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Notation

I Identity Matrix (in appropriate dimensions)

Cn Hilbert space, dimension n

ρ Density matrix

W Entanglement witness

HA Hilbert space of Alice

HB Hilbert space of Bob
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Abstract

In this work, we try to understand and characterize quantum correlations. Attempts

have been made to focus on the key ingredients of quantum mechanics which differ-

entiate quantum correlations from the classical ones. The thesis focuses on entan-

glement, its manifestation as Bell nonlocality, quantum contextuality and discord.

Furthermore, we try to analyze the implications of quantum correlations for device

independent quantum key distribution and to understand the foundations of quantum

mechanics at a deeper level.
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Chapter 1

Background

1.1 Correlations

Correlations among multiple parties is witnessed both in classical as well as in quan-

tum regime. Violation of Bell inequalities is one such example in quantum world.

The way stock markets behave after a cricket match or an election result show some

correlations as well and can be studied to understand classical correlations. [Sca13]

Formally speaking, two or more parties are correlated if together they contain more

information than taken separately [MBC+12]. Hence, mutual information seems the

right tool to quantify the amount of correlations among multiple parties. The lack of

information is given by entropy, consequently mutual information between parties A

and B turns out to be

I(A : B) = S(A) + S(B)− S(AB) (1.1)

where

• S(X) is Shannon entropy given by S(X) = −Σxpx log px if X is a classical

variable with values x occurring with probability px

• S(X) is Von Neumann entropy given by S(X) = −tr(ρx log ρx) where ρx repre-

sents the quantum state of system X
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1.1.1 Quantum vs Classical correlations

For classical variables, we know that

Px|y =
Pxy
Py

. (1.2)

It leads to an equivalent form for the classical mutual information:

Jcl(B|A) = S(B)− S(B|A), (1.3)

where

S(B|A) = ΣaPaS(B|a) (1.4)

and

S(B|a) = −ΣbPb|a logPb|a. (1.5)

Thus, one can interpret classical correlations as information gain about one subsystem

due to a measurement on the another.

The quantum analog, on the other hand, does not fit into this classical definition

due to following reasons [MBC+12]:

• There are many different measurements that can be performed on a system

• Measurements disturb the system under consideration (quantum state)

Furthermore, quantum correlations can be modeled in terms of quantum resources.

To understand quantum correlations, we need to understand Entanglement, Quantum

Discord and Quantum Contextuality.

1.2 Entanglement

Let H be the combined Hilbert space of an Alice-Bob system (A and B), given as

H = HA ⊗HB. (1.6)
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A pure state |ψ〉 ∈ H shared by two parties Alice and Bob is called separable if and

only if it can be written as [NC11]

|ψ〉 = |ψA〉 ⊗ |ψB〉 (1.7)

In density operator formalism, a mixed bipartite state (between Alice and Bob) ρ

is called separable if and only if it can be written as a convex sum of pure product

states [NC11] i.e

ρ = ΣiPi|ψAi 〉〈ψAi | ⊗ |ψBi 〉〈ψBi | (1.8)

Pi ≥ 0 (1.9)

ΣiPi = 1. (1.10)

Otherwise the state is entangled.
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1.2.1 Witnessing Entanglement

Hahn Banach theorem guarantees that given [Cla06]

• a convex set, and

• a point lying outside the set,

these two can be separated by a hyper-planeW . Riesz-Frechet representation charac-

terizes such hyperplanesW . Here,W is called witness. In the Hilbert space formalism,

let

C ⊂ D (1.11)

whereD is the set of normalized positive semidefinite operators (constituted by density

operators ρ) and C is the convex subset of states in Hilbert space H. Then for ρ /∈ C,

∃ A such that

Tr(Aρ) < 0 (1.12)

and

Tr(Aσ) ≥ 0, (1.13)

∀σ ∈ C. This motivates us to develop the following criteria for separability.

Separability criteria

Given ρ ∈ D, it is separable iff [Cla06]

Tr(ρW) ≥ 0, (1.14)

∀ Hermitian operators W such that

Tr([|ψA〉〈ψA| ⊗ |ψB〉〈ψB|]W) ≥ 0, (1.15)

where subscripts (A/B) denotes the respective Hilbert spaces. W is referred as en-

tanglement witness.
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Examples

Here are a few entanglement witnesses.

