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Abstract 
 

 

This thesis encompasses a broad range of cutting-edge research areas extending from 

energy harvesting from renewable resources to futuristic electronic devices utilizing novel 

properties and different degrees of freedom of electrons which emerge in atomically thin 

two-dimensional (2D) semiconductors and their van der Waals heterostructures. 

Specifically, nanoelectromechanical energy conversion (piezoelectric effect), solar energy 

harvesting (photovoltaic effect) as well as spintronics and valleytronics based on 2D 

monolayers have been presented in the thesis. Atomic-scale insights into the electronic, 

optical, mechanical, piezoelectric, spintronic and valleytronic properties in selected 2D 

materials have been obtained through the lens of first-principles state-of-art density 

functional theory (DFT) based approaches. The significance of integrating their different 

properties in designing a multifunctional device for advanced applications has also been 

emphasized. The thesis is organized in the following way. 

           The first part of the thesis is concentrated on energy harvesting, particularly, on the 

generation of electricity from mechanical energy as well as spintronics device applications 

emanating from the Rashba effect. The simultaneous occurrence of gigantic 

piezoelectricity and Rashba effect in two-dimensional materials are unusually scarce. 

Inversion symmetry occurring in MX3 (M= Ti, Zr, Hf; X= S, Se) monolayers is broken 

upon constructing their Janus monolayer structures MX2Y (X≠Y=S, Se), thereby inducing 

a large out-of-plane piezoelectric constant, d33 (~68 pm/V) in them. d33 can be further 

enhanced to a super high value of ~1000 pm/V upon applying vertical compressive strain 

in the van der Waals bilayers constituted by interfacing these Janus monolayers [1]. The 

2D Janus transition metal trichalcogenide monolayers and their bilayers presented herewith 

in this Ph.D. work, straddle giant Rashba spin splitting and ultrahigh piezoelectricity, 

thereby making them immensely promising candidates in the next generation electronics, 

piezotronics and spintronics devices. A detailed theoretical investigation has been 

conducted for a quantitative study and in-depth understanding of the desired parameters. 

          Next, h-MN (M=Nb, Ta) monolayers have been investigated which are found to host 

valley physics together with Rashba effect due to the presence of strong spin-orbit coupling 
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and absence of inversion symmetry [2]. The search for new two-dimensional (2D) 

semiconductors with strong spin-orbit coupling, merging Rashba effect with valley 

physics, is essential for advancing the emerging fields of spintronics and valleytronics. 

Other than charge and spin degrees of freedom (DOF), valley DOF (+K, -K) of electron 

can be used for information storage in the domain of valleytronics. h-NbN (TaN) 

monolayers which exhibit a strong spin-orbit coupling leading to a large valley spin 

splitting (VSS) ~112 (406) meV at its conduction band edge has been investigated for its 

application in valleytronics. Valleytronic and spintronic properties in the studied 

monolayers are found to be superior to that in h-MoS2 and Janus MoSSe monolayers and 

are therefore proposed for an effective coupling of spin and valley physics. 

          The final part of the thesis is focussed on energy harvesting, particularly, on the 

generation of electricity from solar radiation using two-dimensional vdW hetero-bilayers 

of ZrS3/MS2 and ZrS3/MXY (M=Mo, W; X, Y=S, Se, Te; X ≠ Y) [3]. Electronic, optical, 

and transport properties in these 2D vdW hetero-bilayers have been investigated in-depth 

for the purpose of exploring their prospects for applications in photovoltaics. The 

comprehensive study presented in this Ph.D. work illustrates a new avenue for an efficient 

solar energy conversion at the nanoscale based on ZrS3/MS2 and ZrS3/MXY vdW hetero-

bilayers in ultrathin, 2D excitonic solar cells. 

          The thesis emphasises the fundamental and technological significance of sustainable 

and alternative energy harvesting as well as next-generation electronic devices through 

efficient use and engineering of 2D materials. The approach implemented in the Ph.D. work 

involves in studying the several entangled properties in a multifunctional material, thereby 

enabling to draw a systematic correlation between them. 
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1.1 An overall introduction to two-dimensional materials 

A revolution in materials science has been accomplished through atomically thin two-

dimensional (2D) materials. A rich set of electronic states can be found in 2D materials that 

differ substantially from those of their bulk counterparts due to quantum confinement and 

enhanced many-body effects  [4]. The family of 2D materials, which started with 

graphene  [5], has expanded quickly over the past few years and now includes insulators, 

semiconductors, semimetals, metals, and superconductors  [6]. This development has 

stimulated an explosion in envisioned applications ranging from battery electrodes and 

catalysis to photovoltaics and electronics  [7]. Despite the superior properties of 

graphene  [8–10], the absence of a band gap limits its application in digital electronics. 

Hence, 2D semiconducting materials with considerable band gaps and high carrier 

mobilities have recently attracted tremendous attention  [11]. In terms of materials, the 

most well-studied 2D systems beyond graphene, are the insulator hexagonal boron-nitride 

(hBN)  [12,13], the anisotropic semiconductor phosphorene  [14,15], and the 

semiconducting Mo- and W-based transition metal dichalcogenides (TMDCs) with the 

chemical formula MX2 (M: transition metal; X: chalcogen)  [16]. In addition to the Mo- 

and W-based compounds, about a dozen other semiconducting and metallic TMDCs have 

been synthesized in mono- or few-layer form. Apart from graphene (C) and phosphorene 

(P) a host of other elemental 2D materials, including borophene (B)  [17], silicene 

(Si)  [18,19], stanene (Sn)  [20] and germanene (Ge)  [21] have been realized on different 

substrates. Additionally, Group III–V compounds  [22,23], transition metal carbides and -

nitrides (MXenes)  [24], transition metal oxides  [25] and -halides  [26], as well as organic-

inorganic hybrid perovskites  [27,28], represent new developing classes of 2D materials. 

In the last 15 years, several electronic and optoelectronic applications have been 

investigated in 2D semiconducting materials. The advances in channel material treatment 

and device configuration ideally suit 2D channel-based FETs for nanoelectronics  [29]. 

Unusual properties are exhibited by 2D systems according to their thickness or electrical 

and chemical environments. 2D devices were advanced by optimizing issues such as 

quality, dielectric environment, and contact resistance. Due to their exceptional properties, 

it is not only limited to conventional devices such as photodetectors, light emitters, and 

memory devices, but also novel applications such as flexible devices, tunnelling devices, 

and valley and spin electronics can be explored in 2D semiconductors. However, it still 
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requires technological leaps and scientific study to realize their superior and novel 

properties in practical applications compared with conventional bulk materials [29].  

Furthermore, the challenges are that all the above physical properties rely on high-quality 

materials, and the compatibility with integrated circuits and future commercialization 

requires large-scale synthetic techniques  [30,31]. To address these challenges, continuous 

efforts have been devoted to exploring and investigating diverse synthetic methods of 2D 

materials. Basically, the synthetic strategies can be divided into two classes, i.e., top-down 

and bottom-up methods. In top-down methods, high-quality bulk crystals are first obtained 

by flux growth method  [32,33], or chemical vapor transport (CVT)  [34] and then the 

crystals are isolated into atomically thin flakes via various exfoliation technologies. 

Contrastingly, in bottom-up methods, vdW atomically thin flakes are prepared by 

assembling atoms on substrates directly, such as physical vapor deposition (PVD) or 

chemical vapor deposition (CVD) and molecular beam epitaxy (MBE). In both bottom-up 

and top-down methods, different flakes can be further stacked together  [35,36], which 

provides an intriguing platform for achieving various heterostructures. In very recent years, 

great progress has been made in the field of synthesizing large-scale and high-quality 2D 

materials  [37]. 

Even though 2D systems are fascinating in their own merit, much larger potential lies in 

the possibility of reassembling several dissimilar 2D materials into new layered 

compounds  [30]. To achieve atomic interface design, energy band engineering and crystal 

symmetry regulation, heterostructures can be fabricated conveniently by stacking together 

various 2D materials. The stacking is very convenient as the surfaces of 2D materials are 

dangling-bond free. The fabrication of heterostructures with atomically sharp interfaces is 

possible due to the absence of chemical bonding between such different layers. These 

heterostructures are usually mentioned as van der Waals (vdW) heterostructures as the 

weak van der Waals interaction plays a role at the interface and is gaining more and more 

research attention from both fundamental and technological application perspectives [4].  

The creation of a large variety of vdW heterostructures (vdWH) with free of lattice 

mismatching opens up an unprecedented opportunity for development of novel electronic, 

optoelectronic and spintronic devices with desirable functions and performance [38–41]. 

Many degrees of freedom are available for tuning electronic properties of vdWHs, such as 

material selections in stacking [42], twisted angle of component layers [43] etc. More 

interesting physics phenomena would emerge due to enhanced electron orbitals coupling 
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in adjacent 2D materials when two individual 2D materials are stacked together [44]. For 

example, moire patterns can be created in the Gr/h-BN vdW heterostructure [45]. Gate-

tunable Mott-like insulating and superconducting, as well as ferromagnetism behaviours, 

can be observed in the twisted bilayer electronic systems [46,47]. In the Gr/h-BN/Gr 

vertical vdW heterostructure, suitable alignment of crystallographic orientation in two 

graphene layers allows for realization of resonant tunnelling phenomenon [48,49]. 

The vdWH comprising of two different semiconductors can be generally classified into 

three categories according to the band alignment such as Type-I, Type-II and Type-III. For 

type-I vdWH, the electrons and holes will be accumulated in one semiconductor. Whereas 

for type-II band alignment, there is a spatial separation between electrons and holes i.e., 

electrons and holes will accumulate in two different semiconductors. Hence, the 

corresponding applications of type-I and type-II are very different. Type-I has very limited 

application, such as in LEDs, due to the fast recombination of charges in one layer [50]. In 

type-II band alignment, the recombination rate of the charge carriers decreases and thereby 

increases their lifetime, which is very beneficial for utilizing those photoexcited electrons 

and holes in high-performance nano and optoelectronic devices [51]. 

This Chapter provides a brief introduction to the Ph.D. work, while the details have been 

presented in the relevant Chapters. 

       1.2 Objective of the thesis 

In energy-conversion systems and low-power electronics, there are many prospects 

towards 2D materials. For this reason, various research areas are now focused on exploring 

new materials to realize the desired properties. Fig. 1.1 shows the schematic representation 

of different kinds of energy conversion as well as futuristic electronics using different 

degrees of freedom (DOF) of electrons (i.e., charge, spin and valley) that have been 

investigated in the present thesis. A brief overview of the research topics that have been 

explored individually in the subsequent chapters is as follows. 

1.2.1 Piezoelectricity in 2D monolayers 

The non-centrosymmetric material having crystal symmetry not containing inversion 

symmetry [(x, y, z) → (-x, -y, -z)], is a prominent research area because of the coupling 

between the mechanical and electrical behaviours to allow efficient interconversion  
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Figure 1.1 Schematic representation of different kinds of energy conversion as well as 

futuristic electronics using different DOF of electrons (i.e., charge, spin and valley) 

investigated in the 2D materials. 

 

Figure 1.2 Schematic representation of the generation of piezoelectricity in monolayers; 

graphene (centrosymmetric) does not show piezoelectricity but h-BN exhibits due to broken 

inversion symmetry along in-plane and similarly out-of-plane polarization can be induced 

in Janus TMTC monolayers. d11 represents the in-plane piezoelectric coefficient and d33 

represents the out-of-plane piezoelectric coefficient. 

 

between mechanical energy and electrical energy. Piezoelectricity describes the ability of 

a non-centrosymmetric solid to produce polarization charges in response to the externally 

applied mechanical stress. For piezoelectric materials, non-centrosymmetry analysis is a 

direct and effective method to estimate the existence of piezoelectricity. The piezoelectric 

effect was first observed in quartz crystals by the Curie brothers in 1880, and since then, 

plenty of materials, including crystals, polymer, and bi-molecules, have been reported to 
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possess the piezoelectric responses for example GaN, BaTiO3, etc. and piezoelectric 

ceramics, such as lead zirconate titanate (PZT), which have been widely used in actuators, 

ultrasonics, transducers, sensors and energy harvesting systems  [52,53]. The coupling of 

piezoelectricity and semiconductor materials has given rise to a new discipline named 

piezotronics. Compared with traditional bulk semiconductors, two-dimensional (2D) 

semiconductor materials not only exhibit excellent semiconducting characteristics but also 

have an outstanding mechanical performance [54]. Single-layer graphene having a 

hexagonal honeycomb structure presents central symmetry and has no piezoelectric 

properties. By contrast, monolayer h-BN exhibits piezoelectricity for inversion symmetry 

breaking [55,56], which has been illustrated in Fig. 1.2. However, h-BN is an intrinsic 

insulator with a bandgap of 5.5–6 eV (ultraviolet region), restricting its application in 

electronic devices. In 2012, based on DFT calculation, Duerloo et al. first predicted that 

monolayer TMDC materials are piezoelectric, unlike their bulk crystals [56]. Two years 

later, Wu et al. demonstrated this prediction using the flexible MoS2 piezoelectric 

nanogenerator [57]. In 2014, Zhu et al. have proposed a novel device configuration for 

detecting the in-plane piezoelectricity in monolayer MoS2 [58]. Their findings indicated 

that an odd number of layers of flakes would produce an in-plane piezoelectric response 

when mechanical strain or an electric field is applied, and the piezoelectric coefficient is 

comparable to that of the traditional bulk piezoelectric semiconductor. Compared with 

traditional piezoelectric semiconductors (like ZnO, GaN), 2D TMDCs have attracted much 

attention due to their exceptional mechanical and semiconducting properties [54].  

For the application of atomically thin piezoelectric materials in practical device 

applications involves some critical issues because the piezoelectric current and voltage 

outputs are only about dozens of pA and mV, as found in monolayer MoS2 [57]. Therefore, 

there is still a need to explore new 2D piezoelectric materials or new avenues to bring about 

a high magnitude of polarization and larger piezoelectric output signals together with long-

term durability. For instance, in this Ph.D. work, inversion symmetry has been broken in 

the intrinsically centrosymmetric MX3 (M=Ti, Zr, and Hf; X=S, Se) monolayers upon the  
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Figure 1.3 Piezotronics and Spintronics in Janus TMTC monolayers. Schematic of next-

generation spintronic device. 

 

formation of their Janus structures as depicted in Fig. 1.2. As a result, a high level of 

piezoelectricity has been found to emerge in Janus Group TMTC monolayers along with 

giant Rashba effect, which has been discussed in detail in Chapter 3. The corresponding 

schematic has been presented in Fig. 1.3. 

1.2.2 Spintronics in 2D monolayers 

Spintronics which targets to exploit the spin degree of freedom (DOF) to counterpart the 

charge DOF of electrons as the information carrier, is one of the emerging fields for the 

next-generation nanoelectronic devices to reduce their power consumption and to increase 

their memory and processing capabilities [59]. Immediately after the discovery of giant 

magnetoresistance (GMR) in 1988, the research on spintronics has excelled outstanding 

advances in the development of information storage devices in the last few decades [60]. 

The physics behind the giant magnetoresistance (GMR) as observed in the metallic 

multilayers of ferromagnetic/nonmagnetic (FM/NM) where the resistance depends on the 

relative orientation of the ferromagnetic layers, has formed the foundation of spintronics 

and over past three decades the evolution of spin-transport experiments is advanced. Since 

Bychkov and Rashba suggested a simple relationship between charge and spin [61],  

Rashba spin–orbit coupling (SOC) has been a major topic of interest in the field of 

spintronics. Rashba SOC has led to a tremendous number of new discoveries and theories 

in physics, and to useful applications in electronics [62,63]. The essential feature of SOC 

is that a spin-polarized electron moving in an electric field experiences an effective 

magnetic field which drives the precession of the spin orientation even without an external 

magnetic field. Furthermore, the strength of the Rashba effective magnetic field can be 
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modulated by an external gate voltage [64]. In 1990, Datta and Das proposed the idea of 

spin field effect transistor (spin FET), which relies on manipulation of the spins during 

transport in a semiconductor with an electric field [65]. After that, numerous investigations 

have been dedicated to electrical control of the spin current, which is key to realizing the 

device conception of spin transistor [66,67]. Due to the Rashba spin-orbit interaction (i.e., 

generation of an effective magnetic field by an electric field applied to the gate terminal), 

in the spin-transistor, the spin injected from the source FM contact travels towards the drain 

FM contact via Larmor precession. Spin-transistor is generally ON (i.e., depletion mode) 

because no precession at zero gate voltage leads to the spin direction parallel to the drain 

FM. Changing the gate voltage can then adjust the spin precession angle to result in a 

periodic modulation of the source-to-drain current. Even if, spin transistor assures 

performances of greater speed and energy-efficiency than conventional transistors [68], 

finding the optimal device structure employing the best-suited materials for each element 

still necessitates massive research ventures  [60]. Enormous effort has been spent in 

injecting, detecting, and manipulating spin polarized electrons in metals and conventional 

semiconductors [69–72]. However, in spite of these efforts, an ideal candidate material for 

the spin channel is still needed. 2D materials, including graphene, the surface states of TIs, 

and TMDCs could be promising candidates due to their unusual spin dependent physical 

properties.  No doubt, new prospects have been opened up due to the versatile crystal 

structures and functionalities of 2D materials and vdW heterostructures. The flexible piezo-

spintronics devices of Janus TMTC monolayers, as illustrated in the schematic of Fig. 1.3, 

have been discussed in detail in Chapter 3. 

1.2.3 Valleytronics in 2D monolayers 

In crystalline materials, the electronic band structure establishes the correlation between 

the crystal momentum and energy of an electron. In intrinsic semiconductors, the electronic 

and optical properties are mainly governed by the two bands near about Fermi energy, one 

is the highest valence band (VB) below the Fermi energy and another is the lowest 

conduction band (CB) above the Fermi energy.  The local minima in the CB or local 

maxima in the VB are referred to as “valleys”, which are stable points in the band structure 

where electrons or holes can reside.   
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Figure 1.4 Schematic of valley selective optical selection and valley hall effect. Valley-

based information. Information can potentially be stored in “valley polarizations” of 2D 

semiconductors by polarizing carriers into −K and +K momentum space valleys. Here, a 

−K valley polarization of electrons and holes represents “0,” and a +K valley polarization 

represents “1.” 

 

So, in addition to charge and spin, electrons in a crystalline solid also have a valley degree 

of freedom (DOF) that controls the electron’s position in crystal momentum space. The 

field of valleytronics is about using the electron’s valley DOF to encode and process 

information, similar to charge in electronics or spin in spintronics [73–77]. An ideal 

valleytronic material system has a band structure composed of two (or more) degenerate 

but inequivalent valley ‘states’ (local energy extrema) that can be manipulated to encode, 

process and store information. The key drive of this field is to recognize valleytronic 

materials that can offer information storage and processing advantages that complement or 

surpass modern charge- and spin-based semiconductor technologies [78]. For example, a 

pure valley (or spin) current offers the possibility of carrying valley (or spin) information 

without the ohmic heating associated with a charge current. However, unlike charge that is 

easily manipulated by electric fields, it is more difficult to manipulate particles based on 

the valley degree of freedom.  Moreover, compared with spintronic operations enabled by 

the various spin phenomena, the ability to exploit valley polarizations has been rather 

limited until the recent emergence of 2D materials with hexagonal honeycomb structures.  
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The electronic properties of 2D materials with hexagonal honeycomb structures, for 

example, graphene and TMDCs (e.g., MoS2, WSe2 etc.) are governed by the two 

inequivalent valleys of band edges that appear at the corners of the hexagonal Brillouin 

zone (i.e., +K and –K high-symmetry k-points). These valleys can be represented by a 

binary pseudospin that behaves like a spin-1/2 system; the electrons in the +K valley can 

be labelled as valley-pseudospin up, and the electrons in the –K valley can be labelled as 

valley-pseudospin down. Therefore, in a doped system, a carrier population distribution 

polarized in a +K or –K valley can store binary information. These systems are predicted 

to exhibit an anomalous Hall effect whose sign depends on the valley index, which is called 

the valley Hall effect (VHE) [77]. The valley Hall effect refers to the opposite Hall currents 

for carriers located in opposite valleys. It is the analogue of the spin Hall effect, which has 

been exploited for the electrical generation of spin polarization [79]. The schematic of 

valley selective optical selection, valley hall effect and valley-based binary information are 

illustrated in Fig. 1.4. Numerous manifestations of the valley Hall effect have been 

demonstrated in TMDC and graphene monolayers in the past decades. In hexagonal 2D 

materials with non-centrosymmetric crystal symmetry, the +K and –K valleys have 

opposite Berry curvatures [74,75], which show up as an effective magnetic field in 

momentum space to cause valley-contrasting Hall currents. To make use of graphene and 

bilayer graphene in valleytronic devices, external perturbations can be employed to break 

the inversion symmetry of centrosymmetric graphene and bilayer graphene, to produce a 

finite bandgap and valley-contrasting Berry curvature. The inversion symmetry of 

monolayer graphene can be broken by a superlattice potential caused by the hexagonal 

boron nitride (h-BN) substrate [80] while for bilayer graphene, an out-of-plane electric 

field is applied to break the inversion symmetry [81]. Using a ‘Hall bar’ geometry, the 

resultant valley Hall and its inverse effect together can manifest as a nonlocal resistance, 

as observed in both graphene/h-BN heterostructures and biased graphene bilayers [80–82].  

The valley Hall effects have been exhibited in TMDC monolayers using optoelectronic 

measurements, in which valley-polarized electrons and holes have been extracted through 

optical excitation by exploiting the valley optical selection rules. Due to the population 

imbalance between the valleys, the valley Hall effect establishes as a charge Hall current 

that changes sign with the polarization of the excited light. Mak et al. [77] experimentally 

demonstrated that under the excitation of a circularly polarized light on the field-effect 

transistors, fabricated from MoS2 monolayers where in plane electric field was applied 
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between the source and the drain, a transverse voltage is developed, which changes sign 

when the helicity of the optical polarization is flipped. The experimental findings are in 

well concord with the theoretical prediction [75,83], even though the microscopic picture 

and the role of excitonic effects remain to be elucidated. Moreover, TMDCs show a small 

(large) valley spin splitting in the conduction (valence) bands. However, a large valley spin 

splitting in the conduction band is advantageous in valleytronics. Consequently, the 

circumstances necessitate extensive research into this nascent field. New 2D materials with 

large valley spin splitting in the conduction band showing valley properties complementary 

to that of TMDCs have been investigated in this Ph.D. thesis. 

1.2.4 Excitonic Solar Cells of 2D vdWHs 

Among the many energy resources, the conversion of solar radiation directly into electricity 

through solar cell technology has come out as one of the most promising sustainable 

alternatives to address the ever-growing energy crisis.  The evolution of photovoltaic 

systems was initiated several years ago with the first practical silicon-based solar cells in 

1954 [84]. Since then, photovoltaic materials with enhanced power conversion efficiency 

(PCE) have been continuously searched. According to the photoelectric conversion 

mechanism, solar cells can be categorized into two main classes, namely, conventional 

solar cells [85–87] and excitonic solar cells (XSCs) [88–91]. In conventional solar cells, 

the electron-hole pairs are directly generated in the bulk inorganic semiconductors such as 

Si, GaAS and CdTe etc. An excitonic solar cell (XSC) consists of a heterostructure formed 

by two different materials or phases, including organic solar cells (OSCs), dye-sensitized 

solar cells (DSSCs), molecular semiconductor solar cells, conducting polymer solar cells 

and two-dimensional (2D) heterojunction solar cells. In excitonic solar cell, a tightly bound 

electron-hole pair called exciton is formed by light absorption and dissociated 

simultaneously at the heterostructure interface due to the discontinuities of the electron 

affinity and ionization potential across the interface, producing free charge carriers and 

resulting in photoelectric conversion. Based on this heterointerface process, the 

photovoltaic performance is dominated by the interfacial effect over the bulk effect. Nano 

structuration of interfaces is a vital method toward highly efficient solar cell devices. 2D 

materials can form high-quality heterogeneous interfaces because of the absence of 

dangling bonds, promoting the research of vertical heterostructures.  
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Figure 1.5 Schematic of ZrS3/MS2 vdWHs based excitonic solar cell from ref. [3]. 

 

Nowadays, atomically thin excitonic solar cells consisting of 2D vdW 

heterostructures  [89,92,93] are found to be immensely promising for their superior 

interfacial effect as well as their high charge carrier separation abilities. Furthermore, many 

2D materials possess exotic electronic and optoelectronic properties, making them 

attractive donor and acceptor materials for designing high-efficiency solar cells. In addition 

to the separation efficiency of excitons, the carrier mobility and the light-harvesting 

performance also play important roles in determining the PCE. Thus, searching for suitable 

2D donor and acceptor materials with high carrier mobility and good light-harvesting 

performance is significant for the development of XSCs. The schematic of an excitation 

solar cell based on ZrS3/MS2 (M=Mo, W) vdWHs is presented in Fig. 1.5, where MoS2 

acts like a donor and ZrS3 acts like acceptor, as discussed in Chapter 4. 
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In this chapter, we briefly describe the central theoretical foundations of computational 

methods that are pivotal to the calculation of results presented in this thesis by the use of 

different quantum simulation tools. The fundamental aspects of many-body Schrödinger 

equation, introductory density functional theory (DFT) methods, exchange-correlation 

functionals, and basis-sets essential to layout various ab initio calculations within the DFT 

have been presented in this chapter.  

2.1 Elementary many particles’ physics 
          The surrounding matter in our everyday experience, at the microscopic level, is 

comprised of a systematic collection of electrons that surround a few different kinds of 

nuclei. Basically, a solid is a collection of heavy positively charged particles (nuclei) and 

lighter, negatively charged particles (electrons). In a many-electron quantum system, the 

fundamental electrostatic interactions between electrons and nuclei are Coulombic in 

nature and governed by the many-particle Schrödinger equation, and mathematically 

described as, 

𝐻𝐻�Ψ𝑖𝑖��⃗�𝑥1, �⃗�𝑥2, … … , �⃗�𝑥𝑁𝑁 , 𝑅𝑅�⃗ 1, 𝑅𝑅�⃗ 2, … … , 𝑅𝑅�⃗ 𝑀𝑀� = E𝑖𝑖Ψ𝑖𝑖 ��⃗�𝑥1, �⃗�𝑥2, … … , �⃗�𝑥𝑁𝑁 , 𝑅𝑅�⃗ 1, 𝑅𝑅�⃗ 2, … … , 𝑅𝑅�⃗ 𝑀𝑀�     (2.1) 

Here, 𝐻𝐻� is the Hamiltonian operator for an isolated N electron system consisting of M nuclei 

in the absence of any external perturbations, Ψ𝑖𝑖��⃗�𝑥1, �⃗�𝑥2, … … , �⃗�𝑥𝑁𝑁 , 𝑅𝑅�⃗ 1, 𝑅𝑅�⃗ 2, … … , 𝑅𝑅�⃗ 𝑀𝑀� stands 

for the wave function of the ith state, and E𝑖𝑖 energy eigenvalues of a given quantum state 

described by Ψ𝑖𝑖. 

We are interested in the energy corresponding to the ground-state of the system which 

dictates the various properties of the system. The Hamiltonian for a system of interacting 

electrons and ions in a solid can be written as 

                                       𝐻𝐻� = 𝐻𝐻�𝑒𝑒𝑘𝑘  + 𝐻𝐻�𝑖𝑖𝑖𝑖𝑖𝑖  +  𝐻𝐻�𝑒𝑒𝑘𝑘−𝑖𝑖𝑖𝑖𝑖𝑖                                                             (2.2)     

Each Hamiltonian operators (using the atomic units ħ =1/4𝜋𝜋ε0= 𝑚𝑚0 = e = 1) describing the 

total energy of a coupled electron-ion system are defined as 

                                      𝐻𝐻�𝑒𝑒𝑘𝑘 = − 1
2

∑ ∇𝑖𝑖
2𝑁𝑁

𝑖𝑖=1  + ∑ ∑ 1
𝑟𝑟𝑖𝑖𝑖𝑖

𝑁𝑁
𝑖𝑖>𝑖𝑖

𝑁𝑁
𝑖𝑖=1                                                   (2.3) 
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                                     𝐻𝐻�𝑖𝑖𝑖𝑖𝑖𝑖 = − 1
2

∑ 1
𝑀𝑀𝐴𝐴 

∇𝐴𝐴
2𝑀𝑀

𝐴𝐴=1  + ∑ ∑ 𝑍𝑍𝐴𝐴𝑍𝑍𝐵𝐵
𝑅𝑅𝐴𝐴𝐵𝐵

𝑀𝑀
𝐵𝐵>𝐴𝐴

𝑀𝑀
𝐴𝐴=1                                       (2.4)                   

                                     𝐻𝐻�𝑒𝑒𝑘𝑘−𝑖𝑖𝑖𝑖𝑖𝑖  = − ∑ ∑ 𝑍𝑍𝐴𝐴
𝑟𝑟𝑖𝑖𝐴𝐴

𝑀𝑀
𝐴𝐴=1

𝑁𝑁
𝑖𝑖=1                                                                (2.5) 

Here, A and B denotations are over the M nuclei present in the system, while i, and j run 

over the N electrons. The first two terms in the total energy operator are the kinetic energy 

of N electrons and M nuclei, respectively, where MA is the mass of the nucleus in units of 

the electron mass. 𝐻𝐻�𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐻𝐻�𝑒𝑒𝑘𝑘 represents the ionic and electronic contribution to the 

Hamiltonian respectively and 𝐻𝐻�𝑒𝑒𝑘𝑘−𝑖𝑖𝑖𝑖𝑖𝑖 denotes the electron-ion interaction potential. This 

total Hamiltonian consists of both the electronic and ionic part. To make further progress, 

one needs to decouple the electronic part from the ionic part. The adiabatic or the Born-

Oppenheimer (B-O) approximation provides a route for decoupling the ionic and electronic 

degrees of freedom (DOF). 

