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Notation

I Identity Matrix(in appropriate dimensions)

Cn Complex Hilbert space of dimension n

Mc
2 Space of square integrable continuous martingale

M2 Space of square integrable martingale

Mc,loc Space of continuous local martingale

〈M〉t Angle bracket process defined in doob’s decomposition for square of a martingale M

[X]2T E
∫ T

0 X2
t d〈M〉t

L(M) measurable with [X]T <∞
L∗(M) Progressively measurable with [X]T <∞
L(L2[0, T ],Ω) Random variables adapted and

∫ T
0 E(|X|2)dt <∞
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Abstract

Martingales are stochastic processes which model the ‘fair game’, i.e., these are the processes

where the expected value of the next term is equal to present observed term given that we

have the knowledge of all past terms. The aim of the project is to understand this special

class of stochastic processes with the continuous parameter time. Martingales are processes

which have unbounded first variation. Due to this we cannot define the integration of a

process with respect to martingales in the Lebesgue-Steiltjes sense. However, they have a

bounded second variation. Using this we can show that integral of simple processes converge

to the stochastic integration in L2 sense and this is how we define the stochastic integral

with respect to continuous martingales. The construction of stochastic integral with respect

to martingales has been carried out rigorously. Further I have discussed the change of

variable formula (Ito’s rule) which is important to understand the calculus of stochastic

processes. Also in the end, there is a discussion on the existence and uniqueness of SDEs

and under what conditions we can have a weak and strong solutions to the SDE with the

given coefficients.
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Chapter 1

Martingales, Stopping Times and

Brownian Motion

The first chapter is devoted towards understanding a class of stochastic processes which are

called Martingales. Martingales are processes in which expectation at any time t is equal.

Brownian motion is an important

1.1 Stochastic Processes

Definition 1.1. Stochastic Process is a collection of random variables

X = {Xt; 0 ≤ t <∞} on (Ω,F), taking values on the second measurable space (S, ρ), which

is called the state space.

The index t ∈ [0,∞) of Xt is interpreted as the time index. Also for a fixed sample point

ω ∈ Ω, the function t 7→ Xt(ω) is the sample path of X.

Let X and Y be two stochastic processes defined on the same probability space (Ω,F ,P).

As functions of t and ω, the concept of being equal can be categorized as the following:

• Y is a modification of X if P[Xt = Yt] = 1 for every t ≥ 0.

• X and Y are indistinguishable if almost all their sample paths agree, i.e.,

P [Xt = Yt; ∀0 ≤ t <∞] = 1.

Example Let T be a positive random variable with continuous distribution, and let

Xt = 0, Yt = 0 on the set [t 6= T ] and Yt = 1 on the set [t = T ]. Then Y is a modification

of X, since for every t ≥ 0, the probability measure of Xt = Yt is the measure of the set

P[T 6= t] which is equal to 1, but on the other hand we have P[Yt = Xt;∀ t ≥ 0] = 0.
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Definition 1.2. Filtrations are a non decreasing family of sub σ-fields of F such that we

have Fs ⊆ Ft ⊆ F for 0 ≤ s < t <∞ . We also set F∞ = σ((
⋃
t≥0)Ft).

Definition 1.3. X is said to be adapted to the filtration Ft if for each t ≥ 0, Xt is Ft
measurable.

Definition 1.4. X is measurable if, for every A ∈ B(Rd), the set {(t, ω);Xt(ω) ∈ A}
belongs to the product σ-field B([0,∞])⊗F .

Definition 1.5. X is progressively measurable if, for each t ≥ 0 and A ∈ B(Rd), the

set {(s, ω); 0 ≤ s ≤ t, ω ∈ Ω, Xs(ω) ∈ A} belongs to the product σ-field B([0, t])⊗Ft.

1.2 Stopping Time

The parameter t is interpreted as time and the σ-field Ft associated is the information

accumulated upto that time t. To study natural phenomenon like an earthquake of above

a certain richter scale or number of customers exceeding the safety requirements, one needs

to study the instant T (ω) at which the phenomenon occurs for the first time, where T is

an F measurable function. Therefore the event {ω;T (ω) ≤ t} is part of the accumulated

information by time t.

Definition 1.6. Consider a measurable space (Ω,F) equipped with a filtration {Ft}. A

random time is a stopping time of the filtration, if the event {T ≤ t} belongs to the σ-field

Ft for every t ≥ 0. A random time is an optional time, if the event {T < t} belongs to

the σ-field Ft, for every t ≥ 0.

Theorem 1. Every random time equal to nonnegative constant is a stopping time. Every

stopping time is optional, and the two concepts are equal if the filtration is right-continuous.

Proof If T = C, where C is some constant, then the set {ω ∈ Ω;T (ω) = C} has measure

1 and so it follows trivially. To prove the second statement we observe that {T < t} =
∞⋃
n=1
{T ≤ t− (1/n) ∈ Ft}, as T is a stopping time. To show that the two concepts are equal

if the filtration is right-continuous, we can write {T ≤ t} =
∞⋂
n=r
{T < t+(1/n)} and conclude

that {T ≤ t} ∈ Ft+(1/r), for every positive integer r, which proves that {T ≤ t} ∈ Ft+ = Ft.

Lemma 1.1. If T and S are stopping times, then so are T ∨ S, T ∧ S and T + S.

Proof The first two follow trivially. In the third one, we decompose as;

{T + S > t} = {T = 0, S > t} ∪ {0 < T < t, T + S > t} ∪ {T > 0, S = 0} ∪ {T ≥ t, S > 0}.
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Here first, third and fourth are in Ft and second can be written as:⋃
r∈Q;0<r<t

{t > T > r, S > t− r}.

Theorem 2. Let X be a progressively measurable process, and T be the stopping time of the

filtration {F}t. Then the random variable XT is {F}T measurable and the stopped process

{XT∧t,Ft; 0 ≤ t <∞} is progressively measurable.

Definition 1.7. A filtration which is right continuous and contains all the P negligible

events in F0 is said to satisfy the usual conditions.

1.3 Martingales

Definition 1.8. Let (Ω,F ,P) be the probability space with the discrete filtration {F}n. A

Process X is called a discrete parameter martingale if the following holds true:

• X is adapted relative to {F}n},

• E(|Xn|) <∞,

• E(Xn|Fn−1) = Xn−1.

The above process is a supermartingale the first two conditions hold true and the third

is replaced by

E(Xn|Fn−1) ≤ Xn−1,

and is a submartingale if

E(Xn|Fn−1) ≥ Xn−1.

A martingale is both a submartingale and a supermartingale.

Example Let X1, X2, ...., be a sequence of independent random variables with,

E(Xk) = 0,∀k.

Define S0 := 0, Sn := X1 +X2 · · ·+Xn, Fn := σ(X1 +X2 · · ·+Xn). Then Sn, for n ≥ 1 is

a martingale.

Definition 1.9. A process {Xt,Ft; 0 ≤ t <∞} is a continuous parameter martingale

if it satisfies the following:

• X is adapted to the filtration {Ft},

• E(|Xt|) <∞,

3



• E(Xt|Fs) = Xs forevery s ≤ t

The inequalities for submartingales and supermartingales in continuous case is the same

as that for the discrete case.

Definition 1.10. On (Ω,F ,P), a random sequence {An}∞n=0, adapted to the filtration is

increasing previsible process if for P a.e. ω ∈ Ω, we have 0 = A0(ω) ≤ A1(ω) ≤ . . . ,

and E[An] <∞ for n ≥ 1 and {An} is Fn−1 measurable.

Definition 1.11. A continuous adapted process A is called increasing process if for P
a.e. ω ∈ Ω we have:

• A0(ω) = 0,

• t 7→ At(ω) is a nondecreasing, right continuous integrable function.

Lemma 1.2. If X = {Xn, {F}n, n ≥ 0} is a martingale and T is a stopping time, then the

stopped process defined as XT := {XT∧n, {F}n, n ≥ 0} is also a martingale.

Proof XT∧n can be written as:

XT∧n = X0 + Σn
i=0(Xi −Xi−1)χi≤T .

We can write the difference of stopped processes as,

XT∧n −XT∧n−1 = (Xn −Xn−1)χi≤T .

Taking the expectation of the above term we get the result.

Let X be a martingale and T be a stopping time. We assume that T is finite almost

surely, then we can define the random variable XT : Ω→ R by,

XT (ω) = XT (ω)(ω).

Intutively we can say that E(XT ) represents the player’s expected fortune when he is stop-

ping at time T which is random. If the game is fair, then we should have,

E(XT ) = E(X0).

Instead we know that T ∧ n converges to T pointwise almost surely as n goes to infinity.

Also we know that E(XT∧n) = E(X0) for all n. If we can show that E[XT∧n] → E[XT ]

as n → ∞, we can conclude that the game is fair. However, such a convergence is not

guaranteed, so we need some hypotheses under which the convergence exist.

Theorem 3 (Doob’s Optional Stopping Theorem). [Wil91] Let X = {Xn, {F}n, n ≥ 0} be

a martingale and T be the stopping time. Suppose that one of the following holds true:
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1. There is a positive integer K such that we have T (ω) ≤ K for all ω ∈ Ω.

2. There is a positive integer N such that we have,

|Xn(ω)| < N

for all n and T is finite almost surely.

3. E[T ] is finite and

|Xn(ω)−Xn−1(ω)| < N.

Then we have XT an integrable function with,

E(XT ) = E(X0).

