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Abstract

The aim of the project is to understand active systems and model them subsequently. In

active matter, particles use stored or ambient energy to perform systematic movement. To

quantify the dynamical organization of active matter , we review agent based models (Vicsek)

as well as coarse grained hydrodynamic description (Toner-Tu) of these systems. We also

review lquid crystal physics to better understand the liquid crystalline orders observed in

active matter. We then discuss a stochastic lattice gas model which successfully describes

an active system.
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Chapter 1

Active Matter

1.1 Active Matter

What is active matter? It is a collection of particles, units and entities which are individually

driven so there is a drive that acts on each unit and collectively they generate coordinated

motion at large scales[MJR+13, Ram10, Ton15, Mar15]. The key here is that it is a non

equilibrium system. Drive is internally generated on these active particle generally through

an internal cyclic transformation for instance chemical energy . An example could be a

bacterium which beats the flagella which undergoes a cyclic transformation and swims.This

type of motion has profound consequences in collective behaviour.Such sytems may exhibit

collective swarming, turbulence , vorticity and may organise in regular periodic patterns

depending on situations. Many examples of active system comes from living world. One of

the reason for such kind of collective motion could be protection from predator, availability

of food, etc.

Examples of such system:

1. Inside a cell: cytoskeleton → cell motility, division, mechanics etc.

2. Group of cells → tissues, mechanics, collective migration, wound healing , etc.

3. Fish , birds, people , etc.

4. Synthetic microswimmer

What do all these have in common? All of these are individually driven, undergoes

symmetry breaking locally and undergoes order/disorder transition.They show liquid crys-

talline order and can be called active liquid crystals. We will review liquid crystals in the
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next chapter.

We will use methods from statistical mechanics and soft condensed matter to under-

stand which new states of active matter are possible. Is it possible to classify behaviours

and identify generic properties. What is the order parameter to change from one state to

another. We will start be classifying them on the basis of types of orientational order.

Types of Orientational Order:

1. Polar : Examples - Bacteria, fish, etc. The particles have head and tail and can dis-

tinguish between the two. When in high density can order with same symmetry as

ferromagnetic or polar order. The order parameter will be a vector. If we assign a unit

vector v̂i to each individual we can define a polarization field as P = 〈
∑

i v̂iδ(r − ri)〉.
This is a continuum field which describe average orientation of particle.P is also pro-

portional to the mean velocity of the system so this quantity P play a dual role as

polarization and velocity. What are the consequences of this dual role. The order

state has a non-zero mean motion

2. Apolar : System which has no head and tail and are symmetric and may go around

back and forth. Order is similar to that of nematic liquid crystal. Here the order

parameter will be a tensor. These system do not exhibit any mean motion.

3. Spherical colloids : Which might be self propelled and unless there is an external

imposed rule that tends to align them, they do not align because of steric hindrances.

They do not exhibit orientational order but shows rich non-equilibrium behaviour.

Polar particles can align in nematic state when half are going in one direction and other

half in other. But no living system exhibit this kind of behaviour.

Distinguishing between medium: If the medium only provides friction then it is dry. If

the medium provides hydrodynamic interaction then its wet. Can be imagined as active

particle in a suspension/fluid. The velocity of the fluid could be different from that of active

particles.

There is a lot of work been done in agent based model of active matter where we consider

them as point particles which tends to align following certain rule.

1.1.1 From Vicsek to Continuum

This is inspired by analogy with ferromagnetism. Its of the first variety i.e. the polar system.

In 2D it is similar to flying XY spins. These are point particles and each particle is described

by fixed speed v0 and orientation êi which makes an angle θi. So êi = (cosθi, sinθi). The

dynamics is overdamped that means it has friction. They align in the average direction of
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neighbours in the radius r with some noise . The position after some time 4t will be

~ri(t+4t) = ~ri(t) + v0êi4t (1.1)

θi(t+4t) = 〈θi(t)〉R + ηi(t) (1.2)

ηi is random noise uniform in
[
−η

2 ,
η
2

]
. So the parameter of the model is strength of noise

and density. We can define an order parameter to be v =
∣∣ 1
N

∑
i ~vi(t)

∣∣ where ~vi = v0êi. On

simulation it shows that it exhibit a phase transition as a function of strength of noise and

density. This is a first order phase transition. At low noise or high density there is order

so the motion is in same direction whereas at high noise or low density there is disorder

and everyone is moving haphazardly. There is breaking up of continuum symmetry in 2D.

In equilibrium it would have been impossible because of Mermin-Wagner theorem but in

non-equilibrium system like this it can happen. Mermin-Wagner theorem states that con-

tinuous symmetry cannot be spontaneously broken at finite temperature in systems with

sufficiently short range interactions in dim d ≤ 2.

For equilibrium system we have free energy and therefore, we can relate the dynamics to

derivatives of free energy. But for these non-equilibrium system we don’t have free energy

so we can write such equations on the basis of very general rules such as symmetry con-

sideration, conservation laws, etc . This method gives you equation which are generic and

does not depend on specific system. On the other hand all the parameters are unknown as

we are out of equilibrium and there is no constraint like fluctuation dissipation that relates

various parameter in equilibrium.

We will study the continuum version of the model as we are observing over larger length

and time scale which is the field theory and is also known as Toner-Tu model. We will

start with microscopic model and derive Toner-Tu equation which is the continuum version

of Vicsek model. But before that we review Langevin and Smoluchowski dynamics of a

particle in a bath.

1.1.2 From Langevin dynamics to Smoluchowski

m
d~v

dt
= −ζ~v + ~η(t) (1.3)

We can write the above Langevin equation for a brownian particle[Bha07]. This is just a

F=ma type of equation. The first term on the write describe drag which is the mean effect

of collision with the fluid and the friction coefficient ζ if this is a spherical brownian

particle which has stokes form i.e. ζ = 6πηa where η is the shear viscosity of the fluid and
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’a’ is the radius of the colloid. This expression is in 3D. And ~η(t) is a random force and is

supposed to describe the random part of the collisions with fluids and we define this

random force or noise in terms of its moments. We can choose it to be Gaussian and white

i.e. 〈~η(t)〉 = 0 and delta correlated in time i.e. collisions are uncorrelated

〈ηi(t)ηj(t′)〉 = 2∆δijδ(t− t′). There is a characteristic time scale in this equation τ = m
ζ

and it describes competition between inertia and viscous drag. d-dimensionality, ∆- noise

strength or correlator of noise, ζ-friction, m-mass of particle. We can define equal time

correlator of velocity which we can exactly calculate and look at time much larger than m
ζ〈

[~v(t)]2
〉
−→
t>>m

ζ

∆d

ζm
=

equilibrium

〈
v2th
〉

=
dkBT

m
(1.4)

If we define brownian particle in a fluid in thermal equilibrium then after long time the

system is in equilibrium then we can calculate
〈

[~v(t)]2
〉

from the distribution of the

velocity in the system which is expected to be Maxwellian.

We can also calculate the mean square displacement〈
[∆~r(t)]2

〉
= 2d

kBT

ζ

{
t− τ(1− e−

t
τ )
}

(1.5)

where ∆~r(t) = ~r(t)− ~r(0). Assuming system is in equilibrium.

t << τ
〈

[∆~r(t)]2
〉

= d
kBT

m
t2 ballistic (1.6)

t >> τ
〈

[∆~r(t)]2
〉

= 2Ddt diffusive (1.7)

where D = kBT
ζ is Einstein relation which relates diffusion to friction. In ballistic case

displacement goes linearly with time. We were interested in t >> m
ζ so we could have

neglected inertia as compared to drag which is an overdamped limit t >> τ . So we can

write our equation of motion as

ζ~v = ~η(t) (1.8)

So we can calculate the mean square displacement and find the diffusive behaviour. Now

imagine that there are many particles and we have to write coupled Langevin equation.

This is fine when we have to do numerical dynamic simulations but analytically this is not

very useful. Therefore, we need to do some coarse graining. So, instead of writing

Langevin equation we will describe the system in probability distribution for a particle to

be at some position at time t. That is known as Smoluchowski equation. And we will

further coarse grain that because we are interested in large length and time scale then we

should describe system in terms of fields that relaxes slowly eg. fields related to broken

symmetry. We will try to do it in 1D and find an equation for noise averaged probability

distribution ψ(x, t) to find a particle at position x at time t. We will assume overdamped

4



dynamics. So the equation of motion can be written as

v =
dx

dt
= η̃(t)− 1

ζ
U ′(x) (1.9)

In order to keep a track of external forces as eventually we will deal with interaction with

other particles we will keep possible external force derived from external potential . Noise

is again gaussian and white i.e 〈~η(t)〉 = 0 and delta correlated in time i.e. collisions are

uncorrelated 〈η(t)η(t′)〉 = 2∆δ(t− t′).
ψ̂(x, t) in 1D is not yet noise averaged. Since the number of particle is conserved so the

probability density is conserved and so,∫
V
dxψ̂(x, t) = 1 (1.10)

This implies , conservation law for the probability and that implies time derivative of

probability is gradient of flux. Flux is velocity times probability density.