Born-Oppenheimer approximation:  

The wave function Ψ𝑖𝑖��⃗�𝑥1, �⃗�𝑥2, … … , �⃗�𝑥𝑁𝑁 , 𝑅𝑅�⃗ 1, 𝑅𝑅�⃗ 2, … … , 𝑅𝑅�⃗ 𝑀𝑀� of a many-particle quantum 

system contains essential information and central to describe all the desired physical 

properties of a given quantum system by various quantum operations. The Schrödinger 

equation (2.1), can further be simplified by considering the famous clamped-nuclei 

approximation for nuclear dynamics, comely referred to as Born-Oppenheimer 

approximation. The approximation takes advantage of differences in electron and proton 

(1H) masses, which for the lightest nuclei (1H), proton mass is 1800 times more than a 

single electron mass. Thus, the motion of nuclei is much slower as compared to the electron 

dynamics, and electronic motion happens within a fixed field of nuclear potential; 

therefore, the clamped-nuclei approximation is, in principle, an excellent approximation to 

simplify the problem by ceasing the nuclear dynamics. The kinetic energy term for the 

nuclear motion becomes zero under the Born-Oppenheimer approximation, and the rigid 

potential energy due to nucleus-nucleus repulsion becomes constant. The total energy 

operator can be rewritten under the Born-Oppenheimer approximation as the electronic 

Hamiltonian 

𝐻𝐻�𝑒𝑒  = − 1
2

∑ ∇𝑖𝑖
2𝑁𝑁

𝑖𝑖=1 − ∑ ∑ 𝑍𝑍𝐴𝐴
𝑟𝑟𝑖𝑖𝐴𝐴

𝑀𝑀
𝐴𝐴=1

𝑁𝑁
𝑖𝑖=1  + ∑ ∑ 1

𝑟𝑟𝑖𝑖𝑖𝑖

𝑁𝑁
𝑖𝑖>𝑖𝑖

𝑁𝑁
𝑖𝑖=1   = 𝑇𝑇� + 𝑉𝑉�𝑁𝑁𝑒𝑒 + 𝑉𝑉�𝑒𝑒𝑒𝑒              (2.6) 
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Where the first term 𝑇𝑇�   is the kinetic energy of N electrons in the system, the attractive 

potential acting on electrons due to the nuclei in the second term 𝑉𝑉�𝑁𝑁𝑒𝑒 is the nuclei-electron 

interaction potential and often termed as the external potential 𝑉𝑉𝑒𝑒𝑒𝑒𝑖𝑖. in density functional 

theory (DFT), while the last term  𝑉𝑉�𝑒𝑒𝑒𝑒 represents the electron-electron interaction potentials. 

The solution of Schrödinger equation (2.1) for electronic Hamiltonian 𝐻𝐻�𝑒𝑒 is the electronic 

wave function Ψ𝑒𝑒 and the corresponding electronic energy eigenvalues 𝐸𝐸𝑒𝑒. The electronic 

wave function Ψ𝑒𝑒 explicitly dependent on electron coordinates only and the nuclear 

coordinates enter only parametrically, which do not appear explicitly in Ψ𝑒𝑒. Then the total 

energy 𝐸𝐸𝑇𝑇 become the sum of electronic energy 𝐸𝐸𝑒𝑒 part and constant nuclear repulsion term 

E𝑖𝑖, the electronic Schrödinger equation is expressed as 

𝐻𝐻�𝑒𝑒 Ψ𝑒𝑒 = E𝑒𝑒Ψ𝑒𝑒                                                                      (2.7) 

and 

 E𝑇𝑇 =  E𝑒𝑒 + E𝑖𝑖; where  E𝑖𝑖 = ∑ ∑ 𝑍𝑍𝐴𝐴𝑍𝑍𝐵𝐵
𝑅𝑅𝐴𝐴𝐵𝐵

𝑀𝑀
𝐵𝐵>𝐴𝐴

𝑀𝑀
𝐴𝐴=1                                   (2.8) 

The above many-electron Schrödinger equation (2.7) for a given quantum system is 

essentially a simple story that describes everything about a system. The wave function itself 

is not an observable quantity in quantum mechanics and commonly interpreted by the 

probability density, which is the square of the wave function when multiplied with its 

complex conjugation. To solve the Schrödinger equation (2.7) for an arbitrarily chosen 

quantum system, first, the Hamilton operator for the target system needs to be set. The 

electronic Hamiltonian in equation (2.6) infers that the specific part of the total energy 

operator 𝐻𝐻� that is relevant to an actual system depends only on the number of electrons in 

the system N and external potential 𝑉𝑉𝑒𝑒𝑒𝑒𝑖𝑖.. The later is completely determined through the 

position and charge of all nuclei within the system, and the remaining parts of 𝐻𝐻�, such as 

kinetic energy or the electron-electron repulsion, are independent of the system under our 

consideration. Since the eigenfunctions Ψ𝑖𝑖 is dependent on corresponding eigenvalues of 

𝐻𝐻�, all properties of the system can be derived once the Ψ𝑖𝑖 is fully determined. The operation 

of appropriate operators on the wave function can extract the desired physical properties of 

the system if and only if Ψ𝑖𝑖 is fully described. However, these simple-sounding steps are 

hard in practice even for simple atomic and molecular systems due to the absence of 

adequate technique to solve the many-particle Schrödinger equation precisely by wave 

function determination method, which is a central quantity in this model.  
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Nonetheless, over the years this simplified description has traversed a long path in 

predicting and describing the structure-property relation of various real materials starting 

from the simple atomic and molecular structures to the solving of complex DNA structures, 

polymers, proteins, and solid crystals in the conventional electronic wave function 

minimization strategy to get the ground state wave functions and corresponding low energy 

states of material using variational methods, and Hartree-Fock approaches. These all-

electron wave function minimization schemes are computationally way more expensive for 

a system containing a large number of electrons to be exactly solvable by the wave function 

minimization methods and often suffer for its computation volume of the problem.  

The present-day computational approach in solving the many-electron Schrödinger 

equation takes a simple route via density functional theory (DFT) approach, where the 

consideration of electron density 𝜌𝜌(𝑟𝑟) of materials has simplified the enormity of solving 

the many-electron wave function Ψ𝑖𝑖 for complex materials. In recent years, the use of 

sophisticated computational methods by clever algorithms has enabled the predictive 

accuracy of ground-state electronic properties of materials with near exactness. 

In the following section, we present the basic foundations of modern-day density functional 

theory methods for a non-relativistic, interacting Coulomb system based on electron 

density and approximate functionals. 

2.2 Density Functional Theory 

The electronic part of the Hamiltonian as described in eq. 2.6 contains the difficult many 

body term and therefore cannot be solved without further approximation. One of the most 

efficient tools to solve this many electrons problem is the density functional theory (DFT) 

which offers a standard method to calculate the ground state properties of real materials. In 

DFT many electrons problem is mapped into single electron problem i.e., 3N DOF is 

transferred into 3 DOF embedded in the density 𝜌𝜌(𝑟𝑟). To compute the total energy and 

electronic structure of real materials using DFT, one basic variable, electronic charge 

density distribution 𝜌𝜌(𝑟𝑟) of the system is used rather than the many electrons wave 

function. Effectively it reduces the computational cost since density depends on three DOF 

whereas wavefunction based methods depend on 3N DOF. In the following we will show 

that the expectation value of energy corresponding to eq. 2.6 can be written as a functional 

of reduced density matrices. The density functional theory (DFT) or electron density theory 
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reformulates the many-electron Schrödinger equation in terms of electron density 𝜌𝜌(𝑟𝑟) of 

materials that give a reliable computational measure and efficiency to solve the many-

electron quantum system for various complex materials. The electron density or the 

probability density 𝜌𝜌(𝑟𝑟) of an N electron system is the central variable in DFT and defined 

as the integral over the spin coordinates of all N electrons within a volume element of 𝑑𝑑3𝑟𝑟. 

𝜌𝜌(𝑟𝑟) = 𝑁𝑁 ∫ … ∫|Ψ𝑖𝑖(�⃗�𝑥1, �⃗�𝑥2, … , �⃗�𝑥𝑁𝑁)|2𝑑𝑑3𝑟𝑟                                         (2.9) 

The probability density 𝜌𝜌(𝑟𝑟) is a non-negative function of position variables of N electrons 

which vanishes when 𝑟𝑟 → ∞ and integrates to the total number of electrons N present in 

the system. The electron density 𝜌𝜌(𝑟𝑟) is then used to calculate various material properties 

that are directly or indirectly related to the ground-state electron density and the 

corresponding total minimum energy of the system 𝐸𝐸0. In principle, 𝜌𝜌(𝑟𝑟)  is an observable 

quantity and can be experimentally measured by X-ray diffractions. The basic foundation 

of the density-based approach to describe the behavior of electrons in a quantum system 

was first theoretically demonstrated by Hohenberg and Kohn in their seminal work back in 

1964 and Kohn-Sham in 1965, for which Walter Kohn was awarded the Nobel Prize in 

Chemistry in 1998. Their density-based approaches in solving the electronic structure of 

materials are still the most successful theoretical approach in density functional theory.  

However, the initial attempt to this simplified density-based approach to describe the 

properties of many-body quantum systems in terms of their electron density dates back to 

1927 in Thomas-Fermi (TF) model of approximation, where the non-interacting kinetic 

energy functional of a many-electron system was approximated by the uniform electron 

gas with electron density 𝜌𝜌(𝑟𝑟). 

                                          𝑇𝑇𝑇𝑇𝐹𝐹[𝜌𝜌[𝑟𝑟]] = A � 𝑑𝑑3𝑟𝑟 𝜌𝜌5 3⁄ (𝑟𝑟)                                                      (2.10) 

Where 𝜌𝜌(𝑟𝑟) is the electron density of homogeneous non-interacting electron gas, and 𝐴𝐴 is 

a numerical constant 3
10

(3𝜋𝜋2)2/3. The total energy of a system was determined by adding 

electrostatic energies using the classical expression for the nuclear-nuclear potential and 

the electron-electron potential. 

𝐸𝐸𝑇𝑇𝐹𝐹[𝜌𝜌[𝑟𝑟]] = 𝐴𝐴 � 𝑑𝑑3𝑟𝑟 𝜌𝜌5 3⁄ [𝑟𝑟] − Z �
𝜌𝜌[𝑟𝑟]

𝑟𝑟
 𝑑𝑑3𝑟𝑟 +

1
2

�
𝜌𝜌[𝑟𝑟]𝜌𝜌[𝑟𝑟′]
|𝑟𝑟 − 𝑟𝑟′| 𝑑𝑑3𝑟𝑟𝑑𝑑3𝑟𝑟′                  (2.11) 
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The first term in the above expression is the non-interacting kinetic energy density of a 

many-electron system, whereas the second term represents the energy of the ion-electron 

interaction energy or Coulombic term, and the third term is the classical Hartree energy.  

The total energy of a many-electron system can be obtained by minimizing non-interacting 

wave function corresponding to a given electron density in some external potential, as 

given in equation (2.9), where the total electron number 𝑁𝑁 in the system remains constant.  

However, the description for total energy in the original Thomas-Fermi model 

overestimates the ground-state energy of many quantum systems because of an improper 

account of exchange-correlation energy, which is completely neglected in the Thomas-

Fermi model which is expected to further lower the ground-state energies for interacting 

particles. 

In summary, though the basic structure of a many-electron system based on 

Thomas-Fermi approximation provides a reasonable approximate result for non-interacting 

electronic systems with a few numbers of electrons, it fell short of predicting electrons in 

many real materials. Nonetheless, the use of electron density mapping over the 

conventional many-electron wave function method, without any additional information as 

a variable, established by the Thomas-Fermi model can describe divergent properties of 

materials and eventually gave birth to the foundation of modern density functional theory. 

2.2.1 Hohenberg-Kohn theorem 

The modern density functional theory methods that we use today was first established in 

1964 by Hohenberg and Kohn. Hohenberg–Kohn (HK) stated, ‘the ground state of any 

interacting many-electron system with a given fixed inter-particle interaction is a unique 

function of the electron density 𝜌𝜌(𝑟𝑟)’; where the ground-state wave function Ψ0 can be 

written as a unique functional of ground-state electron density 𝜌𝜌0  as, Ψ0 =  Ψ [𝜌𝜌0 ].  

The equation (2.4) can now be rewritten in terms of the ground-state energy 𝐸𝐸0 as a unique 

functional of ground-state electron density 𝜌𝜌0, which enables one to establish a single 

physical quantity to describe all the properties of an interacting many-particle system.  

𝐸𝐸0�Ψ [𝜌𝜌0]� = < Ψ [𝜌𝜌0]|𝑇𝑇� + 𝑉𝑉�𝑁𝑁𝑒𝑒 + 𝑉𝑉�𝑒𝑒𝑒𝑒|Ψ [𝜌𝜌0] >                              (2.12) 
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First HK theorem: In the first Hohenberg-Kohn (HK) theorem, they proved, the ground 

state electron density 𝜌𝜌0 uniquely determines the Hamiltonian operator thereby can 

determine the number of electrons (N) and external potential V𝑒𝑒𝑒𝑒𝑖𝑖.(𝑟𝑟) to within a constant 

that fixes 𝐻𝐻� for many-particle interacting ground states. There is a one-to-one 

correspondence between the ground-state density 𝜌𝜌(𝑟𝑟) of a many-electron system (atom, 

molecule, solid) and the external potential V𝑒𝑒𝑒𝑒𝑖𝑖.. An immediate consequence is that the 

ground-state expectation value of any observable 𝑂𝑂� is a unique functional of the exact 

ground-state electron density: 

                                                          < Ψ| 𝑂𝑂� |Ψ > = 𝑂𝑂[𝜌𝜌]                                               (2.13)                                       

Second HK theorem: For 𝑂𝑂� being the Hamiltonian 𝐻𝐻�, the ground-state total energy 

functional H [𝜌𝜌] ≡  𝐸𝐸V𝑒𝑒𝑒𝑒𝑒𝑒. [𝜌𝜌] is of the form 

                                         𝐸𝐸V𝑒𝑒𝑒𝑒𝑒𝑒. [𝜌𝜌] = < Ψ| 𝑇𝑇� + 𝑉𝑉� |Ψ >  + < Ψ| 𝑉𝑉�𝑒𝑒𝑒𝑒𝑖𝑖 |Ψ >                   (2.14) 

                                                          =  FHK[𝜌𝜌]  +  ∫ 𝜌𝜌(𝑟𝑟) Vext(𝑟𝑟)𝑑𝑑𝑟𝑟                                 (2.15) 

Where the Hohenberg-Kohn density functional FHK[𝜌𝜌] is universal for any many-electron 

system. 𝐸𝐸V𝑒𝑒𝑒𝑒𝑒𝑒. [𝜌𝜌] reaches its minimal value (equal to the ground-state total energy) for the 

ground-state density corresponding to Vext. 

In the second Hohenberg-Kohn theorem, they proposed a universal functional: Hohenberg-

Kohn functional, 𝐹𝐹𝐻𝐻𝐻𝐻[𝜌𝜌�] as a function of certain unknown ground state density 𝜌𝜌�, where 

𝐹𝐹𝐻𝐻𝐻𝐻[𝜌𝜌�] = 𝑇𝑇[𝜌𝜌�] + 𝑉𝑉𝑒𝑒𝑒𝑒 that exists completely independent of the choice of the system to be 

solved the many-electron Schrödinger equation (2.7), exactly! However, the explicit form 

of these functionals is still under mystery. The functional 𝐹𝐹𝐻𝐻𝐻𝐻[𝜌𝜌�] delivers the ground state 

energy of the system independent of the external potential into its lowest energy 

configuration if and only if the input electron density is close to the actual ground-state 

density 𝜌𝜌0 of material. The second Hohenberg-Kohn theorem was the simplified version 

of the variational principle with a trial density 𝜌𝜌�. 

𝐸𝐸𝑖𝑖 ≤ 𝐸𝐸[𝜌𝜌�] =  𝑇𝑇�[𝜌𝜌�] + 𝑉𝑉�𝑁𝑁𝑒𝑒[𝜌𝜌�] + 𝑉𝑉�𝑒𝑒𝑒𝑒[𝜌𝜌�]                                    (2.16) 

This trial density 𝜌𝜌� in Hohenberg-Kohn theorem satisfies the necessary boundary 

conditions, 𝜌𝜌�(𝒓𝒓�⃗ )  ≥ 0, ∫ 𝜌𝜌�(𝒓𝒓�⃗ ) 𝑑𝑑3𝑟𝑟 = 𝑁𝑁, and associate the external potential 𝑉𝑉𝑒𝑒𝑒𝑒𝑖𝑖. that give 

rise an upper bound to the true ground state energy 𝑬𝑬𝒐𝒐 of a quantum system. 
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In summary, the Hohenberg-Kohn theorems have provided necessary methods to calculate 

all physical properties of a material as a unique functional of its ground-state density and 

some external potential V𝑒𝑒𝑒𝑒𝑖𝑖.(𝑟𝑟) in terms of a universal trial function 𝐹𝐹𝐻𝐻𝐻𝐻[𝜌𝜌�] through the 

variational procedure that associate to an unknown density 𝜌𝜌� to determine the true ground 

state density of electrons 𝜌𝜌0. However, the application of the Hohenberg-Kohn theorem is 

only limited to the ground state material properties and intricate to generalize the method 

for the excited state problems due to challenges in Hohenberg-Kohn functional. 

2.2.2 Kohn-Sham formalism  

The second seminal contribution to the development of modern density functional theory 

was given by Kohn and Sham in 1965, a year after the Hohenberg-Kohn theorem (1964). 

The equations of Kohn and Sham, turn DFT into a practical tool. They are a practical 

procedure to evaluate the ground state density. Kohn-Sham introduced the concept of a 

non-interacting reference system built from a set of orbitals in a way such that the kinetic 

energy part of the universal Hohenberg-Kohn functional 𝐹𝐹𝐻𝐻𝐻𝐻[𝜌𝜌�] can be calculated with 

sufficient accuracy.  The correlation energy is defined as this part of the total energy which 

is present in the exact solution, but absent in the Hartree-Fock solution. The total energy 

functionals 𝐸𝐸𝑒𝑒[𝜌𝜌] and 𝐸𝐸𝐻𝐻𝐹𝐹[𝜌𝜌] corresponding to the exact and Hartree-Fock Hamiltonians 

respectively, are: 

                                                    𝐸𝐸𝑒𝑒 = 𝑇𝑇 + 𝑉𝑉                                                                        (2.17) 

                                                     𝐸𝐸𝐻𝐻𝐹𝐹 =  𝑇𝑇0 +  𝑉𝑉 =  𝑇𝑇0 +  𝑉𝑉𝐻𝐻 + 𝑉𝑉𝑒𝑒                                   (2.18) 

Here 𝑇𝑇 and 𝑉𝑉 are the exact kinetic and electron-electron potential energy functionals, 𝑇𝑇0 is 

the functional for the kinetic energy of a non-interacting electron gas, 𝑉𝑉𝐻𝐻 stands for the 

Hartree contribution and 𝑉𝑉𝑒𝑒 for the exchange contribution. For easier notation, the square 

brackets to represent functional have been dropped here.  

The functional for the correlation contribution is expressed as: 

                                                   𝑉𝑉𝑐𝑐 =  𝐸𝐸𝐻𝐻𝐹𝐹 −  𝐸𝐸𝑒𝑒 = 𝑇𝑇 −  𝑇𝑇0                                                    (2.19) 

The exchange contribution to the total energy is defined as the part which is present in the 

Hartree-Fock solution, but absent in the Hartree solution.  The total energy of Hartree 

solution is given by 

                                                    𝐸𝐸𝐻𝐻 =  𝑇𝑇0 +  𝑉𝑉𝐻𝐻                                                                  (2.20) 

Therefore, the exchange contribution can be defined as 
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                                                     𝑉𝑉𝑒𝑒 =  𝑉𝑉 −  𝑉𝑉𝐻𝐻                                                                    (2.21) 

Now, the Hohenberg-Kohn functional can be rewritten in the following way: 

                                                      𝐹𝐹𝐻𝐻𝐻𝐻 =  𝑇𝑇 + 𝑉𝑉 + 𝑇𝑇0 −  𝑇𝑇0 

                                                              =  𝑇𝑇0 + 𝑉𝑉 + (𝑇𝑇 −  𝑇𝑇0) 

                                                              =  𝑇𝑇0 + 𝑉𝑉 +  𝑉𝑉𝑐𝑐 +  𝑉𝑉𝐻𝐻 −  𝑉𝑉𝐻𝐻 

                                                              =  𝑇𝑇0 + 𝑉𝑉𝐻𝐻 +  𝑉𝑉𝑐𝑐 + (𝑉𝑉 −  𝑉𝑉𝐻𝐻) 

                                                              =  𝑇𝑇0 + 𝑉𝑉𝐻𝐻 + (𝑉𝑉𝑐𝑐 +  𝑉𝑉𝑒𝑒) 

                                                               =  𝑇𝑇0 + 𝑉𝑉𝐻𝐻 +  𝑉𝑉𝑒𝑒𝑐𝑐                                                       (2.22) 

 Here 𝑉𝑉𝑒𝑒𝑐𝑐 is the exchange-correlation energy functional.  

The Kohn-Sham Hamiltonian can be written as    

                              𝐻𝐻�𝐻𝐻𝑆𝑆  = 𝑇𝑇�0  + 𝑉𝑉�𝐻𝐻  +  𝑉𝑉�𝑒𝑒𝑐𝑐  +  𝑉𝑉�𝑒𝑒𝑒𝑒𝑖𝑖                                                      (2.23) 

                                      = − 1
2

∑ ∇𝑖𝑖
2𝑁𝑁

𝑖𝑖=1  +  ∫ 𝜌𝜌(𝑟𝑟′)
|𝑟𝑟−𝑟𝑟′|  𝑑𝑑

3𝑟𝑟′ + 𝑉𝑉𝑒𝑒𝑐𝑐  +  𝑉𝑉𝑒𝑒𝑒𝑒𝑖𝑖                           (2.24) 

Where the exchange-correlation potential is given by the functional derivative 

                                                  𝑉𝑉�𝑒𝑒𝑐𝑐 =  𝜕𝜕𝑉𝑉𝑒𝑒𝑥𝑥[𝜌𝜌]
𝜕𝜕𝜌𝜌

                                                                           (2.25) 

The theorem of Kohn-Sham can now be formulated as: 

The exact ground-state density 𝜌𝜌(𝑟𝑟) of an N-electron system is  

                                                  𝜌𝜌(𝑟𝑟) = ∑ |𝜙𝜙𝑖𝑖(𝑟𝑟)|2𝑁𝑁
𝑖𝑖=1                                                            (2.26) 

Where the single-particle wave functions are the N lowest-energy solutions of the Kohn-

Sham equation    

                                                   𝐻𝐻�𝐻𝐻𝑆𝑆 𝜙𝜙𝑖𝑖  =  𝜀𝜀𝑖𝑖 𝜙𝜙𝑖𝑖                                                                 (2.27) 

It should be noted that the single-particle wave functions  𝜙𝜙𝑖𝑖 are not the wave functions of 

electrons! They describe mathematical quasi-particles, without a direct physical meaning. 

Only the over-all density of these quasi-particles is guaranteed to be equal to the true 

electron density. Also, the single-particle energies 𝜀𝜀𝑖𝑖 are not single-electron energies. 
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Both the Hartree operator 𝑉𝑉𝐻𝐻 and the exchange-correlation operator 𝑉𝑉𝑒𝑒𝑐𝑐 depend on the 

density 𝜌𝜌(𝑟𝑟), which in turn depends on the  𝜙𝜙𝑖𝑖 which are being searched. This means we 

are dealing with a self-consistency problem: the solutions ( 𝜙𝜙𝑖𝑖) determine the original 

equation (𝑉𝑉𝐻𝐻 and 𝑉𝑉𝑒𝑒𝑐𝑐 in 𝐻𝐻𝐻𝐻𝑆𝑆), and the equation cannot be written down and solved before 

its solution is known. An iterative procedure is needed to escape from this paradox (see 

Fig. 2.1). Some starting density 𝜌𝜌0 is guessed, and a hamiltonian 𝐻𝐻𝐻𝐻𝑆𝑆1 is constructed with 

it. The eigenvalue problem is solved, and results in a set of  𝜙𝜙1 from which a density 𝜌𝜌1 

can be derived. Most probably 𝜌𝜌0 will differ from 𝜌𝜌1. Now 𝜌𝜌1 is used to construct 𝐻𝐻𝐻𝐻𝑆𝑆2, 

which will yield a 𝜌𝜌2, etc. The procedure can be set up in such a way that this series will 

converge to a density 𝜌𝜌𝑓𝑓 which generates a 𝐻𝐻𝐻𝐻𝑆𝑆𝑓𝑓 which yields as solution again  𝜌𝜌𝑓𝑓: this 

final density is then consistent with the Hamiltonian. 

 

 

Figure 2.1 Flow chart of the self-consistent procedure to solve Kohn-Sham equation. 
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One should note here if the exact form of 𝑉𝑉𝑒𝑒𝑐𝑐(𝑟𝑟) and 𝑉𝑉𝐻𝐻𝑆𝑆(𝑟𝑟) is known to us, by using the 

Kohn-Sham strategy, one could get the exact ground-state electron density 𝜌𝜌0 of a non-

interacting real system when the density of reference system approaches to its real value in 

an effective Kohn-Sham potential.  

Strictly speaking, in Kohn-Sham approach the exchange-correlation functional 𝑉𝑉𝑒𝑒𝑐𝑐[𝜌𝜌(𝑟𝑟)] 

is unknown, and the orbitals have no physical significance, except the highest occupied 

orbital (negative of exact ionization energy). To describe a real interacting quantum system, 

the description of accurate exchange-correlation functionals 𝑉𝑉𝑒𝑒𝑐𝑐[𝜌𝜌(𝑟𝑟)] is of utmost 

importance. Two widely studied approximate exchange-correlation functional 𝑉𝑉𝑒𝑒𝑐𝑐[𝜌𝜌(𝑟𝑟)] 

methods arise after the  Kohn-Sham theory in the name of local density approximation 

(LDA) [94] and the generalized gradient approximations (GGA).  [95] 

2.2.3 Exchange-correlation functionals  

2.2.3.1 Local Density Approximations 

The LDA approximation for approximate exchange-correlation functionals is the 

general basis of all other density-based approximations. The LDA model is based on 

uniform electron gas where the motion of the electron is considered under a positive, ionic 

background charge distribution, with a total neutral charge ensemble of particles. In LDA, 

the exchange-correlation energy at a point 𝑟𝑟 per particle remain the same in an ideal 

homogeneous electron gas with electron density 𝜌𝜌(𝑟𝑟). In this approximation the exchange-

correlation functional  𝐸𝐸𝑋𝑋𝑋𝑋[𝜌𝜌(𝑟𝑟)] ] takes the following form 

𝐸𝐸𝑋𝑋𝑋𝑋
𝐿𝐿𝐷𝐷𝐴𝐴[𝜌𝜌(𝑟𝑟)] = � 𝜌𝜌(𝑟𝑟) 𝜖𝜖𝑋𝑋𝑋𝑋

ℎ𝑖𝑖𝑜𝑜[𝜌𝜌(𝑟𝑟)]𝑑𝑑𝑟𝑟                                          (2.28) 

            = � 𝜌𝜌(𝑟𝑟)[𝜖𝜖𝑋𝑋
ℎ𝑖𝑖𝑜𝑜(𝜌𝜌(𝑟𝑟)) + 𝜖𝜖𝑋𝑋

ℎ𝑖𝑖𝑜𝑜(𝜌𝜌(𝑟𝑟))]𝑑𝑑𝑟𝑟            (2.29) 

                         = 𝐸𝐸𝑋𝑋
𝐿𝐿𝐷𝐷𝐴𝐴[𝜌𝜌(𝑟𝑟)] + 𝐸𝐸𝑋𝑋

𝐿𝐿𝐷𝐷𝐴𝐴[𝜌𝜌(𝑟𝑟)]                                   (2.30) 

The exchange-correlation functional  𝐸𝐸𝑋𝑋𝑋𝑋[𝜌𝜌(𝑟𝑟)] in LDA assumption splits into two parts, 

the exchange part  𝐸𝐸𝑋𝑋
𝐿𝐿𝐷𝐷𝐴𝐴[𝜌𝜌(𝑟𝑟)] and the effective correlation contribution 𝐸𝐸𝑋𝑋

𝐿𝐿𝐷𝐷𝐴𝐴[𝜌𝜌(𝑟𝑟)].  

By taking the derivative of the energy functional, the corresponding XC potential of the 

LDA is                                  

                                    𝑉𝑉𝑋𝑋𝑋𝑋
𝐿𝐿𝐷𝐷𝐴𝐴[𝜌𝜌(𝑟𝑟)] = 𝜕𝜕𝐸𝐸𝑋𝑋𝑋𝑋

𝐿𝐿𝐿𝐿𝐴𝐴[𝜌𝜌(𝑟𝑟)]
𝜕𝜕𝜌𝜌(𝑟𝑟)

                                                            (2.31) 
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The moderate accuracy of local density approximation (LDA) is insufficient for most solids 

for practical applications in material science, it also failed miserably for heavy fermions, 

and systems that are primarily dominated by the electron-electron interactions. 

2.2.3.2 Generalized Gradient Approximations 

Since the exchange-correlation energy of a homogeneous electron distribution widely 

differs for a real material with non-local density variations, the first thoughtful step to go 

beyond the LDA formalism is the use of not only the information about the density 𝜌𝜌(𝑟𝑟) at 

a particular point 𝑟𝑟 in space, but to supplement this uniform density with gradient correction 

of the charge density, ∇𝜌𝜌(𝑟𝑟) that accounts for the non-homogeneity of the actual electron 

density. Thus, the exchange-correlation energy in the generalized gradient approximation 

(GGA) becomes, [96] 

                               𝐸𝐸𝑋𝑋𝑋𝑋
𝐺𝐺𝐺𝐺𝐴𝐴[𝜌𝜌(𝑟𝑟)] = ∫ 𝜌𝜌(𝑟𝑟) 𝜖𝜖𝑋𝑋𝑋𝑋

𝐺𝐺𝐺𝐺𝐴𝐴[𝜌𝜌(𝑟𝑟), ∇𝜌𝜌(𝑟𝑟)]𝑑𝑑𝑟𝑟                                             (2.32) 

The corresponding XC potential of the GGA is of the form 

                                𝑉𝑉𝑋𝑋𝑋𝑋
𝐺𝐺𝐺𝐺𝐴𝐴[𝜌𝜌(𝑟𝑟)] = 𝜕𝜕𝐸𝐸𝑋𝑋𝑋𝑋

𝐺𝐺𝐺𝐺𝐴𝐴[𝜌𝜌(𝑟𝑟)]
𝜕𝜕𝜌𝜌(𝑟𝑟)

= 𝜌𝜌(𝑟𝑟) 𝜕𝜕𝜖𝜖𝑋𝑋𝑋𝑋
𝐺𝐺𝐺𝐺𝐴𝐴

𝜕𝜕𝜌𝜌(𝑟𝑟)
+  𝜖𝜖𝑋𝑋𝑋𝑋

𝐺𝐺𝐺𝐺𝐴𝐴                                  (2.33)                       

The GGA is found to work much better than the LDA in predicting material properties to 

their approximate real value in the Kohn-Sham method. The overcorrection of the local 

electronic density of uniform electron gas by gradient corrected density was hugely 

successful useful for semiconducting systems which largely reduce the ground state 

properties such as lattice constants were smaller by < 0.6% than an experiment, cohesive 

energy, dielectric function, elastic constants within 3% of its experimental value, and 

bandgap underestimation problem of LDA within 0.2 eV of its experimental value in 

GGA. [97,98] 

 Over the years many progress has been made in deriving the successful GGA 

functionals. [99,100] The most commonly used GGA formalism in DFT is Perdew-Wang  

(PW91) [101] and Perdew-Burke-Ernzerhof exchange-correlation energy for the 

GGA’s [100]. In most of our DFT calculation results, we have used the Perdew-Burke-

Ernzerhof variant of the generalized gradient approximation (GGA), which incorporates 

some inhomogeneity effects that are well suited for predicting the electronic properties of 

various semiconducting systems. The combination of GGA and PBE provides better 

accuracy than normal GGA’s, results close to the experimental results for layered 

materials. [102]  
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2.2.3.3 Meta-Generalized Gradient Approximations 

Meta-generalized gradient approximation (meta-GGA) exchange-correlation density 

functionals depend on the Kohn-Sham (KS) orbitals through the kinetic energy density. 