• For a given operator F such that F |ψA〉〈ψB| = |ψB〉〈ψA|. F can be explic-

itly written as F = Σi,j|ij〉〈ji|. One can verify that F can be used to detect

entanglement in S = |ψ−〉〈ψ−|, where |ψ−〉 = |01〉−|10〉√
2

• One can have WR = I− dP+ as entanglement witness, where P+ is a projector

onto the maximally entangled state and d is the dimension of the space.

1.2.2 LOCC and Entanglement distillation

LOCC stands for local operations and classical communication. For a bipartite sce-

nario (Alice and BOb), it means [NC11]:

• Alice and Bob can perform arbitrary operations on their local systems, including

measurement.

• They can communicate using classical communication

One can grasp the LOCC protocols by developing an algorithm to convert convert

|ψ〉 = |00〉+|11〉√
2

to |φ〉 = cos(θ)|00〉+ sin(θ)|11〉.

1.2.3 Bell Inequalities

To understand Bell inequalities, let us focus on Bell experiments [Sca13].

Bell experiments

In a typical bell experiment:

• Alice and Bob are at distinct locations.

• Each has a measurement device, which should be treated as black box with an

input (a knob to select the measurement setting) and an output.
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• In every iteration of the experiment, each party sets the knob at a randomly

chosen position and receives an outcome.

Let us stick with the following notation:

• Alice’s input: x ∈ X = 1, 2, 3, .......,MA

• Bob’s input: y ∈ Y = 1, 2, 3, .......,MB

• Alice’s output: a ∈ A = 1, 2, 3, .......,mA

• Alice’s input: b ∈ B = 1, 2, 3, .......,mB

After finitely many iterations of the experiment, Alice and Bob generate MA ×MB

probability distributions given by

PX ,Y = P (a, b|x, y), a ∈ A, b ∈ B, x ∈ X , y ∈ Y . (1.16)

Since the experiment runs for finitely many times, we will call these observed statistics.

The next task is to explain the observed statistics using one’s favorite explanation.

Describing the observed statistics

Without loss of generality, we can write

P (a, b|x, y) =

∫
dλρ(λ|x, y)P (a, b|x, y, λ), (1.17)

ρ(λ|x, y) ≥ 0, (1.18)∫
dλρ(λ|x, y) = 1. (1.19)

Here P (a, b|x, y, λ) are valid probability distributions. λ can be called one’s favorite

explanation. Let us look at a few examples.

• Quantum theory as the favorite explanation : Suppose quantum theory is

your favorite explanation. You will look for

– a state ρ

6



– MA POVMs Mx = (Ex
a |a ∈ A)

– MB POVMs My = (Ey
b |b ∈ B)

such that

ρ(λ|x, y) = δ(λ− ρ), (1.20)

P (a, b|x, y, λ) = Tr(λEx
a ⊗ E

y
b ). (1.21)

You would see that

PQ(a, b|x, y) =

∫
dλρ(λ− ρ)Tr(λEx

a ⊗ E
y
b ) (1.22)

= Tr(ρEx
a ⊗ E

y
b ) (1.23)

which looks familiar!

• Deterministic explanation : One can have deterministic explanations also

where the outcomes are uniquely determined by inputs.

P (a, b|x, y, λ) = δ(a, b) = F (x, y, λ), (1.24)

δa=f(x,y,λ)δb=g(x,y.λ), (1.25)

The last equation simply means that if the pair (a, b) is uniquely determined

from the input, then a is uniquely determined and b is uniquely determined.

Correlations among distant parties can be classically explained through the fol-

lowing two mechanisms only:

• Communication or signalling

• pre established agreement

let us resort to local explanations/local hidden variables (LV) only.

P (a, b|x, y, λ) = P (a|x, λ)P (b|y, λ) (1.26)

7



The fact that a(b) should not depend on y(x) is called no signalling condition.

To further understand the Bell Scenario (X ,A,Y ,B), it is important to mention

a couple of theorems from probability theory.

• Theorem 1 For any fixed scenario, the set L of probability distributions that

can be obtained with LV is convex [Sca13] i.e. if

P1 ∈ L (1.27)

and

P2 ∈ L (1.28)

then

q.P1 + (1− q).P2 ∈ L∀q ∈ [0, 1] (1.29)

• Theorem 2 A family of probability distributions PX ,Y ∈ L can be explained

with pre-established with pre established agreement iff it can be explained with

deterministic local variables [Sca13].