Proof In all the three cases we have T a.s. a finite random variable. Suppose (1) holds,

then for n > K we would have T ∧ n = T for all ω ∈ Ω that implies, XT∧n = XT for all

n > K and we have,

E(X0) = XT∧n = E(X0)

as n→∞ . Suppose (2) holds, using the boundedness of Xn we can write,

|XT∧n| < N

for all ω ∈ Ω and if (3) holds we get the inequality,

|XT∧n| ≤ |X0|+NT (ω).

Certainly we have X0 integrable and E(NT ) = NE(T ) < ∞ by the assumption. There-

fore in either cases we have |XT∧n| bounded by constant which is integrable, so by using

Dominated Convergence Theorem we get the desired result.

Theorem 4 (Submartingale Convergence). Let {Xt,Ft; 0 ≤ t < ∞} be a right continuous

submartingale such that supt≥0E((Xt)
+) <∞. Then limt→∞Xt(ω) exists for almost every

ω ∈ Ω.

Theorem 5 (Doob’s Decomposition). Let X = {Xn,Fn;n ∈ Z+} be a stochastic process

which is adapted to {F}n and Xn ∈ L1, ∀n. Then X can be decomposed as:

Xn = Mn +An +X0 ∀n. (1.1)

Here M = {Mt,Ft, t ≥ 0} is a martingale and A = {At,Ft, t ≥ 0} is a previsible process.

This decomposition is called as doob’s decomposition and it is unique modulo indistinguisha-

bility.
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Proof DefiningAn =
∑n

k=1

(
E[Xk | Fk−1]−Xk−1

)
andMn = X0+

∑n
k=1

(
Xk−E[Xk | Fk−1]

)
we have E(Mn −Mn−1) = 0.

For uniqueness, assume that Xn = Mn + An and Xn = M̃n + Ãn are two different

decompositions of X. Let us define Yn = Mn −Mn−1 = An−1 − An. Taking conditional

expectation we have the desired result.

To see that An is increasing when Xn is a submartingale, we write,

E(Xn −Xn−1|Fn−1) = E(Mn −Mn−1|Fn−1) + E(An−1 −An|Fn−1)

= 0 + (An−1 −An).

Henceforth we have,

An =

n∑
k=1

E(Xn −Xn−1|Fk−1).

Definition 1.12. Let ℘(℘a) be a class of stopping time T satisfying P[T < ∞] = 1

(resptively,P[T < a] = 1, for a > 0) ). The right continuous process X is said to be of class

D, if the family {XT }T∈℘ is uniformly integrable and of class DL if the the family {XT }T∈℘a

is uniformly integrable, for every 0 < a <∞.

Theorem 6 (Doob Meyer Decomposition). [KS91] Let {Ft} satisfy usual conditions. If

X is the right continuous submartingale (martingale) and is of class of DL then it has the

decomposition,

Xt = Mt +At,

where M is a right continuous martingale and A is an increasing process. Also the decom-

position is unique modulo indistinguishability.

Theorem 7 (Martingale /Doob’s Convergence Theorem). If X is supermartingale and

supnE|Xn| < ∞ then we have that almost surely Xn → X∞ where X∞ = limn→∞Xn

exist and is finite.

1.4 Continuous Square Integrable Martingales

Continuous square integrable martingales are an important class of processes which are

necessary to understand Brownian Motion. Also further we will construct integration with

respect to square integrable martingales.

Throughout this section we have the triplet (Ω,F ,P) and the filtration {Ft} satisfying the

usual conditions.

Definition 1.13. A right continuous martingale X = {Xt,Ft, 0 ≤ t < ∞} is said to be a

square integrable martingale if EX2
t < ∞ ∀t ≥ 0. If in addition we have, X0 = 0 then

we write X ∈M2 (X ∈Mc
2, if X is continuous).
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For any X ∈M2, we can easily observe that X2 = {X2
t ,Ft, 0 ≤ t <∞} is a nonnegative

submartingale (using jensen’s inequality), hence of class DL and so it has the following

decomposition:

X2
t = Mt +At,

where M and A are as defined in (Theorem 6). Further if X ∈ Mc
2, then A and M are

continuous.

Definition 1.14. For X ∈ M2, we define quadratic variation of X to be 〈X〉t = At,

where A is an natural increasing process, which is also the decomposition of X2 such that

X2 − 〈X〉 is a martingale.

Definition 1.15. For two martingales X,Y ∈M2, we can define the cross variation process

by

〈X,Y 〉 =:
1

4
[〈X + Y 〉t − 〈X − Y 〉t]; 0 ≤ t <∞ (1.2)

such that XY -〈X,Y 〉 is a martingale. Also,

E[(Xt −Xs)(Yt − Ys)] = E[(XtYt −XsYs)|Fs]

= E[〈XtYt〉 − 〈XsYs〉|Fs],

for every 0 ≤ s < t < ∞. X and Y are orthogonal if 〈X,Y 〉 = 0, in which case XY is a

martingale.

Remark 1.1. It is observed that 〈·, ·〉 is a bilinear form on M2 such that the following

holds: .

1. 〈αX + βY, Z〉 = α〈X,Z〉+ β〈Y,Z〉.

2. 〈X,Y 〉 = 〈Y,X〉.

3. |〈X,Y 〉|2 ≤ 〈X〉〈Y 〉.

Definition 1.16. For any stochastic process X, we define the p-th variation (p > 0) of

X over partition Π as,

V p
t (Π) =

m∑
k=1

|Xtk −Xtk−1
|p,

where Π = {t0, t1, ...., tm}, with 0 = t0 ≤ t1 ≤ · · · ≤ tm = t, be a partition of [0, t].

Also mesh of the partition Π is defined as ‖ Π ‖= max1≤k≤m|tk − tk−1|.
We now show that V 2

t converges in probability as ‖ Π ‖→ 0, and the limit is the quadratic

variation of the process X.
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Theorem 8. [KS91] Let X ∈ Mc
2. For partition Π of [0, t], we have lim‖Π‖→0V

2
t(Π) =

〈X〉t; i.e., for every ε > 0, η > 0, there exists δ > 0 such that ‖Π‖ < δ implies

P [|V 2
t (Π)− 〈X〉t| > ε] < η,

where ‖Π‖ = max1≤k≤m|tk − tk−1| is the mesh of Π.

The proof to the above theorem proceeds through two lemmas. The key idea is, if

X ∈Mc
2 and 0 ≤ s < t ≤ u < v, then we can write,

E[(Xv −Xu)(Xt −Xs)] = E{E[(Xv −Xu)|Fu]}(Xt −Xs).

Also, we can write,

E[(Xv −Xu)2|Fs] = E[Xv
2 − 2XuE[Xv|Fu] +Xu

2|Ft]

= E[Xv
2 −Xu

2|Ft] = E[〈X〉v − 〈X〉u|Ft].

Proposition 1.1. Let X ∈ M2 satisfies |Xs| ≤ C < ∞ , ∀ s ∈ [0, t] a.s P. If Π be a

partition on [0, t] with t0 ≤ t1 ≤ .... ≤ tn then we have

E[V
(2)
t (Π)]2 ≤ 6K4

Proof We can use the martingale property to proceed.

E[

n∑
i=m+1

(Xti −Xti−1)2|Ftm ] = E[

n∑
i=m+1

(X2
ti −X

2
ti−1

)|Ftm ] ≤ E[X2
tn |Ftm ] ≤ K2

therefore, we have,

E[

n−1∑
j=1

n∑
i=m+1

(Xti −Xti−1)2(Xtj −Xtj−1)2] ≤ K2E[

n∑
i=m+1

(Xti −Xti−1)2] ≤ K4.

Further we have,

E[
n∑
i=1

(Xti −Xti−1)4] ≤ K2E[
n∑
i=1

(Xti −Xti−1)2] ≤ 4K4.

Using the above inequalities we have,

E[V
(2)
t (Π)]2 ≤ 6K4.
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Lemma 1.3. If X ∈ Mc
2 satisfies |Xx| ≤ K ∀s ∈ [0, t], a.s. P. Then for partitions Π of

[0,t], we have,

lim
‖Π→∞‖

EV
(4)
t = 0.

Proof We consider mt(X; δ) := sup{|Xp − Xq|; p, q ≤ t, |p − q| < δ}. We can easily see

that,

V
(4)
t ≤ V (2)

t .mt(X, δ).

Applying the Holder inequality we have the desired result.

Proof Using the above results, we would now proceed with Theorem 8.

We first consider the case when X is bounded by a constant K < ∞ and 〈X〉s ≤ K

holds ∀s ∈ [0, t], a.s. P. Then,

E[V
(2)
t (Π)− 〈X〉t]2 =

n∑
i=1

E[{(Xti −Xti−1)2 − (〈X〉ti − 〈X〉ti−1)}]2

≤ 2
n∑
i=1

E[(Xti −Xti−1)4 + (〈X〉ti − 〈X〉ti−1)2]

≤ 2EV
(4)
t (Π) + 2E[〈X〉tmt(〈X〉,Π)].

As mesh approaches 0 we get the desired result using [Lemma 1.3] .

The second case when X is unbounded , we use localization and proceed as the above case

discussed. For the same we define sequence of stopping times :

Tn = inf{t ≥ 0; |X| > n or 〈X〉t ≥ n},

with this X
(n)
t = Xt∧Tn and X2

t∧Tn − 〈X〉t∧Tn are bounded martingales. As Tn →∞ we get

the desired result.