∂tψ̂ = −∂xvψ̂ (1.11)

If we substitute the Langevin equation and write the expression of probability density in

the following way

∂tψ̂ = −∂x
[
−1

ζ
U ′ψ̂

]
− ∂x

(
ηψ̂
)

(1.12)

∂tψ̂ = −Lψ̂ − ∂x
(
ηψ̂
)

(1.13)

We can now write the formal solution of these equation .

ψ̂(t) = e−Ltψ̂(s)−
∫ t

0
dse−L(t−s)∂x

(
η(s)ψ̂(s)

)
(1.14)

Note, ψ̂(t) only depends on noise at time s < t. Therefore,

∂tψ̂ = −Lψ̂ − ∂xη(t)e−Ltψ̂(0) + ∂x

∫ t

0
dsη(t)e−L(t−s)∂x(η(s)ψ̂(s)) (1.15)

Noise average and let ψ = 〈ψ̂〉

∂t

〈
ψ̂
〉

= −
〈
Lψ̂
〉
−
〈
∂xη(t)e−Ltψ̂(0)

〉
+ ∂x

〈∫ t

0
dsη(t)e−L(t−s)∂x(η(s)ψ̂(s))

〉
(1.16)

We assume ψ̂(0) does not depend on noise. So the second term on RHS will become zero.

ψ̂ does depends on noise . Iterating the solution many times and keeping and generating

many factors of noise everytime and since the noise is Gaussian , all the powers of noise

will be zero on averaging and only even power will contribute for which we can use Wick’s
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theorem to factorise this and relate all the even powers to second moment. We can

contract η’s.

After doing this we will end up with Smoluchowski equation.

∂tψ = −∂x
[
−1

ζ
U ′ψ −∆∂xψ

]
(1.17)

This is the equation for noise averaged probability density for one brownian particle. In

equilibrium the second term on RHS will be diffusion coefficient i.e. diffusion times second

derivative of density . First term on RHS is mean force time density so this flux that

comes from mean force on particles and second term when fluctuation dissipation theorem

holds ∆ = D. This is Smoluchowski equation and for U ′ = 0 we can find solution.

We will now try to get a hydrodynamic description of active matter. Describe large scale

dynamics in terms of a small number of continuum fields that are ’slow’−→ field theory

ω(k)→ 0, λ→∞.[Mar15]

Derivation of Toner-Tu equation

We will start with continuous time version of Vicsek model where point particle are self

propelled with velocity v0 in the direction ê and align with neighbours with rate γ with

rotational noise of the rate Dr. Neglecting translational thermal noise,

d~ri
dt

= v0êi (1.18)

Rotational evolution equation has noise.

dθi
dt

= γΣjF (θi − θj , ~rj − ~ri) +
√

2Drηi(t) (1.19)

Dr is strength of noise. ηiε
[
−1

2 ,
1
2

]
F describes the interaction and we will chose in a very simple form as it is a short range

interaction.

F (θi − θj , ~rj − ~ri) =
sin(θj − θi)

πR2
rij < R (1.20)

= 0 otherwise (1.21)

Now, ψ = ψ(~r, θ, t) which is one particle probability density. Here we have one more

degree of freedom and so we will derive again the Smoluchowski type equation to get

∂tψ = −~∇.(v0êψ)−Dr∂
2
θψ − γ∂θ

∫
dθ′
∫
dr′F (θ′ − θ, ~r′ − ~r)ψ(~r′, θ′, t)ψ(~r, θ, t) (1.22)
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F (θ′ − θ, ~r′ − ~r) = sin(θ′ − θ)δ(~r − ~r′) because we are interested in length scale larger than

interaction.

∂tψ = −~∇.(v0êψ)−Dr∂
2
θψ − γ∂θ

∫
dθ′sin(θ′ − θ)ψ(~r, θ′, t)ψ(~r, θ, t) (1.23)

We can define angular fourier transform

ψk(~r, t) =

∫
dθ

2π
eikθψ(r, θ, t) (1.24)

ψ0 = ρ (1.25)

ψ1 = ρ(Px + iPy) (1.26)

ψ2 = ρ(Qxx + iQxy) (1.27)

We want to write equation for continuum fields like density which is defined by first

angular moment of ψ, polarization density is defined by second angular moment, and so

on. We can define ψ in infinite set of moment so we need to do truncation.

ρ(~r, t) =

∫
dθ

2π
ψ (1.28)

ρ~P =

∫
dθ

2π
ê(θ)ψ = ~w (1.29)

ρQαβ =

∫
dθ

2π

(
êαêβ −

1

2
δαβ

)
ψ (1.30)

ρ defined as first angular moment of ψ, polarization density ρ~P or ~w is the second angular

moment which is also the order parameter, Qαβ is a symmetric traceless tensor and is the

order parameter for nematic system which is also the third angular moment. ψ can be

defined as infinite number of moments orthogonal to each other. Density decays slowly so

at long wavelength it is a conserved quantity. Polarization is the order parameter of the

system and becomes non-zero where orientation of symmetry is sponateously broken so we

expect this quantity to decay slowly near phase transition. We want to find continuum

hydrodynamic equation for these two fields. All the other moments are fast fields and

decay on microscopic timescale of the order of 1
Dr

.

Equation for ψ(~r, t)→ infinite set of equations ψk which is the kth moment

∂tψk +
v0
2
∂x(ψk+1 − ψk−1) +

v0
2i
∂y(ψk+1 − ψk−1) = −k2Drψk +

iγk

2π

∑
s

ψsF−sψk−s (1.31)

For k = 0,

∂tψ0 +
v0
2

(∂x − i∂y)ψ1 = 0 (1.32)
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Then

∂tρ = −~∇.(v0ρ~P ) (1.33)

ψ0 ∼ ρ is a conserved field decaying on hydrodynamic time scale[Kar07]. ψ1 ∼ ~P order

parameter decay slowly near phase transition. ψ2 = 0 as they are fast variable decaying at

rate Dr so we can neglect ψ2. So we can assume ψk = 0, k ≥ 3 .

So, now we will get two equations for ρ and ~P which are[MJR+13, Ram10]

∂tρ = −~∇.(v0 ~w) (1.34)

∂t ~P + λ1(~P .~∇)~P = −
[
α(ρ) + βP 2

]
~P − v0

2
~∇ρ+

λ3
2
~∇P 2 + λ2 ~P (~∇. ~P ) +

K3∇2 ~P + (K1 −K3)~∇(~∇. ~P ) (1.35)

All parameters given in terms of Dr, γ, v0, ρ0. First term on RHS is non-linear friction and

can be written as − 1
γ
δF
δ~ρ . The expression for F can be written as

F =

∫
~r

α

2
ρ2 +

β

4
ρ4 (1.36)

where,

α(ρ) = Dr −
1

2π
γρ (1.37)

β =
γ2ρ2

32Drρ2
(1.38)

which gives a continuous phase transition where α changes sign at a particular density or a

particular value of rotational noise. If α > 0 then if we plot F vs P there is one minima at

P = 0 which is a disordered phase and if α < 0 we have 2 minima at finite value of P

which is ordere state where P 2 = −α
β which is the flocking state or ordered state which is a

low noise or high density state.

1.2 Breakdown of Mermin Wagner

Flocking is when large number of things that are self propelled and are moving in same

direction . Often these things are living creatures. More generally the details of the

organism doesn’t matter and only things that are important is the organism at one corner

cannot see and interact with the one far away at some other portion of the flock. Secondly,

their motion is in one particular direction and is obtained by following the neighbours

which the individual can see in immediate vicinity. This can be seen in Fig.(1.1)

Nonetheless they are moving in same direction. Therefore, the interaction is short ranged

8



Figure 1.1: Circle of visibility

but order is long ranged . The direction they are picking to move is chosen by the flock

and not imposed externally. There is spontaneously broken symmetry . It is astonishing to

observe such a behaviour. The theory works equally well for 2 or more dimensions.

Flocking is a situation when moving organism continuously and spontaneously break

symmetry . In this case the continuous symmetry is rotation invariance. This happening

in 2-D is baffling.

Using Mermin-Wagner theorem which says such phenomenon, that is continuously

breaking of symmetry in 2-D with only short ranged interaction is impossible. So how is

this happening. The point to be noted is in Mermin-Wagner theorem is that it works for

systems in equilibrium. But self propelled organisms are out of equilibrium. So,

Mermin-Wagner theorem doesn’t apply. Now the question arises that what aspect of this

non-equilibrium makes it possible for long ranged order in 2D with only short ranged

interaction. The important aspect is that these creatures are moving. There is a

phenomenon called breakdown of linearized hydrodynamics. For 2D system this is

absolutely crucial to have flocking as can be seen in Fig.(1.2). This breakdown of

linearized hydrodynamic stabilize the long range order. Short range interaction is whose

range is very small as compared to the size of the system under consideration. All these

theorem applies when the size of the system goes to infinity or the thermodynamic limit.