The local variable statistics can always be explained by a deterministic model. It

does not mean that such an explanation must necessarily be adopted. One’s favorite

explanation as well as the actual explanation can be probabilistic in nature. Now

based on the above two theorems one can infer that any P ∈ L can be written as

a convex sum of deterministic local variables. Furthermore, every deterministic local

point is an extremal point of L and there are finitely many such points: mMA
A mMB

B .

A convex set with finitely many extremal points is commonly referred as Polytope.

This means, L is the local polytope for the scenario (X ,A,Y ,B). A polytope L

embedded in RD is delimited by D − 1 dimensional hyperplanes called facets. The

inequalities associated to the non-trivial facets of L are the Bell inequalities for the

scenario under study.

8



1.2.4 Bound Entanglement

Suppose we are provided with large number (say n) of maximally entangled states

|00〉+|11〉√
2

, and our goal is to produce with high-fidelity as many copies of some pure

state |ψ〉 using LOCC. If the number of such copies of |ψ〉 which could be produced is

m, the limiting value of n
m

is called entanglement of formation of |ψ〉 . Similarly, one

could look for a process to produce n copies of maximally entangled state |00〉+|11〉√
2

from

m copies of |ψ〉, the limiting value of n
m

is called distillable entanglement [NC11] of

|ψ〉 .

But as it turns out one can’t carry out distillation for all possible entangled |ψ〉.

This motivates us to classify entanglement in two broad categories:

• Free (or distillable) entanglement: The entangled state from which one can

distill a pure entanglement (useful for quantum communication purposes) by

LOCC

• Bound (or nondistillable) entanglement: an entangled state which is not dis-

tillable.

Thus we can see that the phenomenon of entanglement shows irreversibly. While

entanglement is required to prepare a bound entangled state, but entanglement can’t

be harnessed from a bound entangled state by LOCC. It motivated Peres to think

whether bound entangled state can violate a Bell inequality. In 1999 Peres conjectured

that no bound entangled state can give rise to non-local correlations [Per98].

1.3 Contextuality in a nutshell

Quantum theory is weird in the sense that outcomes of measurements depends upon

their context. A context is defined as a set of mutually compatible observables. An

observable measured in one context can give a different outcome if measured in a

different context. Like Bell’s theorem it also allows for correlations among the mea-

surements which are bounded by classical theories. This bound is violated by quantum

theory, indicating a non-classical description of reality.

9



A4 A3

A5 A2

A1

Figure 1.1: KCBS orthogonality graph

Quantum contextuality is more fundamental than Bell’s theorem as it does not

impose an additional assumption of locality on the system. The first contextuality

inequality was given by Kochen and Specker, and it utilized 117 different projectors

in a 3 dimensional Hilbert space to arrive at a violation. A more simpler and experi-

mentally realizable inequality is the KCBS inequality, which utilizes only 5 projectors

in a 3 dimensional Hilbert space. The inequality states that

5∑
i=1

P (Ai = 1) ≤ 2, (1.30)

Where the observables Ai are projectors which cyclically commute. The sum

is taken modulo 5. The orthogonality relationship among the observables is best

represented by a graph, in which the observables are represented as vertices and

commuting observables are joined by a line..

The above inequality is maximally violated by the state |γ〉 = (0, 0, 1)T .

1.4 Discord

Discord is a measure of non-classical correlations between two subsystems of a quan-

tum system. It captures correlations which are quantum mechanical, but may not

involve entanglement. For a bipartite system (A and B), a measurement on subsys-

tem A is often described using a positive-operator valued measure with elements given

10



as Ea = M †
aMa, where Ma is the measurement operator and a stands for the classical

outcome. The state ρAB is transformed as

ρAB → ρ′AB = ΣaMaρABM
†
a . (1.31)

Here, Alice(A) gets outcome a with probability pa = tr(EaρAB) and Bob(B) gets the

conditional state

ρB|a =
trA(EAρAB)

Pa
. (1.32)

We can use it to define a classical-quantum analogue of the conditional entropy:

S(B|{Ea}) ≡ ΣapaS(ρB|a). (1.33)

It helps us to introduce classical correlations of the state ρAB as

J(B|{Ea}) ≡ S(B)− S(B|{Ea}). (1.34)

In order to compute the measurement independent classical correlations of the state,

J(B|{Ea}) is maximized over the complete set of measurements,

J(B|Ea) ≡ max{Ea}J(B|{Ea}). (1.35)

Now we have gathered all the mathematical tools to precisely define quantum discord.

