
A Study of Persistence in Different Non-Equilibrium
Systems

ANIRBAN GHOSH

A thesis submitted for the partial fulfillment of
the degree of Doctor of Philosophy

Department of Physical Sciences

Indian Institute of Science Education and Research Mohali

Knowledge city, Sector 81, SAS Nagar, Manauli PO, Mohali 140306, Punjab, India.

March 2023



ii



Certificate of Examination

This is to certify that the dissertation titled ’A Study of Persistence in different Non-
Equilibrium systems’ submitted by Mr. Anirban Ghosh (Reg. No. PH14039) for the

partial fulfillment of Doctor of Philosophy programme of the Institute, has been exam-

ined by the thesis committee duly appointed by the Institute. The committee finds the

work done by the candidate satisfactory and recommends that the report be accepted.

Dr. Sudeshna Sinha Dr. Abhishek Chaudhuri Dr. Dipanjan Chakraborty

(Supervisor)

i



ii



Declaration

The work presented in this thesis has been carried out by me under the guidance

of Dr. Dipanjan Chakraborty at the Indian Institute of Science Education and Research

Mohali. This work has not been submitted in part or in full for a degree, a diploma,

or a fellowship to any other university or institute. Whenever contributions of others

are involved, every effort is made to indicate this clearly, with due acknowledgement of

collaborative research and discussions. This thesis is a bona fide record of original work

done by me and all sources listed within have been detailed in the bibliography.

Anirban Ghosh

(PH14039)

In my capacity as the supervisor of the candidate’s thesis work, I certify that the

above statements by the candidate are true to the best of my knowledge.

Dr. Dipanjan Chakraborty

(Supervisor)

iii



iv



Acknowledgements

First of all, I want to pay my deepest respect and gratitude to my supervisor Dr. Dipanjan
Chakraborty. He showered his immense affection on me from the initiation. He always
remained specially supportive of my work and always gave me the right direction during
my low days. During covid, his family was affected, and even at that bad time he constantly
performed his professional responsibilities. This sense of responsibility is always inspiring
for me. His jovial nature made the supervisor-student relationship more frank and open.
His wife, madam always treated us(group members) as part of her family. Thanks to
madam.

I am also thankful to my doctoral committee members Dr. Abhishek Chaudhuri and Dr.
Sudeshna Sinha, for providing their time for the valuable discussions. I thank Dr. Prasenjit
Das of IISER Mohali for his valuable suggestions from time to time and all the other faculty
members, computing staff members, administrative staff members, and the rest of the IISER
Mohali community for providing helping hands directly or indirectly during the period of
my Ph.D.

I feel privileged to be part of a very supportive research group that includes: Mayank
Srivastava (very calm and composed), Subhendu (great friend), Sudipto Mandal (a great
companion and partner of many discussions), Yogyata Pathania mam (post-doc fellow, a
very calm person), Moutushi di (post-doc fellow, full of liveliness) and two junior fellows
Nitish Chetri and Dimpi (both of them have superb hands in sketching). Though most of
us avoid expressing our emotions, deep inside, we share a strong bonding.

I like to mention some names from which I got precious assistance: Arnob Mukherjee,
Ramu Kumar Yadav, Ashwini Balodhi, Deepak Kathaiyat, Jaskaran Singh, Gokul Upad-
hyay, Shyam, Shelender, Ritesh, Shekhar, Ankit Singh, Avinash Sir ji, Amit, Rakesh Singh,
Teja, Jyotsna Singh, Geeta, Ayanangshu, Anzar, Sudhanshu Shekhar Chaurasia, Soumen.

I like to take names of my few friends who emotionally assisted me a lot during my re-
search days, they are Saheb, Durlav, Jyotirmoy, Asish, Bittu, Pranab, and Manish. Thanks
to all of them.

"Some people deserve more than just a Thank you". This sentence seems to be true
when it comes to writing a ’Thank you note’ in favor of the family members. Still, I thank
my parents(my father being a mathematics school teacher, built my interest in science and
mathematics, he is the first teacher of my life. My mother, an affectionate home-maker,
always stood beside me.), my better half Mon(a constant source of emotional support), my
brother Arindam and elder brother Kaushik for everything.

v



Shree Bhagvat Gita, Chapter 2 Verse 47
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Abstract

Considerable interest has been generated recently in understanding the statistics of first

passage events in spatially extended non-equilibrium systems. A persistence probability

P(t), is defined as the probability that the position of the step edge at a point along a

fluctuating step does not return to its initial value (at time t = 0) over time t is found in

these studies to decay in time as a power-law, P(t)∼ t−θ , for large t, where θ is the so-

called persistence exponent. Similar power-law behavior of the persistence probability

has also been found in experiments for other physical processes. The persistence proba-

bility has been obtained both analytically and numerically for a large class of stochastic

processes, Markovian as well as non-Markovian. For single particle systems such as the

Brownian motion, which is also Markovian in nature, the persistence probability is easy

to calculate since the stationary correlator of such a process decays exponentially at all

times. For many body systems where the field φ has a space dependence, the calculation

of the zero crossing probability becomes complicated.

In the first part ( Chapter 2 and Chapter 3) of the thesis, we investigate the persis-

tence probability p(t) of the position of a Brownian particle with shape asymmetry in

two dimensions. We explicitly consider two cases diffusion of a free particle and that

of a harmonically trapped particle. The latter is particularly relevant in experiments

that use trapping and tracking techniques to measure the displacements. We provide

analytical expressions of p(t) for both the scenarios and show that in the absence of

shape asymmetry, the results reduce to the case of an isotropic particle. The analytical

expressions of p(t) are further validated against a numerical simulation of the underly-

ing overdamped dynamics. We also illustrate that p(t) can be a measure to determine

the shape asymmetry of a colloid and the translational and rotational diffusivities can

be estimated from the measured persistence probability. The advantage of this method

is that it does not require the tracking of the orientation of the particle.

In the second part of the work Chapter 4, we have studied the persistence of the

active asymmetric rigid Brownian particle in two dimensions. Nowadays self-propelled

systems are an interesting topic of research. Active matter systems are any systems

either of biological or artificial origin where the individual components can take up

energy from their environment and use it to move automatically. The energy they con-

sume helps them to perform the task of self-movement. These types of systems form

patterns and exhibit several interesting properties. We have studied the persistence of

such active asymmetric free particle and that in a harmonic trap. We have calculated
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the analytical expressions of the persistence and thereafter validated those analytical

expressions with numerical simulations.

In the third part of the work Chapter 5, we study the persistence probability p(t)

of stochastic models of surface growth that are restricted by finite system size. Surface

growth is an important stochastic phenomenon that is found in a large class of phys-

ical systems ranging from a few nanometers to a few micrometers. That is why this

process is of so much interest to study its persistence for finite-size lattice. We look at

two specific models of surface growth - the linear Edwards-Wilkinson(EW) model and

the non-linear Kardar-Parisi-Zhang(KPZ) model. In this chapter, we have analytically

studied the persistence of the finite-size system.
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1
Introduction

A brief introduction of the concept of persistence probability for the stochastic processes has

been presented in this chapter. The discussion includes the description of the stochastic process,

Fokker-Planck equation, Langevin formalism, and basic concept of the persistence probability.

In addition to that, results of persistence probability of a few non-equilibrium systems which

were calculated earlier by other researchers, have also been included in this chapter. Basically,

this chapter speaks the basics of the whole findings.
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1.1 Stochastic Variables

A stochastic or random variable is a quantity X , defined by a set of possible values {x},
and a probability distribution on this set. Let us consider an example of dice; after each

throw, the number in the upper face corresponds to variable X , with possible outcomes

x = {1,2,3,4,5,6} and probabilities of each side is p = 1
6 (for an unbiased dice) for each

value of x. The set of possible outcomes (range or set of states) could be discrete,

or continuous, finite or infinite. If the range is discrete (as for the case of dice), the

probability distribution will be given by a set of non-negative numbers {pn}, such that

∑ pn = 1.

When the range corresponds to an interval [a,b] over the x-axis, the probability dis-

tribution is determined by a non-negative function P(x), with P(x)dx the probability of

X ∈ [x,x+dx], and such that, ∫ b

a
dxP(x) = 1 (1.1)

This function is called probability density, and the possibility that it contains one or

more delta-like contributions, should not be discarded. As a matter of fact, a discrete

distribution may be written as a continuous one, but only composed of delta contribu-

tions.

Every quantity which is dependent on any stochastic variable is also a stochastic

variable.In any mathematical object, if we add an auxiliary variable t, and we get Y =

f (x, t). t could be the time or some other parameter. Such Y (t) is called a stochastic

process. It could be considered as a set of functions or realizations y(t) = f (x, t), each

one obtained when we fix X in one of its possible values. Let X be a stochastic variable

defined on the range (−∞,+∞) and the distribution P(x). The average of the function

f (x) over the distribution is,

〈 f (x)〉=
∫ +∞

−∞

dx f (x)P(x) (1.2)

The moment of the variable X can be defined as,

µm = 〈Xm〉=
∫ +∞

−∞

dxxmP(x) (1.3)

Let us introduce characteristic function,

G(k) = 〈eik.x〉=
∫ +∞

−∞

dxeik.xP(x) (1.4)
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The moment generating function is,

G(k) = ∑
(ik)m

m !
µm (1.5)

where,

µm = (−i)m ∂ m

∂km G(k = 0) (1.6)

Another quantity cumulant κm is defined as,

ln[G(k)] = ∑
(ik)m

m !
κm = ln

[
∑

(ik)m

m !
µm

]
(1.7)

The first cumulant is the same as the first moment of the stochastic variable κ1 = µ1 =

〈x〉, this is the mean of the variable. The second cumulant is, κ2 = µ2−µ2
1 = σ2, that is

called variance.

We extend all these notions for several variables as well. Considering X =(x1,x2, ...,xn),

with a probability distribution P(x1,x2, ....,xn), also called joint probability distribution.

It gives the probability that the set of variables have their values within (x1.x1+dx1) and

(x2,x2 +dx2) etc. Defining moments of this quantity,

〈X µ

1 Xν
2 .....X

η
n 〉=

∫ +∞

−∞

∫ +∞

−∞

.....
∫ +∞

−∞

dx1dx2.....dxnxµ

1 xν
2 ......x

η
n P(x1,x2, ...,xn) (1.8)

In terms of moments, the generating function can be expressed as,

G(k) = 〈eikx〉= ∑
µ

∑
ν

....∑
η

(ik)µ

µ !
(ik)ν

ν !
.....

(ik)η

η !
〈X µ

1 Xν
2 .....X

η
n 〉 (1.9)

Correspondingly, in terms of generalized cumulants, it is,

G(k) = exp{∑
µ

∑
ν

....∑
η

(ik)µ

µ !
(ik)ν

ν !
.....

(ik)η

η !
κµκ

ν ....κη} (1.10)

1.2 Stochastic Differential Equation

One of the most natural, and most important, stochastic differntial equations is given

by,

Ẋ(t) = bX(t)+B(X(t))ξ (t)

X(0) = x0
(1.11)
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where B is a function of X(t)(m× n dimensional matrix) and ξ=m-dimensional "white

noise".

Let us make a study Eq.(1.11) in the case for m= n, x0 = 0, b= 0, and B≡ I. The solu-

tion becomes an n-dimensional Brownian motion, denoted by W . Therefore a Brownian

motion can be denoted as,

Ẇ (.) = ξ (.)

So we can easily assert that "white noise" is the time derivative of Brownian motion.

The general form of Eq.(1.11) becomes,

dX(t)
dt

= bX(t)+BX(t)
dW (t)

dt
(1.12)

formally multiplying the above equation with ’dt ’,

dX(t) = bX(t)dt +B(X(t))dW (t)

X(0) = x0
(1.13)

The terms "dX" and "BdW " are called stochastic differentials, and the expression is called

as a Stochastic Differential Equation. We can find the solution for all t > 0 as,

X(t) = x0 +
∫ t

0
b(X(s))ds+

∫ t

0
B(X(s))dW (1.14)

Let us assume n = m = 1 and X(t) solves the SDE,

dX = b(X)dt +dW (1.15)

Suppose there is a given smooth function u = u(x). Stochastic differential equation

becomes(when t ≥ 0),

Y (t) = u(X(t)) (1.16)

Using this Eq.(1.16) in Eq.(1.15), we get

dY = u′dX = u′bdt +u′dW (1.17)

10



If we compute dY and keep all terms of order dt or (dt)1/2, we get,

dY = u′dX +
1
2

u′′(dX)2 + ....

= u′(bdt +u′dW )+
1
2

u′′(bdt +dW )2 + ....

= (u′b+
u′′

2
)dt +u′dW

(1.18)

By an analogy, it can be said (dW )2 = dt. So

du(X) = (u′b+
u′′

2
)dt +u′dW (1.19)

The extra term "u′′
2 dt" is not present in ordinary calculus. This is called chain rule or

Ito’s formula.

A stochastic differential equation is an Ordinary Differential equation, which is

forced by an irregular stochastic process such as Gaussian noise. It is written as Stochas-

tic differential and is interpreted according to Ito or Stratonovich Stochastic Integrals.

Ito description of a stochastic integral is of the form
∫ t

t0 f (x(t ′), t ′)dW (t ′) where f (x(t), t)

is any arbitrary function and W (t) is a Wiener process, is written as,

∫ t

t0
f (x(t ′), t ′)dW (t ′) = lim

n→∞

n

∑
i=1

f (x(ti−1), ti−1)
[
W (ti)−W (ti−1)

]
(1.20)

In the Stratonovich approach, the same stochastic integral has the form,

∫ t

t0
f (x(t ′), t ′)dW (t ′) = lim

n→∞

n

∑
i=1

1
2

[
f (x(ti), ti)+ f (x(ti−1), ti−1)

][
W (ti)−W (ti−1)

]
(1.21)

In the Ito Stochastic integral, the function f is evaluated first at the earlier time while

in the Stratonovich approach, the function is averaged. The difference between the

two approaches changes the form of the stochastic differential equation, the SDE of the

form,

dx(t) = A(x, t)dt +B(x, t)dW (1.22)

Ito description has the form,

dx(t) =
[
A(x, t)− 1

2
B(x, t)

∂B
∂x

]
dt +B(x, t)dW (1.23)

Conversely Stratonovich SDE of the form,

dx(t) = A′(x, t)+
1
2

B′(x, t)dW (1.24)

11



is equivalent to the Ito SDE,

dx(t) =
[
A′(x, t)+

1
2

B′(x, t)
∂B′

∂x

]
dt +B′(x, t)dW (1.25)

In nonequilibrium statistical physics, Langevin SDE may be written as,

F(φ̈ , φ̇ ,φ ′,φ ′′,φ) = ξ (1.26)

1.3 Joint and Conditional Probabilities

We consider the concept P(A∩B), where A∪B is non-empty. An event ω that satisfies

ω ∈A will only satisfy ω ∈A∩B if ω ∈B as well. Thus, P(A∩B)=P{(ω ∈A) and (ω ∈B)},
and P(A∩B) is called the joint probability, that the event ω is contained in both classes,

or, alternatively, that both the events ω ∈ A and ω ∈ B occur. Joint probabilities occur

naturally in two ways,

(a) When the event is specified by a vector e.g., m mice and n tigers. The probability

of this event is the joint probability of [m mice (and any number of tigers)] and [n tigers

(and any number of mice)]. All vector specifications are implicitly joint probabilities in

this sense.

(b) When more than one time is considered; what is the probability that (at time t1
there are m1 tigers and n1 mice) and (at time t2 there are m2 tigers and n2 mice). To

consider such a probability, we have effectively created out of the events at time t1 and

events at time t2, joint events involving one event at each time. In essence, there is no

difference between these two cases except for the fundamental dynamical role of time.

We may specify a condition on the events we are interested in, and consider only

these e.g. the probability of 21 deer given that we know there are 100 tigers. We will be

interested only in those events contained in the set B = {all events where exactly 100

tigers occur}. This means that we define conditional probabilities, which are defined

only on the collection of all sets contained in B. We define the conditional probability

as,

P(A|B) = P(A∩B)
P(B)

(1.27)

and this satisfies our intuitive conception that the conditional probability that ω ∈ A

(given that we know ω ∈ B), is given by dividing the probability of joint occurrance by

12



the probability of ω ∈ B. We can define in both directions i.e. we have,

P(A∩B) = P(A/B)P(B) = P(B/A)P(A) (1.28)

There is no particular conceptual difference between say, the probability of {(21 deers)

gives (100 tigers)} and the reversed concept. However, when two times are involved,

we do see a difference. For example, the probability that a particle is at position x1 at

time t1, given that it was at x2 at the previous time t2. The converse sounds strange, i.e

the probability that a particle is at position x1 at time t1, given that it will be at position

x2 at a later time t2.

Let us have a stochastic process Y (t). We write,

Pn(y1, t1;y2, t2; ...,yn, tn)dy1dy2...dyn

for the probability that Y (t1) is within the interval (y1,y1 + dy1), Y (t2) in (y2,y2 + dy2),

and so on. These Pn may be defined for n = 1,2, ... and only for different times. This

hierarchy has the following properties,

(a) Pn ≥ 0

(b) Pn is invariant under permutations of pair (yi, ti) and (y j, t j) (c)
∫

dynPn = Pn−1

and
∫

dy1P1 = 1

According to the theorem due to Kolmogorov, it is possible to prove that the inverse

is also true. Stochastic process are those sets of functions that satisfy the above condi-

tions. An alternative characterization of the stochastic processes through the hierarchy

of moments,

µn(t1, t2, ..., tn)= 〈Y (t1)Y (t2)....Y (tn)〉=
∫ +∞

−∞

....
∫ +∞

−∞

dy1dy2....dyny1y2...ynPn(y1, t1;y2, t2; ....;yn, tn)

(1.29)

Another very important quantity is the conditional probability density Pn/m, which

corresponds to the probability of having the value y1 at time t1, y2 at time t2,...., yn at

time tn, provided that we have Y (tn+1) = yn+1, Y (tn+2) = yn+2,....,Y (tn+m) = yn+m, it has

definition,

Pn/m(y1, t1; ....;yn, tn|yn+1, tn+1; ....;yn+m, tn+m)=
Pn+m(y1, t1; ....;yn, tn;yn+1, tn+1; ....;yn+m, tn+m)

Pm(yn+1, tn+1; .....;yn+m, tn+m)
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1.4 Markov Process

For a stochastic process Y (t), the conditional probability P1/1(y2, t2|y1, t1) is the probabil-

ity that Y (t2) has the value of y2, provided Y (t1) has taken the value of y1. In terms of

this quantity one can express P2 as,

P2(y1, t1;y2, t2) = P1(y1, t1)P1/1(y2, t2|y1, t1)

To construct the higher order Pn, we need transition probabilities Pn/m of higher order,

e.g. P3(y1, t1;y2, t2;y3, t3) = P2(y1, t1;y2, t2)P1/2(y3, t3|y1, t1;y2, t2). A stochastic process is

called Markov process, if for any set of n successive times t1 < t2 < ..... < tn, one has,

P1/n−1(yn, tn|y1, t1; .....;yn−1, tn−1) = P1/1(yn, tn|yn−1, tn−1)

Physically speaking, the conditional probability distribution of yn at tn, given the value

yn−1 at tn−1 is uniquely determined and is not affected by any knowledge of the values

earlier times. A Markov process is determined by the two distributions P1(y, t) and

P1/1(y′, t ′|y, t), from which the entire hierarchy Pn(y1, t1; .....;yn, t) can be constructed. For

instance, consider t1 < t2 < t3; P3 can be written as,

P3(y1, t1;y2, t2;y3, t3) = P2(y1, t1;y2, t2)P1/2(y3, t3|y1, t1;y2, t2)

= P2(y1, t1;y2, t2)P1/1(y3, t3|y2, t2)

= P1(y1, t1)P1/1(y2, t2|y1, t1)P1/1(y3, t3|y2, t2)

(1.30)

The single-time-step memory characterizing a Markov process is equivalent to saying

that the future state of the process is only dependent on its present state, and not on the

history of how the process reached the present state. It implies at once that all the joint

PDF of a Markov process are expressible as products of just two independent PDFs as

single-time P1(y, t) and a two-time conditional PDF P1/1(y, t|y′, t ′) (where t ′< t) according

to,

Pn(yn, tn;yn−1, tn−1; ....;y1, t1) = P1/1(yn, tn|yn−1, tn−1)×P1/1(yn−1, tn−1|yn−2, tn−2)× ...

×P1/1(y2, t2|y1, t1)P1(y1, t1)

(1.31)

The Markov process is stationary, then P1(y, t) = P(y) and P1/1(y, t|y′, t ′) = P1/1(y, t− t ′|y′)
(a function of the difference (t− t ′)).
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1.5 Ornstein-Uhlenbeck Process

It is defined in the region −∞ < y <+∞, −∞ < t <+∞ and (t2− t1) = τ > 0 through,

P1(y, t) = [2π]−1/2 exp{−y2/2} (1.32)

P(y2, t2|y1, t1) = [2π(1− e−2τ)]−1/2 exp
{
− [y2− y1e−τ ]2

2(1− e−2τ)

}
This process defines the velocity of a Brownian particle and is also Gaussian. It is

stationary as well, which means

Pn(y1, t1; .....;yn, tn) = Pn(y1, t1 + τ; ......;yn, tn + τ) (1.33)

According to a theorem defined by Doob, it is the only simultaneously Markovian, Gaus-

sian and stationary process.

The self-correlation function of this process is given by

〈y(t1)y(t2)〉= exp{−|t2− t1|}

Let us put Y (t) = aL(t), t = b, and take the limit b→ ∞ and a→ ∞, but in such a way

that 2a2/b' 1, we find,

〈L(t1)L(t2)〉= δ (t1− t2) (1.34)

This is called white noise or the Langevin process. Even if L(t) is not a true stochastic

process, its integral corresponds to the Wiener process.

1.6 Chapman-Kolmogorov Equation

Let us now derive an important identity that must be obeyed by the transition at any

Markov process. On integrating over y2, it is obtained (t1 < t2 < t3),

P2(y1, t1;y3, t3) = P1(y1, t1)
∫

dy2P(y2, t2|y1, t1)P(y3, t3|y2, t2) (1.35)

Using Baye’s rule,

P2(y1, t1;y3, t3)
P1(y1, t1)

= P(y3, t3|y1, t1) =
∫

dy2P(y3, t3|y2, t2)P(y2, t2|y1, t1) (1.36)
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This is called the Chapman-Kolmogorov equation. The time ordering is essential; t2
must lie between t1 and t3 for this equation to hold. We can rewrite particular case

P1(y2, t2) =
∫

dyP2(y2, t2;y1, t1) of the relation among the distributions of the hierarchy as,

P1(y2, t2) =
∫

dy1P(y2, t2|y1, t1)P1(y1, t1) (1.37)

This is an additional relation involving the two probability distributions characterizing

a Markov process.

1.7 Wiener-Levy Process

It can be defined that, in the range −∞ < y <+∞ and t ≥ 0, through

P1(y, t) = [2πt]−1/2 exp{−y2/2t} (1.38)

P(y2, t2|y1, t1) = [2π(t2− t1)]−1/2 exp
{
− [y2− y1]

2

2(t2− t1)

}
These functions very easily fulfill the Chapman-Kolmogorov equation. We can show the

self-correlation function as,

〈y(t1)y(t2)〉= min(t1, t2) (1.39)

This process defines the position of a Brownian particle in one dimension. It is catago-

rized as a Gaussian process indicating that all Pn are Gaussian distributions.

1.8 The Master equation

The master equation is a differential equation for the transition probability. Chapman

Kolmogorov equation for equal time arguments,

P(y3, t3|y1, t) =
∫

dy2P(y3, t3|y2, t)P(y3, t|y1, t) (1.40)

where P(y2, t|y1, t) = δ (y2−y1) which is the zeroth-order term in the short-time behavior

of P(y′, t ′|y, t). Short-time transition probability,

P(y2, t +∆t|y, t) = δ (y2− y1)[1−a(0)(y, t)∆t]+Wt(y2|y1)∆t +O[(∆t)2] (1.41)

where Wt(y2|y1) is interpreted as the transition probability per unit time from y1 to y2 at

time t. Then, the coefficient [1−a0(y, t)∆t] is to be interpreted as the probability that no
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transition takes place during ∆t. From the normalization of P(y2, t2|y1, t1) one has,

1 =
∫

dy2P(y2, t +∆t|y1, t)' 1−a(0)(y, t)∆t +
∫

dy2Wt(y2|y1)∆t (1.42)

Therefore, to first order in ∆t, it is found, a(0)(y, t) =
∫

dy2Wt(y2|y1). Interpretation of

a(0)(y, t)∆t is the total probability of escape from y1 is the time interval (t, t +∆t), and

thus 1−a(0)(y, t)∆t is the probability that no transition takes place during this time.

Inserting differential equation for the transition probability from the Chapman-Kolmogorov

equation, the above short-time expression for the transition probability into it yields,

P(y3, t2 +∆t|y, t1) =
∫

dy2P(y3, t2 +∆t|y2, t2)P(y2, t2|y1, t1)

' [1−a(0)(y3, t2)∆t]P(y3, t2|y1, t1)+∆t
∫

dy2Wt2(y3|y2)P(y2, t2|y1, t1)

(1.43)

Replacing the value of a(0)(y3, t2) we get,

1
∆t

[P(y3, t2+∆t|y1, t1)−P(y3, t2|y1, t1)]'
∫

dy2[Wt2(y3|y2)P(y2, t2|y1, t1)−Wt2(y2|y3)P(y3, t2|y1, t1)]

(1.44)

If ∆t → 0 and changing notations ((y1, t1 → y0, t0),(y2, t2 → y′, t),y3 → y), the master

equation,

∂

∂ t
P(y, t|y0, t0) =

∫
dy′[Wt(y|y′)P(y′, t|y0, t0)−Wt(y′|y)P(y, t|y0, t0)] (1.45)

It is an integro-differential equation. The master equation is a differential form of the

Chapman-Kolmogorov equation. Therefore, it is an expression of the transition proba-

bility P(y, t|y0, t0) but not for P1(y, t). An equation for P1(y, t) can be obtained by using the

concept of extraction of a sub-ensemble. Suppose Y (t) is a stationary Markov process

characterized by P1(Y ) and P(y, t|y0, t0). Let us define a non-stationary Markov process

Y ∗(t) for t ≥ t0 by setting,

P∗1 (y, t1) = P(y1, t1|y0, t0)

P∗(y2, t2|y1, t1) = P(y2, t2|y1, t1)
(1.46)

This is a sub-ensemble of Y (t) characterized by taking the sharp value y0 at t0, since

P∗1 (y1, t0) = δ (y1− y0). More generally, we may extract a sub-ensemble in which at a

given time t0 the values of Y ∗(t0) are distributed according to a given probability distri-
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bution p(y0).

P∗1 (y1, t1) =
∫

dy0P(y1, t1|y0, t0)p(y0) (1.47)

Physically, the extraction of a sub-ensemble means that one ’prepares’ the system in

a certain non-equilibrium state at t0. The above P∗1 (y1, t1) obey the same differential

equation naming Master equation.

∂P(y, t)
∂ t

=
∫

dy′[W (y|y′)P(y′, t)−W (y′|y)P(y, t)] (1.48)

If the range of Y is a discrete set of states labeled with n the equation reduces to,

dPn(t)
dt

= ∑
n′
[Wnn′ pn′(t)−Wn′n pn(t)] (1.49)

The master equation is a balanced (gain-loss) equation for the problem of each state.

The first term represents gain due to transitions from other states n′ to n, and the second

term is the loss due to transitions into other configurations. The master equation can be

extended to the case of a multi-component Markov process Yi(t), i = 1,2, ...,N on noting

that the Chapman-Kolmogorov equation is valid as it stands by merely replacing y by

y = (y1, ...,yN). Then we get the multivariate counterpart of the master equation,

∂P(y, t)
∂ t

=
∫

dy′[W (y|y′)P(y′, t)−W (y′|y)P(y, t)] (1.50)

1.9 Kramers-Moyal expansion and Fokker Planck equation

Let us first express the transition probability W as a function of the size r of the jump

from one configuration y′ to another one y, and of the starting point y′,

W (y|y′) =W (y′;r), r = y− y′

The Master equation becomes,

∂P(y, t)
∂ t

=
∫

drW (y− r;r)P(y− r, t)−P(y, t)
∫

drW (y;−r) (1.51)

Where the sign change is associated with the change of variables y′ → r = y− y′, is

absorbed in the boundaries, by considering a symmetrical integration interval extending

from −∞ to +∞,

∫+∞

−∞
dy′ f (y′) =−

∫ y−∞

y+∞ dr f (y− r) =−
∫−∞

+∞
dr f (y− r) =

∫+∞

−∞
dr f (y− r)
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Moreover, since finite integration limits would incorporate an additional dependence

on y, we shall restrict our attention to problems to which the boundary is irrelevant.

Let we now assume that the changes on y occur via small jumps,i.e. that W (y′;r) is a

sharply peaked function of r but varies slowly enough with y′. Another assumption is

that P(y, t) itself also varies slowly with y. It is then possible to deal with the shift from

y to y− r in the first integral in the equation usin the Taylor’s expansion,

∂P(y, t)
∂ t

=
∫

drW (y;r)P(y, t)+
∞

∑
m=1

(−1)m

m !

∫
drrm ∂ m

∂ym [W (y;r)P(y, t)]−P(y, t)
∫

drW (y;−r)

=
∞

∑
m=1

(−1)m

m !
∂ m

∂ym{[
∫

drrmW (y;r)]P(y, t)}

(1.52)

Where we have used the first and third terms on the right-hand side of the first equation

cancel each other. Finally introducing jump moments,

a(m)(y, t) =
∫

drrmW (y;r)

One gets Kramers-Moyal expansion of the master equation,

∂P(y, t)
∂ t

=
∞

∑
m=1

(−1)m

m !
∂ m

∂ym [a(m)(y, t)P(y, t)] (1.53)

If the situation is m > 2, a(m)(y, t) is identically zero or terms are negligible. In this case,

∂P(y, t)
∂ t

=− ∂

∂y
[a(1)(y, t)P(y, t)]+

1
2

∂ 2

∂y2 [a
(2)(y, t)P(y, t)] (1.54)

This is widely known as the Fokker-Planck equation. The first term is drift or transport

term and the second term is diffusion term, while a(1)(y, t) and a(2)(y, t) are drift and

diffusion coefficients.

1.10 SDE and Fokker-Planck equations

Let us establish the mathematical relationship between the Stochastic differential equa-

tion of the Langevin type, and Fokker-Planck equations. The general form of SDE is,

ẋ(t) =
d
dt

x(t) = f [x(t), t]+g[x(t)]ξ (t) (1.55)
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Here ξ (t) is white noise with conditions 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = Dδ (t− t ′), taking

D = 1, relation becomes 〈ξ (t)ξ (t ′)〉 = δ (t − t ′). The assumption is that the process is

Gaussian. Let us integrate Eq.(1.55) over a short time interval δ t,

x(t +δ t)− x(t) = f [x(t), t]δ t +g[x(t), t]ξ (t)δ t (1.56)

As x(t) is a Markov process, we can determine its probability distribution P1(x, t) as well

as conditional probability distribution P(x, t|x′, t ′) for t > t ′. Let us define a conditional

average corresponding to the average of a function of the stochastic variable x, given

that x has the value y at t ′ < t;

〈F [x(t)]|x(t ′) = y〉= 〈〈F [x(t)]〉〉=
∫

dx′F(x′)P(x′, t|y, t ′) (1.57)

Due to the property P(x, t|x′, t) = δ (x− x′), we have

〈F(x(t))|x(t) = y〉=
∫

dx′F(x′)P(x′, t|y, t) =
∫

dx′F(x′)δ (x− x′) (1.58)

We will use this definition to find the first few conditional moments of x(t),

〈〈F [x(t)]〉〉= 〈x(t +δ t)|x(t) = x〉=
∫

dx′F(x′)δ (x− x′)P(x′, t +δ t|x, t)

= 〈〈 f [x(t), t]δ t〉〉+ 〈〈g[x(t), t]ξ (t)δ t〉〉
(1.59)

It is clear that the first term on the r.h.s.

