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Abstract

In this thesis, we identify the compact surfaces with their ribbon graphs. We first
study the notion of Covering Space Theory and Fundamental Groups of topologi-
cal spaces. For understanding surfaces, we understand Manifolds and the concept
of smooth Atlas on manifolds. A 2-dimensional manifold is a topological space
which is locally homeomorphic to the 2-dimensional Euclidean Plane. An atlas on
a manifold is the collection of pairs (U;, ¢;) where U; are subsets of the manifold
and ¢; are smooth maps from U; to a subset of euclidean plane R? . A surface
is a manifold with a smooth atlas defined on it. We define the notion of graphs
embedded in a surface. A graph is a set of points (called vertices) which are joined
by edges. For a vertex v in the graph, the star of v, denoted by E,, is the set of all
edges originating from v. A Ribbon graph is the graph along with a cyclic ordering
on the star of every vertex. Any ribbon graph can be embedded into an oriented
surface with cyclic ordering induced from orientation of the surface. Moreover,
the ribbon surface associated with the filling ribbon graph is unique. The main
result of our thesis is that “Every compact oriented surface S is homeomorphic to

one of the surfaces S, for g > 0”.



Introduction

In this thesis, our aim is to classify compact, connected, oriented surfaces using a
combinatorial approach. We have gathered all the materials in this note from the
references { [1], [2], [3], [4] }. I do not claim any originality in the mathematical

contents of this thesis except the flow of presentation of the material.



Chapter 1: Fundamental Groups

0.1 Fundamental Groups

Definitions:

e Let X and Y be two topological spaces and f, f/ be two continuous maps
from X to Y. Then, f is Homotopic to f if there is a continuous map F :
XxI—Yst

F(x,0) = f(x)

F(x,1) = f'(x)

for each xeX.
e A path from xq to x; is a continuous map f : [0,1] — X s.t. f(0) = xp and

f(l) = X1.

e Two paths f and f in X are Path Homotopic (denoted by ») if they have
same initial point Xy and same final point x1, and if there is a continuous
map F: I xI— X s.t.

F(s,0) = f(s)
F(s,1) = f'(s)
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F(O,l) = X0

F(lat) = X1

for each s,tel.
Lemma 1: The relation = is an equivalence relation.

Proof: We prove the three properties of an equivalence relation.

1. Reflexivity: f « f is trivial ; the map F(x,7) = f(x) is the required path

homotopy function.

2. Symmetry: If f = f’ then we need to show that /' = f . Let F be the path
homotopy between f and f’. Then G(x,t) = F(x, 1 —1) is the path homotopy
between f’ and f.

3. Transitivity: Suppose f = f' and f' = f”. We show that f = f”. Let F be
a path homotopy between f and f’ and G be a path homotopy between f”
and f”. Define H : I x I — X by the equation

H(s,t) = F(s,2t), t€10,3]

H(s,t) =G(s,2t — 1), te[i1]
If f is a path, we will denote its path-homotopy equivalence class by [f].
Definitions:

e If f is a path in X from X to X;, and if g is path in X from x; to X,, we



define the product f x g to be the path & from X to x; given by

h(s) = £(2s), s €10,3]

h(s)=g(2s—1), s€ [%, 1]

For paths f and g in X, we define [f]*[g] = [f*g].

For any point x in topological space X, the loop at x is the path starting and

ending at X.

For an arbitrary point X in a topological space X, the collection of all equiv-
alence classes of loops at xg forms a group under the product operation. This

group is called the Fundamental Group of X relative to the base point x,

and is denoted by IT; (X, xp).

Moreover, we can see from the following theorem that the fundamental

group of a path connected space is independent of the choice of base point:

Theorem 2: If X is path-connected and x( and x; are two points in X, then

IT; (X ,x0) is isomorphic to IT; (X, x7).
Proof: We give the sketch of elementary proof here.

Since X is path connected, let f be a path from xq to x; .Now, For any loop
g atxp in X, we define aloop hat x; by : h = fog. Itis easy to see that this

map is indeed an isomorphism.