For a state ρAB, quantum discord under a measurement {Ea} is defined as the difference

between total correlations and the classical correlations. [MBC+12]

D(B|A) ≡ I(A : B)− J(B|A) (1.36)

1.4.1 Properties of discord

• Discord is not symmetric, which means in general D(B|A) 6= D(A|B). This

follows from the fact that conditional entropy is not symmetric.

11



• Discord is non negative. This follows from the concavity of conditional entropy.

• Discord is invariant under local unitary transformations.

• D(B|A) ≥ S(A)

12



Chapter 2

Results and Comments

2.1 Hybrid Ekert Protocol

Ekert protocol is an entanglement based quantum key distribution protocol. It utilizes

the entanglement of maximally entangled states for secure communication. The key

rate of the protocol is 5o percent, which can be improved if we harness the contextual

nature of quantum mechanics.

2.1.1 Ekert Protocol

Let us discuss the key ingredients of Ekert protocol [Eke91].

• Alice and Bob want to communicate secretly. We have an eavesdropper, say

Eve.

• At the start of every iteration of the protocol, Alice and Bob receive one qubit

each from the entangled Bell state (|ψ〉 = |00〉+|11〉√
2

)

• Alice tosses a coin and gets either Head or Tail.

• If she gets a tail, she measures her qubit in Z basis otherwise in X basis.

• Similarly, Bob tosses a coin as well. If he gets a tail, he measures his qubit in Z

basis otherwise in X basis.

13



• Both publish their coin toss results in public.

• For the cases where they happened to have same coin toss results (which happens

half of the times) and consequently measurement in the same basis, they keep

the measurement results in the data-set.

• The unmatched cases are discarded.

Clearly, the key rate of the protocol is 50 percent. Part of the key can be used for

security purposes.

2.1.2 Our attempt to improve the key rate

A4 A3

A5 A2

A1

Figure 2.1: KCBS orthogonality graph for Hybrid Ekert protocol

I along with Atul and Prof. Arvind used the following contextuality pentagon to

improve the key rate of the Ekert protocol. The motivation was to harness contex-

tuality as well as entanglement to have a hybrid key distribution protocol. In the

above pentagon structure, each of the corner represents a projection operator. Alice

and Bob share same set of measurement operators, represented by the pentagon. The

operators connected by a line are orthogonal. Our protocol goes as follows:

14



• Alice randomly selects a measurement operator from the the set: {Ai}

• Without loss of generality, suppose she gets A3 in step 1. She prepares

the state |ψ3〉 such that

A3 = |ψ3〉〈ψ3| (2.1)

• She sends the state prepared in step 2 to Bob.

• Bob performs a random measurement on the state received from Alice

using either of the measurement operators from the set: {Ai}

• Now out of the following must happen:

– if Bob carries on measurement using A3, he is bound to get +1 as

eigenvalue.

– if he measures using A2 or A4, he gets 0.

– else he gets 0 or 1 otherwise.

• Bob reports the operator he used in last step publicly.

• Alice notes on her notebook

– 1, if Bob reports A3

– 0, if Bob reports A2 or A4

– (randomly) 0 or 1 otherwise

• Alice/Bob carries on measurement in

– X basis if she/he gets 0

– Z basis if she/he gets 1

15



2.2 Bound Entanglement and Peres Conjecture

The correlation statistics predicted by quantum theory is in sharp contradiction with

the theory of locality. These correlations are basically manifestations of quantum

entanglement in case we are interested with violation of a Bell inequality. Though we

know that the Bell inequality violation implies the presence of entanglement, it is still

not known whether all entangled states can violate a Bell inequality.

In 1999, Peres conjectured that no bound entangled state can give rise to non-

local correlations, which basically means bound entanglement can’t be used for Bell

inequality violation [Per98]. As we know that for dimensions greater than 2 ⊗ 3,

entangled states with positivity under partial transpose (PPT) are bound entangled

states [Per96]. For such dimensions, one can reformulate the conjecture as PPT

entangled states can never give rise to nonlocality. Alternatively, one can also say

that any state which leads to Bell inequality violation must be negative under partial

transposition (NPT). Peres’ intuition for the above conjecture was from his perception

that distillability of entanglement is equivalent to nonlocality.