Consequently, there is a functional dependency on the electron density in the KS orbitals. 

Although the functional dependence of the KS orbitals is indirect and is not given by an 

explicit expression, the computation of analytic functional derivatives of meta-GGA 

functionals with respect to the density poses a challenge. The practical solution used in 

many computer implementations of meta-GGA density functionals for ground-state 

calculations is abstracted and generalized to a class of density functionals that is broader 

than meta-GGAs and to any order of functional differentiation. [103] A formal advantage 

of meta-GGAs is that they are able to recognize all types of orbital overlap, and thereby in 

principle represent all types of chemical bonds simultaneously. [104]  

The most successful meta-GGA to date is the strongly constrained and appropriately 

normed (SCAN) functional. [105] Sun et al. proposed the first meta-GGA that is fully 

constrained, abiding by all 17 known exact constraints that a meta-GGA can. SCAN 

functional is also exact or nearly exact for a set of “appropriate norms,” including rare-gas 

atoms and nonbonded interactions. This strongly constrained and appropriately normed 

meta-GGA achieves remarkable accuracy for systems where the exact exchange correlation 

hole is localized near its electron, and especially for lattice constants and weak 

interactions. [105] Compared to other nonempirical semilocal-density functionals, SCAN 

has been shown to yield a significantly more accurate representation of the bulk properties 

of many semiconducting solids, such as, bulk modulus, lattice parameter and volume [106], 

formation enthalpy [107], transition pressures [108], and reaction energies [109]. 

Furthermore, though SCAN produces accurate properties for strongly bound 

compounds [110] and ionic systems, it is moderately worse for weakly bound intermetallic 

compounds. [111,112] 

2.2.3.4 Hybrid functionals 

In a conventional local density approximation or gradient corrected density functional 

approximation, we have repeatedly seen that the exchange contribution 𝐸𝐸𝑋𝑋  is usually much 

larger than the corresponding correlation 𝐸𝐸𝑋𝑋 effects. Even the semilocal correction effects 

do not reproduce the reasonable bandgap in semiconductors due to self-interaction errors 

and missing derivative discontinuity in electron density. Hence, a reasonable accuracy of 
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exchange functional is a prerequisite to get meaningful results in DFT. A straightforward 

way to get the most accurate exchange-correlation energy is the use of exact exchange 

energy in the Kohn–Sham density functional theory.  

In hybrid density functionals, we include certain parts of the exact Hartree-Fock exchange 

energy to improve the results of our GGA calculations. However, the use of hybrid density 

functionals is computationally costly for most materials and very much dependent on the 

size of the system. In 1992, Axel D. Becke et al.  [113] established a simple but rather 

powerful strategy to link the Hartree-Fock-based methods with the density functional 

theory calculation, the so-called “Hartree-Fock-Kohn-Sham” scheme by using an adiabatic 

connection to the nonlocal exchange potential in which the non-local Fock exchange 

operator replaces a part of the local exchange energy. [114] 

The exchange-correlational energy in hybrid approximation, 

𝐸𝐸𝑋𝑋𝑋𝑋
ℎ𝑦𝑦𝑏𝑏. = 𝑎𝑎𝐸𝐸𝑋𝑋

𝐻𝐻𝑆𝑆 + (1 − 𝑎𝑎)𝐸𝐸𝑋𝑋𝑋𝑋
𝐺𝐺𝐺𝐺𝐴𝐴                                                  (2.34) 

where 𝐸𝐸𝑋𝑋
𝐻𝐻𝑆𝑆 is the exchange energy of the exact Kohn-Sham wave function, 𝐸𝐸𝑋𝑋𝑋𝑋

𝐺𝐺𝐺𝐺𝐴𝐴 

approximate energy in GGA and 𝑎𝑎 is a fitting parameter which determines the amount of 

non-local exchange part in the hybrid approximation, typically  𝑎𝑎 ~ ¼ % of Hartree-Fock 

mixing. 

         The widely used hybrid functional in DFT is the Heyd–Scuseria–Ernzerhof (HSE) 

screened Coulomb potential were a part of short and long-range interaction of PBE 

exchange functional is replaced by the short-range non-local Hartree-Fork exchange 

interaction.  [115,116]  

The HSE functional can be expressed as: 

                               𝐸𝐸𝑋𝑋𝑋𝑋
𝐻𝐻𝑆𝑆𝐸𝐸 = 1

4
𝐸𝐸𝑋𝑋

𝐻𝐻𝐹𝐹,𝑆𝑆𝑅𝑅(𝜔𝜔) + 3
4

𝐸𝐸𝑋𝑋
𝑃𝑃𝐵𝐵𝐸𝐸,𝑆𝑆𝑅𝑅(𝜔𝜔) + 𝐸𝐸𝑋𝑋

𝑃𝑃𝐵𝐵𝐸𝐸,𝐿𝐿𝑅𝑅(𝜔𝜔) +𝐸𝐸𝑋𝑋
𝑃𝑃𝐵𝐵𝐸𝐸           (2.35) 

where 𝜔𝜔 is the screening parameter.  

In HSE, the spatial decay of the HF exchange interaction is accelerated by substitution of 

the full 1
𝑟𝑟
 Coulomb potential with an error-function-screened Coulomb potential to calculate 

the exchange portion of the energy in order to improve computational efficiency. This 

enables a substantial lowering of the computational cost for calculations in extended 
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systems. The HSE functional partitions the Coulomb potential for exchange into short-

range (SR) and long-range (LR) components: 

1
𝑟𝑟

=
1 − erf (𝜔𝜔𝑟𝑟)

𝑟𝑟
+

erf (𝜔𝜔𝑟𝑟)
𝑟𝑟

 

Where the screening 𝜔𝜔 parameter defines the separation range. For 𝜔𝜔 = 0, HSE reduces to 

the hybrid functional PBE0, and for 𝜔𝜔 → ∞, HSE becomes identical with PBE. HSE with 

a finite value of 𝜔𝜔 can be regarded as an interpolation between these two limits. [116] 

The use of HSE functionals in DFT significantly improved the lattice parameters, bandgap, 

and elastic properties for many nonmetallic systems where the errors in the fundamental 

bandgap of semiconductors get reduce to 50% than the same calculated by using the GGA 

functionals alone. [117] 

In a nutshell, the predictive potential of different functionals through incorporating 

various exchange-correlation parts to the density functional theory is progressively 

improving the accuracy of theoretical results close to the experimental values, where the 

accuracy in the bandgap: LDA < GGA < hybrid functional is scaling with the computing 

need of the problem. Using HSE functionals, the errors in ionization energy and affinity 

have reduced to ~ 0.2 eV for many semiconducting materials, including transition metal 

dichalcogenides. [118–121]  

2.2.3.5 Correction of exchange-correlation error: van der Waals correction 

Van der Waals force is the weak interaction that occurs among temporarily induced dipoles 

caused by the fluctuation in electron density and is present in every material. Since GGA 

is a semi-local functional and is not able to describe the long-range interaction, a correction 

due to van der Waals forces is needed. It can be corrected by two methods, using the 

empirical interatomic van der Waals parameter or the van der Waals functional. The first 

method contains the DFT+D2 method which corrects the interatomic interaction between 

the two atoms. [122] The DFT+D3 method adds an interatomic interaction among three 

atoms to the DFT+D2 method. [123]  

2.2.4 Methods for Electronic Structure Calculations 
For an infinite number of non-interacting electrons moving in the static potential of an 

infinite number of nuclei, electronic wave functions can extend spatially over the entire 

solid. Therefore, the wave function must be calculated for each of the infinite numbers of 



  Chapter 2  

Page | 32  

 

electrons in the system. These can be simplified by performing the calculations on a 

periodic system through the application of Bloch’s theorem to the electronic wave function. 

The effective one- electron Kohn-Sham equations are iteratively solved by expressing the 

electronic wavefunctions through a linear combination of a set of basis functions. To 

describe the Kohn- Sham electronic wavefunctions, an accurate choice of a suitable set of 

simple basis functions is needed. Plane waves are the most common basis function which 

is suitable for a momentum space description of the material. The computational load can 

be reduced and optimized considerably by using various approximations such as 

pseudopotential approximation, projected-augmented wave method, etc. 

2.2.4.1 Pseudopotential Approach  

As its name suggests, it is not the actual potential but mimics the true characteristics of the 

actual potential. The key point of this approach is to reduce the number of electrons in a 

system by dividing electrons into two groups; freezing the nucleus and the core electrons 

together and pseudizing the remaining valence wave functions.  
Core and Valence Electrons: The core electrons are generally tightly bound to their 

nucleus in a deep potential well, whereas the valence electrons lie far from their nuclei and 

high above in the potential well are relatively weakly bound. The valence electrons are 

active in forming chemical bonds, getting ionized, conducting electricity in metals, forming 

bands, and performing other atomic level activities.  

Frozen-core Approximation: From the computational viewpoint, the core (nucleus plus 

core electrons) is frozen and deals with only the active valence electrons. This is called a 

frozen core approximation. The nuclear charge is largely screened by the core electrons 

and has much less effect on the valence electrons. 

Projector-augmented wave (PAW) Potential 

It may be classified as a frozen core all-electron (AE) potential. This is a generalized 

technique combining the pseudopotential with the linear augmented-plane-wave methods 

developed by Bl�̈�𝑜chl in 1994, which is well known as the projector augmented wave 

method (PAW). [124] Since valence wavefunctions oscillate near the ionic cores and are 

orthogonal to core states, many Fourier components are required to manage the 

orthogonality wiggles and in turn, describe the wavefunctions accurately. The PAW 

approach transforms these rapidly oscillating wavefunctions into smooth wavefunctions. It 

maps both core and parts of valence wave functions with two separate descriptions. The 
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𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 of the valence part is represented via the PW expansion, whereas the 𝜓𝜓𝑐𝑐𝑖𝑖𝑟𝑟𝑒𝑒 of the 

core part is projected on a radial grid at the atom center. After the additive augmentation 

of these two terms, the overlapping part 𝜓𝜓𝑖𝑖𝑒𝑒𝑖𝑖 is trimmed off to make the final wave function 

𝜓𝜓𝑃𝑃𝐴𝐴𝑃𝑃 very close to the AE wave function: 

                                                𝜓𝜓𝑃𝑃𝐴𝐴𝑃𝑃 =  𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 + 𝜓𝜓𝑐𝑐𝑖𝑖𝑟𝑟𝑒𝑒 − 𝜓𝜓𝑖𝑖𝑒𝑒𝑖𝑖                                  (2.36) 

Basis set: The KS orbitals are approximated as a linear combination of known simple 

functions such as plane waves (PWs), the calculations become much easier. 

Local basis set: A local basis set such as the Gaussian basis set is mainly localized and 

thus often used for atoms and molecules whose orbitals are highly localized around each 

atom. 

Plane-wave basis set: Plane waves are nonlocal and span the whole space equally as 

                                                 𝜙𝜙𝑃𝑃𝑃𝑃 = 𝐶𝐶𝑒𝑒𝑥𝑥𝐶𝐶(𝑖𝑖𝒌𝒌��⃗ . 𝒓𝒓�⃗ )                                                     (2.37) 

2.2.5 Density-functional perturbation theory 

Many physical properties of a material are dependent on its response to an external 

perturbation in the form of lattice displacement or an applied external electric field. The 

lattice dynamics of crystalline solid can determine many such properties including the 

polarizability, elastic stiffness, phonon vibrational modes, thermal expansion of solids, 

specific heat, electron-phonon interactions, charge transport mechanism, superconducting 

properties, phonon dispersion, and thermal properties via ab initio density functional 

perturbation theory (DFPT) calculations. The determination of vibrational properties of 

materials from its crystal phonon is one of the astonishing successes of modern electronic 

structure theory. The density functional theory (DFT) deals with the electronic part of the 

system, while the DFPT is a linear response method to deal ionic part of the problem and 

the interaction among electron-phonon. The linear response properties in DFPT are 

calculated from the interatomic force constants for each atomic displacements, where a 

small perturbation is applied to the equilibrium lattice structure in terms of strain or electric 

field. [125] 

2.2.5.1 Perturbation in Kohn-Sham scheme 

The standard perturbation strategies in the form of small strain or electric field 

perturbations to the lattice displacement enter into the DFT scheme through an effective 
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potential 𝑉𝑉𝑒𝑒𝑓𝑓𝑓𝑓(𝑟𝑟) in the Kohn-Sham equation. [126] Moreover, a linear variation in 

perturbation will remain dependent on the ground state density of electrons. The effective 

potential under the Kohn-Sham scheme is defined as 

               𝛿𝛿𝑉𝑉𝑒𝑒𝑓𝑓𝑓𝑓(𝑟𝑟) = 𝛿𝛿𝑉𝑉𝑒𝑒𝑒𝑒𝑖𝑖(𝑟𝑟) + 𝛿𝛿𝑉𝑉𝑎𝑎𝑐𝑐𝑟𝑟(𝑟𝑟) = 𝛿𝛿𝑉𝑉𝑒𝑒𝑒𝑒𝑖𝑖(𝑟𝑟) + ∫ 𝑑𝑑3𝑟𝑟′𝐼𝐼(𝑟𝑟, 𝑟𝑟′) 𝛿𝛿𝜌𝜌(𝑟𝑟′)      (2.38)      

           

                         𝐼𝐼(𝑟𝑟, 𝑟𝑟′) ≡
𝛿𝛿𝑉𝑉𝑎𝑎𝑐𝑐𝑟𝑟(𝑟𝑟)
𝛿𝛿𝜌𝜌(𝑟𝑟′) =

𝛿𝛿𝑉𝑉𝐻𝐻(𝑟𝑟)
𝛿𝛿𝜌𝜌(𝑟𝑟′) +

𝛿𝛿𝑉𝑉𝑋𝑋𝑋𝑋(𝑟𝑟)
𝛿𝛿𝜌𝜌(𝑟𝑟′)                                          (2.39) 

The perturbation induces the 1st-order variation in the single-particle wave function and 

defined as 

                                            𝛿𝛿𝜓𝜓𝑖𝑖 = �
< 𝑗𝑗�𝛿𝛿𝑉𝑉𝑒𝑒𝑓𝑓𝑓𝑓�𝑖𝑖 >

𝜖𝜖𝑖𝑖 − 𝜖𝜖𝑖𝑖𝑖𝑖(≠𝑖𝑖)

𝜓𝜓𝑖𝑖(𝑟𝑟)                                                (2.40) 

Using a similar expression for 𝜓𝜓𝑖𝑖
∗(𝑟𝑟) gives 

                                     𝛿𝛿𝜌𝜌(𝑟𝑟) = �
𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖

𝜖𝜖𝑖𝑖 − 𝜖𝜖𝑖𝑖
< 𝑗𝑗�𝛿𝛿𝑉𝑉𝑒𝑒𝑓𝑓𝑓𝑓�𝑖𝑖 >

𝑖𝑖≠𝑖𝑖

𝜓𝜓𝑖𝑖
∗(𝑟𝑟)𝜓𝜓𝑖𝑖(𝑟𝑟)                    (2.41) 

An iterative solution to the equation (2.27) using (2.40) and (2.41) gives a 1st – order 

variation in density and corresponding total energy change of the system. 

2.2.5.2 Lattice dynamics approach 

The lattice dynamics under the Kohn-Sham perturbation scheme is the ionic displacement 

in solids. [126] Using the Hellmann-Feynman theorem, the potential corresponding to an 

applied perturbation is expressed in the Talyor expansion: 

                                         𝑉𝑉𝜆𝜆(𝑟𝑟) = 𝑉𝑉0(𝑟𝑟) + 𝜆𝜆
𝜕𝜕𝑉𝑉
𝜕𝜕𝜆𝜆

+ 𝜆𝜆2 𝜕𝜕2𝑉𝑉
𝜕𝜕𝜆𝜆2 + ⋯                                   (2.42) 

The corresponding electron density 𝜌𝜌(r) and wave function 𝜓𝜓(r) under such perturbation  

                                              𝜌𝜌𝜆𝜆(𝑟𝑟) = 𝜌𝜌0(𝑟𝑟) + 𝜆𝜆
𝜕𝜕𝜌𝜌
𝜕𝜕𝜆𝜆

+ 𝜆𝜆2 𝜕𝜕2𝜌𝜌
𝜕𝜕𝜆𝜆2 + ⋯                                  (2.43) 

                                           𝜓𝜓𝜆𝜆(𝑟𝑟) = 𝜓𝜓0(𝑟𝑟) + 𝜆𝜆
𝜕𝜕𝜓𝜓
𝜕𝜕𝜆𝜆

+ 𝜆𝜆2 𝜕𝜕2𝜓𝜓
𝜕𝜕𝜆𝜆2 + ⋯                                 (2.44) 

The 1st order solution to the equation (2.27) will be the 1st order Schrödinger equation under 

perturbation terms in equation (2.42) - (2.44) that leads to the Hellman-Feynman theorem 
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to define the expectation value of the derivative of the Hamiltonian operator to get the 

eigenvalues of the system 

                                              
𝜕𝜕𝐸𝐸
𝜕𝜕𝜆𝜆

=< 𝜓𝜓 �
𝜕𝜕𝐻𝐻
𝜕𝜕𝜆𝜆

� 𝜓𝜓 >                                                   (2.45) 

Using Hellman-Feynman theorem and 1st-order perturbation of electron density, the total 

energy expression of a perturbed system becomes: 

             𝐸𝐸 = 𝐸𝐸0 + � 𝜆𝜆𝑖𝑖 � 𝜌𝜌0(𝑟𝑟)
𝑖𝑖

𝜕𝜕𝑉𝑉(𝑟𝑟)
𝜕𝜕𝜆𝜆

𝑑𝑑𝑟𝑟

+
1
2

� 𝜆𝜆𝑖𝑖𝜆𝜆𝑖𝑖 � �
𝜕𝜕𝜌𝜌(𝑟𝑟)

𝜕𝜕𝜆𝜆𝑖𝑖

𝜕𝜕𝑉𝑉(𝑟𝑟)
𝜕𝜕𝜆𝜆𝑖𝑖

+ 𝜌𝜌0
𝜕𝜕2𝑉𝑉(𝑟𝑟)
𝜕𝜕𝜆𝜆𝑖𝑖𝜆𝜆𝑖𝑖

�
𝑖𝑖,𝑖𝑖

𝑑𝑑𝑟𝑟                             (2.46) 

and Taylor series expansion of total energy 

                            𝐸𝐸 = 𝐸𝐸0 +
1
2

� � 𝑢𝑢𝑖𝑖(𝑅𝑅𝐿𝐿)𝑢𝑢𝑖𝑖(𝑅𝑅𝐿𝐿′)𝐶𝐶𝑖𝑖,𝑖𝑖(𝑅𝑅𝐿𝐿 , 𝑅𝑅𝐿𝐿′)
𝑖𝑖,𝑖𝑖𝐿𝐿,𝐿𝐿′

                                  (2.47) 

2nd order term to the force constant becomes 

𝐶𝐶𝑖𝑖,𝑖𝑖(𝑅𝑅𝐿𝐿 , 𝑅𝑅𝐿𝐿′) = � �
𝜕𝜕𝜌𝜌(𝑟𝑟)

𝜕𝜕𝑢𝑢𝑖𝑖(𝑅𝑅𝐿𝐿)
𝜕𝜕𝑉𝑉(𝑟𝑟)

𝜕𝜕𝑢𝑢𝑖𝑖(𝑅𝑅𝐿𝐿′)
+ 𝜌𝜌0

𝜕𝜕2𝑉𝑉(𝑟𝑟)
𝜕𝜕𝑢𝑢𝑖𝑖(𝑅𝑅𝐿𝐿)𝜕𝜕𝑢𝑢𝑖𝑖(𝑅𝑅𝐿𝐿′)

� 𝑑𝑑𝑟𝑟                    (2.48) 

In equation (2.43) a 1st order perturbation to the electron density is required to evaluate the 

2nd order force constants. The matrix of interatomic force constants 𝐶𝐶𝑖𝑖,𝑖𝑖(𝑅𝑅𝐿𝐿 , 𝑅𝑅𝐿𝐿′) is given 

by Hessian matrix 𝜕𝜕2𝐸𝐸(𝑟𝑟)
𝜕𝜕𝑢𝑢𝑖𝑖(𝑅𝑅𝐿𝐿)𝜕𝜕𝑢𝑢𝑖𝑖(𝑅𝑅𝐿𝐿′)

.  The Hessian matrix contains the linear response term 

𝜕𝜕𝜌𝜌(𝑟𝑟)
𝜕𝜕𝑢𝑢𝑖𝑖(𝑅𝑅𝐿𝐿)

 and is known as the electron-density response and is central to formulating the 

formalism known as the Density Functional Perturbation Theory. [127] This method is 

used to calculate the linear response properties, lattice dynamics studies. DFPT methods 

allow the calculations of corresponding properties such as phonon-dispersion spectra, 

elastic stiffness tensors, and dielectric polarization within the DFT framework. 

2.3 Vienna ab-initio simulation package (VASP) 

The calculation results presented in this thesis were carried out by the Vienna Ab-initio 

Simulation Package (VASP) [128–131]. VASP is a sophisticated quantum simulation tool 

to perform ab initio calculations within the density functional theory at zero Kelvin 
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temperature. The interaction between ions and electrons is described by the projector-

augmented wave (PAW) pseudopotential methods using a plane-wave basis set to solve the 

Kohn-Sham equations in DFT with kinetic energy cut off > 500 eV. The all-electron Kohn-

Sham wave function is linearly transferred into a pseudo wave function in PAW for 

computational convenience implemented in VASP. For periodic solids, the use of a plane-

wave basis set is advantageous over the other localized orbital basis, and the results 

produced are well endorsed by the computational material science community. The 

optimization of electronic wave functions leads to an instantaneous ground-state electron 

density by using efficient iterative matrix diagonalization schemes (RMM-DISS, and 

blocked Davidson) that allow a sufficient reduction in the number of plane-waves per atom, 

typically ~ 100 plane waves per atom in bulk solids. The Hellman-Feynman forces acting 

on various atomic species and a full stress matrix can be evaluated using VASP, whereas 

for each self-consistency cycle the minimum energy and corresponding stress matrix is 

determined, to minimize the same, with respect to the previous iteration till a reasonable 

accuracy is achieved in total energy change. The convergence in total energy is controlled 

by the cut off energy and k mesh sampling. The execution time in VASP scales with N3, 

where N number of valence electrons in the system. VASP is useful for systems containing 

a number of valence electrons by up to 4000. The code also uses different symmetry 

reduction schemes for the efficient calculation of bulk properties of materials. Electronic 

smearing methods such as Fermi, Gaussian, and tetrahedron smearing are used in the 

integration of band structure energy in the Brillouin zone. The Blöchl's corrections for the 

semiconductors are used in our calculation to remove the quadratic errors in the linear 

tetrahedron smearing method that leads to faster convergence of energy. VASP runs well 

in many computing platforms, both in vector computers and parallel computers, at nearly 

the same speed. 

The Vienna Ab-initio Simulation Package (VASP) consists of 4 input files for the 

calculation of various material properties: INCAR, POSCAR, POTCAR, and KPOINTS. 

Besides, an execution script is required to submit the VASP calculation in a high-

performance computing platform. The schematic of work flow of VASP is provided in Fig. 

2.2. 

All the results presented in this thesis are obtained using the projected augmented-wave 

(PAW) method implemented in the Vienna Ab initio simulation package (VASP) to 

describe ion-electron interaction. The generalized gradient approximation at the level of  
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Figure 2.2 Schematic of the workflow of VASP. 

 

Perdew, Burke, and Ernzerhof (GGA-PBE) [95] has been used in the description of the 

exchange-correlation functional. The hybrid HSE06 functional has been utilized for a more 

accurate band gap and band edges, which are usually underestimated in the GGA-

PBE. [116] We have employed dispersion corrected density functional theory DFT-

D2 [123] for van der Waals heterostructure. Kinetic energy cut-off of 500-550 eV has been 

used, while the sampling of Brillouin zone has been performed with a higher k-point grid 

of ~ (11×11×1) -(32×32×1). The PHONOPY [132] code was used to obtain the phonon 

dispersion curve through density functional perturbation theory (DFPT) using the supercell 

approach.  

2.4 Mechanical properties 

The elastic stiffness coefficients (𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘) have been calculated by the formula 

                                         𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 =  𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘

𝑒𝑒𝑘𝑘   =  𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘
                                                      (2.49) 
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Where 𝜎𝜎𝑖𝑖𝑖𝑖 , 𝜀𝜀𝑘𝑘𝑘𝑘 are the stress tensor and the strain tensor respectively. According to Voigt’s 

notation, the subscripts i and j in 𝜎𝜎𝑖𝑖𝑖𝑖 and 𝜀𝜀𝑖𝑖𝑖𝑖 can be  represented by 1 = 𝑥𝑥𝑥𝑥, 2 = 𝑦𝑦𝑦𝑦, 3 =

𝑧𝑧𝑧𝑧, 4 = 𝑦𝑦𝑧𝑧, 5 = 𝑧𝑧𝑥𝑥, 𝑎𝑎𝑎𝑎𝑑𝑑 6 = 𝑥𝑥𝑦𝑦 . 

The 2D layer modulus, which indicates the resistance of a nanosheet to stretching, is 

defined by [133], [134]; 

                                          𝛾𝛾2𝐷𝐷 = 1
2

[𝐶𝐶11 + 𝐶𝐶12]                                                                    (2.50) 

while Young’s modulus  (Y) = 𝑋𝑋11
2 −𝑋𝑋12

2

𝑋𝑋11
,                                                                                (2.51)                                                                  

Poisson ratio (𝜈𝜈) = 𝐶𝐶12 𝐶𝐶11⁄ ,                                                                                                (2.52) 

Shear modulus (𝐺𝐺) = 𝐶𝐶66.                                                                                                     (2.53) 

Moreover, intrinsic strength (𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖) and bending modulus (𝐷𝐷) of a nanosheet can be 

evaluated using  

             𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖 ~  Υ
9
                                                                                                                      (2.54) 

          𝐷𝐷 = Υ∆2

12(1−𝜈𝜈2)
                                                                                                                 (2.55) 

where ∆ is the thickness of the nano-sheet. 

The Born-Huang stability criteria:   

         C11  >  0, C22  >  0, C11 − C12  >  0, C11C22 −  C12
2  >  0                                       (2.56) 

The critical buckling strain (𝜖𝜖𝑐𝑐) of a 2D material can be evaluated using 

          𝜖𝜖𝑐𝑐 = − 4𝜋𝜋2𝐷𝐷
Υ𝐿𝐿2                                                                                                                   (2.57) 

where L is the length of the 2D nanosheet in the unit of Å. 

 

2.5 Piezoelectric properties 

The third rank linear piezoelectric stress and strain tensor components, 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘 and 𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘, that 

couple electronic polarization (𝑃𝑃𝑖𝑖) or the macroscopic electric field (𝐸𝐸𝑖𝑖) to the second-rank 

stress tensor (𝜎𝜎𝑖𝑖𝑘𝑘) and the strain tensor (𝜀𝜀𝑖𝑖𝑘𝑘) components is given by; 

                                  𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘 =  � 𝜕𝜕𝑃𝑃𝑖𝑖
𝜕𝜕𝑑𝑑𝑖𝑖𝑘𝑘

�
𝐸𝐸,𝑇𝑇

=  �𝜕𝜕𝑑𝑑𝑖𝑖𝑘𝑘

𝜕𝜕𝐸𝐸𝑖𝑖
�

𝑑𝑑,𝑇𝑇
                                                                      (2.58) 

                                     𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘 =  � 𝜕𝜕𝑃𝑃𝑖𝑖
𝜕𝜕𝑑𝑑𝑖𝑖𝑘𝑘

�
𝐸𝐸,𝑇𝑇

=  − �𝜕𝜕𝑑𝑑𝑖𝑖𝑘𝑘

𝜕𝜕𝐸𝐸𝑖𝑖
�

𝑑𝑑,𝑇𝑇
                                                                    (2.59) 

  Where i,j,k ∈ {1, 2 , 3}, 1, 2, 3 correspond to spatial x, y, z direction. 
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The piezoelectric strain constants 𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘 describes the change in polarization vector 

component 𝑃𝑃𝑖𝑖 w.r.t stress components 𝜎𝜎𝑖𝑖𝑘𝑘 keeping electric field constant or changes in strain 

components 𝜀𝜀𝑖𝑖𝑘𝑘 with respect to electric field components 𝐸𝐸𝑖𝑖 , keeping mechanical stress 

constant and similar for others. According to Voigt’s notation, the tensor 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘 of 3rd rank is 

reduced to a 2nd rank tensor 𝑒𝑒𝑜𝑜𝑖𝑖, where m ∈ {1, 2 , 3} and n ∈ {1, 2 , 3, 4 , 5, 6}. Piezoelectric stress 

coefficient 𝑒𝑒𝑜𝑜𝑖𝑖, is directly evaluated using DFPT as implemented in VASP.  The piezoelectric 

strain coefficients, 𝑑𝑑𝑜𝑜𝑖𝑖  are calculated by solving the tensor relation,           

                                             𝑒𝑒𝑜𝑜𝑖𝑖  =  𝑑𝑑𝑜𝑜𝑚𝑚𝐶𝐶𝑚𝑚𝑖𝑖                                                                                     (2.60) 

where tensor sum runs through the 𝐶𝐶 index, 𝐶𝐶 ∈ {1, 2 , 3, 4 , 5, 6} for example 

                                             𝑒𝑒12 = 𝑑𝑑11𝐶𝐶12+𝑑𝑑12𝐶𝐶22+𝑑𝑑13𝐶𝐶32+𝑑𝑑14𝐶𝐶42+𝑑𝑑15𝐶𝐶52+𝑑𝑑16𝐶𝐶62                (2.61) 

  

2.6 Charge carrier mobility and Exciton binding energy 
The charge carrier mobilities (μ2D) of individual monolayers and their vdW hetero-bilayers 

have been computed using the acoustic phonon limited charge carrier mobility based on 

effective mass and deformation potential theory proposed by Bardeen and Shockley [135] 

using formula 

                                           𝜇𝜇2𝐷𝐷 = 2eℏ3𝑋𝑋2𝐿𝐿
3𝑘𝑘𝐵𝐵𝑇𝑇(𝑜𝑜∗)2𝐸𝐸𝑖𝑖

2                                                                          (2.62) 

where C2D is the elastic modulus of the material along the transport direction, 𝐸𝐸𝑖𝑖 is the 

deformation potential which is defined as  

                                             𝐸𝐸𝑖𝑖 = 𝜕𝜕Eband−edge

𝜕𝜕ε
                                                                         (2.63)                                                                   

where Eband−edge is the energy of VBM or CBM. 

m* is the effective mass of the charge carrier along the transport direction and is calculated 

by      

                                              𝑚𝑚∗ = ℏ2[𝜕𝜕2E(k) 𝜕𝜕𝑘𝑘2⁄ ]−1                                                       (2.64) 

For evaluating the intrinsic carrier mobility of 2D materials, the deformation potential 

approximation (DPA) as proposed by Shockley and Bardeen [135] has been widely used 

in first-principles method, where the scattering by longitudinal acoustic (LA) phonons are 

only taken into account. This approach is conceptually simple but has been extremely 

successful in calculating the intrinsic carrier mobility of 2D sheets or nanoribbons, such as 

graphene [136], α-graphyne [137], graphdiyne [138], silicene [139], germanene [140], 

transition metal dichalcogenide (TMD) [141], as well as perovskites [142]. DPA can 

overestimate the intrinsic room-temperature mobility because it only considers the 
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longitudinal acoustic phonon scattering process. DPA fails when scatterings with ZA, TA 

or LO phonon modes dominate. [143,144] 

The formulation of Lang et al. [145] (equation 2.65) has been employed, which is an 

improvement upon the acoustic phonon limited carrier mobility built upon the deformation 

potential theory and effective mass approximation originally proposed by Bardeen and 

Shockley [135]. The formulation of Lang et al. [145] incorporates the anisotropy in the 

elastic constant, carrier effective mass and deformation potential, and the carrier mobility 

according to this advanced cum robust formalism is given as; 

                           

                                 𝜇𝜇𝛼𝛼𝑒𝑒 =
𝑒𝑒ℏ3�

5𝑋𝑋𝑒𝑒2𝐿𝐿+3𝑋𝑋𝑦𝑦2𝐿𝐿
8 �

𝑘𝑘𝐵𝐵𝑇𝑇(𝑜𝑜𝛼𝛼𝑒𝑒)
3
2�𝑜𝑜𝛼𝛼𝑦𝑦�

1
2�

9𝐸𝐸𝛼𝛼𝑒𝑒
2 +7𝐸𝐸𝛼𝛼𝑒𝑒𝐸𝐸𝛼𝛼𝑦𝑦+4𝐸𝐸𝛼𝛼𝑦𝑦

2

20 �
                                             (2.65) 

where 𝛼𝛼 = 𝑒𝑒, ℎ denotes the type of carriers (electrons or holes), the effective mass of 

carriers in the units of the rest mass of the electron, 𝑚𝑚0 along the 𝑥𝑥 and 𝑦𝑦 directions are 

designated by 𝑚𝑚𝛼𝛼𝑒𝑒 and 𝑚𝑚𝛼𝛼𝑦𝑦 respectively , deformation potential of the carriers along the 

𝑥𝑥 and 𝑦𝑦 directions are denoted by 𝐸𝐸𝛼𝛼𝑒𝑒 and 𝐸𝐸𝛼𝛼𝑦𝑦 respectively and 2D elastic stiffness 

coefficients along  the 𝑥𝑥 and 𝑦𝑦 directions are designated by 𝐶𝐶𝑒𝑒2𝐿𝐿  and 𝐶𝐶𝑦𝑦2𝐿𝐿   respectively.  