Hence, IT; (X, xp) is isomorphic to IT; (X, x;).



0.2 Covering Spaces

Definitions:

e Let p: E — B be a continuous surjective map. The open set U of B is said
to be evenly covered by p if the inverse image p~!(U) can be written as the
union of disjoint open sets V in E such that for each o , the restriction of
p to V is a homeomorphism of V, onto U. The collection {V} will be

called a partition of p~!(U) into slices.

e Let p: E — B be continuous and surjective. If every point b of B has a
neighbourhood U that is evenly covered by p , then p is called a covering

map, and E is said to be a covering space of B .

0.3 Manifolds

Definition:

e An n-dimensional manifold M is a topological space s.t. :

1. M is a Hausdorff space: For every pair of points p,q€ M, there are disjoint
open subsets U,V C M st. pcUandgeV .
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2. M is Second Countable : There exists a countable basis for the topology of

M.

3. M is locally Euclidean of dimension n: Every point of M has a neighbour-

hood that is homeomorphic to the n-dimensional euclidean space R”.

e Surface:

Let S be a 2-dimensional metrisable(Hausdorff) topological space. A two-
dimensional chart for such a space is a pair (U, ¢) where U C S is an open

subset and ¢ : U — V is a homeomorphism onto an open subset V C R2,
The map ¢ is called the coordinate of the chart.

A collection of charts {(U;, ¢;)|iel’} is called an atlas for S if S = (JU;. An

atlas is called smooth or C* if the coordinate change maps
®; o (p]_1 : (pj(UiﬂUj) — goi(UiﬂUj)

are smooth functions Vi, jeI .

A surface is a metrisable topological manifold S together with a smooth at-

las.

Note: By defining smoothness of atlas for § , we can also define smoothness of
functions on S.

For a function ¢ : § — R, the function seen in the chart is the composition

Qoo g(U) >R



A function ¢ is smooth if and only if the function seen in the chart is smooth.

e Let S be a surface with smooth atlas {(U;, ¢;)|iel}. The atlas is called ori-

ented if the Jacobians

Jac(@;, @;) = det(D(@; 0 QD]-_I))

are positive for any i, jel. (Here, D(¢; o (pj_l) is the Jacobian matrix of
piog; ')

A surface is called oriented if its atlas is oriented.

e Surface with Boundary:
Let

H* = {(x,y)eR?|y > 0}

be the closed upper half plane. It has a boundary
IH" = {(x,y)€R?|y = 0}

when considered as a subset of R2.

For a 2-dimensional metrisable(Hausdorff) topological space S, a two-dimensional
chart with boundary is a pair (U, @) where U C S is an open subset and ¢
is amap from U to H* , where V = @(U) is open in H" and ¢ is a homeo-

morphism onto its image.

The map ¢ is called the coordinate of the chart.
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We define the boundary of U as follows:

oU =9 (oU)NdHT)CU

A collection of charts with boundary {(U;, ¢;)|i€l'} is called an atlas for S if

S = JU;. An atlas is called smooth or C* if the coordinate change maps
gio@; i (UiNU;) = @i(UiNU))

are smooth functions from H™ to H™ Vi, jel . [A function f : U — V for
U,V open subsets of H, is called smooth if 3 an open subset U of R? with
UNH' =U and a smooth function f: U — R?s.t. f = fly.]

A surface with boundary is a metrisable topological manifold S together

with a smooth atlas of charts with boundary.

Lemma 3: Let S be a surface with boundary and (U, @), (Uz, ¢2) be charts
with boundary of S. Suppose x € dU; NU, be a boundary point of U;. Then

x € dU, is also a boundary point of U;.

Proof: Since x € JU; = QDl_l((Pl(Ul)ﬂaHﬂ ,
=x€ @ (dHY)

Also, we have the smooth coordinate change map @20 ;" : @ (U NU>) —
eUINL,) .