〈〈 f [x(t), t]δ t〉〉= f [x(t), t]δ t (1.60)

and the second term is,

〈〈g[x(t), t]ξ (t)δ t〉〉= g[x(t), t]〈〈ξ (t)〉〉δ t (1.61)

Based on Langevin’s argument, 〈xξ 〉= 0, which gives

〈〈∆x(t)〉〉=
∫

dx′(x− x′)P(x′, t +δ t|x, t) = f [x(t), t]δ t (1.62)
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For the second moment,

〈〈∆x(t)2〉〉=
∫

dx′(x− x′)2P(x′, t +δ t|x, t)

= 〈〈[ f [x(t), t]δ t +g[x(t), t]ξ (t)δ t]2〉〉

= 〈〈[ f [x(t), t]δ t]2〉〉+ 〈〈2 f [x(t), t]g[x(t), t]ξ (t)δ t2〉〉

+ 〈〈[g[x(t), t]ξ (t)δ t]2〉〉

= [ f [x(t), t]δ t]2 +2 f [x(t), t]g[x(t), t]〈〈ξ (t)〉〉δ t2

+g[x(t), t]2〈〈[ξ (t)δ t]2〉〉

(1.63)

Using the properties of the Wiener process,

ξ (t)δ t =
∫ t+δ t

t
dt ′ξ (t ′) = ∆W (t)

Where W (t) is the Wiener process, and 〈[ξ (t)δ t]2〉 ' 〈∆W (t)2〉= ∆t, renders

〈〈∆x(t)2〉〉=
∫

dx′(x− x′)2P(x′, t +δ t|x, t) = g[x(t), t]2δ t +O(δ t2) (1.64)

We can show that in general,

〈〈∆x(t)ν〉〉 ' O(δ tν),ν ≥ 2

Let us make consideration of an arbitrary function R(x), and evaluate its conditional

average. Using the Chapman-Kolmogorov equation,∫
dxR(x)P(x, t +δ t|y,s) =

∫
dxR(x)

∫
dzP(x, t +δ t|z, t)P(z, t|y,s)

=
∫

dzP(z, t|y,s)
∫

dxR(x)P(x, t +δ t|z, t)
(1.65)

Expanding R(x) in Taylor series around z, as for δ t ' 0 we find that, P(x, t + δ t|z, t) '
δ (x− z), and only a neighborhood of z will be relevant,∫

dxR(x)P(x, t +δ t|y,s) =
∫

dzP(z, t|y,s)∫
dx
[
R(z)+(x− z)R′(z)+

1
2

R′′(z)(x− z)2 + ....
]
P(x, t +δ t|z, t)

(1.66)

Putting the normalization condition for P(z, t|y,s), we get

=
∫

dzP(z, t|y,s)R(z)+
∫

dzR′(z)P(z, t|y,s)
∫

dx(x− z)

+
∫

dz
1
2

R′′(z)P(z, t|y,s)
∫

dx(x− z)2P(x, t +δ t|z, t)+ ....
(1.67)
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integrating by parts and using Eqs. (1.62), (1.64) we get,

∫
dxR(x)P(x, t +δ t|y,s) =

∫
R(x)+

[
P(x, t|y,s)− ∂

∂x
[ f (x, t)P(x, t|y,s)]δ t

+
1
2

∂ 2

∂x2 [g(x, t)
2P(x, t|y,s)]δ t +O(δ t2)

] (1.68)

Arranging terms and taking the limit δ t→ 0, gives

0 =
∫

dxR(x)
[

∂

∂ t
P(x, t|y,s)

−
(
− ∂

∂x
[ f (x, t)P(x, t|y,s)]+ 1

2
∂ 2

∂x2 [g(x, t)
2P(x, t|y,s)]

)]
∂

∂ t
P(x, t|y,s) =− ∂

∂x
[ f (x, t)P(x, t|y,s)]+ 1

2
∂ 2

∂x2 [g(x, t)
2P(x, t|y,s)]

(1.69)

This is the desired Fokker-Planck equation for the transition probability P(x, t|y,s)
associated with the stochastic process driven by the SDE Eq. (1.55).

1.11 Brownian Motion

In this section, we will take a break from our mathematical treatments of the stochastic

processes and look back at their origins. In fact, the whole content of this thesis can

be regarded as the continuation of the analysis of the Brownian motion conceptualized

by Einstein, Smoluchowski, and Langevin. Let us see the historical background of the

Brownian motion.

In 1987, the botanist Robert Brown observed in his microscope the small pollen

grains suspended in water, perform an irregular, jittery motion. He could not explain

the origins of the motion. The explanation came later, on 1905, with the theoretical

treatments by Einstein and Smoluchowski. Einstein derives the mathematics behind

Brownian motion which was able to define many concepts introduced earlier.

The motion observed occurs due to very frequent collisions between the molecules

of the suspension and the pollen grain. An accurate description of these collisions is not

possible that’s why we are more interested in treating them statistically. Let us see it in

one-dimensional setup. Let us consider the density of the particles per unit volume is

n(x, t). In a small interval dt, each particle will experience a shift ∆ due to the collision

effect. The probability p(∆) of a certain shift shall be independent for every particle,

independent from its past, and symmetric in nature, p(−∆) = p(∆), it will have a sharp
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peak around ∆ = 0. So, the density for the time t +dt is,

n(x, t +dt) =
∫

d∆n(x−∆, t)p(∆) (1.70)

This formulation is similar to the Chapman-Kolmogorov equation (1.37), which is de-

rived assuming that collisions have no memory.

Now, we expand the LHS of Eq. (1.70) for small dt

n(x, t +dt) = n(x, t)+dt
∂n
∂ t

(1.71)

This is an important step in deriving the master equation. Let us assume a sharp peak

in p(∆), Einstein calculated his version of the Kramers-Moyal expansion:

n(x−∆, t) = n(x, t)−∆
∂n
∂x

+
∆2

2
∂ 2n
∂x2 − ...... (1.72)

Using the results of Eq. (1.72) in Eq. (1.70) and using the symmetry and the normal-

ization of p(∆), Einstein gets the diffusion equation, which is Fokker- Planck equation:

∂n
∂x

= D
∂ 2n
∂x2 (1.73)

So, the diffusion coefficient from Fick’s law of diffusion

D =
1
dt

∫
d∆

∆2

2
p(∆) (1.74)

Einstein describes a random walk of the pollen grain with infinitely small steps and

shows how this is related to diffusion. The biggest contribution of Einstein and Smolu-

chowski is finding the relation of the diffusion coefficient D with the temperature T and

the coefficient of Stokes’s friction γ and the solution for a spherical particle is:

D =
kBT

γ
(1.75)

where kB is Boltzmann’s constant.

1.12 Langevin Formalism

Let us discuss Langevin formalism in brief for Non-equilibrium statistical mechanics.

The well-defined non equilibrium system is the theory of Brownian motion. The basic
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equation of Langevin equation consists of two parts, frictional part which is a systematic

force and random forces, which is fluctuating force. Both the friction and random forces

generated from the interaction of the Brownian particles with their environment. The

equation of motion for Brownian motion is thus given by,

m
d
dt

v(t) =−ξv(t)+δF(t) (1.76)

It can be written as,

mv̇ =−ξ v(t)+η(t) (1.77)

between impacts in any two distinct time intervals. As the frictional force depends

merely on the velocity of the particle and not on its earlier values, we are describing a

Markovian process. The random force behaves as,

〈δF(t)〉= 0 (1.78)

and also,

〈δF i(t)δF j(t ′)〉= 2Bδi jδ (t− t ′) (1.79)

Where B is the measure of the strength of the fluctuating force. Eq. (1.78) tells us that

the average of the random force is measured as zero and from Eq. (1.79) we conclude

that there is no correlation between impacts in any two distinct time intervals. As the

frictional force depends merely on the velocity of the particle and not on its earlier

values, we are describing a Markovian process. The velocity of the particle decays to

zero in the absence of random force, but here it doesn’t happen. At thermal equilibrium,

〈v2〉eq = kT/m. The Langevin equation which is a linear, first order, inhomogeneous

differential equation in nature can be solved as,

v(t) = e−ξ t/mv(0)+
∫ t

0
dt ′e−ξ (t−t ′)/m

δF(t ′)/m (1.80)

The first term states the exponential decay of the initial velocity and the second term

gives the extra velocity produced because of the random noise force. Let us calculate

mean squared velocity. We get from Eq. (1.80) the value of < v2(t)> as,

〈v2(t)〉= e−2ξ t/mv2(0)+
B

ξ m
(1− e−2ξ t/m) (1.81)

In the long time limit, exponential terms drop out, and the quantity tends to the value

B/ξ m. But in the long time limit mean squared velocity must approach its equilibrium
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value kT/m, consequently, we find B = ξ kT . This is known as Fluctuation-dissipation

theorem. It is a relation between the strength B of the random force or fluctuating force

with the magnitude of friction force ξ . It expresses the balance between friction, which

drives any system to a completely "dead state", and the noise which keeps the system

"alive".

Let us rewrite the Langevin equation of Eq.(1.76)

d
dt

ẋ =−ξ ẋ+η(t) (1.82)

We will evaluate the r.m.s. displacement. Multiply Eq. (1.82) by x, we get,

x
d
dt

ẋ =
d
dt
(xẋ)− ẋ2 =−ξ xẋ+ xη(t) (1.83)

Langevin’s original argument was to assume that η(t) and x(t) were uncorrelated,

〈x(t)η(t)〉= 0 (1.84)

Now we take the average of Eq. (1.83)〈 d
dt
(xẋ)

〉
=

d
dt
〈xẋ〉= kT

m
−ξ 〈xẋ〉 (1.85)

We get,

〈x(t)ẋ(t)〉=Ce−ξ t +
kT
ξ m

(1.86)

If x measures the displacement from the origin (where we consider all the Brownian

particles ar t = 0), we find the condition 0 =C+ kT
ξ m , that gives

〈x(t)ẋ(t)〉= d
dt
〈x2〉= kT

ξ m
(1− e−ξ t) (1.87)

Integrating again, we find,

〈x2(t)〉= 2kT
ξ m

[
t− 1

ξ
(1− e−ξ t)

]
(1.88)

Now, let us consider two limiting cases,

(a) Initial transient regime: t << 1
ξ

, where we can expand e−ξ t ' 1−ξ t+ 1
2(ξ t)2− ...,
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and we get

〈x2(t)〉 ' kT
m

t2 (1.89)

that is the inertial motion of the particle during the initial transient( when thermal

velocity v̄ =
√

kT
m )

(b) Asymptotic regime: t.. 1
ξ

, where we can approximate e−ξ t ' 0, and then

〈x2(t)〉 ' 2kT
m

t (1.90)

this is the characteristic of a diffusive motion.

Another way to define Brownian motion is to consider the probability distribution

of finding the system within a given velocity range (v,v+ dv), taking velocity v0 at the

initial time t0

Pdv = P(v, t|v0, t0)dv (1.91)

We know that

lim
δ t→0

P(v, t +δ t|v′, t) = δ (v− v′) (1.92)

The normalized PDF corresponding to the OU distribution is,

p(v, t|v0) = [
m

2πkT (1− e−2γt)
]1/2exp[

−m(v− v0e−γt)2

2kT (1− e−2γt)
] (1.93)

In the limit of very large value of time, we get,

lim
δ t→∞

P(v, t +δ t|v′, t) =

(
m

2πkT

)1/2

e−
mv2
2kT (1.94)

In the Kramers-Moyal expansion of the master equation, when the moments of order

greater than two are zero, we get a Fokker-Planck equation. In this case, the master

equation indicates the gain and loss contributions within the interval (v,v+dv). Accord-

ing to the average values found for 〈v〉 and 〈v2〉, we get

∂

∂ t
P(v, t|v0, t0) =−

∂

∂v
ξ vP(v, t|v0, t0)+

D
2

∂ 2

∂v2 P(y, t|y0, t0) (1.95)

We may impose a condition on η(t), which is a Gaussian process. It means that all
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the odd moments are zero and even moments can be written in terms of the second

moment,

〈η(t1)η(t2)η(t3)η(t4)〉= 〈η(t1)η(t2)〉〈η(t3)η(t4)〉+ 〈η(t1)η(t3)〉〈η(t2)η(t4)〉+ ...

= D2{δ (t1− t2)δ (t3− t4)+ ...}
(1.96)

1.13 Fokker Planck Equation

Let us consider a stochastic differential equation,

dx(t) = A(x, t)dt +B(x, t)dW (1.97)

The differential of a function f (x(t)) according to the Ito representation is written as

d f (x(t)) = f (x(t))+dx(t)− f (x)

= f ′(x(t))dx(t)+
1
2

f ′′(x(t))dx(t)2

= f ′(x(t))[A(x, t)dt +B(x, t)dW ]+
1
2

f ′′(x(t))B2(x, t)dW 2

(1.98)

Using dW 2 = dt, we get

d f (x(t)) = A(x, t) f ′(x(t))dt +
1
2

f ′′(x(t))B2(x, t)dt +B(x, t) f ′(x(t))dW (1.99)

Let us divide Eq. (1.99) by dt and take the noise average,

〈d f (x(t))〉
dt

=
〈d f (x(t))

dt

〉
= 〈A(x, t) f ′+

1
2

f ′′B2(x, t)〉 (1.100)

If P(x, t|x0, t0) is the conditional probability for the process x(t) then the left-hand side of

Eq. (1.100) is written as

〈d f
dt
〉=

∫
dx f (x(t))

∂P
∂x

(1.101)

Right-hand side may be written as,

〈A(x, t) f ′+
1
2

f ′′B2(x, t)〉=
∫

dx[A(x, t) f ′+
1
2

f ′′B2(x, t)]P(x, t|x0, t0) (1.102)
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Now we can integrate by parts and neglect the surface terms

∫
dx f (x(t))

∂x
∂ t

=
∫

dx

[
− ∂A(x, t)P

∂x
+

1
2

∂ 2B2(x, t)P
∂x2

]
f (x(t)) (1.103)

As f (x(t)) is arbitrary, the above equation for conditional probability becomes

∂P
∂ t

=− ∂

∂x

(
A(x, t)P

)
+

1
2

∂ 2

∂x2

(
B2(x, t)P

)
(1.104)

Eq. (1.104) is known as the Fokker-Planck equation for the conditional probability. The

first term is the drift term and the second term is the diffusion term.

1.14 Different Problems of Persistence

The persistence of a continuous stochastic process has recently generated much interest

in a wide variety of non-equilibrium systems including various models of phase order-

ing kinetics, fluctuating interfaces, diffusion, and reaction-diffusion process. The per-

sistence probability p(t) of a stochastic variable is the probability that the variable has

not changed sign up to time t. That means, the survival-persistence probability is that

a stochastic process X(t) does not cross zero up to time t is a quantity of long-standing

interest in probability theory which has many practical applications. The derivative of

the persistence probability F(t) =−d p(t)/dt is the first-passage probability1. Physically

the persistence property has been investigated both theoretically2–10 and experimen-

tally10–16 in spatially extended systems that are out of equilibrium. Let us define the

precise concept of persistence probability. Let us take a non-equilibrium field fluctuat-

ing in space and time φ(x, t). It may be simply a diffusing field starting from a random

initial configuration or the height of a fluctuating interface. Persistence of such fluctuat-

ing field can simply be defined as, the probability at a fixed point in space, the quantity

sgn[φ(x, t)−〈φ(x, t)〉] does not change up to time t. In a wide class of non-equilibrium

systems this probability decays algebraically with an exponent θ 17. This exponent has

been studied in systems like a free random walk in homogeneous and disordered me-

dia18, diffusion in two dimensions19, fluctuating interface5, KPZ interface20, critical

dynamics21, surface growth7,20, diffusive processes with random initial conditions22,

advected diffusive processes23, and finance24,25.

The persistence probability of spatially extended systems decays as a power law

p(t) ∼ t−θ , when θ is a non-trivial exponent. This algebraic decay of p(t) is applica-

ble for a wide class of non-equilibrium systems. The calculation of the exponent θ for
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a general stochastic process is extremely difficult, and the exact form of p(t) exists in

very few cases. In the Brownian systems, X(t) is Gaussian as well as Markovian, and

the non-stationary process can be mapped into a stationary Ornstein-Uhlenbeck process

X̄(T ) through suitable transformation X → X̄ and t → T with the consequence that the

correlator C(t)≡ 〈X̄(T )X̄(0)〉 decays exponentially at all times. Slepian theory says that

if the stationary correlator C(t) of a Gaussian stochastic process decays purely exponen-

tially at all times, the persistence probability of X(t) is proportional to C(T ) at late times

and p(t) can then be constructed back by the inverse of the time transformation t→ T .

In the case when the correlation function C(T ) of a Gaussian stochastic process does not

decay exponentially at all times, the exponent θ can be extracted using the independent

interval approximation provided the density of zero crossing remains finite.

The route to calculating the persistence probability is through the non stationary

two-time correlation function. The Lamperti transformation converts the non station-

ary correlator to a stationary process. For a Gaussian Markovian stochastic process, the

persistence probability can be directly calculated using Slepian theorem26. In contrast,

when the process is non-Markovian, p(t) is evaluated either using the Independent In-

terval Approximation (IIA) when the density of zero crossings stays finite or using a

perturbative expansion. It should be emphasized that IIA or the perturbative expansion

works only for Gaussian stochastic processes.

1.14.1 Some Known Results

Let us consider X(T ) a Gaussian Stationary process (GSP), where correlation can be

written as f (τ) = 〈X(T )X(T +τ)〉 and we denote P(T, f (τ)) as the persistence probability

in the time variable T . The scaling form

P(T,λ f (τ)) = P(T, f (τ)) (1.105)

P(T, f (λτ)) = P(λT, f (τ)) (1.106)

The first scaling law implies that we may normalize the correlation function such that

f (0) = 1. The second scaling law denotes a normalization of the time scale. By the way,

this is not possible for all classes of correlation functions. So, we consider processes for

which [ f (τ)−1], for small τ behaves as |τ|α , when α positive. Under such circumstances

the covariance f (τ) is said to be class- α if τ approaches 0,

f (τ) = 1− |τ|α

Γ(α +1)
(1.107)
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and f (τ) is strictly monotone in the neighborhood of the origin. The gamma function

in the denominator comes due to the normalization of the time scale and 0≤ α ≤ 2. We

have

(1) f (τ) = e−|τ| f or 0≤ τ ≤ ∞

P(T, f (τ)) =
2
π

Sin−1[ f (τ)]
(1.108)

(2) f (τ) = 1−β
2sin2(τ/2β ) f or 0≤ τ ≤ ∞ and 0≤ β ≤ 1

P(T, f (τ)) =
1
2
− T

4π
− 1

2π
sin−1[β sin(

T
2β

)] f or 0≤ T
β
≤ 2π

=
1
2
(1−β ) f or 2π ≤ T < ∞

(1.109)

(3) f (τ) = 1−|τ| f or |τ| ≤ 1

= 0 |τ| ≥ 1

P(T, f (τ)) =
1
4
+

1
2π

[sin−1(1−T )−
√

T (2−T )]

(1.110)

Further, if two different processes which are characterized by the correlation func-

tion f (τ) and g(τ), then Slepian’s inequality says that if

f (τ)5 g(τ) f or 0 5 τ 5 T (1.111)

then

P(T, f (τ))5 P(T,g(τ)) (1.112)

The stationary correlator decays exponentially at all times for a Markovian process

and by using Eq. (1.108) we can show that persistence probability also decays expo-

nentially. For the non-Markovian process, correlation does not decay exponentially at

all the time.
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1.14.2 Random Walk Model

The simplest non-equilibrium system is Random Brownian Walker Model27. Let us

consider φ(t), which represents the position of a 1-D Brownian walker at time t. The

position evolves as
dφ

dt
= η(t) (1.113)

Where η(t) is a value of white noise with zero mean and δ -correlation 〈φ(t)φ(t ′)〉 =
δ (t− t ′). The persistence P0(t) is simply the probability that φ(t) does not change sign

up to time t. We find from Eq. (1.113)

〈φ(t1)φ(t2)〉= 2Dt2 t2 < t1 (1.114)

φ is a Gaussian non-stationary process. Normalizing this process

X(t) =
φ(t)√
〈φ 2(t)〉

(1.115)

Taking time transformation we get

T = lnt (1.116)

and non-stationary correlator becomes

〈X(T1)X(T2)〉= e−
1
2 (T1−T2) (1.117)

As the stationary correlator decays exponentially for all times, by Eq. (1.108) the per-

sistence probability in time variable T decays as P(T )∼ e−T/2. Now we transform back

to the real-time, the persistence probability decays as

p(t)∼ t−1/2 (1.118)

So, persistence exponent θ = 1/2 for the Random walk model.

1.14.3 Random acceleration Model

The equation of motion for a randomly accelerated particle is

d2φ

dt2 = η(t) (1.119)
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Where η is white Gaussian noise. The solution for φ(t) is

φ(t) =
∫ t

0
dt ′δ (t− t ′)η(t ′) (1.120)

Using the same transformation in Eq. (1.115) and Eq. (1.116) the stationary correlator

makes the form

f (τ) = 〈X(T )X(T + τ)〉= 3
2

e−
1
2 τ − 1

2
e−

3
2 τ (1.121)

It is of class-2. The exact result has been found by Sinai and Burkhardt is θ = 1/427.

1.14.4 Brownian Particle in a shear flow

We consider the motion of a Brownian particle, with a unit mass, in an unbounded sol-

vent moving in two-dimensional planar geometry. We consider a stationary distribution

of velocity,

uuu = (0,ax) (1.122)

The force on the Brownian particle from the imposed flow is given by, FFF = −ζ (vvv− uuu),

where vvv is the instantaneous velocity of the particle and ζ is Stoke’s friction on the

colloid. The Langevin equation for the position of a colloid rrr ≡ (x,y) in the overdamped

limit takes the form,

dx
dt

= ηx(t)

dy
dt

= ax+ηy(t)
(1.123)

When η ≡ (ηx,ηy) these are Gaussian White noise and the correlations are,

〈η〉= 0

〈η(t)⊗η(t ′)〉= 2DIIIδ (t− t ′)
(1.124)

Where III is the identity matrix and⊗ is the outer product of a vector quantity. D= kBT/ζ

diffusion constant, which is the strength of the noise. Two time correlation functions,

〈x(t1)x(t2)〉= 2Dt2 (1.125)

and

〈y(t1)y(t2)〉= 2Dt2 +a2D
(

t1t2
2 −

t3
2
3

)
(1.126)
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Cross-correlation functions are,

〈x(t1)y(t2)〉= Dat2
2 (1.127)

〈y(t1)x(t2)〉= 2Da
(

t1t2−
t2
2
2

)
(1.128)

When t1 = t2 = t we get motion along x-direction purely diffusive, while Mean square

displacement along y-direction is,

〈y2(t)〉= 2Dt +
2
3

a2Dt3 (1.129)

for short time, t << a−1 motion along y-direction becomes purely diffusive. For t >> a−1

Means Square Displacement scales t3, similar to a randomly accelerated particle. Cross-

correlation becomes,

〈x(t)y(t)〉= Dat2 (1.130)

Now the persistence probability has been calculated from the correlation function.

The fundamental idea is to map non-stationary process y(t) to a stationary O-U pro-

cess Ȳ .Stationary correlator C(t) for Ȳ decays exponentially for all times and the per-

sistence probability can be shown to decay as P(T ) ∼ 2
π

sin−1[C(T )]. Transformation,

Ȳ = y(t)/
√
〈y2(t)〉, which yields,

〈Ȳ (t1)Ȳ (t2)〉=
〈y(t1)y(t2)〉√
〈y2(t1)〉〈y2(t2)〉

=
2Dt2 +a2D

(
t1t2

2 −
t3
2
3

)
√(

2Dt1 + 2
3a2Dt3

1

)(
2Dt2 + 2

3a2Dt3
2

) (1.131)

for t << a−1, the motion of the particle is purely diffusive and neglects the O(t3) terms,

〈Ȳ (t1)Ȳ (t2)〉=
√

t2
t1

(1.132)

for t >> a−1, we get

〈Ȳ (t1)Ȳ (t2)〉=
3
2

(t2
t1

)1/2
− 1

2

(t2
t1

)3/2
(1.133)

Using the time transformation eT = t, Eq. (1.132) and Eq. (1.133) become

C(T ) = e−T/2 f or t << a−1

=
3
2

e−T/2− 1
2

e−3T/2 f or t >> a−1
(1.134)

As the stationary correlator for t < a−1 decays exponentially, the persistence probabil-

ity in the transformed variable T is P(T ) ∼ e−T/2 and in real-time p(t) ∼ t−1/2. In the
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asymptotic regime, the correlation function corresponds to that of a randomly accel-

erated particle when the persistence probability is known from the works of Sinai and

Burkhardt, decays as p(t)∼ t−1/4 16,28.

1.14.5 Harmonically confined Brownian Particle in shear flow

Like the last system, we have applied a harmonic potential U(r) = 1
2kr2. The harmonic

confinement naturally takes place in the experiments of optical tweezers. The stationery

velocity profile equation is found by using the Langevin equation as

dx
dt

=−kx+ηx(t) (1.135)

dy
dt

=−ky+ηy(t)+ax (1.136)

The time evolution of the x, y coordinates is given by,

x(t) =
∫ t

0
dt ′e−k(t−t ′)

ηx(t ′)

y(t) =
∫ t

0
dt ′e−k(t−t ′)[x(t ′)+ηy(t ′)]

(1.137)

Correlation functions are,

〈x(t1)x(t2)〉=
D
k

[
e−k(t1−t2)− e−k(t1+t2)

]
(1.138)

and

〈y(t1)y(t2)〉=
a2D
2k3

[(
e−k(t1−t2)− e−k(t1+t2)

)
− k
(
(t1 + t2)e−k(t1+t2)− (t1− t2)e−k(t1−t2)

)
−2k2t1t2e−k(t1+t2)

]
+

D
k

[
e−k(t1−t2)− e−k(t1+t2)

]
(1.139)

The mean-square displacement for y(t) becomes,

〈y2(t)〉= a2D
2k3

[(
1− e−2kt)+2kte−2kt−2k2t2e−2kt]+ D

k

[
1− e−2kt] (1.140)

If we make Taylor’s series expansion of Eq. (1.139) for t < k−1, shows that the dynamics

at short time scales as 2Dt + (2/3)a2Dt3, and in the asymptotic regime, mean-square

displacement saturates to a value D/k+ a2D/k3. In the asymptotic regime, a suitable

time transformation is not found to convert the process y(t) to a Gaussian stationary
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process. Persistence can only be found in the time domain which is smaller than k−1.

In this domain, persistence probability decays initially as t−1/2, followed by a decay of

t−1/4 28.

1.14.6 Persistence exponents for fluctuating interfaces

In this paper5 the first passage properties of the fluctuating interfaces have been stud-

ied. The large-scale behavior model of interest is described here by the linear Langevin

equation,
∂h
∂ t

=−(−∇
2)z/2h+η (1.141)

for the height field h(x, t). Here the dynamic exponent z(usually z = 2 or 4) characterizes

the relaxation mechanism, while η(x, t) is a Gaussian noise term, possibly with spatial

correlations. It is assumed that the system starts from a flat interface i.e. h(x,0) = 0.

As Eq.(1.141) is linear and h(x, t) is Gaussian and its temporal statistics at an arbitrary

fixed point in space is fully specified by the auto-correlation function computed from

Eq.(1.141)

A(t, t ′) = 〈h(x, t)h(x, t ′)〉= K
[
(t ′+ t)2β −|t ′− t|2β

]
(1.142)

where K is some positive constant, and β denotes the dynamic roughness exponent,

which depends on z and the type of noise considered.

A normalized random variable X = h/
√
〈h2〉 is introduced and a time transformation

T = lnt is taken. Now this Gaussian process is stationary by construction i.e f0(T −T ′) =

〈X(T )X(T ′)〉, the correlation function f0 can be obtained from Eq(1.142) as,

f0(T ) = cosh(T/2)2β −|sinh(T/2)|2β (1.143)

Similarly, a normalized stationary process has been associated with the steady-state

problem. The height difference variable is defined as,

H(x, t; t0) = h(x, t + t0)−h(x, t0) (1.144)

the autocorrelation function has been computed in the limit t0→ ∞

As(t, t ′) = lim
t→∞
〈H(x, t; t0)H(x, t ′; t0)〉

= K
[
t2β + t ′2β −|t ′− t|2β

] (1.145)

this is precisely the correlator of fractional Brownian motion with Hurst exponent β 29.
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Next As(t, t ′) is normalized
√

As(t, t)As(t ′, t ′) and rewritten in terms of T = lnt, this gives,

fs(T ) = cosh(βT )− 1
2
|2sinh(T/2)|2β (1.146)

So the short time singularity

f0,S(T ) = 1−O(|T |2β ) (1.147)

this is applicable for T → 0, which places them in the class α = 2β . For large T , they

decay with different rates, f0,S(T ) ∼ exp(−λ0,ST ) for T → ∞, where λ0 = 1− β and

λS = min[β ,1−β ], can be interpreted, in analogy with phase ordering kinetics, as the

autocorrelation exponents of the two processes.

For a stationary Gaussian process with a general autocorrelator f (T ), the calculation

of the decay exponent θ of the persistence probability is very hard. Approximate results

can be derived for certain classes of autocorrelators f (T ). In such cases the density of

zero crossings is finite and an independent interval approximation (IIA) gives a very

good estimate of θ 30,31.

For perturbation theory near β = 1/2, when persistence probability or a process

whose correlation function differs perturbatively from the Markov process, i.e. whose

autocorrelation function is

f (T ) = exp(−λ |T |)+ εφ(T ) (1.148)

maybe then calculated from an understanding of the eigenstates of the quantum har-

monic oscillator. In such processes, the exponents are found as5,

θ0 =
1
2
− ε(2

√
2−1)+O(ε2)

θS =
1
2
− ε +O(ε2)

(1.149)

1.14.7 Persistence Probabilities of German DAX and Sanghai Index

Here, a detailed analysis of the persistence probability distributions in financial dynam-

ics has been studied. Compared with the auto-correlation function, the persistence

probability distributions describe dynamic correlations non-local in time. Universal and

non-universal behaviors of the German DAX and Shanghai Index are analyzed here,

and numerical simulations of some microscopic models are also done. At the fixed
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point, z0 = 0; the interacting herding model produces the scaling behavior of the real

markets25.

Nowadays physicists are paying much interest in the dynamics of financial markets.

In many body systems, interactions among agents and producers may generate long

range temporal correlations in financial dynamics, and thus results in the dynamic scal-

ing behavior.

In this work, the value of and index(DAX or Shanghai) has been taken as y(t ′) at

the time t ′, and the magnitude of the logarithm price change in a fixed time inter-

val ∆t as Z(t ′,∆t) ≡ |lny(t ′+∆t)− lny(t ′)|. The persistence probability P+(t)(P−(t)) has

been defined persistence probability as the probability that Z(t ′+ t̃,∆t) has always been

above(below) Z(t ′,∆t) in time t, i.e. Z(t ′+ t̃,∆t)> Z(t ′,∆t)(Z(t ′+ t̃,∆t)< Z(t ′,∆t)) for all

t̃ < t ′. Here Z(t ′,∆t) is defined as the magnitude of the variation of lny(t ′).

The persistence probabilities describe the temporal correlation of Z(t ′,∆t) non-local

in time, while the auto-correlation function describes the temporal correlation local in

time. Since Z(t ′,∆t) in financial dynamics is long-range correlated in time, one expects

a non-trivial dynamic behavior. In this work, they first perform the measurements using

the minute-to-minute data of the German Dax from December 1993 to July 1997. The

total number of the records during this period of time is about 350 000. In the mea-

surements, ∆t = 1 min has been taken. Plot of the persistence probabilities have been

done on a log-log scale. It is obvious that P−(t) obeys a power law up to four orders of

magnitude, while P+(t) decays to zero rather fast. Compared with the auto-correlation

function calculated with the same data, P+(t) and P+(t) are much less fluctuating. Dif-

ferent behaviors of P+(t) and P+(t) indicate the high-low asymmetry in the time series

of y(t ′). For P−(t), it is assumed as power law, P−(t)∼ t−θp , θp is the so-called persistence

exponent. Carefully looking at the curve of P−(t) of the German DAX, they observe a

quasi-periodic dropping in the first 2000 minutes. When one measures the slope in a

time interval [500,20000], the persistence exponent of P−(t) is θp = 0.88(2), clearly dif-

ferent from a random walk. This indicates that Z(t ′,∆t) is indeed long-range correlated

in time.

They have also performed the measurements with the data of the Shanghai Index

from January 1998 to July 2003. The time interval between successive records is 5

minute. Similar to the case of the German DAX, P−(t) obeys a power law and P+(t)

decays faster. A quasi-periodic dropping of P−(t) in early times is also observed, but

the period now is less than 300 minutes, because the working day in China is about or

less than five hours in those years. If one measures the slope of the curve in the time

interval [500,20000] the persistence exponent θp = 0.97(2) is obtained.
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For further understanding the dynamic behavior of financial markets, they introduce

more general persistence probability distributions. Assuming that z0 is a real positive

number, they define the generalized persistence probability P+(t,z0)(P−(t,z0)) as the

probability that Z(t ′+ t̃,∆t) has never been down(up) to Z(t ′,∆t)− z0(Z(t ′,∆t)+ z0) in

time t, for all t̃ < t. At z0 = 0, P+(t,z0) and P−(t,z0) coincide with the persistence proba-

bilities found in observational studies. For P−(t,z0), a generalized dynamics scaling form

can be written as, P−(t,z0) = t−θpF−(tα−z0), α− is an exponent describing the scaling

behavior of z0.

In conclusions, they have investigated the persistence probabilities P±(t,z0) defined

with the magnitude of the logarithm price change of the financial index, using the data

of the German DAX and Shanghai Index. A power-law behavior is observed for P−(t,z0 =

0) up to some months for both indices. The minute-to-minute data and daily data of the

German DAX consistently yield a same persistence exponent while the minutely data

and daily data of the Shanghai Index do not give a same persistence exponent. These

results indicate that both the German DAX and Shanghai Index are indeed long-range

correlated in time, but they very probably belong to different universality classes.
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A.1 Slepian’s theory

Let X(t) be a real continuous parameter Gaussian process, stationary and continuous in

the mean. It is assumed through out that 〈X(t)〉 = 0 and r(τ) = 〈X(t)X(t + τ)〉. Assume

that it is being dealth with a separable measurable version of the process. The main

concern is the probability P[T,r(τ)] that X(T ) be non-negative for 0≤ t ≤ T . This quan-

tity is of interest as a means of describing the duration of the excursions taken by the

process from its mean. From P[T,r(τ)] the distribution function F [λ ,r(τ)] of the interval

between successive zeros of the process can be determined by differentiation.

From its definition, it is clear that P[T,r(τ)] is a non increasing function of T . It

assumes the value 1
2 for T = 0. It obeys the scaling laws,

P[T,λ r(τ)] = P[T,r(τ)]

P[T,r(λτ)] = P[λT,r(τ)]

λ > 0

(A.1)

It is to be noted, however, that P[T,r(τ)] for 0 ≤ T ≤ T0 depends only on the "piece" of

the covariance function r(τ), 0≤ τ ≤ T0.

