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Notation

I Identity Matrix(in appropriate dimensions)

H Hilbert space

‖A‖ Norm of A

{A,B} Anti-Commutation of A and B

[A,B] Commutation of A and B

~ Plank Constant divided by 2π

c Speed of light in vacuum

⊗ Tensor product

〈A〉 Expectation value A

Ā Average of A
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Abstract

Quantum Mechanics has met severe difficulties in accounting for the measurement

problem. Apart from the re-interpretative and decoherence approaches an attempt

based on consideration of stochastic and nonlinear modification to standard Schrodinger

Equation has also been made [9]. The new dynamics unifies micro and macroscopic

phenomena. The formalism of the dynamics is reviewed. We re-analyze the approach

taken by G.C. Ghirardi, P. Pearle, A. Rimini [10] and A. Bassi [12] to treat sponta-

neous collapse process for many-particle systems. A claim was made in earlier work

that due to heavier center of mass, spread in center of mass position reduces very

fast and behaves like a classical particle. A big flaw in their approach showing incon-

sistency of their claims with those of quantum mechanics is presented. We propose

a legitimate method to explain wavepacket reduction of entangled particles and in-

vestigate the role of interaction in wavepacket reduction process using GRW model.
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Chapter 1

Introduction

Quantum Theory has met an unprecedented success in accounting for various phenom-

ena in atomic, sub-atomic, optical, material, molecular, nuclear and particle physics.

The theory successfully unifies three of the four fundamental interactions and has not

encountered any empirical contradiction. Yet the postulates and interpretation of the

theory have been the subjects of a great debate. The counter-intuitive formalism of

Quantum Theory apparently meets severe contradiction with the intuitive phenomena

of the ‘classical world’. In other words the transition from the Quantum to Classical

world is not clear in the formalism. This aspect of the theory is mostly known as

‘Schrödinger’s Cat Paradox’ or ‘Measurement Problem’.

1.1 The Quantum Measurement Problem

1.1.1 The Postulates of Quantum Theory

The formalism of quantum mechanics can be summarized in following set of postulates:

1. The physical states of a system is represented by normalized vectors (known

as ‘state vector’) in an Hilbert space H associated with the same. A physical

observable O is represented by a Hermitian (self-adjoint) operator in Hilbert

space.

|ψ〉 =
∑
i

ci|ψi〉 (1.1)

O|ψ〉 = oi|ψi〉

2. Time evolution of the state vector between two consecutive measurement is gen-

erated by Hamiltonian H of the system. The evolution is unitary, deterministic
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and reversible governed by a linear differential equation; known as ‘Schrödinger

equation’:

ι~
∂|ψ〉
∂t

= H|ψ〉 (1.2)

3. The ‘measurement’ on the system drastically reduces the state vector to one of

the eigen-states of the observable being measured. The evolution is non-unitary,

irreversible and non-deterministic. This postulate is known as the postulate of

wavepacket reduction. If Pi is a projection operator then during the measurement

|ψ〉 → Pi|ψ〉
‖Pi|ψ〉‖

(1.3)

4. The outcome of the measurement is purely probabilistic. The probability of

state |ψ〉 being reduced in a sate |φ〉 is given by Born rule:

Prob(|φ〉) = ‖〈φ|ψ〉‖2 (1.4)

From postulates 3 and 4, it is clear that ‘measurement’ of an observable performed on

an ensemble of identical systems represented by |ψ〉 leads the ensemble to a statistical

mixture of projected states |ψi〉. It is impractical to keep the record of each individual

system among the ensemble. To simplify the study of ensembles, the formalism of

statistical operator is introduced.An ensemble of systems is represented by statistical

operator ρ. Suppose individual Ni systems described by state vector |ψi〉 belong to an

ensemble consists of N systems. Then the statistical operator corresponding to the

ensemble is represented as:

ρ =
∑
i

pi|ψi〉〈ψi| (1.5)

where pi = Ni/N . For pure states ρ2 = ρ and ρ2 6= ρ for statistical mixtures. The

time evolution of ρ corresponding to (1.2) is given by

ι~
d

dt
ρ(t) =

[
H, ρ(t)

]
(1.6)

The effect of measurement (corresponding to (1.3)) on ρ is:

ρ→
∑
i

PiρPi (1.7)

The most peculiar feature of Quantum Mechanics is that, in general, it can give
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only the probabilistic description about the possible outcomes of any observable’s

measurements. Unlike in classical statistical mechanics, these probabilities are not

due to an observer’s ignorance of precise knowledge about the state of the system;

rather, quantum mechanics is such that the ‘measurement process’ itself possesses an

inbuilt ‘randomization process’ which leads a pure ensemble to a mixed ensemble.