Proposition 1.2. Let X = {Xt,Ft, 0 ≤ t <∞} be a continuous process having the property

that for some p > 0 and each fixed t > 0,

lim
‖Π‖→0

V
(p)
t = Lt (in probability).

Where Lt takes values in [0,∞) and is a random variable. Then for q > p,

lim
‖Π‖→0

V
(q)
t = 0 (in probability),

and for 0 < q < p,

lim
‖Π‖→0

V
(q)
t =∞ (in probability).
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From the above proposition we can thus conclude that martingales have finite quadratic

variation but have unbounded first variation. Variations of higher order are zero. Being of

unbounded first variation, these processes cannot be differentiated nor we can make sense of

integration in the Lebesgue-Steielges sense. In Chapter 2, we will talk about the construction

of stochastic integration using the idea of boundedness of quadratic variation.

Definition 1.17. Let X = {Xt,Ft, 0 ≤ t <∞} be a (continuous) process such that if there

exist a non decreasing sequence {Tn}∞n=1 of stopping times where T0 = 0 and limn→∞ Tn =∞
such that {X(n)

t := Xt∧Tn ,Ft, 0 ≤ t <∞} is a martingale for each n ≥ 1, then we say that X

is a (continuous) local martingale. If in addition X0 = 0 a.s, we write X ∈Mloc(Mc,loc).

Remark 1.2. Every martingale is a local martingale as {XT∧t,Ft, 0 ≤ t < ∞} is a sub-

martingale and by optional sampling theorem, we have the result.

Lemma 1.4. Let X,Y ∈ Mc,loc. Then there is a unique adapted, continuous process of

bounded variation 〈X,Y 〉 satisfying 〈X,Y 〉0 = 0 a.s P, such that XY − 〈X,Y 〉 ∈ Mc,loc.

Definition 1.18. For any X ∈M2 and 0 ≤ t <∞ we define,

‖ X ‖=
∞∑
n=1

‖ X ‖n ∧1

2n
.

‖ X ‖t=:
√
E(X2

t ).

The above defines a pseudo metric, ‖ X ‖ on M2 which becomes a metric modulo indistin-

guishable processes.

Proposition 1.3. Under the preceeding metric, M2 is a complete metric space and Mc
2 is

a closed subspace of M2.

Proof Let {X(n)}∞n=1 ⊆ M2 be a cauchy sequence in M2 such that limn,m→∞ ‖ X(n) −
X(m) ‖= 0. {X(n)}∞n=1 is Cauchy in L2 for each fixed t and has a limit.

From L2 convergence and Cauchy-Schwarz inequality we have, for A ∈ Fs,
limn→∞E[1A(X

(n)
s −Xt)] = 0, limn→∞E[1A(X

(n)
t −Xt)] = 0. From this we have E[1AX

(n)
t ] =

E[1AX
(n)
s ] which implies E[1AXt] = E[1AXs]. We then take the right continuous modifica-

tion of X and conclude the result.

1.5 Brownian Motion

Definition 1.19. A continuous process B = {Bt} adapted to the filtration Ft on (Ω,F ,P)

is a standard Brownian Motion if the following holds:

10



• B0 = 0 a.s.,

• For 0 ≤ s < t, increments are independent, i.e Bt −Bs is independent of Fs,

• The increments are normally distributed with mean 0 and variance t− s of Bt −Bs.

Remark 1.3. B is a square integrable martingale with quadratic variation process 〈B〉t =

t, t ≥ 0.

1.5.1 Properties

Let B = {Bt,Ft; 0 ≤ t <∞} be a standard Brownian Motion, then the following properties

hold:

1. Markov Property: Brownian motion has stationary and independent increments which

makes it a Markov Process.

2. Martingale Property: Brownian Motion is a continuous martingale as :

E[Wt|Fs] = E[Wt −Ws +Ws|Fs]

= E[Wt −Ws|Fs] + E[Ws|Fs]

= E[Wt −Ws] +Ws = Ws.

3. Scaling and Time inversion :If W is a Brownian Motion, then the process X =

{Xt,Fc2t; 0 ≤ t <∞} for c > 0 defined by

Xt =
1

c
Wc2t 0 ≤ t <∞.

is a Brownian Motion.

Scaling is an equivalence transformation as the continuity and stationary increments

property is preserved. We note that

V ar[Xt −Xs] = V ar[c(−1)(W (c2t)−W (c2s))] = c(−2)(c2t− c2s)

= t− s.

The expectation is 0. Also Xt − Xs = c(−1)(W (c2t) − W (c2s)) is distributed as

cN(0, c2(t− s)) ∼ N(0, (t− s)).

Also the process Y = {Yt,FYt ; 0 ≤ t <∞} defined by

Yt =

{
tW1/t 0 < t <∞
0 t = 0

11



is an equivalence transformation.

The new process is continuous and 0 at origin. We have E[Yt] = tE[W1/t] = 0 and Yt

is a Gaussian process also we have the covariance function E[YsYt] = st(
1

s
∧ 1

t
) = s∧ t.

4. Symmetry:

Proof If W is a Brownian motion so is -W as continuity and stationary increments are

preserved. mean and variance are not affected by the negative sign. The distribution

(can be seen with the help of probability law) does not change.

5. Finite Quadratic variation Let {Πn}∞n=1 be a sequence of partitions of the interval

[0,t] with limn→∞ ‖Πn‖ = 0.

n∑
i=1

[(Wti −Wti−1)2 − (ti − ti−1)] =

n∑
i=1

Xi

with

Xi = (Wti −Wti−1)2 − (ti − ti−1)

We have E(XiXj) = 0 for i 6= j since the increments are independent; also E[(Wti −
Wti−1)2] = ti − ti−1. We also see using computations that E[(Wt −Ws)

4] = 3(t− s)2.

E(X2
i ) = E{(Wti −Wti−1)4 − 2t(Wti −Wti−1)2 − t2}

= 3
n∑
k=1

(tj − tj−1)2 + 2
n∑

1≤j<k≤n
(tj − tj−1)(tk − tk−1)− t2

= 2
n∑
k=1

(tk − tk−1)2

≤ 2t | ∆n[0, t] |→ 0.

6. For almost every ω ∈ Ω, the sample path W (ω) is monotone in no interval

7. For almost every ω ∈ Ω, the Brownian sample path W (ω) is nowhere differentiable.

Proof DWt = limh→0
Wt+h −Wt

h
∼ limh→0

N(0, h)

h
∼ N(0, h−1). By this we can

say that variance goes to infinity, hence the brownian motion is nowhere differentiable.

————————————————–
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Chapter 2

Stochastic Integration

To give meaning to the ordinary differential equations that involves continuous stochastic

processes, the theory of Stochastic Calculus emerged. Since many important processes that

we observe in real life such as Brownian Motion, cannot be differentiated, stochastic calculus

assigned meaning to the integration of such processes; through the construction of Stochastic

Integration.

2.1 Construction of Stochastic Integration

Consider continuous square integrable martingales M = {Mt,Ft; 0 ≤ t <∞}, on a probabil-

ity space (Ω,F ,P),equipped with the filtration {Ft}. We assume M0 = 0 a.s P. M ∈Mc
2 is

of unbounded first variation on any finite interval [0, T ] , and as a consequence, the integral,

IT (X) =

∫ T

0
Xt(ω)dMt(ω)

cannot be defined in the Lebesgue-Stieljes sense.

Since martingale M has a bounded second variation, this allows us to proceed with the

construction of stochastic integration with respect to continuous, square integrable matin-

gales for an appropriate class of integrands. The construction was given by Ito(1942) for

the case when martingale M is a Brownian Motion and later was given by Kunita and

Watanabe(1967)[KS91] for the general case M ∈M2.

We are going to talk about the case where M ∈ Mc
2 and will then extend to the gen-

eral, continuous, local martingales M .
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We define a measure on ([0,∞)× Ω,B([0,∞)⊗F) by,

µM (A) = E

∫ ∞
0

1A(t, ω)d〈M〉t(ω).

Two processes X and Y are equivalent if,

Xt(ω) = Yt(ω); µM − a.e., (t, ω).

We also define,

[X]2T =: E

∫ T

0
X2
t d〈M〉t.

Then [X]2T is the L2-norm for X, as a funtion of (t, ω) on [0, T ]×Ω, under the measure µM .

[X − Y ] = 0 ∀ T > 0 iff X and Y are equivalent.

Definition 2.1. Let L(M) be the set of equivalence classes of all measurable {Ft} adapted

process X, such that [X]T <∞ ∀ T > 0. We define a metric on L by [X − Y ], where

[X] =
∞∑
n=1

[X]n ∧ 1

2n
.

Let L∗(M) be the set of equivalence classes of all progressively measurable processes X,

such that [X]T <∞ ∀T > 0. We define a metric on L∗ by [X − Y ] in the same way.

Definition 2.2. X is simple if there exists an increasing sequence in R with t0 = 0

and limn→∞ tn = ∞ , sequence of r.v. {ξn}∞n=0 and nonrandom constant C ≥ 0 with

supn≥0 |ξn(ω)| ≤ C, such that for every ω ∈ Ω, ξn is Ftn measurable and

Xt = ξ0(ω)1{0}(t) +

∞∑
i=0

ξi(ω)1(ti,ti+1](t).

The class of simple processes is denoted by L0.