The first scaling law of Eq.(A.1) suggests normalizing the covariances to be consid-

ered so that r(0) = 1. The second scaling law of Eq.(A.1) suggests that a normalization

of the time scale is in order.

According to Slepian, when the scaling laws of Eq.(A.1) are taken into account, there

are ’only three distinct covariances for which P[T,r(τ)] is known explicitly. These are,

(1)

r1(τ) = e−|τ|,0≤ τ ≤ ∞,

P[T,r1(τ)] =
2
π

sin−1 e−T ,0≤ T < ∞

(2)

r2(β ,τ) = 1−β
2 +β

2 cosτ/β , 0≤ τ ≤ ∞, 0≤ β ≤ 1

P[T,r2(β ,τ)] =
1
2
− T

4π
− 1

2π
sin−1

[
β sin

( T
2β

)]
, 0≤ T

β
≤ 2π

=
1
2
[1−β ], 2π ≤ T

β
< ∞
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(3)

r3(τ) = 1−|τ|, |τ| ≤ 1

= 0, |τ| ≥ 1

P[T,r3(τ)] =
1
4
+

1
2π

[
sin−1(1−T )−

√
T (2−T )

]
, 0≤ T ≤ 1

The process with covariance r1(τ) is Markovian, and it is this special property that

permits determination of P[T,r1(τ)].

Case(2) corresponds to the stochastic process

X(t) = A+Bcos
[ t

β
+φ

]
with A, B and φ independent random variables, the two former being normal with

mean zero and variances 1− β 2 and β 2 respectively, and the latter being distributed

uniformly in (0,2π). The determination of P in this case is an exercise in integration and

elementary probability theory that will be omitted here. For the obvious generalization

of this case, namely,

X(t) = A+
N

∑
1

Bi cos
[ t

βi
+φi

]
P[T,r(τ)], can be expressed in principle as a (2N + 1)-fold integral. Except in the case

N = 1 presented, the integrals appear untractable.
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2
Persistence in Brownian motion
of a Free ellipsoidal particle in
two dimension

We will investigate the persistence probability p(t) of the position of a Brownian particle with

shape asymmetry in two dimensions. The persistence probability is defined as the probability

that a stochastic variable has not changed its sign in the given time interval. We explicitly

consider two cases- diffusion of a free particle and that of a harmonically trapped particle.

The latter is particularly relevant in experiments that use trapping and tracking techniques to

measure the displacements. We provide analytical expressions of p(t) that are further validated

against numerical simulation and the underlying overdamped dynamics. We also illustrate that

p(t) can be a measure to determine the shape asymmetry of a colloid and the translational

and rotational diffusivities can be estimated from the measured persistence probability. The

advantage of this method is that it does not require the tracking of the orientations of the

particle.
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2.1 Introduction

Particles that exhibit a shape asymmetry are abundant in nature with sizes ranging

from few nanometers to few micrometers. Over the last decade, accelerated by the ad-

vancement in particle chemistry, a plethora of such particles with enhanced transport

properties have been developed in an attempt to mimic nature. These synthetically engi-

neered colloids with multi-functional properties often find wide ranging applications in

photonics, nano and biotechnology, drug delivery and other bio-medical uses. Unlike an

isotropic particle, the shape asymmetry leads to different transport properties along the

symmetry axes of the particle and any real-life application would require the knowledge

of these transport properties. Perhaps, the most crucial of these transport properties are

the translational and rotational diffusivities that characterize their stochastic dynamics.

For example, the diffusive dynamics of such particles are completely characterized by

the mobility matrix.

In this chapter, we determine the persistence probability1–34of such an extended

object. We choose the simplest asymmetric particle – an ellipsoid and look at its two

dimensional Brownian motion. The quasi-two-dimensional confinement is assumed to

be strong, so that the equations of motion in two-dimensions can be applied. Since the

dynamics of the translational and the orientational degrees of freedom are stochastic

due to the thermal fluctuations from the bath, the position and the orientation are both

random variables in time. We use the stochastic nature of the position to calculate the

persistence probability p(t) of the particle. The method has the potential application

of extracting the diffusion coefficients along the two symmetry axes of the particle as

well the rotational diffusion constant. The method, however, is restrictive due to the

non-gaussian nature of the position in the lab frame and is applicable for asymmetric

particles with weak anisotropy.

The theory of Brownian motion of a free spherical particle is well studied, but here

the study of ellipsoidal particle has been conducted. For ellipsoidal or cylindrical parti-

cles, a first-order approximation to a wide variety of asymmetrical molecules, has also

been studied. The analysis of Brownian motion of asymmetrical particles is more com-

plicated as compared to that of a spherical particle, as the coupling of rotational and

translational motion takes place in this case. In precise, the dependence of the in-

stantaneous translational diffusion coefficient on the current orientation of the particle

leads to anisotropic motion for the short time. This will produce substantial changes

and complications in solving the Langevin and the Fokker-Planck descriptions of the

problem.
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These complications are usually overcome by assuming that anisotropic diffusion

lasts only for very short times and the isotropic diffusion is recovered for all reasonable

times, where we can use simply the mathematical formalism valid for a spherical Brow-

nian particle. The transition in dynamical behavior with time is because of the fact that

rotational diffusion ultimately washes out the initial anisotropic translational motion

of the particle. The translational diffusion coefficient in long-time equals the average

of the translational diffusion coefficients along the two semi-axes of the ellipsoidal or

cylindrical particle.

All the results here are mentioned for free asymmetrical particles. In this chapter,

we seek to understand how the intrinsic asymmetry of molecules or aggregates affects

the persistence probability of a Brownian particle. This study gives us an yet another

alternative to determine the diffusion coefficients of such extended object.

This chapter is organized as follows. In Section 2.2 we have presented the Langevin

model of the system with detailed Equations in both the body frame and lab frame. The

detailed calculation of diffusion coefficients in various situations has been calculated

and shown in Section 2.3. The important property persistence has been calculated for

the free particle and the simulation results with plots have been placed in the Sec-

tion 2.4. Finally, a brief conclusion is presented in Section 2.5.

2.2 The Langevin Equations For an Ellipsoidal Particle

We consider an ellipsoidal particle in two dimension with mobilities Γ‖ and Γ⊥ along

the x and y direction respectively and a single rotational mobility Γθ . The particle is

immersed in a bath at a temperature T , so that the translational diffusion coefficients

along the two directions are given by Dx = kBT Γ‖, Dy = kBT Γ⊥ and the rotational dif-

fusion constant Dθ = kBT Γθ . In a frame fixed to the particle, the translational and

rotational motion of the particle is completely decoupled. However, in the lab-frame,

the shape asymmetry of the particle leads to a coupling between the translational and

rotational motions of the particle. In the body frame the equations of motion of the

particle take the form

Γ
−1
x

∂ x̃
∂ t

= Fx cosθ(t)+Fy sinθ(t)+ η̃x(t)

Γ
−1
y

∂ ỹ
∂ t

= Fy cosθ(t)+Fx sinθ(t)+ η̃y(t)

Γ
−1
θ

∂θ

∂ t
= τ + η̃θ

(2.1)
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where Fx and Fy are the forces acting on the particle along the x and y directions and τ

is the torque acting on the particle. The correlations of the thermal fluctuations in the

body frame are given by,

〈η̃i〉= 0

〈η̃i(t)η̃ j(t ′)〉= 2Diδi jδ (t− t ′)
(2.2)

where i, j = x,y,θ . In the lab frame, the displacements are related to the body frame as,

δx = cosθδ x̃− sinθδ ỹ

δy = cosθδ ỹ+ sinθδ x̃
(2.3)

Using the transformation relation of Eq. 2.3 we can convert equations of motion in Eq.

Figure 2.1 Representation of an ellipsoid in the x− y lab frame and the x̃− ỹ body frame The
angle between two frames is θ . The displacement R can be decomposed as (δ x̃,δ ỹ) or (δx,δy).

2.1 as

∂x(t)
∂ t

= Fx
[
Γ+

∆Γ

2
cos2θ

]
+Fy

∆Γ

2
sin2θ +ηx(t)

∂y(t)
∂ t

= Fx
∆Γ

2
sin2θ +Fy

[
Γ̄− 1

2
∆Γcos2θ(t)

]
+ηy(t)

∂θ(t)
∂ t

= Γθ τ +ηθ (t)

(2.4)

with the quantities Γ = (Γ‖+Γ⊥)/2 and ∆Γ = Γ‖−Γ⊥, are the average and difference

mobilities of the body, respectively.

50



Using Eq. (2.1), the corresponding Langevin equation in the lab frame is given by,

∂xi

∂ t
=−Γi j

∂U
∂x j

+ηi (2.5)

where U(rrr) is the external potential and ΓΓΓ is the mobility tensor given by,

ΓΓΓ =

[
Γ+ ∆Γ

2 cos2θ
∆Γ

2 sin2θ

∆Γ

2 sin2θ Γ− ∆Γ

2 cos2θ

]
(2.6)

In the component form, the mobility tensor is given by Γi j = Γδi j +
∆Γ

2 ∆Ri j[θ(t)], where

the form of ∆R is given by

∆R =

[
cos2θ sin2θ

sin2θ −cos2θ

]
(2.7)

Using the correlation of the thermal fluctuations from Eq. (2.2), the moments of the

stochastic forces are given by,

〈ηi〉= 0 (2.8)

〈ηi(t)η j(t ′)〉
ηx,ηy
θ(t) = 2kBT ΓΓΓi j[θ(t)]δ (t− t ′) (2.9)

〈ηθ (t)ηθ (t ′)〉ηθ = 2Dθ δ (t− t ′) (2.10)

The statistical averages have superscripts to indicate over which noise is the average

taken and subscripts denote that quantities which are kept fixed.It is to be noted that the

movement in the x and y directions are not independent of each other but they are cou-

pled through the angular position of the particle. Thus particle’s translational diffusion

couples to its rotational diffusion and the strength of this coupling behaviour increases

proportionally with particle shape asymmetry, but this is zero for spherical particle. In-

spection of Eq. (2.4) reveals that this phenomenon cannot affect the long-time average

velocity of the particle but could affect the long-time mean square displacements.

2.3 Diffusion Coefficients of Ellipsoidal Particle in a Constant
Field Force

In this section,we are aiming to calculate the temporal variation of the diffusion coeffi-

cients of an ellipsoidal particle under constant force field which is constrained to move

in a plane. We shall calculate the three translational diffusion coefficients, namely, the

one along x direction(D11), the one in the y direction(D22), and the cross-diffusion co-
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efficient (D12 = D21). The general formula for diffusion coefficient is,

Di j(t) =
〈∆xi(t)∆x j(t)〉

ηx,ηy,ηθ

θ0
−〈∆xi(t)〉

ηx,ηy,ηθ

θ0
〈∆x j(t)〉

ηx,ηy,ηθ

θ0

2t
(2.11)

Here (x1,x2) = (x,y).

Let us now calculate D11 in details. Let us integrate Eq. (2.4) with respect to time,

we get

∆x1(t) = FxΓ̄t +
∆Γ

2
Fx

∫ t

0
cos2θ(t ′)dt ′+

∆Γ

2
Fy

∫ t

0
sin2θ(t ′)dt ′+

∫ t

0
ηx(t ′)dt ′ (2.12)

Now we will calculate the average displacement in the x direction. The ensemble aver-

age of the sinusoidal functions can be calculated by considering the angular displace-

ment ∆θ(t) = θ(t)−θ0 is a Gaussian random variable, in which case the listed identity

is valid:

〈ei[m∆θ(t ′)±n∆θ(t”)]〉ηθ

θ0
= e−Dθ [m2t ′+n2t ′′±2mn min(t ′,t ′′)] (2.13)

This implies 〈cosnθ(t)〉ηθ

θ0
= cosnθ0e−n2Dθ t and 〈sinnθ(t)〉ηθ

θ0
= sinnθ0e−n2Dθ t . And the

average of the translational noise ηx is zero. Now we can find average displacement

along x direction from Eq. (2.12), which is

〈∆x1(t)〉= FxΓ̄t +
∆Γ

2
Fx

∫ t

0
〈cos2θ(t ′)〉dt ′+

1
2

∆ΓFy

∫ t

0
〈sin2θ(t ′)〉dt ′

= FxΓ̄t +
∆Γ

2
Fx

∫ t

0
cos2θ0e−4Dθ t ′dt ′+

1
2

∆ΓFy

∫ t

0
sin2θ0e−4Dθ t ′dt ′

= FxΓ̄t +
∆Γ

2
Fx cos2θ0

1
4Dθ

(
1− e−4Dθ t)+ 1

2
∆ΓFy sin2θ0

1
4Dθ

(
1− e−4Dθ t)

= FxΓ̄t +
∆Γ

2
Fx cos2θ0τ4(t)+

1
2

∆ΓFy sin2θ0τ4(t)

(2.14)

Where we have considered τn =
1

nDθ
(1− e−4Dθ t)

To compute mean-squared displacement we take square of Eq. (2.12) and average

it, thus we get

〈∆x2
1(t)〉=F2

x Γ̄
2t2 +

1
4

∆Γ
2F2

x

∫ t

0

∫ t

0
〈cos2θ(t ′)cos2θ(t ′′)〉dt ′dt ′′

+
1
4

∆Γ
2F2

y

∫ t

0

∫ t

0
〈sin2θ(t ′)sin2θ(t ′′)〉dt ′dt ′′+

∫ t

0

∫ t

0
〈ηx(t ′)ηx(t ′′)〉dt ′dt ′′

+
1
2

F2
x Γ̄∆Γt

∫ t

0
〈cos2θ(t ′)〉dt ′+

1
2

FxFy∆ΓΓ̄t
∫ t

0
〈sin2θ(t ′)〉dt ′

+
1
4

∆Γ
2FxFy

∫ t

0

∫ t

0
〈cos2θ(t ′)sin2θ(t ′′)〉dt ′dt ′′

(2.15)
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We have removed two integrals comprising products of sinusoidal functions of the par-

ticle’s angle θ(t) and of translational noise ηx, as these two terms are zero. Now, we

will calculate the integrals separately. Let us first calculate the second integral.

Let us use ∆θ(t) = θ(t)−θ0 in the second integral, which becomes

∫ t

0

∫ t

0
〈cos2θ(t ′)cos2θ(t ′′)〉dt ′dt ′′

=
1
2

∫ t

0

∫ t

0

[
〈cos(4θ0 +2∆θ(t ′)+2∆θ(t ′′))〉+ 〈cos(2∆θ(t ′)−2∆θ(t ′′))〉

]
dt ′dt ′′

=
1
2

∫ t

0

∫ t

0

[
cos4θ0e−4Dθ [t ′+t ′′+2min(t ′,t ′′)]+ e−4Dθ [t ′+t ′′−2min(t ′,t ′′)]

]
dt ′dt ′′

= cos4θ0Ia + Ib

(2.16)

We have calculated integrals Ia and Ib of Eq. (2.16) separately.

Ia =
1
2

∫ t

0
dt ′
∫ t ′

0
dt ′′e−4Dθ [3t ′′+t ′]+

1
2

∫ t

0
dt ′′

∫ t ′′

0
dt ′e−4Dθ [3t ′+t ′′]

=
3+ e−16Dθ t−4e−4Dθ t

192D2
θ

(2.17)

Ib =
1
2

∫ t

0
dt ′
∫ t ′

0
dt ′′e−4Dθ (t ′−t ′′)+

1
2

∫ t

0
dt ′′

∫ t ′′

0
dt ′e−4Dθ (t ′′−t ′)

=
4Dθ t + e−4Dθ t−1

16D2
θ

(2.18)

Similarly we have calculated∫ t

0

∫ t

0
〈sin2θ(t ′)sin2θ(t ′′)〉dt ′dt ′′ = Ib− cos4θ0Ia (2.19)

∫ t

0

∫ t

0
〈sin2θ(t ′)cos2θ(t ′′)〉dt ′dt ′′ = sin4θ0Ia (2.20)

The integral
∫ t

0 dt ′
∫ t

0 dt ′′〈ηx(t ′)ηx(t ′′)〉 can be calculated as

∫ t

0
dt ′
∫ t

0
dt ′′〈ηx(t ′)ηx(t ′′)〉= 2kBT

∫ t

0
dt ′
∫ t

0
dt ′′〈Γii[θ(t ′)]〉ηθ

δ (t ′− t ′′)

= 2kBT
∫ t

0
dt ′
[
Γ̄+

∆Γ

2
〈cos2θ(t ′)〉ηθ

]
= 2kBT Γ̄t + kBT ∆Γcos2θ0

1− e−4Dθ t

4Dθ

= 2D̄t +∆Dcos2θ0
1− e−4Dθ t

4Dθ

(2.21)

We have considered diffusion coefficients of the particle in directions parallel and per-
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pendicular to its longest axis are D‖ = kBT Γ‖ and D⊥ = kBT Γ⊥, respectively. Here,

D̄ = kBT Γ̄ and ∆D = kBT ∆Γ.

Using all values of Eqs. (2.16) (2.17), (2.18), (2.19), (2.20), (2.21) we can calculate

the value of mean-square displacement along x direction of Eq. (2.15).

〈∆x2
1(t)〉= 2D̄t +

∆D
4Dθ

cos2θ0(1− e−4Dθ t)+F2
x Γ̄

2t2 +
1
4

∆Γ
2F2

x

(
cos4θ0

3+ e−16Dθ t−4e−4Dθ t

192D2
θ

+

4Dθ t + e−4Dθ t−1
16D2

θ

)
+

1
4

∆Γ
2F2

y

(4Dθ t + e−4Dθ t−1
16D2

θ

− cos4θ0
3+ e−16Dθ t−4e−4Dθ t

192D2
θ

)
+

1
2

F2
x Γ̄∆Γt cos2θ0

1
4Dθ

(1− e−4Dθ t)+
1
2

FxFy∆ΓΓ̄t sin2θ0
1

4Dθ

(1− e−4Dθ t)

+
1
4

∆Γ
2FxFy sin4θ0

3+ e−16Dθ t−4e−4Dθ t

192D2
θ

(2.22)

Now to calculate D11 we have calculated the value of 〈∆x1(t)〉〈∆x1(t)〉, we use Eq. (2.14)

and it becomes

〈∆x1(t)〉〈∆x1(t)〉= F2
x Γ̄

2t2 +
1
4

∆Γ
2F2

x cos2 2θ0
1

16D2
θ

(1− e−4Dθ t)2

+
1
4

∆Γ
2F2

y sin2 2θ0
1

16D2
θ

(1− e−4Dθ t)2 +
1

4Dθ

F2
x ∆ΓtΓ̄cos2θ0(1− e−4Dθ t)

+
1

4Dθ

FxFy∆ΓΓ̄t sin2θ0(1− e−4Dθ t)+
1
4

∆Γ
2FxFy cos2θ0 sin2θ0

1
16D2

θ

(1− e−4Dθ t)2

(2.23)

from these two Eq. (2.22) and Eq. (2.23) we find D11 from Eq. (2.11)

D11 = D̄+
∆Γ2

32Dθ

(F2
x +F2

y )+
1
2t

[
∆Γ2 cos4θ0

768D2
θ

(F2
x −F2

y +2FxFy tan4θ0)

× (3+ e−16Dθ t−4e−4Dθ t
)+

∆Γ2(F2
x +F2

y )

64D2
θ

(e−4Dθ t−1)+
∆Dcos2θ0

4Dθ

(1− e−4Dθ t)

− ∆Γ2

64D2
θ

(1− e−4Dθ t)2(Fx cos2θ0 +Fy sin2θ0)
2
]

(2.24)

Similarly we can calculate the average displacement along y direction from Eq. (2.4)

∆y1(t) = FyΓ̄t− 1
2

Fy∆Γ

∫ t

0
cos2θ(t ′)dt ′+

∆Γ

2
Fx

∫ t

0
sin2θ(t ′)+

∫ t

0
ηy(t ′)dt ′

By a similar calculation, one obtains the translational diffusion coefficient in the y-

direction(D22) and the cross-diffusion coefficient(D12). The expression for D22 can be
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obtained from that for D11 by interchanging Fx and Fy and replacing cos2θ0 by −cos2θ0.

The cross-diffusion term is given by35,

D12 =
∆Dsin2θ0

8Dθ t
+

1
2t

[FxFy∆Γ2 cos4θ0

D2
θ

( 1
128
− 1

48
e−4Dθ t +

1
64

e−8Dθ t− 1
384

e−16Dθ t
)

+
(F2

x −F2
y )∆Γ2 sin4θ0

D2
θ

( 1
256
− 1

96
e−4Dθ t +

1
128

e−8Dθ t− 1
768

e−16Dθ t
)]

For the case of zero forces the above expression reduces to the simple forms,

D11(t) = D̄+
∆D

8Dθ t
cos2θ0(1− e−4Dθ t)

D22(t) = D̄− ∆D
8Dθ t

cos2θ0(1− e−4Dθ t)

D12(t) =
∆D

8Dθ t
sin2θ0(1− e−4Dθ t)

(2.25)

2.4 Calculation of Persistence of a free ellipsoidal Particle

We first look at the case of a free ellipsoidal particle. Setting the external potential to

zero, the formal solution to the equation of motion takes the form

xi(t) =
∫ t

0
ηi(t ′)+ xi(0) (2.26)

The mean-square displacement of the particle, averaged over the orientational noise

can be explicitly calculated from the above equation as,

〈∆x2
i 〉ηθ

=
∫ t

0
dt ′
∫ t

0
dt ′′〈ηi(t ′)ηi(t ′′)〉

= 2kBT
∫ t

0
dt ′
∫ t

0
dt ′′〈Γii[θ(t ′)]〉ηθ

δ (t ′− t ′′)

= 2kBT
∫ t

0
dt ′〈Γii[θ(t ′)]〉ηθ

(2.27)

Using the explicit form of Γxx the mean-square displacement along the x-direction reads

〈∆x2
1〉ηθ

= 2kBT
∫ t

0
dt ′
[

Γ+
∆Γ

2
〈cos2θ(t ′)〉ηθ

]
(2.28)

The ensemble average of cosθ(t) over the thermal fluctuations in the orientational de-

grees of freedom can be done explicitely by noting the fact that ∆θ = θ(t)− θ0 is a
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Gaussian random variable and consequently the following identity holds:

〈e±ßm∆θ(t ′)〉= e−m2Dθ t ′ (2.29)

Using Eq.(2.29) in Eq. (2.28), we finally arrive at

〈∆x2〉ηθ
= 2kBT

[
Γt +

∆Γ

2
cos2θ0

(
1− e4Dθ t

4Dθ

)]
(2.30)

and

〈∆y2〉ηθ
= 2kBT

[
Γt− ∆Γ

2
sin2θ0

(
1− e4Dθ t

4Dθ

)]
(2.31)

The above results are well known35,36 and have also been experimentally verified36.

However, our interest lies in the persistence probability of this system. The route to

determine the persistence probability using the results of Slepian is applicable for a

Gaussian stochastic process37. In contrast, the body-frame coordinates are non- Gaus-

sian in nature. The non-Gaussian parameter is defined as

φ(t,θ0) =
〈∆x(t)4〉

3〈∆x(t)2〉2
−1 (2.32)

〈∆xi(t)∆x j(t)〉θ0 = 2D̄t +∆DMi j(θ0)
∫ t

0
dt ′e−4Dθ t ′

= 2D̄t +∆DMi j(θ0)τ4(t)
(2.33)

and

〈∆x(t)4〉=
∫ t

0
dt1...dt4〈ηx(t1)ηx(t2)ηx(t3)ηx(t4)〉

= 12(kBT )2
∫ t

0
dt1
∫ t

0
dt2〈Γxx(θ(t1))Γxx(θ(t2))〉ηθ

θ0

= 12(kBT )2
∫ t

0
dt1
∫ t

0
dt2
(

Γ̄
2 +

1
2

∆ΓΓ̄〈cos2θ(t1)+ cos2θ(t2)〉+
1
4
(∆Γ)2〈cos2θ(t1)cos2θ(t2)〉

)
= 12

[
D̄2t2 +∆DD̄t cos2θ0τ4(t)+

(∆D)2

8

(
τθ (t− τ4(t))+ cos4θ0

τθ (τ4(t)− τ16(t))
3

)]
(2.34)

We have used,

〈cos2θ1 cosθ2〉=
1
2
[〈cos2(θ1−θ2)〉+ 〈cos2(θ1 +θ2)〉] (2.35)
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and

〈cos2[θ(t1)−θ(t2)]〉= e−4Dθ |t1−t2|

〈cos2[θ(t1)+θ(t2)]〉= cos4θ0e−4Dθ [t1+t2+2min(t1,t2)]
(2.36)

Using Eq.(2.33) and Eq.(2.34) non-Gaussian parameter takes the form,

φ(t,θ0) =
1
24

(
∆D
D

)2 [3(τθ t− τθ τ4(t)− τ4(t)2)+(τθ τ4(t)− τθ τ16(t)−3τ4(t)2)cos4θ0][
t +(∆D

D )τ4(t)cos2θ0

]2

(2.37)

where τθ = 1/2Dθ and τn(t) =
∫ t

0 dt ′e−4Dθ t ′ = (1− e−nDθ t)/nDθ . An average over the

initial orientation leads to the result,

φ̄(t) =
1
8

(
∆D
D̄

)2 τθ (t− τ4(t))
t2 (2.38)

Clearly, for a weak asymmetry, the non-Gaussian parameter is vanishingly small. φ(t,θ0)

exhibits a maximum at t = τθ and vanishes for t� τθ as well as t� τθ . Hence, for large

and small times, the body-frame coordinates remain a Gaussian stochastic process.

To calculate the persistence of a free ellipsoidal Brownian particle, we start with Eq.

(2.26) and choose xi(0) = 0. The calculation of the two time correlation function

〈x(t1)x(t2)〉ηθ
=
∫ t1

0
dt ′
∫ t2

0
dt ′′〈ηx(t ′)ηx(t ′′)〉ηθ

(2.39)

Taking t1 > t2, the integral evaluates to the following expression for the two time corre-

lation,

〈x(t1)x(t2)〉ηθ
= 2kBT Γt2

[
1+

∆Γ

2Γ
cosθ0

(
1− e−4Dθ t2

4Dθ t2

)]
(2.40)

In order to transform the non-stationary correlation into a stationary correlation we

first make the transformation X(t) = x(t)/
√
〈x2(t)〉ηθ

, and the correlation 〈X(t1)X(t2)〉ηθ

reads as

〈X(t1)X(t2)〉ηθ
=

√
2Dt2
2Dt1

√√√√√√√
[

1+ ∆Γ

2Γ
cosθ0

(
1−e−4Dθ t2

4Dθ t2

)]
[

1+ ∆Γ

2Γ
cosθ0

(
1−e−4Dθ t1

4Dθ t1

)] (2.41)

We now define the transformation in time as

eT = 2Dt
[
1+

∆D
2D

cosθ0(
1− e−4Dθ t

4Dθ t
)
]

(2.42)
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and Eq. (2.41) takes the simple form of

〈X(T1)X2(T2)〉ηθ
= e−(T1−T2)/2 (2.43)

Following Slepian37, if the correlation function of a stochastic variable X(T ) decays

exponentially for all times CXX(T ) = e−λT , then the persistence probability is given by

P(T )∼ sin−1 e−λT (2.44)

Asymptotically, P(T ) takes the form P(T ) ∼ e−λT . Consequently, looking at Eq. (2.38)

and transforming back in real time t, the persistence probability reads as

p(t)∼ 1√
2Dt

1√
1+ ∆D

2D cosθ0

(
1−e−4Dθ t

4Dθ t

) (2.45)

In the absence of any asymmetry, the expression for p(t) correctly reproduces the per-

sistence probability of that of a random walker38. Rearranging Eq. (2.45), the quantity

t1/2 p(t) can be recast as

t1/2 p(t)∼ 1√
2D

[
1+

∆D
2D

cosθ0

(
1− e−4τ

8τ

)]−1/2

(2.46)

In the limit of ∆D→ 0, the persistence probability reduces to that of a random walker

p(t)∼ t−1/2.

To test Eq.(2.45), we performed numerical integration of the equations of the equa-

tions of motion using an Euler scheme for discritization. The initial condition was

chosen from a Gaussian distribution with a very small width, so that the sign of rrr(0)

is clearly defined. The trajectories was evolved in time with an integration time-step

of δ t = 0.001. At every instant the survival of the particle was checked by looking at

the sign of rrr(t). Fraction of trajectories for which the position did not change its sign

up to time t gave the survival probability p(t). A total of 109 trajectories were used in

estimating the survival probability. A comparison of the measured p(t) with that of the

predictions of Eq.(2.45) is shown Fig.(2.2) and Fig.(4.3). The comparison in Fig.(2.2)

clearly shows that the survival probability can pick up the asymmetry in particle shape

even when the difference in the diffusivities is as small as 5%.

The process to extract the diffusion coefficients is as follows:

The first step would be to determine the overall constant is given by A =(2/π)
√

2Γ̄δ t.
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Figure 2.2 Plot of t1/2 p(t) for different choices of translational diffusivities of the anisotropic
particle: D‖ = 1, D⊥ = 0.5 (blue circles); D‖ = 1, D⊥ = 0.8 (orange squares); D‖ = 1, D⊥ = 0.9
(green diamonds);and D‖ = 1, D⊥ = 0.95 (red triangles).The rotational diffusion constant and
the initial angle θ0, respectively. The solid lines are fit to the data using Eq.(2.46).The fit yields
the overall constant A . The estimated of values of A from the fit are 0.025132± 0.000014
for D‖ = 1, D⊥ = 0.5, 0.025144± 0.000011 for D‖ = 1, D⊥ = 0.8, 0.025166± 0.000012 for D‖ = 1,
D⊥ = 0.9 and 0.025148±0.000019 for D‖ = 1, D⊥ = 0.95

In Fig.5, we show a plot of A as a function of the scaled variable
√

8Γ̄δ t
π2 . Since the

value of Γ̄ is a priori not known. A can be fixed by fitting the data with the form

of p(t) given in the Eq.(2.45). This fit yields the value of A . In Fig.(2.2), we have

shown this fitting for different choices of diffusivities with A as the fit parameter. The

value of A is solely determined by the integration time step used to estimate p(t), and

the estimated values from the fit are given in the caption of Fig.(2.2). An alternative

way to determine A is to measure the persistence probability of an isotropic particle

in which case p(t) ∼ A /
√

2Dt. Once this number is known, we look at the quantity

t1/2 p(t)/A . In the limit of t→ 0, t1/2 p(t)/A → (2D̄+∆D)−1/2, and in the limit of t→∞,

t1/2 p(t)/A → (2D̄)−1/2.

Once we know the two diffusivities and therefore D̄, the rotational diffusion constant
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Figure 2.3 Plot of t1/2 p(t) for different choices of the rotational diffusion constant of the
anisotropic particle: Dθ = 0.01 (blue circles), Dθ = 0.1 (orange squares), and Dθ = 1 (green
diamonds). The translational diffusion constants in all three cases were D‖ = 1 and D⊥ = 0.5,
and the initial orientation was fixed at θ0 = 0

can be determined from the quantity
(
A /
√

2D̄t p(t)
)2

, which goes as

p̃(t)≡

(
A√

2D̄t p(t)

)2

= 1+
(

∆D
D̄

)(
1− e−4Dθ t

8Dθ t

)
(2.47)

A fit to p̃(t) with Dθ as a fit parameter would yield the value of the rotational dif-

fusion coefficient. This is illustrated in the Fig.(2.5). In fact, fitting the data for p̃ with

∆D/D̄ and Dθ as fit parameters yields very good estimates for ∆D/D̄ and Dθ . A com-

parison of these values obtained from the fit with the actual values is shown on the

Table 2.1

It should be pointed out that the values of ∆D/D̄ and Dθ obtained from the fit are

sensitive to the value A , and a careful estimation of A is of paramount importance.

Before we conclude, we would like to remark on the expression for the persistence
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Figure 2.4 Plot of t1/2 p(t)/A for different choices of translational diffusivities of the anisotropic
particle: D‖ = 1, D⊥ = 0.5 (blue circles); D‖, D⊥ = 0.9 (green diamonds); D‖ = 1,D⊥ = 0.95
(red triangles). The rotational diffusion constant and the initial orientation were fixed at Dθ = 1
and θ0 = 0, respectively. The black solid line indicates the value of 1/

√
2D̄+∆D = 1/

√
D‖ =

1/
√

2, whereas the dashed lines indicates the values of 1/
√

2D̄. For the choice translational
diffusivities, the indicated values from top are 1/

√
2D̄≈ 0.8165, 0.7454, 0.7255, and 0.7161.