The separability of photo-generated charge carriers can be determined from exciton binding 

energies (𝐸𝐸𝑏𝑏
𝑒𝑒𝑒𝑒), which is determined through Mott-Wannier hydrogenic model as expressed 

by 

                                     𝐸𝐸𝑏𝑏
𝑒𝑒𝑒𝑒 = 4×13.6𝜇𝜇𝑒𝑒𝑒𝑒

𝑜𝑜0𝑑𝑑2  (𝑒𝑒𝑉𝑉),    1
μex

 = 1
me

 + 1
mh

                                             (2.66)               

where 𝑚𝑚0 is the electron rest mass, 𝜇𝜇𝑒𝑒𝑒𝑒 is the excitonic effective mass, 𝜀𝜀 is the macroscopic 

static dielectric constant. 

ɛ𝑒𝑒(𝑦𝑦) is the macroscopic static dielectric constant along the 𝑥𝑥 or 𝑦𝑦 direction, while ɛ𝑧𝑧 is the 

same along the 𝑧𝑧 direction, ɛ𝑒𝑒𝑓𝑓𝑓𝑓 = �ɛ𝑒𝑒(𝑦𝑦). ɛ𝑧𝑧 is the effective macroscopic static dielectric 

constant. 

𝐸𝐸𝐵𝐵
3𝐷𝐷is the 3D excitonic binding energy based on ɛ𝑒𝑒(𝑦𝑦), while 𝐸𝐸𝐵𝐵,𝑒𝑒𝑓𝑓𝑓𝑓

3𝐷𝐷  is the same based on 

 ɛ𝑒𝑒𝑓𝑓𝑓𝑓 = �ɛ𝑒𝑒(𝑦𝑦). ɛ𝑧𝑧 , while 𝐸𝐸𝐵𝐵
2𝐷𝐷 = 4 x 𝐸𝐸𝐵𝐵

3𝐷𝐷 and  𝐸𝐸𝐵𝐵,𝑒𝑒𝑓𝑓𝑓𝑓
2𝐷𝐷 = 4 x 𝐸𝐸𝐵𝐵,𝑒𝑒𝑓𝑓𝑓𝑓

3𝐷𝐷  

 

2.7 Optical properties 
The linear response of a system to the incident electromagnetic (E.M.) radiation has been 

investigated based on the dielectric function which depends on the momentum transfer q 
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in the photon-electron interaction and the energy 𝜔𝜔. The optical properties are calculated 

from the complex dielectric function,  

                                               ε (ω) = ε1 (ω) + i ε2 (ω)                                                              (2.67) 

where ε1 (ω) and ε2 (ω) correspond to real and imaginary parts. 

 The imaginary part is calculated in the long wavelength q→0 limit within the independent 

particle approximation, 

 𝜀𝜀2(𝜔𝜔) = 𝜀𝜀𝛼𝛼𝛼𝛼
(2)(𝜔𝜔) = 4𝜋𝜋2𝑒𝑒2

𝛺𝛺
𝑙𝑙𝑖𝑖𝑚𝑚
𝑞𝑞→0

1
𝑞𝑞2 ∑ 2𝑤𝑤𝑘𝑘𝛿𝛿(𝜖𝜖𝑐𝑐𝑘𝑘 − 𝜖𝜖𝑣𝑣𝑘𝑘 − 𝜔𝜔) × �𝑢𝑢𝑐𝑐𝑘𝑘+𝑒𝑒𝛼𝛼𝑞𝑞�𝑢𝑢𝑣𝑣𝑘𝑘� �𝑢𝑢𝑐𝑐𝑘𝑘+𝑒𝑒𝛽𝛽𝑞𝑞�𝑢𝑢𝑣𝑣𝑘𝑘�

∗

𝑐𝑐,𝑣𝑣,𝑘𝑘             (2.68) 

where 𝛺𝛺 is the volume of the primitive cell, 𝑤𝑤𝑘𝑘 are k-point weights and the factor 2 inside 

the summation accounts for the spin degeneracy. The 𝜖𝜖𝑐𝑐𝑘𝑘(𝜖𝜖𝑣𝑣𝑘𝑘) are k-dependent conduction 

(valence) band energies; 𝑢𝑢𝑣𝑣𝑘𝑘 , 𝑢𝑢𝑐𝑐𝑘𝑘 are cell periodic part of the pseudo-wave function and 

𝑒𝑒𝛼𝛼,𝛼𝛼 are the unit vectors along the Cartesian coordinate directions. The real part can then 

be calculated using the Kramers-Kronig transformation.  

                                         𝜀𝜀1(𝜔𝜔) = 𝜀𝜀𝛼𝛼𝛼𝛼
(1)(𝜔𝜔) = 1 + 2

𝜋𝜋
𝑃𝑃 ∫

𝑑𝑑𝛼𝛼𝛽𝛽
(2)(𝜔𝜔′)𝜔𝜔′

𝜔𝜔′2−𝜔𝜔2+𝑖𝑖𝑖𝑖
∞

0 𝑑𝑑𝜔𝜔′                          (2.69) 

where 𝑃𝑃 denotes the principle value and a small complex shift (𝜂𝜂) of 0.1 has been used for 

slight smoothening of the real part of the dielectric function, which is acceptable for most 

of the calculations. 

The optical parameters, such as extinction coefficient, absorption coefficient is based on 𝜀𝜀1 

and 𝜀𝜀2. The complex refractive index is defined as 

                                          N(𝜔𝜔) = n (𝜔𝜔) + i 𝜅𝜅(𝜔𝜔) = �𝜀𝜀(𝜔𝜔)                                                  (2.70)     

 where n is the refractive index and 𝜅𝜅 is the extinction coefficient. The extinction coefficient 

(𝜅𝜅)  is calculated using the following relation, 

                                         𝜅𝜅 = ��𝜀𝜀1
2(𝜔𝜔) + 𝜀𝜀2

2(𝜔𝜔) − 𝜀𝜀1(𝜔𝜔)�
1 2⁄

/ √2                                    (2.71) 

The absorption coefficient (α𝑎𝑎𝑏𝑏𝑎𝑎) is related to the extinction coefficient as  

                                         α𝑎𝑎𝑏𝑏𝑎𝑎 =4 𝜋𝜋 𝜅𝜅 𝜆𝜆⁄                                                                                     (2.72) 

where 𝜆𝜆 is the wavelength. If 𝜆𝜆 ~ nm, α reaches the order of 107 in 𝑐𝑐𝑚𝑚−1 unit. 

 

2.8 Power Conversion Efficiency of solar cell 
Power conversion efficiency (PCE) in 2D excitonic solar cell constituted by vdW 

heterostructures with type-II band alignment is given by the formulation of Scharber et 

al. [146] as  
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                              η =  𝐽𝐽𝑠𝑠𝑥𝑥𝑉𝑉𝑜𝑜𝑥𝑥𝛼𝛼𝐹𝐹𝐹𝐹
𝑃𝑃𝑠𝑠𝑜𝑜𝑘𝑘𝑠𝑠𝑠𝑠

 = 
0.65�𝐸𝐸𝑔𝑔

𝑑𝑑−𝛥𝛥𝐸𝐸𝑥𝑥−0.3� ∫
𝐽𝐽𝑝𝑝ℎ(ħ𝜔𝜔)

ħ𝜔𝜔 𝑑𝑑(ħ𝜔𝜔)∞
𝐸𝐸𝑔𝑔

𝑑𝑑

∫ 𝐽𝐽𝑝𝑝ℎ
∞

0 (ħ𝜔𝜔)𝑑𝑑(ħ𝜔𝜔)
                                          (2.73) 

where Jsc is the short circuit current, Voc is the open circuit voltage, βFF is the fill factor 

(FF), and Psolar is incident solar energy power, Jph (ħω) is the AM1.5 solar energy flux (Wm-

2eV-1) at the photon energy ħω, and Eg
d is the energy bandgap of the donor materials. 

In this calculation, the fill factor (βFF) is assumed to be 0.65, as inferred from the Shockley-

Queisser limit  [147]. The maximum open circuit voltage Voc (in eV units) is estimated as 

(Eg
d − ΔEc − 0.3) where the effective interface gap (Eg

d −ΔEc) is calculated as the energy 

difference between HOMO level of the donor and LUMO level of the acceptor and the 

value 0.3 in the Voc term accounts for energy conversion kinetics. 

In the equation, the integral in the numerator is the short circuit current, Jsc, which has been 

calculated using an upper bound of 100 % for external quantum efficiency (EQE), while 

the denominator is the integrated AM1.5 solar energy flux, which amounts to 1000 W/m2. 

The efficiency, η is thus estimated as the product FF.Voc.Jsc normalized by the incident 

energy flux, at the limit of 100% EQE. 

 

2.9 Calculation details 
In Chapter 3, the plane-wave basis has been treated explicitly 12 valence electrons (p6s2d4) 

for transition metal atoms (Ti, Zr, Hf) and 6 valence electrons (s2p4) for chalcogen atoms 

(S, Se). We first carried out structural relaxation for all materials to get optimized geometry. 

Structural optimizations were continued until the forces on the atoms had converged to less 

than 0.01 eV/Å. A vacuum spacing larger than 20 Å along the z-direction has been used to 

decouple the adjacent periodic images to avoid spurious interactions. Brillouin-zone 

integrations were performed with a Gaussian broadening [148] of 0.1 eV during all 

structural optimizations. These calculations were carried out with a 5x7x1 Monkhorst-Pack 

k-point mesh [149] and an energy cut-off of 400 eV. To check the dynamical stability of 

the optimized structures, phonon calculations were carried out using the density-functional 

perturbation theory (DFPT) [150,151], as implemented in the VASP code along with the 

PHONOPY [152] package using a 4×4×1 supercell and a k-point mesh of 3×5×1. To 

ascertain the thermal stability, ab initio molecular dynamics (AIMD) has been performed 

at 300 K within 5 ps by the Nose-Hoover method.  For electronic, elastic and piezoelectric 

calculations of the optimized materials, a kinetic energy cut-off of 500 eV was used, and 

the Brillouin zone was sampled with a 11×15×1 k-point grid of Monkhorst-Pack. The 
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relaxed-ion stiffness coefficients Cijkl including ionic relaxations have been calculated 

using finite difference method, as implemented in VASP code. The piezoelectric stress 

tensor eij have been calculated using DFPT as encoded in VASP using a 11×15×1 k-mesh. 

To achieve better accuracy of the electronic properties, the hybrid Heyd–Scuseria–

Ernzerhof (HSE06) [115] functional was carried out in our present study. The HSE06 

screening parameter [116] was set to a value of 0.2/Å.  The atomic charge transfers are 

determined by Bader charge analysis using the bader-code [153–155] developed by 

Henkelman’s group. Only to study Rashba-effect, we have considered spin-polarised and 

non-collinear calculation to incorporate spin-orbit coupling (SOC). 

 

In Chapter 4, the interaction among electrons and nuclei is considered using the plane-

wave projector augmented-wave (PAW) method. The exchange-correlation functional 

within generalized gradient approximation (GGA) is parameterized by the Perdew–Burke–

Ernzerhof (PBE) formalism. We first performed structural relaxation for all materials to 

get optimized geometry by minimizing the forces on the atoms less than 0.01 eV/Å. A 

vacuum spacing larger than 15 Å along the z-direction has been used to avoid spurious 

interactions between the adjacent periodic images. These calculations were carried out with 

a Γ-centred 32 × 32 × 1 Monkhorst-Pack k-point mesh and an energy cut-off of 550 eV. 

To test the dynamical stability, phonon dispersion calculations have been performed using 

the density functional perturbation theory (DFPT) as implemented in the VASP code along 

with the PHONOPY [132] package. To plot spin-texture, we have considered spin-

polarised and non-collinear calculation to incorporate spin-orbit coupling (SOC) using 

VASP package along with PYPROCAR [156] code. The elastic stiffness coefficients Cij 

including ionic relaxations have been carried out using finite difference method, as 

implemented in VASP code. 

 

In Chapter 5, the exchange-correlation functional used in this study lies within the ambit 

of generalized gradient approximation (GGA) parameterized by the Perdew–Burke–

Ernzerhof (PBE) formalism. For the interlayer vdW interactions in the TMTC/TMDC 

hetero-bilayers, the DFT-D2 method of Grimme has been employed. The band structure, 

density of states (DOS) and optical properties of TMTC/TMDC hetero-bilayers have been 

computed using the HSE06 functional. The HSE06 screening parameter has been set to a 

value of 0.2/Å. The Brillouin Zone (BZ) of MoS2 and WS2 monolayer have been sampled 
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using a Γ-centred 9x9x1 k-mesh. Whereas the Brillouin Zone (BZ) of ZrS3 monolayer and 

ZrS3/MS2 hetero-bilayers have been sampled using a Γ-centred 7x5x1 k-mesh. The kinetic 

energy cut off has been set to 500 eV. Also, the total energy convergence criterion is chosen 

as 10-5 eV. The geometry optimizations have been performed based on the conjugate-

gradient algorithm until the Hellmann-Feynman forces acting on individual atoms reached 

less than 0.01 eV/Å. Moreover, along the c axis, a vacuum slab of more than 14 Å has been 

used to decouple the periodic images of the hetero-bilayers to avoid spurious interaction 

arising from the non-local nature of the correlation energy. The density of states (DOS) has 

been calculated using tetrahedron smearing method [157] with Bloch correction and the 

optical properties have been computed via the frequency-dependent dielectric matrix. To 

check the dynamical stability, phonon calculations have been carried out using the density 

functional perturbation theory (DFPT) as implemented in the VASP code along with the 

PHONOPY package. 
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 Chapter 3 
  

Piezoelectronic and spintronic properties of 2D 

Janus monolayers and bilayers of group-IV 

transition metal trichalcogenides 

 

This Chapter is based on the work published in: 

Raihan Ahammed, Nityasagar Jena, Ashima Rawat, Manish K. Mohanta, 

Dimple, and Abir De Sarkar* 

"Ultrahigh Out-of-Plane Piezoelectricity Meets Giant Rashba Effect in 2D 

Janus Monolayers and Bilayers of Group IV Transition-Metal 

Trichalcogenides." The Journal of Physical Chemistry C 124, 21250 (2020) 
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3.1 Introduction 
Piezoelectric materials are employed in various applications, for example, 

sensors, [158,159] actuators,  [160,161] transducers,  [162] energy harvesters [163,164] 

and at large, any function involving conversion between mechanical and electrical 

energy. [165] Nowadays, researchers are keenly interested in designing a new class of 

“nanopiezotronic” devices that make use of both their piezoelectric and semiconducting 

properties for their applications in nanogenerators, nanorobotics, field-effect transistors, 

piezoelectric diodes, and nanoelectromechanical systems. [166,167] The discovery of 

piezoelectricity in two-dimensional materials opens a new research avenue in the field of 

nano-piezoelectronics. [168–171]  Two dimensional (2D) semiconducting materials can 

also show piezoelectric properties when inversion symmetry (𝑥𝑥, 𝑦𝑦, 𝑧𝑧)  → (−𝑥𝑥, −𝑦𝑦, −𝑧𝑧) is 

broken or absent in these materials. For example, h-BN [172] and 2H-stacked transition-

metal dichalcogenides (TMDCs), [173] such as MoS2 and WS2 monolayers, are 

centrosymmetric in bulk form and show no piezoelectricity; however, their monolayers 

lack inversion symmetry and show piezoelectricity. [58,174] Piezoelectricity in monolayer 

MoS2 was first anticipated theoretically by means of first-principles calculations [56] and 

later perceived experimentally. [57] Nowadays, piezoelectricity at the atomic level is 

extensively investigated. 

The conventional method to evaluate piezoelectricity in nanowires [175] consists in 

measuring the dipole moments induced by strain and this method has very recently been 

employed in MoS2 supported on polymer substrate. [57] However, it is immensely 

challenging to determine the intrinsic piezoelectric properties quantitatively in such 

flexible 2D devices due to the interaction between the two-dimensional crystal and the 

substrate. The piezoelectric constant is quantitatively measurable by the state-of-art 

technique, the piezoresponse force microscopy (PFM). This method normally measures the 

deformations on a picometre scale with a spatial resolution of nanometres. [176] Recently, 

Zhu et al. [58] reported piezoelectricity in free standing monolayer MoS2 using PFM; 

however, the conventional PFM technique was not applied, as the MoS2 nanosheet is not 

coupled to the vertical electric field between the tip and substrate due to its mirror 

symmetry along the z-axis. A method combining a laterally applied electric field [177] and 

nanoindentation [178] in an atomic force microscope (AFM) was adopted to measure the 

piezoelectric stress arising at the membrane. 
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Huabing et al. [168] have reported extremely high piezoelectric values (d11 ~243.45 pm/V 

for α-SbAs) in the hexagonal phase of Group-V binary compounds. Large anisotropy in 

the piezoelectric constants in the nanosheets of Group-IV monochalcogenides, e.g., GeSe, 

have been predicted by Ruixiang et al. [179] Multifunctionality in these 2D materials can 

be attained synergistically via a systematic coupling of their semiconducting to the 

piezoelectric properties, which in turn may facilitate their applications in nanopiezotronics, 

piezophototronics, and piezophotocatalysis. Recently, Dimple et al. [180] have shown high 

in-plane piezoelectric coefficient (d22 =4.68-14.58 pm/V) in the Group IVB Janus TMDC 

(MXY, M=Zr, Hf, X, Y=S, Se Te) monolayers, which highly exceeds that in monolayer 

1H-MoS2 (d11~3.0 pm/V) using first-principles calculations. However, Dong et al. [169] 

have previously predicted both strong in-plane (MoSeTe, d11~5.3 pm/V) and much weaker 

out-of-plane (MoSeTe, d31~0.03 pm/V) piezoelectric polarization. They have also found 

the out-of-plane piezoelectric coefficient d33 in multilayer MoSTe (5.7−13.5 pm/V) to be 

dependent on the stacking order. Moreover, it is significantly higher than the generally 

utilized three-dimensional bulk piezoelectric solids, such as wurtzite-AlN (d33 = 5.6 

pm/V), [181] α-quartz (2.3 pm/V) [182] and wurtzite-GaN (d33= 3.1 pm/V) [181]. Guo et 

al. [183] reported an enhanced piezoelectric effect in Janus group-III chalcogenide 

monolayers (Ga2STe, Ga2SeTe, In2STe, In2SeTe), where in-plane piezoelectric 

coefficients reached up to 8.47 pm/V and out-of-plane piezoelectric coefficient lain in the 

range of 0.07- 0.46 pm/V.  

Monolayers of Group VI transition metal dichalcogenides (TMDCs), such as, MoS2, WS2, 

MoSe2, WSe2 etc. have been in the spotlight for their extraordinary mechanical flexibility 

and strength. As a result, they are capable of sustaining up to 10% of elastic strain, which 

enables a large dynamical tunability in their properties via strain engineering, thereby 

making them attractive for applications in ultrathin flexible electronics and 

optoelectronics. [184] Shen et al. [185] demonstrated strain induced tunability in band gap 

in TMDCs, where the three-terminal FET devices were fabricated on 500 µm thick 

polyimide (PI) flexible substrate and a cantilever sample holder was used to apply uniaxial 

tensile strain to the various multi-layer TMDC FETs.  Shen et al. have shown that the band 

gap decreases between 50 and 75 meV per 1% strain, which is consistent with first-

principles based DFT calculations40 and optical measurements carried out in 

experiments. [186] 
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Very recently, monolayers of Group-IV transition-metal trichalcogenides 

(TMTCs), [187,188] such as TiS3, TiSe3, ZrS3, ZrSe3, etc. have stimulated a great deal of 

research interest due to their exceptional photo-switching effect (τ~ 50 s). They show 

outstanding spectral selectivity and demonstrate high capabilities for photodetection from 

visible to near Infra-Red (NIR) range (405 to 780 nm). [189] These 2D TMTC monolayers 

show immense prospects for their application in high-performance nanoscale 

optoelectronic devices. The Janus phase of TMDC monolayers, such as MoSSe have 

already been explored for their proficient photocatalytic and piezoelectric functionalities.  

Ang-Yu Lu et al. [190] have experimentally synthesized Janus structures of MoSSe, using 

home-made chemical vapor deposition and proposed that the key to the synthetic approach 

lies in controlling the reaction kinetics. S-Mo-Se Janus monolayer has also been 

synthesized experimentally by substituting the top layer of Se atoms in MoSe2 by 

sulfur. [191] To date, there is no report on the experimental synthesis of Janus structures 

of TMTC monolayers. However, Janus structures of TMTC monolayers are envisioned to 

be synthesizable along with the footprints of the already synthesized Janus monolayers of 

TMDC. [190,191] 

In the present chapter, the Janus structures of TMTC monolayers and their bilayers have 

been studied using the state-of-the-art density-functional theory (DFT). The absence of 

inversion symmetry in the Janus structures of these layered semiconducting nanosheets 

augments a different sphere to piezoelectricity. At present, research on piezoelectricity in 

2D materials is at the rudimentary level. To overcome the disparities between the existing 

knowledge of piezoelectricity at the nanoscale and its envisioned practical applications, 

there is a strong need to gain an in-depth insight into the origin of piezoelectric properties 

in the 2D materials and its possible link-up with other features, such as Rashba effect. In 

our theoretical work, these Janus TMTC 2D nanosheets show enormous prospects in 

nanotechnology in the field of nanoelectronics, nanospintronics, and nanopiezotronics on 

account of their large Rashba spin splitting and superhigh out-of-plane piezoelectric 

constant. We have systematically shown the energetical, mechanical, and dynamical 

stability of these 2D nanosheets, which suggest a high degree of feasibility in the 

experimental realization of these Janus monolayers. 
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Figure 3.1 (a) Crystal structure, (b) Top view, (c) Side view along a-axis and (d) Side view 

along b-axis of MX3 monolayers.  Similarly, for Janus MX2Y monolayers (e) Crystal 

structure, (f) Top view, (g) Side view along a-axis and (h) Side view along b-axis. 

 

3.2 Results & Discussions 
3.2.1 Crystal Structures and Symmetry 
Structurally, monolayers of transition metal tri-chalcogenides, MX3 (M=Ti, Zr, Hf; X = S, 

Se) belong to monoclinic crystal system. The unit cell comprises two basic structural units in 

which transition-metal atoms placed at the center of each prism while six chalcogen atoms lie 

at the corners, as displayed in Fig. 3.1(a−d). For preparing the Janus phase of MX3 

monolayer, the top layer of one type of chalcogen atoms (X) should be substituted by 

another Y chalcogen atoms, generating an asymmetric structure of chemical formula 

MX2Y, as shown in Fig. 3.1(e−h). In this approach, six Janus monolayer structures, TiS2Se, 

TiSe2S, ZrS2Se, ZrSe2S, HfS2Se, HfSe2S, have been generated. Cohesive energy (Ec) 

calculations have been carried out to confirm the thermodynamic stability of these Janus 

monolayers (Table 3.1).  
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Table 3.1 Lattice constants [a, b (Å)], lattice angle [α, β, γ (⁰)], bond-lengths [d1, d2, d3, d4 

(Å)], bond angles [θ1, θ2 (⁰)], cohesive energy per unit cell [Ec (eV)], charge transferred 

from metal atom [ΔQM(e)], dipole moment [μ (Debye)]. 

 
 
The lattice constants, bond lengths, and bond angles are indicated in Fig. 3.1 and summarized 

in Table 3.1.  The lattice constants (a, b) and bond lengths (d1, d2, d2, d3, d4) of MS3 

monolayers are slightly smaller than the MSe3 monolayers and similar trend is followed in 

their Janus derivatives MS2Se and MSe2S monolayers respectively. Janus MX2Y 

monolayers possess monoclinic Pm (6) space group symmetry, which is non-

centrosymmetric as the inversion symmetry (x, y, z) → (−x, −y, −z) is absent. In contrast, 

the parent structure has a centrosymmetric space group P21/m (11) and contains inversion 

symmetry. As a result, parent TMTC structures do not show any intrinsic dipole moments, 

whereas their Janus derivatives show some finite intrinsic dipole moments as listed in Table 

3.1.  

3.2.2 Chemical Bonding Interactions 
We have investigated the charge distribution to analyse the bonding interaction as depicted 

in Fig. 3.2(a) and 3.2(d). The character of charge distribution between the transition metal 

and chalcogen atom is directional, which indicates the existence of finite covalent bonding. 

To identify the nature of chemical bonding correctly, we have also calculated charge 

transfer distribution and electron localization function (ELF). 
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Figure 3.2 Chemical bond analysis: (a) Charge density distribution, (b) Charge transfer 

distribution and (c) Electron localization function (ELF) of ZrSe3 monolayer (First part: 

3D view and second part: projection on the (010) plane). Similarly, (d), (e), (f) for the 

Janus monolayer ZrSe2S. 

 

The charge transfer distribution (as shown in Fig. 3.2(b, e) in the bonding states is 

determined by the difference between the valence charge density of the MX3 or MX2Y 

nanosheet and the non-interacting charge density evaluated from a superposition of the 

valence charge density of the free atoms. Green and blue colors in the 3D picture in Fig. 

3.2(b) and 3.2(e) represent spatial regions of electronic charge accumulation and depletion, 

respectively. Projection of charge transfer distribution on (010) plane (Fig. 3.2(b) and 

3.2(e)) clearly shows the charge transfer from transition metals to chalcogen atoms 

consistent with ionic picture. Pure ionic bonding interaction between transition metals and 

chalcogen atoms could be expected if there is isotropic charge transfer distribution. The 

anisotropic charge transfer distribution indicates finite covalent bonding. Moreover, a finite 

electronic charge builds up around the center of the bond between the transition metal and 

chalcogen atom, confirming the covalent nature of the chemical bond. It indicates the 

existence of mixed bonding nature in these monolayers. Chemical bonding interaction 

between the transition metal and chalcogen atom (M-X or M-Y) shows both covalent and 

ionic bonding character. This kind of bonding nature is also supported by ELF calculation, 

as shown in Fig. 3.2(c) and 3.2(f). Probability of finding an electron at a specific region are 

measured by ELF.  The complete localization of electrons is specified by red color in the 

ELF plots corresponding to the maximum value 1. Electron localization at chalcogen atoms 

and delocalization at transition metal atoms reiterate charge-transfer interaction. Finite ELF 
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between transition metal and chalcogen atom, as represented by green color, indicates the 

hybridization interaction. Our results of charge-density, charge-transfer, and ELF analysis 

ascertain that the bonding interaction between transition metal and chalcogen atom show 

mixed ionic-covalent character. The strength of mixed ionic-covalent bond is weak which 

cause lower Young’s Modulus in these materials. The nature of charge-density, charge-

transfer, and ELF for both MX3 TMTC monolayers and their Janus MX2Y monolayers are 

the same only difference is the amount of charge transfer which reflects in their dipole 

moments as listed in Table 3.1.   

3.2.3 Stability  
To investigate the stability of the 2D Janus TMTC monolayers, we first perform phonon 

dispersion calculations. Phonon frequency spectra, which are widely used to validate the 

dynamical stability of materials, have been carried out with a 3x3x1 supercell using 

density-functional perturbation theory (DFPT), as depicted in Fig. 3.3. There is no 

imaginary frequency in the phonon band dispersion, which indicates its dynamical stability. 

Ab-initio molecular dynamics (AIMD) simulation with a canonical (NVT) ensemble has 

been performed to establish its thermal stability at room temperature (300K). 

 

 
Figure 3.3 Phonon frequency spectra of 2D Janus TMTC monolayers. 
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Figure 3.4 Total energy fluctuation of the 2D Janus monolayer of (a) TiS2Se, (b) TiSe2S, 

(c) ZrS2Se and (d) ZrSe2S with respect to time in AIMD simulation at 300 K. The inset 

shows the snapshot of the initial and final geometry depicting structural change in these 

monolayers in the AIMD simulation at 300 K. 

 

The simulations are implemented with a Nose-Hoover thermostat at 300 K up to 5 ps with 

a time step of 1 fs. For reducing the periodicity caused limitation, a 4x4x1supercell has 

been used for the 2D Janus structure to carry out the AIMD simulation. As illustrated in 

Fig. 3.4, the total energy fluctuation with simulation time is very negligible. From the final 

geometric structures in Figure 4, we cannot find any noticeable distortion after 5000 steps 

of AIMD simulation. Our findings confirm that these Janus TMTC monolayers are 

thermally stable at room temperature. Besides, the thermodynamic stability of these 

structures has been checked by calculating the cohesive energy as depicted in Table 3.1. 