As members of L0 are progressively measurable and bounded, we have,

L0 ⊆ L∗ ⊆ L.

14



For X in L0 we define the martingale transform as,

It(X) :=
n−1∑
i=1

ξi(Mti+1 −Mti) + ξn(Mt −Mtn) (2.1)

=
∞∑
i=1

ξi(Mt∧ti+1 −Mt∧ti) ; 0 ≤ t <∞. (2.2)

This definition is then extended to the class of integrands in L and L∗ by approximations

by simple processes. To get there we require a couple of results.

Lemma 2.1. Let X be bounded, measurable, {Ft} adapted process. Then there exist a

sequence {X(m)}∞m=1 of simple process such that

sup
T>0

lim
m→∞

E
∫ T

0
|X(m)

t −Xt|2dt = 0.

Proof [Idea of the proof]We divide the proof in three cases where the process is continuous,

progressively measurable and the third case when the process is measurable and adapted.

Case 1 When X is continuous, we construct a sequence of simple processes:

Xt
(n)(ω) = X0(ω)1{0}(t) +

2n−1∑
i=0

XkT/2n(ω)1(kT/2n,(k+1)T/2n](t); n ≥ 1

that satisfies limm→∞ E
∫ T

0 |X
(n)
t −Xt|2dt = 0 by bounded convergence theorem.

Case 2 When X is progressively measurable, consider continuous progressively measurable

processes,

Ft(ω) :=

∫ t∧T

0
Xs(ω)ds; X̃t

(m)
(ω) := m[Ft(ω)− Ft−1/m∨0(ω)]; m ≥ 1,

By virtue of case 1, we again define a sequence of simple processes. {X̃t
(m,n)}∞n=0 and use

bounded convergence theorem to proceed.

Case 3 When X is measurable, we cannot quarantee that the continuous process F is

progressively measurable, because we do not know if F is adapted. However, we can have a

progressively measurable modification Y of X. Using this modification we can proceed as

case 2.

Proposition 2.1. If the function t 7→ 〈M〉t(ω) is absolutely continuous with respect to

Lebesgue measure for P a.e ω, then L0 is dense in L with respect to the defined metric.
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Theorem 9. Let {At; 0 ≤ t <∞} be a continuous increasing process adapted to the filtration

of the martingale M = {Mt;Ft, 0 ≤< t <∞}. If

X = {Xt; 0 ≤ t < ∞} is a progressively measurable process and E
∫ T

0 X2
t dAt < ∞ for each

T > 0 then there exist {X(n)}∞n=1of simple process such that,

sup
T>0

lim
m→∞

E
∫ T

0
|X(m)

t −Xt|2dAt = 0.

Proof [Basic Idea] WLOG we can assume that X is bounded (in case of unbounded we

can define a sequence of bounded processes converging to X and use dominated convergence

theorem) i.e.,

|Xt(ω)| ≤ C <∞; ∀t ≥), ω ∈ Ω.

It suffices to show for each fixed T , a sequence of simple processes {X(n)}∞n=1 such that

lim
n→∞

E
∫ T

0
|X(n)

t −Xt|2dAt = 0.

Again, WLOG we have,

Xt(ω) = 0; ∀t > T, ω ∈ Ω

and define strictly increasing inverse function Ts(ω) such that,

ATs(ω)(ω) + Ts(ω) = s; ∀s ≥ 0.

This Ts(ω) is a stopping time w.r.t the filtration {F}t. We also define the new filtration

with s as the new time variable such that

Gs = FTs ,

and define the new time changed process as,

Ys(ω) = XTs(ω)(ω).

This process is adapted to Gs because of the progressively measurability of X. Also,

E

∫ ∞
0

Ys
2ds = E

∫ ∞
0

1Ts≤TXTs
2ds (2.3)

= E

∫ AT +T

0
XTs

2ds ≤ C2(EAT + T ) <∞. (2.4)

We use Lemma 2.1 to construct a family of simple processes {Ys}ε and show that these

processes converge to Y w.r.t the defined metric.
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Proposition 2.2. The set L0 of simple processes is dense in L∗ with respect to the metric

defined.

we take A = 〈M〉 in Theorem 9 and conclude.

2.2 Construction and Properties of the Integral

We have defined the stochastic integral of simple processes X ∈ L0 . For X,Y ∈ L0 we have

the following elementary properties:

I0(X) = 0, a.s P (2.5)

I(αX + βY ) = αI(X) + βI(Y ), α, β ∈ R (2.6)

E[It(X)|Fs] = Is(X), (2.7)

E(It(X))2 = E

∫ t

0
X2
ud〈M〉u, (2.8)

‖I(X)‖ = [X], (2.9)

E[(It(X)− Is(X))2|Fs] = E[

∫ t

s
X2
ud〈M〉u|Fs], (2.10)

Properties (2.5) and (2.6) are obvious. Property (2.7) follows from,

E[ξi(Mt∧ti+1 −Mt ∧ ti)|Fs] = ξi(Ms∧ti+1 −Ms ∧ ti).

Thus we see that I(X) defined as :

It(X) =
i=n−1∑
i=1

ξi(Mti+1 −Mti) + ξn(Mt −Mtn)

is a continuous martingale. For s < t and tk−1 < s < tk and tn < t < tn+1 we have,

E[(It(X)− Is(X))2|Fs] = E[{ξk−1(Mtk −Ms) +

n−1∑
i=k

ξi(Mti+1 −Mti) + ξn(Mt −Mtn)}2|Fs]

= E[ξ2
k−1(Mtk −Ms)

2 + Σn−1
i=k ξ

2
i (Mti+1 −Mti)

2 + ξ2
n(Mt −Mtn)2|Fs]

= E[ξ2
k−1(〈M〉tk − 〈M〉s)

2 +
n−1∑
i=k

ξ2
i (〈M〉ti+1 − 〈M〉ti)2 + ξ2

n(〈M〉t − 〈M〉tn)2|Fs]

= E[

∫ t

s
X2
ud〈M〉u|Fs].

This proves (2.10) and shows that I(X) is square integrable i.e I(X) ∈ Mc
2, having the

quadratic variation as,

〈I(X)〉t =

∫ t

0
X2
ud〈M〉u.
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With s = 0 and taking expectations in (2.10) we get (2.8). (2.9) also follows from the metric

defined.

For X ∈ L∗ , Proposition 2.2 implies that we can construct a sequence {X(n)}∞n=1 in L0

such that [X(n) −X] −→ 0 as n→∞. By (2.6) and (2.9) we say that,

‖I(X(n))− I(X(k))‖ = ‖I(X(n) −X(k))‖ = [X(n) −X(k)]→ 0

as n, k →∞. This helps us understanding that {I(X(n))} forms a cauchy sequence in Mc
2.

We know that Mc
2 is closed in M2 and therefore the limit I(X) = {It(X); 0 ≤ t < ∞}

exists and is in Mc
2 such that ‖I(X(n)) − I(X)‖ → 0 as n → ∞. This shows that It(X) =

{It(X),Ft; 0 ≤ t <∞} is a continuous martingale that follows properties (2.5) and (2.7).

We also have, for 0 ≤ s < t, processes {I(X
(n)
s )}, {I(X

(n)
t )} converging to Is(X) and It(X)

respectively in L2 sense. Therefore for A ∈ Fs we have,

E[1A(It(X)− Is(X))2] = lim
n→∞

E[1A(It(X
(n))− Is(X(n)))2]

= lim
n→∞

E[1A

∫ t

s
((X(n)

u ))2d〈M〉u]

= E[1A

∫ t

s
(X2

ud〈M〉u)].

Showing that I(X) also satisfies the above properties mentioned.

As mentioned, we know that X and M are progressively measurable, implying that
∫ t
s ((X

(n)
u ))2d〈M〉u

is also Ft measurable for fixed s < t . Also the process I(X) for X ∈ L∗ is well defined and

we have,

〈I(X)〉 =

∫ t

0
X2
ud〈M〉u.

Definition 2.3. For X ∈ L∗, the stochastic integral of X with respect to the martingale

M in Mc
2 is I(X) = {It(X),Ft; 0 ≤ t <∞}, which is a unique square integrable martingale

that satisfies ‖I(X(n))− I(X)‖ = 0 for every sequence {X(n)}∞n=1 ⊆ L0 with limn→∞[X(n)−
X] = 0. We write

It(X) =

∫ t

0
XsdMs.; 0 ≤ t <∞ (2.11)

Remark 2.1. If for every ω ∈ Ω the map t 7→ 〈M〉t(ω) of the quadratic variation process

〈M〉 are absolutely continuous functions of t for P a.e ω, then Proposition 2.1 could be used

directly to define stochastic integral I(X) for every X ∈Mc
2.
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In the case when M is a standard Brownian Motion with 〈M〉 = t, we can use Proposition

2.1 again to come to the conclusion without defining the time inversion process and using

the results of Theorem 9.

2.3 Characterization of the Integral

Let M = {Mt,Ft; 0 ≤ t < ∞} and N = {Nt,Ft; 0 ≤ t < ∞} are in Mc
2 and we have

X ∈ L∗(M) and Y ∈ L∗(N ). Then IMt(X) =
∫ t

0 XsdMs and INt(X) =
∫ t

0 YsdMs are also

in Mc
2 with all the defined properties (2.5)-(2.10).

We can extend this result from simple processes to X ∈ L∗(M) and Y ∈ L∗(N ).