So, we see that ¢»(x) € dH ie. x € @5 ' (H™)



And since x € U, also,

=x€ @, (g(U2)NIHT) = U, .

Definition: Let S be a surface with boundary. A point x € § is called a
boundary point of S if x € U for some (and from above lemma, any) chart

(U, @) containing it. The set of boundary points of S is denoted by dS .

Lemma 4 [COLLAR LEMMA] : Let S be a surface with boundary dS and
¢ C dS a connected component. Then 3 a neighbourhood U (called collar
neighbourhood) of ¢ in § and a diffeomorphism y : U — V onto a subset

V C R? of the form V = ¢ x [0, 1) mapping ¢ onto ¢ x {0} .

M

ot

Figure 1: A Collar Neighbourhood



0.4 Gluing Surfaces

Let S and S, be two surfaces with boundary dS; and dS; respectively. Then we
can glue Sy and S; together, along their collar neighboourhood (as shown in the
diagram below) as follows:

Let ¢ and ¢, be collar neighbourhoods of Sjand S; resp. andlet @ : c; — 3
be a diffeomorphism. Now, on the disjoint union S; U S, , we define the equiva-
lence relation ~ by:

x~y <= y=0(x)

for x € ¢1,y € ¢z . Now, we define a topological space S1 Uy > (called the gluing

of S; and S, along ¢ ) as the quotient of Sy LI S, by the equivalence relation ~.

Figure 2: Gluing Two Surfaces

Remark: The space S; Uy S; is metrisable.
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We now construct the atlas for Sy Uy S, by first dividing S; Ug S> into four
components Si\cy, Sp\cy , the complement of gluing curve in §y Uy S> , and the

union of collar neighbourhoods of S; and S ;

1. For Si\c; and Ss\cs , we take smooth atlas {(U;, ¢;)|i € I} and {(U}, @;)|j €
J} respectively.

2. Letiy : 81— 81Ugp S , iz : S5 — §1 Up 7 be the canonical inclusions. Then,

{(U), pioiy i € U{ia(U;), @00, )|j € T}

will be the atlas for the complement of gluing curve in §1 Uy S .

3. Let Uy, U, be collar neighbourhoods of ¢y, ¢3 , ¥ a diffeomorphism from Uy
onto ¢ x(-1,0] (mapping c; to ¢; x {0}) and v, a diffeomorphism from U,
onto ¢ x[0,1) (mapping c; to ¢ x {0}) . Define an open subset O := U; UU,
of S1UgpS> and an embedding i : c; x (—1,1) — R? . Then we have a chart

along with the coordinates:
v:0—R?

given by:
x+—io(@,id)oy(x), xe€U

x> ioyr(x), xel,

Then, we have the following proposition:

11



Proposition 5: S Uy S5 is a surface with boundary with smooth atlas given
by
{(1(U), gioiy i € IYU{ia(U)), 9505 )|j € TFU{O0, v}

1

Proof: We need to prove that the coordinates @;oi, " , @;joi;y "and y are indeed

smooth.

1. Since the maps ¢;, ¢;, i1, ip are smooth maps,

1

Hence, gol-oil_1 , @joi, arealso smooth.

2. Similarly, since i, ¢ , Y1 , Y, are smooth,
Hence v is also smooth.

Thus, we have a smooth atlas for §; Uy S5 .
O

We can also see that the orientation of Sy Uy S can be induced from the ori-

entations of S| and S».

Proposition 6: Let S| and S, be oriented surfaces with boundary and ¢y, ¢, be
connected components of the respective boundaries. Then ¢y, ¢, carry an induced
orientation. If ¢ : ¢; — ¢, is an orientation-reversing diffeomorphism, then 3!

orientation of S; Uy S> compatible with the orientations of Sy and §; .