The mechanical stability has also been verified by evaluating the elastic stiffness constants, 

Young’s Modulus, and Poisson’s ratio. 

 

3.2.4 Elastic Properties 
The calculated elastic constants of TMTC monolayers and their Janus derivatives are found 

to be positive as listed in Table 3.2 and satisfy the Born-Huang stability criteria, which 

indicate their mechanical stability. 
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Table 3.2 Elastic stiffness constants [C11 (N/m), C22 (N/m), C12 (N/m)], Young Modulus 

[Y11 (N/m), Y22 (N/m)] and Poisson Ratio [υ11, υ22] of TMTC monolayers MX3 and their 

Janus derivatives MX2Y. 

TMTC 
Materials 

C11 C22 C12 Y11 Y22 ν11 ν22 

TiS3 87.87 134.55 16.38 131.50 85.88 0.19 0.12 

TiSe3 80.49 106.02 12.87 103.96 78.93 0.16 0.12 

ZrS3 81.06 124.20 16.48 120.85 78.87 0.20 0.13 

ZrSe3 79.04 107.86 14.02 105.64 77.41 0.17 0.12 

HfS3 90.64 134.48 17.92 130.94 88.25 0.20 0.13 

HfSe3 85.70 116.87 14.14 114.53 83.99 0.16 0.12 

TiS2Se 71.44 128.85 15.55 125.46 69.56 0.22 0.12 

TiSe2S 73.40 92.80 7.30 92.08 73.42 0.10 0.08 

ZrS2Se 91.52 123.44 15.44 119.53 89.59 0.17 0.12 

ZrSe2S 73.60 111.66 14.24 108.90 71.48 0.19 0.13 

HfS2Se 89.36 133.04 20.18 128.48 83.60 0.23 0.15 

HfSe2S 80.20 121.08 15.08 118.24 78.32 0.19 0.12 

 
2D Young’s modulus (Y) and Poisson’s ratio (υ) can be determined using the following 

relations: 

𝑌𝑌11  =  C11
2 − C12

2

C11
,  𝑌𝑌22  =  C22

2 − C12
2

C22
, 𝜐𝜐11  =  C12

C11
, 𝜐𝜐22  =  C12

C22
 

 All the TMTC monolayers and their Janus derivatives are elastically anisotropic. Young 

modulus along x-axis (𝑌𝑌11) is larger than the y-axis (𝑌𝑌22) for all the studied materials and 

have value less than 132 N/m.  All these monolayers are more flexible than other two-

dimensional nanosheets, for example graphene (Y=341 N/m), monolayer h-BN (Y=276 

N/m) [70] and monolayer TMDCs (MoS2, Y=134 N/m). [71] The elastic constants and 

Young’s modulus of the Janus TMTC configurations are lesser than their parent TMTC 

structures. This suggests that MX2Y monolayers are more flexible than MX3 monolayers. 

The lower Young’s modulus is because of the weaker M-X/Y bond strength.  In-plane 

strain engineering at a significant scale will play a great role to tune their physical 

properties, for instance, band gap and piezoelectric properties. 

3.2.5 Piezoelectric Properties 
When mechanical stress or strain is applied on a non-centrosymmetric material, electric 

dipole moments are generated which produce an electrical voltage across the material. This 

phenomenon is called direct piezoelectric effect. On the other hand, the inverse 
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piezoelectric effect is that the same material develops mechanical stress or strain when an 

electric field is applied. The responses of a piezoelectric solid are governed through various 

piezoelectric constants, for instance, piezoelectric stress tensor, 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘 =  𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘

𝑒𝑒𝑘𝑘   =

( dPi
dεjk

)E,T , i,j,k ∈ {1, 2 , 3}, 1, 2, 3 correspond to spatial x, y, z direction. Where Pi is the 

electric polarisation vector, 𝜀𝜀𝑖𝑖𝑘𝑘 is the strain tensor, E is the macroscopic electric field and 

T is the temperature. According to Voigt’s notation, the tensor 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘 of 3rd rank is reduced 

to a 2nd rank tensor 𝑒𝑒𝑜𝑜𝑖𝑖, where m ∈ {1, 2 , 3} and n ∈ {1, 2 , 3, 4 , 5, 6}. Piezoelectric stress 

coefficient 𝑒𝑒𝑜𝑜𝑖𝑖, is directly evaluated using DFPT as implemented in VASP.  The 

piezoelectric strain coefficients, 𝑑𝑑𝑜𝑜𝑖𝑖  are calculated by solving the tensor relation,   𝑒𝑒𝑜𝑜𝑖𝑖  =

 𝑑𝑑𝑜𝑜𝑚𝑚𝐶𝐶𝑚𝑚𝑖𝑖, where tensor sum runs through the 𝐶𝐶 index, 𝐶𝐶 ∈ {1, 2 , 3, 4 , 5, 6} for example, 

𝑒𝑒12 = 𝑑𝑑11𝐶𝐶12+𝑑𝑑12𝐶𝐶22+𝑑𝑑13𝐶𝐶32+𝑑𝑑14𝐶𝐶42+𝑑𝑑15𝐶𝐶52+𝑑𝑑16𝐶𝐶62. In experiment, the piezoelectric 

strain constants (𝑑𝑑𝑜𝑜𝑖𝑖) are directly measured and it represent the mechano-electrical 

transduction efficiency of the material. The piezoelectric stress constants are converted to 

piezoelectric strain constants in order to compare experimental piezoelectric response 

(Table 3.3). The out-of-plane piezoelectric coefficients in these Janus monolayers have a 

significantly high value, as listed in Table 3.3. The out-of-plane piezoelectric coefficients 

in these Janus monolayers have a significantly high value. The piezoelectric strain 

coefficient d33 is found to be as high as 68.7 pm/V in Janus monolayer of ZrSe2S which is 

considerably larger than those of generally utilized three-dimensional bulk piezoelectric 

solids such as α-quartz (2.3 pm/V) [182] and AlN (5.6 pm/V) [181] suggesting the 

significance of out-of-plane piezoelectric properties in such Janus monolayers. 

 

Table 3.3 Piezoelectric stress/strain constants (e/d) of Janus TMTC monolayers. The units 

of C, e, d is N/m, 10-10 C/m and pm/V respectively. 

Janus 
TMTC 

C11 C22 C33 e11 e22 e33 d11 d22 d33 

TiS2Se 71.44 128.85 1.47 4.3329 0.0915 0.4358 5.66 0.08 0.49 

TiSe2S 73.40 92.80 0.90 0.0003 0.0130 0.4358 0.69 0.03 49.10 

ZrS2Se 91.52 123.44 0.89 0.0211 0.0310 0.1843 0.08 0.03 21.11 

ZrSe2S 73.60 111.66 0.32 0.0132 0.0313 0.2206 0.06 0.02 68.72 

HfS2Se 83.96 133.04 3.12 6.6902 0.0253 0.0896 8.19 0.02 4.08 

HfSe2S 80.20 121.08 2.98 0.0235 0.0269 0.1052 0.20 0.02 4.94 
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Figure 3.5 Out-of-plane elastic constant (C33), piezoelectric constant (e33/d33) and 

Universal anisotropy index, AU of 2D Janus TMTC monolayers. 

 

These Janus TMTC monolayers show outstandingly large out-of-plane piezoelectric 

constants (Table 3.3) and prospective utilizations in nanoscale technologies. The out-of-

plane piezoelectric stress/strain constant (e33/d33), elastic stiffness constant, C33 and 

anisotropy in elastic constant (AU) have been plotted in the bar graph as shown in Fig. 3.5. 

It is found that ZrSe2S monolayer shows the highest anisotropy as well as highest d33 value. 

Whereas, TiS2Se monolayer shows the lowest anisotropy in the elastic constant and lowest 

d33 value. We have calculated the universal anisotropy index [192] as defined by AU= 

5GV/GR+KV/KR-6, Where G and K are shear and bulk modulus respectively, subscript V 

denotes the Voigt bound and R denotes the Reuss bound. In plane, uniaxial and bi-axial 

strain have been applied in ZrSe2S monolayer to improve upon out-of-plane piezoelectric 

constant (e33/d33), but no significant improvement has been found as shown in Fig. 3.6. We 

also have investigated the piezoelectric properties of bilayer structure of Janus TiSe2S and 

ZrSe2S monolayers with two different stacking, as shown in Fig. 3.7. It is found that the 

out-of-plane piezoelectric constant d33 has been enhanced remarkably as of 541pm/V and 

386 pm/V for stacking-1 and stacking-2 of TiSe2S bilayer as shown in Table 3. 4, which is 

larger than the highly efficient piezoelectric material of bulk ceramic PZT (d33~268 

pm/V). [193] In the TiSe2S bilayer of stacking-1, d33 component exceeds more than 50 

times that of recently theoretically reported multi-layered structure of Janus MoSTe  
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Figure 3.6 Strain effects on in-plane and out-of-plane piezoelectric constants of 2D Janus 

ZrSe2S monolayer. 

 

Table 3.4 Out-of-plane piezoelectric constants (e33/d33) of bilayer Janus TiSe2S and ZrSe2S 

monolayers. The units of C33, e33, d33 are N/m, pC/m and pm/V respectively. 

Bilayer 
Structure 

Stacking 
Sequence 

C33 e33 d33 

TiSe2S Stacking-1 14.03 7355.83 541.29 
Stacking-2 15.61 5643.54 386.13 

ZrSe2S Stacking-1 2.75 75.41 23.95 
Stacking-2 0.69 44.90 56.92 

             
Figure 3.7 Bilayer Janus structure of (a) Stacking-1 and (b) Stacking-2. Stacking-2 is 

designed by rotating 180 degree the top layer of stacking 1 with respect to z-axis. 

 

structure (d33~10.57 pm/V) [169]. But in bilayer ZrSe2S, d33 component is found to be 

decreased. It is evident that piezoelectric constant is highly dependent on the stacking 

sequence. To study the inter-layer coupling effect on the elastic and piezoelectric properties 

of bilayer TiSe2S of stacking-1, we decreased the inter-layer distance (h). 
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Figure 3.8 Variation in out-of-plane (a) piezoelectric stress constants (e33), (b) elastic 

constant (C33), (c) piezoelectric stain constants (d33) and Universal Anisotropy Index (AU) 

of bilayer TiSe2S with vertical compressive strain; h is the inter-layer distance in the 

bilayer, (d) schematic of the bilayer system under applied vertical compressive strain, (e) 

band structure in stacking-1 in bilayer TiSe2S under 0% and 8% vertical compressive 

strain, (f) variation in the band gap in stacking-1 in bilayer TiSe2S with vertical 

compressive strain.  

 

The elastic and piezoelectric properties are found to be tunable upon the application of 

vertical compressive strain as shown in Fig. 3.8. It is found that the piezoelectric strain 

constant, d33 is enhanced by two-fold and reaches the value as high as 984 pm/V at 6% 

compressive strain. At 6% compressive strain, piezoelectric stress constant, e33 is lowest as 

well as elastic constant C33. Lowering the C33 value is the main reason for enhancing the 

d33 value. The variation of anisotropy index, AU follows the opposite trend as C33.  We find 

that the variation of d33 with vertical compressive strain is directly/inversely correlated with 
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the variation of universal anisotropy index/C33 as shown in Figs. 3.8(b) and 3.8(c). The 

variation in e33 with strain differs from that of C33, as shown in Figs. 3.8(a) and 3.8(b).  In 

van der Waals crystals and heterostructures, d33 ≈ e33/C33 and therefore, the simultaneous 

variation in both e33 and C33 with the application of vertical compressive strain results in 

the M-shaped trend. It mainly arises due to the zig-zag nature in the variation in C33 with 

the application of vertical compressive strain found in Fig. 3.8(b), although e33 decreases 

monotonically up to 6% strain. Similar behaviour is observed in hetero-bilayer [194] 

comprising of boron monophosphide (BP) and MoS2, where e33 shows a steady trend with 

the application of vertical compressive strain, while C33 is found to be relatively oscillatory. 

Encouragingly, the nature of variation in d33 is found to be consistent with that of the 

Universal anisotropy index, as shown in Fig. 3.8(c). Crystalline phase of bilayer Janus 

TMTC remains the same upon the application of vertical compressive strain, as testified 

by the occurrence and retention of space group Pm in both unstrained and strained systems. 

The band gap is found to decrease very slowly with the application of vertical compressive 

strain. Stacking-1 and Stacking-2 of bilayer Janus TiSe2S are found to show all round 

stability. Thermodynamic stability has been confirmed from the exothermicity in the 

interlayer binding energy calculated in this work. The interlayer binding energy in stacking-

1 (-16 meV/Å2) and stacking-2 (-14 meV/Å2) in bilayer Janus TiSe2S are comparable to 

typical vdW crystals like graphite (-12.0 meV/ Å2) [195] and bilayer transition metal 

dichalcogenides (~ -19 meV/Å2) [196]. Thermal and dynamical stability of the Janus 

bilayer structures in both the stacking order have been confirmed by performing ab-initio 

molecular dynamics (AIMD) simulation at 300 K (room temperature) and phonon 

dispersion calculations respectively. Absence of noticeable structural distortion in both 

Stacking-1 and Stacking-2 noted after 5 ps of AIMD simulation in Fig. 3.9 clearly confirms 

the thermal stability in them. Besides, lattice dynamical stability has been confirmed from 

the absence of imaginary frequencies in the phonon dispersion calculated and plotted in 

Fig. 3.10. 
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Figure 3.9 The initial and final geometry depicting structural change of bilayer Janus 

TiSe2S in AIMD simulation at 300 K. There is no noticeable distortion in the final geometry 

after 5 ps. 
 

 
Figure 3.10 Phonon frequency spectra of stacking-1 and stacking-2 of bilayer Janus 

TiSe2S. 

 

3.2.6 Electronic Properties 
The atomic layer and orbital contribution weighed electronic band structures of ZrS3, 

ZrSe3, and Janus ZrS2Se, ZrS2Se monolayers are shown in Fig. 3.11.  As the band gap is 

underestimated using DFT with GGA-PBE functional, HSE06 functional has been used to 

calculate a more precise band gap. Hybrid functionals, which mix a fraction of Hartree-

Fock (HF) exchange with local or semilocal exchange, have become increasingly popular 

in quantum chemistry and Computational Materials Science due to the description of more 
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precise or accurate electronic band gap, which reaches closer to experimentally measured 

band gaps. Flores et al. [197] assessed the accuracy of the Heyd-Scuseria-Ernzerhof (HSE) 

hybrid functional to describe many-electron interactions and charge localization in 

semiconductors. They have found the HSE functional to accurately describe many-electron 

interactions with moderate correlations. 

 

 
Figure 3.11 Atomic layer and orbital projected bandstructure of (a) ZrS3, (b) ZrS2Se, (c) 

ZrSe3, (d) ZrSe2S using HSE06 functional. (e) side view of crystal structure indicating layer 

number, (f) top view of crystal structure and (g) Reciprocal lattice vectors with shaded 

First Brillouin Zone (1BZ). 

 

Table 3.5 Bandgap of Janus TMTC monolayers. “M” stands for metallic state. “I” 

represents indirect band gap. 

Bandgap (eV) TiS2Se TiSe2S ZrS2Se ZrSe2S HfS2Se HfSe2S 
GGA-PBE 0.18 (I) M 0.55 (I) 0.41 (I) 0.34 (I) 0.29 

(I) 
HSE06 0.75 (I) 0.42 (I) 1.24 (I) 1.11 (I) 1.11 (I) 0.98 

(I) 
 

 
It is observed that band gaps in all Janus TMTC monolayers are indirect and have a value 

ranging from 0.42–1.24 eV as listed in Table 3.5. The conduction band minimum (CBM) 

lies at the high-symmetric point, X [(0.5, 0.0, 0.0)2π/a] however valence band maximum 

(VBM) lies around Γ point of Brillouin zone (BZ). To gain insight about VBM and CBM 

state, atomic orbital contributions have been investigated. For ZrS2Se (ZrSe2S) monolayer, 
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the valence band maximum state is hybridized with ~64% (86%) p-orbitals of chalcogen 

atoms and ~36% (14%) d-orbitals of metal atoms. However, conduction band minima state 

is hybridized with ~85% (85%) p-orbitals of chalcogen atoms and ~15% (15%) d-orbitals 

of transition metal atoms. The orbital contribution of the valence band around the Γ point 

plays a vital role in the Rashba spin-band splitting of the VB around the Γ point, which will 

be discussed in the next section in detail. 
 
Table 3.6 Orbital contribution of valence band of 2D Janus TiS2Se monolayer at Γ and K’ 
point as shown in without SOC band structure of Fig. 3.12(b).  

Atomic 
Orbital 

Contribution 

pz(S) pz(Se) px(S) px(Se) py(S) py(Se) dxy(Ti) dxz(Ti) dz2(Ti) 

Γ point 0.021 0.048 0.374 0.0 0.0 0.135 0.201 0.317 0.0 
K’ point 0.017 0.039 0.301 0.0 0.0 0.173 0.199 0.259 0.012 

 
3.2.7 Rashba Properties 
Significantly, the absence of in-plane mirror symmetry (x, y, z) →  (x, y, −z) combined 

with spin-orbit coupling (SOC) effect in the 2D Janus TMTC monolayers cause Rashba-

like spin-band splitting. The Sx-spin projected electronic bands in the monolayer of TiS2Se 

Janus structure using GGA-PBE functional, including SOC have been depicted in Figs. 

3.12(c) and 3.12(d). The contour of spin-resolved energy (E= −0.17 eV and EF= 0.0 eV) 

in Fig. 3.12(e) demonstrates an exact circular shape for both outer and inner parts of the 

spin split valence band. We have observed in-plane spin orientation, as shown in Fig. 

3.12(e), which is the signature of the Rashba effect as predicted in the 2D electron gas 

model. [61] There is no spin contribution from Sz. Sx mainly contributes in the in-plane 

spin contribution. There is a small Sy spin contribution only around ky = 0. It is found that 

SOC incorporation breaks spin degeneracy of valence band (VB) around the high-

symmetry Γ point. VB undergoes noticeable spin-band splitting. Consequently, in-plane 

spin polarization is observed as the energy bands shift in the momentum space. To know 

the source of spin splitting in the TiS2Se Janus structure, we have to know the atomic orbital 

distributions of valence band around Γ point, as listed in Table 3.6. It is found that VBM 

of TiS2Se monolayer at the low-symmetric K’ point shows the major contribution from S-

px (30.1%), Se-py (17.3%), Ti-dxy (19.9%), and Ti-dxz (25.9%) orbitals. Therefore, these  
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Figure 3.12 (a) Planar average of electrostatic potential of 2D Janus TiS2Se monolayer. The red 

arrow indicates the direction of the local electric field. (b) Band structure of 2D Janus 

TiS2Se monolayer with and without spin-orbit coupling (SOC) using GGA-PBE functional. 

(c) Electronic band structure of monolayer Janus TiS2Se with SOC using GGA_PBE 

functional with Sx spin projection. (d) Enlarged band structure as indicated in Figure 12c. 

Colour map represents the expectation value of Sx spin projection. (e) Spin structures of 

the Rashba split states for the spin projections Sx, Sy and Sz at an energy, E= −0.17 eV and 

EF= 0.0 eV. 

 

orbitals mainly contribute to Rashba spin splitting. Specifically, transition-metal dxy orbital 

plays a crucial role in the Rashba spin splitting. There is no transition-metal dxy contribution 

in the valence band around Γ-point in MSe3 based Janus monolayers consequently Rashba 

spin splitting in the valence band has not been observed in these monolayers, as shown in 

Fig. 3.13. Mainly, Rashba effect has been observed in the Janus structures derived from the 

MS3 monolayers, as depicted in Fig. 3.13.  According to linear Rashba model, the SOC-
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included spin splitting is described by the well-defined Rashba parameter (αR) as  αR  =

 2ΔER
ΔkR

, where ΔER and ΔkR are the Rashba energy splitting and the momentum shift, 

respectively, as indicated in Fig. 3.12(d). The parameters characterizing Rashba effect are 

listed in Table 3.7. The parameters of ΔER and ΔkR  of Janus TiS2Se monolayer are 40 

meV and 0.074 Å−1, respectively, thus αR is calculated to be 1.081 eVÅ. The value of 

Rashba parameter is much higher than the conventional semiconducting heterostructure of 

InGaAs/InAlAs (αR~0.07 eVÅ), [198] metallic surface state of Au(111) surface (αR~0.33 

eVÅ) [199] and Bi(111) surface (αR~0.55 eVÅ) [200]. Although this value is much smaller 

than that previously reported in the Bi/Ag (111) surface alloy (αR~3.05 eVÅ), [201] it is 

still much larger than that in the Janus tellurene (Te2Se) monolayer (αR~0.39 eVÅ), [202] 

Janus MoSSe monolayer (αR~0.53 eVÅ) [203] and GaSe/MoSe2 heterostructure (αR~0.49 

eVÅ), [204] indicating its potential applications in spintronic devices at the nanoscale. 

 
 

 
Figure 3.13 Bandstructures of Janus TMTC monolayers near Fermi level with and without 

spin-orbit coupling (SOC) using GGA-PBE functional. Fermi level (EF) is set to zero. 

 

Table 3.7 Parameters characterizing Rashba splitting in Janus monolayers of TMTC. 

Janus 
TMTC  

ΔER 
(meV) 

ΔkR 
(Å-1) 

αR 
(eVÅ) 

TiS2Se 40 0.074 1.081 
TiSe2S 0 0.0 0.0 
ZrS2Se 19 0.053 0.717 
ZrSe2S 0 0.0 0.0 
HfS2Se 15 0.053 0.566 
HfSe2S 0 0.0 0.0 
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Figure 3.14 Modulation of Rashba parameter, αR of Janus TiS2Se monolayer with 

application of strain along b-axis. 

 

The decreasing trend of Rashba parameter, αR as TiS2Se>ZrS2Se >HfS2Se is due to the 

decreasing inherent out-of-plane electric field (0.422, 0.326, 0.16 VÅ−1). The Rashba 

parameter, αR is directly proportional to the in-built electric field. The magnitude of the in-

built electric field is determined by the slope of the planar-average electrostatic potential 

between two outermost atom minima (see the green line in Fig. 3.12a). As the Rashba effect 

is occurring along high symmetry Y-Γ-Y path, we have studied uniaxial strain effect along 

b-axis as depicted in Fig. 3.14. The momentum offset, ΔkR is slightly decreasing with 

tensile strain and increasing with compressive strain. As the Rashba energy splitting, ΔER  

is invariant under strain from -1% to 5%, Rashba parameter, αR is increasing from 1.04 

eVÅ to 1.23 eVÅ. At -5% strain, Rashba energy splitting, ΔER is strongly enhanced which 

causes a large Rashba parameter (αR~1.41 eVÅ). 

 

3.3 CONCLUSIONS 
In this chapter, the stability, electronic, piezotronic and spintronic properties of the 2D 

Janus TMTC (MX2Y) monolayers have been systematically examined by density-

functional theory. The Janus structures of transition metal trichalcogenide (TMTC) 

monolayers have been predicted, which show superhigh out-of-plane piezoelectricity and 

giant Rashba spin-band splitting. These 2D Janus monolayers are found to be thermally, 

energetically, mechanically, and dynamically stable, which suggests the experimental 

feasibility in synthesizing these Janus monolayer structures. The electronic structure 
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calculations show indirect bandgap in them, ranging from 0.5 eV to 1.5 eV. The absence 

of horizontal mirror symmetry and presence of strong spin-orbit coupling cause Rashba 

spin splitting in the electronic bands with high Rashba parameter (αR ~ 1.08 eVÅ), which 

is much larger than the Janus MoSSe monolayer (αR~0.53 eVÅ) and GaSe/MoSe2 

heterostructure (αR~0.49 eVÅ). It rises to 1.408 eVÅ by applying a 5% uniaxial 

compressive strain along the y-direction. The breaking of structural and inversion 

symmetry together with mechanical flexibility leads to a large out-of-plane piezoelectric 

constant in these 2D Janus TMTC monolayers. The out-of-plane piezoelectric constant, d33 

has been obtained as large as 68.7 pm/V in Janus ZrSe2S monolayer, which is very much 

higher than generally utilized three-dimensional bulk piezoelectric solids - wurtzite-AlN 

(d33 = 5.6 pm/V), wurtzite-GaN (d33 = 3.1 pm/V), α-quartz (d11 = 2.3 pm/V) in industry. 

By designing bilayer structures of these Janus TMTC monolayers, the d33 has been found 

to be enhanced. Moreover, d33 can be increased to an enormously high value (~1000 pm/V) 

by applying a vertical compressive strain in their bilayer structures, which is more than 

four times that of bulk ceramic PZT material (~268 pm/V). Our study reveals the immense 

potential of these 2D Janus TMTC monolayers and their bilayers in nanoscale energy 

harvesting through nano-piezo-electronics and spintronics.  
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 Chapter 4 
 

Valley spin polarization in h-MN 

(M=Nb, Ta) monolayers 

 
This Chapter is based on the work published in: 

Raihan Ahammed and Abir De Sarkar. "Valley spin polarization in two-

dimensional h− M N (M= Nb, Ta) monolayers: Merger of valleytronics with 

spintronics." Phys. Rev. B 105, 045426 (2022). 
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4.1 Introduction  
Nowadays, an extra valley degree of freedom (DOF), which is distinct and different from 

that of electronic charge and spin, has been stimulating intense interest in two-dimensional 

(2D) materials, offering a novel avenue in device design at the nanoscale. [74,75] The 

valley DOF occurs from multiply degenerate energy extrema of the valence band (VB) and 

conduction band (CB) in momentum space. So far, the valley DOF has drawn a great deal 

of attention in a large number of emergent quantum phenomena, such as, valley Hall 

effect [77] and valley-dependent orbital magnetic moment [205]. Valleytronics is aimed at 

actively controlling and manipulating the valley DOF in semiconductor devices analogous 

to the charge DOF in electronics and spin DOF in spintronics. [78] Several materials have 

been proposed as candidates for valleytronic materials, such as silicon [206], bismuth thin 

films [207], graphene [73,208], and transition-metal dichalcogenide (TMDC) [75,209] 

monolayers.  

To exploit the valley DOF, it is essential to produce valley polarization via controllable 

techniques. Thus, various methodologies have been implemented to control valley 

polarization, such as, optical pumping [76,210], magnetic substrate proximity 

effect [209,211] and magnetic doping [212]. Charge carriers with suitable combinations of 

spin and valley indices, are selectively excited by the dynamic process of optical pumping 

using frequency-specific circular polarizations.  Therefore, valley DOF can be utilized to 

encode information. As the nonequilibrium distribution of carriers of K/K′ valley with 

transient carrier lifetimes [213] will be generated by the dynamical valley polarization upon 

optical pumping, a rapid transfer of photogenerated carriers is needed to reduce the 

recombination. 

When in-plane electric field is applied, photo-generated electrons and holes by optical 

excitation at the same K, will move along opposite directions under the effect of the Berry 

curvature, which is nothing but the effective magnetic field in momentum space. But the 

Berry curvature vanishes in inversion symmetric or centrosymmetric materials. Hence, 

broken inversion symmetry is compulsory for valleytronics. The two quantities, berry 

curvature (Ω𝑖𝑖(𝑘𝑘)) and orbital magnetic moment (𝑚𝑚(𝑘𝑘)) are fundamental quantities in 

valleytronics.  

The presence of strong spin-orbit coupling (SOC) in inversion asymmetric materials 

induces Rashba-type spin splitting in the electronic band structure, which can be harnessed 

effectively in spintronics. The Rashba electronic states reveal unique band dispersion with 
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spin-momentum locking, which can be explained by the Hamiltonian HR = αR𝛔𝛔.� (�̂�𝐤‖ × 𝐞𝐞�𝐳𝐳) 

as proposed by Rashba et al. to describe 2D electron gas [61], where is αR the Rashba 

constant, 𝛔𝛔� is the vector of the Pauli matrices, �̂�𝐤‖ = (kx, ky, 0) is the in-plane momentum 

of the electrons, and 𝐞𝐞�𝐳𝐳 is the out-of-plane unit vector indicating a direction of the local 

electric field induced by the asymmetric crystal potential. In heterostructures and at 

surfaces, the Rashba SOC field plays a crucial role for the electronic states as the structural 

asymmetry produces an out-of-plane electric field. [204] The Rashba SOC generated linear 

k-dependent spin-splitting of bands enables the control of electron current by steering the 

spin precession, which is the fundamental principle of action for spin field effect transistors 

(SFETs). [65] An essential factor in constructing such a device requires the channel length 

L = πℏ2/2m∗αR over which the spin precesses by π (180°); thus, shorter channel lengths 

need larger αR. [214]  

The Rashba effect in 2D materials has been garnering increasing scientific attention due to 

its remarkable capability in SFETs. [66] Charge carriers in materials with Rashba SO 

coupling experience a momentum-dependent effective magnetic field, a spin-dependent 

velocity correction resulting from the SO coupling. [62] These features are particularly 

attractive for the realization of device concepts [215] in which spin polarization is 

generated from charge current, manipulated by electric field. Rashba effect has been 

noticed experimentally in semiconductor quantum wells [216], polar semiconductors like 

BiTeI [217] and surfaces of heavy metals [218]. Several 2D materials have been predicted 

theoretically, such as graphene [219], Janus TMDC monolayers [220], and Janus transition 

metal trichalcogenide (TMTC) monolayers [1] and the MoS2/Bi (111) 

heterostructure [221].  

The coupling of valley physics arising from spin-valley locking to the Rashba spin-band 

splitting caused by strong spin-orbit coupling is being increasingly sought after as the key 

ingredient in the flourishing field of valleytronics and spintronics. Yet, the paucity of 2D 

materials showing an appreciable spin-valley polarization along with Rashba effect holds 

back their implementation in next-generation electronics, such as, spin-valleytronics. 

Recently, Anand et al. [222] theoretically predicted the 2D nanosheets of single-layered 

niobium nitride, s-NbN, and h-NbN using ab-initio calculations. Anand et al. [222] 

reported that s-NbN is metallic and preserves the superconducting features of bulk NbN at 

low temperature, while h-NbN is a semiconductor exhibiting piezoelectric properties. 

Superconducting properties of high-quality NbN thin films [223,224] have been widely 
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studied experimentally. The dynamical stability of monolayer h-NbN also suggests that it 

could be synthesized experimentally. [222] Chanana et al. [225] demonstrated a strange 

ferroelectric property in a strained 2D h-NbN monolayer that emanates from its electrons 

together with phonons, with out-of-plane spontaneous polarization linked with strain and 

electric field using first-principles DFT calculations. They also demonstrate electric field 

driven polarization switching in h-NbN at 5% bi-axial strain and present a simple model to 

capture the physics of its strongly coupled electronic and phononic ferroelectricity. Yet, 

Rashba effect and valley physics was overlooked in h-NbN. In this chapter, h-MN (M =

Nb, Ta) monolayers using first-principles calculations have been investigated. The 

presence of time-reversal symmetry and absence of inversion symmetry along with 

Zeeman-type valley and Rashba-type spin splitting are found to bring about a substantial 

coupling between the spin and valley degrees of freedom, which will facilitate seamless 

amalgamation of the evolving field of 2D spintronics with valleytronics.  