Proposition 2.3 (An inequality of Kunita and Watanabe(1967)). [KW67] If M,N ∈ Mc
2

and X ∈ L∗(M) and Y ∈ L∗(N ), then a.s,∫ t

0
|XsYs|dξ̃ ≤ (

∫ t

0
Xs

2d〈M〉s)(
∫ t

0
Ys

2d〈N〉s), (2.12)

where ξ̃ denotes the total variation of ξ := 〈M,N〉 on [0, s]

Lemma 2.2. If M,N ∈Mc
2 and X ∈ L∗(M) and {X(n)}∞n=1 ⊆ L∗(M) such that for T > 0,

lim
n→∞

∫ T

0
|Xu

(n) −Xu|2d〈M〉u = 0; a.s P, (2.13)

then,

lim
n→∞

〈Ĩ(X(n)), N〉t = 〈I(X), N〉; 0 ≤ t ≤ T a.s P. (2.14)

Proof Using the inequality,

|〈I(X)(n) − 〈I(X), N〉, N〉t|2 ≤ 〈I(X)(n) −X〉t〈N〉t,

≤
∫ T

0
|X(n)

u −Xu|2d〈M〉u〈N〉T

we can conclude the result.

Lemma 2.3. If M,N ∈Mc
2 and X ∈ L∗(M) , then,

〈IM (X), N〉t =

∫ t

0
Xu〈M,N〉u. (2.15)
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Proposition 2.4. If M,N ∈Mc
2 and X ∈ L∗(M) and Y ∈ L∗(N ), then,

〈IM (X), IN (Y )〉 =

∫ t

0
XuYud〈M,N〉u.

(2.16)

E[(IMt(X)− IMs(X))(INt(Y )− INs(Y ))|Fs] (2.17)

= E[

∫ t

s
XuYud〈M,N〉u|Fs]

holds.

Proof From Lemma 2.3 we know that d〈M, IN (Y )〉t = Yud〈M,N〉u. Swaping N with

IN (Y ) , we get,

〈IM (X), IN (Y )〉t =

∫ t

0
XuYud〈M,N〉u; t ≥ 0, P− a.s. (2.18)

2.4 Integration with respect to Continuous, Local Martin-

gales

Let M ∈ Mc,loc i.e a continuous local martingale. Then for a certain class of processes we

can define the stochastic integration w.r.t to continuous, local martingales.

Definition 2.4. Let P be the class of measurable, adapted process X = {Xt,Ft; 0 ≤ t <∞}
satisfying

P([

∫ T

0
X2
t d〈M〉t <∞]) = 1 ∀ T ∈ [0,∞).

Let P∗ be the class of progressively measurable process agreeing to above condition.

We can observe that P ⊆ L and P∗ ⊆ L∗. We will continue our discussion when the

class of integrands belong to P∗. If for a.e. path, the quadratic variation process is abso-

lutely continuous w.r.t to the time parameter, we can talk about a larger class of integrands,

mainly P for integration w.r.t continuous, local martingales.

As taken M ∈ Mc,loc; hence there exist a sequence of stopping time {Tn}∞n=1 such that

limn→∞ Tn = ∞ and we have Mt∧Tn belongs to M∈c. For X ∈ P∗ we construct another

sequence of stopping time,

Rn = n ∧ inf{0 ≤ t <∞;

∫ t

0
X2
t d〈M〉t ≥ n}.
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We can see that limn→∞Rn =∞, and is bounded for each n. For n ≥ 1, ω ∈ Ω, we set,

Sn = Rn ∧ Tn,

Mn
t (ω) = Mt∧Sn(ω),

Xn
t (ω) = Xt(ω)1{Tn(ω)≥n} 0 ≤ t <∞.

Then we have, M (n) ∈Mc
2 and X(n) ∈ L∗(M (n)) such that we can define for X ∈ P∗,

It(X) = I
(M(n))
t (X(n)), (2.19)

which is a local martingale.

Definition 2.5. For M ∈ Mc,loc and X ∈ P∗ we define the stochastic integral of X with

respect to M ∈Mc,loc as It(X) = {It(X),Ft; 0 ≤ t <∞} ∈Mc,loc defined by (3.19).

Proposition 2.5. Let M ∈Mc,loc and X ∈ P∗(M). Then there exists a sequence of simple

process {X(n)}∞n=1 such that, for every T > 0,

lim
n→∞

∫ T

0
|X(n)

s −Xs|d〈M〉s = 0.

Also

lim
n→∞

sup
0≤t<T

|Is(X(n))− I(X)| = 0.

Example Let M = W a standard brownian motion and X ∈ P. We define

ζst (X) :=

∫ t

s
XudWu −

1

2

∫ t

s
X2
udu.

The process {exp(ζt(X)),Ft; 0 ≤ t <∞} is a super martingale because
∫ t
s XudWu ∈Mc,loc.

It is a martingale if X ∈ L0.

2.5 The Change of Variable Formula

To study the integral-differential calculus of stochastic processes we should study the change

of variable formula, or the Ito’s Rule. We start with the following definition.

Definition 2.6. A continuous semimartingale X = {Xt,Ft; 0 ≤ t < ∞} is an adapted

process which has the decomposition a.s

Xt = X0 +Mt +Bt; 0 ≤ t <∞,
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where (M ∈ Mc,loc) and B = {Bt,Ft; 0 ≤ t < ∞} is the difference of continuous, nonde-

creasing, adapted processes

Theorem 10 (Ito’s Rule). [KS91] Let f : R → R belong to the class of C2(R) function.

Let X = {Xt,Ft; 0 ≤ t < ∞} be a continuous semi-martingale with above decomposition.

Then, a.s,

f(Xt) = f(X0) +

∫ t

0
f
′
(Xs)dMs +

∫ t

0
f
′
(Xs)dBs +

1

2

∫ t

0
f
′′
(Xs)d〈M〉s. (2.20)

Remark 2.2. Xs(ω), for a fixed ω, is a bounded function for 0 ≤ s ≤ t due to which

f
′
(Xs) is bounded as well on this interval. It follows that integral

∫ t
0 f
′
(Xs)dMs exists and

it is a continuous, local martingale(from the last section). The other two intergals can be

evaluated in the Lebesgue-Stieljes sense, as the process 〈M〉 is of bounded variations and

f
′
(Xs) is also a bounded function and so, are functions of bounded variations. It follows

that {f(Xt),Ft; 0 ≤ t <∞} is a continuous semimartingale.

Proof We divide the proof into several steps.

Step 1: We define the stopping time,

Tn =


0 if |X0| ≥ n,

inf{t ≥ 0; |Mt| ≥ n or Bt ≥ n or 〈M〉t ≥ n} if |X0| < n,

∞ if |X0| < n and inf{t ≥ 0; |Mt| ≥ n or Bt ≥ n or 〈M〉t ≥ n} = ∅.

This stopping time is defined for localization. We have {Tn}∞n=1 which is an increasing

sequence with limn→∞ Tn =∞. If we can show (2.20) for Xt∧Tn(ω),Mt∧Tn(ω), 〈M〉t(ω), then

we have the result. We can assume that the processes are bounded by a common constant

K such that M is a bounded martingale. With this assumption, we have |Xt(ω)| ≤ 3K and

f has a compact support implying that both f
′

and f” are bounded.

Step 2: For fix t > 0 and partition Π = {t0, t1, · · · , tm} with {t0 = 0 < t1 < · · · < tm = t}.
We use the Taylor’s Expansion and get

f(Xt)− f(X0) =

m∑
k=1

{f(Xtk)− f(Xtk−1
)} (2.21)

=

m∑
k=1

f ′(Xtk){Xtk −Xtk−1
}+

1

2

m∑
k=1

f ′′(ηk){Xtk −Xtk−1
}2 (2.22)

where ηk = Xtk−1
(ω)+θk(ω){Xtk−Xtk−1

}. We choose θk such that f ′′(ηk) is measurable

and 0 ≤ θk ≤ 1.
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Using the semimartingale decomposition ofX and taylor’s expansion we divide f(Xt)−f(X0)

as sum of three decompositions. They are,

f(Xt)− f(X0) = J1(Π) + J2(Π) + J3(Π), (2.23)

where ,

J1(∆) =
m∑
k=1

f ′(Xtk−1
){Btk −Btk−1

}.

J2(∆) =
m∑
k=1

f ′(Xtk−1
){Mtk −Mtk−1

}.

J3(∆) =

m∑
k=1

f ′′(ηk){Xtk −Xtk−1
}2.

As for J1(Π), it can be seen that it converges to the Lebesgue-Stieltjes integral
∫ t

0 f
′(Xs)dBs

as mesh goes to 0 because f
′

is bounded and B is of bounded variation.

We also observe that f ′(Xs(ω)) is an adapted, bounded and continuous (in L∗ ). We can

approximate it be simple processes and write as,

Y (Π)
s = f ′(X0(ω)1{0})(s) +

m∑
k=1

f ′(Xtk−1
(ω))1(tk−1,tk](s).

We have,

EI2
t (Y Π − Y ) = E

∫ t

0
|Y Π
s − Ys|2d〈M〉s −→ 0

as ‖Π‖ → 0, by bounded convergence theorem. Therefore J2(Π) =
∫ t

0 Ys
ΠdMs −→

∫ t
0 YsdMs

in quadratic mean.