1.1.2 The Measurement Scheme

An ideal measurement scheme for quantum description of measurement was first pre-

sented by John von Neumann [1].In such a scheme a microscopic system S with one of

its observable O consisting eigenvalues {oi} is considered. An apparatus A is devised

to measure the observable O of system S. There exists a set of mutually orthogonal

states {|Ai〉} representing different macroscopic configurations of the measuring appa-

ratus. The macroscopic state |Ai〉 of apparatus corresponds to microscopic state |oi〉
of the system i.e. initial state of system |oi〉 drives apparatus to |Ai〉 configuration. If

|A0〉 is the initial configuration of apparatus then due to measurement:

|oi〉 ⊗ |A0〉 → |oi〉 ⊗ |Ai〉 (1.8)

The interaction between apparatus and system is governed by interaction Hamiltonian

of the combined system. Accordingly, the evolution of the state (
∑

i ci|oi〉 ⊗ |A0〉) in

combined Hilbert space HS ⊗HA is linear and can be written as:∑
i

ci|oi〉 ⊗ |A0〉 →
∑
i

ci|oi〉 ⊗ |Ai〉 (1.9)

This is an entangled state of apparatus and system representing the superposition of

macroscopic configurations of apparatus which is not a legitimate situation. To avoid

apparent contradiction with observed classical phenomenon i.e. lack of macroscopic

superposition, the postulate of wavepacket reduction (1.3) was taken into consideration.

1.1.3 The Problem

According to the standard quantum mechanics axioms, Hamiltonian of the system is

the only operator that generates the time evolution and for any form of Hamiltonian

(1.2) and (1.6) must be valid. Therefore, the system-apparatus interaction must be

governed by an unitary and deterministic evolution no matter how large the combined

system is. Thus the postulate of wavepacket reduction ((1.3) and (1.7)) is in direct
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conflict with time evolution postulate (Schrödinger equation, (1.2) and (1.6)). This

contradiction among the fundamental axioms of standard quantum mechanics (known

as measurement problem of quantum mechanics) can be summarized in following ques-

tions:

• What generates the nonlinear, non-unitary, irreversible and probabilistic time

evolution during the measurement process while the time evolution in all dy-

namical situations in standard quantum mechanics are linear, unitary, reversible

and deterministic?

• Where to draw the line between normal quantum mechanical interaction (gov-

erned by (1.2)) and measurement type interaction (governed by (1.3))?

• Where to draw the line between quantum system and classical system?

1.2 Major Approaches to Solve the Measurement

Problem

Soon after the formalism of standard quantum mechanics, Schrödinger presented this

paradoxical situation known as ’Cat Paradox’. The problem has been highly debated

and it has touched various aspect of theory e.g. interpretations, completeness of theory

and realism. Various approaches taken to solve the problem can be summarized in

following categories:

1. Realism: Contrary to the superposition postulate of the quantum theory (1.1),

a system is always considered to be in one of the basis of observable and the

non-classical behavior of system is due to existence of ’hidden variables’. The

existence of local hidden variable theories has been falsified by Bell’s inequality

tests[2],[3]. The non-local hidden variable theories can reproduce all quantum

mechanical predictions and do not differ in predictions. Bohmian Mechanics[4]

is such an example. But non-falsifiable and non-local features of the theory

prevent us to accept it.

2. Interpretation: This approach deals with re-interpretations of measurement

processes. Copenhagen interpretation [5] considers a sharp divide between quan-

tum and classical world following different sets of laws of nature. The interpre-

tation bypasses the question -‘where should the divide be put?’ or ‘at what mass
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scale quantum theory breaks down?’ von Neumann interpretation[1] is another

one which considers ideal measurement situation of §1.1.2 and measurement is

assumed to take place only when a ‘conscious observer’ observes it. The interpre-

tation involves complexity of neurology and not so satisfactory. The many-world

interpretation[7] does not consider reduction of wavepacket. According to this

interpretation there exist many parallel worlds those are different branches of

the universe and orthogonal outcomes of (1.9) lie in different branches of the

universe, hence, the reduction is mere an appearance. This approach cannot ex-

plain why there is probabilistic outcome (Born rule) in measurement. There are

other interpretations but they are also not satisfactory in explaining all aspects

of the quantum theory.

3. Decoherence: The measurement scheme presented by von Neumann[1] (see

§1.1.2) is highly criticized because of its over simplistic model. von Neumann

did not took role of environment-apparatus interaction into consideration. The

environment can be consider as a collection of all particles or systems present in

a sphere of radius cT centered at the apparatus location, where c is speed of light

and T is the time interval during which measurement process takes place. These

particles can causally affect the apparatus-system interaction. This interaction

is understood as decoherence process. The decoherence process and its role

in localization of state vector is analyzed in [14], [15] and [16]. Its is explicitly

shown that due to environment-apparatus interaction, the statistical operator of

combined system becomes diagonal representing the statistical mixture. But a

statistical operator can be constructed in such a way that the individual particle

is not localized but the statistical operator is diagonal. It is due to ambiguity

of basis for statistical operator.

