair of simplices τ ⊂ σ one has a base point preserving continuous
map Yσ → Yτ which induces the local map ψ(σ ,τ) : Gσ → Gτ .

This defines a complex of spaces over Y . By abuse of terminology we also call
the realization, Y say, of this to be a complex of spaces as well. Note that we have a
natural simplicial map Y→ Y .

The fundamental group π1(G ,Y ) of (G ,Y ) is the same as π1(Y). It is a standard
consequence of Seifert-Van Kampen theorem that this is independent of the complex
of spaces thus chosen. Suppose the natural homomorphism π1(Yσ ) → π1(Y) is
injective for all simplex σ ⊂ Y . Suppose Ỹ→ Y is a universal cover of Y. Then,
one considers the composition Ỹ → Y → Y , say f , and collapses the connected
components of f−1(y) for all y ∈ Y . Then, the resulting simplicial complex is
isomorphic to the universal cover B of (G ,Y ) as in Definition 2.6.14 (see figure 2.1).
For the details of this paragraph, one is referred to [15],[14],[33].
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2.7 Model space for G-action

We start here by fixing some notation. Let Y be a finite connected simplicial complex.
Let B(Y ) denote the directed graph whose vertex set is the set of simplices of Y
and given two simplices τ ⊂ σ we have directed edge e from σ to τ . In this case
we write e = (σ ,τ), o(e) = σ and t(e) = τ . Two directed edges e,e′ are said to be
composable if t(e) = o(e′).

In this section, we assume that (G ,Y ) is a developable complex of hyperbolic
groups such that all the local maps are qi embeddings. Let G = π1(G ,Y ). Our aim
here is to recall the construction of a complex of spaces p : X → B where G acts on
X by isometries such that the action is simplicial, proper and cocompact and p is
G-equivariant. Any geodesic metric space Z on which a group H acts by isometries
properly and cocompactly will be referred to as a model space for H in this section
since any orbit map H → Z is a quasiisometry by Švarc-Milnor lemma.

Construction of X: It is a standard fact that for a hyperbolic group Γ there is a
finite dimensional Rips complex Pn(Γ) on which Γ acts properly and cocompactly,
see [11, Theorem 3.21, III.Γ]. Now, it is not hard to see that there are model spaces
Xσ for Gσ ’s, σ ⊂ Y and qi embeddings φe : Xσ → Xτ , for all e = (σ ,τ) ∈ E(B(Y ))
equivariant with respect to the local maps Gσ → Gτ . For a rigorous treatment of this,
one is referred to [49, Theorem 2].

Then as in [48, Definition 2.3, Theorem 2.4], we have a finite dimensional, locally
finite CW complex with a proper, cocompact simplicial G-action:

X := (G×
⊔

σ⊂Y
(σ ×Xσ ))/∼,

where (1) (g, iσ ,σ ′(x),s)∼ (ge−1,x,φe(s)), where s ∈ Xσ ′ , x ∈ σ , g ∈ G, iσ ,σ ′ : σ ↪→
σ ′ and φe : Xσ ′ → Xσ and e = (σ ′,σ) ∈ E(B(Y )). (2) (gg′,x,s) ∼ (g,x,g′s) if
x ∈ σ ,s ∈ Xσ , g′ ∈ Gσ , g ∈ G.

We note that there is a natural G-equivariant projection p : X → B. Thus, the
space X can be seen as a complex of spaces over the universal cover B. Now, by [11,
I.7], X (take the barycentric subdivision of X if necessary) admits a geodesic metric
so that the G-action is through isometries and the metric topology is the same as the
CW topology on X . Therefore, X is a model space for G with the metric.

Let φ be a quasiisometry from G to X . Note that the local group Gσ is quasiiso-
metric to Xσ for σ ⊂ Y . Also observe that for σ ⊂ Y , Hausdorff distance between
φ(Gσ ) and Xσ is uniformly bounded. Thus, the local space gXσ is uniformly close
to φ(gGσ ) for g ∈ G and σ ⊂ Y . Finally, it follows that the inclusion gXσ ↪→ X is a
uniform quasiisometric embedding for g ∈ G,σ ⊂ Y , see figure 2.2.
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gGσ gXσ

G X
φ

Figure 2.2:

Remark 2.7.1. From the above discussion, we have a quasiisometry φ : G → X
such that Hd(φ(gGσ ),gXσ ) is uniformly bounded for g ∈ G,σ ⊂ Y . Also, we
have quasiinverse ψ : X → G such that Hd(ψ(gXσ ),gGσ ) is uniformly bounded for
g ∈ G,σ ⊂ Y . Finally, if (G ,Y ) is a complex of hyperbolic groups such that G is
a hyperbolic group, all the local maps are qi embeddings, and all the local groups
are uniformly qi embedded in G then X is a hyperbolic geodesic metric space and
all the local spaces are uniformly qi embedded in X . Suppose Ĝ is the coned-off
space obtained by coning gGσ ’s and X̂φ is the coned-off space obtained by coning
φ(gGσ )’s where Xσ ’s are model spaces for local groups Gσ ’s and g ∈ G. Then, by
[67, Lemma 1.2.31], Ĝ is quasiisometric to X̂φ . Let X̂ denote the coned-off space
obtained by coning gXσ . Then, according to Lemma 2.5.3, X̂ is quasiisometric to
X̂φ .



Chapter 3

Combination theorems for
convergence groups

In this chapter, we prove the following results.

Theorem 3.0.1. Let Γ be a group admitting a decomposition into a finite graph of
countable convergence groups with parabolic edge groups. Then Γ is a convergence
group.

Theorem 3.0.2. Let Γ be a group admitting a decomposition into a finite graph of
groups such that the following holds:

1. The vertex groups are countable convergence groups.

2. The stabilizers of the limit sets of the edge groups form a dynamically mal-
normal family of dynamically quasiconvex subgroups in the adjacent vertex
groups.

Then Γ is a convergence group.

In the setting of parabolic edge groups, we have the following combination
theorem for relatively hyperbolic groups.

Theorem 3.0.3. Let Γ be a group admitting a decomposition into a finite graph of
relatively hyperbolic groups such that the edge groups are parabolic in the adjacent
vertex groups. Then Γ is relatively hyperbolic. Moreover, the vertex groups are
relatively quasiconvex in Γ.

For cyclic edge groups, we prove the following.

43
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Theorem 3.0.4. Let Γ be a group that splits as a finite graph of relatively hyperbolic
groups with infinite cyclic edge groups. Then Γ is relatively hyperbolic. Moreover,
the vertex groups are relatively quasiconvex in Γ.

For the homeomorphism type of Bowditch boundary of the fundamental group
of a graph of relatively hyperbolic groups with parabolic edge groups, we obtain the
following result.

Theorem 3.0.5. Let Y be a finite connected graph and let G(Y ),G′(Y ) be two
graphs of groups satisfying the following:

1. For each vertex v ∈ V (Y ), let (Gv,Pv),(G′
v,P′

v) be relatively hyperbolic
groups.

2. Let e ∈ E(Y ) be any edge. Suppose v,w are vertices connected by e. Let
Pe,P′

e be parabolic edge groups in G(Y ),G′(Y ), respectively. Then either
Pe,P′

e have infinite index in corresponding maximal parabolic subgroups in
Gv,G′

v, respectively or Pe,P′
e have the same finite index in maximal parabolic

subgroups in Gv,G′
v, respectively. Similarly, either Pe,P′

e have infinite index
in maximal parabolic subgroups in Gw,G′

w, respectively or Pe,P′
e have the

same finite index in corresponding maximal parabolic subgroups in Gw,G′
w,

respectively.

3. For any v ∈ V (Y ), let Bv, B′
v be the set of translates of parabolic points

corresponding to adjacent edge groups under the action of Gv,G′
v on their

Bowditch boundaries respectively. Suppose we have a homeomorphism from
∂Gv → ∂G′

v that maps Bv onto B′
v.

Let Γ = π1(G(Y )), Γ′ = π1(G′(Y )) and let ∂Γ,∂Γ′ be their Bowditch boundaries,
respectively. Then there exists a homeomorphism from ∂Γ to ∂Γ′ preserving edge
parabolic points, i.e. taking parabolic points corresponding to edge groups of G(Y )

to parabolic points corresponding to edge groups of G′(Y ).

Layout of the chapter: For proving Theorem 3.0.1, we construct a compact
metrizable on which Γ acts naturally as a convergence group. Section 3.1 contains
this construction and Section 3.2 contains a proof of Theorem 3.0.1. In Section 3.3,
we prove Theorem 3.0.2 and give one of its consequence. In Section 3.4, we prove
combination theorems for relatively hyperbolic groups, Theorem 3.0.3, 3.0.4. Section
3.5 is devoted to prove Theorem 3.5.1. We deduce some interesting applications and
examples in Section 3.6.
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3.1 Construction of compact metrizable space M

In this section, we construct our candidate space M on which the fundamental group
of a finite graph of convergence groups with parabolic edge groups naturally acts as
a convergence group. As mentioned in the introduction, it is sufficient to consider
the amalgam and the HNN extension case for proving our theorems. This will be our
standing assumption for this chapter. Let Γ be an amalgamated free product or an
HNN extension of convergence groups along with parabolic edge group. Let T be
the Bass-Serre tree of this splitting and let τ be a subtree of T , an edge in case of
amalgam, and a vertex in case of HNN extension.

Notation: For a vertex v of T , we write Γv for the stabilizer of v in Γ. Similarly,
for an edge e, we write Γe for its stabilizer. For each vertex v and each edge e incident
on v, Γv is a convergence group, and Γe is a parabolic subgroup in Γv. We denote
Xv and Xe as compact metrizable spaces on which the vertex group Γv and the edge
group Γe act as convergence groups. In our situation, Xe is a singleton.

3.1.1 Definition of M as a set

Contribution of the vertices of T
Let V (τ) be the set of vertices of τ . Set Ω to be Γ× (

⊔
v∈V (τ)

Xv) divided by the

natural relation

(γ1,x1) = (γ2,x2) if ∃v ∈ V (τ),x1,x2 ∈ Xv,γ
−1
2 γ1 ∈ Γv,(γ

−1
2 γ1)x1 = x2.

In this way, Ω is the disjoint union of compactums corresponding to the stabilizers
of the vertices of T . Also, for each v ∈ V (τ), the space Xv naturally embeds in Ω as
the image of {1}×Xv. We identify it with its image. The group Γ naturally acts on
the left on Ω. For γ ∈ Γ, γXv is the compactum corresponding to the vertex stabilizer
Γγv.

Contribution of the edges of T
Each edge allows us to glue together compactums corresponding to the stabilizers

of the vertices along with the limit set of the stabilizer of the edge. Since each edge
group embeds as a parabolic subgroup in adjacent vertex groups, its limit set is a
singleton. Let e = (v1,v2) be the edge in τ , there exist equivariant maps fe,vi : Xe →Xvi

for i = 1,2. Similar maps are defined by translation for edges in T \ τ .
The equivalence relation ∼ on Ω is generated by the following (see figure 3.1).

Let v and v′ be vertices of T . The points x ∈ Xv and x′ ∈ Xv′ are equivalent in Ω
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if there is an edge e between v and v′ and a point xe ∈ Xe such that x = fe,v(xe)

and x′ = fe,v′(xe) simultaneously. Let Ω/∼ be the quotient under this relation and
let π ′ : Ω → Ω/∼ be the corresponding projection. An equivalence class [x] of an
element x ∈ Ω is denoted by x itself.

Let ∂T be the (visual) boundary of the Bass-Serre tree T . We define M′ as
following:

M′ = ∂T ⊔ (Ω/∼)

Figure 3.1: Circles denote the Bowditch boundaries.

Definition 3.1.1 (Domains). Let x ∈ Ω/∼. We define the domain of x as

D(x) = {v ∈ V (T )|x ∈ π
′(Xv)}

We also say that domain of a point ξ ∈ ∂T is {ξ} itself.

3.1.2 Final construction of M

The construction of M′ is exactly the same as the construction of Dahmani in [18].
However, suppose M′ is equipped with the topology defined in [18] then it turns out
that M′ is not a Hausdorff space (see 3.1.9 ). Therefore we need to modify M′. For
getting the desired space, we further define an equivalence relation on the set M′.
Firstly observe that for the domain of each element in Ω/∼ there are following three
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possibilities:
(1) a singleton (2) a finite non-singleton subtree of T (3) an infinite subtree of T .

Suppose, for some x ∈ Ω/∼, D(x) is an infinite subtree of T . We identify the
boundary points of D(x) in ∂T to x itself. By considering the equivalence relation
generated by these relations, we denote the quotient of M′ by M. Again, M can be
written as a disjoint union of two sets of equivalence classes :

M = Ω
′⊔ (∂T )′

where Ω′ (as a set it is same as Ω/∼) is the set of equivalence classes of elements in
Ω/∼ and (∂T )′ is the equivalence classes of the remaining elements in ∂T as some
elements of ∂T are identified with parabolic points of edge groups. Note that the
equivalence class of each remaining element in ∂T is a singleton.

Definition 3.1.2 (Domains of points in M). We define the domain of each element
in M as previously defined.

Remark 3.1.3. Note that, if η ∈ ∂T is identified with parabolic a point, say x, of an
edge group then we take domain of η same as that of x. Also, we write p for an
element of M, if p ∈ Ω′ then p = x,y,z, ... and if p ∈ (∂T )′ then p = ξ ,η ,ζ , ....

From the construction of M, we observe the following.

Lemma 3.1.4. For distinct p,q ∈ M, either D(p)∩D(q) = /0 or D(p)∩D(q) is a
singleton.

Proof. If either p or q is in (∂T )′ then, by definition of the domain, D(p)∩D(q) = /0.
Now, assume that both p and q are in Ω′. Let p ∈ Xv for some v ∈ V (T ).

Case 1. Suppose p /∈ Xe for any edge e adjacent to v. Then D(p) = {v}. Since
for any q ∈ Ω′ the domain D(q) is a subtree of T , |D(p)∩D(q)| ≤ 1.

Case 2. Suppose p ∈ Xe for some edge e adjacent to v. Since for any edge e ∈ T
the space Xe is a singleton and domains are subtrees of T , it follows that for any
p ̸= q ∈ Ω′, |D(p)∩D(q)| ≤ 1.

It is clear that for each v in T , the restriction of projection map π ′ from Xv to Ω/∼

is injective. Let π ′′ be the projection map from M′ to M. Let π be the composition
of the restriction of π ′′ to Ω/∼ and π ′. Now, the following lemma is immediate.

Lemma 3.1.5. For each v ∈ T , the restriction of π to Xv is injective.

Proof. Since the restriction of π ′′ to π ′(Xv) is injective and the composition of two
injective map is again injective, π ′′ is injective.
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3.1.3 Definition of neighborhoods in M

In this subsection, we closely follow the definition of neighborhoods given by
Dahmani in [18, Section 2.3] and define a family (Wn(p))n∈N,p∈M of subsets of M
that generates a topology on M. For a vertex v and an open subset U of Xv, we define
the subtree Tv,U of T as

{w ∈ V (T ) : Xe ∩U ̸= /0}

where e is the first edge of the geodesic [v,w] joining v and w. For each vertex v
in T , let us choose U (v), a countable basis of open neighborhoods of Xv. Without
loss of generality, we can assume that for all v, the collection of open subsets U (v)
contains Xv. Let x be in Ω′ and D(x) = {v1, ...,vn, ...}= (vi)i∈I . Here I is a subset of
N. For each i ∈ I, let Ui ⊂ Xvi be an element of U (vi) containing x such that for all
but finitely many indices i ∈ I,Ui = Xvi . We define the set W(Ui)i∈I(x) as the disjoint
union of three subsets

W(Ui)i∈I(x) = A∪B∪C

Description of A,B,C in words: The set A is nothing but the collection of all
boundary points of subtrees Tvi,Ui which are not identified with parabolic points
corresponding to the edge groups. The set B is a collection of all points y outside⋃

i∈I Xvi in Ω′ whose domains lie inside
⋂

i∈I Tvi,Ui . C is simply the union of all
neighborhoods Ui around x in Xv for each v in D(x).

In notation A,B,C are defined as follows:

A = (
⋂
i∈I

∂Tvi,Ui)∩ (∂T )′

B = {y ∈ Ω
′ \ (

⋃
i∈I

Xvi)|D(y)⊂
⋂
i∈I

Tvi,Ui}

C =
⋃
i∈I

Ui

As A ⊂ (∂T )′, the remaining elements of
⋂
i∈I

∂Tvi,Ui are in B. In this way, A, B, C

are disjoint subsets of M.

Remark 3.1.6. (1) The set W(Ui)i∈I(x) is completely defined by the data of the domain
of x, the data of a finite subset J of I, and the data of an element of U (v j) for each
index j ∈ J. Therefore there are only countably many different sets W(Ui)i∈I(x), for
x ∈ Ω′, and Ui ∈ U (vi),vi ∈ D(x). For each x, we choose an arbitrary order and
denote them by Wm(x).
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(2) The main difference between the neighborhoods defined above and the
neighborhoods defined by Dahmani in [18, Section 2.3] lies in the description of
A. In [18], the author defines A =

⋂
i∈I ∂Tvi,Ui . However, as some elements of⋂

i∈I ∂Tvi,Ui are identified with the boundaries of some edge groups, we exclude those
identified points in order to hold all the required things (see also 3.1.9).

Next, we define neighborhoods around the points of (∂T )′. Let ξ ∈ (∂T )′ and
choose a base point v0 in T . Firstly, we define the subtree Tm(ξ ) = {w ∈ V (T ) :
|[v0,w]∩ [v0,ξ )|> m}. We set

Wm(ξ ) = {ζ ∈ M|D(ζ )⊂ Tm(ξ )}

This definition does not depend on the choice of base point v0, up to shifting the
indices.