∆D/D̄ Dθ Estimated ∆D/D̄ Estimated Dθ

0.01 0.6698±0.0018 0.0117±0.0002
2/3 0.10 0.6799±0.002 0.1146±0.0009

1.00 0.681±0.0295 1.076±0.06

Table 2.1 A comparison of the actual values of ∆D/D̄ and Dθ used in the simulations to those
obtained from the fit of the data for A /2D̄t p2(t)

probability when the rotational motion is decoupled from the translational motion of

the colloid. The trivial scenario when this happens is when the particle is isotropic and

the difference in mobilities vanish. Consequently, p(t) ∼ t−1/2 and p̃(t)→ 1. The other

scenario when this happens is when the rotational diffusion coefficient is large and

the particle rotates very fast. As a result, the term e−4Dθ t decays faster and p̃(t) ∼ t−1

asymptotically.
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Figure 2.5 Plot of the dimensionless quantity p̄(t)[see Eq. (2.47)] as a function of time for
different choices of the rotational diffusion constant of the anisotropic particle: Dθ = 0.01 (blue
circles), Dθ = 0.1 (orange squares), and Dθ = 1 (green diamonds). The translation diffusion
constants in all cases were D‖ = 1 and D⊥ = 0.5. The initial orientation in all the cases were
fixed at θ0 = 0. The solid lines are fit to the data using (Eq. (2.47)) using ∆D/D̄ and Dθ as
fit parameters. The estimated values of these parameters from the fit are compared with the
actual values used in the simulation in Table

2.5 Conclusion

In this chapter, we have explored the effects of shape asymmetry on the dynamics of

particle movement. In particular, we have studied the diffusion coefficient and persis-

tence of a free ellipsoidal particle. It is well known that for short times the behavior is

anisotropic but becomes isotropic for a longer time. It is usually assumed that for practi-

cal purposes the short-time behavior can be neglected. The movement of an asymmetric

particle can be described by the Langevin Equations for a point particle with an isotropic

translational diffusion coefficient given by the average of the diffusion coefficients along

the major axis of the ellipsoidal particle. The two main results studied here are,

• The translational diffusion coefficients of an asymmetrical free particle. The de-

termination of the rotational and the translational diffusion coefficients has been
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Figure 2.6 Plot of the dimensionless quantity p̄(t)− 1[see Eq. (2.47)] as a function of time for
different choices of the rotational diffusion constant of the anisotropic particle: Dθ = 0.01 (blue
circles), Dθ = 0.1 (orange squares), and Dθ = 1 (green diamonds). The translation diffusion
constants in all cases were D‖ = 1 and D⊥ = 0.5. The initial orientation in all the cases were
fixed at θ0 = 0. The solid lines are fit to the data using (Eq. (2.47)) using ∆D/D̄ and Dθ as fit
parameters. The dashed line is a plot of t−1 indicating the asymptotic decay given in Eq. (2.47)

explicitly carried out for an anisotropic particle that undergoes free Brownian mo-

tion.

• Persistence probability of the free ellipsoidal particle. The persistence probability

is computed from the two-time correlation function using a suitable transforma-

tion in space and time. Additionally, the analytical expression for p(t) has been

confirmed by the numerical simulation of the underlying stochastic dynamics.

The phenomena studied here, suggest that there exists a strong relationship between

molecular asymmetry and the kinetics of diffusion-limited reactions on the surfaces,

membranes or in crowded environments which are found inside cells.
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Figure 2.7 Scaled plot of the overall constant A for different independent configurations, as
indicated in the legend for diffusivities D‖ = 1.0, D⊥ = 0.5 and D‖ = 4, D⊥ = 2. In both cases,
the rotational diffusivity was fixed at Dθ = 1. The solid line is a plot of y = x.

64



Bibliography

[1] Bernard Derrida, Vincent Hakim, and Vincent Pasquier. Exact first-passage expo-

nents of 1d domain growth: Relation to a reaction-diffusion model. Phys. Rev.
Lett., 75:751–754, Jul 1995.

[2] Satya N. Majumdar, Clément Sire, Alan J. Bray, and Stephen J. Cornell. Nontrivial

exponent for simple diffusion. Phys. Rev. Lett., 77:2867–2870, Sep 1996.

[3] Satya N. Majumdar, Alan J. Bray, S. J. Cornell, and C. Sire. Global persistence

exponent for nonequilibrium critical dynamics. Phys. Rev. Lett., 77:3704–3707,

Oct 1996.

[4] Satya N. Majumdar and Clément Sire. Survival probability of a gaussian non-

markovian process: Application to the T = 0 dynamics of the ising model. Phys.
Rev. Lett., 77:1420–1423, Aug 1996.

[5] J. Krug, H. Kallabis, S. N. Majumdar, S. J. Cornell, Alan J. Bray, and C. Sire.

Persistence exponents for fluctuating interfaces. Phys. Rev. E, 56:2702–2712, Sep

1997.

[6] T. J. Newman and Z. Toroczkai. Diffusive persistence and the âĂIJsign-timeâĂİ
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3
Persistence in Brownian motion
of a Harmonically Trapped
Ellipsoidal Particle

In this chapter, we are going to study the persistence of the ellipsoidal Brownian particle in

a harmonic potential. This chapter tells the theory used for experimental purposes that use

trapping and tracking techniques to measure the displacements. In experiments, the tracking

of colloidal particles is usually done with laser traps and consequently, it is pertinent to discuss

the scenario where an ellipsoidal particle is trapped in a harmonic trap is isotropic and there is

no preferential direction of alignment. Further, if we suppose strong confinement, then at late

times the deviations from the mean position of the particle are practically zero. Accordingly,

the particle rotates freely so that the angular displacements obey Gaussian statistics. We have

provided the analytical expression of p(t) for the ellipsoidal particle in a harmonic potential and

study the shape asymmetry and later on, we show that in the absence of shape asymmetry, the

result reduces to the case of an isotropic particle. The analytical expression of p(t) is validated

with the numerical simulation.
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3.1 Introduction

We now present the results of a study of a Brownian particle in a harmonic potential.

This model is used to define a Brownian particle in the equilibrium position of a poten-

tial and a small displacement is considered to be harmonic. The particle we are using

are of the dimension of a few micrometers and they are in a thermal bath.

In the experiments, the tracking of colloidal particles is usually conducted with the

help of laser trapping, therefore it is a very much useful physical phenomenon to discuss

the scenario where an ellipsoidal particle is trapped in a harmonic trap. In this chapter,

we assume that the harmonic trap is isotropic in nature which means that there will

be no preferential direction of alignment. We also are assuming that the rotational

dynamics is decoupled from the translational degrees of freedom. This is most certainly

true for a weak confinement of the particle or a small asymmetry. If the confinement is

taken very strong, then at later times, the orientational degrees of freedom undergo a

rotational Brownian motion with a renormalized diffusion coefficient1. We confirmed

these from a separate molecular dynamic simulation of anisotropic bodies that preserve

the hydrodynamics in the fluid.

The main aim of this chapter is to study the persistence2–35 of an ellipsoidal Brow-

nian particle in a harmonic trap. The effect of the harmonic confinement has been

studied using the perturbative expansion method and we have studied the effect of the

shape asymmetry as well. We have studied the effect of the large rotational diffusion

constant of the asymmetric particle on the mean-squared displacement.

This chapter is organized as follows, the first section 3.2 tells about the basic math-

ematical model of the particle using the Langevin dynamic equation, in the second

section 3.2.1, we have studied the perturbation effect in the general solution, and using

that perturbative expansion we have calculated the correlation of different variables of

different orders. In the third section 3.3, we have studied the Mean-squared displace-

ment for large rotational diffusion constant. In the fourth section 3.4, we have studied

the persistence of the ellipsoidal particle in a harmonic trap and at last, we concluded

with section 3.5

3.2 Harmonically Trapped Ellipsoidal Particle

We consider an ellipsoidal particle in two-dimensions having mobilities Γ‖ and Γ⊥ along

the longer and the shorter axes of the particle. We denoted the body frame x and y direc-
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tions as the longer and the shorter axes respectively. The particle has a single rotation

mobility Γθ . The particle is immersed in a heat bath of a temperature T . So the trans-

lational diffusion coefficients are given by D‖ = kBT Γ‖, D⊥ = kBT Γ⊥ and Dθ = kBT Γθ .

The potential confinement has the form U(x,y) = κ(x2 + y2)/2 and the corresponding

Langevin equation from Eq.(2.4) takes the form,

∂x
∂ t

=−κx
(

Γ+
1
2

∆Γcosθ(t)
)
− 1

2
κy∆Γsinθ(t)+ηx(t)

∂y
∂ t

=−κx∆Γsinθ(t)−κy
(

Γ− 1
2

∆Γcosθ(t)
)
+ηy(t)

∂θ

∂ t
= ηθ

(3.1)

Here Γ = (Γ‖+Γ⊥)/2 and ∆Γ = Γ‖−Γ⊥ and the correlation of the thermal noise follows

Eq.(2.2) and Eq.(2.9). In the lab frame, the displacements are related to the body frame

as Eq.(2.3).

3.2.1 Perturbative Expansion

Defining the vector RRR≡ (x,y)T , the equation takes the simple form

ṘRR = κ

[
Γ1+

∆Γ

2
R(t)

]
RRR(t)+η(t) (3.2)

Where

∆R =

[
cos2θ sin2θ

sin2θ −cos2θ

]
(3.3)

Eq.(3.1) reduces to that of isotropic particle in absence of any asymmetry and the cor-

rection term due to asymmetry comes from the combination of κ∆Γ/2. Eq.(3.1) is

basically non-Markovian in nature. Since our interest is to calculate persistence, the

non-Markovian nature of the process plays a significant role in determining p(t). We

used here weak confinement, which gives κ values small.

To solve the above equation, we use the perturbative expansion

RRR(t) = RRR0(t)−
(

κ∆Γ

2

)
RRR1(t)+

(
κ∆Γ

2

)2

RRR2(t)+O

(
κ∆Γ

2

)3

(3.4)

Substituting Eq.(3.4) in Eq.(3.2) and keeping up to the linear order in κ∆Γ/2 we obtain
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the equations for RRR(t) and RRR1(t) as

ṘRR0 =−κΓRRR0(t)+η(t)

ṘRR1 =−κΓRRR1(t)+R(t)RRR0(t)

ṘRR2 =−κΓRRR2(t)+R(t)RRR1(t)

(3.5)

The solutions for the Eq.(3.5) together with the initial condition RRR(0) = 0 take the form

RRR0(t) =
∫ t

0
dt ′e−κΓ(t−t ′)

η(t)

RRR1(t) =
∫ t

0
dt ′e−κΓ(t−t ′)R(t)RRR0(t)

RRR2(t) =
∫ t

0
dt ′e−κΓ(t−t ′)R(t)RRR1(t)

(3.6)

In explicit form, the equal time correlation matrix Ri(t)R j(t) is then given by

〈Ri(t)R j(t)〉η ,θ = 〈R0,i(t)R0, j(t)〉η ,θ −
(

κ∆Γ

2

)
〈R0,i(t)R1, j(t)〉η ,θ

+

(
κ∆Γ

2

)2[
〈R1,i(t)R1, j(t)〉η ,θ +2〈R0,i(t)R2, j(t)〉η ,θ

]
+O

(
κ∆Γ

2

)3

(3.7)

where we have used the fact that 〈R0,iR1, j〉 = 〈R0, jR1,i〉. Further, note that the thermal

noise correlation given in Eq.(2.8) and Eq.(2.9) gives an additional factor of κ∆Γ/2 in

the correlation terms 〈Rα,i(t)Rβ , j(t)〉, where α, β denotes the order of the perturbation

series.

We next proceed to calculate this equal time correlation matrix using the solutions

in Eq.(3.6). The correlation matrix of RRR0(t) averaged over the translational and the

rotational noise is then given by,

〈RRR0(t)RRR0(t)〉η ,θ =
∫ t

0
dt ′
∫ t

0
dt ′′e−κΓ(t−t ′)e−κΓ(t−t ′′)〈η(t ′)η(t ′′)〉η ,θ (3.8)

where in correlation of the thermal noise is understood as an outer product of the
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variable ηx and ηy. Using Eq.(2.8) and Eq.(2.9), the calculation is straight forward.

〈RRR0(t)RRR0(t)〉η ,θ =
∫ t

0
dt ′
∫ t

0
dt ′′e−κΓ(t−t ′)e−κΓ(t−t ′′)

[
Γ1+

∆Γ

2
R(t ′)

]
δ (t− t ′)

= 2kBTe−2κΓt
∫ t

0
dt ′e2κΓt ′

[
Γ1+

∆Γ

2
〈R(t ′)〉η ,θ

]
=

kBT
κ

1
(

1− e−2κΓt
)
+2kBTe−2κΓt

∫ t

0
dt ′e2κΓt ′∆Γ

2
R(θ0)e−4Dθ t ′

=
kBT
κ

1
(

1− e−2κΓt
)
+∆DR(θ0)e−2κΓt

(
e(2κΓ−4Dθ )t−1

2κΓ−4Dθ

)
=

kBT
κ

1
(

1− e−2κΓt
)
+∆DR(θ0)

(
e−4Dθ t− e−2κΓt

2κΓ−4Dθ

)
(3.9)

More explicitly, the mean-square displacement along the x and y direction are given by

〈x2
0(t)〉η ,θ =

kBT
κ

(
1− e−2κΓt)+∆Dcos2θ0

(
e−4Dθ t− e−2κΓt

2κΓ−4Dθ

)
(3.10)

and

〈y2
0(t)〉η ,θ =

kBT
κ

(
1− e−2κΓt)−∆Dcos2θ0

(
e−4Dθ t− e−2κΓt

2κΓ−4Dθ

)
(3.11)

The cross-correlation function x0(t)y0(t) reads

〈x0(t)y0(t)〉η ,θ = ∆Dsin2θ0

(
e−4Dθ t− e−2κΓt

2κΓ−4Dθ

)
(3.12)

In the limit of κ→ 0, Eqs.(3.10),(3.11) and (3.12) reproduce the correct result of a free

diffusion of an anisotropic particle given in Eqs.(2.30) and (2.31). On the other hand,

for ∆Γ→ 0 Eqs.(3.10), (3.11) and (3.12) yields the correlation matrix for an isotropic

Brownian particle in a harmonic trap.

Our next attempt is to look into the correction to the above expression that comes

from RRR1(t) and RRR2(t). For this, we rewrite the solutions for RRR1(t) and RRR2(t) in explicit

form as

R1,i(t) =
∫ t

0
dt ′e−κΓ(t−t ′)

∑
j

Ri j(t ′)R0, j(t ′)

R2,i(t) =
∫ t

0
dt ′e−κΓ(t−t ′)

∑
j

Ri j(t ′)R1, j(t ′)
(3.13)

where the subscripts are for the two spatial dimensions and can take the values 1 and

2. Using Eq.(3.7), we proceed to calculate the terms 〈R0,i(t)R0, j(t)〉η ,θ , 〈R1,i(t)R1, j(t)〉η ,θ

and 〈R2,i(t)R2, j(t)〉η ,θ . The detailed calculation of the three terms are calculated here.
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3.2.1.1 Calculation of 〈R0,i(t)R1, j(t)〉

〈R0,i(t1)R0, j(t2)〉η =
∫ t1

0
dt ′2

∫ t2

0
dt ′2e−κΓ(t1−t ′1)e−κΓ(t2−t ′2)〈ηi(t ′1)η j(t ′2)〉η

= 2kBTe−κΓ(t1+t2)
∫ t1

0
dt ′2

∫ t2

0
dt ′2e−κΓ(t ′1+t ′2)

[
Γδi j +

∆Γ

2
Ri j(t ′1)

]
δ (t ′1− t ′2)

= 2kBT Γδi je−κΓ(t1+t2)
∫ t1

0
dt ′2

∫ t2

0
dt ′2e−κΓ(t ′1+t ′2)δ (t ′1− t ′2)

+2kBT
∆Γ

2
e−κΓ(t1+t2)

∫ t1

0
dt ′2

∫ t2

0
dt ′2e−κΓ(t ′1+t ′2)Ri j(t ′1)δ (t

′
1− t ′2)

= 2kBT Γδi je−κΓ(t1+t2)
∫ min(t1,t2)

0
dt ′1e2κΓt ′1

+2kBT
∆Γ

2
e−κΓ(t1+t2)

∫ min(t1,t2)

0
dt ′1e2κΓt ′1Ri j(t ′1)

=
kBT
κ

δi j
[
e−κΓ|t1−t2|− e−κΓ(t1+t2)

]
+ kBT ∆Γe−κΓ(t1+t2)

∫ min(t1,t2)

0
dt ′1e2κΓt ′1Ri j(t ′1)

(3.14)

〈R0,i(t)R1, j(t)〉η ,θ =

〈
R0,i(t)

∫ t

0
dt ′e−κΓ(t−t ′)

∑
k

R jk(t ′)R0,k(t ′)
〉

η ,θ

=

〈∫ t

0
dt ′e−κΓ(t−t ′)

∑
k

R jk(t ′)〈R0,i(t)R0,k(t ′)〉η
〉

θ

(3.15)

Using the final form of 〈R0,i(t1)R0, j(t2)〉 from Eq.(3.14) and identifying t1 ≡ t, t2 ≡ t ′ with

t ′ < t we get

〈R0,i(t)R0,k(t ′)〉=
kBT
κ

δi j
[
e−κΓ(t−t ′)− e−κΓ(t+t ′)]+ kBT ∆Γe−κΓ(t+t ′)

∫ t ′

0
dt ′1e2κΓt ′1Rik(t ′1)

(3.16)

Substituting Eq.(3.16) in Eq.(3.15) we get

〈R0,i(t)R1, j(t)〉η ,θ =

〈∫ t

0
dt ′e−κΓ(t−t ′)

∑
k

R jk(t ′)
[

kBT
κ

δik
(
e−κΓ(t−t ′)

− e−κΓ(t+t ′))+ kBT ∆Γe−κΓ(t+t ′)
∫ t ′

0
dt ′1e2κΓt ′1Rik(t ′1)

]〉
θ

=

(
kBT
κ

)
R ji(θ0)e−2κΓt

∫ t

0
dt ′e−4Dθ t ′(e2κΓt ′−1

)
+ kBT ∆Γe−2κΓt

∫ t

0
dt ′
∫ t ′

0
dt ′1e2κΓt ′1

〈
∑
k

R jk(t ′)Rik(t ′1)
〉

θ

=

(
kBT
κ

)
R ji(θ0)e−2κΓt

∫ t

0
dt ′
(
e(2κΓ−4Dθ )t ′− e−4Dθ t ′)

+ kBT ∆Γe−2κΓt
∫ t

0
dt ′
∫ t ′

0
dt ′1e2κΓt ′1

〈
∑
k

R jk(t ′)Rik(t ′1)
〉

θ

(3.17)
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For the mean-square displacement along the x and the y direction, the second term in

the last line of Eq.(3.17) yeilds〈
∑
k

Rik(t ′)Rik(t ′1)
〉

θ

= 〈cos2θ(t ′)cos2θ(t ′1)+ sin2θ(t ′)sin2θ(t ′1)〉θ = 〈cos2(θ(t ′)−θ(t ′1))〉θ〈
∑
k

Rik(t ′)Rik(t ′1)
〉

θ

= e−4Dθ (t ′−t ′1)

(3.18)

On the other hand for i 6= j, the term 〈∑k R jk(t ′)Rik(t ′1)〉θ = 0. Using Eq.(3.18) the

contribution to the mean-square displacement along the x-direction becomes

〈x0(t)x1(t)〉η ,θ =

(
kBT
κ

)
cos2θ0e−2κΓt

(
e(2κΓ−4Dθ )t−1
(2κΓ−4Dθ )

− 1− e−4Dθ t

4Dθ

)

+ kBT ∆Γe−2κΓt
∫ t

0
dt ′
∫ t ′

0
dt ′1e2κΓt ′1e−4Dθ (t−t ′1)

=

(
kBT
κ

)
cos2θ0

(
e−4Dθ t− e−2κΓt

(2κΓ−4Dθ )
− e−2κΓt− e(2κΓ+4Dθ )t

4Dθ

)

+ kBT ∆Γe−2κΓt
∫ t

0
dt ′e−4Dθ t ′ e

(2κΓ+4Dθ )t ′−1
2κΓ+4Dθ

=

(
kBT
κ

)
cos2θ0

(
e−4Dθ t− e−2κΓt

(2κΓ−4Dθ )
− e−2κΓt− e(2κΓ+4Dθ )t

4Dθ

)

+ kBT ∆Γe−2κΓt

(
e2κΓt−1

2κΓ(2κΓ+4Dθ )
− 1− e−4Dθ t

4Dθ (2κΓ+4Dθ )

)

=

(
kBT
κ

)
cos2θ0

(
e−4Dθ t− e−2κΓt

(2κΓ−4Dθ )
− e−2κΓt− e(2κΓ+4Dθ )t

4Dθ

)

+ kBT ∆Γ

(
1− e−2κΓt

2κΓ(2κΓ+4Dθ )
− e−2κΓt− e−(2κΓ+4Dθ )t

4Dθ (2κΓ+4Dθ )

)

(3.19)

and that along the y-direction takes the form

〈y0(t)y1(t)〉η ,θ =−
(

kBT
κ

)
cos2θ0

(
e−4Dθ t− e−2κΓt

(2κΓ−4Dθ )
− e−2κΓt− e(2κΓ+4Dθ )t

4Dθ

)

+ kBT ∆Γ

(
1− e−2κΓt

2κΓ(2κΓ+4Dθ )
− e−2κΓt− e−(2κΓ+4Dθ )t

4Dθ (2κΓ+4Dθ )

) (3.20)
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3.2.1.2 Calculation of 〈R1,i(t)R1, j(t)〉

The correlation matrix now takes the form

〈R1,i(t)R1, j(t)〉η ,θ =
∫ t

0
dt ′
∫ t

0
dt ′′e−κΓ(t−t ′)e−κΓ(t−t ′′)

〈
∑
k

Rik(t ′)R0,k(t ′)∑
l

R jl(t ′′)R0,l(t ′′)
〉

η ,θ

(3.21)

Rearranging and averaging first over the translational noise we get,

〈R1,i(t)R1, j(t)〉η ,θ =
∫ t

0
dt ′
∫ t

0
dt ′′e−κΓ(t−t ′)e−κΓ(t−t ′′)

〈
∑
k,l

Rik(t ′)R jl(t ′′)〈R0,k(t ′)R0,l(t ′′)〉η
〉

θ

(3.22)

〈R1,i(t)R1, j(t)〉η ,θ = 2kBT
∫ t

0
dt ′
∫ t

0
dt ′′e−κΓ(t−t ′)e−κΓ(t−t ′′)〈

∑
k,l

Rik(t ′)R jl(t ′′)
∫ t ′

0
dt ′1

∫ t ′′

0
dt ′2e−κΓ(t ′−t ′1)e−κΓ(t ′′−t ′2)

[
Γδkl +

∆Γ

2
Rkl(t ′1)

]
δ (t ′1− t ′2)

〉
(3.23)

Integrating over delta function and ignoring the term proportional to ∆Γ we get

〈R1,i(t)R1, j(t)〉η ,θ = 2kBT Γe−2κΓt
∫ t

0
dt ′
∫ t

0
dt ′′

∫ min(t ′,t ′′)

0
dt ′1e2κΓt ′1

〈
∑
k,l

Rik(t ′)R jl(t ′′)δkl

〉
θ

〈R1,i(t)R1, j(t)〉η ,θ = 2kBT Γe−2κΓt
∫ t

0
dt ′
∫ t

0
dt ′′

∫ min(t ′,t ′′)

0
dt ′1e2κΓt ′1

〈
∑
k,l

Rik(t ′)R jk(t ′′)
〉

θ

(3.24)

In order to proceed further, we look at 〈x2
1(t)〉η ,θ and 〈y2

1(t)〉η ,θ by setting i = j and

subsequently using Eq.(3.24)

〈x2
1(t)〉η ,θ = 2kBT Γe−2κΓt

∫ t

0
dt ′
∫ t

0
dt ′′

∫ min(t ′,t ′′)

0
dt ′1e2κΓt ′1〈cos2[θ(t ′)−θ(t ′′)]〉

θ
(3.25)

General form of the identity used as

〈eim∆θ(t ′)−in∆θ(t ′′)〉θ = e−Dθ (m2t ′+n2t ′′−2mnmin(t ′,t ′′)) (3.26)

Using the above relation, the averages of the trigonometric functions over the rotational

noise take the form

〈cos2[θ(t ′)−θ(t ′′)]〉θ = e−4Dθ (t ′+t ′′−2min(t ′,t ′′))

〈cos2[θ(t ′)+θ(t ′′)]〉θ = cos4θ0e−4Dθ (t ′+t ′′+2min(t ′,t ′′))

〈sin2[θ(t ′)+θ(t ′′)]〉θ = sin4θ0e−4Dθ (t ′+t ′′+2min(t ′,t ′′))

〈sin2[θ(t ′)−θ(t ′′)]〉θ = 0

(3.27)

76



Substituting for 〈cos2[θ(t ′)−θ(t ′′)]〉θ from Eq.(3.27) we get

〈x2
1(t)〉η ,θ = 2kBT Γe−2κΓt

∫ t

0
dt ′
∫ t

0
dt ′′

∫ min(t ′,t ′′)

0
dt ′1e2κΓt ′1e−4Dθ (t ′+t ′′−2min(t ′,t ′′)) (3.28)

〈x2
1(t)〉η ,θ = 2kBT Γe−2κΓt

∫ t

0
dt ′
∫ t

0
dt ′′

e2κΓmin(t ′,t ′′)−1
2κΓ

e−4Dθ (t ′+t ′′−2min(t ′,t ′′)) (3.29)

〈x2
1(t)〉η ,θ =

(
kBT
κ

)
e−2κΓt

[∫ t

0
dt ′
∫ t ′′

0
dt ′′
(

e2κΓt ′′−1
)

e−4Dθ (t ′−t ′′)

+
∫ t

0
dt ′
∫ t

t ′
dt ′′
(

e2κΓt ′−1
)

e−4Dθ (t ′′−t ′)
]

(3.30)

〈x2
1(t)〉η ,θ =

(
kBT
κ

)
e−2κΓt

[∫ t

0
dt ′e−4Dθ t ′

∫ t ′

0
dt ′′
(

e(2κΓ+4Dθ )t ′′− e4Dθ t ′′
)

+
∫ t

0
dt ′
(

e2κΓt ′−1
)

e4Dθ t ′
∫ t

t ′
dt ′′e−4Dθ t ′′

] (3.31)

〈x2
1(t)〉η ,θ =

(
kBT
κ

)
e−2κΓt

[∫ t

0
dt ′e−4Dθ t ′

[e(2κΓ+4Dθ )t ′−1
2κΓ+4Dθ

− e4Dθ t ′−1
4Dθ

]
+
∫ t

0
dt ′
(

e2κΓt ′−1
)

e4Dθ t ′
[e−4Dθ t ′− e−4Dθ t

4Dθ

]] (3.32)

〈x2
1(t)〉η ,θ =

(
kBT
κ

)
e−2κΓt

[∫ t

0
dt ′
(

e2κΓt ′

2κΓ+4Dθ

− e−4Dθ t ′

2κΓ+4Dθ

− 1− e−4Dθ t ′

4Dθ

)
+
∫ t

0
dt ′
(

e2κΓt ′−1
4Dθ

)
− e−4Dθ t

∫ t

0
dt ′
(

e(2κΓ+4Dθ )t ′− e4Dθ t ′

4Dθ

)] (3.33)

〈x2
1(t)〉η ,θ =

(
kBT
κ

)
e−2κΓt

[(
e2κΓt−1

2κΓ(2κΓ+4Dθ )
− 1− e−4Dθ t

4Dθ (2κΓ+4Dθ )
− t

4Dθ

+
1− e−4Dθ t

16D2
θ

)
+

(
e2κΓt−1
4Dθ 2κΓ

)
− t

4Dθ

− e−4Dθ t
(

e(2κΓ+4Dθ )t−1
4Dθ (2κΓ+4Dθ )

− e4Dθ t−1
16D2

θ

)]
(3.34)

〈x2
1(t)〉η ,θ =

(
kBT
κ

)
e−2κΓt

[(
e2κΓt−1

2κΓ(2κΓ+4Dθ )
− 1− e−4Dθ t

4Dθ (2κΓ+4Dθ )
− t

4Dθ

+
1− e−4Dθ t

16D2
θ

)
+

(
e2κΓt−1
4Dθ 2κΓ

− t
4Dθ

− e2κΓt−1
4Dθ (2κΓ+4Dθ )

− 1− e−4Dθ t

4Dθ (2κΓ+4Dθ )
− 1− e−4Dθ t

16D2
θ

)]
(3.35)

〈x2
1(t)〉η ,θ =

(
kBT
κ

)
e−2κΓt

[
e2κΓt−1

κΓ(2κΓ+4Dθ )
− t

4Dθ

+κΓ
1− e−4Dθ t

4D2
θ
(2κΓ+4Dθ )

]
(3.36)

77



〈x2
1(t)〉η ,θ =

(
kBT
κ

)[
1− e−2κΓt

κΓ(2κΓ+4Dθ )
− te−2κΓt

4Dθ

+κΓ
e−2κΓt− e−(2κΓ+4Dθ )t

4D2
θ
(2κΓ+4Dθ )

]
(3.37)

3.2.1.3 Calculation Of 〈R0,i(t)R2, j(t)〉

〈R0,i(t1)R1, j(t2)〉η =

〈
R0,i(t1)

∫ t2

0
dt ′2e−κΓ(t2−t ′2)∑

k
R jk(t ′2)R0,k(t ′2)

〉
η

〈R0,i(t1)R1, j(t2)〉η =
∫ t2

0
dt ′2e−κΓ(t2−t ′2)∑

k
R jk(t ′2)

〈
R0,i(t1)R0,k(t ′2)

〉
η

〈R0,i(t1)R1, j(t2)〉η =
∫ t2

0
dt ′2e−κΓ(t2−t ′2)∑

k
R jk(t ′2)

[
kBT
κ

δik

[
e−κΓ(t1−t ′2)− e−κΓ(t1+t ′2)

]
+ kBT ∆Γe−κΓ(t1+t ′2)

∫ min(t1,t ′2)

0
dt ′′e2κΓt ′′Rik(t ′′)

]
〈R0,i(t1)R1, j(t2)〉η =

(kBT
κ

)
e−κΓ(t1+t2)

∫ t2

0
dt ′2eκΓt ′2R ji(t ′2)

(
eκΓt ′2− e−κΓt ′2

)
+ kBT ∆Γe−κΓ(t1+t2)

∫ min(t1,t ′2)

0
dt ′′e2κΓt ′′

∑
k

R jk(t ′2)Rik(t ′′)

(3.38)

〈R0,i(t1)R1, j(t2)〉η ,θ =
(kBT

κ

)
e−κΓ(t1+t2)

∫ t2

0
dt ′2eκΓt ′2〈R ji(t ′2)〉θ

(
eκΓt ′2− e−κΓt ′2

)
+ kBT ∆Γe−κΓ(t1+t2)

∫ min(t1,t ′2)

0
dt ′′2 e2κΓt ′′

∑
k
〈R jk(t ′2)Rik(t ′′)〉θ

〈R0,i(t1)R1, j(t2)〉η ,θ =
(kBT

κ

)
R ji(θ0)e−κΓ(t1+t2)

∫ t2

0
dt ′2e−4Dθ t ′2

(
e2κΓt ′2−1

)
+ kBT ∆Γe−κΓ(t1+t2)

∫ t2

0
dt ′2

∫ min(t1,t ′2)

0
dt ′′e2κΓt ′′

∑
k
〈R jk(t ′2)Rik(t ′′)〉θ

(3.39)
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〈x0(t1)x1(t2)〉η ,θ =
(kBT

κ

)
cos2θ0e−κΓ(t1+t2)

∫ t2

0
dt ′2
(

e(2κΓ−4Dθ )t ′2− e−4Dθ t ′2
)

+ kBT ∆Γe−κΓ(t1+t2)
∫ t2

0
dt ′2

∫ t ′2

0
dt ′′e2κΓt ′′

∑
k
〈Rik(t ′2)Rik(t ′′)〉θ

〈x0(t1)x1(t2)〉η ,θ =
(kBT

κ

)
cos2θ0e−κΓ(t1+t2)

∫ t2

0
dt ′2
(

e(2κΓ−4Dθ )t ′2− e−4Dθ t ′2
)

+ kBT ∆Γe−κΓ(t1+t2)
∫ t2

0
dt ′2

∫ t ′2

0
dt ′′e2κΓt ′′

∑
k
〈cos2(θ(t ′2)−θ(t ′′))〉θ

〈x0(t1)x1(t2)〉η ,θ =
(kBT

κ

)
cos2θ0e−κΓ(t1+t2)

∫ t2

0
dt ′2
(

e(2κΓ−4Dθ )t ′2− e−4Dθ t ′2
)

+ kBT ∆Γe−κΓ(t1+t2)
∫ t2

0
dt ′2

∫ t ′2

0
dt ′′e2κΓt ′′e−4Dθ (t ′2+t ′′−2min(t ′2,t

′′))

〈x0(t1)x1(t2)〉η ,θ =
(kBT

κ

)
cos2θ0e−κΓ(t1+t2)

(
e(2κΓ−4Dθ )t2−1

2κΓ−4Dθ

− 1− e−4Dθ t2

4Dθ

)
+ kBT ∆Γe−κΓ(t1+t2)

∫ t2

0
dt ′2

∫ t ′2

0
dt ′′e2κΓt ′′e−4Dθ (t ′2−t ′′)

〈x0(t1)x1(t2)〉η ,θ =
(kBT

κ

)
cos2θ0e−κΓt1

(
e−4Dθ t2− e−κΓt2

2κΓ−4Dθ

− e−κΓt2− e−(4Dθ+κΓ)t2

4Dθ

)
+ kBT ∆Γe−κΓ(t1+t2)

∫ t2

0
dt ′2

e2κΓt ′2− e−4Dθ t ′2

2κΓ+4Dθ

〈x0(t1)x1(t2)〉η ,θ =
(kBT

κ

)
cos2θ0e−κΓt1

(
e−4Dθ t2− e−κΓt2

2κΓ−4Dθ

− e−κΓt2− e−(4Dθ+κΓ)t2

4Dθ

)
+ kBT ∆Γe−κΓ(t1+t2)