4. Dynamical Reduction Models: In the dynamical reduction approach, standard

quantum mechanics is considered to be approximation of more general theory.

It is assumed that an unified time evolution equation reproduces all classical and

quantum mechanical phenomena in same formalism. The models consider role

of mass in reduction of wave packet. First attempt to construct such a model

was made by P. Pearle (1976) [17]. The most consistent model was proposed

by G.C. Ghirardi, A. Rimini and T. Weber (known as GRW model) in 1986

[8] and later modified version (continuous spontaneous localization model) was

proposed in [9] and [10]. We will discourse formalism and consequences of the

both through out the thesis.
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Chapter 2

Spontaneous Collapse Model

First consistent collapse model was presented by Ghirardi, Rimini and Weber[8]. The

model is also known as ‘Quantum Mechanics with Spontaneous Localization’. Accord-

ing to the model, spontaneous discrete jumps cause the localization of wavepacket.

2.1 Assumptions

The model is based on following assumptions:

1. Each particle of many-particle system experiences a sudden jump to position

basis with a mean rate λ. In the time interval between two successive spon-

taneous localization processes, the system evolves according to the Schrödinger

time evolution equation (1.2).

|ψ〉 → |ψix〉
‖|ψix〉‖

(2.1)

|ψix〉 = Lix|ψ〉

where |ψ〉 is state vector in n-particle Hilbert space H n and |ψix〉 is state vector

of system in same Hilbert space after localization of particle i around point x.

2. The probability density for localization to be occurred at point x is

Pi(x) = ‖|ψi(x)〉‖2 (2.2)
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3. The localization operator Lix is given by

Lix =
(α
π

)3/4
e−(α/2)(qi−x)

2

(2.3)

where α is a new parameter which sets the width of localization and qi is the

position operator for particle i.

2.2 Formalism and Consequences

Let us assume a single particle system experiences a sudden jump from state |ψ〉 to

state |ψx〉 = Lix|ψ〉 i.e. localization happens around point x with probability P (x).

The process transforms a pure ensemble into mixed ensemble. Transformation of

statistical operator can be written as:

ρ→ ρT

|ψ〉〈ψ| →
∫
d3xP (x)

|ψx〉〈ψx|
‖|ψx‖2

=

∫
d3xLix|ψ〉〈ψ|Lix (2.4)

here we have used (2.2). Since, the localization probability distribution is Poissonian,

λdt is the probability for a jump to occur in dt time interval and (1 − λdt) is the

probability that state evolves according to Schrödinger equation (1.2). If an ensemble

contains total N identically prepared quantum systems in state |ψ〉 at time t, after

time (t+dt), the ensemble will be divided into two parts - one contains the (1−λdt)N
systems which have evolved according to standard quantum mechanical evolution (1.6)

and another contains (λdt)N systems which have experienced spontaneous localization

processes(2.4). Statistical operator after time t+ dt can be written using (1.5).

ρ(t+ dt) = (1− λdt)ρ′(t+ dt) + λdtρT (2.5)

according to (1.6)

ρ′(t+ dt) = ρ(t)− ι

~
[
H, ρ(t)

]
dt

and ρT given by (2.4). Now,

ρ(t+ dt) = (1− λdt)
(
ρ(t)− ι

~
[
H, ρ(t)

]
dt
)

+ λdtρT

⇒ d

dt
ρ(t) = − ι

~
[
H, ρ(t)

]
− λ (ρ(t)− ρT (t)) (2.6)
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This is the master master equation of GRW model. Using (2.3) and (2.4) one can

write expression for 〈x′|ρT |x′′〉 as:

〈x′|ρT |x′′〉 =
(α
π

)3/2 ∫
d3x〈x′|e−(α/2)(q−x)2|ψ〉〈ψ|e−(α/2)(q−x)2 |x′′〉

=〈x′|ρ|x′′〉
(α
π

)3/2 ∫
d3xe−(α/2){(x

′−x)2+(x′′−x)2}

=〈x′|ρ|x′′〉e−(α/4){(x′−x′′)2}

(2.7)

Feeding (2.7) into (2.6) we get

d

dt
〈x′|ρ(t)|x′′〉 = − ι

~
〈x′|
[
H, ρ(t)

]
|x′′〉 − λ

(
1− e−(α/4){(x′−x′′)2}

)
〈x′|ρ(t)|x′′〉 (2.8)

d

dt
〈x′|ρ(t)|x′′〉 =

d

dt
〈x′|ρ(t)|x′′〉

∣∣∣∣
unitary

+
d

dt
〈x′|ρ(t)|x′′〉

∣∣∣∣
spont.collapse

Here
d

dt
〈x′|ρ(t)|x′′〉

∣∣∣∣
spont.collapse

= −λ
(

1− e−(α/4){(x′−x′′)2}
)
〈x′|ρ(t)|x′′〉 (2.9)

For analytic study of dynamics of spontaneous collapse processes, unitary evolution in

(2.8) can be dropped. The rate of change in statistical operator due to collapse is given

by (2.9). It is clear from above results that diagonal elements of statistical operator

remains unaffected and only off-diagonal elements reduces. Since the evolution of

density matrix elements due to (1.5) is unitary and norm-conserving, we can integrate

(2.9) to get ‖〈x′|ρ(t)|x′′〉‖.