3.1.4 Topology of M

Consider the smallest topology T on M such that the family of sets {Wn(p) : n ∈
N, p ∈ M} are open subsets of M. In this subsection, we prove that M with this
topology is a compact metrizable space. This is proved with the help of following
lemmata. We start with a simple observation.

Note: The statements and proof’s ideas of the lemmas in this subsection are
adapted from [18, Subsection 2.4] with appropriate changes.

Lemma 3.1.7 (Avoiding an edge). Let p be a point in M and let e be an edge in
T with at least one vertex not in D(p). Then there exists an integer m such that
Wm(p)∩Xe = /0.

Proof. If p∈ (∂T )′ then both of the vertices of e are not in D(p). The lemma follows
by taking one of the vertex as the base point and m ≥ 1. If p ∈ Ω′ then a unique
segment exists from D(p) to the edge e. Let v be the vertex from where this segment
starts and e0 be the first edge. Then Xe0 does not contain p. So to find a Wm(p) such
that it does not intersect Xe, it is sufficient to find a neighborhood around p in Xv

which does not intersect Xe0 . But it is evident as Xe0 is just a point.

Lemma 3.1.8. (M,T ) is a Hausdorff space

Proof. Let p and q be two distinct points in M. There are two cases to be consider.
Case 1. Suppose D(p)∩D(q) = /0. Then there is a unique geodesic segment

from a vertex of D(p) to a vertex of D(q) in T having an edge e on this segment such
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that both vertices of e are neither contained in D(p) nor in D(q). Then, by Lemma
3.1.7, we can find disjoint neighborhoods around p and q.

Case 2. Suppose D(p)∩D(q) ̸= /0. Then, according to Lemma 3.1.4, there is
only one vertex in this intersection. Let D(p)∩D(q) = {v}. Since Xv is Hausdorff
space, we can find disjoint open subsets of Xv around p and q, respectively. Using
these neighborhoods in Xv, it is clear that we have disjoint neighborhoods around p
and q in M.

Remark 3.1.9. The reason why we need to define a further equivalence relation on
the set M′ is the following:

In M′, if we consider a parabolic point p corresponding to an edge group (which
is not a maximal parabolic) then D(p) is an infinite subtree of T , and there are
uncountably many boundary points of D(p). If we take one boundary point η of
D(p) then on the geodesic ray [v0,η) there is no edge with at least one vertex not
belonging to D(p), where v0 is some vertex in D(p). Thus we can’t find a disjoint
neighborhood around η and p. The same kind of situation will arise when we try to
prove that M′ is a regular space.

Lemma 3.1.10 (Filtration). For every p ∈ M, every integer n, and every q ∈Wn(ξ ),
there exists m such that Wm(q)⊂Wn(p).

Proof. Suppose p ∈ (∂T )′ and Wn(p) is a neighborhood around p. Let q ∈Wn(p).
If q ∈ (∂T )′ then choose m = n and Wm(q) = Wn(p). Let q be some point in Ω′.
Suppose the subtree Tn(p) starts at the vertex v and let e be the last edge on the
geodesic segment from a base vertex to v. Then except Xe, all the points in M
corresponding to subtree Tn(p) is in Wn(p). By this observation, it is clear that there
exists a neighborhood Wm(q) such that Wm(q)⊂Wn(p) for sufficiently large m. Now,
suppose that p ∈ Ω′ and q ∈Wn(p). If D(p)∩D(q) = /0 then there exists an edge e
on a unique geodesic segment from D(p) to D(q) such that both vertices of e neither
lie in D(p) nor in D(q). Then, by Lemma 3.1.7, one can find a neighborhood Wm(q)
sitting inside Wn(p). If D(p)∩D(q) ̸= /0 then it is a singleton. Let this intersection
be {v}. As q ∈Wn(p), q is in some Ui, where Ui is in neighborhood basis of Xvi and
D(p) = (vi)i∈I . Now, we find a neighborhood Vi around q sitting inside Ui. Finally,
using this Vi, we see that there exists Wm(q) such that Wm(q)⊂Wn(p).

Lemma 3.1.11. The family of sets {Wn(p) : n ∈ N, p ∈ M} forms a basis for the
topology T .

Proof. Using Lemma 3.1.10, it remains to prove that if Wn1(p1) and Wn2(p2) are
two neighborhoods and q ∈ Wn1(p1)∩Wn2(p2) then there exists a neighborhood
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around q, namely Wm(q), such that Wm(q) ⊂ Wn1(p1)∩Wn2(p2). Again Lemma
3.1.10, there exist m1 and m2 such that Wm1(q) ⊂ Wn1(p1) and Wm2(q) ⊂ Wn1(p2).
Note that, Wk(q)⊂Wm1(q)∩Wm2(q) for some k. Hence the lemma.

Lemma 3.1.12. For each v ∈ V (T ), π|Xv
: Xv → M is continuous.

Proof. Let x be an element of Xv and let π(x) be its image in M. We denote this
image by x. Consider the neighborhood Wn(x) around x. Now, by the definition
of neighborhoods, it is clear that the inverse image of Wn(x) under π|Xv

is an open
subset of Xv. Hence, the restriction of π to Xv is continuous.

Lemma 3.1.13 (Regularity). The topology T is regular, i.e. for all p ∈ M and for
all Wm(p) there exists n such that Wn(p)⊂Wm(p).

Proof. Let p ∈ M and let Wm(p) be a neighborhood around p.
Case 1. Let p ∈ (∂T )′. Let v be a vertex from where the subtree Tm(ξ ) starts.

Let e be the last edge of the geodesic segment from v0 to v. Observe that the closure
of Wm(p) contains only one extra point, namely Xe. By taking n to be sufficiently
large, we see Wn(p)⊂Wm(p).

Case 2. Let p ∈ Ω′ and let D(p) = (vi)i∈I . Again observe that in the closure
of Wm(p) only extra points are the points in the closure of each Ui in Xvi (If some
point is not in the closure of Ui then one can easily find a neighborhood around
that point disjoint from Wm(p)). Since for each v ∈ T the space Xv is regular,
choose a neighborhood Vi of p in Xvi such that Vi ⊂Ui. Now, it is immediate that
W{Vi}i∈I(p)⊂Wm(p).

Proposition 3.1.14. The space M is perfect metrizable.

Proof. By the previous lemmas, we see that the topology on M is second countable,
Hausdorff, and regular. Thus, by Urysohn’s metrization theorem, we see that M is a
metrizable space. Since every point of M is a limit point, M is perfect.

Convergence criterion: A sequence {pn}n in M converges to a point p if and
only if ∀n, ∃m0 ∈ N such that ∀m > m0, pm ∈Wn(p).

Now we show that the space M is compact. The idea of proof of this fact is
adapted from [18, Theorem 2.10].

Lemma 3.1.15. The metrizable space M is compact.

Proof. Since M is metrizable, it is sufficient to show that M is sequentially compact.
Let {pn}n be a sequence in M. Let us fix a vertex v ∈ T . For each n, choose a vertex
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vn (if pn ∈ (∂T )′ then take vn = pn ) in D(pn). We see that, up to extraction of a
subsequence, either the Gromov inner products (vn.vm)v remain bounded or they go
to infinity. In the latter case, the sequence {vn} converges to a point q ∈ ∂T . If q is
the point which is identified with some edge boundary point then there is a ray in the
domain of that edge boundary point converging to q. Then, by the definition of the
neighborhood around q, we see that pn converges to q. If q ∈ (∂T )′ then again there
is a ray converges to q, and by the convergence criterion, pn converges to q. Now, in
the first case up to extracting a subsequence, we assume that Gromov inner products
is equal to some constant N. For each n, let gn be the geodesic from v to vn then
there exists a geodesic g = [v,v′] of length N such that g lies in each gn. For n ̸= m,
gn and gm do not have a common prefix whose length is bigger than the length of g.
We have the following two cases:

Case 1. There exists a subsequence {gnk} such that gnk = g. Since Xv′ is compact,
we get a subsequence of {pn} which converges to a point of Xv′ .

Case 2. There exists a subsequence {gnk} of {gn} such that each gnk strictly
longer than g. Let enk be the edges just after v′. Note that they are all distinct. As for
each edge e, Xe is a singleton, so {Xenk

} forms a sequence of points in Xv′ . Since Xv′

is compact, there exists a subsequence which converges to a point in Xv′ . Then, by
the convergence criterion, we see that there exists a subsequence of {pn} converging
to this point of Xv′ . (It may be possible that all the Xnk are equal to p for some p in
Xv′ . However, the sequence converges to p in this situation also.)

3.2 Dynamics of Γ on M

In this section, we prove that the group Γ acts on M as a convergence group. For that
we need the following two lemmas.

Note: By taking edge length 1 on each edge of the Bass-Serre tree T of Γ, we
consider T as a metric graph. Hence, T is a geodesic metric space. In this subsection,
dT denotes the metric on T .

Remark 3.2.1. The statements and the idea of proofs of the following lemmata are
adapted from [18, Section 3] with appropriate modifications.

Lemma 3.2.2 (Large Translation). Let {γn}n be a sequence in Γ. Assume that, for
some (hence any) vertex v0 ∈ T , dT (v0,γnv0)→ ∞. Then, there is a subsequence
{γσ(n)}n, two points p ∈ M and ζ ∈ (∂T )′ such that for all compact K ⊂ M \{ζ},
γσ(n)K converges uniformly to p.
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Proof. Let p0 ∈ Xv0 . Since M is sequentially compact, there exists a subsequence
{γσ(n)} such that {γσ(n)p0} converges to a point p ∈ M. Note that we still have
dT (v0,γσ(n)v0) → ∞. Let v1 be a vertex in T such that v1 ̸= v0. For each n, the
lengths of the geodesic segment [γnv0,γnv1] equal to the length of [v0,v1]. As the
dT (v0,γσ(n)v0) goes to ∞, for all m there is nm such that for all n > nm, the seg-
ments [v0,γσ(n)v0] and [v0,γσ(n)v1] have prefix of length more than m. Then, by the
convergence criterion 3.1.4, for all v ∈ T , γσ(n)Xv converges uniformly to p. Let
ζ1,ζ2 ∈ (∂T )′. As triangles in T̄ = T ∪∂T are degenerate, the triangle with vertices
v0,ζ1,ζ2 has the center a vertex v in T . Therefore, for all m ≥ 0, the segments
[v0,γσ(n)v0] and [v0,γσ(n)v] coincide on a subsegment of length more than m for
sufficiently large n. Now, at least for one ζi, the ray [v0,γσ(n)ζi] has a common
prefix with [v0,γσ(n)v0] of length at least m. Then by convergence criterion γσ(n)ζi

converges to p. Therefore, there exists at most one ζ in (∂T )′ such that, for all
ζ ′ ∈ ((∂T )′ \ {ζ}), γσ(n)ζ

′ → p (since for any two points in (∂T )′ at least one of
them converges to p under the action of γn).

Let K be a compact subset of M \ {ζ}. Then there exists a vertex v, x ∈ Ω′,
and a neighborhood Wn(x) around x containing K such that ζ /∈ Wn(x). Consider
the segment [v0,v]. By the discussion at the beginning of the proof, for all v ∈ T ,
the sequence {γσ(n)Xv}n uniformly converges to p, and the sequence {γσ(n)Wm(x)}n

uniformly converges to p. Hence the convergence is uniform on K.

Lemma 3.2.3 (Small Translation). Let {γn}n be a sequence of distinct elements in
Γ and let for some (hence any) vertex v0, the sequence {γnv0}n is bounded in T . Then
there exists a subsequence {γσ(n)}n∈N, a vertex v, a point p ∈ Xv, and another point
p′ ∈ Ω′, such that for all compact K ⊂ M \{p′}, one has {γσ(n)}K → p uniformly.

Proof. There are two cases to be consider.
Case 1. Assume that for some vertex v and some element γ ∈ Γ there exists a

subsequence {hn}n in Γv such that γn = hnγ for all n. Since Γv acts as a convergence
group on Xv, one can further extract a subsequence of {γn} (we shall denote it again
by {γn}) and a point p′ in Xγ−1v such that, for all compact subsets K of Xγ−1v \{p′},
γnK → p uniformly for some p ∈ Xv. Suppose p′ is a conical limit point. Then p′

is not in any Xe’s contained in Xγ−1v. Let en be the possible edges starting from the
vertex γ−1v. For any q ∈ M \{Xγ−1v}, we see that the unique edge path from γ−1v
to w contains en for some n, and q ∈ Xw. Since γnr → p for all r in Xγ−1v \ {p′},
by the convergence criterion, we see that γnq converges to p, and the same is true
for the points in (∂T )′. Hence for all compact K ⊂ M \ {p′} we have γnK → p
uniformly. Suppose p′ is a parabolic point, γ p′ is also a parabolic point in Xv. Then
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γn p′ also converges to p otherwise γ p′ is a conical limit point. Thus again, by the
same argument as above, we see that for all q ∈ M, γnq → p.

Case 2. Suppose such a sequence {hn}n and a vertex v do not exist. After
possible extraction we can assume that dT (v0,γn(v0)) is constant. Let us choose
a vertex v such that there exists a subsequence {γσ(n)}n∈N such that the segments
[v0,γσ(n)v0] share a common segment [v0,v] and the edges eσ(n) located just after v
are all distinct. Since Xv is compact, one can extract a subsequence {eσ ′(n)}n∈N such
that spaces corresponding to these edges converge to a point p in Xv. Then, by the
convergence criterion, γσ ′(n)Xv0 converge uniformly to p. Let ξ ∈ (∂T )′. Then v is
not on the ray [γσ ′(n)v0,γσ ′(n)ξ ] for all sufficiently large n. For if v is there then, for
infinitely many n, γ

−1
σ ′(n)v = w for some fixed vertex w on [v0,ξ ), and we see that

we are in the first case which is a contradiction. Thus, for all ξ ∈ (∂T )′, we see
that the unique rays from v to γσ ′(n)ξ contains the edge e′

σ(n) for some n. Hence,
by the convergence criterion, γσ ′(n)ξ → p for all ξ ∈ (∂T )′. Now, let x ∈ Ω′ such
that x /∈ Xv0 . Suppose x ∈ Xv′ where v′ ̸= v0. Again by the same reasoning, we
see that v /∈ [γσ ′(n)v0,γσ ′(n)v′] for all sufficiently large n. Then the unique geodesic
segment from v to γσ ′(n)v′ contains e′(n) for sufficiently large n. Hence by definition
of neighborhoods γσ ′(n)x → p. Thus, for all compact subsets K ⊂ M, we see that
γσ ′(n)K → p uniformly.

Using the previous two lemmas, we get the following:

Corollary 3.2.4. The group Γ acts on M as a convergence group.

Proof. Fix a vertex v0 in T . Let {γn}n be a sequence in Γ. Then, up to extracting a
subsequence, either the distance from v0 to γnv0 goes to infinity or the distance from
v0 to γnv0 is bounded. In either case, the previous lemmas imply the corollary.

3.3 Proof of Theorem 3.0.2 and consequences

First of all, we recall a construction from [47]. Let Γ be a hyperbolic group and let
G be a finite malnormal family of quasiconvex subgroups of G. In order to prove
that (Γ,G ) is relatively hyperbolic, in [47], Manning constructed a space which is
the quotient of the Gromov boundary of Γ and showed that Γ acts geometrically
finitely on the quotient. The quotient was obtained by collapsing all the translates
of the limit set of subgroups in G . Using Yaman’s characterization (Theorem 2.4.4)
of relative hyperbolicity, this quotient was turn out to be the Bowditch boundary of
(Γ,G ). There, to prove that the action of Γ on the quotient is convergence, we do not
require that Γ is hyperbolic and G is a malnormal family of quasiconvex subgroups.
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Suppose Γ acts on a compact metrizable space X as a convergence group. Let G

is a dynamically malnormal family of dynamically quasiconvex subgroups. Then
form a quotient space X/∼ as in [47] by collapsing the translates of the limit sets of
subgroups in G . Also, assume that |Λ(H)| ≥ 2, where H ∈ G . To prove Proposition
2.2 in [47], we require that the collection of limit sets of the cosets of the elements
in G forms a null sequence which follows from Proposition 2.3.17. Hence, we
immediately have the following:

Lemma 3.3.1. 1. X/∼ is a compact metrizable space.

2. The group Γ acts on X/∼ as a convergence group.

Proof. (1) As noted above the collection of the limit sets of the cosets of elements in
G form a null sequence. Thus, by [47, Proposition 2.1], X/∼ is compact metrizable.

(2) It follows from Proof of Claim 2 in [47].

Also, note that each subgroup in G becomes a parabolic subgroup for the action
of Γ on X/∼.

Proof of Theorem 3.0.2. Let v be a vertex in T and let Γv be a vertex group that
acts as a convergence group on Xv. Take the collection of edges incident to v and
take a collection of those edge groups which are not parabolic in Γv. Consider the
stabilizers of the limit sets of these edge groups in Γv. By assumption, they form a
dynamically malnormal family of dynamically quasiconvex subgroups. Therefore,
by Lemma 3.3.1, we obtain a quotient of Xv, namely Xv/∼ on which Γv acts as a
convergence group and all edge groups incident to v become parabolic subgroups
of Γv. Hence by following the same process at each vertex group, we are in the
situation where we have a graph of convergence groups with edge groups parabolic
in adjacent vertex groups. By invoking Theorem 3.0.1, we are done.

Now, we prove the following proposition which is a consequence of the above
theorem and also give an answer to Question 2 when edge groups are infinite cyclic.

Proposition 3.3.2. Let Γ be a group that splits as a finite graph of countable conver-
gence groups with infinite cyclic edge groups, which are dynamically malnormal in
the adjacent vertex groups. Then Γ is a convergence group.

Proof. Again it is sufficient to prove the proposition when Γ is either an amalgamated
free product or an HNN extension.