So any system with finite range interaction if made big enough will fall in this limit. The

argument also applies when the interaction goes to infinite distance but the strength falls

sufficiently rapidly with distance.[Ton15]

1.2.1 Microscopic Model: Vicsek (2D)

Each creature is a point carrying a vector which will determine its direction of motion.

And all of them have synchronised timer and after every time iteration they identify their

neighbour and try to follow them by taking average . And move with a speed v0 which is

same for all. A random error is introduced for every iteration while adopting the average

motion of neighbours which is taken as a white noise. The error also has zero mean and no

9



Figure 1.2: Flock sponaneously orders

Figure 1.3: Measuring θ for the pointer

memory of past. The question is if the organisms are making mistake and is the system

robust against those mistake to have long range order ?

In 2D in the presence of noise this is impossible as it violates the Mermin-Wagner

theorem. If instead of moving every particle just point in such a way that everyone tries to

point according to the neighbours . Everyone ends up pointing in different direction

because of the fluctuation and is of the order of system size. Even if the fluctuation was

small , the error is big. And there is no long range order. This is similar to vicsek model

except for the particles donot move or velocity is tending to zero. With the same range of

interaction , same noise strength but introducing the sole modification that in addition to

pointing the particle also move then it works. What is the reason? Why motion makes it

possible? In less than 2 D the error accumulate faster then they dissipate. No motion

means they are at equilibrium and so Mermin-Wagner theorem applies.

To understand why motion makes it possible to dissipate error faster than accumulation

we need to look at slow diffusive process. Let θ be the angle made by the pointer as shown

in Fig.(1.3).
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Figure 1.4: A 2D lattice

θi(t+ 1) = 〈θj(t)〉j∈O + ηi(t) (1.39)

〈ηi〉 = 0 (1.40)〈
ηi(t)ηi(t

′)
〉

= ∆δi,jδt,t′ (1.41)

(1.42)

.Rewriting evolution rule : Subtracting θi(t) from both sides.

θi(t+ 1)− θi(t) = 〈θj(t)〉 − θi(t) + ηi (1.43)

In the continuum limit,

∂tθ = D
(
∂2xθ + ∂2yθ

)
+ η (1.44)

To get an idea how we got this, let us consider a lattice as seen in Fig.(1.4):

〈θj〉 − θi =
1

4
(θ1 + θ2 + θ3 + θ4)− θi (1.45)

=
1

4
[(θ1 − θi)− (θi − θ3) + (θ2 − θi)− (θi − θ4)] (1.46)

=
1

4
[∂xθ(x, y)− ∂xθ(x− 1, y) + ∂yθ(x, y)− ∂yθ(x, y − 1)] (1.47)

=
1

4
[∂x(∂xθ) + ∂y(∂yθ)] (1.48)

Therefore , we can write this as

∂tθ = D52 θ + η (1.49)

This is a diffusion equation.

Properties:

1. Slow : The diffusion equations are slow . We can quantify how slow is the diffu-

sion equation by power counting as shown in Fig.(1.5). Θ over time goes as θ over

(distance)2 . So that (distance)2 goes as as time and distance as
√
time as shown in

Fig.(1.6).

θ

t
∼ θ

x2
=⇒ x2 ∝ t =⇒ x ∝

√
t (1.50)
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Figure 1.5: Diffusion with respect to time

Figure 1.6: Diffusion translating outwards to distance proportional to
√
t

2. Conserved : The angles diffuse very slowly through collection of pointers. It conserves

the volume integral of whatever its diffusing. Taking volume integral on both sides

so the RHS on ignoring the noise is equal to the surface integral. If the surface is far

away then we have periodic boundary condition or surface to volume ratio is negligible

so can be neglected. Then the total integral of the field in this case the angle of all

space doesn’t change over time. So its conserved.∫
∂tθd

dr = D

∫
52θddr = D

∫
~5θ.dS (1.51)∫

~5θ.d~S = 0 (1.52)

if flock size >>
√
t

Decay at one error: Lets consider what would happen if you turn off the noise in viscek

algorithm. Then we will have something that will really favour order. Start with initial

condition where everybody is pointing in same direction except one . The individual at

the centre is pointing off by some angle θ0 . Now , if we let the algorithm run for time

t. This error will diffuse to distance proportional to
√
t . So , now everybody within the

distance equal to
√
t will also be going to make a mistake. In the first step he is pointing in

the direction of neighbour as that iis the average but by then he has contaminated all his

neighbours which are off by some angles and this will spread out. In much later time the

error has infected everybody in the distance of the order proportional to
√
t of the original

error maker . The error became smaller because the volume integral of the angle is the sum

of the angle of all the individuals and that is conserved. So the original error θ0 is now

going to spread over all the individuals within the circle. Evenly divided among them all.
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So the angle of error that anyone is going to make is going to be roughly the original angle

θ0/(number of individual in the circle). If the density is roughly uniform then the number

of individual are going to grow with the (radius)d where d is the dimension of the system

under consideration.

θ(t) ≈ θ0
N
≈ θ0

td/2
(1.53)

Meanwhile, more errors : Total error at center

√
δθ20 =

√
rd0t0

rd0
(1.54)

r0 is number of error committers and t0 of errors each makes. Error ∝ 1
rd

and r ∝
√
t

. Then the error is falling off as 1

t
d
2

.It depends on the dimension of space. As we go to

lower dimension this fall off becomes slower and slower and that’s why its harder to order

a low dimension system than to order a high dimension system. Secondly, its slow. Its not

falling off exponentially or fast so there is no characteristic time after which all the error

will go away. Its falling off like a power law and that will become smaller as we go down

in dimensions. As we reach d = 2 its falling as 1
t which is very slow indeed. So, what will

happen in Vicsek model where errors are trying to decay by very slow process and more

errors are constantly being created. We will find that in high enough dimension this decay of

error can compete with accumulation of noise and actually suppress accumulation of errors

and we can have long range order. But in low enough dimensions you can’t . Outside the

surface all the angles are uniformly aligned as the error has not reached there so the gradient

of the angle is zero. And will remain zero until that region goes out to the boundary of the

system. Right now everything is about pointers and not movers. Because the angle field is

described by this diffusion equation the error that you make diffuse very slowly.

t0 ∼ r20 =⇒ δθ20 ∼ r2−d0 (1.55)

δθ21 ∼ (2r0)
2−d = δθ2022−d (1.56)

Now we will see what happens when we turn the noise back on. Lets consider a flock

of radius r. We have seen that in diffusion equation any errors you make inside this

flock will be conserved until enough time has passed such that that error has diffused all

the way to the boundary. So any noise generating particle inside the region of radius r

can only start to decay on the time it takes for the errors to diffuse all the way to the

boundary ∝ (size of system)2 . In that time how many errors are made inside this col-

lection of pointers. Each individual pointer makes error on every single time step . So
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the number of error made by each pointer goes by time or radius2 . So, the total num-

ber of error made is the product of the number of pointer (rd) and error made by each

pointer (r2). So once again dimension of space becomes essential . So,the total number of

error becomes rd+2. What is the sum of all these errors ? There is going to be a resid-

ual error although some errors will cancel the others. So the typical size of that is the

root mean squared error which scales as
√
total error. So the error per pointer goes like√

total error/(Number of pointer). This ratio will give the typical angular error that each

individual pointer is making. Therefore,

Diffusion time tD(r) ∝ r2

Number of errors/pointer ∝ tD ∝ r2

Number of pointer N ∝ rd

=⇒ Number of errors ∝ NtD ∝ rd+2

=⇒ RMS error/pointer δθ ∝
√
rd+2

rd

When d > 2 and the size of system goes to infinity the error per pointer goes to zero.

This means the system is going to be ordered . And when d < 2 the error per pointer will go

to infinity and so we cannot have a long range order for this case. And d = 2 is the marginal

case when the error goes as logarithm of the radius and this goes to infinity. So, again no

long range order. So thats the justification for Mermin-Wagner theorem which says that

you cannot have long range order for d ≤ 2 because the error accumulate faster than it can

be dissipated as they can only be dissipated by this slow diffusive process in equilibrium.

δθ ∝ r1−
d
2 −→

r→∞
0, d > 2 =⇒ LRO (1.57)

∞, d < 2 =⇒ No LRO (1.58)

lnL→∞, d = 2 =⇒ No LRO (1.59)

How do organisms beat this?

How motion beats Mermin-Wagner

How can motion make a difference? Now we will consider what will happen if we have

movers and not pointers. We will look at frame of reference that is commoving with the

flock. Suppose mean velocity of the flock is in upward direction. We will look at this blob

of enhanced fluctuation as it grows. If it would have been pointer it would have grown by

distance ∝
√
t but inside this blob everyone is moving with wrong direction.