[
e2κΓt2−1

2κΓ(2κΓ+4Dθ )
− 1− e−4Dθ t2

4Dθ (2κΓ+4Dθ )

]
(3.40)

〈x0(t1)x1(t2)〉η ,θ =
(kBT

κ

)
cos2θ0e−κΓt1

(
e(κΓ−4Dθ )t2− e−κΓt2

2κΓ−4Dθ

− e−κΓt2− e(4Dθ+κΓ)t2

4Dθ

)
+
(kBT

κ

)(
∆Γ

2Γ

)
e−κΓt1

[
eκΓt2− e−κΓt2

2κΓ+4Dθ

− 2κΓ

4Dθ

e−κΓt2− e−(2κΓ+4Dθ )t2

κΓ+4Dθ

]
(3.41)

〈R0,i(t)R2, j(t)〉η ,θ =

〈
R0,i(t)

∫ t

0
dt ′e−κΓ(t−t ′)

∑
k

R jk(t ′)R1,k(t ′)
〉

η ,θ

=
∫ t

0
dt ′e−κΓ(t−t ′)

〈
∑
k

R jk(t ′)〈R0,i(t)R1,k(t ′)〉η
〉

θ

(3.42)

〈R0,i(t)R1,k(t ′)〉η =
(kBT

κ

)
e−κΓ(t+t ′)

∫ t ′

0
dt ′eκΓt ′2Rki(t ′2)

(
eκΓt ′2− e−κΓt ′2

)
+ kBT ∆Γe−κΓ(t+t ′)

∫ t ′

0
dt ′′e2κΓt ′′

∑
l

Rkl(t ′2)Ril(t ′′)
(3.43)
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Neglecting the second term in Eq.(3.43), we have

〈R0,i(t)R2, j(t)〉η ,θ =
∫ t

0
dt ′e−κΓ(t−t ′)

〈
∑
k

R jk(t ′)
(kBT

κ

)
e−κΓ(t+t ′)

∫ t ′

0
dt ′2eκΓt ′2Rki(t ′2)

(
eκΓt ′2− e−κΓt ′2

)〉
θ

〈R0,i(t)R2, j(t)〉η ,θ =
(kBT

κ

)∫ t

0
dt ′
∫ t ′

0
dt ′2e−κΓ(t−t ′)e−κΓ(t+t ′)eκΓt ′2

(
eκΓt ′2− e−κΓt ′2

)〈
∑
k

R jk(t ′)Rki(t ′2)
〉

θ

〈R0,i(t)R2, j(t)〉η ,θ =
(kBT

κ

)
e−2κΓt

∫ t

0
dt ′
∫ t ′

0
dt ′2
(

e2κΓt ′2−1
)〈

∑
k

R jk(t ′)Rki(t ′2)
〉

θ

(3.44)

For the mean-square displacement along x and y direction, setting j = i and using

Eq.(3.18) we get

〈x0(t)x2(t)〉η ,θ = 〈y0(t)y2(t)〉η ,θ =
(kBT

κ

)
e−2κΓt

∫ t

0
dt ′
∫ t ′

0
dt ′2
(

e2κΓt ′2−1
)
〈cos2(θ(t ′)−θ(t ′2))〉θ

=
(kBT

κ

)
e−2κΓt

∫ t

0
dt ′
∫ t ′

0
dt ′2
(

e2κΓt ′2−1
)

e−4Dθ (t ′−t ′2)

=
(kBT

κ

)
e−2κΓt

∫ t

0
dt ′e−4Dθ t ′

∫ t ′

0
dt ′2
(

e(2κΓ+4Dθ )t ′2− e4Dθ t ′2
)

=
(kBT

κ

)
e−2κΓt

∫ t

0
dt ′e−4Dθ t ′

(
e(2κΓ+4Dθ )t ′−1

2κΓ+4Dθ

− e−4Dθ t ′−1
4Dθ

)
=
(kBT

κ

)
e−2κΓt

∫ t

0
dt ′
(

e2κΓt ′− e−4Dθ t ′

2κΓ+4Dθ

− 1− e−4Dθ t ′

4Dθ

)
=
(kBT

κ

)( e2κΓt−1
2κΓ(2κΓ+4Dθ )

− 1− e−4Dθ

4Dθ (2κ∓4Dθ )
− t

4Dθ

− 1− e−4Dθ t ′

16D2
θ

)
=
(kBT

κ

)[ 1− e2κΓt

2κΓ(2κΓ+4Dθ )
− te−2κΓt

4Dθ

+
2κΓ

4Dθ

(
1− e−4Dθ t

)]
(3.45)

The final form of the terms 〈R0,i(t)R0, j〉η ,θ , 〈R1,i(t)R1, j(t)〉η ,θ and 〈R2,i(t)R2, j(t)〉η ,θ have

been calculated here. Detailed steps of the calculation are written above. The final form

〈x0(t)x1(t)〉η ,θ = 〈y0(t)y1(t)〉η ,θ

=
(kBT

κ

)
cos2θ0

(
e−4Dθ t− e−2κΓt

(2κΓ−4Dθ )
− e−2κΓt− e−(2κΓ+4Dθ )t

4Dθ

)
+2
(kBT

κ

)(
κ∆Γ

2

)( 1− e−2κΓt

2κΓ(2κΓ+4Dθ )
− e−2κΓt− e−(2κΓ+4Dθ )t

4Dθ (2κΓ+4Dθ )

) (3.46)

〈x2
1(t)〉η ,θ = 〈y2

1(t)〉η ,θ

=
(kBT

κ

)[ 1− e−2κΓt

κΓ(2κΓ+4Dθ )
− te−2κΓt

4Dθ

+κΓ
e−2κΓt− e−(2κΓ+4Dθ )t

4D2
θ
(2κΓ+4Dθ )

] (3.47)
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〈x0(t)x2(t)〉η ,θ = 〈y0(t)y2(t)〉η ,θ

=
(kBT

κ

)[ 1− e−2κΓt

2κΓ(2κΓ+4Dθ )
− te−2κΓt

4Dθ

+
2κΓ

4Dθ

(
1− e−4Dθ t

)] (3.48)

In the limit of κ → 0, both 〈y2
1(t)〉 = 〈x2

1(t)〉 = 0. The final expression for the mean-

square displacement along the x is given by

〈x2(t)〉η ,θ =
(kBT

κ

)[(
1− e−2κΓt

)
+
(

κ∆Γ

2

)
cos2θ0

(e−4Dθ t− e−2κΓt

2κΓ−4Dθ

+
e−2κΓt− e(2κΓ+4Dθ )t

4Dθ

)
+
(

κ∆Γ

2

)2( 1
4D2

θ

e−2κΓt(1− e−4Dθ t)− t
Dθ

e−2κΓt
)
+O

(
κ∆Γ

2

)3
] (3.49)

and that along the y- direction is given by

〈y2(t)〉η ,θ =
(kBT

κ

)[(
1− e−2κΓt

)
−
(

κ∆Γ

2

)
cos2θ0

(
e−4Dθ t− e−2κΓt

2κΓ−4Dθ

+
e−2κΓt− e−(2κΓ+4Dθ )t

4Dθ

)
+
(

κ∆Γ

2

)2
(

1
4D2

θ

e−2κΓt
(

1− e−4Dθ t
)
− t

Dθ

e−2κΓt
)
+O

(
κ∆Γ

2

)3
]

(3.50)

3.3 Mean-square displacement for large rotational diffusion
constant

In this section we present an alterate expression for mean-square displacement of an

anisotropic particle which is valid for which rotational diffusion constant is large as

compared to the inverse times scales κΓ and κ∆Γ. In such a scenario, since the particle

rotates faster, the mobility of the anisotropic particle is an average mobility over the

rotational noise.

The general solution in this case from Eq.(3.2) we can write

RRR(t) = e−κ
∫ t

0 Γ[θ(t ′)]dt ′
∫ t

0
η(t ′)eκ

∫ t′
0 Γ[θ(t ′′)]dt ′′dt ′

=
∫ t

0
η(t ′)e−κ

∫ t
t′ Γ[θ(t

′′)]dt ′′dt ′
(3.51)
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We start our analysis with Eq.(3.52), but we set RRR(0) = 0. To proceed further, and

in particular to look at the asymptotic limit of the correlations, we define the variable

u = (t− t ′)/t. In terms of the new variable u, the solution for RRR(t) takes the form

RRR(t) = t
∫ t

0
due−κΓ1tue−

κ

2 ∆Γ
∫ t

t(1−u) dt ′′R[θ(t ′′)]
η [t(1−u)] (3.52)

The equal-time correlation is then given by

〈RRR(t)RRR(t)〉η =
∫ 1

0
du
∫ 1

0
du′eκΓ1tue−κΓ1tu′e−

κ

2 ∆Γ
∫ t

t(1−u) dt ′′R[θ(t ′′)]e−
κ

2 ∆Γ
∫ t

t(1−u′) dt ′′R[θ(t ′′)]

〈η [t(1−u)]η [t(1−u′)]〉η
(3.53)

The correlation of the thermal noise in the transformed variable is

〈η [t(1−u)]η [t(1−u′)]〉η =
2kBT

t
ΓΓΓ[t(1−u)]δ (u−u′) (3.54)

Substituting the noise correlation into Eq.(3.53) and integration over u′ we get

〈RRR(t)RRR(t)〉= 2kBTt
∫ 1

0
due−2κΓ1tue−κ∆Γ

∫ t
t(1−u) dt ′′R[θ(t ′′)]×

[
Γ1+

∆Γ

2
R[θ(t(1−u))]

]
(3.55)

In the asymptotic limit, the integral is dominated by small values of u, the integral in

the exponential from t(1− u) to t is vanishingly small and can be set to zero. Further,

we set R[θ(t(1−u))]≈R[θ(t)]. Consequently, the correlation matrix averaged over the

translational noise take the form

〈RRR(t)RRR(t)〉= 2kBTt
∫ 1

0
due−2κΓ1tu

[
Γ1+

∆Γ

2
R[θ(t)]

]
(3.56)

Now we have to perform the average over the rotational noise and the integral over u

we arrive at

〈RRR(t)RRR(t)〉η ,θ = 2kBTt
(

1− e−2κΓt

2κΓt

)(
Γ1+

∆Γ

2
〈R[θ(t)]〉θ

)
(3.57)

Simplifying the result and using Eq.(2.29) we arrive at

〈RRR(t)RRR(t)〉η ,θ =
kBT
κΓ

(
1− e−2κΓt

)(
Γ1+

∆Γ

2
R(θ0)e−4Dθ t

)
(3.58)
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The mean-square displacement in the explicit form is given by

〈∆x2(t)〉η ,θ =
kBT
κ

(
1− e−2κΓt

)(
1+

∆Γ

2Γ
cos2θ0e−4Dθ t

)
(3.59)

〈∆y2(t)〉η ,θ =
kBT
κ

(
1− e−2κΓt

)(
1− ∆Γ

2Γ
cos2θ0e−4Dθ t

)
(3.60)

and

〈∆x(t)∆y(t)〉η ,θ =
kBT
κ

(
1− e−2κΓt

)(
∆Γ

2Γ
sin2θ0e−4Dθ t

)
(3.61)

Note that there is striking difference between the Eqs.(3.59) and (3.60) and that of

Eqs.(3.50) and (3.52) with respect to the limit of κ → 0. While the later expressions

correctly reproduces the free diffusion of the anisotropic particle, the limit of κ → 0 in

Eq.(3.58) yields the correct asymptotic result by setting e−4Dθ t → 0:

〈x2(t)〉= 〈y2(t)〉= 2kBT Γt (3.62)

and

〈∆x(t)∆y(t)〉η ,θ = 0 (3.63)

The analytical expressions of Eqs.(3.50), (3.52), (3.59) and (3.60) are compared

with the numerically mean-square displacements along the two directions in Figs.(3.1)

and (3.2). The mean-square displacements are computed from the numerical integra-

tion of the equations of motion using an Euler discretization scheme with a time step of

δ t = 0.001.

3.4 Persistence Probability

We now turn our attention to the persistence probability of the harmonically trapped

ellipsoid particle. As in the case of a free particle, we assume the anisotropy to be

very small so that the deviation from the Gaussian nature of the stochastic variables

can be ignored. We focus on the two time correlated function 〈x(t1)x(t2)〉η ,θ . Using the

perturbation series given in Eq.(3.4) we have up to order O(κ∆Γ/2)

〈x(t1)x(t2)〉η ,θ = 〈x0(t1)x0(t2)〉η ,θ −
(

κ∆Γ

2

)[
〈x0(t1)x1(t2)〉η ,θ + 〈x0(t2)x1(t1)〉η ,θ

]
(3.64)

where t1 > t2. The correlation functions 〈x0(t1)x1(t2)〉η ,θ are equal only in the asymptotic

limit , that is for t1 and t2 large. In this limit, the expression for the two time correlation
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function takes the form

〈x(t1)x(t2)〉η ,θ = 〈x0(t1)x0(t2)〉η ,θ − (κ∆Γ)
[
〈x0(t1)x1(t2)〉η ,θ

]
(3.65)

The correlation functions 〈x0(t1)x0(t2)〉η ,θ and 〈x0(t1)x1(t2)〉η ,θ have been derived in

Eq.(3.14) and Eq.(3.41) respectively. For completeness, we quote the main results here.

〈x0(t1)x0(t2)〉η ,θ =
kBT
κ

[
e−κΓ|t1−t2|− e−κΓ(t1+t2)

]
+
(kBT

κ

)
κ∆Γcos2θ0e−κΓt1

[
e(κΓ−4Dθ )t2− e−κΓt2

2κΓ−4Dθ

] (3.66)

〈x0(t1)x1(t2)〉η ,θ =
(kBT

κ

)
cos2θ0e−κΓt1

(
e(κΓ−4Dθ )t2− e−κΓt2

2κΓ−4Dθ

− e−κΓt2− e(κΓ+4Dθ )t2

4Dθ

)
+
(kBT

κ

)(
∆Γ

2Γ

)
e−κΓt1

[
eκΓt2− e−κΓt2

(2κΓ+4Dθ )
− 2κΓ

4Dθ

e−κΓt2− e−(2κΓ+4Dθ )t2

(κΓ+4Dθ )

]
(3.67)

Note that in calculating the two line correlation function up to an order O(κ∆Γ), we

will use only the first term appearing in Eq.(3.67). Looking at Eq.(3.65), Eqs.(3.66) and

(3.67), it is clear that the first term contained in the parenthesis in Eq.(3.67) cancels

with the term proportional to κ∆Γ in Eq.(3.66). The final expression for 〈x(t1)x(t2)〉η ,θ

reads,

〈x(t1)x(t2)〉η ,θ =
(2kBT

κ

)
e−κΓt1

[
sinhκΓt2 +

(
κ∆Γ

2

)
cos2θ0e−κΓt2

(1− e−4Dθ t2

4Dθ

)]
(3.68)

As before, defining the variable X(T ) = x(t)/
√
〈x2〉η ,θ , the correlation function of

〈X(T1)X(T2)〉η ,θ is given by

〈X(t1)X(t2)〉η ,θ =
e−κΓt1/2

e−κΓt2/2

[
sinhκΓt2 +

(
κ∆Γ

2

)
cos2θ0e−κΓt2

(
1−e−4Dθ t2

4Dθ

)
sinhκΓt1 +

(
κ∆Γ

2

)
cos2θ0e−κΓt1

(
1−e−4Dθ t1

4Dθ

)]1/2

(3.69)

Using the transformation eT = eκΓt
[

sinhκΓt + κ∆Γ

2 cos2θ0e−κΓt
(

1−e−4Dθ t

4Dθ

)]
for a trans-

formed effective time variable T , the correlation function 〈X(T1)X(T2)〉η ,θ becomes a

stationary correlator : 〈X(T1)X(T2)〉η ,θ = e−(T1−T2)/2 and the corresponding persistence

probability is given by

p(t)∼
√

κe−κΓt/2[
sinhκΓt +

(
κ∆Γ

2

)
cos2θ0e−κΓt

(
1−e−4Dθ t

4Dθ

)]1/2 (3.70)
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Figure 3.1 Plot of the mean-square displacement along the x direction of the harmonically
trapped anisotropic particle for different choices of the stiffness of the harmonic potential, as
indicated in the legend. The translational diffusivities and the rotational diffusion constant were
kept fixed at D‖= 1, D⊥= 0.5, and Dθ = 0.1 in all the cases. The initial orientation of the particles
was also fixed at θ0 = 0. The solid lines are plots of Eq. (3.50), and the dashed lines are plots
of Eq.(3.60) with the appropriate values of κ, D‖, D⊥, and Dθ .

In the limit of ∆Γ→ 0 the equation correctly reproduces the persistence probability

of an isotropic particle in the presence of a harmonic trap36. The other limit of κ → 0

reproduces the persistence probability of a free anisotropic particle derived in Eq.(2.45).

In Fig. 3.3, we show the comparison between the analytical expression of p(t) given

in Eq. (3.70) with the numerically obtained persistence probability. The numerical esti-

mation of the persistence probability was done by discretizing the equations of motion

in Eq. (3.2) with an integration time step of δ t = 0.001. The fraction of trajectories that

did not change sign up to time t gives the persistence probability p(t). A total of 109

trajectories were used in determining p(t).
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Figure 3.2 Plot of the mean-square displacement along the y direction of the harmonically
trapped anisotropic particle for different choices of the stiffness of the harmonic potential, as
indicated in the legend. The translational diffusivities and the rotational diffusion constant were
kept fixed at D‖ = 1, D⊥ = 0.5, and Dθ = 0.1 in all cases. The initial orientation of the particles
was also fixed at θ0 = 0. The solid lines are plots of Eq. (3.52), and the dashed lines are plots
of Eq. (3.58) with the appropriate values of κ, D‖, D⊥, and Dθ .

3.5 Conclusion

In summary, we have determined the persistence probability of an anisotropic particle in

two spatial dimensions, in the presence as well as in the absence of a confining harmonic

potential. The two-time correlation functions of the position of the particle have been

calculated in both cases. In the case of a harmonically confined particle, a perturbative

solution has been provided for the correlation functions. The persistence probability

is computed from the two-time correlation function using suitable transformations in

space and time. The determination of the rotational and the translational diffusion

coefficients has been explicitly carried out for an anisotropic particle that undergoes free

Brownian motion. Additionally, the analytical results have been confirmed by numerical
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Figure 3.3 Plot of the survival probability p(t) of a harmonically trapped anisotropic particle
for different choices of the rotational diffusion constant and the stiffness of the potential, as
indicated alongside each plot. The plots have been shifted for a better visibility. The solid lines
are plots of Eq. (3.70) with the appropriate values of κ, D‖, D⊥ and Dθ . While the rotational
diffusion constant and the spring stiffness were varied, the translational diffusivities and the
initial angle θ0 were fixed at values D‖ = 1, D⊥ = 0.5 and θ0 = 0
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simulation of the underlying stochastic dynamics.
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4
Persistence of Active asymmetric
Brownian particle in two
dimensions

We have studied the persistence probability p(t) of an active Brownian particle with shape asym-

metry in two dimensions. The persistence probability is defined as the probability of a stochastic

variable that has not changed its sign in the fixed given time interval. We have investigated two

cases- diffusion of a free active particle and that of the harmonically trapped particle. In our

earlier work, Ghosh et. al. we had shown that p(t) can be used to determine translational and

the rotational diffusion constant of an asymmetric shape particle. The method has the advan-

tage that the measurement of the rotational motion of the anisotropic particle is not required. In

this chapter, we extend the study to an active anisotropic particle and show how the persistence

probability of an anisotropic particle is modified in the presence of a propulsion velocity. Further,

we validate our analytical expression against the measured persistence probability from the nu-

merical simulations of single particle Langevin dynamics and test whether the method proposed

in our earlier work can distinguish between an active and a passive anisotropic particle.
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4.1 Introduction

In recent years there has been a huge interest in research activities developed regard-

ing the statistical description of systems far from equilibrium. Quite many numbers of

classes in biological and physical systems which are referred to as active matter have

been studied both theoretically1–12 and experimentally13,14. The term "active" refers

here to the motion of individual units to move actively by gaining kinetic energy from

the environment. Examples of such systems spread from the dynamical behavior of in-

dividual units such as Brownian motors15,16, motile cells17,18 macroscopic animals19–23

or artificial self-propelled particles to large ensembles of interacting active particles and

their large-scale collective dynamics. Active matter is a driven system where energy is

provided directly, isotropically, and independently at the level of active particles- which

under dissipation of the energy, generally achieves a systematic movement. In simple

Brownian motion, energy is supplied to the particle by molecular agitation which leads

to stochastic forces. We here generalized the idea of Brownian particles by including an

additional energy source. Self-propulsion is the essential source of energy for most liv-

ing systems, maintaining metabolism and performing movement. The aims of the active

particle paradigm are: to bring the living systems into the ambit of condensed matter

physics, and to study the emergent statistical and thermodynamic laws governing the

system of intrinsically propelled particles.

Thus we study the active Brownian particle. Moreover, the shape deformation of

the particles plays an important role in nonequilibrium transport processes. Han and

co-workers experimentally studied the Brownian motion of isolated ellipsoidal parti-

cles in two dimensions and quantified the crossover from the short-time anisotropic to

long-time isotropic diffusion24. At the same time, our previous work was to find the

persistence probability of such two-dimensional ellipsoidal Brownian particle25. Now

we are aiming to study the effect of activity on the system, and how the persistence

probability changes thereafter. It is pertinent to mention here that the first passage

properties of an active Brownian particle was investigated by Basu et. al.26

This chapter has been organized in the following way: in section 4.2, the basic sys-

tem has been described for the free active particle and the mean squared displacement,

and the persistence are studied. In section 4.3, the active particle has been taken in

harmonic confinement. The dynamics of the particle have been studied and along with

that, we studied the persistence probability verifying it numerically. Section 4.4 con-

cludes the chapter.
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4.2 Asymmetric Free Active Brownian Particle in two

dimensions

We have considered an asymmetric self propelled with velocity v0 in two dimensions

with mobilities Γ‖ and Γ⊥ along the longer and the shorter axes of the particle respec-

tively. We have fixed the body frame x- and y- directions as the long and the short axis,

respectively. The particle has a single rotational mobility Γθ . The particle is immersed

in a bath of temperature T so that the translational diffusion coefficients along the two

directions are given by D‖ = kBT Γ‖ and D⊥ = kBT Γ⊥, and the rotational diffusion con-

stant is Dθ = kBT Γθ . At a given time t the particle can be described by the position

vector of its center of mass r(t) and the angle θ(t) between the x- axis of the lab-frame

and the long axis of the particle. In this frame the self-propulsion speed, which is taken

along the long axis of the rod, is given by, v0n̂(t), where n̂(t)≡ (cosθ(t),sinθ(t)) is a unit

vector along the long axis of the particle. In the body frame, the equations of motion

for the center of mass of the particle take the form

Figure 4.1 Representation of an ellipsoid in the x− y lab frame and the x̂− ŷ body frame The
angle between two frames is θ . The displacement R can be decomposed as (δ x̂,δ ŷ) or (δx,δy).
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Γ
−1
1

∂ x̃
∂ t

= Fx cosθ(t)+Fy sinθ(t)+ ξ̃x(t)+
v0

Γ1

Γ
−1
2

∂ ỹ
∂ t

= Fy cosθ(t)−Fx sinθ(t)+ ξ̃y(t)

Γ
−1
3

∂θ(t)
∂ t

= τ + ξ̃θ (t)

(4.1)

Here Fx and Fy are the forces acting on the particle along the x and y axes(in the lab

frame) respectively, and τ is the torque acting on the particle. The correlation of the

thermal fluctuations in the body frame are given by

〈ξ̃i〉= 0

〈ξ̃i(t)ξ̃ j(t ′)〉=
2kBT

Γi
δi jδ (t− t ′)

(4.2)

In the lab frame, the displacements are related to the body frame as

δx = cosθδ x̃− sinθδ ỹ

δy = sinθδ x̃+ cosθδ ỹ
(4.3)

Replacing the values of Eq. (4.3) in Eq. (4.1) we get the equations in lab frame in the

Ito convention27–30 as,

∂x
∂ t

= v0 cosθ(t)+Fx[Γ̄+
∆Γ

2
cos2θ(t)]+

∆Γ

2
Fy sin2θ(t)+ξx(t)

∂y
∂ t

= v0 sinθ(t)+Fy[Γ̄−
∆Γ

2
cos2θ(t)]+

∆Γ

2
Fx sin2θ(t)+ξy(t)

∂θ(t)
∂ t

= Γ3τ +ξθ (t)

(4.4)

Using Eq.(4.1) , the corresponding Langevin equation in the lab frame is given by,

∂xi

∂ t
=−Γi j

∂U
∂x j

+ξi (4.5)

where U(r) is the external potential, and the thermal fluctuations from Eq.(4.3) can be

written as

〈ξθ (t)ξθ (t ′)〉= 2Dθ δ (t− t ′)

〈ξi(t)ξ j(t ′)〉ξ1,ξ2
θ(t) = 2kBT Γi jδ (t− t ′)

(4.6)

and

Γi j = Γ̄δi j +
∆Γ

2

(
cos2θ sin2θ

sin2θ −cos2θ

)
(4.7)
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Here Γ̄ = (Γ‖+Γ⊥)/2 and ∆Γ = (Γ‖−Γ⊥), and mobility tensor can be written as Γi j =

Γ̄δi j +
∆Γ

2 ∆Ri j[θ(t)], when the form of ∆
¯̄R is written as

∆
¯̄R =

(
cos2θ sin2θ

sin2θ −cos2θ

)

The model investigated in the work of Basu et. al.26 is different than the one that is

presented here. They consider an active Brownian particle without the thermal fluctua-

tions and an explicit shape asymmetry. The dynamics is mapped to that of a Brownian

particle with an effective noise that is not only bounded by the propulsion velocity but

the two time correlation function of the noise decays exponentially. Consequently, in

Eq. (4.4) the second and the third terms are not present.

4.2.1 Mean Square Displacement of the free active particle

We first take the case of free active ellipsoidal particle setting the external potential

zero, the equation of motion takes the form

xi(t) = v0

∫ t

0
cosθ(t ′)dt ′+

∫ t

0
ξi(t ′)dt ′ (4.8)

The mean 〈∆x(t)〉, where ∆x = x(t)− x(0) takes

〈∆x(t)〉= v0

∫ t

0
〈cosθ(t ′)dt ′ = v0 cosθ0

(
1− e−Dθ t

Dθ

)
. (4.9)

The mean square displacement of the particle is calculated from Eq. (4.8)

〈∆x2
i 〉ξθ

= v2
0

∫ t

0
〈cosθ(t ′)cosθ(t ′′)〉dt ′dt ′′+

∫ t

0
〈ξi(t ′)ξi(t ′′)〉dt ′dt ′′ (4.10)

To solve the above integral, we separately solve the two integrals I1, I2 which are shown

below respectively from Eq. (4.11) to Eq. (4.16).

I1 =
∫ t

0
〈cosθ(t ′)cosθ(t ′′)〉dt ′dt ′′

=
1
2

∫ t

0
dt ′
∫ t

0
dt ′′〈

[
cos(θ(t ′)+θ(t ′′))+ cos(θ(t ′)−θ(t ′′))

]
=

1
2

cos2θ0

∫ t

0
e−Dθ [t ′+t ′′+2min(t ′,t ′′)]dt ′dt ′′+

1
2

∫ t

0
e−Dθ [t ′+t ′′−2min(t ′,t ′′)]dt ′dt ′′

(4.11)
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Integral I1 is having two separate integrals and solving these two separately

I′ =
∫ t

0
e−Dθ [t ′+t ′′+2min(t ′,t ′′)]dt ′dt ′′

=
∫ t

0
dt ′
∫ t ′

0
dt ′′e−Dθ (t ′+3t ′′)+

∫ t

0
dt ′′

∫ t ′′

0
dt ′e−Dθ (3t ′+t ′′)

=
∫ t

0
e−Dθ t ′dt ′

∫ t ′

0
e−3Dθ t ′′dt ′′+

∫ t

0
e−Dθ t ′′dt ′′

∫ t ′′

0
e−3Dθ t ′dt ′

=
1

6D2
θ

(3−4e−Dθ t + e−4Dθ t)

(4.12)

and

I′′ =
∫ t

0
dt ′
∫ t

0
dt ′′e−Dθ [t ′+t ′′−2min(t ′,t ′′)]

=
∫ t

0
dt ′
∫ t ′

0
dt ′′e−Dθ (t ′−t ′′)+

∫ t

0
dt ′′

∫ t ′′

0
dt ′e−Dθ (t ′′−t ′)

=
∫ t

0
e−Dθ t ′dt ′

∫ t ′

0
eDθ t ′′dt ′′+

∫ t

0
e−Dθ t ′′dt ′′

∫ t ′′

0
eDθ t ′dt ′

=
2

D2
θ

(Dθ t + e−Dθ t−1)

(4.13)

So values of Eq.(4.12) and Eq.(4.13) is added to get I1 as

I1 =
cos2θ0

12D2
θ

(3−4e−Dθ t + e−4Dθ t)+
1

D2
θ

(Dθ t + e−Dθ t−1) (4.14)

Now the second integral I2 of Eq.(4.10) is calculated as

I2 =
∫ t

0
dt ′
∫ t

0
dt ′′〈ξi(t ′)ξi(t ′′)〉

= 2kBT
∫ t

0
dt ′
∫ t

0
dt ′′〈Γii[θ(t ′)]〉ξθ

δ (t− t ′)

= 2kBT
∫ t

0
dt ′〈Γii[θ(t ′)]〉ξθ

(4.15)

Using the explicit form of Γxx from Eq.(4.7) the mean-square displacement along the x-

direction becomes

I2 = 2kBT
[
Γ̄t +∆Γcos2θ0

(1− e−4Dθ t

4Dθ

)]
(4.16)
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The final form of Mean-squared displacement is

〈∆x2(t)〉= 2kBT
[
Γ̄t +∆Γcos2θ0

(1− e−4Dθ t

4Dθ

)]
+

v2
0 cos2θ0

12D2
θ

(3−4e−Dθ t + e−4Dθ t)+
v2

0

D2
θ

(Dθ t + e−Dθ t−1)
(4.17)

and for y-direction

〈∆y2(t)〉= 2kBT
[
Γ̄t−∆Γcos2θ0

(1− e−4Dθ t

4Dθ

)]
−

v2
0 cos2θ0

12D2
θ

(3−4e−Dθ t + e−4Dθ t)+
v2

0

D2
θ

(Dθ t + e−Dθ t−1)
(4.18)

In the absence of an active propulsion velocity, the position of the particle in the lab

frame is a non-Gaussian stochastic variable. The non-Gaussian parameter is defined as,

φ(t,θ0) =
〈[∆x(t)−〈∆x(t)〉]4〉−3(〈[∆x(t)−〈∆x(t)〉]2〉)2

3(〈[∆x(t)−〈∆x(t)〉]2〉)2 (4.19)

Defining τθ = 1/2Dθ and τn(t) = (1− e−nDθ t)/nDθ , the expressions in Eq. (4.9) and

Eq. (4.17) take the form

〈∆x(t)〉= v0 cosθ0τ1(t) (4.20)

and

〈∆x(t)2〉= 2D̄t +∆Dτ4 cos2θ0 +2τθ v2
0

(
(t− τ1)+

1
3
(τ1− τ4)cos2θ0

)
(4.21)

Further, defining C4
θ0
(t) = 〈[∆x(t)−〈∆x(t)〉]4〉−3(〈[∆x(t)−〈∆x(t)〉]2〉)2, the non-Gaussian

parameter is written as,

φ(t,θ0) =
C4

θ0
(t)

3(〈∆x(t)2〉)2 (4.22)

Since we evaluate the persistence probability keeping the initial angle θ0 fixed,

specifically θ0 = 0, we estimate the non-Gaussian parameter at θ0 = 0. Further, we

will also consider a weak asymmetry and weak propulsion velocity so that we evaluate

φ(t,θ0 = 0) only up to the order of v2
0. The expression for C4

θ0=0(t) takes the form
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C4
θ0=0(t) = ∆D2

[3
2

tτθ −3τ
2
4 (t)−

1
2

τθ τ16(t)− τ4(t)τθ

+ v2
0

(
12∆Dτ1(t)τ4(t)

[
1+

16
36

τθ

]
+ t
[
24D̄τ

2
1 (t)+

32
3

D̄τ1(t)τθ −8∆Dτ4(t)τθ

]
−16D̄τ

2
θ

)]
(4.23)

The expression for 〈∆x2(t)〉 up to the order of v2
0 has the

3〈∆x2(t)〉= 12D̄2t2 +12D̄∆Dtτ4(t)+3∆Dτ
2
4

+ v2
0

[(
−6∆Dτ

2
1 (t)τ4(t)−8∆Dτθ τ1(t)τ4(t)−4∆Dτθ τ

2
4 (t)

)
+ t
(
−12D̄τ

2
1 (t)−16D̄τ1(t)τθ −8D̄τ4(t)τθ +12∆Dτ4(t)τθ

)
+24D̄τθ t2

] (4.24)

Clearly from Eq. (4.23) and Eq. (4.24), the non-Gaussian parameter depends on

the ratio ∆D2/D̄2 and v2
0/D̄2.In the limit of weak asymmetry and small propulsion ve-

locity, the non-Gaussian parameter remains small. Further, we note that as t → ∞ the

ratio φ(t,0) decays as t−1 so that the non-Gaussian parameter vanishes. A compar-

ison of φ(t,0) for an anisotropic particle with weak asymmetry is shown in Fig. 4.2

for two distinct cases -that of a passive anisotropic particle (dashed line) and that of

an active anisotrpic particle (dotted line). The time-dependent φ(t,0) exhibits a non-

monotonic behaviour with a peak at Dθ t ≈ 1. Furthermore, we note that φ(t,0) of an ac-

tive anisotropic particle vanishes quickly compared to a passive anisotropic particle for

identical values of translational and rotational diffusivities. The higher order moments

for ∆x(t) can also be calculated from Eq.(4.8). The linearity of the equation dictates that

moments 〈∆x2n〉 with n > 2 would contain terms proportional to v2n
0 and ∆Γn and would

be vanishingly small for weak anisotropy and a small propulsion velocity.