Case 1. Let Γ = Γ1 ∗⟨γ1⟩≃⟨γ2⟩ Γ2. If γ1 is parabolic in Γ1 then clearly ⟨γ1⟩ is
dynamically quasiconvex in Γ1. If γ1 is loxodromic then again ⟨γ1⟩ is dynamically
quasiconvex in Γ1 by Lemma 2.3.16. Thus, by Lemma 2.3.13, the stabilizer of
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the limit set of ⟨γ1⟩ in Γ1 is a dynamically quasiconvex subgroup of Γ1. Also, by
assumption, the stabilizer of the limit set of ⟨γ1⟩ in Γ1 is dynamically malnormal.
Similarly, the stabilizer of the limit set of ⟨γ2⟩ in Γ2 is dynamically quasiconvex and
dynamically malnormal. Hence, by Theorem 3.0.2, Γ is a convergence group.

Case 2. Let Γ = Γ1∗⟨γ1⟩≃⟨γ2⟩. Again, as in case 1, the stabilizers of the limit sets
of ⟨γ1⟩ and ⟨γ2⟩ are dynamically quasiconvex subgroups of Γ1. Since ⟨γ1⟩ and ⟨γ2⟩
are cyclic subgroups, their limit sets are either equal or disjoint. By assumption,
⟨γ1⟩ and ⟨γ2⟩ are dynamically malnormal subgroups of Γ1. So, the intersection of
their limit set is empty. Thus, the stabilizers of limit sets of ⟨γ1⟩ and ⟨γ2⟩ form
a dynamically malnormal family. Hence, by Theorem 3.0.2, Γ is a convergence
group.

If the vertex groups in Proposition 3.3.2 are torsion-free then, by the following
lemma, we do not need to assume dynamical malnormality of edge groups in the
adjacent vertex groups.

Lemma 3.3.3. Let Γ be a torsion-free group that acts on X as a convergence group.
Let γ ∈ Γ be an infinite order element and let H = StabΓ(Λ(⟨γ⟩)) Then H is a
dynamically quasiconvex and dynamically malnormal subgroup of Γ.

Proof. If γ is parabolic the conclusion follows. Suppose γ is a loxodromic ele-
ment. Then, ⟨γ⟩ is dynamically quasiconvex in Γ by Lemma 2.3.16. Thus, the
dynamical quasiconvexity of H follows from Lemma 2.3.13. Now, we prove dy-
namical malnormality of H. Let γ1 ∈ Γ \H and assume that γ1Λ(H)∩Λ(H) ̸= /0.
Let Λ(H) = {x1,x2} and let γ1 fixes, either x1 or x2. Since Γ is torsion-free, γ1 has
infinite order. Thus γ1 is either a parabolic or a loxodromic element. By Lemma
2.3.8, a parabolic point cannot be a fixed point of a loxodromic element so γ1 can
not be parabolic. By Lemma 2.3.5, if γ1 is loxodromic then γ1 must fix the other
point. But this implies that γ1 is in H, which is a contradiction. Now, suppose that
γ1 does not fix any of xi and γ1x1 = x2. Consider the element γ ′1 = γ

−1
1 γγ1 which

fixes x1. Again γ ′1 cannot be parabolic so it has to be loxodromic, but this implies
that γ ′1x2 = x2. Thus γ1x2 = x1 and this implies that γ1 is in H, which is again a
contradiction.

Hence for torsion-free groups, we have the following:

Proposition 3.3.4. Let Γ be the fundamental group of a finite graph of torsion-
free countable convergence groups with infinite cyclic edge groups. Then Γ is a
convergence group.
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Remark 3.3.5. Although we have answered Question 2 in the special cases, but
the general case is still not answered. For the general case, if we try to work with
Dahmani’s construction, we need to identify more points in the space constructed in
[18] but it is unclear which points are needed to be identified.

3.4 Proof of Theorems 3.0.3, 3.0.4

Let Γ be as in Theorem 3.0.1. Firstly, we show that if each vertex group Γv acts
geometrically finitely on compact metrizable space Xv then the group Γ acts geomet-
rically finitely on the space M constructed in Section 3.1. Using this, we give a proof
of Theorems 3.0.3, 3.0.4. To prove that Γ acts geometrically finitely, we demonstrate
that every point of M is either a conical limit point or a bounded parabolic point. So,
we start proving the following lemmata:

Lemma 3.4.1. Every point in (∂T )′ ⊂ M is a conical limit point for Γ in M.

Proof. Let η ∈ (∂T )′ ⊂ M and let v0 be a vertex of T . Then there exists a sequence
{γn}n in Γ such that γnv0 lies on the unique geodesic ray [v0,η) for all n. Then,
by lemma 3.2.2, there exists a subsequence denoted by γn and a point p ∈ M such
that for all q in M except possibly a point in (∂T )′, we have γ−1

n q converges to
p. Now after multiplying each γn on the the right by an element of Γv0 , we can
assume that p does not belong to Xv0 . To prove that η is a conical limit point of Γ

in M, it is sufficient to prove that γnη does not converge to p. Observe that the ray
[γ−1

n v0,γ
−1
n η) always have v0 on this ray for all n. If the sequence {γ−1

n η} converges
to p then, as the sequence γnx also converges to p for any x ∈ Xv0 , we see that p
belongs to Γv0 , which is a contradiction to our choice of p.

Now, we prove that each conical limit point for the action of the vertex group Γv

on Xv is conical for the action of Γ on M.

Lemma 3.4.2. Every point in Ω′ which is the image of a conical limit point in the
vertex stabilizer’s boundary is a conical limit point for Γ in M.

Proof. Let x ∈ Xv be a conical limit point for Γv in Xv. There exists a sequence
{γn}n ⊂ Γv and two distinct points y and z in Xv such that γnx → y and γnx′ → z
for all x′ ̸= x. Now, we show that π(x) is a conical limit point for Γ in M. Since
the restriction of π to Xv is Γv-equivariant continuous from Xv to M. Therefore
π(γnx) = γnπ(x) → π(y) and π(γnx′) = γnπ(x′) → π(z). Since restriction of π is
injective, so π(y) and π(z) are distinct. Thus, π(x) is a conical limit point for Γv in
M. Hence π(x) is a conical limit point for Γ in M.
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Lemma 3.4.3. Every point in Ω′ which is image by π of a bounded parabolic point
in some vertex stabilizer’s boundary is a bounded parabolic point for Γ in M.

Proof. (Amalgam Case) We prove the lemma in two cases:
Case 1. Let p be a bounded parabolic point for a vertex group Γv in Xv. Suppose

p is not in any edge space attached to Xv. We denote π(p) by p. Let D(p) = {v}
and let P be the stabilizer of p in Γ. Since P fixes the vertex v, P ≤ Γv. In fact,
P is the stabilizer of p in Γv. As p is bounded parabolic point for Γv in Xv, P
acts co-compactly on Xv \ {p}. Let K be a compact subset of Xv \ {p} such that
PK = Xv \{p}. Suppose E is the set of edges whose boundaries intersect K. Let e be
the edge with one vertex v, then there exists h ∈ P such that Xe ∩hK ̸= /0. Therefore
the set of edges ∪h∈PhE contains every edge with one and only one vertex v. Let Tv

be the connected subtree of T which starts from v and contains all vertices w of T such
that the first edge of [v,w] is in E . Then Tv \{v}= ⊔i∈ITi where Ti’s are connected
components of Tv \ {v}. Let p′ be the natural projection from M → T ∪ (∂T )′

defined as follows: for q ∈ Xv ⊂ Ω′, define p′(q) = v and for η ∈ (∂T )′, define
p′(η) = η . Let Ki = p′−1(Ti∪∂Ti). By definition of neighborhoods on M, it follows
that Ki’s are closed subsets of M. Note that K ∩Xe ∈

⋃
i∈I Ki for all e ∈ E . Define

K′ = K ∪ (
⋃

i∈I Ki).
Claim: K′ is closed in M
If the indexing set I is finite then K′ is compact in M as finite union of compact

sets is compact. Suppose I is an infinite set and {xn} is a sequence in K′ such that
xn → x. We show that x ∈ K′. If, for infinitely many n, xn ∈ K then x ∈ K ⊂ K′ as K
is closed in M. If, except for finitely many n, xn ∈ Ki for some i then again x ∈ Ki as
Ki’s are closed in M. Finally, suppose there exists a subsequence {xni} of {xn} such
that xni ∈ Ki for all i. Then, there are following two situations:

(i) y = K ∩Ki for all i such that xni ∈ Ki. Then in this case it is clear that {xni}
converges to y and hence x = y ∈ K′

(ii) We have a sequence {zi} such that zi = Ki ∩K for all i such that xni ∈ Ki. As
K is compact in M, there is a subsequence of {zi} converging to z ∈ K. Then by
definition of topology on M, it follows that limxni = z and thus x = z ∈ K′. Hence
the claim and it is clear that PK′ = M \{p}.

Case 2. Suppose p ∈ Xe for some edge e ∈ T . If D(p) is a finite subtree of T
then the proof follows from [18, Lemma 3.6] (or one can prove in a similar manner
as in Case 1). Now, suppose that D(p) is infinite. Suppose that v1 and v2 are vertices
of e. Let P1,P2 be the maximal parabolic subgroups in the vertex groups Γv1,Γv2

respectively and let P be the parabolic edge group corresponding to e. Then D(p)
is nothing but the Bass-Serre tree of the amalgam Q = P1 ∗P P2 and it is also the
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stabilizer of p in Γ. Under the action of P1 ∗P P2 the quotient of D(p) is the edge
e. Since P1,P2 act co-compactly on Xv1 \{p},Xv2 \{p} respectively, there exists a
compact subset Ki of Xvi \{p} such that PiKi = Xvi for i = 1,2. Consider Ei the set of
edges starting at vi whose boundary intersects Ki but does not contain p. Let e′ be an
edge with only one vertex in D(p) and let v′ be this vertex. Then there exists h ∈ Pi

such that Xe ∩ hKi ̸= /0 for i = 1,2. Therefore the set of edges ∪i=1,2QEi contains
every edge with one and only one vertex in D(p).

Construction of a compact subset: Again we follow the same scheme as in Case
1. Let Tvi be the connected subtree T which starts from vi and contains all vertices
w of T such that the first edge of [v,w] is in Ei for i = 1,2. Then Tvi \{vi}= ⊔ j∈JT i

j

where T i
j ’s are connected components of T \{vi}. Let p′ be the natural projection

as in Case 1. Then, by definitions of neighborhoods in M, Ki
j = p′−1(T i

j ∪∂T i
j ) is

a closed subset of M for all j and i = 1,2. Define K′
i = K1 ∪ (

⋃
j∈J Ki

j) for i = 1,2.
Then it follows from the claim in Case 1 that K′

1 and K′
2 are compact subsets of M.

Hence K′′ = ∪i=1,2K′
i is a compact set of M not containing p and QK′′ = M \{p}.

Therefore p is a bounded parabolic point for Γ in M.
(HNN extension case) Again, there are two cases to be consider.
Case 1. Let Γv be vertex group in HNN extension and let P be a parabolic

subgroup sitting inside a maximal parabolic subgroup, say P1, and isomorphic to a
subgroup P′ of P1. In this case, the proof is exactly the same as in the amalgam case
except that the maximal parabolic subgroup corresponding to the edge boundary
point is P1∗P≃P′ , and maximal parabolic subgroups corresponding to parabolic points
which are not in any edge spaces are maximal parabolic for Γ in M.

Case 2. Let Γv be same as in case 1 and suppose P is sitting inside P1 and
is isomorphic to a subgroup P′ of maximal parabolic subgroup P2, which is not
conjugate to P1 in Γv. Then, in this case, we can write Γv∗P≃P′ = (Γv ∗P P′)∗P′ ,
and we apply the amalgam and case 1 of HNN extension respectively to get the
result.

From the above lemmata, it is clear that if each Γv acts on Xv geometrically
finitely then Γ acts on M geometrically finitely. Now, we are in the position of
proving the following proposition:

Proposition 3.4.4. Let Γ be a finitely generated group admitting a decomposition
into a finite graph of convergence groups with finitely generated parabolic edge
groups. Then Γ acts geometrically finitely on M (constructed in Section 3.1) if and
only if each vertex group Γv acts geometrically finitely on compact metrizable space
Xv.
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Proof. Since each edge group is finitely generated, by [7, Lemma 2.5], each vertex
group Γv is finitely generated. Suppose each vertex group Γv acts geometrically
finitely on Xv. Then, by Lemma 3.4.1, 3.4.2, 3.4.3, Γ acts geometrically finitely
on M. Conversely, suppose that Γ acts geometrically finitely on M. Since each
edge group is parabolic for the action of Γ on M, each edge group is a relatively
quasiconvex subgroup of Γ. By [36, Proposition 5.2], each vertex group Γv is a
relatively quasiconvex subgroup of Γ. In particular, each Γv acts geometrically
finitely on Xv as Xv is the limit set of Γv for Γ acting on M.

Proof of Theorem 3.0.3

Let Γ be either amalgam or HNN extension of relatively hyperbolic groups with
parabolic edge groups. Since each vertex group Γv is relatively hyperbolic, Γ

acts geometrically finitely on its Bowditch boundary. To prove that Γ is relatively
hyperbolic, we use Yaman’s characterization of relative hyperbolicity (Theorem
2.4.4). For constructing a space on which Γ acts geometrically finitely, we follow
the same construction as in Section 3.1 by taking compactum Xv, Xe for Γv, Γe as
Bowditch boundaries of these groups, respectively. Therefore, we have a compact
perfect metrizable space M as in Section 3.1. Now, the proof of Theorem 3.0.1
gives that Γ acts on M as a convergence group. Since each vertex group acts
geometrically on its Bowditch boundary, from the above lemmata, the groups Γ acts
geometrically finitely on M. Hence, Γ is relatively hyperbolic, and M is equivariantly
homeomorphic to the Bowditch boundary of Γ.

The limit set of each vertex group Γv for the action on M is Γv-equivariantly
homeomorphic to its Bowditch boundary ∂Γv. It is clear that Γv acts geometrically
finitely on its limit set. Hence, Γv is a relatively quasiconvex subgroup of Γ. This
complete the proof of the theorem.

Parabolic structure: Let Γ be as in the proof of the above theorem. Consider the
collection G containing two types of subgroups of Γ: (1) the stabilizers of bounded
parabolic points in Bowditch boundary of vertex groups which are not identified
with edge parabolic point. (2) the stabilizers of edge parabolic points in Γ. Then Γ is
hyperbolic relative to G .

Next, we prove the combination theorem for graphs of relatively hyperbolic
groups with cyclic edge groups. Again, it is sufficient to consider the amalgam and
the HNN extension case.

Proof of Theorem 3.0.4
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Case 1. Let Γ = Γ1 ∗Z1≃Z2 Γ2. Suppose Z1 = ⟨γ1⟩ and Z = ⟨γ2⟩. If both γ1,γ2

are parabolic elements in Γ1,Γ2 respectively then we are in the amalgam case of
Theorem 3.0.3, and hence Γ is relatively hyperbolic. Suppose at least one of them
is a hyperbolic element. Then by Theorem 2.4.10, we have a maximal elementary
subgroup containing the cyclic subgroup generated by a hyperbolic element which is
hyperbolically embedded. Again, we are in the amalgam case of Theorem 3.0.3 and
therefore Γ is relatively hyperbolic.

Case 2. Let Γ = Γ1∗Z≃Z′ and let Z = ⟨γ⟩,Z′ = ⟨γ ′⟩ are isomorphic subgroups
of Γ1. Again if both γ,γ ′ are parabolic elements then we are in the HNN extension
case of Theorem 3.0.3, and hence Γ is relatively hyperbolic. If at least one of them
is a hyperbolic element, then by applying the Theorem 2.4.10, we get maximal ele-
mentary subgroups containing that cyclic subgroup that is hyperbolically embedded.
Thus, we are in the HNN extension case of Theorem 3.0.3, and hence Γ is relatively
hyperbolic.

In either case, we have proved that Γ is relatively hyperbolic and applying
Theorem 3.0.3, we have a description of the Bowditch boundary. Also, each vertex
groups is relatively quasiconvex in Γ.

3.5 Homeomorphism type of Bowditch boundary

In [50], the authors proved that the homeomorphism type of Gromov boundary of the
fundamental group of a graph of hyperbolic groups with finite edge groups depends
only on the set of homeomorphism type of Gromov boundary of non-elementary
hyperbolic vertex groups. It is not clear that the same result can be extended to the
case of a graph of relatively hyperbolic groups with finite edge groups. However,
under some assumptions, we prove a similar result for a graph of relatively hyperbolic
groups with parabolic edge groups. For the convenience of the reader, we are again
stating the following theorem:

Theorem 3.5.1. Let Y be a finite connected graph and let G(Y ),G′(Y ) be two
graphs of groups satisfying the following:

1. For each vertex v ∈ V (Y ), let (Gv,Pv),(G′
v,P′

v) be relatively hyperbolic
groups.

2. Let e ∈ E(Y ) be any edge. Suppose v,w are vertices connected by e. Let
Pe,P′

e be parabolic edge groups in G(Y ),G′(Y ), respectively. Then either
Pe,P′

e have infinite index in corresponding maximal parabolic subgroups in
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Gv,G′
v, respectively or Pe,P′

e have the same finite index in maximal parabolic
subgroups in Gv,G′

v, respectively. Similarly, either Pe,P′
e have infinite index

in maximal parabolic subgroups in Gw,G′
w, respectively or Pe,P′

e have the
same finite index in corresponding maximal parabolic subgroups in Gw,G′

w,
respectively.

3. For any v ∈ V (Y ), let Bv, B′
v be the set of translates of parabolic points

corresponding to adjacent edge groups under the action of Gv,G′
v on their

Bowditch boundaries respectively. Suppose we have a homeomorphism from
∂Gv → ∂G′

v that maps Bv onto B′
v.

Let Γ = π1(G(Y )), Γ′ = π1(G′(Y )) and let ∂Γ,∂Γ′ be their Bowditch boundaries,
respectively. Then there exists a homeomorphism from ∂Γ to ∂Γ′ preserving edge
parabolic points, i.e. taking parabolic points corresponding to edge groups of G(Y )

to parabolic points corresponding to edge groups of G′(Y ).