Step 3: We can further write J3(Π) as

J3(Π) = J4(Π) + J5(Π) + J6(Π),

where,
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J4(Π) =
m∑
k=1

f ′′(ηk){Btk −Btk−1
}2. (2.24)

J5(Π) =
m∑
k=1

f ′′(ηk){Btk −Btk−1
}{Mtk −Mtk−1

}. (2.25)

J6(Π) =
m∑
k=1

f ′′(ηk){Mtk −Mtk−1
}2. (2.26)

B is bounded variation process which is bounded by K, thus we have,

|J4(Π)|+ |J5(Π)| ≤ 2K‖f ′′‖∞( max
1≤k≤m

|Btk −Btk−1
|+ max

1≤k≤m
|Mtk −Mtk−1

|)

which converges to 0 as mesh goes to zero.

For J6(Π), we define the following sum,

J6
∗(Π) = Σm

k=1f
′′(Xtk−1

){Mtk −Mtk−1
}2.

We observe that,

|J6(Π)− J∗6 (Π)| ≤ V 2
t (Π) · max

1≤k≤m
|f ′′(ηk)− f ′′(Xtk−1

)|,

where V 2
t (Π) is the quadratic variation of martingale M over the partition. Using Cauchy-

Schwarz inequality we have,

E|J6(Π)− J∗6 (Π)| ≤ E(V 2
t (∆) · max

1≤k≤m
|f ′′(ηk)− f ′′(Xtk−1

)|)

≤
√

6K4
√
E( max

1≤k≤m
|f ′′(ηk)− f ′′(Xtk−1

)|)2.

X is continuous and using bounded convergence theorem we have the above inequality going

to 0 as mesh goes to 0. To show the convergence of J3(Π) to
∫ t

0 f
′′
(Xs)d〈M〉s in L1 as mesh

goes to 0, we need to compare J∗6 (Π) to the sum,

Ja(Π) =
m∑
k=1

f ′′(Xtk−1
){(〈M〉tk − 〈M〉tk−1

)}.
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E|J∗6 (Π)− Ja(Π)|2 = E|
m∑
k=1

f ′′(Xtk−1
){(Mtk −Mtk−1

)2 − (〈M〉tk − 〈M〉tk−1
)}|2

= E|
m∑
k=1

[f ′′(Xtk−1
)]2{(Mtk −Mtk−1

)2 − (〈M〉tk − 〈M〉tk−1
)}2|

≤ 2‖f ′′‖2∞ · E[

m∑
k=1

(Mtk −Mtk−1
)4 +

m∑
k=1

(〈M〉tk − 〈M〉tk−1
)2]

≤ 2‖f ′′‖2∞ · E[(V
(4)
t (Π)) + 〈M〉t max

1≤k≤m
(〈M〉tk − 〈M〉tk−1

)].

We know that (V
(4)
t (Π)) goes to zero and using the bounded convergence theorem , the last

term goes to zero as mesh goes to zero.

Convergence in L2 implies convergence in L1, from this we can conclude that,

lim
‖Π‖→0

J3(Π) −→
∫ t

0
f ′′(Xs)d〈M〉s.

Step 4: Further, if we have a sequence of partions {Π(n)} such that ‖Π(n)‖ −→ 0, then for

some subsequence {Π(nk)}∞k=1 we have a.s :

lim
k→∞

J1(Π(nk)) =

∫ t

0
f ′(Xs)dBs.

lim
k→∞

J2(Π(nk)) =

∫ t

0
f ′(Xs)dMs.

lim
k→∞

J3(Π(nk)) =

∫ t

0
f ′′(Xs)d〈M〉s.

�

Applications of Ito’s Formula

The following characterization of the Weiner Process can be obtained using the Ito’s Formula

Theorem 11 (Kunita-Watanabe). Let M ∈Ml
coc in Rd with M0 = 0 and 〈M〉t = tI (I is

the d×D identity matrix). Then we have:

• (Mt) is a d dimensional Weiner Process.

• For s ≤ t, σ[Mv −Mu : s ≤ u < v ≤ t] is orthogonal to Fs. Then on each interval

[0, T ], (Mt) is continuous L2 martingale.

Here we are not assuming the fitration to be right continuous.
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Proof Let us first assume that (Fs) is right continuous. For fixed s ≤ T and u =

(u1, . . . , ud) ∈ Rd, with s ≤ t ≤ T , define,

g(t) =

∫
A
ei(u,Mt−Ms)dP A ∈ Fs.

Applying Ito’s Formula to F (x) = ei(u,x) we have,

ei(u,Mt) = 1 + i
∑
j

uj

∫ t

0
ei(u,Mv)dMv

j − 1

2
|u|2

∫ t

0
ei(u,Mv)dv,

where |u|2 =
∑

j uj
2. Thus we have,

ei(u,Mt−Ms) = 1 + i
∑
j

uj

∫ t

0
ei(u,Mv−Ms)dMv

j − 1

2
|u|2

∫ t

0
ei(u,Mv−Ms)dv.

With s fixed and integrating with respect to P over A , we have,

E[ei(u,Mt−Ms)|Fs] = 0 a.s.

From the above we observe that,

g(t) = P (A)− 1

2
|u|2

∫ t

s
g(v)dv.

On differentiating with respect to the time parameter t we obtain,

g
′
(t) = −1

2
|u|2g(t).

Hence, g(t) = e−
1
2
|u|2(t−s)P(A). From this we get the desired result.

Example 1 f(x) = x2 and X0 = 0 and M = W = Brownian Motion. Then M as a

semimartingale will have the decomposition such that Bt = 0 ∀t. Using the Ito’s rule we

have,

W 2
t = 2

∫ t

0
WsdWs + t.

Example 2 Let the martingale be the Standard Brownian Motion and let X ∈ P. We

define,

ζst (X) :=

∫ t

s
XudWu −

1

2

∫ t

s
X2
udu,

and

Zt = exp(ζt); 0 ≤ t <∞.
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Then the process {exp(ζt(X)),Ft; 0 ≤ t < ∞} is a supermartingale. Using Ito’s rule we

show that the process Z satisfies the stochastic integral equation,

Zt = 1 +

∫ t

0
ZsXsdWs; 0 ≤ t <∞.

With f(x) = ex, we have,

Zt = f(ζt) = f(ζ0) +

∫ t

0
f ′(ζs)dMs +

∫ t

0
f ′(ζs)dBs +

1

2

∫ t

0
f ′′(ζs)d〈M〉s

= 1 +

∫ t

0
ZsXsdWs +

∫ t

0
Zs(−

1

2
X2
s )ds+

1

2

∫ t

0
ZsX

2
sds

= 1 +

∫ t

0
ZsXsdWs.
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Chapter 3

Stochastic Differential Equations

3.1 Introduction

In this chapter we will explore the existence and uniqueness for solutions to stochastic differ-

ential equations. We would also explore under what conditions do we have a unique solution

modulo indistinguishability. SDEs have a lot of applications in the world of mathematical

economics as they are used to model the fluctuations of stock prices and also problems

related to the consumption/investments. The stochastic differential equation is of the form,

dXt = b(t,Xt) + σ(t,Xt)dWt. (3.1)

3.2 Strong Solutions

We begin with the introduction to stochastic differential equations with respect to the

Brownian motion and its solution in the strong sense. We also discuss the properties and

answer questions about their existence and uniqueness.

Let {bi(t, x), σij(t, x), 1 ≤ i ≤ d, 1 ≤ j ≤ r} be borel measurable functions from [0,∞)×Rd

to R and we also define b(t, x) = {bi(t, x)}1≤i≤d which is the drift vector and σ(t, x) =

{σij(t, x)}1≤i≤d 1≤j≤r which is the dispersion matrix. We want to assign meaning to the

differential equation,

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (3.2)

which can be written componentwise as,

dX
(i)
t = bi(t,Xt)dt+

r∑
j=1

σij(t,Xt)dW
(j)
t ; 1 ≤ i ≤ d. (3.3)

Here W is an r-dimensional Brownian Motion and X is a stochastic process with continuous

sample paths with values in Rd.
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To develop the concept of strong solution we require a suitable filtration. We consider a prob-

ability triple (Ω,F ,P) with r-dimensional Brownian Motion W = {Wt,FWt , 0 ≤ t < ∞}.
We also accommodate a random vector ξ with values in Rd independent of FW∞ with the

distribution defined as µ(Γ) = P[ξ ∈ Γ] ; Γ ∈ B(Rd). This vector helps us in defining the

notion of strong solution.

We start with construction of the filtration. We consider a left continuous fitration,

Gt := σ(ξ,Ws, 0 ≤ s ≤ t),

with a collection of null sets,

N := {N ⊆ Ω;∃G ∈ G∞ with N ⊆ G and P(G) = 0}

to get the augmented filtration which is defined as,

Ft = σ(Gt ∪N ). (3.4)

Following is an example of a SDE.

Example: Let Xt = cos(B(t)) and Yt = sin(B(t)). The column vector Vt with compo-

nents Xt and Yt represents the position at time t of an object moving in unit circle with

angle governed by Brownian motion. Applying Ito’s formula

dXt = −sinB(t)dB(t)− 1

2
cosB(t)dt = −YtdB(t)− 1

2
Xtdt,

dYt = cosB(t)dB(t)− 1

2
sinB(t)dt = XtdB(t)− 1

2
Ytdt.

Therefore, the stochastic differential equation of Vt is obtained as:

dVt =

[
0 1

1 0

]
VtdB(t)− 1

2
Vtdt, V0 =

[
1

0

]
.