 

4.2 Results & Discussions 
4.2.1 Crystal symmetry and electronic property 
Monolayer h-NbN has buckled trigonal lattice structure having space group P3m1 (156) as 

depicted in Fig. 4.1(a). Inversion symmetry [(x, y, z) →  (−x, −y, −z)] is broken in this 

structure. The optimized lattice constant of the relaxed crystal structure is found to be 

|a|=|b|=3.16 Å, which is in very close agreement with other theoretical [37] result. The 

buckling height (Δ) is 0.78 Å. The direct lattice vectors are a = 3.16 ex, b = -1.58 ex + 2.74 

ey. The corresponding reciprocal lattice vectors as shown in Fig. 4.1(i) are a* = 0.32 ex + 

0.18 ey, b* = 0.36 ey. The high symmetry k-points as indicated in the Brillouin zone are Γ 

(0.0,0.0), M (0.0,0.5b*), K (0.333a*, 0.333b*). 3D view of the valence band (VB) and 

conduction band (CB) about the Fermi level containing the energy extrema (VBM, CBM) 

is represented in Fig. 4.1(b). To clearly visualize these two bands, isoenergetic contours 

are plotted in 2D k-space as shown in Figs. 4.1(c) and 4.1(d). It is found that the 

isoenergetic contours near about the valence band edges are triangularly warped (TW) 

similar to monolayer TMDC [226] such as MoS2. On the other hand, the isoenergetic 

contours near about the conduction band edges are elliptically warped. The electronic band 

structure with and without SOC, as shown in Fig. 4.1(e), has been calculated using GGA-

PBE functional. Electronic structure of h-NbN exhibits an indirect band gap of 0.72 eV 

(without SOC) with VBM and CBM located at wave vectors in between high symmetric  
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Figure 4.1 (a) Top and side view of crystal structure of h-NbN, (b) 3D band structure near 

fermi level, (c) Energy contours of top valence band (VB), (d) Energy contours of bottom 

conduction band (CB), (e) Band structure along high symmetry k-path. (f), (g) and (h) are 

enlarged view as in indicated in (e). Fermi level is set to zero. GGA-PBE functional is used 

to calculate electronic structure. (i) First Brillouin Zone (1BZ) of h-NbN monolayer. 

 

K→Γ k-path, which is in excellent agreement with other theoretical report (~0.77 

eV) [222]. The presence of strong SOC and absence of inversion symmetry lifts the spin 

degeneracy of VB and CB, causing Zeeman type (see Figs. 4.1(f) and 4.1(h)) and Rashba 

type (see Fig. 4.1(g)) spin splitting, which has been discussed in detail in the following 

section. The Zeeman-type valley spin splitting (VSS) is found to be 130 meV in the CB 

(∆SO
c ), whereas VSS in the VB (∆SO

v ) is found to be very small (~ 32 meV) upon introducing 

the relativistic SOC effect, which is exactly opposite to that of group-VI TMDCs, where 

small (large) VSS is noticed at CB (VB). The observed Zeeman-type VSS in monolayer h-

NbN (∆𝑆𝑆𝑆𝑆
𝑐𝑐(𝑣𝑣)~ 130 (32) meV) is comparable to that of Janus monolayer TMDC MoSSe [227] 

(∆𝑆𝑆𝑆𝑆
𝑐𝑐(𝑣𝑣)~ 13.7 (170) meV). The atomic orbital contributions of VB and CB edges which 

involve in the SOC splitting have been investigated as listed in Table 4.1-4.2 and depicted 

in orbital projected band structure as shown Fig. 4.2. VB (CB) edge mainly comprise of 

Nb-d orbitals with 85.19 % (77.91%) contribution and maximum contribution consists of 

Nb-dz2 orbital with 34.20 % (40.86%) respectively. 
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Figure 4.2 Orbital projected band structure of h-NbN monolayer. 

 

Table 4.1 Orbital contribution to VB edge of h-NbN monolayer. 

Orbital s (%) py 

(%) 

pz 

(%) 

px 

(%) 

dxy(%) dyz(%) dz2(%) dxz(%) d𝑒𝑒2−𝑦𝑦2(%) 

Nb 1.98 1.07 0.30 0.76 11.14 9.62 34.20 12.06 18.17 

N 0.0 4.43 3.82 2.45 0.0 0.0 0.0 0.0 0.0 

NbN 1.98 5.50 4.12 3.21 11.14 9.62 34.20 12.06 18.17 

 

Table 4.2 Orbital contribution to CB edge of h-NbN monolayer. 

Orbital s (%) py 

(%) 

pz 

(%) 

px 

(%) 

dxy(%) dyz(%) dz2(%) dxz(%) d𝑒𝑒2−𝑦𝑦2(%) 

Nb 0.36 3.80 1.27 1.45 1.0 25.54 40.86 9.42 1.09 

N 0.54 4.17 2.71 7.79 0.0 0.0 0.0 0.0 0.0 

NbN 0.90 7.97 3.98 9.24 1.0 25.54 40.86 9.42 1.09 
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Figure 4.3 Phonon spectra of 2D monolayers of MX (M=V, Nb, Ta; X=N, P, As). 

 

We have also investigated the other 2D monolayers with similar structure of h-NbN 

monolayer in the family of MX (M=V, Nb, Ta; X=N, P, As). Only the monolayers of VN, 

NbN, NbP and TaN show lattice dynamical stability, while the others show very large 

phonon instability in the out-of-plane flexural acoustic (ZA) phonon mode, as depicted in 

Fig. 4.3. Apart from a tiny pocket of negative frequency near the Γ point in the monolayer 

of h-VN (~0.17 THz), h-NbN (~0.16 THz) and h-TaN (~0.03 THz), no trace of imaginary 

frequency is found in the Brillouin zone. This tiny pocket is highly sensitive to the 

calculational details and it goes away completely in some cases. It just indicates the 

difficulty in getting numerical convergence for the flexural phonon mode, which 

commonly occurs in first-principles calculations on 2D materials. The tiny pockets of 

negative frequency (<0.3 THz or 10 cm-1) around the Γ point originating from the flexural 

acoustic (ZA) modes have also been noticed in graphene, silicone, molybdenum disulphide 

and gallium chalcogenides. [228] This region of instability mainly depends on the 

simulation parameters, such as, supercell size and k-point sampling. Hence, these negative 

frequencies are understandably spurious. 

We have studied the electronic properties of the stable structures and compared with NbN 

monolayer. It is noticed that the nature of band structures of VN and TaN monolayer are 

similar to NbN monolayer whereas the band structure of NbP monolayer is different from 

NbN monolayer as shown in Fig. 4.4. Spin polarized valley-spin splitting (VSS) in both  
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Figure 4.4 Band structures of 2D monolayers of VN, NbN, NbP and TaN. 

 

valence and conduction bands are larger (smaller) in h-TaN (h-VN) monolayer relative to 

h-NbN on account of higher (lower) spin-orbit coupling arising from heavier (lighter) Ta 

(V) atoms. The value of band gap, SOC splitting in the VB(CB) and Berry-curvature are 

listed in Table 4.3. From Table 4.3 and Fig. 4.5, the trend in band gap is observed as VN > 

NbN > TaN and NbP > NbN; however, the trend in SOC splitting and Berry curvature is 

opposite to that in band gap as VN < NbN < TaN and NbP < NbN. It will be discussed in 

more detail in the context of Berry curvature and valley physics in the later section. 

 

Table 4.3 Band gap, SOC splitting in valence band (VB) and conduction band (CB) and 

Berry curvature. Band gap has been calculated using Heyd–Scuseria–Ernzerhof (HSE) 

functional. 

2D monolayer 𝐸𝐸𝑔𝑔
𝐻𝐻𝑆𝑆𝐸𝐸  (eV) ∆𝑆𝑆𝑆𝑆

𝑣𝑣  (meV) ∆𝑆𝑆𝑆𝑆
𝑐𝑐  (meV) Ω(Å2) 

VN 0.801 14 35 44 

NbN 0.759 32 130 51 

NbP 0.803 21 57 25 

TaN 0.559 112 406 73 
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Figure 4.5 Trend of band gap, SOC splitting and berry curvature in VN, NbN, NbP and 

TaN. 

 
Figure 4.6 Spin projected band structure of (a) Sx, (b) Sy and (c) Sz spin in monolayer h-

NbN. Color map represents the spin expectation value. Fermi level is set to zero. 

 

4.2.2 Rashba effect 
In monolayer h-NbN, the Zeeman-type spin splitting near the corners of the hexagonal 2D 

Brillouin zone occurs due to presence of strong SOC together with the breaking of 

inversion symmetry, (x, y, z) →  (−x, −y, −z) as well as the Rashba-type spin splitting has 

been observed around the M-point because of the intrinsic out-of-plane electric field 

induced by mirror symmetry (x, y, z) →  (x, y, −z) breaking along the z-direction. The spin 
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projected electronic bands in the monolayer h-NbN using GGA-PBE functional with 

incorporation of SOC, have been shown in Figs. 4.6(a)-4.6(c) and top two valence bands 

as depicted in Figs. 4.7(a)-4.7(c) to study Rashba effect.  

The spin-resolved isoenergy contours of the spin split top two valence bands (E= −0.5 eV 

and EF= 0.0 eV) demonstrate in-plane spin distribution, as displayed in Figs. 4.7(d)-4.7(f), 

which is the signature of the Rashba effect, as observed in the 2D electron 

systems [61,229]. There is no spin distribution from Sz, while Sx and Sy mostly contribute 

to the in-plane spin distribution. Sy spin causes Rashba splitting only around M1 and M4 

points along the high symmetry path Γ-M-K when kx = 0. However, Sx spin causes Rashba 

splitting around M2, M3, M5 and M6 along the high symmetric path Γ-M-K. It is also clear 

from the spin-texture of top two valence bands as depicted in Fig. 4.8. We have observed 

that VB of NbN monolayer at the high-symmetric M-point shows the main contribution 

from Nb-py (9.72%), Nb-d𝑒𝑒2−𝑦𝑦2 (15.49%), Nb-dyz (60.91%), Nb-d𝑧𝑧2 (9.52) and N-s 

(3.93%) orbitals as listed in Table 4.4. 

 

 
Figure 4.7 Spin projected top two valence bands, i.e., (a) Sx, (b) Sy and (c) Sz in h-NbN. 

Corresponding contour plot (d, e, f) at E=−0.5 eV, EF=0 eV: color map represents the 

expectation value of corresponding spin projection. Modulation of (g) energy offset, ER, 

(h) momentum offset, kR and (i) Rashba parameter, αR with bi-axial strain.  
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Figure 4.8 Spin-texture of top two valence bands of monolayer h-NbN, (b) Spin-texture 

around M-point as shown in Fig. (a). 

 

Table 4.4 Orbital composition of the top valence band at M-point. 

Orbital s (%) py 
(%) 

pz 
(%) 

px 
(%) 

dxy(%) dyz(%) dz2(%) dxz(%) d𝑒𝑒2−𝑦𝑦2(%) 

Nb 0.0 9.72 0.20 0.0 0.0 60.91 9.52 0.0 15.49 

N 3.37 0.20 0.59 0.0 0.0 0.0 0.0 0.0 0.0 

NbN 3.37 9.92 0.79 0.0 0.0 60.91 9.52 0.0 15.49 

 

 

Therefore, Rashba spin splitting occurs due to these orbitals mainly. According to linear 

Rashba model, the SOC-included spin splitting is described by the well-defined Rashba 

constant (αR) as  αR  =  2ΔER
ΔkR

, where ΔER and ΔkR are the Rashba energy splitting and the 

momentum shift, respectively. The parameters of ΔER and ΔkR  of h-NbN monolayer are 

52.0 meV and 0.0358 Å−1, respectively, thus αR is calculated to be 2.905 eVÅ. The value 

of Rashba constant is comparable to recently predicted 2D Rashba monolayers, such as, 

AlBi (2.77 eVÅ) [230], BiSb (2.3 eVÅ) [231] and much higher than the conventional 

semiconducting heterostructure of InGaAs/InAlAs (αR~0.07 eVÅ) [198], metallic surface 

state of Au (111) surface (αR~0.33 eVÅ) [199] and Bi (111) surface (αR~0.55 eVÅ) [200], 

monolayer Janus MoSSe (αR~0.077 eVÅ) [220], Janus WSeTe (αR~0.514 eVÅ) [220]. 

Modulation of Rashba parameters has been investigated by applying in-plane bi-axial 

compressive and tensile strain up to 5%. It has been found that Rashba parameter, αR is 
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enhanced to 2.944 eVÅ at 2.5% tensile strain. In general, a large Rashba parameter implies 

significant SOC, which is desirable for suppressing the spin relaxation, controlling the spin 

precession, and the system’s stability and robustness against all forms of spin independent 

scattering. [62] [232] As a consequence, structures with large Rashba-type splitting are 

sought after. We have also studied the changes in Rashba properties upon changing the 

cation and anion elements, as depicted in Table 4.5. The trend in Rashba parameter is 

observed as VN < NbN < TaN and NbP < NbN. TaN monolayer shows highest energy 

offset (ΔER ~74 meV) and Rashba parameter (αR~4.229 eVÅ), as the spin-orbit coupling 

strength is larger in heavier atoms.  A large Rashba parameter indicates that monolayer h-

NbN and h-TaN could be realized as a promising candidate in spin field effect transistors.  

 

Table 4.5 Rashba parameters 

2D monolayer ∆ER (eV) ∆kR (Å-1) αR (eVÅ) 

VN 0.030 0.0376 1.618 

NbN 0.052 0.0358 2.905 

NbP 0.002 0.0057 0.548 

TaN 0.074 0.0350 4.229 

 

Several possible descriptors have been taken into consideration to deduce a relationship 

with Rashba parameters of different monolayers such as electronegativity, ionization 

energy, Bader charges, Born effective charges and out-of-plane electric field asymmetry as 

depicted in Figs. 4.9(a)-4.9(f). Asymmetry in crystal potential as well as electric field 

perpendicular to the 2D plane as shown in Figs. 4.10 and 4.11 is also responsible for Rashba 

effect. The out-of-plane electric field at the specific atom site is calculated from 

electrostatic potential using central difference method (𝐸𝐸 = − 𝑑𝑑𝑉𝑉
𝑑𝑑𝑧𝑧

). The strength of electric 

field asymmetry is evaluated as �E��⃗ � = |E��⃗ M − E��⃗ X|. It is observed that �E��⃗ � does not correlate 

well with αR as depicted in Fig. 4.9(d). Bader charges of individual atom as calculated using 

bader code [155] are also not found to be a good descriptor (Fig. 4.9(c)). Only Zzz
∗ ,  is found 

to correlate well with αR. Out-of-plane Born effective charges on each atom in these 

monolayers is found to be a proper descriptor to gauge strength of Rashba effect. 
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Figure 4.9 The Rashba parameter plotted as a function of different material descriptor: 

(a) electronegativity difference, (b) ionization energy difference, (c) Bader charges, (d) 

asymmetry in electric field, (e) Born effective charge (Z*) and (f) zz component of Z*. 

 

Born effective charges (Zij
∗ , a tensor) on the ions is different from the formal static charge 

and corresponds to the amount of charge that effectively contributes to the polarization 

during external perturbation such as ionic displacement. The dynamical Born effective 

charge (BEC) is defined as  Zij
∗ = (Ω/e) (∂Pi/∂uj) = (1/e) (∂Fi/∂Ej); i, j=x, y and z, Ω is the 

unit cell volume, u is the strain, E is the electric field and F is the Hellmann-Feynman 

forces.  The scalar charge on each atom Z* is given by Tr(Zij
∗ ). Microscopically, Born 

effective charge (Z*) of the atoms is a sum of static charge (Z(u)) and anomalous 

contributions, Z*(u) = Z(u) + u.∂Z(u)/∂u, u is the interatomic distance. The Born effective 

charge, Z* is a fundamental quantity in the study of lattice dynamics, because it governs 

the amplitude of the long-range Coulomb interaction between nuclei, and the splitting 

between longitudinal optic (LO) and transverse optic (TO) phonon modes. The dynamical 

charge measures the macroscopic current flowing across the sample while the ions are 

adiabatically displaced. Such currents are responsible for building up spontaneous 

polarization. 

The collective displacements of atoms participating in interatomic chemical bonds, 

hybridisation of orbitals and charge exchange depends on the Z* of atoms in the  
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Figure 4.10 Distribution of electrostatic potential of NbN and NbP monolayers along z-

direction. Δϕ is the difference of work function, and the built-in electric field is from 

transition-metal atom to pnictide atom. Bader charge analysis shows that the inter-atomic 

charge transfer in NbN monolayer is 1.303 e. Two dashed vertical lines are the positions 

of transition-metal atom and pnictide atom. (b, d) Charge transfer distribution in NbN and 

NbP monolayers respectively. Isosurface value is set to 0.005 eV/Å3. Cyan (yellow) colour 

represents the charge accumulation (depletion). 

 

 

monolayers. Qualitatively, chemical bonding is understood to be influenced by the 

polarizability and dielectric constants of the materials, which are related to Z*. Although 

the total Z* is not a good descriptor for Rashba parameter of the studied material, only the 

zz component of Z* (Zzz
∗ ) shows good trend as depicted in Figs. 4.9(e) and 4.9(f).  
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Figure 4.11 Distribution of electrostatic potential of VN and TaN monolayers along z-

direction. Δϕ is the difference of work function, and the built-in electric field is from 

transition-metal atom to pnictide atom. Bader charge analysis shows that the inter-atomic 

charge transfer in NbN monolayer is 1.303 e. Two dashed vertical lines are the positions 

of transition-metal atom and pnictide atom. (b, d) Charge transfer distribution in VN and 

TaN monolayers respectively. Isosurface value is set to 0.005 eV/Å3. Cyan (yellow) colour 

represents the spatial regions of charge accumulation (depletion). 

 

4.2.3 Valley physics of h-NbN monolayer 
On account of the hexagonal honeycomb lattice structure and broken in-plane inversion 

symmetry in h-NbN monolayer, it shows valley physics or valleytronic properties, i.e., 

opposite spins are locked to the K and K’ valleys at the band edges. When h-NbN will be 

supported on a substrate to realize its practical applications, the lattice mismatch between 

the underlying support and h-NbN monolayer can induce a strain in h-NbN. Besides, even 

in van der Waals heterostructures, incommensurate lattices can bring about interfacial 

strain. Strain is therefore unavoidable in ultrathin, flexible 2D nanosheets. Therefore, it is  
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Figure 4.12 (a) Modulation of band structure of monolayer h-NbN with 5% compressive 

and tensile strain using GGA-PBE functional along with spin-orbit coupling (SOC). (b) 

and (c) are enlarged view of VB and CB as indicated in Fig. 4(a). Isoenergy contours of 

low energy valence bands of (d) 0% strain, (e) +5% and (f) -5% bi-axial strain respectively. 

Isoenergy contours of low energy conduction bands of (g) 0% strain, (h) +5% and (i) -5% 

bi-axial strain respectively. 

 

instructive to investigate the effect of strain on various properties in 2D materials, including 

valleytronics. The role of strain has been addressed in this study. Bi-axial tensile and 

compressive strain in a dilation deformation range of 5% have been applied on monolayer 

h-NbN to investigate the evolution in the band edges with strain as shown in Figs. 4.12(a)-

4.12(c). With the application of tensile (compressive) bi-axial strain, band gap is decreasing 

(increasing) while the Zeeman-type valley spin splitting (VSS) ∆SO
v   and  ∆SO

c  are found to 

be almost invariant as displayed in Figs. 4.13(a) and 4.13(b). A robust strain-valley 

coupling between mechanical strain and low-energy Bloch bands around the band edges 

on either side of the Fermi level has been observed, where an applied elastic deformation 

by bi-axial strain substantially drifts the CB and VB edges (i.e., valleys and hills) far away 

from K/K'-points in the momentum-space, as depicted in Figs. 4.12(b) and 4.12(c). The 

isoenergetic contours of highest occupied valence band and lowest unoccupied conduction  
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Figure 4.13 Bandgap modulation with bi-axial strain using GGA-PBE functional. (b) 

Tuning of SOC splitting of band edges with bi-axial strain using GGA-PBE + SOC 

functional. 

 

band near about the band edges have been depicted in Figs. 4.12(d)-4.12(i) to shed further 

light into valley drift. Unlike graphene, the iso-energy contours of the band edges in a 

monolayer h-NbN are not isotropic in the close proximity of K1-point and an elliptical 

warping (EW) effect of energy bands can be seen in the isoenergy lines around the K1-

point.  

As shown in Figs.  4.12(g)-4.12(i), the lowermost spin-split conduction band edge (CB1) 

drifts off the K1-point at a rate (Δk/tensile strain) ~ 1.52 ×10-3Å-1/1% when bi-axial tensile 

strain is applied, while it drifts off along the opposite direction at a rate (Δk/compressive 

strain) ~ 2.57 ×10-3 Å-1/1% when bi-axial compressive strain is applied. We find the energy 

valley-drift in spin-split CB1 to be higher (> 1.6 times) upon compressive strain than the 

corresponding drift due to tensile strain which is attributable to the different kinds of 

variation in elastic constants, Young’s modulus (Y) and Poisson ratio (υ) with tensile and 

compressive strain, as shown in Figs. 4.15(a) and 4.15(b). A similar valley drift for the 

uppermost spin-split valence band edge (VB1) is observed. The valence band edge drifts 

away from K1-point at a rate ~ 1.80 ×10-3 Å-1/1% when bi-axial tensile strain is applied, 

while it drifts off along the opposite direction at a rate ~ 2.88×10-3 Å-1/1% when 

compressive strain is applied. The valley drift of holes is found to be higher than that of the 

electrons on account of higher in-plane d-orbital contribution of VB edge [dxy (1.0%), 

d𝑒𝑒2−𝑦𝑦2 (1.09%)] than that of CB edge [dxy (11.14%), d𝑒𝑒2−𝑦𝑦2 (18.17%)], which is clearly 

observed in Table 4.1-4.2. The plane-average squared wavefunctions (|𝜓𝜓|2) have been 

projected along the direction perpendicular to the basal plane of h-NbN monolayer for  
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Figure 4.14 Spatial profile of Bloch wavefunctions for (a) VB and (b) CB edge states 

projected along the direction perpendicular to the basal plane of h-NbN monolayer. The 

atomic positions have been marked therein with dash vertical lines on Nb-N in the pristine 

(0%) system. Charge density of electronic states at the edges of VB hills and CB valleys for 

a 5% compressive strained (c, d), a strain-free (e, f) and a 5% tensile strained h-NbN 

monolayer. Isosurface value is set to 0.01 eV/Å3. 

 

pristine and strained system as depicted in Figs. 4.14(a) and 4.14(b). VB edge is found to 

be more delocalized than the CB edge, which is also evident from the corresponding charge 

density distribution originating from orbital wavefunctions of the specific band edges, as 

shown in Figs. 4.14(c)-4.14(h). Under compressive strain, the probability amplitude for 

both VB and CB edges increases, while for tensile strain it decreases. A similar valley drift 

response has been noticed in graphene [233] on account of its two-dimensional hexagonal 

structure. Although the drift is much enhanced in monolayer h-NbN; however, it is lower 

than that in monolayer MoS2. Per percent of strain, the valley drift response is found to be 

nearly 0.6 (7.5)×10-3 Å-1/1% in graphene (MoS2) [233,234]. The valley drifts have 

immediate impacts on valleytronics performances, which is also applicable to the strong 

coupling between the spin and valley degrees of freedom. [234] As the valley degree of 

freedom is used to characterize the charge carriers [235], large valley shifts will induce 

decoherence and thus limit the performance of devices. In monolayer h-NbN, lesser valley 

shift is observed under tensile/compressive strain for both VBM and CBM than the 
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monolayer MoS2, which originates from its lower Young’s modulus (~94.7 N/m) than that 

in MoS2 (~124.1 N/m) monolayer.  

The elastic deformation of materials plays a fundamental role in the electronic properties. 

Therefore, in modern electronics applications, it is crucial to get an in-depth understanding 

of elastic properties of the studied material. The elastic stiffness constants (Cij) have been 

calculated with forward difference method using GGA-PBE functional as implemented in 

VASP and all the mechanical properties such as Young’s modulus (Y), Poisson ratio (υ), 

critical buckling strain (𝜖𝜖𝑐𝑐), intrinsic strength (𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖) have been systematically investigated.  

The elastic constants determined for the monolayer satisfy Born-Huang stability criteria 

and other mechanical properties are listed in Table 4.6. 

 

Born-Huang stability criteria are statisfied: 

𝐶𝐶11> |𝐶𝐶12|, 𝐶𝐶22> 0, 𝐶𝐶66> 0, 𝐶𝐶11𝐶𝐶22 −  𝐶𝐶12
2 > 0 

 

The critical buckling strain (𝜖𝜖𝑐𝑐) of a 2D material can be evaluated using 𝜖𝜖𝑐𝑐 = − 4𝜋𝜋2𝐷𝐷
Υ𝐿𝐿2 , where 

L is the length of the 2D nanosheet in the unit of Å. For the same length L (in Å), the critical 

buckling strain for the h-NbN are found to be: 𝜖𝜖𝑐𝑐 = − 2.11
𝐿𝐿2  which is comparable to graphene 

(− 2.2
𝐿𝐿2 ) [134]. The Young’s modulus (~94.72 N/m) is found to be smaller than other 2D 

nanosheets such as graphene (~347.1 N/m) [134] and MoS2 (~124.1 N/m) [134] which 

suggests that h-NbN monolayer will be more flexible than these monolayers. In Figs. 

4.15(a) and 4.15(b), modulation of the elastic stiffness constants (𝐶𝐶11, 𝐶𝐶12), Young’s 

modulus ( Y) and Poisson’s ratio (𝜈𝜈) via bi-axial tensile and compressive strain have been 

investigated and the nature of variation in these elastic properties corroborates well the 

valley drift response to strain respectively. 

 

Table 4.6 The calculated mechanical stiffness constants 𝐶𝐶𝑖𝑖𝑖𝑖, layer modulus (𝛾𝛾2𝐷𝐷), Young’s 

modulus ( 𝑌𝑌), Poisson’s ratio (𝜈𝜈), intrinsic strength (𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖), bending modulus (𝐷𝐷). 

System 𝐶𝐶11 

(N/m) 

𝐶𝐶12 

(N/m) 

𝐶𝐶66 

(N/m) 

𝛾𝛾2𝐷𝐷 

(N/m) 

 Y 

(N/m) 

𝜈𝜈 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖 

(N/m) 

𝐷𝐷 

(eV) 

h-NbN 107.342 36.817 35.263 72.079 94.715 0.343 10.524 5.059 
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Figure 4.15 Variation in (a) elastic stiffness constants C11 and C12. Variation in (b) 

Young’s modulus, Y, and Poisson’s ratio, ν with bi-axial strain. 

 

4.2.4 Berry curvature modulation in h-NbN monolayer 
It should be emphasized that the velocity of the carriers with a nonzero Berry curvature can 

be represented as ℏ𝒗𝒗𝑖𝑖(𝒌𝒌) =  𝒗𝒗g  −  𝒗𝒗⊥,where 𝒗𝒗g indicates the common group velocity, 

𝒗𝒗⊥denotes the transverse velocity, while 𝒗𝒗𝑖𝑖(𝒌𝒌) is derivable from the solution of the 

Boltzmann transport equation.  Group velocity is defined as 𝒗𝒗𝑔𝑔(𝒌𝒌) =  𝛁𝛁𝑘𝑘𝜀𝜀𝑖𝑖(𝒌𝒌),  where 𝜀𝜀𝑖𝑖 

corresponds to the energy of the n-th Bloch band. In addition, nonzero Berry curvature 

leads to an anomalous velocity, that is, the transverse velocity 𝒗𝒗⊥, which is indispensable 

for the valley Hall effect. The transverse velocity can be described as 𝒗𝒗⊥ = − 𝑒𝑒
ℏ

𝐄𝐄 × 𝛀𝛀(𝐤𝐤), 

where E is the in-plane electric field and Ω(k) is the out-of-plane Berry curvature. [236] 

Actually, large Ω(k) can amplify the transverse velocity, and the excited carriers moving 

in the direction perpendicular to E can therefore be transported faster and their 

recombination can be reduced. [232]  

The Berry curvature Ω𝑖𝑖(𝑘𝑘) of band 𝑎𝑎 at k point is calculated from the first-principles wave 

function, using the Kubo formula [237,238] given by; 

                      Ω𝑖𝑖(𝑘𝑘)   = −2Im ∑ <ψ𝑛𝑛𝑘𝑘|𝑣𝑣�𝑒𝑒|ψ𝑚𝑚𝑘𝑘><ψ𝑚𝑚𝑘𝑘|𝑣𝑣�𝑦𝑦|ψ𝑛𝑛𝑘𝑘>
(𝐸𝐸𝑛𝑛𝑘𝑘−𝐸𝐸𝑚𝑚𝑘𝑘)2𝑜𝑜≠𝑖𝑖                                   (4.1) 

where 𝑣𝑣�𝑒𝑒,𝑦𝑦 are the velocity operators and the summation are over all the occupied states. 

Ω𝑖𝑖(−𝑘𝑘)   = −Ω𝑖𝑖(𝑘𝑘) as a consequence of time reversal symmetry.  

The k.p Hamiltonian [75] to describe low energy electronic states of hexagonal system in 

the vicinity of band edges including spin-orbit coupling is given by;  

                                         𝐻𝐻 = 𝑎𝑎𝑎𝑎�𝜏𝜏𝑘𝑘𝑒𝑒𝜎𝜎𝑒𝑒 + 𝑘𝑘𝑦𝑦𝜎𝜎𝑦𝑦� + ∆
2

𝜎𝜎𝑧𝑧 − 𝜆𝜆𝜏𝜏 𝑑𝑑𝑧𝑧−1
2

𝑆𝑆𝑧𝑧                                 (4.2) 

where a is the lattice spacing, t is the nearest-neighbor hopping integral, 𝜏𝜏 = ±1 is the 

valley index, 𝜎𝜎𝑒𝑒 𝑦𝑦⁄ /𝑧𝑧 is the Pauli matrix spanned by the conduction and valence states, 𝑆𝑆𝑧𝑧 is 

the Pauli matrix for a spin, ∆ is the band gap, λ is spin splitting. The k.p model is generally  
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Figure 4.16 (a) Contour map of Berry curvature distribution, Ω(k) of h-NbN monolayer in 

2D k-space over all occupied Bloch bands of in units of Å2. (b) Modulation of Berry 

curvature distribution along high symmetry k-line Γ-K-M-K-Γ with application of bi-axial 

strain, (c) Schematic of valley-selective excitation, (d) Circular dichroism 

polarization, 𝜂𝜂(𝑘𝑘). 
 