Remark 3.5.2. In the above theorem, it is not possible that for G(Y ) the edge groups
are maximal parabolic, and for G′(Y ) the edge groups are parabolic (Not maximal
parabolic). Thus in both graphs of groups either edge groups are maximal parabolic
or edge groups are parabolic. The example below justifies this situation.

Example 3.5.3. Let Y be an edge and let F(a,b) be a free group of rank 2. Let
G(Y ) be a double of the free group F(a,b) along ⟨[a,b]⟩ and G′(Y ) be a double
of free group F(a,b) along ⟨[a,b]2⟩. Thus Γ = F(a,b) ∗⟨[a,b]⟩≃⟨[ā,b̄]⟩ F(ā, b̄) and
Γ′ = F(a,b)∗⟨[a,b]2⟩≃⟨[ā,b̄]2⟩ F(ā, b̄). Since ⟨[a,b]⟩ is a maximal cyclic subgroup of
F(a,b), ⟨[a,b]⟩ is a malnormal quasiconvex subgroup of F(a,b). Thus, F(a,b)
is relatively hyperbolic with respect to ⟨[a,b]⟩. By Theorem 3.0.3, Γ and Γ′ are
relatively hyperbolic with respect to ⟨[a,b]⟩ and ⟨[a,b]⟩∗⟨[a,b]2⟩≃⟨[ā,b̄]2⟩ ⟨[ā, b̄]⟩ respec-
tively. Here, we just take the identity map between Bowditch boundaries of vertex
groups. From the construction of Bowditch boundaries, it is clear that if we remove
parabolic points from Bowditch boundaries ∂Γ,∂Γ′ respectively, we have two con-
nected components, infinitely many connected components, respectively. Therefore
there is no homeomorphism from ∂Γ to ∂Γ′ preserving edge parabolic points.

Also, the above theorem does not deal with the case when parabolic edge groups
have different finite indexes in corresponding maximal parabolic subgroups. Here,
we give a specific example in this direction.

Example 3.5.4. Consider the two groups Γ = F(a,b) ∗⟨[a,b]⟩≃⟨[ā,b̄]⟩ F(ā, b̄) and
Γ′ = F(a,b) ∗⟨[a,b]⟩≃⟨[a,b]2⟩ F(ā, b̄). Since ⟨[a,b]⟩ is a maximal cyclic subgroup of
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F(a,b), ⟨[a,b]⟩ is a malnormal quasiconvex subgroup of F(a,b). Thus, F(a,b) is
relatively hyperbolic with respect to ⟨[a,b]⟩. Both the groups Γ,Γ′ are relatively
hyperbolic with Bowditch boundary ∂Γ, ∂Γ′ respectively. Again, from the con-
struction of Bowditch boundary, removing a parabolic point from ∂Γ gives two
connected components but removing a parabolic point from ∂Γ′ gives three con-
nected components. Thus there is no homeomorphism from ∂Γ to ∂Γ′ preserving
edge parabolic points. Similarly, if we take Γ = F(a,b) ∗⟨[a,b]⟩≃⟨[a,b]3⟩ F(ā, b̄) and
Γ′ = F(a,b)∗⟨[a,b]⟩≃⟨[a,b]2⟩ F(ā, b̄) then there is no homeomorphism from ∂Γ to ∂Γ′

preserving edge parabolic points.

To prove Theorem 3.5.1, it is sufficient to consider amalgam and HNN extension
case.

Proof of Theorem 3.5.1 in the amalgam case:
Let Y be an edge. Then G(Y ) and G′(Y ) are amalgams of two relatively

hyperbolic groups with parabolic edge groups. Let Γ = π1(G(Y )) and let Γ′ =

π1(G′(Y )). By Theorem 3.0.3, both Γ,Γ′ are relatively hyperbolic groups. Let T,T ′

be the Bass-Serre trees for G(Y ),G′(Y ), respectively. For each edge e ∈ T and e′ ∈
T ′, let Pe,P′

e be parabolic edge groups in Γ,Γ′ respectively. Also, in adjacent vertices
of e and e′, let Pv,Pw and let P′

v,P
′
w be maximal parabolic subgroups corresponding

to Pe,P′
e respectively. Let ∂Γ,∂Γ′ denotes Bowditch boundaries of Γ,Γ′ respectively.

Keeping the construction of Bowditch boundaries in mind, we define a map f from
∂Γ to ∂Γ′.

Definition of f : Let e,e′ be two edges of T,T ′ with vertices v,w and v′,w′

respectively. Suppose we have homeomorphisms ∂Gv → ∂G′
v and ∂Gw → ∂G′

w as
in Theorem 3.5.1(3). By definition of these homeomorphisms, we have bijections
between cosets of Pv in Gv and cosets of P′

v in G′
v. Also, there is a bijection between

cosets of Pe in Pv and cosets of P′
e in P′

v. Combining these two, we get a bijection
between cosets of Pe in Gv and cosets of P′

e in G′
v. Similarly, we have a bijection

between cosets of Pe in Gw and cosets of P′
e in G′

w. By following this process
inductively, we have an isomorphism φ from T to T ′. Let ξ ∈ ∂Gv for some
vertex v ∈V (T ). Define f (ξ ) := fv(ξ ), where fv is a homeomorphism from ∂Gv to
∂Gφ(v). Note that if ξ is a parabolic point in ∂Gv and let D(ξ ) be its domain then
φ |D(ξ ) = D( f (ξ )). Since φ is an isomorphism, we have a homeomorphism ∂φ from
∂T to ∂T ′. Observe that if some point of ∂T is identified with some parabolic point,
then its image under ∂φ is also identified with some parabolic point. If η ∈ ∂T such
that it is not identified with some edge parabolic point, define f (η) := φ(η). Thus,
we have a map f from ∂Γ to ∂Γ′.
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f is a homeomorphism: Clearly, f is a bijection. To prove that f is a homeomor-
phism, it is sufficient to prove that f is continuous as Bowditch boundaries ∂Γ,∂Γ′

are compact Hausdorff. Let ξ ∈ ∂Gv for some v ∈ V (T ) and let U be a neighbor-
hood of f (ξ ) in ∂Γ′. Note that φ(D(ξ )) = D( f (ξ )). For each vertex u ∈ D(ξ ), we
can choose a neighborhood Vu such that fu(Vu)⊂Uφ(u) as fu is a homeomorphism,
where Uφ(u) is a neighborhood around f (ξ ) in ∂Gφ(u). Now, it is clear from the
definition of neighborhoods in ∂Γ and definition of maps f ,φ that we can find a
neighborhood V of ξ in ∂Γ such that f (V )⊂U . Now, let η ∈ ∂T such that it is not
identified with a parabolic point. Let U be a neighborhood of f (η) in ∂Γ′. From
the construction of map φ , it is clear that φ takes subtree Wm(η) (see section 3.1 )
onto the subtree Wm( f (η)). Then again, by definition of neighborhoods, we can find
a neighborhood V of η in ∂Γ such that f (V ) ⊂ U . The map f is continuous, and
hence f is a homeomorphism.

Proof of Theorem 3.5.1 in HNN extension case: There are the following two
cases:

Case 1. Let Γ = G∗P1≃P2,Γ
′ = G′∗P′

1≃P′
2
, where (G,P),(G′,P′) are relatively

hyperbolic groups. Assume that P1,P2, and P′
1,P

′
2 are both sitting inside the same

maximal parabolic subgroups in G,G′, respectively. Let T,T ′ be the Bass-Serre
trees of Γ,Γ′ respectively. Also, we have a homeomorphism between Bowditch
boundaries ∂G,∂G′ satisfying (3) in Theorem 3.5.1. We get an isomorphism φ from
T to T ′ in a similar manner as in the amalgam case. Also, we can define a map
from ∂Γ to ∂Γ′ in the same way as we define in the amalgam case. Note that f is
a bijection. To prove that f is a homeomorphism, it is sufficient to prove that f is
continuous as ∂Γ,∂Γ′ are compact Hausdorff. Again continuity is clear from the
definition of map f and definition of neighborhoods in ∂Γ,∂Γ′ respectively.

Case 2. Let Γ = G∗P1≃P2,Γ
′ = G′∗P′

1≃P′
2
, where (G,P),(G′,P′) are relatively

hyperbolic groups. In this case, P1,P2, and P′
1,P

′
2 are sitting inside in different (not

conjugate) maximal parabolic subgroups in G,G′, respectively. Now, we can write
Γ = (G∗P1 P2)∗P2 and Γ′ = (G′ ∗P′

1
P′

2)∗P′
2
, respectively. By applying amalgam and

case 1 of the HNN extension respectively, we get the desired homeomorphism from
∂Γ to ∂Γ′.
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3.6 Applications and examples

3.6.1 Example of a subgroup of a relatively hyperbolic group
with exotic limit set

In this subsection, we closely follow the construction of space given in Section
3.1 and give an example of a relatively hyperbolic group having a non-relatively
quasiconvex subgroup whose limit set is not equal to the limit of any relatively
quasiconvex subgroup. This is motivated by the work of I.Kapovich [39], where he
gave such an example in the setting of hyperbolic group.

Consider the torus with one puncture and let ψ be a pseudo-Anosov homeomor-
phism fixing the puncture. Suppose Mψ is the mapping torus for the homeomorphism
ψ . Let G,F be the fundamental groups of Mψ , puncture torus respectively. Then it
is well known that G is relatively hyperbolic with respect to a subgroup isomorphic
to Z⊕Z, and subgroup F is not relatively quasiconvex in G. Let Γ = G∗⟨z⟩ G and let
H = F ∗⟨z⟩ F , where z ∈ F is primitive, be doubles of G and H respectively along
cyclic subgroup ⟨z⟩. The groups Γ,H are relatively hyperbolic, by Theorem 3.0.4.
We have the following:

Lemma 3.6.1. H is not a relatively quasiconvex subgroup of Γ.

Proof. Suppose H is relatively quasiconvex in Γ. Since F is relatively quasiconvex
in H and H is relatively quasiconvex in Γ, F is relatively quasiconvex in Γ by [7,
Lemma 2.3]. Since F is a normal subgroup of G, the limit set of F in G is the same
as the Bowditch boundary of G that is homeomorphic to the limit set of G in Γ. Also
the limit set of F in Γ is the same as the Bowditch boundary of G. Hence F acts
geometrically finitely on its limit in G. Thus, F is relatively quasiconvex in G which
is a contradiction.

As we observe in the proof of Theorem 3.0.4, the edge group in Γ is parabolic,
or we change the parabolic structure in vertex group G so that edge group become
parabolic. Therefore, following Section 3.1, we can give a construction of Bowditch
boundary of relatively hyperbolic group Γ. Now, we prove the following:

Lemma 3.6.2. StabΓ(Λ(H)) = H, i.e. H is maximal in its limit set.

Proof. Let T,T ′ be the Bass-Serre trees of the groups Γ,H respectively. Note that
the tree T ′ embeds in T , and each vertex group in H is normal in the corresponding
vertex group of Γ. Also, there is topological embedding between Gromov boundaries
of T ′ and T . Let M be Bowditch boundary of Γ. Here we explicitly know the
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construction of M (see Section 3.1). Let p be a map from M → T ∪∂T defined as
follows: for ξ ∈ ∂Gv, define p(ξ ) = v and for η ∈ ∂T , define p(η) = η . Consider
N, a subset of M, the inverse image of T ′∪ ∂T ′ under the map p. It is clear from
the definition of topology on M that N is the minimal closed H-invariant set. Thus
Λ(H) = N. Now, the lemma follows immediately from the construction of Bowditch
boundary M.

Now, we prove that the limit set of the subgroup H is exotic, i.e. there is no
relatively quasiconvex subgroup of Γ whose limit set is equal to the limit set of H.
Recall that a subgroup of a relatively hyperbolic group is dynamically quasiconvex
if and only if it is relatively quasiconvex (see [29]).

Lemma 3.6.3. There is no relatively quasiconvex subgroup of Γ whose limit set is
equal to the limit set of H.

Proof. If possible, there is a relatively quasiconvex subgroup Q of Γ such that
Λ(Q) = Λ(H). Since StabΓ(Λ(H)) = StabΓ(Λ(Q)) = H, we see that Q ⊂ H. Thus,
by Lemma 2.3.13, we see that H is a dynamically quasiconvex subgroup of Γ.
Therefore H is relatively quasiconvex too and hence we get a contradiction as H is
not relatively quasiconvex.

Remark 3.6.4. In [18], Dahmani gave a construction of Bowditch boundary for the
fundamental group of an acylindrical graph of relatively hyperbolic groups with fully
quasiconvex edge groups. In particular, we can construct Gromov boundary of the
fundamental group of an acylindrical graph of hyperbolic groups with quasiconvex
edge groups. Let Sg,g ≥ 2 be a closed orientable surface of genus g and let φ be a
pseudo-Anosov homeomorphism of Sg. Let Mφ be the mapping torus corresponding
to φ and let G be the fundamental group of Mφ . Then, it is well known that G is a
hyperbolic group and F = π1(Sg) is a non-quasiconvex subgroup of G. Let z ∈ F
be such that z is not a proper power in F and hence it is not a proper power in G.
Consider the double Γ of group G along ⟨z⟩, i.e. Γ = G∗⟨z⟩ G. Note that the group Γ

is hyperbolic by [6] and the subgroups G,G of Γ are quasiconvex. Consider the group
H = F ∗⟨z⟩F . Again, by [6], H is hyperbolic. Now, using the construction of Gromov
boundary of Γ from [18], we can explicitly construct the limit set of subgroup H (as
we did in Lemma 3.6.2). Then, we have StabΓΛ(H) = H. Then, using the same idea
as above, H is not quasiconvex, and there is no quasiconvex subgroup of Γ whose
limit set equal Λ(H). Thus, we have a different proof of I.Kapovich’s result from
[39].
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3.6.2 Example of a family of non-convergence groups

The class of convergence groups contains the class of hyperbolic and relatively hyper-
bolic groups. So, it is natural to ask whether there is a non-elementary convergence
group which is not relatively hyperbolic. In general constructing non-convergence
groups is not easy. However, in this subsection, we give an example of a fam-
ily of groups that do not act on a compact metrizable space as a non-elementary
convergence group.

Proposition 3.6.5. Let G be a torsion-free group and let H be a subgroup of G
satisfying the following:

1. H is malnormally closed in G, i.e. there is no proper subgroup of G containing
H, which is malnormal in G

2. [CommG(H) : H]> 1, where CommG(H) denotes the commensurator of H in
G.

Consider the double Γ of the group G along H, i.e. Γ = G∗H≃H G. Then, Γ does
not act on a compact metrizable space as a non-elementary convergence group.

First of all, we give an example satisfying the hypotheses of the above theorem.

Example 3.6.6. Let G = F(a,b) be a free group of rank 2 and let H = ⟨a,b2,bab−1⟩
be a subgroup of G. Note that H is a normal subgroup of G as [G : H] = 2. Since
b2 ∈ bHb−1 ∩H, b lies in any malnormal subgroup of G containing H. Thus, H is
malnormally closed in G. As H is a normal subgroup of G, CommG(H) = G and
therefore [CommG(H) : H] > 1. Now, consider the double Γ = G∗H≃H G. By the
above proposition, we see that Γ does not act on a compact metrizable space as a
non-elementary convergence group.

Now, we collect some basic facts about subgroups of a convergence group.

Lemma 3.6.7. Suppose a group G acts on a compact metrizable space as a conver-
gence group. Then any subgroup P of G, which is isomorphic to Z ⊕Z, is parabolic.

Proof. Since P is Abelian, |Λ(P)| ≤ 2. Let if possible |Λ(P)| = 2. Then P con-
tains a loxodromic element p (say). The fixed point set of p, Fix(p) = Λ(P) and
StabG(Λ(P)) contains P. By [74, Theorem 2I], ⟨p⟩ has finite index in StabG(Λ(P)).
In particular, ⟨p⟩ has finite index in P, which is impossible. Hence |Λ(P)|= 1 and P
is a parabolic subgroup.

Now, we observe the following:
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Lemma 3.6.8. Let G be a group that acts on a compact metrizable space as a
convergence group. Then maximal parabolic subgroups are weakly malnormal.

Proof. Let P be a maximal parabolic subgroup with Λ(P) = {p}. Suppose for
some g ∈ G, |P∩ gPg−1| = ∞. As P∩ gPg−1 ⊂ P, Λ(P∩ gPg−1) = Λ(P) = {p}.
Similarly, Λ(P∩gPg−1) = Λ(gPg−1) = gΛ(P). Hence g fixes the parabolic point p
and therefore g ∈ P.

Note that if G is torsion-free in the above lemma, then maximal parabolic
subgroups are malnormal. Now, we obtain the following:

Lemma 3.6.9. Let Γ be the double of G along H as above. If H ∩gHg−1 ̸= {1} then
H ∩gHg−1 is a subgroup of a parabolic subgroup.

Proof. Let w ∈ H ∩ gHg−1. Then w = ghg−1 for some h ∈ H. This implies h =

g−1wg. Since Γ is double of group G along H, g−1wg= ḡ−1wḡ. Thus ḡg−1 commute
with w. As Γ is torsion-free, ⟨ḡg−1,w⟩ ≃ Z ⊕Z. By the above lemma, ⟨ḡg−1,w⟩ is a
parabolic subgroup. Since w is an arbitrary element of H ∩gHg−1, H ∩gHg−1 is a
subgroup of a parabolic subgroup.

Proof of Proposition 3.6.5. Since [CommG(H) : H] > 1, let g ∈ CommG(H)

such that g /∈ H. By Lemma 3.6.9, H ∩gHg−1 is a subgroup of a parabolic subgroup
of Γ. Since [H : H ∩gHg−1] < ∞, H and H ∩gHg−1 sit inside the same maximal
parabolic subgroup P (say). Now, by Lemma 3.6.8, the subgroup P is malnormal
in Γ. As H is malnormally closed in G, G ⊂ P. Similarly, we can show that G ⊂ P.
Hence Γ ⊂ P and therefore Γ is not a non-elementary convergence group.