12



Chapter 2: Graph Theory

0.5 Graphs

Definitions:

e An oriented graph I is a pair of sets (V,E) , where V is a finite non-empty
set of elements called vertices and E is a finite set of elements called edges(

each of which has two associated vertices), along with a map
o E— VXV
e— (e_,e+)

where the vertex e_ is called the origin of e and e is called terminus of e .

e A Graphis apair (I',I), where I = (V,E, @) is an oriented graph and
I1:E—FE
e—e

13



is an involution on E satisfying

E+ = 6_,5_ = €.

The pair (e, e) is called the geometric edge of (I',1) .

e The geometric realisation | I |; of a graph (I, 1) is the topological space

| I |;=E x[0,1]

~

where ~ is the equivalence relation given by following relations:
1. (e,t) ~(e,1—1).
2. If e, f€ E with e_ = f_ then (e,0)~(f,0) .

3. If e, f€ E with e, = f then (e, 1)~(f,1) .

14



Figure 3: The geometric realisation of a graph.

e Cyclic ordering on a finite set S is a bijection s : S — S s.t. forany x € §
the orbit {s"(x)} is S . For x € S, we define s(x) the successor of x and

s~ !(x) the predecessor of x.

We will need this notion of cyclic ordering on graphs to define some extra struc-

ture.

15



Figure 4: Cyclic ordering of edges in a planar graph

0.6 Ribbon Graphs

Definition:

e Let (I', 1) be a graph. For v € V, the star of v is
E, ={ecE |e_=v},

the set of vertices starting from v . A Ribbon Graph is the data given by a

16



graph and a cyclic ordering
sy B, — E,

on the star of every vertex.

Remark: Any planar graph is a ribbon graph.

Justification: Given any embedding of a planar graph! into R? , the orien-
tation of R? induces a cyclic ordering on the star of each vertex as follows:
Consider a circle around each vertex intersecting each edge in the star of
given vertex only once. Then the orientation of circle defines the ordering

on the graph.
We can generalise the above remark as the following proposition:

Proposition 7: Any embedding of a graph into an oriented surface gives

rise to a cyclic ordering on each of the sets E, for each vertex v e V.

Now, we shall use this notion of ribbon graphs for the construction of oriented

surfaces. First, we embed a ribbon graph into an open oriented surface.

Lemma 8: Every ribbon graph can be embedded into an oriented surface such
that its cyclic orderings are induced from the orientation of the surface.

PROOF: We construct a surface S by constructing neighbourhoods around the
star of each vertex as follows:

For every vertex v € V define subset U, C R? with | E, | boundary components

labelled by the elements of E, in the following way: Start with an arbitrary edge

!'A planar graph is the projection of the geometric realisation of the graph.

17



e € E, and the next boundary component in the counterclockwise sense is labelled
by s,(e) and so on. [As shown in figure 5] Similarly, around each edge e , we
construct a strip V, whose two boundary components (as given in figure 6) are
labeled by e_and e .

Now, for each e € E, we glue the connected component of d{V,} labelled
by v with the connected component of d{U,} labelled by e (if v is the origin of
e ) or e (if v is the terminus). Now, from Proposition 6, we obtain an oriented
surface which will be compatible with s, since the glueing process preserves the

orientation.

Figure 5: A surface associated with a vertex.

18



Figure 6: A surface associated with an edge.

The open oriented surface constructed in the above-mentioned way is called
the Associated Ribbon Surface of that graph.

Now we need to construct closed oriented surfaces. For this, we need to “close
the holes” in the open ribbon surface by gluing the discs inside the holes. A disc
can be constructed as follows: Start with an arbitrary edge e and follow this edge
to the next vertex. Then we take the successor of e. We repeat this procedure
untill we get a closed curve. The curve constructed this way will be the boundary
of a disc in the surface we want to construct.

We formalise this procedure using this definition:

Definition: Let I" be a ribbon graph. A face is an equivalence class (upto
cyclic permutation) of n-tuples (ey, ... ,e,) of edges such that (e,)+ = (€p+1)—
and S(ep)s (ep) = epy1 V 1< p < n, where the addition is modulo 7 .

Below are given few examples of graphs with different number of faces.