Definition 3.1. A strong solution of the stochastic differential equations, on (Ω,F ,P) with

respect to the fixed Brownian motion W and having the initial condition ξ, is again a stochas-

tic process X = {Xt; 0 ≤ t <∞} with continuous sample paths, with the following properties

:

1. X is adapted to the filtration {Ft}.

2. P[X0 = ξ] = 1.
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3. P[
∫ t

0{|bi(s,Xs)| + σ2
ij(s,Xs)} < ∞] holds for every 1 ≤ i ≤ d, 1 ≤ j ≤ r and

0 ≤ t <∞.

4. The integral version of (3.2),

Xi
t = Xi

0 +

∫ t

0
bi(s,Xs)ds+

r∑
j=1

∫ t

0
σij(s,Xs)dW

(j)
s .

holds almost surely.

Definition 3.2. Let the drift vector b(t,Xt) and the dispersion matrix σ(t,Xt) be given.

Whenever W is an r-dimensional Brownian Motion with initial condition ξ, where ξ is an

independent, r-dimensional random vector on {Ft} and X and X̃ are the two strong solutions

of (3.2), then P[X = X̃; 0 ≤ t <∞] = 1. In such case strong uniqueness holds for (b, σ).

If σ(t,Xt), which is the dispersion matrix is identically zero, then the integral form of

SDE can be written as,

Xt = X0 +

∫ t

0
b(s,Xs)ds. (3.5)

In the theory of such equations, we have to impose the assumption that b(t, x) satisfies the

local Lipchitz condition in the space variable x and is bounded on compact subsets to ensure

that for sufficiently small t we can apply the Picard-Lindelof iterations where,

Xt
(0) = X0; Xt

(n+1) = X0 +

∫ t

0
b(s,Xs)ds,

so that the above converges to the integral solution (3.5) such that the solution is unique.

In the absence of this condition the equation might fail to be solvable.

To develop the theory of stochastic differential equations, the condition of Lipschitz continu-

ity was imposed and shown what kind of existence and uniqueness results can be obtained.

The theory was developed by K. Ito.

To begin with we would start with the Gronwall inequality.

Proposition 3.1. Let g(t) be a continuous function that satisfies,

0 ≤ g(t) ≤ f(t) + b

∫ t

0
g(s)ds. (3.6)

Then we have the following equality:

g(t) ≤ f(t) + b

∫ t

0
f(t) exp(b(t− s))ds.
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Proof We define,

v(s) = exp(−b[s− 0])

∫ s

0
bg(r)dr, s ∈ [0, T ]

taking the derivative, we have the inequality,

v
′
(s) = g(s)exp(−b[s− 0])− bexp(−b[s− 0])

∫ s

0
bg(r)dr

= [g(s)−
∫ s

0
bg(r)dr]bexp(−b[s− 0]).

where g(s)−
∫ s

0 bg(r)dr ≤ f(s).

Since b and exponential are non negative, the above equation gives an upper bound for

derivative of v.

Since v(0) = 0, integration of this inequality from 0 to t gives us,

v(t) ≤
∫ t

0
f(s)bexp(−b[s− 0])ds.

Using the definition of v(t) and the inquality above, we obtain∫ t

0
bg(r)dr ≤

∫ t

0
f(r)b exp[b(t− 0)− b(s− 0)]dr

≤ b
∫ t

0
f(r)exp(−b[t− s]).

substituting this inequality into the assumed integral we get the desired result.

Remark 3.1. For every d× r matrix , we define,

‖σ‖2 =
d∑
i=1

r∑
j=1

σij
2.

Theorem 12. Let us suppose that the coefficients bi(s,Xs) and σij(s,Xs) are locally Lip-

schitz continuous in the space variable, that is, for every n ≥ 1 there exist a constant An

such that for every t ≥ 0, ‖x‖ ≤ n and ‖y‖ ≤ n we have:

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ An‖x− y‖. (3.7)

Then strong uniqueness holds for (3.1).
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Proof Let X and X̃ be the strong solution of (3.1) defined for all t ≥ 0, with respect to

some Brownian motion W and initial conditions ξ on the probability space. For each n ≥ 0,

we define the stopping time as τn = inf{t ≥ 0; ‖X‖t ≥ n;n ≥ 1} and τ̃n = inf{t ≥ 0; ‖X̃‖t ≥
n;n ≥ 1}. We also set Sn = τ ∧ τ̃ . Clearly we have limn→∞ Sn =∞ and,

Xt∧Sn − X̃t∧Sn =

∫ t∧Sn

0
{b(u,Xu)− b(u, ˜(Xu))}du+

∫ t∧Sn

0
{σ(u,Xu)− σ(u, ˜(Xu))dWu.

Using the vector inequality ‖v1 + v2 + · · · vk‖ ≤ k2(‖v1‖2 + ‖v2‖2 · · · ‖vk‖2) and the Holder

inequality for Lebesgue integrals, we have for 0 ≤ t ≤ T ,

E‖Xt∧Sn − X̃t∧Sn‖2 ≤ E[

∫ t∧Sn

0
‖{b(u,Xu)− b(u, ˜(Xu))du}‖]2

+4E
d∑
i=1

[
r∑
i=1

∫ t∧Sn

0
‖{σij(u,Xu)− σij(u, ˜(Xu))dW (j)

u }‖]2

= 4tE

∫ t∧Sn

0
‖{b(u,Xu)− b(u, ˜(Xu))}‖2du

+4E

∫ t∧Sn

0
‖{σ(u,Xu)− σ(u, ˜(Xu))}‖2du

≤ 4(T + 1)A2
n

∫ t

0
E‖Xt∧Sn − X̃t∧Sn‖2du.

Using Gronwall inequality with g(t) = E‖Xt∧Sn − X̃t∧Sn‖2 we can conclude that X and X̃

are modifications of one another, thus are indistinguishable. Letting n → ∞ we get the

desired result.

Remark 3.2. Even for the ordinary differential equations the condition of local Lipschitz

is not sufficient to guarantee global existence of a solution. For example:

Xt = 1 +

∫ t

0
X2
sds,

is Xt = 1/(1− t) which shoots to infinity as t ↑ 1. We thus need a stronger condition to

show the existence of the solution.

Theorem 13. [KS91] Let the coefficients bi(s,Xs) and σij(s,Xs) satisfy the global Lipschitz

and linear growth conditions, i.e,

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ A‖x− y‖. (3.8)

‖b(t, x)‖2 + ‖σ(t, x)‖2 ≤ A2(1 + ‖x‖2). (3.9)

for every 0 ≤ t <∞, x ∈ Rd, y ∈ Rd and A ∈ [0,∞). On probability triple (Ω,F ,P), let Ft
be the filtration defined and let ξ be Rd valued random variable which is independent of the
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Brownian motion W = {Wt,FWt , 0 ≤ t <∞} of dimension r, such that ξ satisfies,

E‖ξ‖2 <∞. (3.10)

Then there exist a continuous process X = {Xt,Ft, 0 ≤ t < ∞} adapted to the filtration

such that it is a strong solution of the SDE with respect to the given Brownian motion W

and initial conditions ξ. This process is also a square integrable process such that for every

T ≥ 0, we have constant C, depending on A and T such that we have,

E‖Xt‖2 ≤ C(1 + E‖ξ‖2)eCt; 0 ≤ t ≤ T (3.11)

The idea of the proof is to use iterative method and to construct recursively using

Picard’s iterations a sequence of successive approximations with Xt(0) = ξ and,

X
(k+1)
t := ξ +

∫ t

0
b(s,X(k)

s )ds+

∫ t

0
σ(s,X(k)

s )dWs; 0 ≤ t <∞. (3.12)

Lemma 3.1. For every T > 0, we have a positive constant C that depends only on A and

T , such that the iterations in (3.12) satisfy:

E‖Xt
(k)‖2 ≤ C(1 + E‖ξ‖2)eCt; 0 ≤ t ≤ T ; 0 ≤ t ≤ T, k ≥ 0. (3.13)

Proof We need to show that for k ≥ 0 we must have the following:∫ t

0
{‖b(t,Xt

(k))‖+ ‖σ(t,Xt
(k))‖} <∞.

for k = 0, the above holds true. We can show by induction that,

sup
0≤t≤T

E‖X(k)
t ‖2 <∞. (3.14)

Let us assume that (3.14) is true for some value k. Then using the idea of Theorem 12 we

get a bound for t i.e,

E‖X(k+1)
t ‖2 ≤ 9E‖ξ‖2 + 9(T + 1)A2

∫ t

0
(1 + E‖X(k)

t ‖2)ds.

which gives (3.14) for k + 1. Also we have,

E‖X(k+1)
t ‖2 ≤ C(1 + E‖ξ‖2) + C

∫ t

0
E‖X(k)

t ‖2ds.
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Iteration of this inequality gives:

E‖X(k+1)
t ‖2 ≤ C(1 + E‖ξ‖2)[1 + Ct+

(Ct)2

2!
+ · · ·+ (Ct)k+1

(k + 1)!
].

This gives us the desired results.