Note: Let H,K be two subgroups of G such that H ⊂ K ⊂ G and 1 < [K : H]< ∞.
Then one can check that K ⊂CommG(H). Also, assume that H is malnormally closed
in G. Then the double Γ = G∗H≃H G is not a non-elementary convergence group.



Chapter 4

Boundaries of coned-off spaces and
Cannon-Thurston maps

This chapter aims to study the geometry of electric spaces and deduce the existence
of CT maps for certain subcomplexes of groups of a complex of hyperbolic groups.

Following is our setup for Theorem 4.0.1.

1. Suppose X is a δ -hyperbolic geodesic metric space and {Ai} is a locally finite
collection of uniformly quasiconvex sets in X .

2. Suppose Y ⊂ X is a subspace such that with respect to the induced length
metric from X , the inclusion Y → X is a proper embedding.

3. Suppose that Y is also a δ -hyperbolic metric space.

4. Lastly, suppose that there is a collection of subsets {B j} in Y such that each
B j is contained in Ai ∩Y for some i and each B j is uniformly quasiconvex in
X as well as in Y .

5. Let X̂ be the space obtained from X by coning the sets Ai and let Ŷ be the
space obtained from Y by coning the sets {B j}.

We note that the coned-off spaces Ŷ and X̂ are (uniformly) hyperbolic by Proposition
2.5.4. The following is the main theorem in this chapter.

Theorem 4.0.1. Suppose the inclusion Ŷ → X̂ satisfies Mitra’s criterion. Then the
inclusion Y → X admits a CT map. Moreover, the CT map ∂Y → ∂X is injective if
and only if the CT map ∂Ŷ → ∂ X̂ is injective.

In the setting of complexes of groups, we prove the following.

69
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Theorem 4.0.2. Let (G ,Y ) be a developable complex of groups over a finite sim-
plicial complex Y . Let Y1 be a connected subcomplex of Y and let (G ,Y1) be the
subcomplex of groups obtained by restricting (G ,Y ) to Y1. Suppose the following
conditions hold.

1. The natural homomorphism G1 = π1(G ,Y1)→ G = π1(G ,Y ) is injective.

2. Both G1,G are hyperbolic, and all the local groups of (G ,Y ) are quasiconvex
in G.

3. The natural map B1 → B satisfies Mitra’s criterion, where B1,B are the uni-
versal covers of (G ,Y1) and (G ,Y ), respectively.

Then there exists a Cannon-Thurston map for the inclusion G1 → G. Moreover,
G1 is quasiconvex in G if and only if the Cannon-Thurston map for B1 → B is
injective.

Layout of the chapter: In Section 4.1, we give a proof of Theorem 4.0.1. There
we give a set-theoretic description of the Gromov boundary of X too. In Section
4.2, as an application of Theorem 4.0.1, we prove Theorem 4.0.2. Section 4.3 is
devoted to complexes of groups with finite edge groups. Some further applications
and examples are discussed in Section 4.4.

4.1 Electric geometry and Cannon-Thurston maps

Throughout the section, X ,Y are geodesic metric spaces satisfying the hypotheses of
Theorem 4.0.1. This section is devoted to a proof of Theorem 4.0.1. Our starting
point is to give a description, as a set, of the Gromov boundary of X , see Theorem
4.1.9. Then, using this there is a natural map from Ȳ to X̄ and we show that this map
is continuous.

We start here by proving some basic lemmas about geodesics in X̂ .

Lemma 4.1.1. Let γ is a geodesic of finite length in X̂ and let A1,A2, ...,Ak be the

quasiconvex subsets penetrated by γ . Then (γ∩X)∪(
k⋃

i=1
Ai) is a uniform quasiconvex

subset of X.

Proof. Since γ is of finite length, say l, γ penetrates at most l quasiconvex subsets.

Hence, k ≤ l. Thus, γ̃ = (γ ∩X)∪ (
k⋃

i=1
Ai) is the concatenation of finitely many

geodesic segment of γ in X and at most l uniform quasiconvex subsets in X . Then
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it is straight forward to check that γ̃ is a quasiconvex subset of X , see Lemma
2.2.13.

Lemma 4.1.2. Suppose x,y ∈ X. There is a uniform dotted quasigeodesic γ in X and
a uniform quasigeodesic β in X̂ both joining x,y such that HdX̂(γ,β ) is uniformly
bounded.

Proof. Let [x,y] be any geodesic in X joining x,y. Then, by Proposition 2.5.5, [x,y]
is a uniformly quasiconvex subset of X̂ . Hence, by Lemma 2.2.12 there is a uniform
dotted quasigeodesic, say

α : x0 = x,x1, . . . ,xn = y,

in X̂ joining x,y contained in [x,y]. Now dX̂(xi,xi+1) being uniformly small, if
αi is a geodesic in X̂ joining xi,xi+1 then, by Lemma 4.1.1, there is a uniformly
quasiconvex subset, call it αde

i , in X containing xi,xi+1. Hence, there is a uniform
dotted quasigeodesic in X , say

γi : xi = yi0,yi1, . . . ,yimi,

joining xi,xi+1 contained in αde
i . Since, xi’s were on a geodesic it follows that the

concatenation of the various γi’s is a uniform dotted quasigeodesic in X . Similarly,
the concatenation of the αi’s is a uniform quasigeodesic in X̂ . Note that HdX̂(γi,αi)

is uniformly bounded. Hence, defining γ to be the concatenation of γi’s and β to be
the concatenation of the αi’s finishes the proof.

We then immediately have the following which is also proved by Kapovich and
Rafi [42, Corollary 2.4].

Corollary 4.1.3. There exists D0 ≥ 0 such that the following holds:
Suppose x,y ∈ X and γ is a geodesic segment of X joining x,y. Let β be a

geodesic segment of X̂ joining x,y. Then HdX̂(γ,β )≤ D0.

Proof. There exists a uniform dotted quasigeodesic γ1 in X and a uniform quasi-
geodesic β1 in X̂ , both joining x,y such that HdX̂(γ1,β1) is uniformly bounded,
according to Lemma 4.1.2. Now, using the stability of quasigeodesics in X and X̂ ,
there exists D0 ≥ 0 such that HdX̂(γ,β )≤ D0.

Corollary 4.1.4. For all D > 0 there is D′ > 0 such that D′ → ∞ as D → ∞ and the
following holds.
Suppose x0,x,y ∈ X and dX̂(x0, [x,y]X̂)≥ D. Then dX(x0, [x,y]X)≥ D′.

Proof. Proof is immediate from the previous corollary.
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4.1.1 ∂X vs ∂ X̂

In this subsection, we give a description of ∂X in terms of Λ(Ai) and ∂ X̂ . Such a
description also appears in [1]. There, the authors additionally required "acylindrical
action of a group along a subgroups" on X . However, we just need a mild assumption
(see Remark 1.2.1) on X which is always true for groups.

The following is a consequence of Lemma 4.1.3. However, we provide a sketch
of proof for completeness.

Proposition 4.1.5. Suppose γ is a geodesic ray in X such that its image in X̂ is
unbounded. Then it is uniformly close to a uniform quasigeodesic ray of X̂ .

Proof. Let γ be a geodesic ray in X such that its image in X̂ is unbounded. Let
γ(0) = x and let α be a geodesic in X̂ joining x to any point of γ , say γ(t) for some
t ∈ [0,∞). Then, according to Lemma 4.1.3, HdX̂(γ|[0,t],α)≤ D0. Since image of γ

is unbounded in X̂ , choose a sequence {xn}n of points on γ which are sufficiently far
away from x such that if αn is a geodesic in X̂ joining x and xn then the projection
yi of xi on αn for 1 ≤ i ≤ (n− 1) are such that yi+1 comes after yi. Note that the
Hausdorff distance in X̂ between αn and portion of γ joining x and xn is bounded
above by D0. Now, join the consecutive points xi and xi+1 by a geodesic in X̂ and
take the concatenation of all such geodesics, call it β . Then it is easy to verify that β

is a uniform quasigeodesic ray in X̂ . Again by invoking Lemma 4.1.3, we see that β

is uniformly close to γ .

Remark 4.1.6. From the proof of the above corollary, we see that if the image of a
geodesic ray in X is unbounded in X̂ then it has a unique limit point in ∂ X̂ (see also
[1, Corollary 6.4]).

Proposition 4.1.7. Suppose γ is a geodesic ray in X such that its image in X̂ is a
bounded set. Then, γ(∞) ∈ Λ(Ai) for some i.

Proof. Let D0 = DiamX̂(γ) for some D0 > 0. Let γ(0) = x0 and let αn be a geodesic
in X̂ joining x0 and γ(n).

Step 1. Since l(αn)≤ D0, each αn penetrates at most D0 quasiconvex subsets.
For each n, let An

1,A
n
2, ...,A

n
k be the quasiconvex subsets penetrated by αn and k ≤ D0.

Note that B(x0,D0)∩An
1 ̸= φ for all n. But, by local finiteness of Ai’s, there can be

only finitely many such quasiconvex subsets. Thus, up to passing to a subsequence,
we can assume that the first penetrated quasiconvex subset by each αn is fixed, say
A1.
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Step 2. If diameter of nearest point projection of γ on A1 is infinite then γ(∞) ∈
Λ(A1) by Lemma 2.2.31 and therefore we are done. Thus, we assume that the
diameter of the nearest point projection of γ on A1 is finite. By Lemma 4.1.1, for

each n, (αn ∩X)∪ (
k⋃

i=1
An

i ) is a uniform K-quasiconvex subset of X for some K ≥ 0.

Let xn be the entry of point of αn in A1 and denote the portion of αn from x0 to
xn by [x0,xn]. Let γ|[0,tn] , for some tn > 0, be the maximal subsegment of γ which
is K-close to A1 ∪ [x0,xn]. Then γ(tn + 1) is (K +D0)-close to a point of An

i for
some 1 < i ≤ D0, say an

i . By our choice of tn, there exists yn ∈ A1 ∪ [x0,xn] such
that dX(γ(tn),yn) ≤ K. Suppose yn ∈ A1. Note that, for all n, dX(xn,yn) ≤ K1 for
some K1 ≥ 0. Choose a X-geodesic of length at most K1 connecting xn and yn, call
it βn. Take a X-geodesic of length at most K joining yn and γ(tn), call it α ′

n. Now
take the concatenation of [x0,xn],βn,α

′
n,γ|[tn,tn+1]

and X-geodesic of length at most
(K +D0) joining γ(tn + 1),an

i . If yn ∈ [x0,xn] then we just take concatenation of
[x0,yn]⊂ [x0,xn], X-geodesic of length at most K joining γ(tn) and yn, γ|[tn,tn+1]

, and
X-geodesic of length at most (K +D0) joining γ(tn +1) to an

i . In either case, let us
denote such concatenation by γn. Note that the X-length of each γn is bounded by
some fixed constant. Thus all the quasiconvex subsets in which an

i lies belong to a
finite radius X-ball centered at x0. Again by local finiteness of Ai’s, up to extracting
a subsequence, all an

i lie in a fixed quasiconvex subset, say A2, and each αn penetrate
A2.

Step 3. Again, if the diameter of the nearest point projection of γ on A2 is
infinite then we are done by Lemma 2.2.31. Otherwise, repeat Step 2 for the
union of γn ∪A2’s and portions of αn’s after A2. Since each αn penetrates at most
D0 quasiconvex subsets, we can repeat the above procedure finitely many times.
Finally, up to extracting finitely many subsequences, we see that each αn penetrates a
quasiconvex subset, call it A j and after that αn’s does not penetrate any quasiconvex
subset. Hence, for some D ≥ 0, γ(n) lies in the D-neighborhood of A j for all large n.
Therefore γ(∞) ∈ Λ(A j).

Notation. We let ∂hX the set of points ξ ∈ ∂X such that there is a (quasi)geodesic
ray γ in X with γ(∞) = ξ and such that γ is unbounded in X̂ . Also we denote
∪i∈IΛ(Ai) by ∂vX . Intuitively we think of the rays converging to points of ∂hX as
horizontal ones relative to the map X → X̂ and the those to converging to points of
∂vX as vertical.

However, Proposition 4.1.5 and Corollary 4.1.4 immediately imply the following
result which was proved first in [19, Theorem 3.2]. We include a sketch of proof for
the sake of completeness.



74 CHAPTER 4. BOUNDARIES OF CONED-OFF SPACES

Theorem 4.1.8 ([19]). (1) Suppose xn is a sequence in X. Then xn converges to a
point of ∂hX if and only if xn converges to a point of ∂ X̂ . Consequently we have a
map φX : ∂hX → ∂ X̂ .

(2) The map φX is a homeomorphism.

Sketch of proof: (1) Suppose xn → ξ ∈ ∂hX . Let γ be a quasigeodesic ray in X
with γ(∞) = ξ and γ(0) = x1. Then, by Lemma 2.2.28, [x1,xn]X fellow travels γ in
X for longer and longer time as n → ∞. It then follows from Corollary 4.1.3 that
[x1,xn]X̂ fellow travels γ in X̂ for longer and longer time as n → ∞. By Lemma 4.1.5
γ is within a finite Hausdorff distance of a quasigeodesic ray, say β , in X̂ . It follows
that xn → β (∞) in X̂ .

Conversely, suppose that xn → ξ ∈ ∂ X̂ . Then, {xn}n is an unbounded sequence
in X . Fix x0 ∈ X . For n ̸= m, let αn,m be a quasigeodesic in X̂ joining xn,xm. Then
dX̂(x0,αn,m)→ ∞ as n,m → ∞ by Lemma 2.2.25(1). By invoking Corollary 4.1.4,
dX(x0, [xn,xm]X)→ ∞ as n,m → ∞. Hence, {xn} is converging to a point of ∂X , say
η . Let γ be a quasigeodesic joining x0 to η in X . Note that γ is unbounded in X̂ .
Hence, η ∈ ∂hX and xn → η as n → ∞.

(2) The proof of this is exactly similar to the proof of (1) and uses Corollary 4.1.4
and Lemma 4.1.5.

From Theorem 4.1.8, we can realize ∂hX as a subset of ∂X . Finally, Proposition
4.1.7 and Lemma 4.1.5 immediately give the following:

Theorem 4.1.9. ∂X = ∂hX ∪∂vX.

Proof. Clearly, ∂hX∪∂vX ⊂ ∂X . Suppose γ is a quasigeodesic ray in X and i : X → X̂
is the natural inclusion. If i(γ) is bounded in X̂ then γ(∞) ∈ ∂vX by Proposition
4.1.7. If i(γ) is unbounded in X̂ then γ(∞) ∈ ∂hX by Proposition 4.1.5. Thus,
∂X ⊂ ∂hX ∪∂vX . Hence the theorem.

We note that this theorem in the context of groups was proved by Abbott and
Manning. See [1, Theorem 6.7, Remark 6.8, and Theorem 1.6]. However, the proof
was in the context of a group action with certain properties.

4.1.2 Main Theorem

Suppose X ,Y are geodesic metric spaces satisfying the hypotheses of Theorem 4.0.1.
We shall assume that x0 ∈ Y is a fixed base point once and for all.

Proof of Theorem 4.0.1: Since the inclusion Ŷ → X̂ satisfies Mitra’s criterion we
have a CT map, say g : ∂Ŷ → ∂ X̂ . Now we consider the following map h : ∂Y → ∂X :
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h(ξ ) =

ξ if ξ ∈ ∂vY,

φ
−1
X ◦g◦φY (ξ ) if ξ ∈ ∂hY

We shall show that h is the CT map ∂Y → ∂X by verifying the hypotheses of
Corollary 2.2.37. Suppose {xn} is a sequence in Y and xn → ξ ∈ ∂Y in Ȳ . We need
to verify that xn → h(ξ ) in X̄ . The proof is divided into two cases.

Case 1. Suppose ξ ∈ ∂hY . Then xn → φY (ξ ) in Ŷ by Theorem 4.1.8. However
the inclusion Ŷ → X̂ admits a CT map by hypothesis. Hence, xn → g◦φY (ξ ) in X̂ .
Hence, again by Theorem 4.1.8 we have xn → φ

−1
X ◦g◦φY (ξ ) = h(ξ ) in X̄ .

Case 2. Suppose ξ ∈ Λ(B j) for some j. Let x ∈ B j. By Lemma 2.2.32, there is
a uniform dotted quasigeodesic ray γ of X contained in B j which joins x to ξ . Then
γ is a uniform dotted quasigeodesic in Y as well by Lemma 2.1.2. There are two
subcases to consider:

Subcase 1. Suppose that {xn} is bounded in Ŷ . Let αn be geodesic in Ŷ joining
x to xn. Let γn be the union of penetrated quasiconvex subsets by αn and the portion
of αn outside quasiconvex subsets penetrated by γn. By Corollary 4.1.1, γn is a
uniformly quasiconvex set in Y as well as in X . Let βn be the union of γ and γn for all
n∈N. Then βn is a uniformly quasiconvex in both X and Y . We note that ξ ∈ΛX(βn).
Hence, we can choose, by Lemma 2.2.32, a uniform dotted quasigeodesic of X , say
β ′

n ⊂ βn, joining xn to ξ . Then by Lemma 2.1.2 it is a uniform quasigeodesic in Y
as well. Since xn → ξ in Ȳ we have dY (x0,β

′
n)→ ∞ by Lemma 2.2.27(2). Since Y

is properly embedded in X , dX(x0,β
′
n)→ ∞. That in turn implies that xn → ξ in X̄

again by Lemma 2.2.27(2).