4.2.2 Persistence of the free particle

We now turn our attention to the persistence probability of a free asymmetrical active

Brownian particle. Setting the external potential zero, the formal solution to the equa-

tion of motion becomes

xi(t) = xi(0)+
∫ t

0
ξi(t ′)dt ′+ v0

∫ t

0
cosθ(t ′)dt ′ (4.25)

To calculate the persistence probability, we start from Eq. (4.25) and choose initial

condition xi(0) = 0. The calculation of two-time correlation function 〈x(t1)x(t2)〉ξθ
can
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Figure 4.2 Plot of the non-Gaussian parameter φ(t,0) for different choices of propulsion veloc-
ity v0 of the anisotropic particle: v0 = 0(dotted line); v0 = 0.01(dashed line). The translational
diffusivities were fixed at D‖ = 1, D⊥ = 0.9. The rotational diffusivity and the initial angle θ0 were
fixed at Dθ = 1 and θ0 = 0, respectively.

be achieved by

〈x(t1)x(t2)〉ξθ
= v2

0

∫ t1

0
dt ′1

∫ t2

0
dt ′2〈cosθ(t ′1)cosθ(t ′2)〉+

∫ t1

0
dt ′1

∫ t2

0
dt ′2〈ξ1(t ′1)ξ2(t ′2)〉 (4.26)

We can separate Eq.(4.26) into two separate integrals as I3 and I4, and calculate them

individually

I3 = v2
0

∫ t1

0
dt ′1

∫ t2

0
dt ′2〈cosθ(t ′1)cosθ(t ′2)〉

=
v2

0
2

∫ t1

0
dt ′1

∫ t2

0
dt ′2 cos2θ0e−Dθ [t ′1+t ′2+2min(t ′1,t

′
2)]+

v2
0

2

∫ t1

0
dt ′1

∫ t2

0
dt ′2e−Dθ [t ′1+t ′2−2min(t ′1,t

′
2)]

(4.27)

for t ′1 < t ′2

t ′1 + t ′2±2t ′1 = 3t ′1 + t ′2

=−t ′1 + t ′2

for t ′1 > t ′2

t ′1 + t ′2±2t ′2 = t ′1 +3t ′2

= t ′1− t ′2
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Lets take the two integrals of Eq.(4.27) as I′3 and I′′3 . The integral Eq.(4.27) can be

calculated in general terms like,

I3 =
∫ t2

0
dt ′2

∫ t ′2

0
e−Dθ (αt ′1+β t ′2)+

∫ t ′2

0
dt ′
∫ t1

t ′2
dt ′1e−Dθ (β t ′1+αt ′2)

=
1− e−βDθ t2

αβD2
θ

− 1− e−(α+β )Dθ t2

α(α +β )D2
θ

+
1− e−(α+β )Dθ t2

β (α +β )D2
θ

− e−βDθ t1 1− e−αDθ t2

αβD2
θ

for integral I′3, (α,β )≡ (3,1)

I′3 =
1− e−Dθ t2

6D2
θ

+
1− e−4Dθ t2

12D2
θ

− e−Dθ t1 1− e−3Dθ t2

6D2
θ

and for integral I′′3 , (α,β )≡ (−1,1)

I′′3 =−1− e−Dθ t2

2D2
θ

+
t2

Dθ

− e−Dθ t1 1− eDθ t2

D2
θ

So final form of I3 becomes

I3 = v2
0

[
cos2θ0

(1− e−Dθ t2

6D2
θ

+
1− e−4Dθ t2

12D2
θ

− e−Dθ t1 1− e−3Dθ t2

6D2
θ

)
− 1− e−Dθ t2

2D2
θ

+
t2

Dθ

− e−Dθ t1 1− eDθ t2

D2
θ

] (4.28)

The second integral I4 of Eq. (4.26) is solved as

I4 =
∫ t1

0
dt ′1

∫ t2

0
dt ′2〈ξx(t ′1)ξx(t ′2)〉

= 2kBT Γ̄t2
[
1+

∆Γ

Γ̄
cos2θ0

(1− e−4Dθ t2

4Dθ t2

)] (4.29)

Considering t1 > t2, the whole integral has been solved. We have solved the integral

considering combination of two integrals I3 and I4, solving them separately in Eq. (4.27)

to Eq. (4.29). We find

〈x(t1)x(t2)〉= 2kBT Γ̄t2
[
1+

∆Γ

Γ̄
cos2θ0

(1− e−4Dθ t2

4Dθ t2

)]
+ v2

0

[
cos2θ0

(1− e−Dθ t2

6D2
θ

+
1− e−4Dθ t2

12D2
θ

− e−Dθ t1 1− e−3Dθ t2

6D2
θ

)
− 1− e−Dθ t2

2D2
θ

+
t2

Dθ

− e−Dθ t1 1− eDθ t2

D2
θ

]
(4.30)

102



We now set the initial angle θ0 = 0. The diffusion coefficients D̄ and ∆D are renormalized

by the active velocity. Furthermore, we note that the last term in Eq. (4.30) contains

a stationary component which survives in the long time limit of t1 and t2 large but

(t1− t2) finite. This, of course, makes the coversion of this non-stationary correlator to a

stationary one slightly problematic. In order to transform the non-stationary correlation

into a stationary correlator, we make the approximation t1 >> t2 so that both the terms

2v2
0τθ τ3(t)e−Dθ t1 and the last term v2

0e−Dθ t1(1− eDθ t2)/D2
θ

in Eq. (4.30). Dropping the

second term in Eq. (4.30) is strictly valid only when t1 >> t2. It should be pointed

out that both the terms are proportional to v2
0 and for small v0 the effect of these two

terms are not significant as demonstrated later from the numerical estimation of the

persistence probability p(t). Nevertheless, even with this approximation, we want to

figure out how well the analytical expression for p(t) compares with the numerical

results.

Active Brownian particle dynamics is not zero centric stochastic process as the aver-

age of the position variable 〈x(t)〉 has non-zero value unlike simple Brownian particle.

So we need to transform the stochastic process as zero centric stochastic process by

subtracting 〈x(t1)〉〈x(t2)〉 from the above value of Eq.(4.30).

〈x(t1)〉〈x(t2)〉=
v2

0 cos2 θ0

D2
θ

(1− e−Dθ t1− e−Dθ t2 + e−Dθ (t1+t2)) (4.31)

Now for θ0 = 0, we subtract Eq.(4.31) from Eq.(4.30) and approximating (t1− t2) very

small and t1, t2 are very large we get,

〈x(t1)x(t2)〉θ0=0 = 2De f f t2

[
1+

1
2De f f

(
∆D+

v2
0

3Dθ

)(1− e−4Dθ t2

4Dθ t2

)
−

2v2
0

3Dθ De f f

(1− e−Dθ t2

Dθ t2

)]
(4.32)

Here, De f f = D̄+
v2

0
2Dθ

We use the transformation in the spatial coordinate31 X̃(t) = x(t)/
√
〈x2(t)〉ξθ

. The

two-time correlation function of the rescaled variable 〈X̃(t1)X̃(t2)〉ξθ
becomes,
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〈X̄(t1)X̄(t2)〉= (t2/t1)1/2

[
2Deff +∆Deff

(1− e−4Dθ t2

4Dθ t2

)
−

4v2
0

3Dθ

(1− e−Dθ t2

Dθ t2

)]1/2

[
2Deff +∆Deff

(1− e−4Dθ t1

4Dθ t1

)
−

4v2
0

3Dθ

(1− e−Dθ t1

Dθ t1

)]−1/2
(4.33)

where the effective diffusivity is given by Deff = D̄+ v2
0/2Dθ and ∆Deff = ∆D+ v2

0/3Dθ .

We now define the transformation in time as

eT = 2Defft

[
1+

∆Deff

2De f f

(1− e−4Dθ t

4Dθ t

)
−

4v2
0

3Dθ Deff

(1− e−Dθ t

Dθ t

)]
(4.34)

Using this transformation in time the two-time correlation function 〈X̄(T1)X̄(T2)〉 from

Eq. (4.33) takes the simple form of 〈X̄(t1)X̄(t2)〉= e−(T1−T2)/2. Since the stationary corre-

lation function now decays exponentially for all times, following Slepian32, the asymp-

totic form of the persistence probability is found as

P(T ) = e−λT (4.35)

Transforming back to real-time t, we get the persistence probability for the free particle

as

p(t,θ0 = 0) =
1√

2Defft

[
1+

∆Deff

2Deff

(
1− e−4Dθ t

4Dθ t

)
−

4v2
0

3Dθ Deff

(
1− e−Dθ t

Dθ t

)]−1/2

(4.36)

Rearranging the above expression, we get

t1/2 p(t,θ0 = 0) =
1√

2Deff

[
1+(

∆Deff

2Deff
)

(
1− e−4Dθ t

4Dθ t

)
−

4v2
0

3Dθ Deff

(
1− e−Dθ t

Dθ t

)]−1/2

(4.37)

For simple brownian particle where propulsion velocity v0 = 0, we get

t1/2 p(t) =
1√

2D̄[1+ ∆D
2D̄ (1−e−4Dθ t

4Dθ t )]
(4.38)

This expression is exactly same as for ellipsoidal Brownian particle in two-dimensions25.

In order to validate the expression for the persistence probability we performed numer-
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ical simulations of Eq. (4.4). The initial condition was chosen from a Gaussian distri-

bution with a very small width, so the sign of r(0) is clearly defined. The trajectories

were evolved in time with an integration time-step of δ t = 0.001. At every instant, the

survival of the particle trajectory was checked by looking at the sign of r(t). Fraction of

trajectories for which the position did not change its sign up to time t gave the survival

probability p(t). A total of 109 trajectories were used in estimating the survival prob-

ability. A comparison of the measured p(t) with that of the predictions of Eq. (4.37)

is shown Figs. 4.3 and 4.4. Both the figures compare the persistence probability for

weakly asymmetric particles. We observe that while the asymmetry of the particle is

picked up as expected from our earlier work25, for small propulsion velocity t1/2 p(t) is

unable to pick up the activity of the paricle. In the case when the activity of the particle

is comparatively large, the t1/2 p(t) indeed picks up the activity of the particle. When

compared with the analytical expression of Eq. (4.37), for the small propulsion velocity,

the expression compares quite well with the simulation resutls with the overall constant

as the only fit parameter (the dotted lines in the figures). When the data is fitted to

Eq. (4.37) with the overall constant fixed and D̄ and ∆D as fit parameters, it yields the

correct values of D̄ and ∆D. However, for comparatively larger values of v0, when the

expression is plotted against the numerical data with the overall constant as the only fit

parameter, the data matches only asymptotically with the analytical expression. On the

other hand, when the data is fitted with Eq. (4.37) with D̄ and ∆D as fit parameters, the

fit yields a slightly lower value of D̄ and a slightly higher value of ∆D. For example, in

the case of D̄ = 0.975 and ∆D = 0.05 (Fig. 4.3 open triangles), we obtain from the fit a

value of D̄ ≈ 0.96 and ∆D ≈ 0.08. In the case of D̄ = 0.95 and ∆D = 0.1 (Fig. 4.4 open

triangles), we obtain from the fit a value of D̄≈ 0.93 and ∆D≈ 0.14.

Before we conlcude this section, for completeness we also present the results for

the persistence probability for the stochastic variable y(t), the y-coordinate of the active

anisotropic particle in the lab frame. Two-time correlation along the y-direction is given

by,

〈y(t1)y(t2)〉ξ ,θ = v2
0

∫ t1

0
dt ′1

∫ t2

0
dt ′2〈sinθ(t ′1)sinθ(t ′2)〉+

∫ t1

0
dt ′1

∫ t2

0
dt ′2〈ξ1(t ′1)ξ2(t ′2)〉 (4.39)
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Figure 4.3 Plot of t1/2 p(t) for different choices of propulsion velocity v0 of the anisotropic parti-
cle: v0 = 0(open circles);v0 = 0.01(open square) and v0 = 0.1 (open triangles). The translational
diffusivities were fixed at D‖= 1, D⊥= 0.95. The rotational diffusivity and the initial angle θ0 were
fixed at Dθ = 1 and θ0 = 0, respectively. The dashed lines are the plot of Eq. (4.37) whereas the
solid lines are fit to the data using Eq. (4.37) with De f f and ∆D as fit parameters.
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Figure 4.4 Plot of t1/2 p(t) for different choices of propulsion velocity v0 of the anisotropic parti-
cle: v0 = 0(open circles);v0 = 0.01(open square) and v0 = 0.1 (open triangles). The translational
diffusivities were fixed at D‖ = 1, D⊥ = 0.90. The rotational diffusivity and the initial angle were
fixed at Dθ = 1 and θ0 = 0, respectively. The dashed lines are the plot of Eq. (4.37) whereas the
solid lines are fit to the data using Eq. (4.37) with De f f and ∆D as fit parameters.
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From the above Eq.(4.39) we can show the first integral as,

v2
0

∫ t1

0
dt ′1

∫ t2

0
dt ′2〈sinθ(t ′1)sinθ(t ′2)〉

=
v2

0
2

∫ t1

0
dt ′1

∫ t2

0
dt ′2e−Dθ [t ′1+t ′2−2min(t ′1,t

′
2)]−

v2
0

2
cos2θ0

∫ t1

0
dt ′1

∫ t2

0
dt ′2e−Dθ [t ′1+t ′2+2min(t ′1,t

′
2)]

= v2
0

[
1− e−Dθ t2

2D2
θ

+
t2

Dθ

− e−Dθ t1 1− eDθ t2

D2
θ

− cos2θ0

(1− e−Dθ t2

6D2
θ

+
1− e−4Dθ t2

12D2
θ

− e−Dθ t1 1− e−3Dθ t2

6D2
θ

)]
(4.40)

The two-time correlation along y-direction can be found from Eq.(4.39) and Eq.(4.40).

〈y(t1)y(t2)〉ξ ,θ = 2kBT Γ̄t2
[
1+

∆Γ

2Γ̄
cos2θ0

(1− e−4Dθ t2

4Dθ t2

)]
+ v2

0

[
1− e−Dθ t2

2D2
θ

+
t2

Dθ

+ e−Dθ (t1−t2)1− e−Dθ t2

D2
θ

− cos2θ0

(1− e−Dθ t2

6D2
θ

+
1− e−4Dθ t2

12D2
θ

− e−Dθ t1 1− e−3Dθ t2

6D2
θ

)]
(4.41)

Setting θ0 = 0 and neglecting the terms e−Dθ (t1−t2) 1−e−Dθ t2

D2
θ

and e−Dθ t1 1−e−3Dθ t2

6D2
θ

in the

above expression for 〈y(t1)y(t2)〉ξ ,θ we get

〈y(t1)y(t2)〉ξ ,θ =
(

2kBT Γ̄+ v2
0/2Dθ

)
t2 +

(
∆D−

v2
0

3Dθ

)(1− e−4Dθ t2

4Dθ t2

)
+

v2
0

3Dθ

(
1− e−Dθ t2

Dθ

)
.

(4.42)

Note that along the y-direction the difference is diffusivities is renormalised to ∆D−
v2

0/3Dθ as opposed to ∆D + v2
0/3Dθ along the x-direction and the term v2

0τ1(t2)/3Dθ

has an opposite sign when compared to Eq. (4.31). We now use the transformation

Y (t) = y(t)/
√
〈y2(t)〉 and the two time correlation function takes the form

〈Ȳ (t1)Ȳ (t2)〉= (t2/t1)1/2

[
2Deff +∆D′eff

(1− e−4Dθ t2

4Dθ t2

)
+

v2
0

6Dθ

(1− e−Dθ t2

Dθ t2

)]1/2

[
2Deff +∆D′eff

(1− e−4Dθ t1

4Dθ t1

)
+

v2
0

6Dθ

(1− e−Dθ t1

Dθ t1

)]−1/2
(4.43)

As before, using the transformation in time

eT =

√√√√2Defft

[
1+

∆D′eff
2De f f

(1− e−4Dθ t

4Dθ t

)
+

v2
0

6Dθ Deff

(1− e−Dθ t

Dθ t

)]
(4.44)
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we transform the correlator in Eq. (4.42) to a stationary correlation function of the form

e−(T1−T2) and the persistence probability along the y-direction takes the form

p(t,θ0 = 0) =
1√

2Defft

[
1+

∆D′eff
2Deff

(
1− e−4Dθ t

4Dθ t

)
+

v2
0

6Dθ Deff

(
1− e−Dθ t

Dθ t

)]−1/2

(4.45)

4.3 Harmonically Trapped Asymmetric Particle

For the experimental purposes harmonical trapping is always an important method.

In this section we will discuss the effect of harmonic trapping on the particle when

the harmonic potential is taken as isotropic potential having no preferred directional

alignment. The potential is taken as U(x,y) = κ(x2 + y2)/2, and this corresponds to the

Langevin equation from Eq.(4.4)

∂x
∂ t

=−κx(Γ̄+
∆Γ

2
cos2θ(t))−κy

∆Γ

2
sin2θ(t)+ v0 cosθ(t)+ξ1(t)

∂y
∂ t

=−κx
∆Γ

2
sin2θ(t)−κy(Γ̄− ∆Γ

2
cos2θ(t))+ v0 sinθ(t)+ξ2(t)

∂θ

∂ t
= Γ3τ +ξ3(t)

(4.46)

Correlation of the thermal noise follows the Eq. (4.6).

4.3.1 Perturbative expansion

Looking at Eq.(4.46), we note in the absence of any asymmetry the equations reduce

to that of an isotropic particle and the correction due to the shape asymmetry comes

in the combination of κ∆Γ/2. Furthermore, the equations of motion in Eq.(4.46) are

coupled and consequently are non-Markovian in nature. Since we are interested in the

persistence probability, the non-Markovian nature of the process plays a significant role

in determining p(t). Fortunately, the coupling is proportional to the difference in the

mobilities ∆Γ and therefore vanishes in the limit of weak anisotropy of ∆Γ→ 0. In this

problem, we will assume weak asymmetry. Let us define the vector space R ≡ (x,y)T ,

and the equation takes the general form as

Ṙ =−κ[Γ̄1+
∆Γ

2
¯̄R(t)]R(t)+ v0n̂+ξ (t) (4.47)
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To solve this equation we take the perturbative expansion

R(t) = R0(t)− (
κ∆Γ

2
)R1(t)+(

κ∆Γ

2
)2R2(t)+O(

κ∆Γ

2
)3 (4.48)

Substituting Eq. (4.48) in Eq. (4.47) and equalizing both sides we get the equations for

R0(t) and R1(t) as

Ṙ0(t) =−κΓ̄R0(t)+ v0n̂(t)+ξ (t)

Ṙ1(t) =−κΓ̄R1(t)+ ¯̄R(t)R0(t)

Ṙ2(t) =−κΓ̄R2(t)+ ¯̄R(t)R1(t)

(4.49)

The solutions for Eq. (4.49) defining the initial condition R(0) = 0, becomes

R0(t) =
∫ t

0
dt ′e−κΓ̄(t−t ′)[

ξ (t ′)+ v0n̂(t ′)
]

R1(t) =
∫ t

0
dt ′e−κΓ̄(t−t ′) ¯̄R(t ′)R0(t ′)

R2(t) =
∫ t

0
dt ′e−κΓ̄(t−t ′) ¯̄R(t ′)R1(t ′)

(4.50)

The explicit form of the correlation matrix Ri(t)R j(t) in the equal time, is given by

〈Ri(t)R j(t)〉ξ ,θ = 〈R0,i(t)Ro, j(t)〉ξ ,θ − (
κ∆Γ

2
)〈R0,i(t)R1, j〉ξ ,θ +(

κ∆Γ

2
)2
[
〈R1,i(t)R1, j(t)〉ξ ,θ

+2〈R0,i(t)R2, j(t)〉ξ ,θ
]
+O(

κ∆Γ

2
)3

(4.51)

Here we have considered the fact that 〈R0,iR1, j〉 = 〈R0, jR1,i〉. We now start to calculate

the different terms of the correlation matrix. The correlation matrix for R0(t) is given

as averaging over the translational and the rotational noise.

4.3.2 Calculation of 〈R0,i(t)R0, j(t)〉

〈R0,i(t)R0, j(t)〉=
∫ t

0
dt ′
∫ t

0
dt ′′e−κΓ̄(t−t ′)e−κΓ̄(t−t ′′)〈ξ (t ′)ξ (t ′′)〉

+
∫ t

0
dt ′
∫ t

0
dt ′′e−κΓ̄(t−t ′)e−κΓ̄(t−t ′′)v2

0〈n̂(t ′)n̂(t ′′)〉
(4.52)

Full calculation is done below and the result along the x-direction is found.

There are two integrals, lets say I5 and I6 respectively. Lets calculate these two
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separately

I5 =
∫ t

0
dt ′
∫ t

0
dt ′′e−κΓ̄(t−t ′)e−κΓ̄(t−t ′′)〈ξ (t ′)ξ (t ′′)〉

=
∫ t

0
dt ′
∫ t

0
dt ′′e−κΓ̄(t−t ′)e−κΓ̄(t−t ′′)

[
Γ̄1+

∆Γ

2
¯̄R(t ′)

]
δ (t ′− t ′′)

= 2kBTe−2κΓ̄t
∫ t

0
dt ′e2κΓ̄t ′

[
Γ̄1+

∆Γ

2
〈 ¯̄R(t ′)〉

]
=

kBT
κ

1(1− e−2κΓ̄t)+2kBTe−2κΓ̄t
∫ t

0
dt ′e2κΓ̄t ′∆Γ

2
¯̄R(θ0)e−4Dθ t ′

=
kBT
κ

1(1− e−2κΓ̄t)+∆D ¯̄R(θ0)e−2κΓ̄t
(e(2κΓ̄−4Dθ )−1

2κΓ̄−4Dθ

)
(4.53)

For x-direction

I5 =
kBT
κ

(1− e−2κΓ̄t)+∆Dcos2θ0

(e−4Dθ t− e−2κΓ̄t

2κΓ̄−4Dθ

)
(4.54)

I6 =
∫ t

0
dt ′
∫ t

0
dt ′′e−κΓ̄(t−t ′)e−κΓ̄(t−t ′′)v2

0〈n̂(t ′)n̂(t ′′)〉

= v2
0e−2κΓ̄t

∫ t

0
dt ′
∫ t

0
dt ′′eκΓ̄(t ′+t ′′)〈cosθ(t ′)cosθ(t ′′)〉

=
v2

0
2

e−2κΓ̄t
∫ t

0
dt ′
∫ t

0
dt ′′eκΓ̄(t ′+t ′′)

[
cos2θ0e−Dθ [t ′+t ′′+2min(t ′,t ′′)]+ e−Dθ [t ′+t ′′−2min(t ′,t ′′)]

]
(4.55)

Lets solve the integrals separately

I′5 =
v2

0
2

e−2κΓ̄t
∫ t

0
dt ′
∫ t

0
dt ′′eκΓ̄(t ′+t ′′) cos2θ0e−Dθ [t ′+t ′′+2min(t ′,t ′′)]

=
v2

0 cos2θ0

2
e−2κΓ̄t

[∫ t

0
dt ′
∫ t ′

0
dt ′′eκΓ̄(t ′+t ′′)e−Dθ (t ′+3t ′′)+

∫ t

0
dt ′
∫ t

t ′
eκΓ̄(t ′+t ′′)e−Dθ (3t ′+t ′′)

]
=

v2
0 cos2θ0

2
e−2κΓ̄t

[∫ t

0
e(κΓ̄−Dθ )t ′dt ′

∫ t ′

0
e(κΓ̄−3Dθ )t ′′dt ′′+

∫ t

0
e(κΓ̄−3Dθ )t ′dt ′

∫ t

t ′
e(κΓ̄−Dθ )t ′′dt ′′

]
=

v2
0 cos2θ0

2

[ 2Dθ (e−4Dθ t− e−2κΓ̄t)

(2κΓ̄−4Dθ )(κΓ̄−3Dθ )(κΓ̄−Dθ )
+

e−4Dθ t−2e−(κΓ̄+Dθ )t + e−2κΓ̄t

(κΓ̄−Dθ )(κΓ̄−3Dθ )

]
(4.56)
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I′′6 =
v2

0
2

e−2κΓ̄t
∫ t

0
dt ′
∫ t

0
dt ′′e−Dθ [t ′+t ′′−2min(t ′,t ′′)]

=
v2

0
2

e−2κΓ̄t
[∫ t

0
dt ′
∫ t ′

0
dt ′′eκΓ̄(t ′+t ′′)e=Dθ (t ′−t ′′)+

∫ t

0
dt ′
∫ t

t ′
dt ′′eκΓ̄(t ′+t ′′)e−Dθ (t ′′−t ′)

]
=

v2
0

2
e−2κΓ̄t

[∫ t

0
e(κΓ̄−Dθ )t ′dt ′

∫ t ′

0
e(κΓ̄+Dθ )t ′′dt ′′+

∫ t

0
e(κΓ̄+Dθ )t ′dt ′

∫ t

t ′
e(κΓ̄−Dθ )t ′′dt ′′

]
=

v2
0

2

[1−2e−(κΓ̄+Dθ )t + e−2κΓ̄t

(κΓ̄−Dθ )(κΓ̄+Dθ )
− Dθ (1− e−2κΓ̄t)

κΓ̄(κΓ̄−Dθ )(κΓ̄+Dθ )

]
(4.57)

〈x2
0(t)〉=

kBT
κ

(1− e−2κΓ̄t)+∆Dcos2θ0

(e−4Dθ t− e−2κΓ̄t

2κΓ̄−4Dθ

)
+

v2
0 cos2θ0

2

[ 2Dθ (e−4Dθ t− e−2κΓ̄t)

(2κΓ̄−4Dθ )(κΓ̄−3Dθ )(κΓ̄−Dθ )
+

e−4Dθ t−2e−(κΓ̄+Dθ )t + e−2κΓ̄t

(κΓ̄−Dθ )(κΓ̄−3Dθ )

]
+

v2
0

2

[1−2e−(κΓ̄+Dθ )t + e−2κΓ̄t

(κΓ̄−Dθ )(κΓ̄+Dθ )
− Dθ (1− e−2κΓ̄t)

κΓ̄(κΓ̄−Dθ )(κΓ̄+Dθ )

]
(4.58)

In the limit of κ → 0, Eq. (4.58) reproduces Eq. (4.17) which is the correct result of

free diffusion of an anisotropic particle.

4.3.3 Calculation of 〈R0,i(t1)R0, j(t2)〉

〈R0,i(t1)R0, j(t2)〉=
∫ t1

0
dt ′
∫ t2

0
dt ′′e−κΓ̄(t1−t ′1)e−κΓ̄(t2−t ′2)〈ξ (t ′1)ξ (t ′2)〉

+ v2
0

∫ t1

0
dt ′
∫ t2

0
dt ′′e−κΓ̄(t1−t ′1)e−κΓ̄(t2−t ′2)〈n̂(t ′1)n̂(t ′2)〉

(4.59)

It can be calculated as two separately I7 and I8 integrals

I7 =
∫ t1

0
dt ′
∫ t2

0
dt ′′e−κΓ̄(t1−t ′1)e−κΓ̄(t2−t ′2)〈ξ (t ′1)ξ (t ′2)〉

= 2kBTe−κΓ̄(t1+t2)
∫ t1

0
dt ′1

∫ t2

0
dt ′2eκΓ̄(t ′1+t ′2)

[
Γ̄δi j +∆Γ〈Ri j(t ′1)〉

]
δ (t ′1− t ′2)

= 2kBTe−κΓ̄(t1+t2)
∫ min(t1,t2)

0
e2κΓ̄t ′1dt ′1 +2kBT ∆Γe−κΓ̄(t1+t2)

∫ min(t1,t2)

0
e2κΓ̄t ′1〈Ri j(t ′1)〉dt ′1

=
kBT
κ

[
e−κΓ̄(t1−t2)− e−κΓ̄(t1+t2)

]
+

2kBT
κ

(κ∆Γ)cos2θ0e−κΓ̄(t1+t2)
∫ min(t1,t2)

0
e(2κΓ̄−4Dθ )t ′1dt ′1

=
kBT
κ

[
e−κΓ̄(t1−t2)− e−κΓ̄(t1+t2)

]
+

2kBT
κ

(κ∆Γ)cos2θ0e−κΓ̄(t1+t2)
[e(2κΓ̄−4Dθ )t2−1

2κΓ̄−4Dθ

]
=

kBT
κ

e−κΓ̄t1
[
eκΓ̄t2− e−κΓ̄t2

]
+

2kBT
κ

(κ∆Γ)cos2θ0e−κΓ̄t1
[e(κΓ̄−4Dθ )t2− e−κΓ̄t2

2κΓ̄−4Dθ

]
(4.60)
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I8 =
∫ t1

0
dt ′1

∫ t2

0
dt ′2e−κΓ̄(t1−t ′1)e−κΓ̄(t2−t ′2)v2

0〈n̂(t ′1)n̂(t ′2)〉

= v2
0e−κΓ̄(t1+t2)

∫ t1

0
dt ′1

∫ t2

0
dt ′2eκΓ̄(t ′1+t ′2)〈cosθ(t ′1)cosθ(t ′2)〉

=
v2

0
2

e−κΓ̄(t1+t2)
∫ t1

0
dt ′1

∫ t2

0
dt ′2eκΓ̄(t ′1+t ′2)

[
cos2θ0e−Dθ [t ′1+t ′2+2min(t ′1,t

′
2)]+ e−Dθ [t ′1+t ′2−2min(t ′1,t

′
2)]
]

(4.61)

Lets calculate integrals separately

I′8 =
v2

0 cos2θ0

2
e−κΓ̄(t1+t2)

∫ t1

0
dt ′1

∫ t2

0
dt ′2eκΓ̄(t ′1+t ′2)e−Dθ [t ′1+t ′2+2min(t ′1,t

′
2)]

=
v2

0 cos2θ0

2
e−κΓ̄(t1+t2)

[∫ t2

0
dt ′2

∫ t ′2

0
dt ′1eκΓ̄(t ′1+t ′2)e−Dθ (3t ′1+t ′2)+

∫ t2

0
dt ′2

∫ t1

t ′2
dt ′1eκΓ̄(t ′1+t ′2)e−Dθ (t ′1+3t ′2)

]

=
v2

0 cos2θ0

2
e−κΓ̄(t1+t2)

[∫ t2

0
e(κΓ̄−Dθ )t ′2dt ′2

∫ t ′2

0
e(κΓ̄−3Dθ )t ′1dt ′1 +

∫ t2

0
e(κΓ̄−3Dθ )t ′2dt ′2

∫ t1

t ′2
e(κΓ̄−Dθ )t ′1dt ′1

]

=
v2

0 cos2θ0

2

[
2Dθ (e−κΓ̄t1e(κΓ̄−4Dθ )t2− e−κΓ̄(t1+t2))

(2κΓ̄−4Dθ )(κΓ̄−Dθ )(κΓ̄−3Dθ )

+
e−Dθ t1e−3Dθ t2− e−κΓ̄t2e−Dθ t1− e−κΓ̄t1e−Dθ t2 + e−κΓ̄(t1+t2)

(κΓ̄−3Dθ )(κΓ̄−Dθ )

]
(4.62)

I′′8 =
v2

0
2

e−κΓ̄(t1+t2)
∫ t1

0
dt ′1

∫ t2

0
dt ′2eκΓ̄(t ′1+t ′2)e−Dθ [t ′1+t ′2−2min(t ′1,t

′
2)]

=
v2

0
2

e−κΓ̄(t1+t2)

[∫ t2

0
dt ′1

∫ t ′2

0
dt ′2eκΓ̄(t ′1+t ′2)e−Dθ (t ′2−t ′1)+

∫ t2

0
dt ′2

∫ t1

t ′2
dt ′1eκΓ̄(t ′1+t ′2)e−Dθ (t ′1−t ′2)

]

=
v2

0
2

[
2Dθ (e−κΓ̄(t1+t2)− e−κΓ̄(t1−t2))

2κΓ̄(κΓ̄−Dθ )(κΓ̄+Dθ )
+

e−Dθ t1eDθ t2− e−Dθ t1e−κΓ̄t2− e−κΓ̄t1e−Dθ t2 + e−κΓ̄(t1+t2)

(κΓ̄−Dθ )(κΓ̄+Dθ )

]
(4.63)

〈x0(t1)x0(t2)〉=
kBT
κ

e−κΓ̄t1
[
eκΓ̄t2− e−κΓ̄t2

]
+

2kBT
κ

(κ∆Γ)cos2θ0e−κΓ̄t1
[e(κΓ̄−4Dθ )t2− e−κΓ̄t2

2κΓ̄−4Dθ

]
+

v2
0 cos2θ0

2

[
e−Dθ t1e−3Dθ t2− e−κΓ̄t2e−Dθ t1− e−κΓ̄t1e−Dθ t2 + e−κΓ̄(t1+t2)

(κΓ̄−3Dθ )(κΓ̄−Dθ )

+
2Dθ (e−κΓ̄t1e(κΓ̄−4Dθ )t2− e−κΓ̄(t1+t2))