‖〈x′|ρ(t)|x′′〉‖ = ‖〈x′|ρ0|x′′〉‖ exp
{
−λ
(

1− e−(α/4){(x′−x′′)2}
)
t
}

(2.10)

where α is taken such that particle is sharply localized around point x. α ≈ 10−12m−2

is the value suggested in [8]. For (x′−x′′)� 1√
α
∼ 10−6, e−(α/4){(x

′−x′′)2} � 1. In this

case (2.10) can be rewritten as:

‖〈x′|ρ(t)|x′′〉‖ = ‖〈x′|ρ0|x′′〉‖ exp{−λt} (2.11)

It is clear that for (x′ − x′′) � 1√
α

off-diagonal elements of density matrix reduce

exponentially where diagonal elements remain constant.
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Chapter 3

Continuous Spontaneous

Localization Model

3.1 Formalism

Let’s consider a state vector |ψ〉 in Hilbert space satisfying the Itô stochastic differ-

ential equation [11]:

d|ψ〉 = [C dt+ A · dB]|ψ〉

d〈ψ| = 〈ψ|[C† dt+ A† · dB]
(3.1)

where C is an operator, A ≡ {Ai} is a set of operators and B ≡ {Bi} is a set of real

Markov processes i.e.

dBi = 0 (3.2)

dBi dBj = δijγdt (3.3)

γ is a constant representing the strength of noise field (appa. B) and the dot product

in (3.1) has usual meaning:

A · dB =
∑
i

Ai dBi (3.4)

To see whether (3.1) preserves norm, we can calculate infinitesimal change in norm-

square of |ψ〉 in time interval dt.

d‖|ψt〉‖2 = ‖|ψt+dt〉‖2 − ‖|ψt〉‖2 (3.5)
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If the change in state vector in dt time is d|ψ〉 = |dψ〉 and initial vector (at time t) is

|ψt〉, state vector at time t+ dt is:

|ψt+dt〉 = |ψt〉+ |dψ〉 (3.6)

Similarly,

〈ψt+dt| = 〈ψt|+ 〈dψ| (3.7)

‖|ψt+dt〉‖2 = 〈ψt+dt|ψt+dt〉

= 〈ψt|ψt〉+ 〈dψ|ψt〉+ 〈ψt|dψ〉+ 〈dψ|dψ〉
(3.8)

Using (3.8), (3.1), (3.2), (3.3) and (3.5) we get:

d‖|ψt〉‖2 = 〈ψt|(A + A†)|ψ〉 · dB + 〈ψt|(C + C†)|ψt〉dt+ 〈ψt|A† ·A|ψt〉γdt (3.9)

⇒ d‖|ψt〉‖2 = 〈ψt|(A + A†)|ψ〉 · dB+〈ψt|(C + C†)|ψt〉dt+〈ψt|A† ·A|ψt〉γdt (3.10)

Using property (3.2):

d‖|ψt〉‖2 = 〈ψt|(C + C†)|ψt〉dt+ 〈ψt|A† ·A|ψt〉γdt (3.11)

It is clear from (3.11) that for arbitrary operators A and C may not preserve norm of

the process. For norm preserving condition we take d‖|ψt〉‖2 = 0.

〈ψt|(C + C†)|ψt〉dt+ 〈ψt|A† ·A|ψt〉γdt = 0

⇒ C + C† = −γA† ·A (3.12)

And (3.9) reduces to

d‖|ψt〉‖2 = 〈ψt|(A + A†)|ψ〉 · dB (3.13)

Every operator can be written as sum of a Hermitian and an anti-Hermitian part.

The anti-Hermitian part which can play role for Hamiltonian generated time evolu-

tion is considered to be −(ι/~) H = (C−C†)/2 and Hermitian pert is (C + C†)/2 =

−(γ/2)A† ·A. Now, (3.1) can be rewritten as:

d|ψ〉 =
[
− ι

~
H dt− γ

2
A† ·A + A · dB

]
|ψ〉 (3.14)
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After re-normalization one can easily get:

d|ψt〉 =
[
− ι

~
H dt− γ

2
(A−R)2dt+

√
γ(A−R) · dW

]
|ψt〉 (3.15)

Here we have used A† = A, R = 〈ψt|A|ψt〉 and dB =
√
γdW. (3.15) is the universal

dynamical time evolution equation of the continuous spontaneous localization (CSL)

model. The equation is nonlinear, stochastic and norm-conserving. Operator A is the

observable which is being observed. In general every measurement is made on position

basis from which the eigenvalues of other correlated observables like spin, momentum,

energy etc. are measured. Thus, taking this phenomena into the consideration, in

CSL model localization is always assumed to be taking place in position basis. In that

case A is position operator. To explain the classical behavior of macroscopic systems,

the model must consider role of mass in dynamical time evolution and it must also

explain all quantum mechanical predictions successfully. To fulfill all requirements,

there should be proper bound on the parameter γ. In CSL model γ is assumed to be

mass dependent in following way:

γ =
m

m0

γ0 (3.16)

where m0 is a reference mass taken to be mass of proton and γ0 is a constant of model.