Whole blob is moving relative to the rest of the flock. Which direction is it moving? If

the individual next to the one under consideration is not paying attention then it will try
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to keep pace with it. The component of speed in the direction of the individuals motion is

almost same.

An individual can tell another individual outside of its neighbours if its moving with

wrong speed by drifting to it and passing it by. Now, is this method of transport of infor-

mation faster than the diffusion process. For this we need to compare the blob motion left

and right with how big it grows as it diffuses. This we can get by simple power calculation.

The typical lateral displacement roughly is (RMS velocity)× t .

How far δx⊥ does blob move ⊥ 〈~v〉?

δx⊥ ∼
√
v2j t ∼ v0

√
θ2t (1.60)

Remember :
√
θ2 ∝ r1−

d
2 ∝ t

1
2
− d

4

⇒ δxj ∝ t
3
2
− d

4 (1.61)

Compare with width of blob:

δx⊥
w(t)

∝ t
3
2
− d

4

t
1
2

∝ t1−
d
4 −→

t→∞
0, d > 4 (1.62)

∞, d < 4 (1.63)

Therefore, Bird motion dominates diffusion for d < 4⇒ Physics changes in d < 4. ”Break-

down of linearized hydrodynamics”. So, what happens when d < 4?

To figure out the scaling laws. Self consistent calculation. Blob is defined as region that

is affected by initially localized big fluctuation at the centre. The argument is the blob is

going to grow anisotropically as shown in Fig.(1.7) i.e. diffusively as
√
t in the direction of

flock motion which we are taking in upward direction and laterally it grows at a greater

pace w⊥(t) . We will also estimate how big the errors are . The number of errors made per

individual is proportional to time. And number of individual in the blob is proportional to

the area of this region which in 2D is proportional to width times height which is w⊥(t)
√
t

.We will do the same large number estimate and calculate the RMS value of error in the

direction of motion is in this blob. Total number of error is A(t)t . RMS value be square

root of this A(t)t. To find this for single individual we will divide by the area A(t) . This

ratio will tell the typical angle of fluctuation inside the blob which goes as t
1
4

w
1
2
⊥

.

15



Figure 1.7: Anisotropic growth of the blob

⇒ Number of errors ∝ t

⇒ Number of spins ∝ A(t) ∝ w⊥(t)
√
t

⇒ Number of errors ∝ A(t)t ∝ w⊥(t)t
3
2

⇒ Number of errors/spin δθ ∝
√
w⊥(t)t

3
2

w⊥(t)
√
t
∝ t

1
4

w
1
2
⊥

We are considering a region which could be causally connected and the individual can

affect each other in time t. And we are trying to estimate how big is the typical deviation

of motion of the individual in this region from the flock as a whole is. And we are doing it

similar to pointer case but the only difference is we know lateral motion is going to enhance

transport in perpendicular direction which is different from
√
t. But we donot know how it

increases. The information is transporting faster is because of the very fact that the birds

are moving in wrong direction . By how much are they moving in wrong direction is

w⊥(t) ∼ v0δθt ∝
t
5
4

w
1
2
⊥

(1.64)

⇒ w
3
2
⊥ ∝ t

5
4 (1.65)

⇒ w⊥ ∝ t
5
6 >> t

1
2 (1.66)

And, so the typical distance of moving sideways is (typical lateral velocity)x(RMS er-

ror)x(time). So this angle δθ tells how much the blob is deviating from the direction of

motion of the rest of the flock. Therefore, by this geometrical argument it is moving rela-

tively fast laterally. In Mermin-Wagner argument δθ grew with time and that is why system

ultimately disordered. Here δθ goes as t−
1
6 . So as the blob grows it become closer to the

mean direction of the flock. And so the system orders.

δθ ∝ t
1
4

t
5
12

∝ t−
1
6 → 0 (1.67)

as t→∞⇒ Long range Order
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Chapter 2

Isotropic-Nematic Transitions

There are examples of active matter where states with a uniaxial orientational order with

n̂→ −̂n symmetry (n̂ being the axis of orientation) have been observed. Such symmetries

are observed in liquid crystals called nematics which are passive. However active nematics

show significantly different behavior. In order to understand active nematics, I reviwed the

physics of liquid crystals.

2.1 Liquid crystal physics

Liquid crystal are mesophases between crystalline solid and isotropic liquid.The are generally

elongated or disklike. Their size is of few nanometer and the ratio between length : diameter

or diameter : thickness of disk ≈ 5 or more. It possesses orientational order.[WY06, Hes15,

And06]

At high temperature it exhibit isotropic phase with no positional and orientational or-

der. If we reduce temperature it transforms to nematic phase which is a simplest liquid

crystal phase wherein it has orientational order but no positional order. This means that,

on the average, the long axis of the molecules of the liquid crystal point along a direction.

This direction is denoted by n̂ which is a unit vector called liquid crystal director. This has

n̂ → −̂n symmetry. When temperature decreases further, it transforms to smectic phase

which has orientational order and positional order only partially. This is because it arranges

itself in layers. In a given layer, there is no poisitional order. With further reducing temper-

ature, the form of this layered structure may change. At very low temperature, the material

behaves like a crystal with both orientational and positional order.
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2.1.1 Tensor Order Parameter

To understand the transitions we first characterize an order parameter. For the nematic,

if ai is a unit vector along the orientation of molecule i, the average of ai is zero. Liquid

crystals are centro-symmetric. Therefore, we cannot have a vector order parameter. The

next higher order is a tensor. So we have to learn about tensors.

2.2 A tensor

A tensor of rank l is something with l indices, whose components in a rotated coordinate

system are given as

A′µ1µ2...µl = Uµ1ν1Uµ2ν2 ....UµlνlAν1ν2....νl

2.2.1 Symmetric Second Rank Tensors

A symmetric second rank tensor is defined as Sµν = Sνµ. It can be broken as Symmetric

Second Rank Tensor = Isotropic + Symmetric Traceless part.

Sµν =
1

3
Sλλδµν(isotropic) + S′µν(Symmetric-traceless) (2.1)

where

S′µν = Sµν −
1

3
Sλλδµν (2.2)

This is invariant under a rotation of coordinate system. Since, S′νν = 0 , that is why this

is symmetric traceless. It is generally referred to deviatoric part, because it tells about

deviation from isotropy.[Hes15]

2.2.2 Principal Axes Representation

A symmetric tensor can be diagonalized by appropriate rotation of coordinate system. The

corresponding axes in that coordinate system is called principal axes. In this system, it can

be represented as

S :=

S
(1) 0 0

0 S(2) 0

0 0 S(3)


with real eigen values S(i), i = 1, 2, 3. If unit vector that are parallel to these axes are

e(i), i = 1, 2, 3, then ,

S =

3∑
i=1

S(i)e(i)e(i) (2.3)

The eigen vectors are orthogonal e(i).e(j) = δ(ij) and complete
∑3

i=1 e
(i)
µ e

(i)
ν = δµν . So,

symmetric second rank tensor has 6 independent components in 3D.
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Isotropic Tensors

S(1) = S(2) = S(3) = S. Then S can be written as

Sµν = Sδµν (2.4)

When 3 eigen values are unequal, the symmetric tensor has a non zero traceless part as we

described before. Let us consider two cases: (i) two eigen values are equal and different from

3rd one. This is called unixial tensor (ii) All the three eigen values equal. This is called

biaxial tensor.

Uniaxial tensor

S(1) = S(2) 6= S(3). Let, S(1) = S(2) = S⊥ , S(3) = S‖. Then,

Sµν = S‖eµeν + S⊥ (δµν − eµeν) (2.5)

where e = e3. We know,

eµeν =
1

3
δµν + e′µe

′
ν (2.6)

So,

Sµν = S‖

[
1

3
δµν + e′µe

′
ν

]
+ S⊥

(
δµν −

1

3
δµν

)
(2.7)

⇒ Sµν =
1

3

(
S‖ + 2S⊥

)
δµν +

(
S‖ − S⊥

)
e′µe
′
ν (2.8)

In matrix notation, this becomes

S =
1

3

(
S‖ + 2S⊥

)1 0 0

0 1 0

0 0 1

+
(
S‖ − S⊥

)−
1
3 0 0

0 −1
3 0

0 0 2
3

 (2.9)

Biaxial Tensors

When S(1) 6= S(2) 6= S(3), the tensor is biaxial. We can write the tensor as,

Sµν = S′′δµν + se′(3)µ e′(3)ν + q
(
e′(1)µ e′(1)ν − e′(2)µ e′(2)ν

)
(2.10)
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where

S′′ =
1

3

(
S(1) + S(2) + S(3)

)
(2.11)

s = S(3) − 1

2

(
S(1) + S(2)

)
(2.12)

q =
1

2

(
S(1) − S(2)

)
(2.13)

And S(i) = e
(i)
µ Sµνe

(i)
ν ,

e(i)µ e
′(j)
µ e′(j)ν e(i)ν = e(i)

[
−1

3
δµν + e(j)µ e(j)

]
e(i)ν (2.14)

For i = j; −1
3 + 1 = 2

3 . And for i 6= j; −1
3 + 0 = −1

3 . So,

S(1) = S′′ − 1

3
s+ q (2.15)

S(2) = S′′ − 1

3
s− q (2.16)

S(3) = S′′ +
2

3
s (2.17)

Using, e
′(1)
µ e

′(1)
ν − e′(2)µ e

′(2)
ν = e

(1)
µ e

(1)
ν − e(2)µ e

(2)
ν , S = 1

3

∑3
i=1 S

(i)δµν +
∑3

i=1 S
(i)e

(i)
µ e

(i)
ν .