 

exploited in studying valleytronics in 2D materials. [239,240] The Berry curvature in the 

valence band is given by;  

                                                             Ω𝑣𝑣(𝑘𝑘) = 𝜏𝜏 2𝑎𝑎2𝑖𝑖2Δ

(4𝑎𝑎2𝑖𝑖2𝑘𝑘2+Δ2)
3
2
                                           (4.3) 

Berry curvature in the conduction band is equal in magnitude but opposite in sign to that 

of the valence band, i.e., Ω𝑐𝑐(𝑘𝑘) = −Ω𝑣𝑣(𝑘𝑘). 

In the process of direct intervalley optical excitations through a circularly polarized light, 

only the orbital part of Bloch wavefunctions near the K/K' valleys of hexagonal monolayer  

TMDC couple to the optical field, although the spin component of carriers remains 

unchanged during this process. In ML-MoS2, the electron/hole bands around K/K' are 
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energetically degenerate. But the opposite nature of Berry curvature distributions, Ω (k) 

near the K/K' valleys helps to distinguish the valley carriers. The strength of Berry 

curvature distribution of valley carriers in ML-MoS2, can be altered significantly by tuning 

the onsite electronic energy and orbital occupation factor of a given Bloch state with 

application of tensile or compressive strain. Similar behaviour of Berry-curvature can be 

found in the monolayer h-NbN. We have investigated the effect of bi-axial strain on the Ω 

(k) of electron/hole bands near K1–points lying along the high symmetry Γ-K path. Unlike 

ML-MoS2, in monolayer h-NbN, the low energy valleys are not exactly around high 

symmetry K point. Due to 3-fold rotational C3 symmetry, three similar and degenerate 

valleys of same Berry-curvature around the high symmetry K-point have been observed 

which is a very rare occurrence, thereby exhibiting great possibilities for spin-valley 

physics in this material. The Berry curvatures of a pristine (0% strain) and strained 

monolayer h-NbN for all the occupied bands below the Fermi energy along the high-

symmetry line Γ-K-M-K- Γ has been shown in Fig. 4.16(b). The presence of strong spin-

orbit interaction along with time-reversal symmetry and absence of lattice inversion 

symmetry allows charge carriers of alternate valleys to exhibit opposite Berry curvatures 

as well as opposite spin polarization, where the Berry curvature, Ω (k) is mostly confined 

around the K1/K2 valleys and found to be highest at both the K1 and K2 valleys in the BZ 

with opposite sign. While away from K1/K2, Ω (k) decays rapidly to almost zero at the K-

point. In between, K-M path, a small peak arises and vanishes at M-point.  

Equation (4.3) clearly shows that the Berry curvature varies inversely as the magnitude of 

wavevector (k) and band gap (Δ). As the wavevector (~0.147 Å-1) and bandgap (~0.72 eV) 

in h-NbN monolayer is smaller than that in MoS2 monolayer (~0.210 Å-1, 1.69 eV), [241] 

Berry curvature in h-NbN monolayer (~51 Å2) is found to be more than 4 times than the 

MoS2 monolayer (~11 Å2) [241]. Recently, Duo et al. [242] theoretically predicted strong 

spin-valley coupling in 2D monolayers of MN2X2 (M=Mo, W; X=F, H) and reported 

Berry-curvature ~19.3 Å2 in monolayer WN2F2. To facilitate a reasonable functioning of 

the valleytronic device, it is essential to understand the physical mechanism underlying 

tunable Berry curvature in order to regulate the transverse transport velocity of carriers. In 

contrast to the previous strategies adopted to realize tunable Berry curvature, such as, 

constructing heterostructures of distinct 2D materials [204] and applying uniaxial strain (to 

such as monolayer MoS2), [243] we have shown that biaxial strain engineering could also 

effectively tune the magnitude of the Berry curvature. Ω(k) can be enhanced to the value 

of 60 Å2 by applying 5% bi-axial tensile strain as depicted in Fig. 4.16(b). Application of 
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biaxial strain reduces the band gap and the magnitude of the wave vector and hence, 

enhances the Berry curvature. Similarly, Wang et al. [232] investigated tunable Berry 

curvature in Janus TiXY (X≠ 𝑌𝑌, X/Y=Cl, Br, I) monolayers and showed that Berry 

curvature, Ω(k) of monolayer TiBrI can be enhanced to the value of 37.4 Å2 by applying 

2.5% bi-axial tensile strain from 29.7 Å2 in pristine structure.   

Similar to valley-contrasting Berry curvature Ω𝑖𝑖(𝑘𝑘) at the K1 and K2 points in the BZ, it 

is expected to have valley-contrasted circular dichroism 𝜂𝜂(𝑘𝑘) as depicted in Fig. 4.16(d) 

allowing selective excitation in the two valleys by photons with different optical circular 

helicity permitting valley-dependent manipulation. Li et al. [244] have investigated valley 

dependent properties of monolayer MSi2N4 (M=Mo, W) and shown that valley fermions 

manifest spin-valley coupling and valley selective optical dichroism. The Berry curvature 

Ω(𝑘𝑘) and optical circular dichroism 𝜂𝜂(𝑘𝑘) are related by; 

                                                                𝜂𝜂(𝑘𝑘) = Ω𝑛𝑛(𝑘𝑘)  .�̂�𝑧
𝜇𝜇𝐵𝐵

∗ (𝑘𝑘)
𝑒𝑒

2ℏ
Δ(𝑘𝑘)                                           (4.4) 

where 𝜇𝜇𝐵𝐵
∗ = 𝑒𝑒ℏ/2𝑚𝑚∗ and Δ(𝑘𝑘) = [𝜀𝜀𝑐𝑐(𝑘𝑘) −  𝜀𝜀𝑣𝑣(𝑘𝑘)] is the transition energy, or band gap at 

k.  

The optical polarization is defined as the difference between the absorption of the right- 

and left-handed circularly polarized lights (RHCP (𝜎𝜎+)/LHCP (𝜎𝜎−)), normalized by total 

absorption at each point in k-space, evaluated between the top of the valence bands (v) and 

the bottom of conduction bands (c). The k-resolved degree of optical polarization between 

the top of valence bands and bottom of conduction bands is called circular dichroism and 

it is calculated as,  𝜂𝜂(𝑘𝑘) = |𝑃𝑃+
𝑥𝑥𝑐𝑐|2−|𝑃𝑃−

𝑥𝑥𝑐𝑐|2

|𝑃𝑃+
𝑥𝑥𝑐𝑐|2+|𝑃𝑃−𝑥𝑥𝑐𝑐|2,  

 where the transition matrix element is 𝑃𝑃±
𝑐𝑐𝑣𝑣(𝒌𝒌) =  1

√2
(𝑃𝑃𝑒𝑒

𝑐𝑐𝑣𝑣(𝒌𝒌) ± 𝑖𝑖𝑃𝑃𝑦𝑦
𝑐𝑐𝑣𝑣(𝒌𝒌)).  

The inter-band matrix elements, 𝑃𝑃𝑐𝑐𝑣𝑣(𝒌𝒌) = < 𝜓𝜓𝑐𝑐𝑘𝑘| − 𝑖𝑖ℏ𝛁𝛁|𝜓𝜓𝑣𝑣𝑘𝑘 > are evaluated from DFT 

calculations using GGA functional. Circular dichroism polarization due to the direct inter-

band transition from the vicinity of the valence band edge to the vicinity of the conduction 

band edge can be clearly seen in Fig. 4.16(d).  At the energetic minima at the K1 and K2 

points, full selectivity occurs when 𝜂𝜂(𝑘𝑘) = 𝜏𝜏. The inter-band transitions at K1 valley (𝜏𝜏 =

+1) only couples to right-handed circularly polarized light (RHCP) (𝜎𝜎+), whereas left-

handed circularly polarized light (LHCP) (𝜎𝜎−) is used to excite the carriers at K2 valley 

(𝜏𝜏 = −1), as pictorially shown in Fig. 4.16(c). A right-handed (left-handed) circularly 

polarized photon can be selectively absorbed around the K1(K2) valley, while a left-handed 

(right-handed) one is totally forbidden. Consequently, the nonequilibrium distribution of  
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Figure 4.17 Vertical electric field modulation of (a) Rashba energy offset (∆ER), (b) 

momentum offset (∆kR), (c) Rashba constant (𝛼𝛼𝑅𝑅), (d) band gap (𝐸𝐸𝑔𝑔), (e) CB SOC splitting 

(∆𝑆𝑆𝑆𝑆
𝑐𝑐 ) and (f) VB SOC splitting (∆𝑆𝑆𝑆𝑆

𝑣𝑣 ) in h-NbN monolayer. 

 

 

charge carriers in two inequivalent valleys can be produced by selective optical pumping 

through circularly polarized light, which is essential for realizing valley Hall effects. [245] 

 

4.2.5 Response to vertical electric field  
As electric field control of Rashba SOC is of great significance in semiconductor 

spintronics, the application of an external electric field to the h-NbN monolayer has also 

been studied. In this section, a vertical electric field varying from −0.4 to +0.4 V/Å has 

been applied, and its response to Rashba splitting has been investigated. Rashba spin 

splitting and valley Zeeman splitting have been observed, as shown in Figs. 4.17(a)-4.17(f), 

which shows that the Rashba constant, αR  is linearly dependent on the strength of the 

electric field. Such a linear relationship between the electric field and the Rashba SOC 

strength will help a precise control of the spin precession in the spin-field-effect transistor. 

Under the application of a positive electric field, the value Rashba parameters are lowered, 

while the negative electric field increases the Rashba parameters. The value of αR is found 

to be regulated from 1.693 to 4.673 eVÅ. Recently, similar modulation of Rashba constant 

via vertical electric field is reported in ZnTe monolayer, where it rises from 0.9 to 1.35 

eVÅ [246]. Electric field response of CB SOC splitting (∆SO
c ) and VB SOC splitting is 
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found to be of opposite nature. With the application of positive (negative) electric field, 

∆SO
c  decreases (increases), while ∆SO

v  is increases (decreases). ∆SO
c (∆SO

v ) can be modulated 

from 123 (26) to 135 (37) meV. Band gap is also linearly changed from 0.420 to 0.795 eV. 

Such great tunability in the Rashba and valley properties under the vertical electric field is 

very useful in designing spintronic and valleytronic devices.   

 

4.3 CONCLUSIONS 
In this chapter, h-NbN and TaN monolayers have been demonstrated to be promising 2D 

valleytronic and spintronic materials on account of large Zeeman-type valley spin splitting 

and Rashba-type spin splitting. Monolayer h-NbN (TaN) shows Zeeman-type valley spin 

splitting (VSS) of 32 (112) meV and 130 (406) meV in valence band (VB) and conduction 

band (CB) respectively. At the same time, it exhibits large Berry curvature ~50 (73) Å2, 

which is more than four (six) times of monolayer MoS2 (~11 Å2). Inclusion of spin-orbit 

coupling yields the giant Rashba-type spin-splitting in the VB near the Fermi level. The 

Rashba energy and Rashba splitting constant of monolayer h-NbN (TaN) are found to be 

52 (74) meV and 2.90 (4.23) eVÅ, respectively, which are competitive with the giant 

Rashba spin splitting parameters realized so far in 2D materials. The strength of Zeeman-

type valley spin splitting and Rashba-type spin splitting is found to be substantially 

tweakable upon employing in-plane biaxial strain and out-of-plane electric field to the h-

NbN monolayer, owing to the mechanical flexibility in this 2D material. Our results suggest 

that this theoretically predicted 2D material could serve as an ideal platform for studying 

valley physics, Rashba physics and for the integration of valleytronics with the spintronics. 

The true indicator of strength of Rashba constants is found to be the dynamical Born 

effective charge (Zzz
∗ ) along the out-of-plane 𝑧𝑧 direction. 
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Chapter 5 
 

Electronic and optical properties of ZrS3/MS2 and 

ZrS3/MXY (M=Mo, W; X, Y=S, Se, Te; X≠Y) based 

type-II van der Waals heterostructure (vdWH) 

 

 

This Chapter is based on the work published in: 

Raihan Ahammed, Ashima Rawat, Nityasagar Jena, Dimple, Manish Kumar 

Mohanta, and Abir De Sarkar. "ZrS3/MS2 and ZrS3/MXY (M=Mo, W; X, 

Y=S, Se, Te; X≠Y) type-II van der Waals hetero-bilayers: prospective 

candidates in 2D excitonic solar cells." Appl. Surf. Sci. 499, 143894 (2020). 
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5.1 Introduction 

Ever since the discovery of graphene  [247], interest in two-dimensional (2D) layered 

materials has ever been on the rise from both scientific and technological 

perspectives  [248–251]. In the world of 2D materials, hexagonal boron nitride (h-

BN)  [172,252,253], the large family of transition-metal dichalcogenides 

(TMDCs)  [173,254–256] and lately, transition-metal trichalcogenides 

(TMTCs)  [187,188,257,258]  have captured a great deal of scientific attention. Besides, 

the 2D materials show a wide range of properties, which include large band gap 

insulators [259,260], semiconductors [261,262] and semimetals  [263,264]. Moreover, the 

atomically thin 2D monolayers offer themselves as essential building blocks in several 

devices owing to their superior electrical  [265], optical  [266] and thermal  [267] 

properties, which do not exist in their corresponding bulk structures  [268–273]. These 2D 

monolayers also exhibit excellent mechanical stability and can withstand mechanical 

deformation up to large extent due to strong in-plane covalent bonds  [274], which brings 

about large elastic limit. On the other hand, weak interlayer van der Waals interaction 

enables a facile exfoliation of 2D monolayers from their bulk counterpart as well as 

restacking of the monolayers arbitrarily into vertical heterostructures. Hence, it opens up 

several research avenues based on vdW heterostructures  [275–280]. Interestingly, 2D 

layered materials are devoid of dangling bonds and therefore, they can be readily stacked 

vertically to form vdW heterostructures, despite the differences in their crystal structures 

and lattice parameters  [281]. Thus, it is possible to expand the choice of materials for 

emerging applications based on heterostructures of 2D materials, as it does away with the 

need for a lattice match. The semiconductor heterojunctions have been harnessed in many 

solid-state devices, such as solar cells [92], photodetectors [282], semiconductor 

lasers  [283–285], and light-emitting diodes (LEDs)  [286–288]. 

2D semiconducting TMDCs, such as, molybdenum disulfide (MoS2) and tungsten disulfide 

(WS2), exhibit high room-temperature carrier mobility (~ 300 cm2V-1s-1), high current 

ON/OFF ratio (108) and excellent bendability which suit them for low power, high 

performance, flexible electronics [289–293]. The large carrier mobility and its ratio in these 

Group VI B transition-metal dichalcogenides (MX2: M=Mo, W; X=S, Se, Te) may assist 

an efficient charge carrier separation, which is particularly useful in optoelectronic 

applications, e.g., photovoltaics  [294–296], photocatalysis [297,298] and artificial 
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photosynthesis [299,300]. In terms of optical absorbance, WS2 monolayer is most suitable 

for photo-physical processes  [301].  

Janus phase (MXY: M=Mo, W; X=S, Se, Te; Y=S, Se, Te; X≠Y) [302] of TMDC is an 

important derivative which has become a research hot spot for their highly efficient 

photocatalytic properties  [303]. By replacing one of the chalcogen layers of MX2 with 

another type of chalcogen atoms, an asymmetric two-faced structure is formed. Ang-Yu 

Lu et al.  [190] have demonstrated a state-of-the-art synthetic strategy in synthesizing Janus 

structures in transition-metal dichalcogenides and proposed that the key to the synthetic 

approach is to control the reaction by kinetics rather than thermodynamics. 

In recent years, among the 2D materials, Group-IVB transition-metal trichalcogenides 

(MX3: M =Ti, Zr and Hf; X=S, Se or Te) have been assuming utmost importance due to 

their diverse chemical and physical properties. TMTCs have a unique chain-like structure 

which imparts quasi-one-dimensional properties to these monolayers, such as, high 

anisotropy in carrier mobility and optical properties due to its high degree of in-plane lattice 

asymmetry along its mutually orthogonal crystallographic orientations  [304–306]. 

Recently, a single layer ZrS3, which has been successfully synthesized using liquid 

exfoliation technique, is found to be structurally and mechanically stable  [307]. Its high 

spectral selectivity (405 to 780 nm) and excellent photo-switching effect (time period ~ 50 

s) attest its strong abilities for photodetection from visible to NIR range of the 

electromagnetic spectrum, which in turn, highlights the enormous prospects for the 

application of ZrS3 monolayers in high-performance nanoscale optoelectronic 

devices.  [189] 

Nowadays, atomically thin excitonic solar cell consisting of 2D vdW 

heterostructures  [308–310] are found to be immensely promising for their high charge 

carrier separation abilities. Such solar cells contain an interface (junction) of two materials 

which conduct two different types of carriers (electron/hole). Efficient separation of 

photogenerated electron-hole pairs at the interface and their collection at the electrodes 

produces electricity. The interface constituted by Schottky or p-n junction using 2D 

materials in XSC is very thin  [308]. The question arises whether it is practical to realize 

large enough solar energy conversion using such atomically thin layers. Theoretically, 

Bernardi and co-workers have reported the photovoltaic (PV) effects in 2D heterojunction 

formed from MoS2/WS2, including the Schottky barrier between MoS2 and 
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graphene  [311]. Their theoretical findings demonstrate that in the atomically thin 

monolayer based solar cells, the power conversion efficiency (PCE) can reach up to ∼1%, 

while power density (~ 250 kW/kg) gets approximately three orders of magnitude higher 

than the best existing solar cells (GaAs ~ 54 kW/kg).   

Recently, Furchi and co-workers have shown the PV effects in a hetero-interface made of 

n-type MoS2 and p-type WSe2 monolayers  [310]. The 2D hetero-interface shows PCE of 

about 0.2% and the external quantum efficiency (EQE) is found to reach up to 1.5%.  

MX3/M’Y3 and MX2/M’Y2  vdW hetero-bilayers have been studied by Q. Zhao et 

al.  [312]. No studies on MX3/M’X2 and MX3/M’Y2 vdW hetero-bilayers have been 

reported till date. Our present work is the first attempt to address such hetero-bilayers 

constituted by transition metal dichalcogenides and trichalcogenides, which have 

significant lattice mismatch. The nature of the band edges in ZrS3, and MS2 monolayers 

induce high electron mobility and high hole mobility in these monolayers, respectively, 

which can be combined synergistically in the hetero-bilayers consisting of them. 

Additionally, effective mass, deformation potential, and carrier mobility have been studied 

in our work to substantiate the aforementioned synergistic effects arising in the hetero-

bilayers.  

In the present chapter, vdW hetero-bilayers have been designed by stacking a single-layer 

of transition-metal trichalcogenide, specifically, ZrS3 on MS2 and MXY (M=Mo, W; X, 

Y=S, Se, Te; X≠Y) monolayers. The electronic, optical and transport properties in vdW 

ZrS3/MS2 hetero-bilayers have been investigated in detail based on first-principles density 

functional theory (DFT) calculations. The cumulative effect of robust carrier mobility, high 

carrier mobility ratio, large photo-absorption coefficient (α ~105 cm-1) and high PCE in 

ZrS3/MS2 and ZrS3/MXY hetero-bilayers makes them an excellent candidate in ultra-thin, 

2D excitonic solar cells. 

5.2 Results & Discussions 

5.2.1 Crystal structures of monolayer MoS2, WS2, their Janus structures 

MXY and ZrS3/MS2 vdW hetero-bilayers 

A single layer of MS2 crystallizes in a hexagonal honeycomb structure with the space group 

𝑃𝑃6�𝑚𝑚2 which corresponds to the space group number 187, as shown in Figs. 5.1(a) and 5.1(b).  
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Figure 5.1 (a), (d), (g) and (j) are side views of MoS2, MXY (M=Mo, W; X, Y=S, Se, Te; 

X≠Y), ZrS3 monolayers and the ZrS3/MoS2 hetero-bilayer respectively in the first column. 

While (b), (e), (h) and (k) are the top views them respectively in the second column. (c), (f), 

(i) and (l) represent the electron localization function (ELF) in the third column. In Fig. 

(b), a and b form the primitive lattice vectors in the hexagonal unit cell, while the non-

primitive lattice vectors a1 and b1 lie along the two mutually perpendicular directions in 

the rectangular unit cell. In-plane [100] direction is along x-axis, while [010] direction is 

along the y-axis. In Fig. (j), h is the inter-layer distance of the hetero-bilayer. 

 

The transition metal ions are sandwiched between two layers of S chalcogen ions. The optimized 

lattice parameter, both of MoS2 and WS2 is 3.18 Å, which is in good agreement with the previous 

studies [313–316].  Compared to the MS2 monolayer, Janus group-VI chalcogenides MXY (X, 

Y=S, Se, Te; X≠Y) crystallizes in hexagonal lattice without horizontal mirror symmetry having 

space group P3m1. The monolayer of ZrS3 has a unique one-dimensional chain-like structure, 

as depicted in Fig. 5.1(g). It crystallizes in the monoclinic structure with space group 𝑃𝑃21/𝑚𝑚 
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having space group number 11. The unit cell contains two basic molecular units in which Zr 

atoms lie at the center of each prism where six S atoms are coordinated at the corners, as 

displayed in Figs. 5.1(g, h). The optimized lattice constants of monolayer ZrS3 are found to be 

3.65 Å and 5.19 Å along a and b-axis respectively, which are consistent with other theoretical 

[16,98,100] and experimental  [317] results. The lattice constants, bond lengths, and vertical 

interlayer distance, as shown in Fig. 5.1 are tabulated in Table 5.1. To investigate the bonding 

nature, electron localization function (ELF) analysis has been performed, as shown in Figs. 

5.1(c), 5.1(f), 5.1(i) and 5.1(l) for MoS2, MoSeTe, ZrS3, and ZrS3/MS2 hetero-bilayers 

respectively. ELF measures the probability of finding an electron at a given position. The 

maximum value of 1 for ELF corresponds to the sound localization of electrons, which is 

indicated by red color in ELF plots. Green color corresponds to an ELF value of 0.5 which  

 

Table 5.1 Optimized lattice constants, bond lengths in TMDC monolayers, their Janus 

structures, ZrS3 monolayers and ZrS3/MS2 hetero-bilayers. 
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means uniform distribution of electronic cloud, while ELF=0 corresponds to a blue color 

indicating zero probability of finding electrons in that region. It is found that the electronic 

cloud is localized on the chalcogenide atoms, as represented by the red color, whereas 

electronic cloud delocalization occurs on the transition metal atoms, as indicated by green 

color. It confirms the presence of mixed bonding nature in these systems. Both covalent 

and ionic bonding play a part in the M-X bond. The well-separated ELF with no overlap 

between the two constituent monolayers of ZrS3/MS2 hetero-bilayer, as shown in Fig. 

5.1(l), implies that the two layers interact weakly via vdW forces. 

To ascertain the thermodynamic stability, the interface binding energy of the hetero-

bilayers has been calculated at different distances of separation between the individual, 

constituent monolayers, as shown in Fig. 5.2, using the following Equation (5.1),  

 

where 𝐸𝐸ℎ𝑒𝑒𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖., 𝐸𝐸𝑍𝑍𝑟𝑟𝑆𝑆3 and 𝐸𝐸𝑀𝑀𝑆𝑆2  are the total energies of the hetero-bilayer, ZrS3 and MS2 

(M=Mo,W) monolayers respectively. The binding energy is calculated using the GGA-

PBE exchange-correlation functional with DFT-D2 van der Waals correction. 

 

             

Figure 5.2 Variation in binding energy per unit inter-facial area of ZrS3/MS2 hetero-

bilayers with the interlayer distance of (a) case 1 (14 atoms in unit cell) and (b) case 2 (62 

atoms in unit cell) using the GGA-PBE exchange correlation functional with DFT-D2 van 

der Waals correction. 

𝐸𝐸𝑏𝑏 = 𝐸𝐸ℎ𝑒𝑒𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖. −𝐸𝐸𝑍𝑍𝑟𝑟𝑆𝑆3  −𝐸𝐸𝑀𝑀𝑆𝑆2                                                    (5.1) 
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Figure 5.3 Variation in binding energy per unit inter-facial area of ZrS3/MS2 hetero-

bilayers with the interlayer distance using the GGA-PBE exchange correlation functional 

with DFT-D2, DFT-D3, DFT-TS/HI for (a) case 1 and (b) case 2. 

Table 5.2 Lattice parameters (a, b), inter-layer distance (h) and binding energy (Eb) of 

ZrS3/MoS2 hetero-bilayer with different vdW-interactions. 

 

 

The variation in the binding energy with the interlayer distance is shown in Fig. 5.2, and 

the binding energies of ZrS3/MoS2 and ZrS3/WS2 bilayers for case 2 (case 1) are found to 

reach -23 (-30) meV/Å2 and -29 (-34) meV/Å2 respectively at the vdW minimum, implying 

that the process of hetero-bilayer formation is exothermic and exothermicity is higher in 

magnitude than the previously reported vdW hetero-bilayers, such as, GaSe/graphene (-

18.4 meV/ Å2)  [318], g-C3N4/MoS2 (-17.8 meV/ Å2)  [319]. Furthermore, this binding 

energy is also more than that of typical vdW crystals like graphite (-12.0 meV/ Å2)  [195] 

and bulk MoS2 (-26.0 meV/ Å2)  [320]. Hence, the ZrS3/MS2 hetero-bilayers will be 

comparatively more stable. MoS2 and WS2 are piezoelectric materials. They polarize the 

electronic cloud on ZrS3 and induce dipole moments in it. As a result, the vdW interaction 

or binding between ZrS3 and MS2 is strengthened. The effect of WS2 is stronger owing to 

its higher piezoelectric coefficient and Bader charges on the S atoms. 
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 For a systematic study, DFT-D2 results have been compared with two other DFT 

correction methods, such as DFT-D3 and DFT-TS/HI. Geometric structure, electronic, and 

optical properties are not found to vary much with the different vdW correction/dispersion 

as depicted in Figs. 5.3-5.4 and Table 5.2-5.3. The value of lattice parameters, interlayer 

distance, and interfacial binding energy are very close in different vdW corrections. For 

ZrS3/MoS2 hetero-bilayer of case 1, DFT-D3 and DFT-TS/HI give higher interfacial 

binding energy (-42, -40 meV/ Å2) than DFT-D2 (- 30 meV/Å2). The interfacial binding 

energy of ZrS3/MoS2 hetero-bilayer of case 2 are -23 and -36 meV/Å2 for DFT-D2 and 

DFT-D3 respectively (see in Fig. 5.3 and Table 5.2). The variation in the Power Conversion 

Efficiency (PCE) in the ZrS3/MoS2 hetero-bilayer (case 1) with different types of vdW 

corrections are found to be in the range of 17-20% in Table 5.3. DFT-D2 is found to be the 

most optimum one in terms of giving out the lowest interlayer binding energies and highest 

PCE. The electronic and optical properties will be discussed in the following section in 

more details. 

 

 

Figure 5.4 (a) Band structure and (b) absorption coefficient (α) of ZrS3/MoS2 hetero-

bilayer for case 1 using HSE06+DFT-D2, DFT-D3 and DFT-TS/HI.  Fermi level is set to 

zero. 
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Table 5.3 Power Conversion Efficiency (PCE) of ZrS3/MoS2 hetero-bilayer for case 1 

using HSE06+DFT-D2, DFT-D3 and DFT-TS/HI. 

 

 

 

 

 

Figure 5.5 Phonon frequency dispersion of ZrS3/MS2 hetero-bilayers (Case 1). 

 

Phonon dispersion calculations have been carried out to ascertain the dynamical stability. 

The phonon band dispersions of ZrS3/MS2 hetero-bilayers (case1) have been provided in 

Fig. 5.5. Except for a small pocket of negative frequency (-0.12 THz or -4.0 cm-1) near the 

Γ point, no trace of imaginary frequency is observed in the Brillouin zone. This small 

pocket is extremely sensitive to the details of the calculations, and in some cases, it goes 

off altogether. It simply shows the difficulty in reaching numerical convergence for the 

flexural phonon mode, which happens to be a common issue in ab-initio calculations on 

2D materials  [228]. Small pockets of negative frequency around the Γ point arising from 

vdW-

interaction  

Band gap (eV) 

of the hetero-bilayer 

Donor (MoS2)   

band gap (eV) 

ΔEc (eV) PCE (%) 

DFT-D2 1.41 1.52 0.11 20.4 

DFT-D3 1.46 1.72 0.26 16.5 

DFT-TS/HI 1.44 1.62 0.22 17.8 
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the flexural acoustic (ZA) modes have also been observed in graphene, silicone, 

molybdenum disulfide and gallium chalcogenides. This region of instability is particularly 

dependent on simulation parameters, such as supercell size and k-point sampling. For these 

reasons, these negative frequencies are understood to be spurious [228]. The hetero-

bilayers are therefore found to be dynamically stable, despite large magnitude of strain in 

the unit cell of the hetero-bilayers. Moreover, the hetero-bilayers meet the Born-Huang 

stability criteria for mechanical stability. 

5.2.2 Electronic properties 

The electronic properties of these systems have been explored in detail via first-principles 

density functional theory. Hybrid HSE06 exchange-correlation functional has been used 

for a more accurate description of the electronic band structure of these systems. The orbital 

projected band structures of the hexagonal cell of monolayer MoS2 and WS2 have been 

depicted in Figs. 5.6(a) and 5.6(b) respectively which show direct band gap of 2.14 eV and 

2.30 eV at the high symmetry K points. However, the band structure of monolayer ZrS3, as 

displayed in Fig. 5.6 (c), shows an indirect bandgap of value 2.07 eV. Nonetheless, the 

hetero-bilayers (case 1) of ZrS3/MS2 are found to show a direct bandgap at the high 

symmetry Γ point, as depicted in Figs. 5.6 (d) and 5.6(e). The band gap in ZrS3/MoS2 and 

ZrS3/WS2 hetero-bilayers (case 1) have been calculated to be 1.41 and 1.17 eV respectively, 

which are suitable for photovoltaic applications. In case 1, individual monolayers are under 

significant level of strain, and the strain effects are apparent in the band structure in Fig. 

5.7.  Figs. 5.4 and 5.6 show that the band gap changes from 2.14 (2.28) eV to 1.52 (1.61) 

eV in MoS2 (WS2) monolayer, while in the ZrS3 monolayer the same changes from 2.07 

eV to 1.46 eV. As the donor band gap material MS2 is under shear strain in case 1, its band 

gap decreases with respect to the pristine MS2 and the band gap turns indirect while ZrS3 

monolayer remains indirect. The hetero-bilayers have been studied in a larger supercell, 

labeled as case 2, where the magnitude of strain is relatively small. MS2 is subject to biaxial 

compressive strain in case 2, which raises its band gap while retaining the directness in the 

band gap as displayed in Figs. 5.9(a, b). Figs. 5.9(c,d) show energy of band edges (VBM 

and CBM) of the individual monolayers in the ZrS3/MS2 hetero-bilayer (case 2), as 

identified in Figs. 5.5(a) and 5.5(b) as calculated using HSE06 with DFT-D2 for a higher 

accuracy in PCE calculations. For case 2, the band gap changes from 2.14 (2.28) eV to 2.58 

(2.54) eV in MoS2 (WS2) monolayer, while in the ZrS3 monolayer the same changes from 

2.07 eV to 2.39 (2.32) eV. 
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Figure 5.6 Orbital projected electronic band structure of (a) MoS2, (b) WS2, (c) ZrS3 

monolayers HSE06 hybrid functional, (d) ZrS3/MoS2 and (e) ZrS3/WS2 hetero-bilayers 

(case 1) using HSE06 hybrid functional with DFT-D2 correction. Fermi level has been set 

to zero. Brillouin Zone of (f) hexagonal lattice of MS2 and (g) rectangular lattice of ZrS3 

and ZrS3/MS2. 