Subcase 2. Suppose that {xn} is unbounded in Ŷ . Passing to a subsequence, if
needed, we may assume that dŶ (x0,xn)> n. Now, for all R ∈N and n ≥ R, let xR

n ∈Y
be the farthest point of [x0,xn]Y such that dŶ (x0,xR

n ) = R. We note that the sequence
of geodesics [x0,xn]Y fellow travel γ for longer and longer time as n → ∞ by Lemma
2.2.28. This implies that dY (x0, [xR

n ,xn]Y )→ ∞ as n → ∞ for all large R since the
inclusion map Y → Ŷ is Lipschitz. Hence, xR

n → ξ in Ȳ for large enough R. By the
Subcase 1, for any such R we have xR

n → ξ in X̄ too.

By choice of the points, xR
n we see that dŶ (x0, [xR

n ,xn]Y )≥ R. Hence, by Corollary
4.1.3 dŶ (x0, [xR

n ,xn]Ŷ )≥ R1 where |R1 −R| is uniformly small. Since the inclusion
Ŷ → X̂ satisfies Mitra’s criterion, there exists R2 ≥ 0 depending on R1 such that
dX̂(x0, [xR

n ,xn]X̂) ≥ R2. Hence, by Corollary 4.1.4 dX(x0, [xR
n ,xn]X) ≥ R3. We note

that R3 → ∞ as R → ∞. Now since xR
n → ξ for all R large enough, by Lemma 2.2.29,

one may find an unbounded sequence of integers {Ck} and a subsequence {nk} of the
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sequence of natural numbers such that xCk
nk → ξ too. On the other hand, this means

dX(x0, [x
Ck
nk ,xnk ]X)→ ∞. It follows that xnk → ξ in X̄ as k → ∞ by Lemma 2.2.27.

Finally, by invoking Corollary 2.2.37, we are done.
Suppose the CT map h : ∂Y → ∂X is injective. By definition of h, g is nothing

but the restriction of h to ∂Ŷ and hence g is injective. Conversely, if g is injective
then clearly h is an injective CT map.

Proposition 4.1.10 (Converse to Theorem 4.0.1). Suppose we have the hypothesis
Theorem 4.0.1 and that there is a CT map ∂ i : ∂Y → ∂X. Then there is a CT map
∂ i : ∂Ŷ → ∂ X̂ if and only if for any Ai and any ξ ∈ ΛX(Ai), (∂ i)−1(ξ ) = /0 or {ξ}.

Proof. Suppose the CT map f : ∂Ŷ → ∂ X̂ exists. Then for any η ∈ ∂Ŷ ⊂ ∂Y and
any sequence yn → η in Y , we have yn → η in Ŷ and hence yn → f (η) in X̂ . That
further implies that yn → f (η) ∈ ∂ X̂ ⊂ ∂X in X . But, {∂ i(yn)} also converges to
∂ i(η) as ∂ i is a CT map. Therefore, ∂ i(η) = f (η) ∈ ∂ X̂ . Hence, for any Ai, no
point of ΛX(Ai) will be in ∂ i(∂Ŷ ) and f is nothing but the restriction of ∂ i to ∂Ŷ .
However, the map ∂ i restricted to ∂Y \∂Ŷ is clearly injective. Thus for any Ai, and
any ξ ∈ ΛX(Ai), (∂ i)−1(ξ ) = /0 or {ξ}. The converse is also similar and hence we
skip repeating the proof.

Example 4.1.11. Consider an exact sequence of hyperbolic groups 1 → π1(Σ)→
G π→ Z→ 1 where Σ is a closed orientable surface of genus at least 2. Let g ∈ G
such that Z=< π(g)> and let K =< g >. Let H be the image of π1(Σ) in G. Then
for any x ∈ G, xK ∩H = /0 or (1). However, the CT map ∂H → ∂G is surjective. It
follows that the CT map ∂ Ĥ = ∂H → ∂ Ĝ does not exist.

The following is a special case of Theorem 4.0.1 that will be useful in proving
Theorem 4.0.2.

Theorem 4.1.12. Suppose X is a hyperbolic geodesic metric space and let {Ai ⊂ X}
be a locally finite collection of uniform quasiconvex subsets. Suppose Y ⊂ X and with
respect to induced length metric from X, the inclusion Y → X is a proper embedding.
Suppose Y is also a hyperbolic geodesic metric space and {B j ⊂ Y} is a collection
of subsets which is uniformly quasiconvex in X as well as in Y . Lastly, assume
that {B j} ⊂ {Ai}. Let Ŷ denote the coned-off space obtained by coning Bi’s and
let X̂ denote the coned-off space obtained by coning Ai’s. If Ŷ → X̂ satisfy Mitra’s
criterion then the CT map ∂Y → ∂X exists. Moreover, the CT map ∂Y → ∂X is
injective if and only if the CT map ∂Ŷ → ∂ X̂ is injective.

Proof. We give a sketch of the proof. First of all note that by Theorem 4.1.9, we can
write ∂X as ∂hX ∪∂vX . Similarly, ∂Y = ∂hY ∪∂vY . Since Ŷ → X̂ satisfies Mitra’s
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criterion, we have a CT map g : ∂Ŷ → ∂ X̂ . Then we define a map h : ∂Y → ∂X in
the following manner:

h(ξ ) =

ξ if ξ ∈ Λ(B j),

φ
−1
X ◦g◦φY (ξ ) if ξ ∈ ∂hY

Now it remains to verify Lemma 2.2.36. This follows exactly in the same way as the
proof of Theorem 4.0.1.

Application to relatively hyperbolic spaces: Let X be a geodesic metric space
and let {Ai} be a collection of uniformly properly embedded subsets of X . Let
Xh denote the cusp space [10],[61],[43] with respect to {Ai}. Then X is said to be
hyperbolic relative to {Ai} if Xh is a Gromov hyperbolic space. Also, the Gromov
boundary of Xh is defined to be the Bowditch boundary of relatively hyperbolic space
X . The following lemma is pretty standard, for example see [67, Lemma 1.2.28].

Lemma 4.1.13. Suppose X is a geodesic metric space and {Ai} is a collection of
subsets of X. Let X̂h denote the coned-off space obtained by coning off {Ah

i }’s and
let X̂ denote the coned-off space obtained by coning off {Ai}’s. Then the natural
inclusion X̂ → X̂h is a quasiisometry.

We also record the following basic lemma about cusp spaces similar to Lemma
2.5.3.

Lemma 4.1.14. Given D ≥ 0 there exists K = K(D) such that the following holds:
Suppose X is a geodesic metric space and {Ai}i∈I,{Bi}i∈I are two collections

of subsets of X. Let Xh
A and Xh

B denote the cusp spaces with respect to Ai’s and Bi’s,
respectively. Let ψ be the extension of the identity map X → X obtained by sending
Ai × (0,∞) to Bi × (0,∞). If, for all i, Hd(Ai,Bi)≤ D then ψ is a K-quasiisometry.

Lemma 4.1.15. [43, Lemma 9.2] Let X be a geodesic metric space that is hyperbolic
relative to {Ai ⊂ X : i ∈ I}. Then, the hyperbolic cone Ah

i is uniformly qi embedded
in Xh for all i ∈ I.

Theorem 4.1.16. Let X be a geodesic metric space hyperbolic relative to a locally
finite collection {Ai ⊂ X} of uniformly properly embedded subsets. Let Y ⊂ X.
Suppose, with respect to the induced length metric, Y is a geodesic metric space and
hyperbolic relative to {B j ⊂ Y} and each B j is contained in Ai ∩Y for some i. Let X̂
denote the coned-off space obtained by coning Ai’s and Ŷ denote the coned-off space
obtained by coning B j’s. Suppose that Ŷ → X̂ satisfy Mitra’s criterion. Then the CT
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Y h Xh

Ŷ h X̂h

Ŷ X̂

f g

Figure 4.1: Horizontal maps are inclusion, f ,g are natural quasiisometries

map ∂Y h → ∂Xh exists. Moreover, ∂Y h → ∂Xh is injective if and only if ∂Ŷ → ∂ X̂
is injective.

Proof. We verify the hypotheses of Theorem 4.0.1 for the spaces Y h and Xh. Since
Y,X are hyperbolic relative to {Ai},{B j} respectively, Y h,Xh are proper hyperbolic
geodesic metric spaces. By Lemma 4.1.15, Ah

i → Xh is uniform qi embedding for all
i ∈ I. Hence, by Lemma 2.2.10, Ah

i is uniformly quasiconvex in Xh for all i. Similarly,
Bh

j’s are uniformly quasiconvex in Y h as well as in Xh. Note that Xh is locally finite

with respect to {Ah
i }. Let X̂h be the coned-off space obtained by coning Ah

i ’s and let
Ŷ h be coned-off space obtained by coning Bh

j’s. Then, by Lemma 4.1.13, X̂h,Ŷ h are

quasiisometric to X̂ ,Ŷ respectively. Since Ŷ → X̂ satisfies Mitra’s criterion, Ŷ h → X̂h

also satisfies Mitra’s criterion (see figure 4.1). Finally, we are done by invoking
Theorem 4.0.1.

4.1.3 Group theoretical analogue of Theorem 4.0.1

Theorem 4.0.1 has the following immediate group theoretic consequence.

Theorem 4.1.17. 1. Suppose G is a hyperbolic group and {Ki : 1 ≤ i ≤ n} is a set
of quasiconvex subgroups of G.

2. Suppose H < G is hyperbolic subgroup.

3. Suppose K′
1,K

′
2, . . . ,K

′
m are subgroups of H such that each K′

j ⊂ H ∩Ki for some
i, and is quasiconvex in G.
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4. Let Ĝ be the coned-off space obtained by coning the cosets of Ki’s in G and let
Ĥ denote the coned-off spaces obtained by coning the various cosets of K′

i ’s in
H.
If the inclusion Ĥ → Ĝ satisfies Mitra’s criterion then there is a CT map ∂H →

∂G. Moreover, if the CT map ∂ Ĥ → ∂ Ĝ is injective then H is quasiconvex in G.

Proof. Note that Ĥ and Ĝ are hyperbolic geodesic spaces by Proposition 2.5.4. By
Theorem 4.0.1 the CT map ∂H → ∂G exists and it is injective if and only if so is the
CT map ∂ Ĥ → ∂ Ĝ. In the latter case, by Lemma 2.2.38, H is quasiconvex in G.

In the context of relatively hyperbolic groups, one has the following.

Theorem 4.1.18. 1. Suppose G is a finitely generated group hyperbolic relative to
a finite collection of (qi embedded) subgroups {Ki}.

2. Suppose H < G which is hyperbolic relative to K′
1,K

′
2, . . . ,K

′
m where for all

1 ≤ i ≤ m there is an element gi ∈ G and a subgroup Kni ∈ {Ki} with K′
i <

giKnig
−1
i ∩H.

3. For all g ∈ G, and Ki, H ∩gKig−1 is contained in the conjugate in H of some K′
j.

4. Let Ĝ be the coned-off space obtained by coning the cosets of Ki’s in G and let
Ĥ denote the coned-off spaces obtained by coning the various cosets of K′

i ’s in
H.
If the inclusion Ĥ → Ĝ satisfies Mitra’s criterion then there is a CT map ∂H →

∂G in level of the Bowditch boundaries of the groups.
Moreover, if the inclusion Ĥ → Ĝ is a qi embedding then H is relatively quasi-

convex in G.

Proof. Since the number of subgroups K′
i ’s are finite, there exists D ≥ 0 be such

that K′
i ⊂ ND(giKni)∩H for all 1 ≤ i ≤ m. As G is hyperbolic relative to {Ki}, after

attaching hyperbolic cusps to the various cosets of Ki’s in G we get a hyperbolic
space, call it Z. Let X be a space obtained by attaching hyperbolic cusps to the
D-neighborhoods of all the cosets of the subgroups {Ki} in G. Since by Lemma
4.1.14 the spaces Z and X are quasiisometric, X is also a hyperbolic space. Let Y
be the space obtained from H by attaching hyperbolic cusps to the cosets in H of
the subgroups in {K′

i}. The resulting space, say Y , is also hyperbolic and Y ⊂ X .
We note that by coning-off the hyperbolic cusps we get spaces, say X̂ and Ŷ , which
are naturally quasiisometric to the spaces obtained from the groups G,H by coning
off the cosets of the various subgroups in {Ki} and {K′

i} respectively (see Lemma
4.1.13). Since the inclusion Ĥ → Ĝ satisfies the Mitra’s criterion, the inclusion



80 CHAPTER 4. BOUNDARIES OF CONED-OFF SPACES

Ŷ → X̂ satisfies Mitra’s criterion. Clearly the hyperbolic cusps of Y are uniformly
quasiconvex in X . Hence, all the hypotheses of Theorem 4.0.1 checks out. It follows
that CT map exists for the inclusion Y → X .

For the second part, we note that ∂H is equivariantly homeomorphic to the image
of the CT map. Hence, H-action on the image of the CT map is geometrically finite
whence H is relatively quasiconvex by the results of [37, Section 7].

4.2 Application to complexes of groups

In this section, we prove Theorem 4.0.2. Following is the set up for that.

• Suppose (G ,Y ) be a developable complex of hyperbolic groups with local
maps qi embeddings, π1(G ,Y ) = G and development B.

• Suppose G is hyperbolic and all the face groups are quasiconvex in G. Then it
follows that B is a hyperbolic metric space (Proposition 2.5.4).

• Suppose Y1 is a connected subcomplex of Y and (G ,Y1) is the subcomplex
of groups obtained by restricting (G ,Y ) to Y1. Then (G ,Y1) is a complex of
hyperbolic groups with local maps qi embeddings. Let G1 = π1(G ,Y1).

• Suppose the natural homomorphism G1 → G is injective. Then, by Corollary
2.6.13, (G ,Y1) is a developable complex of hyperbolic groups. Let B1 be the
development of (G ,Y1).

• Suppose G1 is also hyperbolic. Then it follows that all the face groups of
(G ,Y1) are quasiconvex in G1 and, by Proposition 2.5.4, then B1 is also a
hyperbolic metric space.

Proof of Theorem 4.0.2:
Without loss of generality we may assume the maps G1 → G,B1 → B to be

inclusion and that G1 < G. Now, we have a commutative diagram, see figure 4.2. In
the diagram, Ĝ1 denotes the coned-off Cayley graph of G obtained by coning various
cosets of local groups of (G ,Y1) in G1 and Ĝ denotes the coned-off Cayley graph of
G obtained by coning cosets of local groups of (G ,Y ) in G. By [13, Theorem 5.1],
Ĝ1, Ĝ are quasiisometric to B1,B, respectively. We denote these quasiisometries
by f ,g. Then Mitra’s criterion for B1 → B implies that Mitra’s criterion holds for
the natural map Ĝ1 → Ĝ. Hence, the first part of the theorem follows by Theorem
4.1.12.
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G1 G

Ĝ1 Ĝ

B1 B

f g

Figure 4.2: Horizontal maps are inclusion

Clearly, the CT map ∂G1 → ∂G is injective if and only if the CT map ∂ Ĝ1 → ∂ Ĝ
is injective. Hence, the second part follows from the first part and by Lemma
2.2.38.

In [48] (along with [49, Corollary, p. 805]) A. Martin proved the following
combination theorem for complexes of hyperbolic groups.

Theorem 4.2.1. [48, p. 34] Let (G ,Y ) be a developable complex of groups such that
the following holds:

1. Y is a finite connected simplicial complex.

2. The local groups are hyperbolic and local maps are quasiisometric embed-
dings.

3. The universal cover of (G ,Y ) is a CAT(0) hyperbolic space, and

4. The action of the fundamental group π1(G ,Y ) of (G ,Y ) on the universal cover
is acylindrical.

Then π1(G ,Y ) is a hyperbolic group and the local groups are quasiconvex in
π1(G ,Y ).

Now, as a corollary of Theorem 4.0.2, we have the following.

Corollary 4.2.2. Let (G ,Y ) be a complex of groups satisfying the hypothesis of
Theorem 4.2.1. Let Y1 be a connected subcomplex of Y and let (G ,Y1) be the
subcomplex of groups obtained by restricting (G ,Y ) to Y1. Suppose the following
conditions hold.

1. (G ,Y1) also satisfies the hypotheses of Theorem 4.2.1.
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2. The natural homomorphism H = π1(G ,Y1)→ G = π1(G ,Y ) is injective.

3. Assume that the natural map B1 → B satisfies Mitra’s criterion where B1,B
are the universal covers of (G ,Y ) and (G ,Y ) respectively.

Then there exists a Cannon-Thurston map for the inclusion H → G. Moreover, H is
quasiconvex in G if and only if the Cannon-Thurston map for B1 → B is injective.

4.3 A remark on complexes of groups with finite edge
groups

In this section, we consider developable complexes of groups whose edge groups are
finite and whose developments are hyperbolic, which may or may not be CAT(0).
Then the following theorem is immediate from the work of [10] and [51].

Theorem 4.3.1. Suppose (G ,Y ) is a developable complex of groups such that the
edge groups are finite and the universal cover is a hyperbolic metric space. Then the
fundamental group of (G ,Y ), say G, is hyperbolic relative to {Gv : v ∈V (Y )}.

A word about the proof: In [10], Bowditch showed that a finitely generated group
G is hyperbolic relative to a collection of finitely generated infinite subgroups {Hi}
if and only if there is a fine hyperbolic graph X on which G has a co-finite action and
such that the edge stabilizers are finite and the infinite vertex stabilizers are precisely
the conjugates of Hi’s in G. Using this criterion, one only needs to check that the
1-skeleton of the universal cover of (G ,Y ) is a fine graph. This follows from [51,
Corollary 2.11, Theorem 1.3].

Now, in Theorem 4.3.1 if one assumes in addition that the vertex groups are
hyperbolic then one has the following.

Theorem 4.3.2. Suppose (G ,Y ) is a developable complex of groups such that the
vertex groups are hyperbolic and the edge groups are finite. Suppose the universal
cover of (G ,Y ) is hyperbolic metric space. Then the fundamental group G of (G ,Y )
is a hyperbolic and the vertex groups are quasiconvex in G.