3.2 Analysis of the Free Particle Dynamics

In this section we review analysis of the free particle dynamics using CSL model

presented in [12]. Considering universal position localization (3.15) is re-written as:

d|ψt〉 =
[
− ι

~
H dt− γ

2
(Q−R)2dt+

√
γ(Q−R) · dW

]
|ψt〉 (3.17)

where Q is position operator of a free particle of mass m. A general solution of the

above equation for free particle is taken to be Gaussian:

ψt(x) = N exp{−at(x− x̄t)2 + ιk̄tx+ φt + ιθt} (3.18)

where N is a normalization factor, at is supposed to be complex function of time,

while s̄t, k̄t, φt and θt are considered to be real. θt is a global phase and not relevant

here. Feeding (3.18) into (3.17) one finds the following stochastic equations for above

13



mentioned variables:

dat =
[
γ − 2ι~

m
(at)

2
]
dt (3.19)

dx̄t =
~
m
k̄tdt+

√
γ

2aRt
dWt (3.20)

dk̄t = −√γ a
I
t

aRt
dWt (3.21)

dφt =
[
γx̄2t +

~
m
aIt

]
dt+

√
γx̄tdWt (3.22)

Equation (3.19) is easily solvable. It is solved using residue formula of complex inte-

gral: ∫
dat[

γ − 2ι~
m

(at)2
] =

∫
dt

at = aRt + ιaIt =
1− ι

2

√
mγ

~
tanh

[
t(1 + ι)

√
~γ
m

+ k
]

(3.23)

where aRt and ιaIt represent real and imaginary parts of at and

k = tanh−1
[a0
c

]
Applying normalization condition to (3.18) we get:

N2

∫
ψ∗tψt = 1

N = e−φt
(2aRt
π

) 1
4

(3.24)

To study the time dependence of spread in position and momentum we calculate

variances:

σq(t) =
√
〈q2〉 − 〈q〉2 =

1

2

√
1

aRt
(3.25)

σp(t) =
√
〈p2〉 − 〈p〉2 = ~

√
(aRt )2 + (aIt )

2

aRt
(3.26)

Using expression for at in (3.23), one can get explicit time dependence of spread in

position and momentum as

σq(t) =

√
~
mω

cosh (ωt+ δ1) + cos(ωt+ δ2)

sinh (ωt+ δ1) + sin(ωt+ δ2)
(3.27)
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σp(t) =

√
~mω

2

cosh (ωt+ δ1)− cos(ωt+ δ2)

sinh (ωt+ δ1) + sin(ωt+ δ2)
(3.28)

Where δ1 and δ2 are function of initial conditions.

ω = 2

√
~γ0
m0

' 10−5s−1, γ0 ' 10−2m−2s−1

Spread in position and momentum asymptotically reduces to stationary values σq(∞)

and σp(∞) as:

σq(∞) =

√
~
mω
' 10−15√

m
m (3.29)

σp(∞) =

√
~mω

2
' 10−19

√
m

kg.m

s
(3.30)

⇒ σq(∞)σp(∞) =
~√
2

(3.31)

The Eq. (3.31) shows that spread in position and momentum takes the minimum

values provided by Heisenberg uncertainty principle. Values of σq(∞) and σp(∞) are

mass dependent. For macroscopic mass m ≈ 1gm, the collapse strength γ is ≈ 1022s−1

and σq(∞) ≈ 10−14m and σp(∞) ≈ 10−20kg.m/s which are very small quantities

showing position and momentum of precisely localized particle i.e. classical behav-

ior of macroscopic bodies. For a proton σq(∞) ≈ 1cm and σp(∞) ≈ 10−28kg.m/s

corresponding to ≈ 10−1m/s uncertainty in velocity. These quantities are as per the

predictions of standard quantum mechanics. So the CSL model successfully unifies

the dynamics of macroscopic and microscopic dynamics.