(2κΓ̄−4Dθ )(κΓ̄−Dθ )(κΓ̄−3Dθ )

]
+

v2
0

2

[
e−Dθ t1eDθ t2− e−Dθ t1e−κΓ̄t2− e−κΓ̄t1e−Dθ t2 + e−κΓ̄(t1+t2)

(κΓ̄−Dθ )(κΓ̄+Dθ )

+
2Dθ (e−κΓ̄(t1+t2)− e−κΓ̄(t1−t2))

2κΓ̄(κΓ̄−Dθ )(κΓ̄+Dθ )

]
(4.64)

113



As the active particle dynamics is not zero centric stochastic process, we need to trans-

form the process to zero centric by subtracting 〈R0(t1)〉〈R0(t2)〉 from Eq.(4.64). Taking

for only x-direction, we get

〈x0(t1)〉〈x0(t2)〉= v2
0 cos2

θ0
e−Dθ (t1+t2)− e−Dθ t1e−κΓ̄t2− e−Dθ t2e−κΓ̄t1 + e−κΓ̄(t1+t2)

(κΓ̄−Dθ )2 (4.65)

In Eq(4.65), we neglect the first two terms consisting e−Dθ (t1+t2) and e−Dθ t1e−κΓ̄t2 and

subtract rest of the term from Eq.(4.64) getting transformed two-time correlation as,

〈x0(t1)x0(t2)〉trans = 〈x0(t1)x0(t2)〉−〈x0(t1)〉〈x0(t2)〉 (4.66)

4.3.4 Calculation of 〈R0,i(t1)R1, j(t2)〉

〈R0,i(t1)R1, j(t2)〉=

〈
R0,i(t1)

∫ t2

0
dt ′2e−κΓ̄(t2−t ′2)∑R jk(t ′2)R0,k(t ′2)

〉
=
∫ t2

0
dt ′2e−κΓ̄(t2−t ′2)∑R jk(t ′2)

〈
R0,i(t1)R0,k(t ′2)

〉
=
∫ t2

0
dt ′2e−κΓ̄(t2−t ′2)∑R jk(t ′2)

∫ t1

0
dt ′1

∫ t ′2

0
dt ′′2 e−κΓ̄(t1−t ′1)e−κΓ̄(t ′2−t ′′2 )

[
〈ξi(t ′1)ξk(t ′′2 )〉+ v2

0〈n̂i(t ′1)n̂k(t ′′2 )〉
]

(4.67)
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Lets calculate the integrals separately

I9 =
∫ t2

0
dt ′2e−κΓ̄(t2−t ′2)∑R jk(t ′2)

∫ t1

0
dt ′1

∫ t ′2

0
dt ′′2 e−κΓ̄(t1−t ′1)e−κΓ̄(t ′2−t ′′2 )〈ξ (t ′1)ξ (t ′′2 )〉

=
∫ t2

0
dt ′2e−κΓ̄(t2−t ′2)

〈
∑R jk(t ′2)

[kBT
κ

δi j(e−κΓ̄(t1−t ′2))

+2kBT ∆e−κΓ̄(t1+t ′2)
∫ min(t1,t ′2)

0
dt ′′e2κΓ̄t ′′Rik(t ′′)

]〉
=

kBT
κ

e−κΓ̄(t1+t2)
∫ t2

0
dt ′2eκΓ̄t ′2〈R ji(t ′′2 )〉(eκΓ̄t ′2− e−κΓ̄t ′2)

+2kBT ∆Γe−κΓ̄(t1+t2)
∫ min(t1,t ′2)

0
e2κΓ̄t ′′

∑

〈
R jk(t ′2)Rik(t ′′)

〉
=

kBT
κ

e−κΓ̄(t1+t2)R ji(θ0)
∫ t2

0
dt ′2e−4Dθ t ′2(e2κΓ̄t ′2−1)

+2kBT ∆Γe−κΓ̄(t1+t2)
∫ t2

0
dt ′2

∫ t ′2

0
dt ′′e2κΓ̄t ′′e−4Dθ (t ′2+t ′′−2min(t ′2,t

′′))

=
(kBT

κ

)
cos2θ0e−κΓt1

(
e(κΓ−4Dθ )t2− e−κΓt2

2κΓ−4Dθ

− e−κΓt2− e−(4Dθ+κΓ)t2

4Dθ

)
+
(kBT

κ

)(
∆Γ

Γ

)
e−κΓt1

[
eκΓt2− e−κΓt2

2κΓ+4Dθ

− 2κΓ

4Dθ

e−κΓt2− e−(2κΓ+4Dθ )t2

κΓ+4Dθ

]

(4.68)

I10 =
∫ t2

0
dt ′2e−κΓ̄(t2−t ′2)∑R jk(t ′2)

∫ t1

0
dt ′1

∫ t ′2

0
dt ′′2 e−κΓ̄(t1−t ′1)e−κΓ̄(t ′2−t ′′2 )v2

0〈n̂i(t ′1)n̂k(t ′′2 )〉

(4.69)

For x-direction Eq.(4.69) transforms as

I10 =
∫ t2

0
dt ′2e−κΓ̄(t2−t ′2)

∫ t1

0
dt ′1

∫ t ′2

0
dt ′′2 e−κΓ̄(t1−t ′1)e−κΓ̄(t ′2−t ′′2 )v2

0[〈cos2θ(t ′2)cosθ(t ′1)cosθ(t ′′2 )〉

+ 〈sin2θ(t ′2)cosθ(t ′1)cosθ(t ′′2 )〉]
(4.70)

We can write

cos2θ1 cosθ2 cosθ3 =
1
4
[cos(2θ1−θ2−θ3)+ cos(2θ1 +θ2−θ3)

+ cos(2θ1−θ2 +θ3)+ cos(2θ1 +θ2 +θ3)]

sin2θ1 cosθ2 cosθ3 =
1
4
[sin(2θ1−θ2−θ3)+ sin(2θ1 +θ2 +θ3)

+ sin(2θ1−θ2 +θ3)+ sin(2θ1 +θ2 +θ3)]

(4.71)

115



〈cos(2θ1−θ2−θ3)〉= e−Dθ (4t ′2+t ′1+t ′′2−4min(t ′2,t
′
1)−4min(t ′2,t

′′
2 )+2min(t ′1,t

′′
2 ))

〈cos(2θ1 +θ2−θ3)〉= cos2θ0e−Dθ (4t ′2+t ′1+t ′′2+4min(t ′2,t
′
1)−4min(t ′2,t

′′
2 )−2min(t ′1,t

′′
2 ))

〈cos(2θ1−θ2 +θ3)〉= cos2θ0e−Dθ (4t ′2+t ′1+t ′′2−4min(t ′2,t
′
1)+4min(t ′2,t

′′
2 )−2min(t ′1,t

′′
2 ))

〈cos(2θ1 +θ2 +θ3)〉= cos4θ0e−Dθ (4t ′2+t ′1+t ′′2+4min(t ′2,t
′
1)+4min(t ′2,t

′′
2 )+2min(t ′1,t

′′
2 ))

〈sin(2θ1−θ2−θ3)〉= e−Dθ (4t ′2+t ′1+t ′′2−4min(t ′2,t
′
1)−4min(t ′2,t

′′
2 )+2min(t ′1,t

′′
2 ))

〈sin(2θ1 +θ2−θ3)〉= sin2θ0e−Dθ (4t ′2+t ′1+t ′′2+4min(t ′2,t
′
1)−4min(t ′2,t

′′
2 )−2min(t ′1,t

′′
2 ))

〈sin(2θ1−θ2 +θ3)〉= sin2θ0e−Dθ (4t ′2+t ′1+t ′′2−4min(t ′2,t
′
1)+4min(t ′2,t

′′
2 )−2min(t ′1,t

′′
2 ))

〈sin(2θ1 +θ2 +θ3)〉= sin4θ0e−Dθ (4t ′2+t ′1+t ′′2+4min(t ′2,t
′
1)+4min(t ′2,t

′′
2 )+2min(t ′1,t

′′
2 ))

(4.72)

Let us calculate Eq.(4.70) by using Eq.(4.72), at first we take the first term (a)〈cos(2θ1−θ2−θ3)〉
and calculate separately

v2
0e−κΓ̄(t1+t2)

4

∫ t2

0
dt ′2

∫ t1

0
dt ′1

∫ t ′2

0
dt ′′2 eκΓ̄t ′1eκΓ̄t ′′2 e−Dθ (4t ′2+t ′1+t ′′2−4min(t ′2,t

′
1)−4min(t ′2,t

′′
2 )+2min(t ′1,t

′′
2 ))

(4.73)

Here in the above integral always t ′2 > t ′′2 and in the first case let us take t ′1 > t ′2 we get

Case(1), t ′1 > t ′2

v2
0e−κΓ̄(t1+t2)

4

∫ t2

0
dt ′2

∫ t1

t ′2
dt ′1

∫ t ′2

0
dt ′′2 eκΓ̄t ′1eκΓ̄t ′′2 e−4Dθ t ′2e−Dθ t ′1e−Dθ t ′′2 e4Dθ t ′2e4Dθ t ′′2 e−2Dθ t ′′2

=
v2

0e−Dθ t1(eDθ t2− e−κΓ̄t2)

4(κΓ̄+Dθ )2(κΓ̄−Dθ )
−

v2
0e−κΓ̄t1(eκΓ̄t2− e−κΓ̄t2)

8κΓ̄(κΓ̄+Dθ )(κΓ̄−Dθ )

+
v2

0e−κΓ̄t1(e−Dθ t2− e−κΓ̄t2)

4(κΓ̄+Dθ )(κΓ̄−Dθ )2 −
t2v2

0e−κΓ̄t2e−Dθ t1

4(κΓ̄+Dθ )(κΓ̄−Dθ )

(4.74)

Case(2), t ′1 < t ′2

v2
0e−κΓ̄(t1+t2)

4

[∫ t2

0
dt ′2

∫ t ′2

0
dt ′1

∫ t ′1

0
dt ′′2 eκΓ̄t ′1eκΓ̄t ′′2 e−4Dθ t ′2e3Dθ t ′1e3Dθ t ′′2 e−2Dθ t ′′2

+
∫ t2

0
dt ′2

∫ t ′2

0
dt ′1

∫ t ′2

t ′1
dt ′′2 eκΓ̄t ′1eκΓ̄t ′′2 e−4Dθ t ′2e3Dθ t ′1e3Dθ t ′′2 e−2Dθ t ′1

]
=

v2
0e−κΓ̄t1

8(κΓ̄+Dθ )(κΓ̄+2Dθ )

[sinhκΓ̄t2
κΓ̄

− e−κΓ̄t2− e−(κΓ̄+4Dθ )t2

4Dθ

]
−

v2
0e−κΓ̄t1

4(κΓ̄+Dθ )(κΓ̄+3Dθ )

[e−Dθ t2− e−κΓ̄t2

κΓ̄−Dθ

− e−κΓ̄t2− e−(κΓ̄+4Dθ )t2

4Dθ

]
+

v2
0e−κΓ̄t1

4(κΓ̄+Dθ )(κΓ̄+3Dθ )

[sinhκΓ̄t2
κΓ̄

− e−Dθ t2− e−κΓ̄t2

κΓ̄−Dθ

]
−

v2
0e−κΓ̄t1

8(κΓ̄+2Dθ )(κΓ̄+3Dθ )

[sinhκΓ̄t2
κΓ̄

− e−κΓ̄t2− e−(κΓ̄+4Dθ )t2

4Dθ

]

(4.75)
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Adding Eq.(4.74) and Eq.(4.75) terms we get the term Eq.(4.73) as,

Ia =
v2

0e−Dθ t1(eDθ t2− e−κΓ̄t2)

4(κΓ̄+Dθ )2(κΓ̄−Dθ )
+

t2v2
0e−κΓ̄t2e−Dθ t1

4(κΓ̄+Dθ )(κΓ̄−Dθ )
−

3v2
0Dθ e−κΓ̄t1 sinhκΓ̄t2

4κΓ̄(κΓ̄+Dθ )(κΓ̄−Dθ )(κΓ̄+2Dθ )

−
v2

0e−κΓ̄t1(e−κΓ̄t2− e−(κΓ̄+4Dθ )t2)

16(κΓ̄+2Dθ )(κΓ̄+Dθ )(κΓ̄+3Dθ )
−

v2
0e−κΓ̄t1(κΓ̄−5Dθ )(e−Dθ t2− e−κΓ̄t2)

4(κΓ̄+Dθ )(κΓ̄+3Dθ )(κΓ̄−Dθ )2

(4.76)

The way first term has been calculated similiarly other terms are calculated to find the

exact expression of Eq.(4.70). The results of Integrals due to terms (b), (c), and (d) are

as follows

Ib =
v2

0e−κΓ̄t1

8κΓ̄(κΓ̄+5Dθ )

[e(κΓ̄−4Dθ )t2− e−κΓ̄t2

2κΓ̄−4Dθ

− e−κΓ̄t2− e−(κΓ̄+4Dθ )t2

4Dθ

]
−

v2
0e−κΓ̄t1

4(κΓ̄+5Dθ )(κΓ̄−5Dθ )[e−9Dθ t2− e−κΓ̄t2

κΓ̄−9Dθ

− e−κΓ̄t2− e−(κΓ̄+4Dθ )t2

4Dθ

]
+

v2
0e−κΓ̄t1

4(κΓ̄+3Dθ )(κΓ̄−3Dθ )

[e(κΓ̄−4Dθ )t2− e−κΓ̄t2

2κΓ̄−4Dθ

+
e−κΓ̄t2− e−Dθ t2

κΓ̄−Dθ

]
−

v2
0e−κΓ̄t1

8κΓ̄(κΓ̄+3Dθ )

[e(κΓ̄−4Dθ )t2− e−κΓ̄t2

2κΓ̄−4Dθ

− e−κΓ̄t2− e−(κΓ̄+4Dθ )t2

4Dθ

]
+

v2
0e−κΓ̄t1

4(κΓ̄−Dθ )(κΓ̄+5Dθ )

[e−9Dθ t2− e−κΓ̄t2

κΓ̄−9Dθ

− e(κΓ̄−4Dθ )t2− e−κΓ̄t2

2κΓ̄−4Dθ

]
+

v2
0e−Dθ t1

4(κΓ̄−Dθ )(κΓ̄+5Dθ )

[e−3Dθ t2− e−κΓ̄t2

κΓ̄−3Dθ

− e−κΓ̄t2− e−(κΓ̄+8Dθ )t2

8Dθ

]
(4.77)

Ic =
v2

0e−Dθ t1

4(κΓ̄−Dθ )(κΓ̄−3Dθ )

[e−3Dθ t2− e−κΓ̄t2

(κΓ̄−3Dθ )
− t2e−κΓ̄t2

]
+

v2
0e−κΓ̄t1

4(κΓ̄−Dθ )(κΓ̄−3Dθ )[e−Dθ t2− e−κΓ̄t2

κΓ̄−Dθ

− e(κΓ̄−4Dθ )t2− e−κΓ̄t2

κΓ̄−2Dθ

]
+

v2
0e−κΓ̄t1

4(κΓ̄+5Dθ )(κΓ̄−5Dθ )

[e−4Dθ t2− e−κΓ̄t2

κΓ̄−4Dθ

− e−9Dθ t2− e−κΓ̄t2

κΓ̄−9Dθ

]
+

v2
0e−κΓ̄t1

16κΓ̄(κΓ̄−3Dθ )

[e(κΓ̄−4Dθ )t2− e−κΓ̄t2

κΓ̄−2Dθ

− e−κΓ̄t2− e−(κΓ̄+4Dθ )t2

2Dθ

]
+

v2
0e−κΓ̄t1

4(κΓ̄−3Dθ )(κΓ̄+3Dθ )

[e−κΓ̄t2− e−(κΓ̄+4Dθ )t2

4Dθ

− e−Dθ t2− e−κΓ̄t2

κΓ̄−Dθ

]
(4.78)
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Id =
v2

0e−Dθ t1

4(κΓ̄−Dθ )(κΓ̄−7Dθ )

[e−15Dθ t2− e−κΓ̄t2

κΓ̄−15Dθ

− e−κΓ̄t2− e−(κΓ̄+8Dθ )t2

8Dθ

]
+

v2
0e−κΓ̄t1

4(κΓ̄−Dθ )(κΓ̄−7Dθ )[e−9Dθ t2− e−κΓ̄t2

κΓ̄−9Dθ

− e(κΓ̄−16Dθ )t2− e−κΓ̄t2

2(κΓ̄−8Dθ )

]
+

v2
0e−κΓ̄t1

8(κΓ̄−7Dθ )(κΓ̄−6Dθ )

[e(κΓ̄−16Dθ )t2− e−κΓ̄t2

2κΓ̄−16Dθ

− e−κΓ̄t2− e−(κΓ̄+4Dθ )t2

4Dθ

]
+

v2
0e−κΓ̄t1

4(κΓ̄−5Dθ )(κΓ̄−7Dθ )

[e−κΓ̄t2− e−(κΓ̄+4Dθ )t2

4Dθ

− e−9Dθ t2− e−κΓ̄t2

κΓ̄−9Dθ

]
+

v2
0e−κΓ̄t1

4(κΓ̄−5Dθ )(κΓ̄−7Dθ )

[e(κΓ̄−16Dθ )t2− e−κΓ̄t2

2κΓ̄−16Dθ

− e−9Dθ t2− e−κΓ̄t2

κΓ̄−9Dθ

]
+

v2
0e−κΓ̄t1

8(κΓ̄−5Dθ )(κΓ̄−6Dθ )

[e−κΓ̄t2− e−(κΓ̄+4Dθ )t2

4Dθ

− e(κΓ̄−16Dθ )t2− e−κΓ̄t2

2κΓ̄−16Dθ

]
(4.79)

Integral values to due term (e) will be same of (a) similarly others. Terms due to

(f), (g), (h) of Eq.(4.72) will be zero for the initial orientational angle θ0 = 0. Now for

the simplification we are taking only the term associated with sinhκΓ̄t2 of Eq.(4.76).

Similarly another same term of sinhκΓ̄t2 will arise due to the contribution of (e) of

Eq.(4.72).

To make this two-time correlation as zero centric stochastic process we need to sub-

tract the term 〈R0(t1)〉〈R1(t2)〉 from Eq.(4.67). But for the simplicity of the calculation

we have avoided this term. So, this two-time correlation term becomes,

〈x0(t1)x1(t2)〉=
(kBT

κ

)
cos2θ0e−κΓt1

(
e(κΓ−4Dθ )t2− e−κΓt2

2κΓ−4Dθ

− e−κΓt2− e−(4Dθ+κΓ)t2

4Dθ

)
+
(kBT

κ

)(
∆Γ

2Γ

)
e−κΓt1

[
eκΓt2− e−κΓt2

2κΓ+4Dθ

− 2κΓ

4Dθ

e−κΓt2− e−(2κΓ+4Dθ )t2

κΓ+4Dθ

]
−

3v2
0Dθ e−κΓ̄t1 sinhκΓ̄t2

2κΓ̄(κΓ̄+Dθ )(κΓ̄−Dθ )(κΓ̄+2Dθ )

(4.80)

Following Eq. (5.53), the mean-square displacement 〈x2(t)〉 up to the first order correc-

tion is given by 〈x2(t)〉 = 〈x2
0(t)〉ξ ,θ − (κ∆Γ)〈x0(t)x1(t)〉ξ ,θ . From Eqs. (4.58) and (4.80)

it is clear that the second term in Eq. (4.58) cancels with the first term in Eq. (4.80).

Further, since we are interested in the expression for the mean square displacement up

to the first order, the expression for 〈x2(t)〉 becomes
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〈x2(t)〉=
(

kBT
κ

)[
(1− e−2κΓ̄t)+κ∆Γcos2θ0

(
e−2κΓt− e−(4Dθ+2κΓ)t

4Dθ

)
+

v2
0 cos2θ0

2

[ 2Dθ (e−4Dθ t− e−2κΓ̄t)

(2κΓ̄−4Dθ )(κΓ̄−3Dθ )(κΓ̄−Dθ )
+

e−4Dθ t−2e−(κΓ̄+Dθ )t + e−2κΓ̄t

(κΓ̄−Dθ )(κΓ̄−3Dθ )

]
+

v2
0

2

[1−2e−(κΓ̄+Dθ )t + e−2κΓ̄t

(κΓ̄−Dθ )(κΓ̄+Dθ )
− Dθ (1− e−2κΓ̄t)

κΓ̄(κΓ̄−Dθ )(κΓ̄+Dθ )

]
+κ∆Γ

3v2
0Dθ e−κΓ̄t sinhκΓ̄t

2κΓ̄(κΓ̄+Dθ )(κΓ̄−Dθ )(κΓ̄+2Dθ )

]
(4.81)

4.3.5 Persistence probability

We are going to calculate the persistence probability of the harmonically trapped active

asymmetric Brownian particle. The two-time correlation function 〈x(t1)x(t2)〉ξ ,θ can be

written in terms of perturbation series terms as

〈x(t1)x(t2)〉ξ ,θ = 〈x0(t1)x0(t2)〉ξ ,θ −
(κ∆Γ)

2
[〈x0(t1)x1(t2)〉ξ ,θ + 〈x1(t1)x0(t2)〉ξ ,θ ] (4.82)

where t1 > t2. The correlation functions 〈x0(t1)x1(t2)〉ξ ,θ and 〈x1(t1)x0(t2)〉ξ ,θ are equal in

asymptotic limit, that is, for t1 and t2 large. In the limit, the expression for the two-time

correlation function takes the form

〈x(t1)x(t2)〉ξ ,θ = 〈x0(t1)x0(t2)〉ξ ,θ − (κ∆Γ)〈x0(t1)x1(t2)〉ξ ,θ (4.83)

For initial angle θ0 = 0 all the terms of both 〈x0(t1)x0(t2)〉 and 〈x0(t1)x1(t2)〉 survive.

But for the simplicity of the calculation we will neglect several terms. From Eq.(4.64)

we neglect the first term of the third part and the terms e−Dθ t1e−3Dθ t2 and e−κΓ̄t2e−Dθ t1

from the third part, and similarly from the fourth part we neglect the terms containing

e−Dθ t1eDθ t2 and e−κΓ̄t2e−Dθ t1. Again we have taken consideration of the transformed two-

time correlation terms defined in Eq.(4.65) and Eq.(4.66). And from the Eq.(4.80) only

first part and the first term of the second part and the third part have been taken, and
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other terms are neglected. Thus the correlation becomes,

〈x(t1)x(t2)〉θ0=0

= e−κΓ̄t1

[(2kBT
κ
−

v2
0Dθ

κΓ̄(κΓ̄−Dθ )(κΓ̄+Dθ )
+

∆Γ

2Γ̄

3v2
0Dθ

(κΓ̄+Dθ )(κΓ̄−Dθ )(κΓ̄+2Dθ )

)
sinhκΓ̄t2

+
4D2

θ
v2

0(e
−κΓ̄t2− e−Dθ t2)

(κΓ̄−3Dθ )(κΓ̄+Dθ )(κΓ̄−Dθ )2 +(∆D)
1− e−4Dθ t2

4Dθ

]
(4.84)

After a little algebra, the two-time correlation function for the x-coordinate of the posi-

tion vector,

〈x(t1)x(t2)〉θ0=0 = e−κΓ̄t1

[(2kBT
κ ′

)
sinhκΓ̄t2 +

4D2
θ

v2
0(e
−κΓ̄t2− e−Dθ t2)

(κΓ̄−3Dθ )(κΓ̄+Dθ )(κΓ̄−Dθ )2

+

(
2kBT

κ

)(
κ∆Γ

2

)
e−κΓ̄t2

(
1− e−4Dθ t2

4Dθ

)] (4.85)

where the effective trap constant κ ′ is defined as κ ′−1 = κ−1[1− v2
0Dθ

D̄(κΓ̄−Dθ )(κΓ̄+Dθ )
+

κ∆Γ

2
3v2

0Dθ

2D̄(κΓ̄+Dθ )(κΓ̄−Dθ )(κΓ̄+2Dθ )

]
As before, we define the variable X(t) = x(t)/

√
〈x2〉ξ ,θ and the correlation function

of 〈X(t1)X(t2)〉ξ ,θ is found,

〈X(t1)X(t2)〉ξ ,θ =

e−κΓ̄t1/2

e−κΓ̄t2/2


(

2kBT
κ ′

)
sinhκΓ̄t1 +

4D2
θ

v2
0(e
−κΓ̄t1−e−Dθ t1)

(κΓ̄−3Dθ )(κΓ̄+Dθ )(κΓ̄−Dθ )2 +
(

2kBT
κ

)(
κ∆Γ

2

)
e−κΓ̄t1

(
1−e−4Dθ t1

4Dθ

)
(

2kBT
κ ′

)
sinhκΓ̄t2 +

4D2
θ

v2
0(e
−κΓ̄t2−e−Dθ t2)

(κΓ̄−3Dθ )(κΓ̄+Dθ )(κΓ̄−Dθ )2 +
(

2kBT
κ

)(
κ∆Γ

2

)
e−κΓ̄t2

(
1−e−4Dθ t2

4Dθ

)


1/2

(4.86)

Using the time transformation for an imaginary time variable T , such that

eT = e−κΓ̄t

[(2kBT
κ
−

v2
0Dθ

κΓ̄(κΓ̄−Dθ )(κΓ̄+Dθ )
+

∆Γ

2Γ̄

3v2
0Dθ

(κΓ̄+Dθ )(κΓ̄−Dθ )(κΓ̄+2Dθ )

)
sinhκΓ̄t

+
4D2

θ
v2

0(e
−κΓ̄t− e−Dθ t)

(κΓ̄−3Dθ )(κΓ̄+Dθ )(κΓ̄−Dθ )2 +(∆D)
1− e−4Dθ t

4Dθ

]
(4.87)

The two time correlation function in Eq. (4.86) transforms into a stationary correla-
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tor of the form C(T1−T2) = e−(T1−T2)/2 and the persistence probability in the asymptotic

limit in the imaginary variable T is given by p(T ) ∼ e−T/2. Transforming back into

real-time, the persistence probability becomes

p(t,θ0 = 0) = e−κΓ̄t/2

[(2kBT
κ ′

)
sinhκΓ̄t +

4D2
θ

v2
0(e
−κΓ̄t− e−Dθ t)

(κΓ̄−3Dθ )(κΓ̄+Dθ )(κΓ̄−Dθ )2

+

(
2kBT

κ

)(
κ∆Γ

2

)
e−κΓ̄t 1− e−4Dθ t

4Dθ

]−1/2 (4.88)

In the limit of v0→ 0, the equation correctly reproduces the result for a passive anisotropic

particle.25. In order to validate the equation, we performed numerical simulations of

Eq. (4.46) with the initial condition chosen from a Gaussian distribution with a very

small width, so that the sign of r(0) is well defined. The trajectories were evolved

in time with an integration time step of δ t = 0.001. The persistence probability was

determined from the fraction of trajectories for which x(t) did not change its sign. A

comparison of the measured persistence probability is shown in Fig. 4.5 for two val-

ues κ. There is an excellent agreement of the measured survival probability with the

analytical expression given in Eq. (4.88).
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Figure 4.5 Plot of p(t) for different choices of stiffness of the potential κ of the harmonically
trapped anisotropic particle (blue square for κ = 0.01 and orange triangle for κ = 0.10) for self-
propelled velocity v0 = 0.05: the colours representing different stiffness of the potential are
written above the plot. The rotational diffusion constant and initial angle θ0 were fixed at Dθ = 1
and θ0 = 0, translational diffusivities are fixed as D‖ = 1, D⊥ = 0.5. The blue dashed line is the
plot of Eq.(4.88) for κ = 0.01 and the orange solid line is the plot of Eq.(4.88) for κ = 0.10 with
the appropriate values of D‖, D⊥, and Dθ .
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4.4 Conclusion

In brief, we have calculated the persistence probability along the x-axis of an active

anisotropic particle in two dimensions in the absence of any potential and in the pres-

ence of a harmonic potential. Two-time correlation function has been calculated in the

both cases. In the case of the harmonic trapping, we have used a perturbative solution

for calculating the correlation functions. The persistence probability has been calcu-

lated with suitable space and time transformations. We have calculated persistence

probability both analytically and numerically. We discussed single particle properties

by the orientational and translational correlation functions presenting some analytical

results for this model. We have shown how the addition of the self-propelled velocity

for active Brownian particle changes the dynamics and the persistence of the system

than the passive Brownian particle.
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5
Persistence of surface growth
with finite size effect in KPZ
interface

Surface growth is a common phenomenon in many processes of fundamental interest and ap-

plied fields, occurring over a broad range of length scales with atomistic growth models that

range from a few nanometers to biological systems (such as the growth of tumors) that range

to a few millimeters. Such deposition processes are inherently spatially extended systems that

are stochastic in nature. Theoretical modeling of such systems is usually done using stochas-

tic coarse-grained growth equations- the dynamical evolution of the surface height is governed

by either a linear or a nonlinear Langevin equation, depending on the underlying microscopic

dynamics. In this chapter, we look at the persistence probability p(t) of stochastic models of

surface growth which is restricted by finite system size. We look at two particular models of

surface growth - the linear Edwards-Wilkinson model and the non-linear Kardar-Parisi-Zhang

model. The purpose of this chapter is to present analytical results for the persistence p(t) for

finite-size system.
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5.1 Introduction

Here we start the systematic study of the different growth processes and the corre-

sponding universality classes1–6. In the growth process, there are two simplest growth

models, random deposition model(RD) and ballistic deposition model(BD)7. The sim-

plest model RD allows us to determine the scaling components exactly, and to construct

a continuum growth equation that leads to the same scaling exponents. A comparatively

complicated model is BD model. RD model is described as: From a randomly taken site

over the surface, a particle falls vertically until it reaches the top of the column under it,

upon where it is deposited. Thus we choose a column randomly and increase its height

h(t) by one. The most important difference between RD and BD model is that the RD

interface is uncorrelated. On the other hand in BD model, the particles are capable of

sticking to the edge of the neighboring columns leading to lateral growth, allowing the

spread of correlations along the surface.

The dynamic scaling behavior of stochastic growth equations is characterized by

several universality classes. Every choice of universality class is characterized by a set

of scaling exponents depending upon the dimensionality of the problem. The exponents

are denoted as α, β , and z, when α represents the roughness exponent exploring the

dependence of the amplitude of height fluctuations in the steady state regime (t >> Lz)

on the sample size L, β denotes the growth exponent describing the initial power-law

growth of the interface width in the transient regime (1 << t << Lz), and z represents

the dynamical exponent related to the system size dependence of the time when the

interface width attains saturation. We use the single-valued function h(r, t) representing

the height of the growing sample at position r and deposition time t.The interfacial

height fluctuations are denoted by the root-mean-squared height deviation which is the

interface width, that is a function of the substrate size L and deposition time t:

W (L, t) = 〈[h(r, t)− h̄(t)]2〉1/2 (5.1)

here h̄(t)=average sample thickness. W (L, t)∝ tβ for t <<Lz and W (L, t)∝ Lα for t >>Lz,

Lz being the equilibration time of the interface when its stationary roughness is fully

developed.

In RD model, every column grows independently as there is no correlation between

the columns. The probability that the column grows independently is p = 1/L, where L

is the system size. The probability that the column has height h after the deposition of
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N particles is,

P(h,N) =

(
N

h

)
ph(1− p)N−h

Average height grows linearly with time 〈h〉 = ∑
N
h=1 hP(h,n) = N p = N/L = t. Similarly

the second moment is straight forwardly calculated as 〈h2〉 = N p(1− p) +N2 p2. The

width of the interface is given w2(t) = 〈(h−〈h〉)2〉 = 〈h2〉− 〈h〉2 = N
L (1−

1
L). So we con-

clude as w(t) ∼ t1/2. So β = 1
2 . The differential equation representing the RD model

is
∂h(x, t)

∂ t
= F +η(x, t)

F is the average number of particles arriving at site x. η(x, t) is the random fluctuation

whose average is zero and the second moment is 〈η(x, t)η(x′, t ′)〉= 2Dδ (x− x′)δ (t− t ′).

General solution

h(x, t) = Ft +
∫ t

0
dt ′η(x, t ′)

From this relation, we can also derive w2(t) = 2Dt. Thus we obtain the same exponent

β = 1/2.

Let us generalize the growth equation with a form

∂h(x, t)
∂ t

= G(h,x, t)+η(x, t)

Here G(h,x, t) is a general term that depends on the interface height, position, and time.

To find the growth equation, we list some basic symmetries

• Invariance under translation in time.

• Translation invariance along the growth direction. This means that the equation

is constructed from the combination of ∇h, ∇2h,.....,∇nh.

• Translational invariance in the direction perpendicular to the growth direction.

• Rotation and inversion symmetry about the growth direction.

• Up/down symmetry for h, that means the interface fluctuations are similar w.r.t

the mean interface height.