Now,

S(1)e(1)µ e(1)ν + S(2)e(2)µ e(2)ν =

1

2

(
S(1) + S(2)

)(
e′(1)µ e′(1)ν + e′(2)µ e′(2)ν

)
+

1

2

(
S(1) − S(2)

)(
e′(1)µ e′(1)ν − e′(2)µ e′(2)ν

)
and e

′(1)
µ e

′(1)
ν + e

′(2)
µ e

′(2)
ν = −e′(3)µ e

′(3)
ν .

Using this we get to Eq. 2.10.

Sµν = S′′

1 0 0

0 1 0

0 0 1

+ s

−
1
3 0 0

0 −1
3 0

0 0 2
3

+ q


1 0 0

0 0 0

0 0 0

−
0 0 0

0 1 0

0 0 0




Sµν = S′′

1 0 0

0 1 0

0 0 1

+
2

3
s

−
1
2 0 0

0 −1
2 0

0 0 1

+ q

1 0 0

0 −1 0

0 0 0

 (2.18)

For a symmetric traceless tensor, S(1) + S(2) + S(3) = 0 i.e. S′′ = 0.

So, the anisotropic part is characterized by the linear combination of s and q of its principal

values. For q = 0, s 6= 0, this is a uniaxial case Eq.(2.12) is recovered. When s = 0, q 6= 0
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the symmetric traceless part of tensor is planar biaxial.

Scalar Invariants of a Symmetric Tensor

There are three quantities which are invariant under rotation of coordinate system called

scalar invariant : (i) trace I1 = Sµµ (ii) norm, I2 = SµνSµν (iii) determinant

I3 = det(S) =
1

3
SµνSνλSλµ +

1

6
(SµµSνν − 3SµνSνµ)Sλλ (2.19)

When rotated to the principal axes,

I1 = S(1) + S(2) + S(3) (2.20)

I2 = S(1) + S(2) + S(3) (2.21)

I3 = S(1)S(2)S(3) (2.22)

For symmetric traceless tensors, I1 = 0. Therefore,

I2 = S′µνS
′
νµ, I3 = 3det(S′) = S′µνS

′
νλS

′
λµ (2.23)

This property will be used in calculating landau de Gennes free energy.

Biaxiality of a Symmetric Traceless Tensor

The principal values of a biaxial symmetric traceless tensor are −1
3s + q,−1

3s − q and 2
3s.

Therefore, we obtain

I2 =
2

3
s2 + 2q2, I3 = 3det(S) = 2s

(
1

9
s2 − q2

)
(2.24)

We can define a biaxiality parameter b such that b2 = 1− 6
I23
I32

. So, b2 = 1 for planar biaxial

case and b2 = 0 for uniaxial case since I23/I
2
2 = 1/6.

2.2.3 Isotropic-Nematic Phase transition

Consider a single molecule of a nematic whose orientation is specified by a unit vector u. The

orientational distribution function is given by f(u) and it is normalized, i.e.
∫
f(u)d2u = 1.

Also due to symmetry, f(u) = f(−u). This orientational distrbution function can be written

down in terms of tensors of growing rank. The second rank tensor of that expansion is the

smallest moment which can distinguish between isotropic and anisotropic distributions. This

is given as

aµν = 〈φµν〉 , φµν = ζ2u
′
µu
′
ν , ζ2 =

√
15

2
(2.25)
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Bracket resembles the average over orientational distribution. Note that aµν is a symmetric

traceless tensor and in the coordinate representation of the principal axes, we can from our

analysis of second rank symmetric traceless tensor conclude easily (using Eqs. 2.10-2.17)

that,

aµν =

√
3

2
a0e
′(3)
µ e′(3)ν +

1√
2
a1

(
e(1)µ e(1)ν − e(2)µ e(2)ν

)
. (2.26)

Also S′′ = 0, s =
√

3
2a0, q = a1√

2
and I2 = a20 + a21, I3 = a0(a

2
0 − 3a21). With the choice

a0 = a cosα and a1 = a sinα, we get

I2 = a2, I3 = a3 cos 3α, b = sin 3α (2.27)

where b =
√

1− I23/I32 is the biaxiality parameter.

For nematics, α = 0, a1 = 0 and a0 = a. Therefore,

aµν =

√
3

2
ae′(3)µ e′(3)ν =

√
3

2
an(3)µ n(3)ν

where n = e(3) is the director. From here it follows that a =
√

5S2 with S2 ≡ 〈P2(u.n)〉
where P2(x) = 3

2

(
x2 − 1

3

)
is a second Legendre polynomial.

Landau-de Gennes Theory

To phenomenologically find out the isotropic-nematic phase transition, we describe the

Landau-de Gennes potential in terms of the scalar invariants of the tensor order param-

eter aµν as

φ ≡ 1

2
AI2 −

1

3
BI3 +

1

4
CI22 (2.28)

where A = A0

(
1− T∗

T

)
, A0, B, C > 0, where T∗ is a temperature below the isotropic-

nematic phase transition temperature. From the analysis above, we can express φ in terms

of a and α

φLdG =
1

2
Aa2 − 1

3
Ba3 cos 3α+

1

4
Ca4 (2.29)

Now, the conditions for extremum

∂φ

∂α
= Ba3 sin 3α = 0

and
∂φ

∂a
= aA−Ba2 cos 3α+ Ca3 = 0

The first one implies that biaxility b = sin 3α is zero. Therefore, the state is uniaxial with

α = 0 . The second condition gives solutions a = 0 and a = B
2C ±

1
2C

√
B2 − 4AC. The a = 0

is an isotropic state. In uniaxially ordered state a 6= 0. [And06]
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Maier Saupe Theory

In the Maier Saupe theory, we write down the effective potential of single molecule with an

orientation as

Ui(θi) = − A

V 2
S(

3

2
cos2(θi)−

1

2
) (2.30)

where θi is angle between long axis of the molecule and director, V is volume of sample and

A is constant independent of temperature

Knowing boltzmann probability,

Pi(θi) =
1

Z
e
−Ui(θi)

kBT (2.31)

we get,

S = 〈3
2

cos θi
2 − 1

2
〉 =

∫ π

0

(
3

2
cos2θi −

1

2

)
Pi(θi) sin θidθi

∫ 2π

0
dφi (2.32)

We know Pi(θi), therefore

S =
1

Z

∫ π

0

(
3

2
cos2 θi −

1

2

)
e
−Ui(θi)

kBT sin θidθi

∫ 2π

0
dφi (2.33)

So,

S =

∫ π
0

3
2cos

2θie
−Ui(θi)

kBT sinθidθi
∫ 2π
0 dφi − 1

2

∫ π
0 e
−Ui(θi)

kBT sinθidθi
∫ 2π
0 dφi∫ π

o e
−Ui(θi)

kBT sinθidθi
∫ 2π
0 dφi

S =
3
2

∫ π
0 cos

2θie
−Ui(θi)

kBT sinθidθi∫ π
o e
−Ui(θi)

kBT sinθidθi

− 1

2

Now, x = cosθi =⇒ dx = −sinθidθi. Substituting,

S =
3
2

∫ −1
1 −x2e−

1
kBT

(− A
V 2 S(

3
2
x2− 1

2
))
dx

−
∫ −1
1 e

− 1
kBT

(− A
V 2 S(

3
2
x2− 1

2
))
dx

− 1

2

S =
3
2

∫ 1
−1 x

2e
3ASx2

2kBTV
2 e
− AS
kBTV

2 dx∫ 1
−1 e

3ASx2

2kBTV
2 e
− AS
kBTV

2 dx

− 1

2

Integral is an even function in x, so the integral from -1 to 1 becomes twice of 0 to 1. Now,

let m = 3AS
2kBTV 2 .

So,

S =
3
2

∫ 1
0 x

2emx
2
dx∫ 1

0 e
mx2dx

− 1

2
(2.34)
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Now, let mx2 = t.