3.3 Reduction of Statistical Operator in CSL model

Starting from (3.15) we can write:

|ψt+dt〉 = |ψt〉+
[
− ι

~
H dt− γ

2
(A−R)2dt+

√
γ(A−R) · dW

]
|ψt〉

Using above expression for |ψt+dt〉 one can derive an expression for time derivative of

ρt = |ψt〉〈ψt+dt| as:

d

dt
ρt = − ι

~
[H, ρt] + γAρtA−

γ

2

{
A2, ρt

}
(3.32)
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where {., .} represents the anti-commutator. This is the master equation for CSL

model. As we have used in §3.2, A ≡ Q the position operator, we can calculate

〈x′|ρt|x′′〉:

d

dt
〈x′|ρt|x′′〉 = − ι

~
〈x′|[H, ρt]|x′′〉+ γ〈x′|AρtA|x′′〉 −

γ

2
〈x′|
{
A2, ρt

}
|x′′〉 (3.33)

To study the effect of only localization process we can drop the term of evolution

due to Schrödinger time evolution. Using the anti-commutator expression {A,B} =

A B + B A:
d

dt
〈x′|ρt|x′′〉 = −γ

2
(x′ − x′′)2〈x′|ρt|x′′〉 (3.34)

⇒ 〈x′|ρt|x′′〉 = 〈x′|ρ0|x′′〉e−{
γ
2
(x′−x′′)2}t (3.35)

Analyzing Eq. (3.35) one can reach at following conclusions:

• The mode of off-diagonal terms of density matrix decays exponentially with

critical time i.e. time when 〈x′|ρtc |x′′〉 = 〈x′|ρ0|x′′〉
e

, given by:

tc =
2

γ(x′ − x′′)2

• The critical time depends on collapse strength γ and x′ − x′′ as well. It is clear

that farther the element from diagonal in density matrix faster it reduces and

similarly heavier the system faster it localizes. For a proton γ = γ0 ≈ 10−2s−1,

taking x′ − x′′ = 1m we get critical time 200 second. Similarly for 109amu i.e.

mass of one billion nucleons (order of mass of nano-particles) we get critical time

2 nanosecond. This explains the transition from quantum to classical world as

mass increases.

• A pure ensemble transforms into statistical mixture with time.

• For x′ = x′′ i.e. the diagonal elements, critical time is infinite. So the diagonal

elements remain unchanged preserving Born probability rule.

In a measurement scheme as presented in §1.1.2, a microscopic system interacts with

a macroscopic apparatus and forms a combined system. The state of macroscopic

apparatus is always observed to be well localized in space. This is analyzed using

dynamics of center of mass of the combined system.
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3.4 Many-particle Systems

We investigate the treatment for spontaneous localization effects on many-particle

systems in [9], [10] and [12] and reviewed in [13].

3.4.1 Center of Mass with Decoupled Dynamics

Let’s consider a many particle system with N distinguishable particles. The ith par-

ticle has mass mi and corresponding collapse strength γi. The equation (3.17) is

generalized for such a system as following:

d|ψt({x})〉 =
[
− ι

~
HT dt−

1

2

N∑
i=1

γi(Qi −Ri)
2dt+

N∑
i=1

√
γi(Qi −Ri) · dWi

]
|ψt({x})〉

(3.36)

where HT is Hamiltonian for composite system, Qi and Ri are position operator and

expectation value of position operator for particle i, {Wi} is set of N independent

Wiener processes and set {x} represents N spatial coordinates corresponding to N

particles. To simplify analysis one can switch to center of mass frame X and relative

coordinates {x̃i}:

X =
1

M

N∑
i=1

mixi

{x̃i} =x−X

M =
N∑
i=1

mi

(3.37)

where M is the mass associated to the center of mass. Under the assumption HT =

Hcm + Hrel, dynamics for the relative motion of all particle and that for the center of

mass decouples i.e. wave function for whole system can be written as tensor product of

center of mass-motion wave function and those of all relative motion wave functions.

ψ = ψcm(X)⊗ ψ̃1(x̃1)⊗ ψ̃2(x̃2)⊗ ......⊗ ψ̃N(x̃N)

ψrel = ψ̃1(x̃1)⊗ ψ̃2(x̃2)⊗ ......⊗ ψ̃N(x̃N)

Following claims and conclusions were made in [9], [10] and [12]:
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• ψcm(X) and ψrel({x}) satisfy the following equations:

dψrel({x̃}) =
[
− ι
~

Hrel dt−
1

2

N∑
i=1

γi(Q̃i−R̃i)
2dt+

N∑
i=1

√
γi(Q̃i−R̃i)·dWi

]
ψrel({x̃})

(3.38)

dψcm =
[
− ι

~
Hcm dt−

γcm
2

(Q−R)2dt+
√
γcm(Q−R) · dW

]
ψcm (3.39)

• γcm can be taken as collapse strength of a individual particle of massM =
∑

imi:

γcm =

∑
imi

m0

γ0 =
N∑
i=1

γi (3.40)

• Let us consider a many particle system consists of 2µg carbon (∼ 1017 atoms).