Figure 2.2: The three fundamental manifestations of quantum entanglement
[VB14]

Meanwhile, non-positivity under partial transpose, distillability and Bell nonlocal-

ities have been the three important manifestations of quantum entanglement. Hence,

16



it is important to understand the connection between these three foundational topics

of quantum information.
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2.2.1 Countering the Peres conjecture

To counter the Peres conjecture, Vertesi and Brunner constructed a quantum state ρ

with the following properties [VB14]:

• ρ is positive under partial transposition. To ensure this, they constructed the ρ

such that it was invariant under the partial transposition.

• In a cleverly chosen Bell type experiment, local measurements on ρ happen to

violate the corresponding Bell inequality and thus ρ was Bell nonlocal.

Figure 2.3: Countering the Peres conjecture
[VB14]

18



To find out the required ρ, semidefinite programming was used [Wal11]. Specifi-

cally, following algorithm can be used.

• Generate random measurement matrices for Alice and Bob (Ma|x and

Mb|y)

• Use the measurement matrices to generate the Bell operator

B = Σa,b,x,yca,b,x,yMa|x ⊗Mb|y (2.2)

• Now carry on the following semidefinite programming: Maximize Tr(Bρ),

subject to

ρ ≥ 0 (2.3)

PT (ρ) ≥ 0 (2.4)

Tr(ρ) = 1 (2.5)

• Now optimize Alice’s measurement operators for fixed ρ (obtained in

last step) and Bob’s measurements

• Carry out a similar process for Bob

• Iterate over last three steps until you reach for the convergence of

Tr(Bρ)

2.3 A small comment on “Improving Randomness

Certification Using Sequential Measurement”

The randomness in quantum mechanics is something intrinsic to the theory and does

not feature because of ignorance. It has been shown that nonlocality can be used to

19



certify the unpredictability present in the outcomes of certain physical process [PR],

[MAG06]. This has been termed as device independent randomness certification. The

reason for sticking with such a nomenclature is that the certification depends only on

the statistical properties of the outcomes and not on the experimental set up using

which they were produced.

20



For the multiple measurement scenario, following two comments are worth making:

• For randomness certification in the sequential Bell scenario, gradual decay of en-

tanglement is the key aspect , which obviously projective measurements fail to

achieve. This means Alice should measure her qubit once all Bobs have sequen-

tially performed their measurements. I believe that it is possible to construct

a better scenario with multiple Alices carrying on sequential measurements on

their part as well.

• Nonlocality is the resource used for device independent randomness certification.

Is it the only resource? Is it possible to use contextuality for device independent

randomness certification? I mean violation of Bell’s inequality is pivotal to

device independent quantum key distribution (DIQKD). Can we use similar

no-go theorems, for example KCBS to do DIQKD [HHH+10]?
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Figure 2.4: The sequential scenario
[CJA+15]
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Chapter 3

Conclusion and Remarks

3.1 No-Go Theorems and Device Independence

Analyzing Bell nonlocality has been prudent in the development of device independent

quantum theory. For example, the information causality principle has emerged as a

consequence of analyzing no signaling polytopes. Whether information causality turns

out to be the defining principle of quantum mechanics, is still an open problem. But

nonetheless, such attempts have helped in the development of device independent

security proofs for quantum cryptography.

Recently, Horodecki et. al came up with contextuality based device independent

security proof for quantum cryptography [HHH+10]. There is enough evidence to

extend the parallel between nonlocality and contextuality:

• CHSH vs KCBS inequalities

• Entanglement monogamy vs KCBS monogamy

• Both are capable of generating true random numbers

Thus, exploring contextuality can be pivotal in

• coming up with similar device independent physical principles

• providing evidence for information causality as the defining principle of QM
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Furthermore, such attempts will be helpful to contrast the randomness generated

using nonlocality to those in contextuality. This can be accomplished by explor-

ing non-contextual polytopes and comparing the same with no signaling polytopes.

Furthermore, quantifying as well as comparing randomness from these two different

scenarios could be helpful.
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3.2 Open Problems

The project can be proceeded further with the following open problems:

• Separability problem : How can one find whether a given bipartite quantum

state is separable or not?