In fact one uses Theorem 4.3.1 along with [66, Corollary 2.41] or [35, Theorem
2.4] for the proof of Theorem 4.3.2. Next we prove an analogue of Corollary 4.2.2
in the setting of Theorem 4.3.2.

Next, we deduce existence of the CT map for certain subcomplexes of groups of
a complex of hyperbolic groups with finite edge groups.
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Set up: Suppose (G ,Y ) is a complex of groups as in Theorem 4.3.2. Sup-
pose Y1 ⊂ Y is a finite connected subcomplex of Y and (G ,Y1) is the complex of
groups obtained by restricting (G ,Y ) to Y1. Let G,H be the fundamental groups of
(G ,Y ),(G ,Y1), respectively. Then G is a hyperbolic group and all the local groups of
(G ,Y ) are quasiconvex in G. Suppose H is hyperbolic and the natural map H → G
is injective. Then, it is clear that all the local groups of (G ,Y1) are quasiconvex
in H. Let B1,B be the universal covers of (G ,Y1),(G ,Y ), respectively. Now, by
Proposition 2.5.4, B1 is also a hyperbolic metric space.

The following is immediate from Theorem 4.0.2.

Corollary 4.3.3. If the inclusion B1 → B satisfies Mitra’s criterion then the CT map
∂H → ∂G exists. Moreover, the H is quasiconvex in G if and only if the CT map
∂B1 → ∂B is injective.

4.3.1 Description of uniform quasigeodesics.

In this subsection, we give a description of uniform quasigeodesics in a complex of
spaces corresponding to a complex of groups satisfying the hypotheses of Theorem
4.3.2. In that direction, first of all, we recall some concepts that are relevant to us.
Trees of spaces were defined by Bestvina and Feighn [6]. Then several authors used
a number of equivalent definitions. We shall use the following modified version.

Definition 4.3.4. ([57, Section 3],[43, Definition 2.12]) A tree of metric spaces is a
geodesic metric space X equipped with a 1-Lipschitz surjective map π : X → T onto
a simplicial tree T satisfying the following:
(1) For each vertex v ∈V (T ), the corresponding vertex space Xv := π−1(v)⊂ X is
rectifiably connected.
(2) For every edge e∈E(T ), the edge space Xe := π−1(m(e)) is rectifiably connected.
(3) All the vertex spaces and the edge spaces are geodesic metric spaces with respect
to the induced length metric from X .
(4) Every oriented edge e = [v,w] comes equipped with a uniformly Lipschitz,
uniformly proper map fe : Xe × [v,w]→ X , such that fe(Xe ×{v})⊂ Xv.

One uses the notation fev for the natural composition Xe → Xe ×{v} fe→ Xv. In
this definition it is implicitly assumed that the length of each edge of T is 1.

Remark 4.3.5. If we have additional hypotheses on the vertex and edge spaces and
on the maps fev’s, then as in [57, Section 3] one can define trees of space with those
properties, like trees of hyperbolic spaces, or trees of (hyperbolic) spaces with qi
embedding condition etc.
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Construction of candidate paths.
Let π : X → T be a tree of hyperbolic spaces with qi embedding condition. Let

x ∈ Xu,y ∈ Xv for u,v ∈V (T ). Let t0 = u, t1, ..., tm = v and e1,e2, ...,em−1 denote the
consecutive vertices and edges on [u,v]. Suppose feiti−1, feiti are incidence maps from
Xei to Xti−1,Xti for i = 1,2, ...,m− 1, respectively. Define Ai−1 := feiti−1(Xei) and
Bi := feiti(Xei) for i = 1,2, ...,m−1. One inductively constructs the points x−i ,x

+
i for

i = 0,1, ...,m as follows.
Set x−0 = x and x+0 = PXt0 ,A0(x

−
0 ) where PXt0 ,A0 is the nearest point projection of

Xt0 onto A0. Suppose we have defined x−i ,x
+
i for i < m. Then we define x−i+1 to be an

arbitrary point of fei+1ti+1( f−1
eiti (x

+
i ). Define x+i+1 := PXti+1 ,Ai+1(x

−
i+1). Lastly, define

x+m := y. Consider the path γ(x,y) as concatenations of geodesic segments [x−i ,x
+
i ]Xti

for i = 0,1, ...,m, and a segment of length 1 joining x+i and x−i+1 for i = 0,1, ...,m−1.

Remark 4.3.6. We shall refer to the paths γ(x,y) as the standard paths joining x and
y in what follows.

Let (G ,Y ) be a developable complex of hyperbolic groups such that local maps
are qi embeddings. Let B be the universal cover of (G ,Y ). Let X be the complex of
spaces as constructed in Section 2.7. The lemma below hints at the relevance of trees
of spaces for us. Since the proof is obvious, we skip it.

Lemma 4.3.7. Let B(1) be the 1-skeleton of B with the induced length metric from B.
Let α ⊂ B(1) be a geodesic. Let Xα := p−1(α) be endowed with the induced length
metric from X. Then p : Xα → α is naturally a tree of hyperbolic metric spaces
whose incidence maps are quasiisometric embeddings.

Let (G ,Y ) be a developable complex of groups as in Theorem 4.3.2. Let X be a
complex of spaces corresponding to (G ,Y ) as constructed in Section 2.7. Above, we
have seen that G is a hyperbolic group. Since G is quasiisometric to X , X is also a
hyperbolic space. Let φ be the quasiisometry from G to X . Let Gh be the cusp space
with respect to gGσ ’s and Xh

φ
be the cusp space with respect to φ(gGσ ) where Gσ ’s

are the local groups and g ∈ G. Then, by [67, Lemma 1.2.31], Gh is quasiisometric
to Xh

φ
. Let Xh be the cusp space with respect to gXσ ’s. Now, according to Lemma

4.1.14, Xh is quasiisometric to Xh
φ

. Hence, X is relatively hyperbolic with respect to
its hyperbolic vertex spaces. We use the following theorem from [35] for describing
uniform quasigeodesics in X .

Theorem 4.3.8. [35, Theorem 2.4] Let G be a metric graph that is hyperbolic
relative to a family H = {Hc|c} of complete connected subgraphs. Suppose each of
the graph Hc is δ -hyperbolic for some δ ≥ 0. Then G is hyperbolic and enlargements
of geodesics in coned-off space Ĝ are uniform quasigeodesics in G .
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Note that, in Theorem 4.3.8, if we take quasigeodesic in place of geodesic then
the same proof gives us that enlargements of quasigeodesics without backtracking
are also uniform quasigeodesics in G .

Theorem 4.3.9. Suppose (G ,Y ) is a complex of groups satisfying the hypotheses
of Theorem 4.3.2 and p : X → B is the complex of spaces associated to (G ,Y ). Let
u,v ∈ B be any two points and let [u,v] be a geodesic joining them in B(1). Then
X[u,v] := p−1([u,v]) is uniformly qi embedded in X.

In particular, uniform quasigeodesics in X[u,v] are uniform quasigeodesics in X.

Proof. Let X̂ denotes coned-off space with respect to its vertex spaces Xv’s. Let x,y
be two elements of X and let p(x), p(y) be their projections respectively. Without
loss of generality, we can assume that x,y are in the vertex spaces of X and thus
p(x), p(y) are vertices of B. Join p(x) and p(y) by a geodesic, say γ , in B(1). Let
v0 = p(x),v1, ...,vn = p(y) be the vertices on γ and let ci be the cone points in X̂
corresponding to vertex spaces Xvi for i = 0,1, ...,n. Note that, by Lemma 4.3.7,
Xγ = p−1[v0,vn] is a tree of hyperbolic spaces with qi embedding conditions. Also
we have standard paths in Xγ . Suppose v0,v1 are joined by an edge e1. From the
construction of standard path, choose points x−e1

,x+e1
in the images of Xe in Xv0,Xv1 ,

respectively. Join x,x+e1
by a concatenation of paths of length 1 connecting x,x−e1

through the cone point c0 and an edge joining x−e1
,x+e2

. Now, following the same
procedure for other vertices, we obtain a path α in X̂ passing through cone points
c0,c1, ...,cn. Let φ be the natural quasiisometry from X̂ to B. Note that φ ◦α = γ and
thus α is a quasigeodesic in X̂ without backtracking. Now, by Theorem 4.3.8, we see
that enlargement of α (which is same as standard path) is a uniform quasigeodesic
in X joining x and y and hence Xγ is uniformly qi embedded in X .

4.4 Further applications and examples

In this section, we discuss several applications of Theorem 4.0.2 in the context of
polygons of groups. At the end, we also give some interesting examples.

4.4.1 Polygons of groups

In this section, we discuss several applications of Theorem 4.0.2 in the context of
polygons of groups. At the end, we also give some interesting examples.
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4.4.2 Polygons of groups

Standing assumption: Let Y be a regular Euclidean polygon with at least 4 edges.
Let (G ,Y ) be a simple (i.e. all twisting elements are trivial) polygon of groups over
Y . Also, assume that in vertex groups, the intersection of the two subgroups coming
from the adjacent edges is equal to the subgroup coming from the barycenter of Y .
Let G = π1(G ,Y ). Unless stated otherwise, this will be our standing assumption till
subsection 4.4.3.

By [11, 12.29, p. 390, II.12], (G ,Y ) is non-positively curved and hence it is
developable. Let B be the universal cover of (G ,Y ) which is a piecewise Euclidean
polygon complex. Then, by [11, p. 562, III.C], B is a CAT(0) space.

Next, we adapt the following definition from [11, I.7, Definition 7.8] in our
context.

Definition 4.4.1. Suppose x ∈ B. Define

ε(x) = inf{ε(x,P) : P is a polygon in B containing x}

where ε(x,P) := {dP(x,e) : e is an edge of P not containing x}.

We record the following lemma that can be proved in the same way as [11,
Lemma 7.9]. For completeness, we give a sketch of proof. For the definition of an
m-string in B, one is referred to [11, I.7, Definition 7.4]. Since shapes of B is finite,
B is a complete geodesic metric space by [11, Chapter I.7].

Lemma 4.4.2. Fix x ∈ B. If y ∈ B is such that d(x,y) < ε(x), then any polygon P
which contains y also contains x, and d(x,y) = dP(x,y).

Sketch of proof: To prove the lemma, it is sufficient to show that if Σ = (x =

x0,x1, ...,xn = y) is an m-string of l(Σ)< ε(x), with m ≥ 2, then Σ′ = (x0,x2, ...,xn)

is an (m− 1)-string with l(Σ′) ≤ l(Σ). Now, by definition of m-string, there is a
polygon P1 such that x1,x2 ∈ P1. Since l(Σ)< ε(x), x0 ∈ P1. By triangle inequality,
dP1(x0,x2) ≤ dP1(x0,x1)+ dP1(x1,x2). Thus, (x0,x2, ...,xn) is an (m− 1)-string of
length less that or equal to l(Σ).

Now we are ready to prove the following:

Lemma 4.4.3. The natural inclusion of each polygon in B is an isometric embedding.

Proof. Let P be a polygon in B and let x be an interior point of P. Then, by Lemma
4.4.2, an open P-ball of radius ε(x) around x embeds isometrically in B. Firstly, we
show that the interior of P embeds isometrically in B. Let x,y be any two points
in the interior of P and let α be the P-geodesic connecting x and y. To show that
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α is a geodesic in B, it is sufficient to show that it is a local geodesic in B since in
a CAT(0) space a local geodesic is a geodesic. Let z ∈ Im(α) be any point. Then
BP(z,ε(z))∩α embeds isometrically in B. Thus α is a local geodesic in B. Now,
let x be an interior point of P and let y be a point on a side of P. Let β be the
P-geodesic joining x and y. Then there is a sequence {xn} in the interior of P such
that xn ∈ β and xn → y in P. Since the inclusion P → B is 1-Lipschitz, xn → y
in B too. Now, limn→∞ dB(x,xn) = dB(x,y) and limn→∞ dP(x,xn) = dP(x,y). But
dP(x,xn) = dB(x,xn). Thus, dP(x,y) = dB(x,y). Similarly, it can be shown that if x
and y lie on distinct sides of P then dP(x,y) = dB(x,y). Finally, suppose x ̸= y are
two vertices on a side, say e, of P. Let e′ ̸= e be a side of P having y as a vertex.
Suppose {xn ∈ e′} is a sequence such that xn → y in P. This implies that xn → y in B
too. As in the previous case, dP(x,xn) = dB(x,xn). Also, limn→∞ dP(x,xn) = dP(x,y)
and limn→∞ dB(x,xn) = dB(x,y). Hence dP(x,y) = dB(x,y). This completes the
proof.

Lemma 4.4.4. Let P1 and P2 be two polygons in B such that either P1∩P2 is a vertex
or P1 ∩P2 is an edge. Let e1 and e2 be two edges in P1 and P2 respectively such that
e1 ∩ e2 is a vertex of P1 ∩P2. Then the concatenation α of e1 and e2 is a geodesic in
B.

Proof. Let α be the concatenation of e1 and e2. By Lemma 4.4.3, e1,e2 are geodesics
in B. Let v := e1 ∩ e2. To prove the lemma, it is sufficient to show that a small

neighborhood of v in α embeds isometrically in B. Let I be a ball of radius
1
4

around v in α . Suppose x,y are the endpoints of I lying in e1,e2 respectively. Note

that Σ0 = (x,v,y) is a 2-string in B and l(Σ0) =
1
2

. If, except Σ0, there is no string
in B connecting x and y then we are done. Therefore, we show that if Σ = (x0 =

x,x1, ...,xn = y) is any other n-string in B then l(Σ) > l(Σ0). By definition of an
n-string, there exists a sequence of polygons (P0,P1, ...,Pn−1) such that xi,xi+1 ∈ Pi

for i = 0,1, ...,(n−1). Without loss of generality, we can assume that xi,xi+1 lie on
different sides of P′

i for 0 ≤ i ≤ (n−1). Note that if x1 belongs to a side of P0 not

containing v then dP0(x,x1)>
1
2

as the angle at each vertex of P0 is at least
π

2
and

hence l(Σ)>
1
2

. Thus we assume that x1 belongs to a side of P0, say e3, containing v.

Since the angle between e1 and e3 is at least
π

2
, dP0(x,x1)>

1
4

. By the same reasoning,
x2 belongs to a side of P1 containing v. By continuing in this way either xn−1 belongs
to a side of Pn−1 containing v or xn−1 lies on a side of Pn−1 not containing v. In

either case dPn−1(xn−1,xn)>
1
4

. Hence, l(Σ)≥ dP0(x,x1)+dPn−1(xn−1,xn)>
1
2

. This
completes the proof.
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Now, assume that all the local groups of (G ,Y ) are hyperbolic and all the local
maps are qi embeddings. Suppose B is a hyperbolic space and the action of G on B
is acylindrical. Then, by Theorem 4.2.1, G is a hyperbolic group. Let Y1 be an edge
of Y and let (G ,Y1) be the restriction of (G ,Y ) to Y1. Let H = π1(G ,Y1). Then, as
an application of Theorem 4.0.2, we obtain the following:

Theorem 4.4.5. H is a quasiconvex subgroup of G.

Proof. Let Y1 = e be the edge with vertices v,w. Then H = Gv ∗Ge Gw. Let B1

denote the Bass-Serre tree of H. Then B1 is a CAT(0) space. By Theorem 4.0.2, it
is sufficient to prove that the natural map B1 → B is a quasiisometric embedding.
We prove that it is in fact an isometric embedding. Note that, if B1 → B is a qi
embedding then one can check that the action of H on B1 is acylindrical and hence
H is a hyperbolic group by [6]. To prove that B1 → B is an isometric embedding, it
is enough to show that the restriction of the inclusion B1 → B to any geodesic of B1

is a local isometry since B is CAT(0) a space. Let α be any geodesic of B1. We note
that the inclusion α → B is simplicial and the edges of B are geodesics by Lemma
4.4.3. Thus, the map α → B is locally isometric at all points other than possibly the
vertices. Hence it is enough to prove the following:

Claim. If b is a vertex of α then the inclusion in B of a small neighborhood of b
in α is an isometric map.

We know that vertices and edges of B1 and B correspond to cosets of vertex and
edge groups in H and G respectively, and the 2-dimensional faces of B correspond
to cosets of Gτ in G, where τ is the 2-dimensional face of Y (see Theorem 2.6.12).
Without loss of generality, we can assume that the vertex b of α corresponds to
local group Gv and e ∈ α (e is the edge corresponding to Ge). Let gvGe be an edge
of α adjacent to b where gv ∈ Gv \Ge. Note that gv /∈ Gτ . Then, gvGτ denotes a
2-dimensional face of B having Gv as common vertex. Let e1 := gvGe. Then, by
Lemma 4.4.4, the concatenation of e and e1 is a geodesic in B. This proves the
claim.

Remark 4.4.6. Theorem 4.4.5 is not true in the case of a triangle of groups, i.e. there
are examples of developable triangles of groups such that development is a CAT(0)
hyperbolic space, the fundamental group G of the triangle of groups is hyperbolic,
and amalgamated free product corresponding to an edge is not quasiconvex in G, see
Example 4.4.18.

An immediate consequence of Theorem 4.4.5 is the following:



4.4. FURTHER APPLICATIONS AND EXAMPLES 89

Corollary 4.4.7. Let Y be an Euclidean polygon with at least 4-edges. Sup-
pose (G ,Y ) is a developable simple polygon of groups satisfying the conditions
(1),(2),(3) of Theorem 4.2.1. Let e be an edge of Y and let H be the amalgamated
free product corresponding to e. Then H is quasiconvex in π1(G ,Y ).

The next lemma is pretty standard. For completeness, we give its proof.

Lemma 4.4.8. The group G splits as amalgamated free product.