So, 2mxdx = dt =⇒ xdx = dt
2m ,

∫ 1
0 x

2emx
2
dx = 1

2m

∫m
0

√
t
me

tdt = 1
2m
√
m

∫m
0 t1/2etdt = 1

2m3/2

[
[t1/2et]m0 −

∫m
0

1
2
√
t
etdt

]
Substituting back we get,

∫ 1
0 x

2emx
2
dx = 1

2m3/2

[√
mem −

∫ 1
0

1√
m
emx

2
mdx

]
= em

2m −
1
2m

∫ 1
0 e

mx2dx

So,

S =

3
2

[
em

2m −
1
2m

∫ 1
0 e

mx2dx
]

∫ 1
0 e

mx2dx
− 1

2

S =
3

4m

[
em∫ 1

0 e
mx2dx

− 1

]
− 1

2

Now, let y =
√
mx, then,

S =
3

4m

[ √
mey/x

2∫ √m
0 ey2dy

− 1

]
− 1

2
(2.35)

Now, we know D(t) = e−t
2 ∫ t

0 e
y2dy, which is a Dawson’s integral.If t = y/x2, substitute in

[2.77] to get,

S =
3

4m

[ √
m

D(
√
m)
− 1

]
− 1

2
(2.36)

Knowing m and S allows (2kBTV
2)/(3A), a quantity proportional to T, to be found from

the definition of m. A graph of S versus T/Tmax, where Tmax corresponds to the largest

value of (2kBTV
2)/(3A). The highest value of T occurs when S=0.32. Below Tmax there

are sometimes two values of S.

Now, the Helmholtz free energy is given by,

F = U − TΣ (2.37)

where Σ is the entropy of the phase. The average energy of a molecule is:

〈Ui〉 = 〈−AS
V 2

(
3

2
cos2θ − 1

2

)
〉 =

AS

V 2
〈−3

2
cos2θ − 1

2
〉 = −AS

2

V 2
(2.38)

where 〈...〉 denotes a thermal average using the probability Pi(θi) given before. Since this

energy stems from an interaction between two molecules , to find the total energy for N

molecules , we cannot simply multiply the average energy per molecule by N, since we

would be counting the interaction energy of each pair of molecules twice. Therefore , the
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total energy for N molecules is

U = −1

2
N
AS2

V 2
(2.39)

The entropy of a single molecule is just,

Σi = −kB lnPi(θi) =
Ui
T

+ kB lnZ (2.40)

so the total Helmholtz free energy for N molecules is

F = −1

2

NAS2

V 2
− NAS2

V 2
−NkBT lnZ = N [

1

2

NAS2

V 2
− kBT lnZ] (2.41)

Now, since Z = 4π when we put S=0, so the free energy of isotropic phase is−MkBT ln(4π) =

−2.53NkBT . If the free energy of isotropic phase 〈 nematic phase , then nematic phase be-

comes unstable inspite of self consitent solution with non zero S exists. So as to have nematic

phase to be stable it should have the value of its free energy smaller than this value. So to

compute F for non zero S, Z should be expressed in terms of dawson’s integral, to give

F = NkBT

[
mS

3
− ln

(
4π√
m

exp
2m

3
D(
√
m)

)]
(2.42)

Therefore, Maier Saupe theory predicts a first order transition at a temperature Tc defined

by

kBTc = 0.22

[
−N

2A

V 2

]
(2.43)

Therefore, when value of S is below 0.43 , the isotropic phase has a lower free energy and

therefore is a stable phase. Thus, the Maier Saupe theory predicts that the order parameter

should decrease continuously from 0.43 to 0 at the transition to isotropic phase.
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Chapter 3

Active Ising Model

In this chapter we will discuss about the 2D Active Ising Model and its simulation. For

this we will start with defining 2D Ising model .

3.1 2D Ising Model

Ising model is defined for magnetic system where the system is made up of dipole moments

placed within the material. It consistes of a lattice which for convenience we chose a square

lattice suchg that there are magnetic dipole at each lattice site. Every site can accomodate

a spin which can lie in two configurations i.e. ±1 such that they represent upward or

downward pointing spins. These spins will interact with nearest neighbours. For our

purpose we will keep external magnetic field B = 0. The Hamiltonian will be of the form

H = −J
∑
<ij>

sisj −B
∑
i

si (3.1)

here the notation < ij > denotes that the sites i and j are nearest neighbours. The minus

sign here is conventional. The plot for energy can be seen in Fig.(3.1). Every state of Ising

model consists of different values of spins. As we know each spin can take two such values

so the number of states for lattice having N spins will be 2N . So we ca write the partition

function for the system as

Z =
∑
s1=±1

∑
s2=±1

...
∑

sN=±1
= exp

βJ ∑
<ij>

sisj + βB
∑
i

si

 (3.2)

In shorter notation,

Z =
∑
si

e−βH (3.3)
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Figure 3.1: The energy is continuous function of temperature.

We can also calculate the mean magnetization 〈M〉 of the model from the partition

function using ,

M =
∂(−kT logZ)

∂B
(3.4)

although as we will see it is usually simpler to evaluate 〈M〉 directly from an average over

states :

〈M〉 = 〈
∑
i

si〉 (3.5)

Often, in fact, we are more interested in the mean magnetization per spin 〈m〉 which can

be seen in Fig.(3.2), which is just

〈m〉 =
1

N
〈
∑
i

si〉 (3.6)

We can calculate fluctuations in the magnetization or the internal energy by calculating

derivatives of the partition function. We can calculate the magnetic susceptibility per spin:

χ =
β

N
(〈M2〉 − 〈M〉2) = βN(〈m2〉 − 〈m〉2) (3.7)
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Figure 3.2: Fall in magnetization around critical temperature∼ 2.3

The graph for this can be seen in Fig.(3.4). Similarly we can calculate the specific heat per

spin c from the energy fluctuations thus:

c =
kβ2

N

(〈
E2
〉
− 〈E〉2

)
(3.8)

This has been plotted in Fig. 3.3. The simulations were done on a two dimensional lattice

using Monte Carlo technique [NB99].

3.2 2D Active Ising Model

Active systems are large collection of interacting particles which consume energy to

self-propel and are known to show elaborate collective behaviour. A coherent displacement

can be seen over length scales a lot larger than individual size. This can be observed in a

diverse biological system like fish schools, bacterial swarm , bird flocks, microtubule

motility assays and even in inert matter which is artificially self propelled. This collective

motion transitioning to flocking has aroused interest in many physicist.

The Vicsek model has been prototypical for this area of research with two properties

namely self propulsion at constant speed and alignment with neighbours. It has been
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Figure 3.3: Peak in specific heat at critical temperature

Figure 3.4: Susceptibility shows a jump at critical temperature
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Figure 3.5: Sketch of the possible actions and their rates of occurence

described using X-Y Model. On reducing the noise in the aligning interaction or else

increasing density , a transition is observed from disordered gas phase to an ordered

collective motion. Amidst these homogeneous phase lies a region of parameter space where

these individual particles gather in ordered bands in between dilute disordered

background. Such bands are frequently observed in flocking models and resembles 1st

order phase transition. This is seen only in large systems.

Because of the scale of the problem , the analytical approaches have been deviced.

Hydrodynamic equations have been tried to derive either phenomenonologically or by

coarse graining.Such equation facilitate in predicting phase transition which is in

qualitative agreement to microscopic model along with emergence of inhomogeneous bands.

Inspite of the usefulness of the analutical approach, the equation which are dealt with are

linearized because of the complications. But we can see long range order nevertheless.

Complete analytical study of Vicsek Model is extremely complicated so we will deal with

this problem through an alternative strategy by introducing Active Ising Model(AIM).

The use of non-equilibrium version of ferromagnetic model has been fruitful. The form of

AIM in consideration exhibit two kinds of properties : 1) Self propulsion 2) Aligning

interaction. The continuous rotational symmetry in Vicsek model is replaced by discrete

symmetry. The particles here are diffusive in nature but propelled in one direction. AIM

makes the understanding simpler in addition to retaining most of the properties. Lattice

based model simplify both analytical and numerical study.

3.2.1 Definition of Model:

Consider N particles which are on a two dimensional lattice. The total number of sites in

the lattice is Lx × Ly. Every particle is assigned a spin variable s = ±1. Unlike the Ising

model, here any number of particles can occupy a given site. To every site we can assign a

local density ρi = n+i + n−i and a local magnetization mi = n+i − n
−
i . n±i are the number of

particles with spin ±1 on lattice site i. The evolution happens by spins flipping on a
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Figure 3.6: Density profiles (red upper line) and magnetization profiles (green lower line)
averaged along vertical direction showing the disordered gas phase. Here β = 1.4, ρo = 2,
D = 1 and ε = 0.9.

lattice site (like the Ising model) as well as hopping from one lattice site to another (unlike

Ising model) [ST13, ST15].

A spin on a lattice site flips according to

W (s→ −s) = γexp

(
−sβmi

ρi

)
(3.9)

with β = 1/T . This is a local interaction since particles on a lattice site will only allign

with other particles which occupy the same site. This move therefore causes alignment.