• NPT bound entanglement problem : The states which are positive under

partial transpose, if entangled are always bound entangled. But what about

NPT states?
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Appendix A

Semi-Definite Programming

Semidefinite programming is a powerful technique with heavy applications in quantum

information. It is useful both from an analytic as well as a computational point of

view.

Definition A.1. A semidefinite program is given by a triple (Φ, A,B), such that

• Φ ∈ T (X ,Y) is a Hermiticity-preserving linear map

• A ∈ Herm(X ) and B ∈ Herm(Y) are linear operators

for some complex Euclidean spaces X and Y [Wal11].

Note that a mapping φ ∈ T (X ,Y) is called a Hermiticity preserving map if

Φ(X) ∈ Herm(Y) ∀X ∈ Herm(X ) (A.1)

Now given a triple (Φ, A,B), we can associate two optimization problems, namely

Primal and Dual.
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Primal Problem

The primal problem focuses on maximizing the inner product of A and X subject to

some constraints. More precisely, one can state the primal problem as

maximize : 〈A,X〉 (A.2)

subject to : Φ(X) = B, (A.3)

X ∈ Pos(X ) (A.4)

Dual Problem

The Dual problem is about minimizing the inner product of B and Y subject to some

constraints. Specifically, we can put dual problem as

minimize : 〈B, Y 〉 (A.5)

subject to : Φ∗(Y ) ≥ A, (A.6)

Y ∈ Herm(Y) (A.7)
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Appendix B

Bell Violation Code

1 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 % Spring 2016

3 % Be l l v i o l a t i o n module

4 % Author : Kishor Bhart i

5 % Guide : Prof . Arvind

6 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 % dimension i s 3

8 d = 3 ;

9 % Generating Al ice ’ s and Bob measurement matr i ce s

10 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 % M a | x

12 % d1 i s the number o f Al ice ’ s matr i ce s

13 d1 = 6 ;
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14 Alice mat =ze ro s (d , d , d1 ) ;

15 f o r i = 1 : d1

16 Alice mat ( : , : , i ) = crand (d , d) ;

17 end

18 Alice temp = ze ro s (d , d , d1 ) ;

19 % M b | y

20 % d2 i s the number o f Bob ’ s matr i ce s

21 d2 = 5 ;

22 Bob mat = ze ro s (d , d , d2 ) ;

23 f o r i = 1 : d2

24 Bob mat ( : , : , i ) = crand (d , d) ;

25 end

26 Bob temp = ze ro s (d , d , d2 ) ;

27

28 % Def in ing the Be l l operator

29 % kron ( Bob mat ( : , : , 5 ) , Al ice mat ( : , : , 1 ) ) g i v e s t en so r

product matrix o f

30 % the input matr i ce s

31 % Generating C o e f f i c i e n t matrix C

32 C = ze ro s ( d1 , d2 ) ;

33 f o r i = 1 : d2

34 C(3 , i ) = −1;

35 end

36 f o r i = 1 : d1

37 C( i , 2 ) = −2;

38 end

39 C(1 ,3 ) = −1;

40 C(2 ,1 ) = −1;

41 C(3 ,1 ) = 1 ;
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42 C(3 ,2 ) = 1 ;

43 C(3 ,3 ) = 1 ;

44 C(1 ,2 ) = 1 ;

45 C(2 ,2 ) = 1 ;

46 Be l l = ze ro s (dˆ2 ,dˆ2) ;

47 f o r i = 1 : d1

48 f o r j = 1 : d2

49 Be l l = Be l l + C( i , j )∗kron ( Al ice mat ( : , : , i ) ,

Bob mat ( : , : , j ) ) ;

50 end

51 end

52

53 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

54 % S e m i d e f i n i t e Program #1

55 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

56 % the desn i ty matrix

57 rho = sdpvar (dˆ2 ,dˆ2) ;

58 % P o s i t i v i t y o f p a r t i a l t ranspose o f rho

59 F = [ Tx( rho , 1 , [ d , d ] ) >= 0 ] ;

60 % P o s i t i v i t y o f rho

61 F = F + [ rho >= 0 ] ;

62 % Normal izat ion

63 F = F + [ t r a c e ( rho ) == 1 ] ;

64 % SDP s e t t i n g s

65 ops = s d p s e t t i n g s ( ’ verbose ’ , 0 , ’ warning ’ , 0) ;
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66 % Maximizing t r a c e ( Be l l ∗ rho )