 

Three stacking modes in case 1 have been studied in this work and the variation in the 

studied properties with the stacking order are found to be ignorable, as depicted in Fig. 5.7 

and Table 5.4. The variation in Power Conversion Efficiency (PCE) with different stacking 

sequences is less than 1.1%. The calculation of PCE has been discussed in the following 

section.  

Table 5.4 Power Conversion Efficiency (PCE) of ZrS3/MoS2 hetero-bilayer in different 

stacking. 

Stacking  Band gap (eV) of 

the hetero-bilayer 

Donor Bandgap (eV) ΔEc (eV) PCE (%) 

S1 1.41 1.52 0.11 20.4 

S2 1.46 1.54 0.08 20.8 

S3 1.45 1.57 0.12 19.8 
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Figure 5.7 Relaxed geometric structure of ZrS3/MoS2 hetero-bilayer in different stacking 

(a) S1, (b) S2, (c) S3.  In Stacking-1, Mo atoms are placed above S atoms of ZrS3 sheet. In 

Stacking-2, MoS2 sheet is translated such that Mo atoms are placed on top of Zr atoms. In 

Stacking-3, MoS2 sheet is rotated by 180 degree. (d, e) Band structures of ZrS3/MoS2 

hetero-bilayer with different stacking. Band energy are plotted with respect to vacuum. 

(HSE06 + DFT-D2). 

Conduction band minimum (CBM) of MS2 mainly comprise of M-d(z2) and S-px, py orbitals 

while valence band maximum (VBM) consists of M-d(x2-y2), M-dxy and S-px, py orbitals. 

For the case of MS2, VBM and CBM correspond to bonding and anti-bonding states, as 

they arise from the hybridization between M-d and S-p orbitals. So, the VBM and CBM 

are, in a way, coupled. However, the CBM of ZrS3 monolayer is mainly contributed by Zr-

d orbitals while its VBM is chiefly composed of S-p orbitals. Therefore, the band edges are 

decoupled for ZrS3 monolayer. 

The effect of strain on coupled and decoupled band edges are opposite  [321]. In MS2 (ZrS3) 

monolayers, the band gap decrease (increase) with the application of tensile strain [321]. It 

has important implications for the carrier deformation potential, which is an essential 

ingredient in the calculation of carrier mobility, as discussed in a later section. The detailed 

information on deformation potential of ZrS3, MS2 monolayer and their hetero-bilayers has 

been depicted in Figs. 5.13-5.16. The deformation potential for holes is lower than that of 

electrons for MS2, which causes higher mobility for holes in MS2. The underlying physical 

picture has been discussed in detail in an earlier work  [301]. The kinetic energy of a state, 



  Chapter 5  

 

Page | 109  

 

say, VBM or CBM, is proportional to the square of the reciprocal lattice vector and 

therefore, kinetic energy both in CBM and VBM drop with the application of tensile strain. 

The potential energy of a state depends on band width. The width of the decoupled band 

edges (i.e., conduction and valence bands) in ZrS3 monolayer narrows with the application 

of tensile strain as a consequence of localization of states  [321], which in turn raises 

(lowers) the potential energy of CBM (VBM). The potential (kinetic) energy of CBM shifts 

up (down) under the application of tensile strain. The downshift in kinetic energy 

outweighs the upshift in potential energy and therefore, a resultant downshift in the CBM 

is observed. Thus, the change in total energy is small, giving rise to a low deformation 

potential for electrons in ZrS3 monolayers. However, in the case of VBM, both the potential 

energy and its kinetic energy shift down with the application of tensile strain. As the change 

in total energy is substantial, it causes high deformation potential for holes. The resultant 

is high (low) mobility for electrons (holes) in ZrS3 monolayer, which is precisely opposite 

to that of the MS2 monolayers. The underlying physical picture or mechanism revealed 

herein can account for the low (high) deformation for electrons (holes), and the resultant 

high (low) mobility for electrons (holes) observed on TiS3 monolayer  [304], which belongs 

to the same family as ZrS3.  

The electronic properties have been investigated further via the atomic layer projected band 

structure, as depicted in Figs. 5.8(a, b) and Figs. 5.9(a, b). It is clearly shown that valence 

band maxima (VBM) originate from MS2 layer and conduction band minima consist of 

ZrS3 layer, confirming type-II band alignment of the vdW hetero-bilayers. So, these hetero-

bilayers would be very effective in separating the electrons and holes on ZrS3 and MS2 

monolayers respectively, upon photo-absorption, and thereby in minimizing the carrier 

recombination rate. The high electron (hole) mobility in ZrS3 (MS2) monolayers can be 

synergistically utilized in these type-II hetero-bilayers, as discussed in a subsequent 

section. 

The type-II nature of these hetero-bilayers is also confirmed by the band decomposed 

charge density corresponding to the VBM and CBM, as shown in Figs. 5.8(c, d). It is found 

that the band decomposed charge density of the highest occupied molecular orbital 

(HOMO) or VBM lies on the MS2 monolayer whereas the lowest unoccupied molecular 

orbital (LUMO) or CBM occurs on the ZrS3 monolayer. In the photo-physical process, the 

MS2 monolayer acts as the donor level while ZrS3 monolayer serves as the acceptor level. 
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Figure 5.8 Atomic layer projected band structure of (a) ZrS3/MoS2 and (b) ZrS3/WS2 vdW 

hetero- bilayers of case 1. Colour bar represents contribution of MS2 layer. Fermi level is 

set to zero.The band decomposed charge density corresponding to the VBM and CBM of 

(c) ZrS3/MoS2 and (d) ZrS3/WS2 vdW hetero-bilayer with an isosurface value of 0.005 e/Å-

3. (HSE06+DFT-D2). The calculation of PCE has been discussed in section 5.2.3. 

 

The conduction band offset (CBO) in these two hetero-bilayers have been calculated by 

atomic layer projected band structure of the hetero-bilayers, as shown in Figs. 5.8(a, b) and 

Figs. 5.9(a, b). The CBOs in ZrS3/MS2 (M=Mo, W) are found to be 0.11 eV and 0.44 eV 

respectively. In several findings, including high throughput calculations [309], the CBO is 

routinely calculated, within the Anderson limit, from the difference in electron affinity 

between the isolated donor and acceptor, without addressing the actual heterostructure. 
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Figure 5.9 Atomic layer projected band structure of (a) ZrS3/MoS2 and (b) ZrS3/WS2 vdW 

hetero- bilayers of case 2 using GGA-PBE with DFT-D2. Colour bar represents 

contribution of MS2 layer. Fermi level is set to zero. (c,d) Energy of band edges (VBM and 

CBM) of the individual monolayers in the ZrS3/MS2 hetero-bilayer (case 2), as identified in 

(a) and (b) have been calculated further using HSE06 with DFT-D2 for a higher accuracy 

in PCE calculations. Energy of band edges are plotted with respect to vacuum level. 

 

 The band gap of the individual and isolated donor goes into the calculation of PCE.  

Although PCE is calculable with reasonable accuracy from the differences in electron 

affinities; yet, many important properties of the heterostructures are not unveiled from this 

perspective. For instance, the changes in the band gap, optical absorbance, deformation 

potential and carrier mobility between the heterostructures and the individual components 

can be important.  
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5.2.3 Power Conversion Efficiency (PCE) 

For these vdW hetero-bilayers, a practical upper limit to the power conversion efficiency 

has been estimated by employing the method introduced by Scharber et al.  [322], which is 

commonly employed in efficiency calculations. The maximum PCE, η for such devices 

with type-II alignment can be calculated by Formula (5.2) 

                            η =  𝐽𝐽𝑠𝑠𝑥𝑥𝑉𝑉𝑜𝑜𝑥𝑥𝛼𝛼𝐹𝐹𝐹𝐹
𝑃𝑃𝑠𝑠𝑜𝑜𝑘𝑘𝑠𝑠𝑠𝑠

 = 
0.65�𝐸𝐸𝑔𝑔

𝑑𝑑−𝛥𝛥𝐸𝐸𝑥𝑥−0.3� ∫
𝐽𝐽𝑝𝑝ℎ(ħ𝜔𝜔)

ħ𝜔𝜔 𝑑𝑑(ħ𝜔𝜔)∞
𝐸𝐸𝑔𝑔

𝑑𝑑

∫ 𝐽𝐽𝑝𝑝ℎ
∞

0 (ħ𝜔𝜔)𝑑𝑑(ħ𝜔𝜔)
                                    (5.2) 

where Jsc is the short circuit current, Voc is the open circuit voltage, βFF is the fill factor 

(FF), and Psolar is incident solar energy power, Jph (ħω) is the AM1.5 solar energy flux (Wm-

2eV-1) at the photon energy ħω, and Eg
d is the energy bandgap of the donor materials (MS2 

monolayers). 

In this calculation, the fill factor (βFF) is assumed to be 0.65, as inferred from the Shockley-

Queisser limit  [147]. The maximum open circuit voltage Voc (in eV units) is estimated as 

(Eg
d - ΔEc - 0.3) where the effective interface gap (Eg

d - ΔEc) is calculated as the energy 

difference between HOMO level of the donor and LUMO level of the acceptor and the 

value 0.3 in the Voc term accounts for energy conversion kinetics. 

In the equation, the integral in the numerator is the short circuit current, Jsc, which has been 

calculated using an upper bound of 100 % for external quantum efficiency (EQE), while 

the denominator is the integrated AM1.5 solar energy flux, which amounts to 1000 W/m2. 

The efficiency, η is thus estimated as the product FF.Voc.Jsc normalized by the incident 

energy flux, at the limit of 100% EQE. 

The band edges of isolated monolayers have been indicated in Fig. 5.10(a). As shown in 

Fig. 5.10(b), the PCEs in ZrS3/MoS2 and ZrS3/WS2 vdW hetero-bilayers, calculated within 

the Anderson limit (i.e., case 3), from the band edges of the isolated monolayers, in an 

absolute vacuum scale, reach 12% and 8% respectively. However, when hetero-bilayers of 

ZrS3 monolayer and the different Janus monolayers are considered, the PCE is enhanced. 

ZrS3/MoSTe, ZrS3/WSTe ZrS3/WSeTe hetero-bilayers show 16%, 14% and 14% PCE 

respectively in the Anderson limit. Conduction band offset is also found to be very sensitive 

to the application of strain. In case 1, it is 0.11 eV for ZrS3/MoS2 hetero-bilayer, while it is 

0.56 eV in case 2, as tabulated in Table 5.5 and 5.6. Consequently, beyond the Anderson 

limit, the modeled hetero-bilayers of ZrS3/MoS2 show PCE of about 20% and 6% for case  
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Table 5.5 Power Conversion Efficiency (PCE) of ZrS3/MoS2 hetero-bilayer in different 

case using HSE06 + DFT-D2.  

ZrS3/MoS2   Band gap (eV) Donor Bandgap 

(eV) 

ΔEc (eV) PCE (%) 

S1(Case 1) 1.41 1.52 0.11 20.4 

     S1(Case 2) 2.02 2.58 0.56 5.9 

 

Table 5.6 Power Conversion Efficiency (PCE) of ZrS3/WS2 hetero-bilayer in different case 

using HSE06 + DFT-D2. 

ZrS3/WS2   Band gap (eV) Donor Bandgap (eV) ΔEc (eV) PCE (%) 

S1(case 1) 1.17 1.61 0.44 14.2 

     S1(case 2) 1.79 2.54 0.75 5.3 

 

 

1 and case 2 respectively. These PCE values are much larger than MoS2/p-Si heterojunction 

solar cells (5.23%)  [294]  reported till now and are comparable to that of the theoretically 

proposed PCBM fullerene/BCN system (10−20%)  [323] and g-SiC2-based systems  

(12−20%)  [324] and the recently predicted TiNF/TiNBr (18%), TiNCl/TiNBr (19%), 

TiNF/TiNCl (22%) bilayer solar cell systems  [325]. Furthermore, our predicted systems 

are competitive with that of recently proposed hetero-bilayer of GeSe/SnS systems 

(~18%)  [326], bilayer phosphorene/MoS2 systems (16–18%)  [327], and 

phosphorene/TMDC systems (4–12%)  [328] for highly efficient solar cells. 
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Figure 5.10 (a) Band edges of ZrS3, MoS2, MoSeTe, WS2, WSSe, WSTe, WSeTe isolated 

monolayers calculated with respect to the absolute vacuum level using HSE06 functional. 

(b) Computed power conversion efficiency (PCE) contour as a function of donor bandgap 

and conduction band offset. The calculated PCE according to Anderson limit of possible 

type-II     hetero-bilayers (Case 3) have been indicated by circles and stars. 
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5.2.4 Optical property 

A good photovoltaic material should be able to absorb significant part of the visible light 

spectrum efficiently. Absorption coefficient determines most of the optical properties of a 

material. Materials with high absorption coefficient in the visible light wavelength range 

are therefore desirable. The absorption coefficient of a substance is related to the 

frequency-dependent dielectric function. The optical properties are calculated from the 

complex dielectric function, ε (ω) = ε1 (ω) + i ε2 (ω). The optical parameters, such as the 

extinction coefficient, absorption coefficient is based on 𝜀𝜀1 and 𝜀𝜀2. The computational 

methodological details on the calculation of optical properties, such as extinction 

coefficient (𝜅𝜅) and absorption coefficient (α) are provided in the computational details. 

Fig. 5.11 shows the absorption coefficient as a function of wavelength. The maximum 

visible light absorption for MoS2, WS2, and ZrS3 monolayers arises at 598 nm, 537 nm, 

and 459 nm respectively. These three peaks correspond to the transitions from VBM to 

CBM in the respective monolayers. The hetero-bilayers of ZrS3/MoS2 and ZrS3/WS2 for 

case 1 show peaks in the visible range at 623 nm and 590 nm respectively. The hetero-

bilayers of ZrS3/MoS2 and ZrS3/WS2 for case 1 show peaks in the visible range at 623 nm 

and 590 nm respectively as depicted in Fig. 5.12. These peaks are red-shifted relative to 

the peaks of individual monolayers as the bandgaps of the individual monolayers are 

decreased. While for case 2 the peaks are blue shifted as the bandgaps of the individual 

monolayers are increased. The first peaks of the hetero-bilayers of ZrS3/MoS2 and 

ZrS3/WS2 for case 2 arise at 339 nm and 314 nm respective as shown in Fig. 5.11.  

 

Figure 5.11 Absorption coefficient (α) of MoS2, WS2, ZrS3 monolayers and ZrS3/MS2 

hetero-bilayers for Case 2 using HSE06 + DFT-D2. 



  Chapter 5  

 

Page | 116  

 

 

Figure 5.12 Real (𝜀𝜀1) and imaginary (𝜀𝜀2) part of the dielectric function of (a) MoS2, WS2, 

ZrS3 monolayers using hybrid HSE06 functional and (b) ZrS3/MoS2, ZrS3/WS2 hetero-

bilayers (Case 1) using HSE06 with DFT-D2. (c) Extinction coefficient (κ) and (d) 

Absorption coefficient (α) as the function of wavelength. 

 

The calculated absorption spectra, as shown in Fig. 5.11, reveal photo-absorption in the 

visible region with a very high absorption coefficient, (𝛼𝛼𝑎𝑎𝑏𝑏𝑎𝑎.) ~ 105 𝑐𝑐𝑚𝑚−1. Overall, the 

hetero-bilayer shows good absorbance over the entire spectrum of the visible wavelength 

(380-750 nm). Therefore, ZrS3/MS2 hetero-bilayers are confirmed to be efficient visible 

light harvesting photovoltaic materials. 
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Figure 5.13 Deformation Potential of ZrS3 monolayer. VBM_A and VBM_B represent the 

valence band minima when strain is applied along A-axis and B-axis respectively. A-axis 

& B-axis correspond to [100] and [010] directions respectively. Band edges are plotted 

with respect to vacuum. (GGA-PBE) 

 

Figure 5.14 Deformation Potential of (a) MoS2 and (b) WS2 monolayer. Band edges are 

plotted with respect to vacuum. (GGA-PBE). 

 

Figure 5.15 Deformation Potential of (a) ZrS3/MoS2 and ZrS3/WS2 hetero bilayers. Band 

edges are plotted with respect to vacuum. (GGA-PBE with DFT-D2). 
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Figure 5.16 Deformation Potential of (a) ZrS3/MoS2 and ZrS3/WS2 hetero bilayers of case 

2. Band edges are plotted with respect to vacuum. VBM_A and VBM_B represent the 

valence band minima when strain is applied along A-axis and B-axis respectively. A-axis 

& B-axis correspond to [100] and [010] directions respectively. (GGA-PBE + DFT-D2) 

 

5.2.5 Transport property 

Charge carrier mobility also plays a vital role in determining the photovoltaic activity of 

solar cell material. Higher carrier mobility along with large carrier mobility ratio is required 

to prolong the carrier lifetime or reduce the electron-hole recombination rate and in turn, 

facilitating the optimal utilization of the carriers in the photophysical processes. Moreover, 

lower the exciton binding energy, easier it would be to separate the electron-hole pairs.  

The calculated values of the effective mass (𝑚𝑚∗), exciton mass (𝜇𝜇𝑒𝑒𝑒𝑒), macroscopic static 

dielectric constant (𝜀𝜀), the exciton binding energy(𝐸𝐸𝑏𝑏
𝑒𝑒𝑒𝑒), elastic stiffness constant (C2D), 

deformation potential (Ei), and carrier mobility (μ2D) are summarized in Table 5.7. Acoustic 

phonon limited carrier mobility has been calculated based on the formulation of Bardeen 

and Shockley [135] and the most advanced cum robust one by Lang et al [145]. It is 

observed that in the monolayer of ZrS3, the electron mobility is very high (~2500 cm2V-1s-

1) along the direction which is perpendicular to the chain-like structure. The electron 

mobility is altered in the hetero-bilayers of ZrS3/MS2 (M=Mo, W) of case 2 relative to the 

individual monolayers; however, the order of magnitude is retained with electron mobility 

reaching ~5124 and 1191 cm2V-1s-1, respectively. 
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Table 5.7 Elastic stiffness constant (C2D), deformation potential (E2D), effective mass (m*), 

carrier mobility (μ2D), static dielectric constant (ε), exciton effective mass (𝜇𝜇𝑒𝑒𝑒𝑒) and exciton 

binding energy (𝐸𝐸𝑏𝑏
𝑒𝑒𝑒𝑒) of MS2, ZrS3 monolayers and ZrS3/MS2 hetero-bilayers (Case 1 and 

Case 2). aRef 116, bRef 117.     

 

 

Likewise, the order of magnitude in the hole mobility in MS2 monolayers is retained in this 

type-II vdW hetero-bilayers along the [100] direction, as tabulated in Table 5.7. 

Furthermore, the mobility ratio of the charge carriers has been evaluated using the 

following relation, 𝑅𝑅𝛼𝛼 = max�𝜇𝜇𝑒𝑒_𝛼𝛼,𝜇𝜇ℎ_𝛼𝛼�
min�𝜇𝜇𝑒𝑒_𝛼𝛼,𝜇𝜇ℎ_𝛼𝛼�

 , where 𝛼𝛼 is either along [100] or [010] direction, 

as shown in Figs. 5.17(a) and 5.17(b). 
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Figure 5.17 Carrier mobility ratio (R) of monolayer MoS2, WS2, ZrS3 and the ZrS3/MS2 

hetero-bilayers (case 2) along (a) [100] and (b) [010] direction. (c) Exciton binding 

energies of these systems calculated using Mott-Wannier hydrogenic model. 

 

The carrier mobility ratio of ZrS3/MS2 hetero-bilayer (case 2) is found to be comparable to 

the individual monolayers. It is also found that the exciton binding energy of ZrS3/MS2 

hetero-bilayer of case 2 along [100] direction is 0.15 eV which is much less than the value 

~ 0.57 (0.53) eV along [010] direction, as depicted in Fig. 5.17(c). Not only that, exciton 

binding energy in the hetero-bilayer along the [100] direction is lowered with respect to the 

individual constituent monolayers on account of the higher macroscopic dielectric constant 

(or relative permittivity) in the hetero-bilayer. The exciton binding energy is also found to 

be strain sensitive. In case 2, the individual monolayers in the hetero-bilayers are under a 

relatively smaller strain than case 1. Smaller excitonic mass and larger macroscopic static 

dielectric constant, as tabulated in Table 5.7, causes a smaller excitonic binding energy as 

compared to case 1. Mott-Wannier hydrogenic model has been consistently used in this 

work to calculate the exciton binding energies based on two different considerations of the 

macroscopic static dielectric constants, as shown in Table 5.8. Generally, exitonic binding 

energy is calculated using GW-BSE theory for a higher accuracy. Rasmussen and Thygesen 

have benchmarked the Mott-Wannier hydrogenic model against the complete GW-BSE 

calculations and have found the exciton binding energies to vary by less than 0.1 eV  [321] 

for 2H-MoS2 and 2H-WS2. It is known that Mott-Wannier exciton binding energies are 
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generally smaller than the ones obtained using GW methods. However, once the Mott-

Wannier model is adapted to the 2D systems [329,330], i.e. 𝐸𝐸𝑏𝑏
2𝐷𝐷 = 4 x 𝐸𝐸𝑏𝑏

3𝐷𝐷 =  

4x 13.6 x 𝜇𝜇𝑒𝑒𝑒𝑒
𝑜𝑜0𝑑𝑑2  (eV), where 1

μex
 = 1

me
 + 1

mh
, the Mott-Wannier exciton binding energy reaches 

closer to experiments [331] and the GW values [330]. A. Ramasubramaniam [330] has 

calculated exciton binding energy using the Mott-Wannier model based on the effective 

macroscopic static dielectric constant (ɛ𝑒𝑒𝑓𝑓𝑓𝑓 = �ɛ𝑒𝑒(𝑦𝑦). ɛ𝑧𝑧) and have found the excitonic 

binding energy of monolayer MoS2 to be 0.85 eV, which is very close to our calculated 

value (0.96 eV), tabulated in Table 5.8. Exciton binding energy calculated via G0W0-BSE 

is 1.04 eV [330]. Advantageously, the carrier mobility and their ratio are high along the 

[100] direction where the exciton binding energy is low (~0.15 eV), thereby easing the 

separation of electron-hole pairs along the [100] direction and enhancing their utility in 

photovoltaics. These results indicate that current needs to be collected along the [100] 

direction in the photovoltaic set up for optimum efficiency. 

 

 

Table 5.8 Exciton binding energy of the materials. 
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5.3 CONCLUSIONS 

In this chapter, electronic, optical, and transport properties in two-dimensional vdW hetero-

bilayers of ZrS3/MS2 and ZrS3/MXY (M=Mo, W; X, Y=S, Se, Te; X≠Y) have been 

investigated in-depth for the purpose of exploring their prospects for applications in 

photovoltaics using first-principles calculations. These vdW hetero-bilayers exhibit type-

II band alignment except in ZrS3/MoSSe and ZrS3/MoSTe heterobilayers. The higher 

energy of the conduction band edge in transition metal dichalcogenide (TMDC) 

monolayers with respect to that of transition metal trichalcogenide (TMTC) monolayers 

makes the former and latter, donor and acceptor materials, respectively, in solar energy 

conversion. Synergy is attained in ZrS3/MS2 hetero-bilayers via the realization of robust 

carrier mobility (μelectron~5124, 1191 cm2V-1s-1, μhole~2690, 5383 cm2V-1s-1) along the [100] 

direction. Besides, exciton binding energy is found to be encouragingly small (~0.15 eV) 

along the [100] direction, where the carrier mobility and the carrier mobility ratio are 

substantially high, thereby facilitating an efficient separation of electron-hole pairs along 

this direction. These results suggest that electrical current needs to be collected along the 

[100] direction in the actual photovoltaic set up for an optimum efficiency. Moreover, 

photo-absorbance is found to reach the order of 105 cm-1. Overall, it necessitates a more 

detailed study on the optoelectronic and transport properties in the hetero-bilayers 

comprising of Janus TMDC monolayers and ZrS3 monolayer, such as, ZrS3/MoSeTe, 

ZrS3/WSTe and ZrS3/WSeTe. The Power Conversion Efficiency in these three 

heterobilayers are found to reach as high as 16%, 14%, and 14% respectively. The 

comprehensive study reported herewith illustrates a new avenue for an efficient solar 

energy conversion at the nanoscale based on ZrS3/MS2 and ZrS3/MXY vdW hetero-

bilayers in ultrathin, 2D excitonic solar cells.
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6.1 Summary 

In this final chapter, the important findings of this Ph.D. research work, illustrated in the 

form of various chapters in this thesis, have been summarized. The fundamental goal of 

this thesis is to first comprehend the intrinsic properties of 2D monolayers from first-

principles quantum mechanical calculations and then, propose them for their applications 

in futuristic electronic devices and nano-energy harvesting systems. This thesis reflects a 

broad range of cutting-edge research areas extending from energy harvesting from 

renewable resources to next-generation devices utilizing novel properties and different 

degrees of freedom of electrons which emerge in atomically thin 2D semiconductors and 

their van der Waals heterostructures and offers atomic-scale insights through the lens of 

first-principles calculations based on the state-of-art density functional theory. The 

approach implemented in the Ph.D. work involves in studying the several entangled 

properties in a multifunctional material, thereby enabling to draw a systematic correlation 

between them. A summary of the strategies used and results obtained have been provided 

below: 

Chapter 1 provides a broad overview of the necessity and significance of 2D materials in 

futuristic electronic devices and different energy harvesting systems. The chapter 

underlines the applications of the 2D materials in the areas of piezotronics, spintronics, 

valleytronics, and solar cells. 

Chapter 2 illustrates an overview of the density functional theory and computational 

methodologies that have been used to determine properties provided in various chapters. 

Chapter 3 highlights the piezoelectric and Rashba properties of 2D Janus transition metal 

trichalcogenide monolayers and their bilayers. The simultaneous occurrence of gigantic 

piezoelectricity and Rashba effect in two-dimensional materials are unusually scarce. 

Inversion symmetry occurring in MX3 (M= Ti, Zr, Hf; X= S, Se) monolayers is broken 

upon constructing their Janus monolayer structures MX2Y (X≠Y=S, Se), thereby inducing 

a large out-of-plane piezoelectric constant, d33 (~68 pm/V) in them. d33 can be further 

enhanced to a super high value of ~1000 pm/V upon applying vertical compressive strain 

in the van der Waals bilayers constituted by interfacing these Janus monolayers. Moreover, 

the absence of horizontal mirror symmetry and presence of strong spin-orbit coupling cause 

Rashba spin splitting in the electronic bands with high Rashba parameter (αR ~ 1.08 eVÅ), 
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which is much larger than the Janus MoSSe monolayer (αR~0.53 eVÅ) and GaSe/MoSe2 

heterostructure (αR~0.49 eVÅ). It rises to 1.408 eVÅ by applying a 5% uniaxial 

compressive strain. These 2D systems straddle giant Rashba spin splitting and ultrahigh 

piezoelectricity, thereby making them immensely promising candidates in the next 

generation electronics, piezotronics and spintronics devices. 

In Chapter 4, valley spin polarization in 2D h-NbN and h-TaN monolayers has been 

demonstrated. Due to the presence of strong spin-orbit coupling and absence of inversion 

symmetry breaking, these 2D materials are found to host valley physics together with 

Rashba effect which is essential for advancing the emerging fields of spintronics and 

valleytronics. Monolayer h-NbN (TaN) shows Zeeman-type valley spin splitting (VSS) of 

32 (112) meV and 130 (406) meV in valence band (VB) and conduction band (CB) 

respectively which are exceptional and complementary electronic properties with respect 

to the well-known MoS2 monolayer. At the same time, it exhibits large Berry curvature 

~50 (73) Å2, which is more than four (six) times of monolayer MoS2 (~11 Å2). Moreover, 

the Rashba energy and Rashba splitting constant of monolayer h-NbN (TaN) are found to 

be 52 (74) meV and 2.90 (4.23) eVÅ, respectively, which are competitive with the giant 

Rashba spin splitting parameters realized so far in 2D materials. Valleytronic and spintronic 

properties in the studied monolayers are found to be superior to that in h-MoS2 and Janus 

MoSSe monolayers and are therefore proposed for an effective coupling of spin and valley 

physics. 

Chapter 5 deals with energy harvesting, particularly, on the generation of electricity from 

solar radiation using two-dimensional vdW hetero-bilayers of ZrS3/MS2 and ZrS3/MXY 

(M=Mo, W; X, Y=S, Se, Te; X ≠ Y). Electronic, optical, and transport properties in these 

2D vdW hetero-bilayers have been investigated in-depth for the purpose of exploring their 

prospects for applications in photovoltaics. The Power Conversion Efficiency (PCE) in 

ZrS3/MoS2, ZrS3/WS2, ZrS3/MoSeTe, ZrS3/WSTe, and ZrS3/WSeTe hetero-bilayers, 

calculated within the Anderson-limit, are found to reach as high as ~12%, 8%, 16%, 14%, 

and 14% respectively. Chapter 5 illustrates a new avenue for an efficient solar energy 

conversion at the nanoscale based on ZrS3/MS2 and ZrS3/MXY vdW hetero-bilayers in 

ultrathin, 2D excitonic solar cells. 
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6.2 Future Scope & Perspectives 

As reported in Chapter 3, Janus transition metal trichalcogenide, MX2Y (M= Ti, Zr, Hf; 

X≠Y=S, Se) monolayers show large out-of-plane piezoelectric response along with high 

Rashba constant which may exhibit ferroelectric properties as most of the ferroelectric 

materials show Rashba properties. Therefore, there is a scope for a detailed theoretical 

study of ferroelectric properties in these systems. Particularly, the thesis strongly urges the 

experimentalists to synthesize the TiS2Se and ZrS2Se monolayers for their exceptional 

piezotronics and spintronic properties. Chapter 4 showcases the occurrence of valley-spin 

polarization in the conduction band of h-NbN and h-TaN monolayers which show 

exceptional and complementary electronic properties with respect to the well-known MoS2 

monolayer. There is an immense scope for constructing vdWHs out of these monolayers 

with TMDC monolayers to get the valley spin splitting at both conduction band and valence 

band. Chapter 5 highlights the occurrence of 2D excitonic solar cell effect in vdWH and 

thereby hints at the immense scope for development in this field through the applications 

of vdWH. Exploring new 2D semiconductors having exceptional properties will be of great 

interest from both theoretical and experimentalist perspectives. 
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