3.2.2 Self-propulsion:

A particle on a lattice site can also hop to other particles in neighbouring sites. On a 2d

square lattice, it hops to the right with rate D(1 + sε) and to the left with rate D(1− sε).
This difference in rates ensures that the particles move in a definite direction therefore

giving the self propulsion mechanism. The propulsion is tuned with the parameter ε. D is

the normal diffusion rate. Therefore, when ε→ 0, the spins will just diffuse. Note that

hopping to the top and bottom is with rate D.
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Figure 3.7: Density profiles (red upper line) and magnetization profiles (green lower line)
averaged along vertical direction showing the polar liquid phase. Here, β = 2, ρ0 = 7, D = 1
and ε = 0.9.

Figure 3.8: Density profiles (red upper line) and magnetization profiles (green lower line)
averaged along vertical direction for the liquid-gas coexistence phase. Here, β = 1.6, ρ0 = 5,
D = 1 and ε = 0.9.
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Figure 3.9: 2d snapshot of a 50× 50 lattice corresponding to liquid-gas coexistence.

3.2.3 Simulations

The simulations were carried out using random-sequential update. In a time ∆t, a

randomly chosen particle is flipped with a probability given as W (s→ −s)∆t, hops

downwards and upwards with probabilities D∆t, to left and right with probabilities

D(1∓ sε)∆t. Lastly, the probability of doing nothing will be 1− [4D +W (s→ −s)] ∆t.

3.2.4 Liquid-Gas Phase Transition

In my project I simulated the active Ising model and observed three different phases in the

parameter space of the temperature T = β−1, the average density ρ0 = N
LxLy , and ε (Figs.

3.6, 3.7, 3.8). When the temparature is high and the density is low, the particles are

randomy oriented and do not self organize. Therefore, we get a homogeneous gaseous

phase . However, for large densities and small temperatures, we see particles moving

together either to left or right. At densities in between these densities, the system phase

seperates and a band of polar particles travel to the left or right in a background of

particles randomly oriented.
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Appendix A

C++ Code for 2D Ising Model

#include <fstream>

#include <stdio.h>

#include <conio.h>

#include <math.h>

#include <time.h>

#include <stdlib.h>

#include <iostream>

using namespace std;

int main()

{

int Nx,Ny;

scanf("%d %d",&Nx,&Ny);

freopen("ans.txt","w",stdout);

int S[Nx][Ny]; double E1=0.0,E2=0.0,dE=0.0,r,temp1,t,AvgE=0.0,

AvgEf=0.0,AvgMf=0.0,M2=0.0,AvgM2=0.0,Sus=0.0,Heat=0.0,E3=0.0,

AvgE3=0.0;

int N=Nx*Ny;

double M1=0,AvgM=0;

double M[200];

double E[200];

double T[200];

int z=0,i,j,m,n;

int i1=i+1;

int i2=i-1;

int j1=j+1;

int j2=j-1;
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int m1=m+1;

int m2=m-1;

int n1=n+1;

int n2=n-1;

for(t=4.0;t>=0.02;t=t-0.02)

{

for(i=0;i<Nx;i=i+1)

{

for(j=0;j<Ny;j=j+1)

{

if((double)rand()/RAND_MAX < 0.5)

S[i][j]=1;

else

S[i][j]=-1;

}

}

E1=0.0;

E2=0.0;

dE=0.0;

double r=0.0;

temp1=0.0;

AvgE=0.0;

AvgEf=0.0;

M1=0;

AvgM=0;

AvgMf=0.0;

AvgM2=0.0;

AvgE3=0.0;

M2=0.0;

Sus=0.0;

Heat=0.0;

E3=0.0;

for(i=0;i<Nx;i=i+1)

{

for(j=0;j<Ny;j=j+1)

{

i1=i+1;

i2=i-1;

j1=j+1;
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j2=j-1;

if(i==(Nx-1))

i1=0;

if(i==0)

i2=Nx-1;

if(j==(Ny-1))

j1=0;

if(j==0)

j2=Ny-1;

E1=E1-S[i][j]*(S[i1][j]+S[i][j1]+S[i2][j]+S[i][j2])/2;

}

}

for(int k=1;k<=10000;k=k+1)

{

for(int x=0;x<Nx;x=x+1)

{

for(int y=0;y<Ny;y=y+1)

{

E2=0.0;

S[x][y]=-S[x][y];

for(m=0;m<Nx;m=m+1)

{

for(n=0;n<Ny;n=n+1)

{

m1=m+1;

m2=m-1;

n1=n+1;

n2=n-1;

if(m==(Nx-1))

m1=0;

if(m==0)

m2=Nx-1;

if(n==(Ny-1))

n1=0;

if(n==0)

n2=Ny-1;

E2=E2-S[m][n]*(S[m1][n]+S[m][n1]+S[m2][n]+S[m][n2])/2;

}

}
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dE=E2-E1;

if(dE<=0)

E1=E2;

else

{

r=(double)rand()/RAND_MAX;

temp1=(double) exp(-dE/t);

if(r<temp1)

E1=E2;

else

S[x][y]=-S[x][y];

}

}

}

}

E1=0.0;

E2=0.0;

dE=0.0;

r=0.0;

temp1=0.0;

AvgE=0.0;

M1=0;

AvgM=0;

M2=0.0;

E3=0.0;

for(i=0;i<Nx;i=i+1)

{

for(j=0;j<Ny;j=j+1)

{

i1=i+1;

i2=i-1;

j1=j+1;

j2=j-1;

if(i==(Nx-1))

i1=0;

if(i==0)

i2=Nx-1;

if(j==(Ny-1))

j1=0;
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if(j==0)

j2=Ny-1;

E1=E1-S[i][j]*(S[i1][j]+S[i][j1]+S[i2][j]+S[i][j2])/2;

M1=M1+S[i][j];

}

}

for(int k=0;k<10000;k=k+1)

{

for(int x=0;x<Nx;x=x+1)

{

for(int y=0;y<Ny;y=y+1)

{

E2=0.0;

S[x][y]=-S[x][y];

for(m=0;m<Nx;m=m+1)

{

for(n=0;n<Ny;n=n+1)

{

m1=m+1;

m2=m-1;

n1=n+1;

n2=n-1;

if(m==(Nx-1))

m1=0;

if(m==0)

m2=Nx-1;

if(n==(Ny-1))

n1=0;

if(n==0)

n2=Ny-1;

E2=E2-S[m][n]*(S[m1][n]+S[m][n1]+S[m2][n]+S[m][n2])/2;

}

}

dE=E2-E1;

if(dE<=0)

{

E1=E2;

M1=M1+2*S[x][y];

}
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else

{

r=(double)rand()/RAND_MAX;

temp1=(double) exp(-dE/t);

if(r<temp1)

{

E1=E2;

M1=M1+2*S[x][y];

}

else

S[x][y]=-S[x][y];

}}}

AvgE=AvgE+(E1/N);

AvgM=AvgM+(M1/N);

M2=M2+ (M1/N)*(M1/N);

E3=E3+ (E1/N)*(E1/N);

}

AvgEf=AvgE/10000;

AvgMf=AvgM/10000;

AvgM2=M2/10000;

AvgE3=E3/10000;

Sus=AvgM2-AvgMf*AvgMf;

Heat=AvgE3-AvgEf*AvgEf;

E[z]=AvgEf;

if(AvgMf<0)

AvgMf=-AvgMf;

M[z]=AvgMf;

T[z]=t;

cout << T[z]<<"\t \t"<<M[z]<<"\t \t"<<E[z]<<"\t \t"<<Sus<<"\t \t"<<Heat<<"\n";

z=z+1;

}

for(int g=0;g<Nx;g++)

{

for(int h=0;h<Ny;h++)

{

cout<<g<<"\t \t"<<h<<"\t \t"<<S[g][h]<<"\n";

} } }

return 0;

}
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Appendix B

C++ Code for 2D Active Ising

Model

#include <fstream>

#include <stdio.h>

#include <cmath>

#include <math.h>

#include <time.h>

#include <stdlib.h>

#include <iostream>

using namespace std;

int main()

{

int Nx,Ny;

double EPSILON =0.0000001;

double sum=0.0,sum1=0.0;

int q;

scanf("%d %d",&Nx,&Ny);

freopen("ans.txt","w",stdout);

int N=Nx*Ny;//no of lattice sites

double S[N][4];//lattice details(n+,n-,rho,m)

int rho0=7;//initial density

int N1=rho0*N;//no of particles

int B[N1][2];//spin location and configuration(lattice site,spin)

int randNum=0;

int min=0,max=N1-1,max1=N-1;

int D=1;

double e=0.9;
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double b,E1=0.0,W=0.0,dt=0.0;

int neigh[4];//right,left,up,down

for(int i=0;i<N;i++)//initialized 0 to the array

{

S[i][0]=0;

S[i][1]=0;

S[i][2]=0;

S[i][3]=0;

}

for(int i=0;i<N1;i++)//initialized 0 to the array

{

B[i][0]=0;

B[i][1]=0;

}

for(int i=0;i<N1;i=i+1)//randomly distributed the particles over the lattice

{

int r=rand()%(max1-min+1)+min;//generated random no between 0 to(N-1) to place the particles

if((double)rand()/RAND_MAX < 0.5)//randomly selecting a +1/-1 configuration and updating tha array