19



Figure 8: A graph with one face

Note that every oriented edge is contained in a unique face. Now, on each

face, we can construct the boundary of the disc in the way described above. Con-

20



sequently, we can fill the holes with the discs.

Definition: A graph I" embedded in a surface § is said to be filling if each

connected component of S~ | I" | is diffeomorphic to the disc. i.e.

ARN | Ir |: |_|Df.

Then, we have the following proposition:

Proposition 9: Every ribbon graph I" has a filling embedding into a compact
oriented surface S and the connected components of S~ | I" | are in bijection with

the faces of I'.

Proof: Each face in the ribbon graph defines a circle in the ribbon surface. So,

by gluing a disc for each of these faces, we obtain a closed surface.

O

In fact, the surface obtained in the above proposition is unique (up to a home-

omorphism). We prove this statement using the following lemma:

Lemma 10: [CLUCTHING LEMMA] : Let X = U UV be a decomposition
of a topological space X into closed subsets U, V. If fj : U =Y and f, : V=Y
are continuous maps, where Y is some topological space, with f |y = f2 |unv

then the induced map f : X — Y is also continuous.

21



Proof: The proof is elementary as the induced map f is:

x), xeU
fa) = filx), xe€ .
fHrx) xeVv

and since forx e UNV , fi(x) = fo(x),

= f is continuous.

Now, we have the following weak uniqueness result:

Proposition 11: Let I’ C S, I"" C ' be filling ribbon graphs of compact ori-
ented surfaces and let ¢ : I' — I'/ be an isomorphism of ribbon graphs. Then ¢
induces an orientation-preserving homeomorphism ¢ :| ' |—| I’ | of geometric

realisations which extends to a homeomorphism S — §'.

PROOF: Since any isomorphism of graphs sends edges to edges and vertices
to vertices, the geometric realisation of the graph ( which is just the equivalence
class of the space E x [0, 1] defined by relations as given in section 0.5) will be
sent homeomorphically to the geometric realisation of the isomorphic graph in

such a way that the orientation is preserved. Now, let
S\ ‘ r |: LD ¥

S| T |[=uD.

22



and let S;- and Sy be the ribbon surfaces associated with | I | and | I"” |. Then,
S =Sru(Udy),
where dy is a disc slightly smaller than D and
Sr N (Udy) = Ud{dys}
is a union of circles. Similarly, for §’,
S =Sp U (Udj),

and

S 0 (Ud) = La{dr ).

Thus, by Lemma 10, it is enough to show that for each face f, 4 a homeomorphism
dr — d_} which agrees with the extension of ¢ to St on the boundary d{d} :

Let ¥ be any homeomorphism of circles. Then it can be extended to corre-
sponding discs in the following manner:

For x € D an element of disc,

23



to obtain the desired homeomorphism of surfaces.

Using Proposition 9 and 11, we get the desired uniqueness result:

Corollary 12: For any ribbon graph I', 3 a unique (upto homeomorphism)
compact oriented surface Sr such that I" can be embedded as a filling graph into
Sr.

The converse of this corollary is also true:

Proposition 13: Every compact oriented surface admits a filling ribbon graph.

However, the proof of this proposition is not straight-forward and requires
some basic results from Riemannian Geometry and Morse Theory which we will

not discuss here.

In the next section, we state and prove the main result of our discussion which

classifies every compact oriented surface.
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Chapter 3: Classification Theorem

0.7 Graph with g petals

First, we consider the graph I{ shown in figure 9 and glue together g copies of it.

The resultant graph will be called the graph with g petals , denoted by I.

Figure 9: The graph I.
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Figure 10: The graph I, for g = 3.
Observation:

e The graph I has one face and the associated surface Sy := Sp; is a torus.

e Sg =S, is the surface of a handlebody with g handles. [Each copy of I}
in I, corresponds to a torus with a hole, and g copies are glued together by

gluing the consecutive holes.]

The surface S3 is shown in figure 11.