Collapse strength for center of mass is very large ∼ 1017 times that of individual

atom. Following analysis of §3.2 and §3.3 one can conclude -the rate of reduction

in position and momentum spread of center of mass is much faster than that of

an individual atom, since, the critical time for the center of mass localization is

∼ 10−17 times that for an individual atom.

3.4.2 Spread in Center of Mass

In this section we present a complete analysis of spread in center of mass coordinates

and its reduction rate affected by reductions in that of individual particle. Let us con-

sider a system of N distinguishable particles. Particle i has mass mi and coordinates

xi. In case the particles are not entangled, the wave function of composite system can

be written as

|ψ〉 =|ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉.....⊗ |ψN〉

ψ({xi}) =
N∏
i=1

ψ(xi)
(3.41)

Let us define an operator Q as:

Q =
N∑
i=1

αi qi (3.42)
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where qi is the position operator of particle i in N -particle Hilbert space.

qi ≡ I1⊗.... qi−1⊗ qi⊗ Ii+1 ....⊗ IN

and

αi =
mi∑N
i=1mi

If we consider |ψi〉 as eigen state of position operator for particle-i i.e. particle is well

localized in space, |ψ〉 becomes eigen state of operator Q with eigen value
∑N

i=1 αixi.

This is the center of mass coordinates for classical system i.e. all particles are well

localized. Therefore, operator Q can be interpreted as position operator of center of

mass. It is just another self-adjoint operator in N -particle Hilbert space representing

an physical observable and need not to be associated with a particle like virtual

system, as it was done in previous section §3.4.1. The expectation value of Q can be

calculated easily:

〈Q〉 =

∫ N∏
i=1

ψ∗({xi}) Qψ({xi})

Because the system consists non-interacting particles, the dynamics of motions of all

particles are decoupled from each others. Then

〈Q〉 =
N∑
i=1

αi〈qi〉 (3.43)

〈Q〉2 =
N∑
i=1

α2
i 〈qi〉2 + 2

N∑
i 6=j

αiαj〈qi〉〈qj〉 (3.44)

Similarly 〈Q2〉 can be calculated:

Q2 =
N∑
i=1

α2
i q2

i +
N∑
i 6=j

αiαj
{

qi, qj
}

(3.45)

〈Q2〉 =
N∑
i=1

α2
i 〈q2

i 〉+ 2
N∑
i 6=j

αiαj〈qi〉〈qj〉 (3.46)

From 3.44 and 3.46, variance in Q can be calculated:

σ2
Q = 〈Q2〉 − 〈Q〉2
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σ2
Q =

N∑
i=1

α2
i (〈q2

i 〉 − 〈qi〉2)

σ2
Q =

N∑
i=1

α2
iσ

2
qi

(3.47)

where σ2
qi

is the variance in position of particle-i. Now we consider an change in

variance of individual particle position ∆σ2
qi

in an infinitesimal time interval ∆t. If

variance in center of mass coordinate at time t is σ2
Q(t)

σ2
Q(t+ dt) =

N∑
i=1

α2
i (σ

2
qi

(t) + ∆σ2
qi

)

⇒ σ2
Q(t+ dt)− σ2

Q(t) =
N∑
i=1

α2
i∆σ

2
qi

⇒ ∂

∂t

(
σ2
Q

)
=

N∑
i=1

α2
i

∂

∂t

(
σ2
qi

)
(3.48)

To visualize (3.46) we simplify the dynamics taking all particle of same mass m. Now

αi = 1
N

, and (3.46) becomes:

⇒ ∂

∂t

(
σ2
Q

)
=

1

N2

N∑
i=1

∂

∂t

(
σ2
qi

)
(3.49)

For large N , reduction rate for center of mass is very small. This result contradicts

with claims made in [9], [10] and [12]. Possible explanation for this is that center of

mass was treated as a separate particle and an independent Wiener process and col-

lapse strength was considered without paying attention to appropriate justifications.

So the treatment provided in above references for many-particle systems fails. A dif-

ferent approach within the framework of continuous spontaneous localization model

is needed to treat macroscopic systems which are composed of many microscopic sys-

tems. We present such a scheme in next section.

3.5 Spontaneous Localization for Entangled State

As we have shown in §3.4.2 that approach taken in §3.4.1 not useful to explain micro

to macro transition. Here we propose a new approach to treat many particle systems.

We suggest that the entanglement among particles can play a role in rapid reduction.
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A simple spontaneous localization treatment has been presented for entangled pair

particles state. Let us consider states of two particles are spatially correlated as

following:

ψ(x1, x2) =
ψ1(x1)ψ2(x2)− ψ2(x1)ψ1(x2)√

2
(3.50)

where ψ1 and ψ1 are two different non-overlapping spatial wave-functions. x1 and

x2 are coordinates of particle-1 and 2. In discrete spontaneous localization process,

suppose, particle-1 experiences a jump to position x according to (2.1) and (2.3).