Proof. Let J be an internal line segment in Y joining the midpoints of two edges,
say e1,e2 such that it divides the set of vertices into two sets each having at least 2
vertices. Let V1,V2 be these two sets of vertices. Note that J divides the 1-skeleton of
Y into parts, say Y1,Y2, each having V1,V2 as vertex sets. Let (G ,Y1),(G ,Y2) denote
the complexes of groups restricted to Y1,Y2 and let G1,G2 be their fundamental
groups respectively. Let Ge1,Ge2 be edge groups corresponding to e1,e2 and let
Gτ be group corresponding to the barycenter of Y . Suppose H = Ge1 ∗Gτ

Ge1 is the
natural amalgamated free product. Note that we can realise H as a subgraph of
groups of (G ,Y1),(G ,Y2) respectively. Then, the natural maps from H to G1 and G2

are injective, see [3, 2.15, p.25]. Then, using the Eilenberg-Maclane spaces for local
groups in (G ,Y ), one defines a complex of spaces whose fundamental group is G
(see Subsection 2.6.2). Finally, by Seifert-Van Kampen theorem, one can see that
G = G1 ∗H G2.

In [77], Wise proved a celebrated combination theorem for virtually compact
special groups (see [76],[77]). It says that if a hyperbolic group G splits as A∗C B or
A∗C, where A,B are virtually compact special groups and C is quasiconvex in G then
G is virtually compact special. We prove a similar result in the case of a polygon of
virtually compact special groups. Before that, we recall the notion of the height of a
subgroup of a group.

In [31], Gitik et al. generalized the concept of malnormality and introduced the
following notion of height of a subgroup of a group.

Definition 4.4.9 (Height). The height of an infinite subgroup H in G is the maximal
n ∈ N such that if there exists distinct cosets g1H,g2H, ...,gnH such that g1Hg−1

1 ∩
g2Hg−1

2 ∩ ...∩gnHg−1
n is infinite. The height of a finite subgroup define to be 0.

In [31], the authors proved the following:

Theorem 4.4.10. [31, p. 322] Quasiconvex subgroups of hyperbolic groups have
finite height.

Next, we note the following simple lemma.
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Lemma 4.4.11. Suppose (G ,Y ) is a finite graph of groups with fundamental group G.
If all the edge groups have finite height in G then the action of G on the Bass-Serre
tree of (G ,Y ) is acylindrical.

Proof. Since (G ,Y ) is a finite graph of groups, there exists l ∈N such that the height
of each edge group is at most l. Let T be the Bass-Serre tree of (G ,Y ). Note that the
G-stabilizer of a geodesic α in T is the intersection of the G-stabilizers of edges on
α . Let if possible the action of G on T is not acylindrical. Then, given k ∈ N, there
is a geodesic in T with length bigger than k and the G-stabilizer of the geodesic is
infinite. Now, choose k to be sufficiently larger than l such that there is a geodesic
segment β of length bigger than k and G-stabilizer of β is infinite. Since there are
finitely many edge groups, StabG(β ) is contained in the intersection of more than
l-conjugates of an edge group. This gives a contradiction as the height of each edge
group is at most l.

Now, we are ready to prove the following result:

Proposition 4.4.12. Suppose (G ,Y ) satisfies the following conditions:

1. All the vertex groups are hyperbolic and virtually compact special.

2. All the edge groups are quasiconvex in adjacent vertex groups.

3. The universal cover B is a hyperbolic space and the action of G on B is
acylindrical.

Then, G is virtually compact special.

Proof. By our assumptions, (G ,Y ) is a complex of groups satisfying all the hypothe-
ses of Theorem 4.2.1. Hence, G is a hyperbolic group and all vertex groups are
uniformly quasiconvex in G. Now, by Lemma 4.4.8, write G = G1 ∗H G2, where
G1,G2 are the fundamental groups of trees of hyperbolic groups with qi embedding
conditions, say (G ,Y1),(G ,Y2) respectively. Assume that Y2 contain only two ver-
tices. Since all the vertex groups of (G ,Y ) are quasiconvex in G and intersection of
two quasiconvex subgroups is again quasiconvex, the edge groups in (G ,Y1),(G ,Y2)

are quasiconvex in G. Thus, by Lemma 4.4.10, the edge groups of (G ,Y1),(G ,Y2)

have finite height in G and hence they have finite height in G1,G2 also. According
to Lemma 4.4.11, (G ,Y1),(G ,Y2) are acylindrical graphs of hyperbolic groups with
qi embedding condition and hence G1,G2 are hyperbolic (see [6]). By Theorem
4.4.5, G2 is a quasiconvex subgroup of G. By [43, Theorem 8.73], the group H is
quasiconvex in G2 and therefore H is quasiconvex in G. Now, by [77, Theorem
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13.1], G1,G2 are virtually compact special. As H is quasiconvex in G, G is virtually
compact special by [77, Theorem 13.1].

Remark 4.4.13. From the proof of Proposition 4.4.12, one can deduce the following:
Suppose (G ,Y ) is a polygon of groups satisfying the hypotheses of Theorem

4.4.5. Let Y1 be a connected subcomplex of Y such that |Y \Y1| ≥ 3. Let (G ,Y1) be
the restriction of (G ,Y ) to Y1 with fundamental group G1. Then G1 is quasiconvex
in G.

Now assume that the vertex groups of (G ,Y ) are hyperbolic and the edge groups
are finite. If B is a hyperbolic space then, by Theorem 4.3.1, G is hyperbolic. This
also follows from Theorem 4.2.1. Now we show that, in the case of polygons of
groups, its converse is also true.

Lemma 4.4.14. The following are equivalent:

1. G is a hyperbolic group.

2. The universal cover B is a hyperbolic space.

Proof. (1) =⇒ (2) By Lemma 4.4.8, we can write G = G1 ∗F G2, where G1,G2 are
the fundamental group of trees of hyperbolic groups with finite edge groups, F is
an amalgamated free product of finite groups. Clearly, G1 and G2 are hyperbolic
groups. Since vertex groups of F are finite, their actions on the Bass-Serre trees of
G1,G2 are acylindrical. Thus, by [43, Theorem 8.73], F is quasiconvex in G1 as well
as in G2. By splitting Y along a different internal line segment, we can again write G
as amalgamated free product G′

1 ∗F ′ G′
2, where G′

1,G
′
2 are hyperbolic. Again, by the

same reason, F ′ is quasiconvex in G′
1 as well as in G′

2. Now, regard F as subgraph
of groups of this new amalgamated free product. Note that, by [3, 2.15, p.25], the
natural map from the Bass-Serre tree of F to Bass-Serre tree of G′

1 ∗F ′ G′
2 is injective.

Thus, by [43, Theorem 8.73], we see that F is quasiconvex in G. Hence, G1,G2 are
also quasiconvex in G. Since all the vertex groups of G1 and G2 are quasiconvex in
G1 and G2 respectively, all the vertex groups of (G ,Y ) are quasiconvex in G. Now,
the coned-off Cayley graph Ĝ of G with respect to the local groups of (G ,Y ) is
quasiisometric to B (see [13, Theorem 5.1]). But Ĝ is a hyperbolic geodesic metric
space by Proposition 2.5.4. Hence, B is a hyperbolic geodesic metric space.

(2) =⇒ (1) Since universal cover is a hyperbolic space, by Proposition 4.3.1, G
is a hyperbolic group.

It is not clear that the Lemma 4.4.14 is true for general complex of hyperbolic
groups with finite edge groups. Also, there are example of developable complex



92 CHAPTER 4. BOUNDARIES OF CONED-OFF SPACES

of hyperbolic groups with finite edge groups such that the universal cover is not a
hyperbolic space (see below). However, we have the following:

Lemma 4.4.15. Let (G ,Y ) be a developable complex of hyperbolic groups with
finite edge groups over a finite simplicial complex Y . Assume that G = π1(G ,Y ) is
hyperbolic. Then the universal cover of (G ,Y ) is a hyperbolic space if and only if
vertex groups are quasiconvex in G.

Proof. If the universal cover is a hyperbolic space then by Theorem 4.3.1, G is
hyperbolic and vertex groups are quasiconvex in G. Converse is obvious as coned-off
Cayley graph of G with respect to the collection of cosets of vertex groups in G is
a hyperbolic space, see Proposition 2.5.4, and it is quasiisometric to the universal
cover.

4.4.3 Examples

In this subsection, we discuss various types of examples which show that some
of the hypotheses in the theorems of this chapter are necessary. First of all note
that in Theorem 4.3.1, we cannot drop the hypothesis that the universal cover of
complex of hyperbolic groups with finite edge groups is a hyperbolic space, see
[11, Example 12.17(3), II.12]. In that example, we have a developable triangle of
finite groups (G ,Y ) whose universal cover is Euclidean space E2. Since, π1(G ,Y ) is
quasiisometric to E2, π1(G ,Y ) is not a hyperbolic group.

Let (G ,Y ) be a developable complex of groups over a finite simplicial complex
and let Y1 ⊂ Y be a connected subcomplex of Y . Consider the subcomplex of groups
(G ,Y1) obtained by restricting (G ,Y ) to Y1. The following example shows that the
natural homomorphism from π1(G ,Y1)→ π1(G ,Y ) need not be injective.

Example 4.4.16. Let Y be a triangle as in figure 4.3. Define a triangle of groups
(G ,Y ) as follows:

Suppose Gv1 = ⟨a,b|ab = ba⟩,Gv2 = ⟨c,d|cd = dc⟩,Gv3 = ⟨e, f |e f = f e⟩. Sup-
pose all the edge groups Ge1,Ge2,Ge3 are cyclic and the images of monomorphisms
from Ge3 to Gv1,Gv2 are ⟨a⟩,⟨c⟩ respectively. Similarly, images of monomorphisms
for e2 are ⟨e⟩,⟨b⟩ and for e1 are ⟨d⟩,⟨ f ⟩. Since the face group Gτ is a subgroup
of the intersection of edge groups, Gτ is trivial. Note that π1(G ,Y ) = ⟨a,b,d|ab =

ba,ad = da,bd = db⟩. Let Y1 = e3. Then, π1(G ,Y1) = ⟨a,b,d|ab = ba,ad = da⟩.
Clearly, the natural map π1(G ,Y1)→ π1(G ,Y ) is not injective.

However, in contrast to triangles of groups, consider polygons of groups G(Y )
with at least 4 edges. Also, assume that in vertex groups, the intersection of the two
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Figure 4.3:

subgroups coming from adjacent edges is equal to the subgroup coming from the
barycenter of Y . If Y1 is an edge of Y then the natural map π1(G ,Y1)→ π1(G ,Y )
is always injective. Also, by Lemma 4.4.8, we see that such a polygon of groups
is always developable. Note that one can easily cook up an example of a triangle
of groups which is not developable. Now, we give an example of a developable
complex of hyperbolic groups such that there exists a subcomplex of groups with
the property that the natural inclusion from the universal cover of the subcomplex of
groups to the universal cover of the complex of groups is not a proper embedding. In
particular, the following example shows that the converse of Theorem 4.0.2 is not
true in general.

Example 4.4.17. Let Y be a triangle as in figure 4.3. Define a triangle of groups
(G ,Y ) in the following manner:

Let Gv1 = ⟨a,b|a2,b2⟩, Gv2 = ⟨c,d|c2,d2⟩, Gv3 = ⟨e, f ,g|e2, f 2,g2⟩. Assume that
all the edge groups Ge1,Ge2,Ge3 are of order 2. Let the images of monomorphisms
from Ge3 to Gv1,Gv2 be ⟨a⟩,⟨c⟩. Similarly, the images of monomorphisms for edge
e1 are ⟨d⟩,⟨ f ⟩ and for e2 are ⟨e⟩,⟨b⟩. Since the intersection of edge groups is trivial,
the face group Gτ is trivial. Note that π1(G ,Y ) = ⟨a,b,d,g|a2,b2,d2,g2⟩. Now,
it is clear that it is a developable complex of groups and its fundamental group
is hyperbolic. Also, all the vertex groups are quasiconvex in π1(G ,Y ). Thus, the
universal cover B of (G ,Y ) is a hyperbolic space. Let Y1 = e3 and let (G ,Y1) be
the restriction of (G ,Y ) to Y1. One can also check that π1(G ,Y1) = ⟨a,b⟩ ∗⟨a⟩ ⟨c,d⟩
is quasiconvex in π1(G ,Y ). The universal cover B1 of (G ,Y1) is the Bass-Serre
tree of π1(G ,Y1). Consider the two vertices Gv1 and dbdb...db (n− times)Gv2 of
B1. The distance between these two vertices in B1 is n+1. On the other hand, by
construction of B [11, Theorem 2.13,III.C], one can see that the distance between
these two vertices in B is always 2. Hence, the natural map B1 → B is not a proper
embedding. Moreover, there is no Cannon-Thurston map for the inclusion B1 → B.
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It is worth noting that, in the above example, we can also use Theorem 4.1.10
to show that there is no CT map from B1 to B. In the following example, for the
definition of hyperbolic automorphism of a free group one is referred to [6].

Example 4.4.18. Let Y be a triangle as in figure 4.3 and let (G ,Y ) be a complex of
groups defined as follows:

Suppose Gv1 = ⟨ f ,g,h, t|t f t−1 = φ( f ), tgt−1 = φ(g), tht−1 = φ(h)⟩ where φ is
a hyperbolic automorphism of the free group generated by f ,g and h. Hence Gv1 is a
hyperbolic group by [6]. Suppose Gv3 = ⟨a,b,c⟩ and Gv2 = ⟨d,e⟩. Suppose the edge
group Ge2 is a free group on 2 generators. Suppose the images of the generators
under the monomorphisms from Ge2 to Gv3 and Gv1 are a,b and h, f . Suppose that
the edge groups Ge1,Ge3 are cyclic and the images of the monomorphisms from Ge1

to Gv3,Gv2 are ⟨c⟩,⟨d⟩ respectively. Similarly, the images of the monomorphisms
for e3 are ⟨e⟩,⟨g⟩. Clearly, the face group Gτ is trivial. Note that π1(G ,Y ) =
⟨a,b,e, t|tat−1 = φ(a), tbt−1 = φ(b), tet−1 = φ(e)⟩∗⟨c⟩. Let Y1 = e1 and let (G ,Y1)

be the restriction of (G ,Y ). Now, π1(G ,Y1) = ⟨a,b,e⟩ ∗ ⟨c⟩. It is well known that
⟨ f ,g,h⟩ is not quasiconvex in Gv1 . Thus, one sees that π1(G ,Y1) is not quasiconvex
in π1(G ,Y ).

Next, we give an example of a developable triangle of groups such that the
universal cover is not a CAT(0) space.

Example 4.4.19. Let Y be a Euclidean equilateral triangle as in figure 4.3. Define a
triangle of groups (G ,Y ) in the following way:

Assume that Gv1 = ⟨a,b,g|a2,b2,g2,ab= ba,ag= ga,bg= gb⟩, Gv2 = ⟨c,d|c2,d2

,cd = dc⟩, Gv3 = ⟨e, f ,h|e2, f 2,h2,e f = f e,eh = he, f h = h f ⟩. Assume that all the
edge groups are of order 2. Let the images of monomorphisms from Ge3 to Gv1,Gv2

be ⟨a⟩,⟨c⟩. Similarly, images of monomorphisms for edge e1 are ⟨d⟩,⟨ f ⟩ and for e2

are ⟨e⟩,⟨b⟩. The face group Gτ is trivial. Note that Gersten-Stallings’s angle [71]
at each vertex is

π

2
. Thus, this triangle of groups is not non-positively curved in

the sense of Gersten-Stallings [71]. Now, the universal cover B of (G ,Y ) is a M2
κ

complex for κ = 0. By our choice of local groups, we have an injective loop of
length 4 in the link of a vertex of B . Thus, the development does not satisfy the link
condition by [11, Lemma 5.6, II.5]. Hence, the development is not a CAT(0) space.



Chapter 5

Further questions

In this section we include some questions naturally inspired by this thesis. The
author would like to pursue them as future projects.

Question 1. Suppose (G ,Y ) is a developable complex of groups over a finite simpli-
cial complex Y such that the following holds:

1. All the vertex groups are convergence.

2. All the edge groups are parabolic.

3. The universal cover of (G ,Y ) is a CAT(0) hyperbolic.

Is the fundamental group G of (G ,Y ) convergence?

For the above question, following [48], one needs to construct a compact metriz-
able space X out of compact metrizable spaces for local groups such that G acts on
X as a convergence group.

In [48], Martin proved a combination theorem for an acylindrical complex of
hyperbolic groups, say, (G ,Y ). There, he assumed that the universal cover of (G ,Y )
is a CAT(0) space. It will be interesting to remove this hypothesis from his theorem.
More precisely, we have the following question:

Question 2. Suppose (G ,Y ) is a developable complex of hyperbolic groups over a
finite simplicial complex Y such that all the local maps are qi embeddings. Let G be
the fundamental group of (G ,Y ) and let B be its universal cover. Suppose the action
of G on B is acylindrical and B is a hyperbolic metric space. Is G a hyperbolic
group?

We would like to answer the above questions for complexes of relatively hyper-
bolic groups too.
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By Floyd mapping theorem in [27], we see that relatively hyperbolic groups have
non-trivial Floyd boundary. The converse of this fact is a question of Olshanskii-
Osin-Sapir [64, Problem 7.11], i.e. if a finitely generated group has non-trivial Floyd
boundary then it is hyperbolic relative to a collection of proper subgroups. We end
this chapter with the following questions.

Question 3. Give an example of a non-elementary convergence group that is not
relatively hyperbolic?

Answer to the above question does not give a counterexample to Olshanskii-
Osin-Sapir conjecture because of the following:

Question 4. Give an example of a non-elementary convergence group with a trivial
Floyd boundary?

Answer to Question 4 will also answer Question 3. Given a finitely presented
group Q, Rips constructed a hyperbolic group G and a surjection from G to Q. Let
N be the kernel of this surjection. Then it is not known whether N is relatively
hyperbolic with respect to a collection of proper subgroups of N or if it has trivial
Floyd boundary.
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