There is another description of S, too: [As shown in figure 12]; Let Dy be the
disc in S, corresponding to the unique face of I,. Then, we obtain S, by gluing
the boundary of D,. Each oriented edge of I'; occurs exactly once in the boundary
of Dg; Let a;, b; be the two edges of the i-th copy of I] in I';. Then the boundary
of Dy is given by the series of edges

-1 3—1 -1 3—1
ay,by,a; " ,b; ,...,ag,bg,ag ,bg .

For convenience we define Sy := S2, the two-sphere. Now, we state the statement

of the classification of surfaces:

26



Figure 11: The surface S5 .

Figure 12: Constructing S3 by gluing a disc.

Theorem 14: Every compact oriented surface S is homeomorphic to one of

the surfaces S, for g > 0.

PROOF: We know from Proposition 13 that every compact oriented surface
admits a filling ribbon graph. Let I" = (V. E, @) be the filling ribbon graph for S .
If the graph has no edges, then S is the 2-sphere S2. So, we assume for the rest
of the proof that I" has at least one edge. Since ( from Corollary 12) the filling
graph is unique for a surface, it is now enough to transform I" into I, for some

g > 0, without changing its filling property. Let us assume that I" has more than

27



one face. We reduce the number of faces without changing its filling property as
follows:

Consider the geometric edge (e,e) such that e and e are in different faces.
Then, we delete the edge e and e (as shown in fig. 13) from I" and obtain a new
filling ribbon graph I'’ for § . Continuing in this manner, we can get a filling
ribbon graph with only one face. Thus, WLOG, we assume that I" has only one

face.

Figure 13: Reducing the no. of faces.

Figure 14: Reducing the no. of vertices.

Now, we reduce the number of vertices. Since I has at least one edge, the
number of vertices will be at least two. If I" has more than two vertices, then 3
an edge joining two different vertices e_ and e,. Now, we construct a new graph

I'"'= (V' E' ¢, where

28



o V' =(V\{et,e_}) U{eo} : We merge the two vertices e_ and e into a

new vertex eg ,
o E'=E\{e,},

e ¢’ sends ey to an arbitrary point in the geometric edge ¢(e) and extend it to

the edges which previously originated from e_ or e..

This process reduces the number of vertices by one without increasing the number
of faces. Hence, now we can also assume WLOG that I" has only two vertices and
one face, which means that S is obtained by gluing the boundary of a polygon. The
sides of polygon are labelled by edges of I and the gluing is given by identifying

e and e with reversed orientation.

Definition: A pair of geometric edges ((a,a), (b,b)) are said to be linked if

their relative position is as shown in figure 15.
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Figure 15: Linked Edges

Claim 1: Any geometric edge is linked to at least one other geometric edge.
Proof: If a geometric edge is not linked to any other geometric edge, then it
would produce an extra face which contradicts our assumption that I" has only

one face.

Claim 2: Let ((a,a), (b,b)) be a linked pair of geometric edges. Then there
is a way to rearrange the labelling of the polygon without changing the resulting

space such that:

e a, b, a, b appears as a subsequence,

e and no subsequence of type c, d, ¢, d is destroyed during this process.

Proof: We formulate a process of adding and deleting certain edges of the

graph (as shown in figure 16). First, we add an edge which is shown dotted
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in the figure. It divides the graph in two faces (shown in different colors
in the picture). Now, we erase the green colored edge in the graph. In the

polygon, this step glues together the two green sides into the red one.

Repeating this procedure two more times, we obtain the desired surface in
which all the edges lie on the boundary and no subsequence of the form
¢, d, ¢, d is destroyed. [This new surface is obviously homeomorphic to the

original one.]

Figure 16: Moving linked edges into generic position.

This claim enables us to relabel the edges of the polygon such that the resultant
graph will be I; for some g > 0. Hence, the corresponding ribbon surface will be
S, for some g > 0.

Now, from Corollary 12, we get the result that the surface S is homeomorphic

to S, for some g > 0.
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