Now wave-function for particle-2 can be calculated tracing over the wave-function of

particle-1 in (3.48). Since the particle-1 is well localized in space at a random position

x, one can see, particle-2 takes one of the wave-functions ψ1 and ψ1 with probability

half. Accordingly, in an ensemble of N identically prepared systems (consist of total

2N particles) of considered entangled pair particles, after the realization of localization

process λdtN particles will be in ρT ensemble state and λdtN particles will be in ρ′T
ensemble state corresponding to every particle-2 of all entangled pairs. Rest of the

ensemble (1 − 2λdt)N are evolved with standard quantum mechanics. Statistical

operator at time (t+ dt) can be written as:

ρ(t+ dt) = (1− 2λdt)ρ′(t+ dt) + λdtρT + λdtρ′T (3.51)

Making use of (1.6):

ρ(t+ dt) = (1− 2λdt)
(
ρ(t)− ι

~
[
H, ρ(t)

]
dt
)

+ λdtρT + λdtρ′T (3.52)

⇒ d

dt
ρ(t) = − ι

~
[
H, ρ(t)

]
− 2λ

(
ρ(t)− ρT (t) + ρT (t)′

2

)
(3.53)

⇒ d

dt
〈x′|ρ(t)|x′′〉 = − ι

~
〈x′|
[
H, ρ(t)

]
|x′′〉 − 2λ〈x′|

(
ρ(t)− ρT (t) + ρT (t)′

2

)
|x′′〉

(3.54)

where ρ(t) is the reduced density matrix for particle-1 and ρT (t)′ is given by:

ρT (t)′ =
1

2
[|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|]

〈x′|ρT (t)′|x′′〉 =
1

2
〈x′|[|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|]x′′〉

=
1

2
[ψ1(x

′)ψ∗1(x′′) + ψ2(x
′)ψ∗2(x′′)]

(3.55)
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From (2.7):

〈x′|ρT (t)|x′′〉 = 〈x′|ρ|x′′〉e−(α/4){(x′−x′′)2}

Now,

〈x′|
(
ρT (t) + ρT (t)′

2

)
|x′′〉 =

1

2
〈x′|ρ|x′′〉e−(α/4){(x′−x′′)2}+

1

4
[ψ1(x

′)ψ∗1(x′′)+ψ2(x
′)ψ∗2(x′′)]

(3.56)

Let us now consider ψ1 and ψ2 two Gaussian wave packets centers at x0 and −x0
respectively with equal variance σ2 ≈ 10−12m2 i.e. wavepacket is sharply localized in

space around x0 or −x0 respectively. It can be easily concluded using (3.50) −smaller

the variances larger the correlation between particles. For example we consider σ → 0,

the state corresponding to (3.50) becomes:

|ψ〉 =
|x0〉| − x0〉 − | − x0〉|x0〉√

2
(3.57)

It is clear from arguments provided above that for (x′ − x′′)� 10−6m RHS of (3.56)

is negligible. Equation (3.54) now takes the form:

d

dt
〈x′|ρ(t)|x′′〉 = − ι

~
〈x′|
[
H, ρ(t)

]
|x′′〉+ 2λ〈x′|ρ(t)|x′′〉 (3.58)

To study the effects of spontaneous collapse we drop the evolution term governed by

Hamiltonian in (3.58).

‖〈x′|ρ(t)|x′′〉‖ = ‖〈x′|ρ0|x′′〉‖ exp{−2λt} (3.59)

From the above result we can see that the collapse strength for spontaneous reduction

of a maximally entangled particle system is approximately two times that of a non-

entangled one. If the particles are not maximally entangled i.e entangled state differs

from that provided in (3.57), 〈x′|ρT (t)′|x′′〉 becomes significantly large and reduces the

collapse strength in (3.54). Following the above analysis we make following conclusion

and claims:

• Considering center of mass as an independent particle of large collapse strength,

to explain the localization process of many-particle systems, is not a legitimate

scheme.

• Reduction of wavepacket of entangled systems is more rapid than that of non

entangled system. Therefore entanglement can play a vital role in explaining
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the reduction mechanism in many-particle interacting systems. The proposed

treatment, therefore, can be able to explain the quantum-to-classical transition

phenomena.

• Role of localization process in transforming pure state into a statistical mixture

in case of entangled systems, it should be detectable in decoherence processes

for such ensembles.

23



24



Chapter 4

Summary

• A review of GRW and CSL model along with the analysis for a free particle

reduction dynamics is presented.

• It was proved that treatment for many non-interacting particle system presented

by G. C. Ghirardi, P. Pearle, Weber (1990) and A. Bassi (2005) is not legitimate

(§3.4).

• The role of interaction in wavepacket reduction was investigated and a new

treatment for localization process of interacting particle was formulated. It is

shown that for maximally correlated particles the reduction rate is double of

that for non-entangled one (§3.5).
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