Considering all these conditions we may construct a general growth equation as,

∂h(x, t)
∂ t

= (∇2h)+(∇4h)+ ...+(∇2nh)+(∇2h)(∇h)2 + ..+(∇2kh)(∇h)2 j +η(x, t)
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The simplest equation describing the fluctuations of the equilibrium interface is Edward-

Wilkinson(EW) equation, taking the form

∂h(x, t)
∂ t

= ν∇
2h+η(x, t) (5.2)

here ν is surface tension, and ν∇2h term influences to smoothen the interface. The

scaling exponents for EW equation is α = 2−d
2 , β = 2−d

4 , and z = 2

Now the rather complicated form of describing a growth equation is the KPZ equa-

tion, which is obtained using physical principles which motivate the addition of nonlin-

ear terms to the linear theory and symmetry principles as we use for the EW case. We

include lateral growth in the equation. Growth happens locally normal to the interface

generating the nonlinear term (∇h)2. Adding this term to the EW equation we get the

KPZ equation as follows

∂h(x, t)
∂ t

= ν∇
2h+λ (∇h)2 +η(x, t) (5.3)

The first term smoothens the interface with diffusivity ν > 0, and the second term

is the slope-dependent growth velocity of strength λ , λ > 0 for convenience. From this

equation we can easily say that the interface growth governed by the KPZ equation has

nonzero velocity even in the absence of an external driving force. The scaling exponents

in this case are α = (2−d)/3, β = (2−d)/(4+d). For d = 1, α = 1/3 and β = 1/5.

In this chapter, we look at the persistence probability p(t) of stochastic models of sur-

face growth which is restricted by a finite system size. We look at two particular mod-

els of surface growth - the linear Edwards-Wilkinson model (EW) and the non-linear

Kardar-Parisi-Zhang model (KPZ). The phenomenon of persistence in the continuum

version of these two models has been well studied and the persistence exponents are

also known.8,9 For instance, the steady-state persistence exponents for both these mod-

els are related to the growth exponent β as θ = 1−β ,8,9 even though the KPZ equation

is a non-linear equation. Numerically obtained values of the steady state persistence

exponent for the one-dimensional KPZ equation were found to be θ ≈ 0.66, close to

the predicted value of 2/3,9 whereas for the EW model the exponent was found to be

≈ 0.74, close to the predicted value of 3/4. While these results are for continuum equa-

tions of surface growth, expressions for the persistence probability in spatially discrete

surface growth models with finite-size effects are not well-known. Our aim is to investi-

gate the persistence probability for discrete models of surface growth equations with a

finite-size. In an infinite spatially extended system, the boundary conditions do not play
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a significant role. The scenario changes when the system size is finite and it is expected

that the well-known algebraic decay of p(t) is lost.

The rest of the chapter is organized as follows: in Section 5.2 we present a brief

introduction to the models of surface growth. In Section 5.3 we present our work on

the persistence probabilities for the Edwards-Wilkinson model of surface growth on a

finite one-dimensional lattice ( Section 5.3.1) and for the Kardar-Parisi-Zhang model of

surface growth on a finite one-dimensional lattice (Section 5.3.2).

5.2 Dynamic Scaling and Stochastic Growth Models

Since it is convenient to write the evolution equations in terms of the deviation of

the height from its spatial average value, h(r, t)− h̄(t), from now on we will denote by

h̄(r, t) the interface height fluctuation measured from the average height. Using different

scaling exponents (α,β ,z) we get,

(a) The Edward-Wilkinson (EW) second-order linear equation: (α = 1
2 ,β = 1

4 ,z = 2)

∂h(r, t)
∂ t

= ν∇
2h(r, t)+η(r, t) (5.4)

(b) The KPZ second-order nonlinear equation: (α = 1
2 ,β = 1

3 ,z =
3
2)

∂h(r, t)
∂ t

= ν∇
2h(r, t)+λ |∇h(r, t)|2 +η(r, t) (5.5)

(c) The Mullins-Herring (MH) fourth-order linear equation: (α = 3
2 ,β = 3

8 ,z= 4(1, 1
4 ,4))

∂h(r, t)
∂ t

=−ν∇
4h(r, t)+η(r, t) (5.6)

(d) The MBE fourth-order nonlinear equation: (α = 2
3 ,β = 1

5 ,z =
10
3 )

∂h(r, t)
∂ t

=−ν∇
4h(r, t)+λ∇

2|(∇h(r, t))|2 +η(r, t) (5.7)

The term η(r, t) represents the noise term. We assume that the noise has Gaussian
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distribution with zero mean and correlator:

〈η(r1, t1)η(r2, t2)〉= Dδ
d(r1− r2)δ (t1− t2) (5.8)

5.3 Calculation of Persistence

In this section, we present our calculations for the determination of the persistence

probability of the local height fluctuation in two models of surface growth. In both the

models, we consider the system to be bounded by a finite system size with a prescribed

boundary condition. Our first step is to consider the linear stochastic model of growth

described by the Edwards-Wilkinson model, discretized on a one-dimensional lattice.

Consequent to this, we look at the non-linear Kardar-Parisi-Zhang model of surface

growth.

5.3.1 Persistence for Edward-Wilkinson system on a finite lattice

We consider the Edwards-Wilkinson model of surface growth on a one-dimensional lat-

tice with a finite domain size extending from −L to L. The finite domain is discretized

into a one-dimensional lattice with 2N points, such that Na = L, where the lattice spac-

ing is defined as a. At each lattice point the height profile is denoted as hn(t). The con-

tinuum stochastic model of surface growth given in Eq. (5.4) in one dimension reads

as
∂h(x, t)

∂ t
= ν

∂ 2h
∂x2 +η(x, t) (5.9)

Where ξ is the Gaussian stochastic noise. The correlations of the ξ are given by

〈η(x, t)〉= 0

〈η(x, t)η(x′, t ′)〉= 2Dδ (t− t ′)δ (x− x′)
(5.10)

The boundary condition is chosen to be ∂h
∂x

)
±L

= 0. The discretized form of Eq. (5.9) on

a one dimensional lattice takes the form

∂hn(t)
∂ t

=
ν

a2

[
hn+1(t)+hn−1(t)−2hn

]
+

ηn√
a

(5.11)

Note the
√

a in the Eq.(5.11) comes from the spatial delta correlation of the noise in

the continuum equation. The formal solution to Eq. (5.11) together with the boundary
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condition for hn is given by

hn(t) = X0 +2∑
p

Xp coskpn (5.12)

where Xp are the Fourier modes for p 6= 0 and X0 is the p = 0 mode. The boundary

condition dictates that sinkpN = 0 and therfore we get kp = pπ/N, so that the formal

solution takes the form

hn(t) = X0 +2∑
p

Xp cos
pπn
N

(5.13)

Substituting Eq. (5.13) in Eq. (5.11), we get for Xp

∑
p

Ẋp cos
( pπn

N

)
=−2ν

a2 ∑
p

Xp

[
1− cos

( pπ

N

)]
cos
( pπn

N

)
+

ηn

2
√

a (5.14)

We multiply throughout Eq. (5.14) with cos(qπn/N) and carry out a sum over n. The

left hand side of Eq. (5.14) gives

∑
p

∑
n

Ẋp cos
( pπn

N

)
cos
(qπn

N

)
= ∑

p
Ẋp

1
a

∫ L

−L
dxcos

( pπx
L

)
cos
(qπx

L

)
=

L
a ∑

p
Ẋpδp,q =

L
a

Ẋq

(5.15)

Similarly, the first term on the right hand side of Eq. (5.14) becomes

−∑
p

∑
n

kpXp cos
( pπn

N

)
cos
(qπn

N

)
=−∑

p
kpXp

1
a

∫ L

−L
dxcos

( pπx
L

)
cos
(qπx

L

)
=−L

a ∑
p

Xpδp,q =−
L
a

kqXq

(5.16)

Where kp =
2ν

a2 (1−cos pπ

N ). For large enough N, we approximate kp as kp =
ν p2π2

L2 , where

we have used the fact that Na = L. The equation for the time evolution of Xp follows

the stochastic differential equation

∂Xp

∂ t
=−kpXp +ηp (5.17)

where the stochastic noise ηp is given by

ηp(t) =
√

a
2L ∑

n
ηn cos

( pπn
N

)
(5.18)

The statistical correlations of ηp follows from ηn. The first moment of ηp is zero. The
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second moment is given by

〈ηp(t)ηq(t ′)〉=
a

4L2 ∑
n,m
〈ηn(t)ηm(t ′)〉cos

( pπn
N

)
cos
(qπm

N

)
=

2Da
4L2 δ (t− t ′)∑

n
cos
( pπn

N

)
cos
(qπn

N

)
=

2Da
4L2 δ (t− t ′)

L
a

δp,q =
D
2L

δp,qδ (t− t ′)

(5.19)

The noise correlations for p = 0 mode also follows from Eq. (5.18). While the first

moment remains zero due to the Gaussian nature of ηn, the second moment is given by

〈η0(t)η0(t ′)〉=
a

4L2 ∑
n,m
〈ηn(t)ηm(t ′)〉=

2Da
4L2 δ (t− t ′)∑

n,m
δn,m

=
2Da
4L2 δ (t− t ′)∑

n
=

D
L

δ (t− t ′)
(5.20)

In deriving the last line of Eq. (5.20), we have used the fact that ∑n = 2N and Na = L.

With the noise correlation at hand, we now proceed to calculate the two-time correltion

functions. The solution for Xp, for p 6= 0, is given by

Xp(t) =
∫ t

0
dt ′e−kp(t−t ′)

ηp(t ′) (5.21)

and for p = 0, X0 obeys the simple random walk equation

X0(t) =
∫ t

0
dt ′η0(t ′) (5.22)

With t1 > t2, the two-time correlation function for 〈Xp(t1)Xq(t2)〉 take the form

〈Xp(t1)Xq(t2)〉=



D
L

t2 for p = q = 0

D
2L

δp,q

(
νπ2 p2

L2 +
νπ2q2

L2

)−1

×[
e−

νπ2

L2 (t1−t2)− e−
νπ2 p2

L2 t1e−
νπ2q2

L2 t2

]
for p 6= q 6= 0

(5.23)

We now want to determine the persistence probability in such a system. For this, we

choose the height profile at n = 0 as the stochastic variable, corresponding to x = 0 in
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the continumm limit. Putting n = 0 in the formal solution Eq. (5.13), we get

h0(t) = X0 +2∑
p

Xp (5.24)

The two-time correlation function 〈h0(t1)h0(t2)〉 is given by

〈h0(t1)h0(t2)〉= 〈X0(t1)X0(t2)〉+4∑
p,q
〈Xp(t1)Xq(t2)〉 (5.25)

Substituting the two-time correlation functions derived in Eq. (5.23), and noting that

the delta function in Eq. (5.23) for p 6= q 6= 0 is removed by the sum over q in Eq. (5.25)

we get

〈h0(t1)h0(t2)〉=
D
L

t2 +
2D
L

∞

∑
p=1

(
2νπ2 p2

L2

)−1

×
[

e−
νπ2 p2

L2 (t1−t2)− e−
νπ2 p2

L2 (t1+t2)
]

(5.26)

With this expression in hand, we first consider the limit of L→ ∞. To this end we use

the Euler-Maclaurin formula for the sum over the Fourier modes.

∞

∑
p=1

(
2νπ2 p2

L2

)−1[
e−

νπ2 p2

L2 (t1−t2)− e−
νπ2 p2

L2 (t1+t2)
]

=
L

2π

∫
∞

0

e−νk2(t1−t2)− e−νk2(t1+t2)

νk2 − 1
2

f (0)

(5.27)

where f (k) = e−νk2(t1−t2)−e−νk2(t1+t2)

2νk2 Therefore, in this limit of L→ ∞, the sum is rewritten

as

∞

∑
p=1

e−kp(t1−t2)− e−kp(t1+t2)

2kp
=
∫

∞

0

e−νk2(t1−t2)− e−νk2(t1+t2)

2kp
dk− 1

2
[ f (0)+ f (∞)] (5.28)

Where f (kp) =
e−kp(t1−t2)−e−kp(t1+t2)

2kp
. In the limit of k→ 0 we get f (0) = t2/2 so that the

expression in Eq. (5.26) become

〈h0(t1)h0(t2)〉=
D
L

t2 +
2D
2π

∫
∞

0
dk

[
e−νk2(t1−t2)− e−νk2(t1+t2)

νk2

]
− D

L
t2

= D
∫

∞

−∞

dk
2π

[
e−νk2(t1−t2)− e−νk2(t1+t2)

νk2

] (5.29)

The final form of the two-time correlation function in Eq. (5.29) is the well known result

for the one dimensional Edwards-Wilkinson model of surface growth in the continuum
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limit.8,10 Denoting C(t1, t2)≡ 〈h0(t1)h0(t2)〉 we get

C(t1, t2) =
D
ν
[(t1 + t2)1/2− (t1− t2)1/2] (5.30)

We now define the nromalised variable H(t) = h0(t)/
√
〈h2

0(t)〉 and the two-time correla-

tion function of H(t), A(t1, t2)≡ 〈H(t1)H(t2)〉=C(t1, t2)/
√

C(t1, t1)C(t2, t2) is given by

A(t1, t2) =
C(t1, t2)√

C(t1, t1)C(t2, t2)

=
[1

2

(√t1
t2
+

√
t2
t1

)]1/2
−
[1

2

(√t1
t2
−
√

t2
t1

)]1/2
(5.31)

The non-stationary correlation function in Eq. (5.31) is transformed in to a stationary

correlator using the transformation T = ln t, so that we get

A(T1,T2) = A(T1−T2) = f0(T ) = [coshT/2]1/2− [sinhT/2]1/2 (5.32)

In the opposite limit of L→ 0, only the first term in Eq. (5.26) survives and the correla-

tion function for the normalised variable H(t) = h0(t)/
√
〈h2

0(t)〉 is given by

〈H(t1)H(t2)〉=
√

t2
t1

(5.33)

This is the result for a simple random walk and the non-stationary correlation function

is converted to a stationary correlator using the transformation T = ln t. In the imaginary

time T , the two-time correlation function becomes stationary:〈H(T1)H(T2)〉= e−(T1−T2)/2

and the persistence probability is that of a simple random walker p(t)∼ t−1/2.

We now study the case when L is finite. Thus, L is kept fixed while t is varied.

To this end, in the expression for the two-time correlation function in Eq. (5.26) we

keep the long wavelength mode π/L corresponding to p = 1. The two-time correlation

function becomes

〈h0(t1)h0(t2)〉=
D
L

[
t2 +

2L2

νπ2 e−
νπ2

L2 t1 sinh
νπ2

L2 t2
]

(5.34)

The first limiting case we note is that of ν→ 0 when each lattice site is independent of its

neighboring site and evolves according to a simple random walk model. In this case, we

note that the correlation function in Eq. (5.34) becomes that of a simple random walker

and consequently we expect the persistence probability to be p(t) ∼ t−1/2. In order to

proceed further, we note that the non-stationary correlation function in Eq. (5.34) in
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its exact form can not be transformed to a stationary correlator without any further

approximation. When t1 and t2 are such that νπ2t/L2 >> 1, the first term in Eq. (5.34)

dominates and consequently the persistence probability is that of a random walker:

p(t) ∼ t−1/2. In the opposite limit of νπ2t/L2 << 1 we approximate the correlator in

Eq. (5.34) as:

〈h0(t1)h0(t2)〉=
D
L

t2

[
1+2

(
1− νπ2

L2 t1

)
sinh νπ2

L2 t2
νπ2

L2 t2

]

=
D
L

t2

[
1+2

(
1− νπ2

L2 t1

)]
=

3D
L

t2

[
1− 2

3
νπ2

L2 t1

] (5.35)

We can now convert this to a stationary correlation function – first using the trans-

formations H(t) = h0(t)/
√
〈h2

0(t)〉 so that

〈H(t1)H(t2)〉=
√

t2
t1

[
1− (2/3)νπ2t1

L2

1− (2/3)νπ2t2
L2

]
(5.36)

The transformation to a time T is given by

eT/2 =
t1/2(

1− 2
3

νπ2t
L2

)1/2 (5.37)

so that 〈H(T1)H(T2)〉 = e−(T1−T2)/2, and following Slepian11, the persistence probability

in real-time is given by

p(t)∼ 1√
t

(
1− 2

3
νπ2t
L2

)1/2

(5.38)

For term in the bracket in Eq. (5.38) can be exponentiated to get an alternate form for

p(t):

p(t)∼ 1√
t
e−

1
3

νπ2t
L2 (5.39)
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5.3.2 Persistence in KPZ growth at finite size limit

We now focus on the discretized Kardar-Parisi-Zhang model of surface growth. The

conitnumm model in Eq. (5.5) in one-dimension take the form

∂hn

∂ t
= ν

∂ 2hn

∂x2 +λ

(
∂hn

∂x

)2

+ηn (5.40)

The boundary conditions remain the same as in the preceeding section, that is, ∂h
∂ t

)
±L

=

0. As before, we spatially discretize the equation on a one-dimensional lattice with a

lattice spacing a:

∂hn

∂ t
=

ν

a2 [hn+1 +hn−1−2hn]+λ

(
hn+1−hn−1

2a

)2

+
ηn√

a
(5.41)

Here λ is the non-linear coupling parameter. We choose a weak λ for two reasons- first

a perturbative expansion around λ = 0 can be done and the solution to Eq. (5.41) can be

constructed using the perturbative solution. Secondly, the choice of a weak λ is dictated

by the requirement of h(x, t) to be a Gaussian process. In the Edwards-Wilkinson model

since h(x, t) is linear, the process remains a Gaussian stochastic process. However, this

is not true for the KPZ equation since it contains a nonlinear term.

We consider the perturbative expansion

hn = h0
n +λh1

n +λ
2h2

n +O(λ 3) (5.42)

Substituting Eq. (5.42) in Eq. (5.41) and comparing the left hand and the right side to

the powers of λ we get for h0
n

∂h0
n

∂ t
=

ν

a2 [h
0
n+1 +h0

n−1−2h0
n]+

ηn√
a

(5.43)

and for h1
n as

∂h1
n

∂ t
=

ν

a2 [h
1
n+1 +h1

n−1−2h1
n]+

(h0
n+1−h0

n−1

2a

)2
(5.44)

To proceed further, we note that the solution given in Eq. (5.42), must obey the bound-

ary condition at each order of λ . Specifically, one has ∂h0
n

∂ t

)
±L

= 0, ∂h1
n

∂ t

)
±L

= 0 and so

on. Consequently, we write the solution as
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h0
n = X0

0 +2∑
p

X0
p cos

pπn
N

h1
n = 2∑

p
X1

p cos
pπn
N

h2
n = 2∑

p
X2

p cos
pπn
N

(5.45)

As before, we will be interested in the two-time correlation for h0. Using Eq. (5.45), the

two-time correlation function 〈h0(t1)h0(t2)〉 takes the form

〈h0(t1)h0(t2)〉= 〈h0
0(t1)h

0
0(t2)〉+λ

2〈h1
0(t1)h

1
0(t2)〉

= 〈X0
0 (t1)X

0
0 (t2)〉+4∑

p,q
〈X0

p(t1)X
0
q (t2)〉+4λ

2
∑
p,q
〈X1

p(t1)X
1
q (t2)〉

(5.46)

In writing Eq. (5.46), we have ignored the term 〈h0
0(t1)h

2
0(t2)〉 and 〈h2

0(t1)h
0
0(t2)〉 in the

order λ 2 term since they contain higher order exponential decays. The equation for the

zeroth order h0
n obeys the same differential equation as that of the discrete Edwards-

Wilkinson model (see Eq. (5.11)) and therefore the solution for h0
n is known. Conse-

quently, the two-time correlation function 〈X0
p(t1)X

0
q (t2)〉 follows from Eq. (5.23). We

focus on the solution of h1
n. Substituting the expression of h1

n in terms of X1
p from

Eq.(5.45), we get

∂

∂ t

[
2∑

p
X1

p cos
pπn
N

]
=

ν

a2

[
2∑

p
X1

p

(
cos

pπ(n+1)
N

+ cos
pπ(n−1)

N
−2cos

pπn
N

)]
+

1
4a2

[
∑
p

X0
p cos

pπ(n+1)
N

−∑
p

X0
p cos

pπ(n−1)
N

]2

(5.47)

This equation can be simplified to

∑
p

∂X1
p

∂ t
cos

pπn
N

=−2ν

a2 ∑
p

X1
p cos

pπn
N

(
1− cos

pπ

N

)
+

1
2a2 ∑

p
X0

pX0
q sin

pπn
N

sin
pπ

N
sin

qπn
N

sin
qπ

N

(5.48)
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Multiplying both sides with the factor cos kπn
N and summing over n, we get

∑
p

∑
n

∂X1
p

∂ t
cos

pπn
N

cos
kπn
N

=−2ν

a2 ∑
p

∑
n

X1
p cos

pπn
N

cos
kπn
N

(
1− cos

pπ

N

)
+

1
2a2 ∑

p
∑
n

X0
pX0

q sin
pπn
N

sin
qπn
N

cos
kπn
N

sin
pπ

N
sin

qπ

N

(5.49)

The term of L.H.S. of Eq.(5.49) can be expressed as

∑
n

∑
p

Ẋ1
p cos

pπn
N

cos
kπn
N

= ∑
p

Ẋ1
p

1
a

∫ +L

−L
dxcos

pπx
L

cos
kπx
L

=
L
a ∑

p
Ẋ1

pδp,k =
L
a

Ẋ1
k (5.50)

The first term of R.H.S. of Eq.(5.49) can be written as

−∑
p

∑
n

kpXp cos
pπn
N

cos
kπn
N

=−∑
p

kpXp
1
a

∫ +L

−L
dxcos

pπx
L

cos
kπx
L

=−∑
p

kpXp
L
a

δp,k

=−L
a

kkXk

(5.51)

The second term of R.H.S of Eq.(5.49) can be simplified as

1
2a2 ∑

p
∑
n

X0
pX0

q sin
pπn
N

sin
qπn
N

cos
kπn
N

sin
pπ

N
sin

qπ

N

=
1

2a2 ∑
p

X0
pX0

q sin
pπ

N
sin

qπ

N
1
a

∫ +L

−L
dxsin

pπx
L

cos
kπx
L

sin
qπx

L

=
1

2a2 ∑
p

X0
pX0

q sin
pπ

N
sin

qπ

N
L
2a

(δp,q−k +δp,q+k)

=
L

4a3 ∑
p

X0
pX0

q sin
pπ

N
sin

qπ

N
(δp,q−k +δp,q+k)

(5.52)

Using the simplifications of Eq.(5.50), (5.51), (5.52) in Eq.(5.49) and we get

∂X1
p

∂ t
=−2ν

a2

(
1− cos

pπ

N

)
X1

p +
1

4a2 ∑
p

∑
q

X0
pX0

q sin
pπ

N
sin

qπ

N
[δp,q+k +δp,q−k]

=− kpX1
p +

1
4a2 ∑

q
X0

p+qX0
q sin

(q+ p)π
N

sin
qπ

N
+

1
4a2 ∑

q
X0

q−pX0
q sin

(q− p)π
N

sin
qπ

N

(5.53)
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The general solution is

X1
p(t) =

1
4a2 ∑

∫ t

0
dt ′e−kp(t−t ′)

[
X0

p+q(t
′)X0

q (t
′)sin

(p+q)π
N

sin
qπ

N
+X0

q−p(t
′)X0

q (t
′)sin

(q− p)π
N

sin
qπ

N

] (5.54)

5.3.3 Calculation of 〈X1
p(t1)X

1
p(t2)〉

〈X1
p(t1)X

1
q (t2)〉=

1
16a4

[∫ t1

0
dt ′1

∫ t2

0
dt ′2 ∑

p1,q1

〈X0
p+p1

(t ′1)X
0
p1
(t ′1)X

0
q+q1

(t ′2)X
0
q1
(t ′2)〉

e−kp(t1−t ′1)e−kq(t2−t ′2) sin
(p+ p1)π

N
sin

p1π

N
sin

(q+q1)π

N
sin

q1π

N

+
∫ t1

0
dt ′1

∫ t2

0
dt ′2 ∑

p1,q1

〈X0
p+p1

(t ′1)X
0
p1
(t ′1)X

0
q1−q(t

′
2)X

0
q1
(t ′2)〉e−kp(t1−t ′1)e−kq(t2−t ′2)

sin
(p+ p1)π

N
sin

p1π

N
sin

(q1−q)π
N
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First term of the correlation can be expanded as
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(5.56)

Before we carefully examine Eq. (5.56) term by term, we note that in the two-time

correlation function in Eq. (5.46), the term in the order of λ 2 has a double sum over

the Fourier modes denoted by p and q. Consequently, in the first term in Eq. (5.56), this

double sum picks up the modes p = 0 and q = 0 and therefore, even for the choice of

the lowest value of p1 = 1, the first term corresponds to largest time scale τ
−1
1 = νπ2/L2.

In contrast, when we look at the second and the third term, the first term in the sum

corresponds to p = 1, p1 = 1 with p+ p1 = 2. Therefore, the lowest relaxation time scale

that appears in these terms correpsond to τ
−1
4 = 4νπ2/L2. Consequently, in our final

expression we ignore the two terms.

Looking at the three other terms in Eq. (5.55), the four-point correlation function
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can be similarly decomposed as product of two-point correlation functions.
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(t ′2)〉+ 〈X0

p+p1
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(5.57)

∑
p1,q1

〈X0
p1−p(t

′
1)X

0
p1
(t ′1)X

0
q+q1

(t ′2)X
0
q1
(t ′2)〉sin

(p1− p)π
N

sin
p1π

N
sin

(q+q1)π

N
sin

q1π

N

= ∑
p1,q1

[〈X0
p1−p(t

′
1)X

0
p1
(t ′1)〉〈X0

q+q1
(t ′2)X

0
q1
(t ′2)〉+ 〈X0

p1−p(t
′
1)X

0
q+q1

(t ′2)〉〈X0
p1
(t ′1)X

0
q1
(t ′2)〉

+ 〈X0
p1−p(t

′
1)X

0
q1
(t ′2)〉〈X0

p1
(t ′1)X

0
q1+q(t

′
2)〉]sin

(p1− p)π
N

sin
p1π

N
sin

(q+q1)π

N
sin

q1π

N

(5.58)
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0
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0
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sin
q1π
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(5.59)

The first terms in the all the three expression will have δp,0δq,0 and therefore we retain

these terms in the final expression of 〈X1
P(t1)X

1
q (t2)〉.

〈X1
p(t1)X

1
q (t2)〉=

4D2

64L2a4

∫ t1

0
dt ′1

∫ t2

0
dt ′2e−kp(t1−t ′1)e−kq(t2−t ′2) ∑

p1,q1

1− e−2kp1 t ′1

2kp1

1− e−2kq1 t ′2

2kq1

δp,0δq,0 sin2 p1π

N
sin2 q1π

N
(5.60)

To break the summation, putting p1 = 1,q1 = 1, we get sin p1π

N ∼
p1π

N , for N→∞, simplify
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delta functions as p = 0,q = 0 So Eq.(5.60) becomes

〈X1
p(t1)X

1
q (t2)〉=

D2

64L2a4

∫ t1

0
dt ′1

∫ t2

0
dt ′2(

L2

2νπ2 )
2(1− e−

2νπ2t′1
L2 )(1− e−

2νπ2t′2
L2 )

(
π2a2

L2

)2

=
D2

64ν2L2

[
t1−

L2

2νπ2 (1− e−
2νπ2t1

L2 )
][

t2−
L2

2νπ2 (1− e−
2νπ2t2

L2 )
]

(5.61)

5.3.4 Two-time correlation 〈h0(t1)h0(t2)〉

We have taken the initial condition X1
p(0) = 0.

Using the general solution in Eq. (5.54) the detailed calculations of two-time cor-

relation function in the order λ 2 has been presented in the Section(5.3.3). Combining

Eqs.(5.23), (5.46) and (5.61), we get

〈h0(t1)h0(t2)〉=
D
L

t2 +
D
L

L2

νπ2

[
e−

νπ2

L2 (t1−t2)− e−
νπ2

L2 (t1+t2)
]

+
D2

L2
λ 2

16ν2

[
t1−

L2

2νπ2 (1− e−
2νπ2t1

L2 )
][

t2−
L2

2νπ2 (1− e−
2νπ2t2

L2 )
] (5.62)

5.3.5 For finite t but L→ 0

In the finite t domain if L→ 0 the term related to L2 can be neglected. Putting this

condition in Eq.(5.62),

〈h0(t1)h0(t2)〉L→0 =
D
L

t2 +
D2

L2
λ 2

16ν2 t1t2

=
D
L

t2

[
1+

D
L

λ 2

16ν2 t1

] (5.63)

Let us take spatial transformation as H(t) = h0(t)√
〈h2

0(t)〉
and we get

〈H(t1)H(t2)〉=
〈h0(t1)h0(t2)〉√
〈h2

0(t1)〉〈h2
0(t2)〉

=

√
D
L t2
D
L t1

√√√√1+ D
L

λ 2

16ν2 t1

1+ D
L

λ 2

16ν2 t2

(5.64)

Now time transformation may be taken as eT = t
1+D

L
λ2t

16ν2

.
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After the time transformation we get, 〈H(T1)H(T2)〉= e−(T1−T2)/2 Following Slepian11,

if the correlation function of a stochastic variable decays exponentially for all times

C(T ) = e−λT , then the persistence probability is given by

P(T ) =
2
π

sin−1(e−λT ) (5.65)

Asymptotically, P(T ) takes the form P(T )∼ e−λT . Consequently, in real time the persis-

tence probability is found as

p(t)L→0 ∼

√
1
D
L t

+
λ 2

16ν2 (5.66)

It is quite interesting that the expression of p(t) in the asymptotic limit of t→ ∞ goes to

a constant value of λ 2/16ν2. In principle, one can use this result to extract the ratio of

λ/ν , with the advantage being that the system size required to extract the information

need not be very large.

5.4 Conclusion

We conclude that the results of the persistence in surface growth in finite lattice provide

us with a valuable set of tools for investigating the dynamics of a non-equilibrium sys-

tem. We have taken a lattice in finite domain size extending from −L to +L. We have

calculated the analytical expression of persistence for Edward-Wilkinson surface growth

for the conditions L→ 0, L→ ∞ and for the finite value of L. Again we have calculated

the persistence expression analytically for the KPZ surface growth process when L→ 0

and L is finite but large. In conclusion, we have investigated the persistence probability

in the models of surface growth analytically strictly restricted by a finite domain.
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6
Summary and Outlook

We present a brief summary of the work done in this thesis. The summary of the work done and

the significance of the work have been summarised briefly for a quick overview.
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In this thesis, we have studied the phenomenon of persistence in a class of non-

equilibrium systems. Persistence plays a very important role in describing a stochastic

process in nature, specifically providing the non-stationary dynamics of the system. The

phenomenon of persistence is typically quantified through the persistence probability

p(t)– the probability that a stochastic variable has not changed its sign up-to time t. For

a wide range of non-equilibrium systems, this probability has been shown to decay as

a power law with an exponent θ that depends on the non-trivial memory-dependent

dynamics of such out-of-equilibrium systems.

In the course of this thesis, we have presented explicit results for the persistence

probability of an anisotropic particle in two spatial dimensions, in presence, as well as

in absence of a confining harmonic potential. The two-time correlation functions of the

position of the particle have been calculated in both cases. In the case of a harmonically

confined particle, a perturbative solution has been provided for the correlation func-

tions. The persistence probability is computed from the two-time correlation function

using suitable transformations in space and time. Further, we have demonstrated using

numerical simulations, that the persistence probability can be an extremely useful tool

in measuring the translational and the rotational diffusion coefficients of an asymmetric

particle. The advantage of this method is that it does not require the measurement of

the orientational degrees of freedom. As a corollary, our method also demonstrated that

it can detect the shape asymmetry of the particle when the two translational diffusivities

differed by 5%.

Additionally, the work on anisotropic Brownian particle has been extended for the

case of an active anisotropic particle. From the analytic expression, it is clear that the

propulsion velocity not only renormalizes the long-time diffusion coefficient, but also

renormalizes the anisotropic part of the diffusion tensor. The analytic expression has

been compared with numerical simulations and is in excellent agreement when the

propulsion velocity is small. When compared to that of a passive anisotropic particle,

we observed that the persistence probability can not detect propulsion velocities which

are small even for those cases where the translational diffusivities differed by 5%. p(t)

however could distinguish between an active and a passive particle when the propulsion

velocity was large. As before, we also provide an expression for p(t), validated by nu-

merical simulations, when such an active anisotropic particle is confined in an isotropic

harmonic trap, a situation extremely relevant in experimental scenarios.

In our final work, we deviate from the single particle dynamics to that of coarse-

grained models of surface growth in one dimension that are bounded by a finite domain.

We took two models- one is the linear Edward-Wilkinson(EW) Model and building on
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the results from the EW model, we studied the non-linear Kardar-Parisi-Zhang(KPZ)

model. The phenomenon of persistence in the continuum version of these two models

has been well studied and the persistence exponents are also known. But the expression

for the persistence probability in spatially discrete surface growth models with finite size

effect is not known. In an infinite spatially extended system, the boundary conditions

do not play any significant role. The expression change when the system size is finite.

My future aim is to work on to study the entropy and work production in active

systems. The most interesting part is the effect of active bath in the efficiency. We aim to

model efficient engines, those have better application in energy harvesting techniques.

Another interesting phenomena which I will work on stochastic resetting problems and

fluctuations and entropy production associated with restart process.

Theoretical and experimental attempts have been made to understand the laws of

thermodynamics and non-equilibrium fluctuation relations for active matter. Particu-

larly, the dissipation of energy in active systems can be a useful tool to measure the

violation of fluctuation dissipation theorem (FDT). We consider to investigate interest-

ing problems related to the passive particle in an active bath. The entropy generation

of such systems is an interesting study. Moreover the other interesting set of problems

are investigating heat engines in active heat reservoirs. And entropy production due to

stochastic resetting. More specifically saying, we will study entropy production, super

diffusion properties of Brownian, colloidal particle, flexible and semi-flexible polymers

in active bath. The effect of confinement in different potential like harmonic and time

dependent potential and its effect on entropy production. Additionally we will study

the shape effect of the particle in entropy production, specifically if the particle is asym-

metric.
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