67 so lve sdp (F , −abs ( t r a c e ( Be l l ∗ rho ) ) , ops )

68 % Quant i fy ing the v i o l a t i o n by I Q

69 I Q = r e a l ( double ( t r a c e ( Be l l ∗ rho ) ) ) ;

70 rho = double ( rho ) ;

71

72 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

73 % S e m i d e f i n i t e Program #2

74 % Optimizing Al ice ’ s matr i ce s f o r f i x e d va lue s o f Bob ’ s

matr i ce s and rho

75 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

76 % Alice ’ s matr i ce s f o r opt imiza t i on

77 Alice new mat = sdpvar (d , d , d1 ) ;

78 % P o s i t i v i t y

79 f o r l = 1 : d1

80 G = [ Al ice new mat (d , d , l ) >= 0 ] ;

81 end

82 % Normal izat ion

83 % This needs to be modi f i ed depending on the Be l l s e t t i n g s

84 G = G + [ Al ice new mat (d , d , 1 ) + Alice new mat (d , d , 4 ) ==

eye (d) ] ;

85 G = G + [ Al ice new mat (d , d , 2 ) + Alice new mat (d , d , 5 ) ==

eye (d) ] ;

86 G = G + [ Al ice new mat (d , d , 3 ) + Alice new mat (d , d , 6 ) ==

eye (d) ] ;

30



87 % Def in ing F a | x

88 f o r a = 1 : d1

89 f o r b = 1 : d2

90 Alice temp ( : , : , a ) = Alice temp ( : , : , a ) + C(a , b)∗TrX

( rho∗kron ( eye (d) , Bob mat ( : , : , b ) ) , 2 , [ d , d ] ) ;

91 end

92 end

93 I Q temp = 0 ;

94 f o r a = 1 : d1

95 I Q temp = I Q temp + trac e ( Al ice new mat ( : , : , a )∗

Alice temp ( : , : , a ) ) ;

96 end

97 % SDP s e t t i n g s

98 ops = s d p s e t t i n g s ( ’ verbose ’ , 0 , ’ warning ’ , 0) ;

99 % Maximizing t r a c e ( Be l l ∗ rho )

100 so lve sdp (G, I Q temp , ops ) ;

101 I Q = I Q temp ;

102

103 % %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

104 % S e m i d e f i n i t e Program #3

105 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

106 % Optimizing Bob ’ s matr i ce s f o r f i x e d va lues o f Al ice ’ s

matr i ce s and rho

107 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

108 % Bob ’ s matr i ce s f o r opt imiza t i on

109 Bob new mat = sdpvar (d , d , d2 ) ;

110 % P o s i t i v i t y

111 f o r l = 1 : d2

112 H = [ Bob new mat (d , d , l ) >= 0 ] ;
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113 end

114 % Normal izat ion

115 %%

116 % This needs to be modi f i ed depending on the Be l l s e t t i n g s

117 H = H + [ Bob new mat (d , d , 1 ) + Bob new mat (d , d , 3 ) +

Bob new mat (d , d , 5 ) == eye (d) ] ;

118 H = H + [ Bob new mat (d , d , 2 ) + Bob new mat (d , d , 4 ) == eye (

d) ] ;

119 % Def in ing F a | x

120 f o r a = 1 : d2

121 f o r b = 1 : d1

122 Bob temp ( : , : , a ) = Bob temp ( : , : , a ) + C(a , b)∗TrX( rho

∗kron ( Bob new mat ( : , : , b ) , eye (d) ) , 1 , [ d , d ] ) ;

123 end

124 end

125 I Q temp = 0 ;

126 f o r a = 1 : d2

127 I Q temp = I Q temp + trac e ( Bob new mat ( : , : , a )∗

Bob temp ( : , : , a ) ) ;

128 end

129 % SDP s e t t i n g s

130 ops = s d p s e t t i n g s ( ’ verbose ’ , 0 , ’ warning ’ , 0) ;

131 % Maximizing t r a c e ( Be l l ∗ rho )

132 so lve sdp (H, I Q temp , ops ) ;

133 I Q = I Q temp ;
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