{

S[r][0]=S[r][0]+1;//no of +1 spin is in 1st column

B[i][1]=1;

}

else

{

S[r][1]=S[r][1]+1;//no of -1 spin is in 2nd column

//S[r][0]=S[r][0]+0;

B[i][1]=-1;

}

S[r][2]=S[r][0]+S[r][1];

S[r][3]=S[r][0]-S[r][1];

B[i][0]=r;

}

for(b=2.5;b>=0.0;b=b-0.1)//using this instead of t

{

b=2;

dt=1/(4*D+exp(b));//already defined

E1=0.0;
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for(int i=0;i<N;i++)

{

E1=E1-S[i][3]*S[i][3]/(2*S[i][2]);

}

printf("%f \n",b);

for(int k=1;k<=10000;k=k+1)//montecarlo steps

{

for(int x=0;x<N1;x=x+1)

{

int randNum = rand()%(max-min + 1) + min;//integer random generator bet 0 to (N1-1)

//so we selected a particle and now we will use its location to find the neighbours

int h=B[randNum][0];

printf("before");

printf("%d %f %f %f %f \n",h,S[h][0],S[h][1],S[h][2],S[h][3]);

if((h+1)%Ny==0) //right point

neigh[0]=h-Ny+1;

else

neigh[0]=h+1;

if(h%Ny==0) //left point

neigh[1]=h+Ny-1;

else

neigh[1]=h-1;

if(h<Ny) //upper point

neigh[2]=h+(Nx-1)*Ny;

else

neigh[2]=h-Ny;

if((h+Ny)>=(Nx*Ny))//lower point

neigh[3]=h-(Nx-1)*Ny;

else

neigh[3]=h+Ny;

printf("%d %f %f %f %f \n",neigh[0],S[neigh[0]][0],S[neigh[0]][1],

S[neigh[0]][2],S[neigh[0]][3]);

printf("%d %f %f %f %f \n",neigh[1],S[neigh[1]][0],S[neigh[1]][1],

S[neigh[1]][2],S[neigh[1]][3]);

printf("%d %f %f %f %f \n",neigh[2],S[neigh[2]][0],S[neigh[2]][1],
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S[neigh[2]][2],S[neigh[2]][3]);

printf("%d %f %f %f %f \n",neigh[3],S[neigh[3]][0],S[neigh[3]][1],

S[neigh[3]][2],S[neigh[3]][3]);

W=exp(-B[randNum][1]*S[h][3]*b/(S[h][2]));//condition to flip

if((double)rand()/RAND_MAX <= W*dt)//flipping

{

printf("flipping");

if(B[randNum][1]==1)

{

S[h][0]=S[h][0]-1;

S[h][1]=S[h][1]+1;

S[h][3]=S[h][3]-2;

B[randNum][1]=-1;

}

else if(B[randNum][1]==-1)

{

S[h][0]=S[h][0]+1;

S[h][1]=S[h][1]-1;

S[h][3]=S[h][3]+2;

B[randNum][1]=1;

}

}

break;

if(W*dt<(double)rand()/RAND_MAX<=W*dt+D*(1+B[randNum][1]*e)*dt)//hopping to the right

{

printf("hop right");

if(B[randNum][1]==1)

{

S[h][0]=S[h][0]-1;

S[neigh[0]][0]=S[neigh[0]][0]+1;

S[h][2]=S[h][2]-1;

S[neigh[0]][2]=S[neigh[0]][2]+1;

S[h][3]=S[h][3]-1;

S[neigh[0]][3]=S[neigh[0]][3]+1;

B[randNum][0]=neigh[0];

}

else if(B[randNum][1]==-1)

{

S[h][1]=S[h][1]-1;
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S[neigh[0]][1]=S[neigh[0]][1]+1;

S[h][2]=S[h][2]-1;

S[neigh[0]][2]=S[neigh[0]][2]+1;

S[h][3]=S[h][3]+1;

S[neigh[0]][3]=S[neigh[0]][3]-1;

B[randNum][0]=neigh[0];

}

}

break;

if(W*dt+D*(1+B[randNum][1]*e)*dt<(double)rand()/RAND_MAX<=W*dt+2*D*dt)//hopping to the

left

{

printf("hop left");

if(B[randNum][1]==1)

{

S[h][0]=S[h][0]-1;

S[neigh[1]][0]=S[neigh[1]][0]+1;

S[h][2]=S[h][2]-1;

S[neigh[1]][2]=S[neigh[1]][2]+1;

S[h][3]=S[h][3]-1;

S[neigh[1]][3]=S[neigh[1]][3]+1;

B[randNum][0]=neigh[1];

}

else if(B[randNum][1]==-1)

{

S[h][1]=S[h][1]-1;

S[neigh[1]][1]=S[neigh[1]][1]+1;

S[h][2]=S[h][2]-1;

S[neigh[1]][2]=S[neigh[1]][2]+1;

S[h][3]=S[h][3]+1;

S[neigh[1]][3]=S[neigh[1]][3]-1;

B[randNum][0]=neigh[1];

}

}

break;

if(W*dt+2*D*dt<(double)rand()/RAND_MAX<=W*dt+3*D*dt)hopping up

{

printf("hop up");

45



if(B[randNum][1]==1)

{

S[h][0]=S[h][0]-1;

S[neigh[2]][0]=S[neigh[2]][0]+1;

S[h][2]=S[h][2]-1;

S[neigh[2]][2]=S[neigh[2]][2]+1;

S[h][3]=S[h][3]-1;

S[neigh[2]][3]=S[neigh[2]][3]+1;

B[randNum][0]=neigh[2];

}

else if(B[randNum][1]==-1)

{

S[h][1]=S[h][1]-1;

S[neigh[2]][1]=S[neigh[2]][1]+1;

S[h][2]=S[h][2]-1;

S[neigh[2]][2]=S[neigh[2]][2]+1;

S[h][3]=S[h][3]+1;

S[neigh[2]][3]=S[neigh[2]][3]-1;

B[randNum][0]=neigh[2];

}

}

break;

if(W*dt+3*D*dt<(double)rand()/RAND_MAX<=W*dt+4*D*dt)hopping down

{

printf("hop down");

if(B[randNum][1]==1)

{

S[h][0]=S[h][0]-1;

S[neigh[3]][0]=S[neigh[3]][0]+1;

S[h][2]=S[h][2]-1;

S[neigh[3]][2]=S[neigh[3]][2]+1;

S[h][3]=S[h][3]-1;

S[neigh[3]][3]=S[neigh[3]][3]+1;

B[randNum][0]=neigh[3];

}

else if(B[randNum][1]==-1)

{

S[h][1]=S[h][1]-1;

S[neigh[3]][1]=S[neigh[3]][1]+1;
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S[h][2]=S[h][2]-1;

S[neigh[3]][2]=S[neigh[3]][2]+1;

S[h][3]=S[h][3]+1;

S[neigh[3]][3]=S[neigh[3]][3]-1;

B[randNum][0]=neigh[3];

}

}

printf("after");

printf("%d %f %f %f %f \n",h,S[h][0],S[h][1],S[h][2],S[h][3]);

printf("%d %f %f %f %f \n",neigh[0],S[neigh[0]][0],S[neigh[0]][1],S[neigh[0]][2],

S[neigh[0]][3]);

printf("%d %f %f %f %f \n",neigh[1],S[neigh[1]][0],S[neigh[1]][1],S[neigh[1]][2],

S[neigh[1]][3]);

printf("%d %f %f %f %f \n",neigh[2],S[neigh[2]][0],S[neigh[2]][1],S[neigh[2]][2],

S[neigh[2]][3]);

printf("%d %f %f %f %f \n",neigh[3],S[neigh[3]][0],S[neigh[3]][1],S[neigh[3]][2],

S[neigh[3]][3]);

}

}

printf("%f \n", b);

if(b==1.600000)//i want to plot for this value

if(fabs(b - 1.6) < EPSILON)//to print only b=1.6

{

printf("-------------------------sI am happy");

for(int f=0;f<N;f=f+1)

{

printf("%d %d \n",f,S[f][2]);

}

int p=0;

for(int i=0;i<Nx;i++)//to print in the form of square lattice

{

for(int j=0;j<Ny;j++)

{

printf("%d %d %f \n",i,j,S[p][2]);

p=p+1;

}

printf("\n");
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}

for(int z=0;z<N;z++)

{

printf("%d %f %f %f %f \n",z,S[z][0],S[z][1],S[z][2],S[z][3]);

}

for(int i=0;i<Ny;i++)

{ sum=0.0;

sum1=0.0;

q=i;

for(int j=0;j<Nx;j++)

{

sum1=sum1+S[q][3];

sum=sum+S[q][2];

q=q+Ny;

}

sum1=sum1/Nx;

sum=sum/Nx;

printf("%d %f %f \n",i,sum, sum1);

}

}

}

}
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