Proposition 3.2 (Martingale Moment Inequalities). For a continuous martingale M which

is bounded along with its quadratic variation process 〈M〉, we have, for every stopping time

T ,

E|MT |(2m) ≤ AmE〈MT 〉(m). (3.15)

BmE〈MT 〉(m) ≤ E|MT |(m). (3.16)

BmE〈MT 〉(m) ≤ E(M∗T )2m ≤ AmE〈MT 〉(m). (3.17)

where M∗t = maxs≤t |Ms|

Proposition 3.3. Let M be a d-dimensional continuous local martingale, i.e., M (i) ∈Mc
2.

Also

‖M‖∗t = max
s≤t
‖Ms‖ ; At =

d∑
i=1

〈M (i)〉t. (3.18)

Then for every stopping time T we have constants λm and Λm such that :

λmE(AmT ) ≤ E(‖M‖∗T )2m ≤ ΛmE(AmT ). (3.19)

Remark 3.3. If M
(i)
t in the above Proposition is given by,

M
(i)
t =

d∑
i=1

∫ t

0
Xi,j
s dW (j)

s ,

where W is a r dimensional Brownian motion and

X = {Xt = Xi,j
t ; 1 ≤ i ≤ d; 1 ≤ j ≤ r},

such that Xt is Ft measurable and,

‖Xt‖2 =

d∑
i=1

r∑
j=1

(
Xi,j
t

)2
.

Then the above proposition holds with,

AT =

∫ T

0
‖Xt‖2dt
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Proof of Theorem 13 We can decompose Xt(k + 1)−Xt(k) = Bt +Mt where,

Bt =

∫ t

0
{bi(s,Xk

s )− bi(s,Xk−1
s )}ds Mt =

∫ t

0
{σi(s,Xk

s )− σi(s,Xk−1
s )}dWs.

Using the global Lipschitz condition and growth condition along with the martingale moment

inequalities we have,

E[max
s≤t
‖Ms‖2] ≤ Λ1E

∫ t

0
‖σ(s,Xk

s )− σ(s,Xk−1
s )‖ds ≤ Λ1A

2E

∫ t

0
‖Xk

s −Xk−1
s ‖2ds.

For the square integrable continuous martingale M , we also have,

E‖Bt‖2 ≤ A2tE

∫ t

0
‖Xk

s −Xk−1
s ‖2ds.

Therefore,

E[max
s≤t
‖Xk+1

s −Xk
s ‖2] ≤ 4A2(Λ + T )E

∫ t

0
‖Xk

s −Xk−1
s ‖2ds.

The above inequality can be iterated successively to get,

E[max
s≤t
‖Xk+1

s −Xk
s ‖2] ≤ max

s≤T
E‖X1

t − ξ‖2
(4A2(Λ + T )t)k

k!
.

Using the Chebyshev’s inequality we now get,

P
[

max
s≤T
‖Xk+1

s −Xk
s ‖2 ≥

1

2k

]
≤ 4 max

s≤t
‖X1

t − ξ‖2 ·
(4 · 4A2(Λ + T )t)k

k!
.

A general term of the convergent series with above terms has an upper bound. Using Borel

Cantelli lemma we can say that ∃ Ω∗ ∈ F such that, we have P(Ω∗) = 1 and corresponding

to each ω ∈ Ω∗, we have an integer valued random variable such that ∀ ω ∈ Ω∗,

max
s≤T
‖Xk+1

s −Xk
s ‖ ≤ 1/2k+1 ∀ k ≥ N(ω).

max
s≤T
‖Xk+m

s −Xk
s ‖ ≤ 1/2k+1 ∀ k ≥ N(ω) ∀ m ≥ 1.

On the space of continuous functions, we see that that the sequence of sample paths

{N (k)
t (ω); s ≥ T} are convergent in sup norm. Using this convergence, we can say that the

continuous limit {Xt; t ≤ T} is exists. T is arbitrary and the process is continuous, the sam-

ple paths converges uniformly on the compact sets. Finally we show that Xt = limXk
t t ≥ 0

satisfies the 4th condition of the definition. Since the process is square integrable and satisfy
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linear growth condition we have property 3 being satisfied of the definition.

Remark 3.4. On the one dimensional case, we can considerably relax the Lipschitz condi-

tions on the dispersion coefficients

Proposition 3.4 (Yamade and Watanabe(1971)). [KS91] Let us suppose that the coeffi-

cients of the one dimensional equation where d = r = 1 can be written as,

dXt = b(t,Xt)dt+ σ(t,Xt)dWt,

which satisfies

|b(t, x)− b(t, y)| ≤ A|x− y|, (3.20)

|σ(t, x)− σ(t, y)| ≤ h(|x− y|), (3.21)

∀ t ∈ [0,∞) and x, y ∈ R, where A is a positive constant and h is a strictly increasing

function with h(0) = 0 and ∫
(0,ε)

h−2(u)du =∞; ∀ε > 0.

Then we have strong uniqueness for (3.1).

Proof There exists a decreasing sequence {an}∞n=0 in [0,1) such that limn→∞ an = 0 and∫ an−1

an
h−2(u)du = n ∀ n ≥ 1. For each n there exist a continuous function ρn on R with

support in (an−1, an) such that 0 ≤ ρn(x) ≤ (
2

nh2(x)
); ∀x ∈ (0,∞) and

∫ an−1

an
ρn(x) = 1.

Then we have,

ψn(x) :=

∫ |x|
0

∫ y

0
ρn(u)dudy; x ∈ R. (3.22)

This is a C2(R) function such that |ψ′n(x)| ≤ 1 and the sequence {ψn}∞n=1 is non decreasing.

Let us take two solutions of (3.1) X(1), X(2). By definition we take,

E

∫ t

0
|σ(s,Xs)|2ds <∞; 0 ≤ t <∞.

Ξt = X
(1)
t −X

(2)
t =

∫ t

0
{b(s,X(1)

s )− b(s,X(2)
s )}ds+

∫ t

0
{σ(s,X(1)

s )− σ(s,X(2)
s )}ds
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We further apply the Ito’s Formula to get,

ψn(Ξt) =

∫ t

0
ψ′n(Ξs)[b(s,X

(1)
s )− b(s,X(2)

s )]ds+
1

2

∫ t

0
ψ′′n(Ξs)[σ(s,X(1)

s )− σ(s,X(2)
s )]2ds

+

∫ t

0
ψ′n(Ξs)[σ(s,X(1)

s )− σ(s,X(2)
s )]2dWs.

We now have E[
∫ t

0 ψ
′
n(Ξs)[σ(s,X

(1)
s )−σ(s,X

(2)
s )]2dWs] = 0 as W is a brownian motion and,

E[
∫ t

0 |σ(s,Xs)|2ds] <∞; 0 ≤ t <∞. Further we have for the second term

E[

∫ t

0
ψ′′n(Ξs)[σ(s,X(1)

s )− σ(s,X(2)
s )]2ds] ≤ E[

∫ t

0
ψ′′n(Ξs)[h|Ξs|]2ds] ≤ 2t/n.

Hence forth,

Eψn(Ξt) = E

∫ t

0
ψ′n(Ξs)[b(s,X

(1)
s )− b(s,X(2)

s )]ds+ t/n

≤ A
∫ t

0
E|Ξs|ds+ t/n

as n → ∞ gives us E|Ξt| ≤ A
∫ t

0 E|Ξs|ds. By applying Gronwall Inequality we get the

desired results.

3.3 Weak Solutions

There are two concepts of uniqueness that can be associated with the existence of the weak

solution to stochastic differential equations. The first talks about the pathwise uniqueness

which is a generalization of strong solution and the other is uniqueness in law which is more

weaker sense of equality. Also pathwise uniqueness implies uniqueness in law.

Definition 3.3. Whenever {(X,W ), (Ω,F ,P)}, {Ft} and (X̃,W ), {(Ω,F ,P)}, {F̃t} are

weak solutions to SDE with common Brownian motion and on the same probability space,

with the same initial value, then the two solutions X and X̃ are indistinguishable i.e., P[X =

X̃; ∀0 ≤ t <∞] = 1. Then X and X̃ are said to have pathwise uniqueness.

Definition 3.4. Uniqueness in the sense of distribution is said to hold if for any two weak

solutions (X,W ), (Ω,F ,P),{Ft} and (X̃, W̃ ), (Ω,F ,P), {F̃t} with the same initial distribu-

tion, i.e.

P[X0 ∈ Γ] = P̃[X̃0 ∈ Γ]; Γ ∈ B(Rd),

have the same law.
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To state the existence of a weak solution we need to state the Girsanov’s theorem.

Consider for the process

Yt = exp(

∫ t

0
XsdBs −

1

2

∫ t

0
(X)s

2ds.

This process is a martingale with,

E[YT ] = E[Y0] = 1.

Theorem 14. Let the process X be defined on the probability space {Ω,F ,P} such that

{Bt,Ft; t ≥ 0} is a standard Brownian motion. Let Y be the process defined by,

Yt = exp(

∫ t

0
XsdBs −

1

2

∫ t

0
(X)s

2ds)

with,

E[YT ] = 1.

Then on the same probability space we define a measure by,

P̃(dω) = YT (ω)P(ω),

such that the process {B̃,F ; t ≥ 0} on the probability space {Ω,F , P̃} is a Brownian motion

with

B̃t =

∫ t

0
Xsds+Bt.

We can now talk about the existence of weak solution to the SDE

Theorem 15. Consider the stochastic differential equation

dXt = b(t,Xt) + σ(t,Xt)dBt; 0 ≤ t ≤ T

with the initial conditions X0 = x, such that X, b and σ are adapted to the filtration, then

the weak solution exists.
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