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Abstract

Interferometry has been used in radio astronomy for quite some time now, be-

coming an essential technique that makes high resolution imaging possible with

radio telescopes. The existent mathematical framework for this relies heavily

on the assumption of a small field of view and co-planarity of the array, and,

a quasi-monochromatic regime in the form of the van Cittert Zernike theorem.

Technological advances, however, have now made it possible to study large por-

tions of the sky with a broader bandwidth, giving rise to the need to revisit the

mathematics. There is a related complexity introduced by SKA, LOFAR like non-

coplanar arrays, the so called w-term. Some of these issues can be tackled by using

non-cartesian basis functions, for example, spherical harmonics. The aim of this

thesis is to study generalizations of the existing methodologies to reduce or even

remove the restrictive assumptions, taking the examples of the GMRT, OWFA,

MWA telescopes.
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Chapter 1

Introduction

A fleeting glance over the night sky could be sufficient to tell the casual observer

that the universe is filled with bright objects. An admirer of the night sky would

be able to spot out differences in brightness and probably sizes of these objects.

The astronomer, however, will be able to precisely elaborate on the differences

among them, and point out the usual classification of stars, planets, satellites,

galaxies, clusters and so on. The astronomer’s eyes are aided by the telescope,

that has a greater resolving power than the naked eye.

Over about a hundred years, the telescopes have become more complex. From

simply supported-on-a-stand-reflectors to large dishes maneuvered by computers

to space observatories and unmanned missions.

Figure 1.1: Left: The Giant Meterwave Radio Telescope in India[4], Right: The

Green Bank Telescope in West Virginia, USA. [11]

The first advancement was the replacement of the eye by a photographic plate

as the detector. These plates stored the images of the sources for later review and
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comparison, reducing the dependency on the human eye and memory.

When the optical regime of the electromagnetic spectrum became limited, other

frequencies started becoming useful. Last few decades have also seen the emer-

gence of neutrino based astronomy, and very recently gravitational waves have

also proved to be very useful probes of the universe. Since our eyes could only

see the visible light, such other possibilities had remained unexplored. It was

only through telescopes that we were able to charter the unknown regions, and

eventually found a wealth of information hidden.

A huge part of the electromagnetic spectrum is labeled as the radio regime,

beginning from micrometer to few kilometer long wavelengths. Fortunately, the

atmosphere is transparent in most of this region, which makes observations of

radio sources ideal.

The telescopes may be simply pointed at the source of choice and analyzed

for its emission. Figure 1.1 shows typical radio single dishes But in order to get

a detailed image of the region, it might be scanned multiple times and different

parts pieced together.

Single dish telescopes, due to their finite size, are limited in their resolving

power. As we will see, this restriction is more pronounced in the radio regime.

Astronomers have come up with the technique of interferometry wherein not one

but a number of antennas are used to synthesize one image. These telescopes

are to be arranged in patterns that optimize the resolving power against the time

required for image synthesis. Figure 1.2 shows some examples.

Figure 1.2: Left: The Very Large Array in New Mexico [12], Right: The Giant

Meterwave Radio Telescope in India [4]
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Naively, one would expect the rotation and revolution of the Earth to be a

bane for such measurements since the sources of interest will never be fixed at one

point for numerous observations! But astronomers have worked their way out and

have indeed usefully employed this phenomenon.

Astronomy also has an elaborate set of coordinate systems in place. As we

will see, constellations, orbits of the Sun and the Earth help define an imaginary

celestial sphere. Latitudes and Longitudes, similar to that for the Earth, are used

to refer to the source of interest uniquely.

The antennas on the Earth coupled with the electronic backend record the

incoming electromagnetic waves in the form of voltage changes called visibilities.

Converting them back to the original brightness distribution on the sky requires

processing and as will be discussed, it is often limited by the antenna’s own re-

sponse function.

While the study of small regions of sky and in the limit where objects far away

can be approximated to lie in a plane instead of three dimensional spaces, we are

easily able to image the sky. We will see that, as our regions of interest grow

wider, this process becomes tedious and various approximations are then applied.

In this work, we begin by understanding what do our antennas actually measure

when pointed towards the source of interest and how do we represent these ‘signals’

mathematically. We then move on to describing the technique of interferometry

introduced above, and see how movement of the Earth is applied. We study the

current method of imaging by relating the actual brightness of the sources with

the visibilities. We move on to imaging in wider regions of the sky and try to

obtain relations simpler than the usual ones used.
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Chapter 2

Signals and Noise

A record of electric field E(t) received at any point on the Earth from a source,

in our case a radio source, is called a ‘signal’. This emanates from a large object

that has many independently radiating parts that differ in frequencies, distance

from the observation point etc. This implies it can be called random in character.

As observed, the statistical properties do uphold this assumption, as all of them

are consistent with a model where different frequencies have completely unrelated

phases and each phase varies randomly from 0 to 2π. These ‘signals’ are thus

‘time stationary gaussian noise’, where noise refers to its random character. The

systematic variation of the strength or amplitude squared of different frequencies

ω is called the power spectrum S(ω). ‘Noise’ is the unwanted disturbance which

is added to the signal being received unavoidably. Ofcourse, just like the ‘signals’,

it is also the ‘time stationary gaussian’ type.

2.1 Signals

Consider a plane wavefront from a distant point source falling on Earth. If the

energy per unit frequency passing through an area of one square meter held per-

pendicular to the line of sight to the source is 10−26W then the source is said to

have brightness of one Jansky. Thus one Jansky is 10−26 watts per unit area per

unit frequency. For an extended source, one also has to add another qualification

of per unit solid angle since there is no unique direction to hold the square meter.

Often, radio astronomers employ temperature units for sky brightness.
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Consider a black body at temperature T, its radiation is described by the Planck

spectrum

B(ν) =
2hν3

c2

1

ehν/kT − 1
W/m2 Hz sr (2.1)

For a typical radio frequency of, say, 1000 MHz, hν/k = 0.048, hence in the

Rayleigh - Jeans limit of T >> hν/kT or ν << kT/h,

B(ν) ≈ 2kT

λ2
(2.2)

is valid across most of the radio spectrum. Brightness temperature of an extended

source is defined as

TB =
λ2

2k
B(ν) (2.3)

It is important to note that there is no relation between the physical and the

brightness temperatures of the source.

Consider a resistor kept in thermal bath at temperature T, where the elec-

tron’s random thermal motion causes current to flow in the resistor. Eventhough

the average current is zero, the power is not since it depends on the square of the

current. In the radio regime, the power per unit frequency is well approximated

by the Nyquist Formula as

P = kT (2.4)

where k is the Boltzmann constant. Setting an analogy, if power P per unit fre-

quency is available at an antenna’s terminals the antenna is defined to have an

antenna temperature of

TA =
P

k
(2.5)
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Again, this antenna temperature is different from the physical temperature of the

antenna. Similarly, the total power available at the terminals of a radio telescope

is defined as the system temperature

Tsys =
Total power referred to receiver inputs

k
(2.6)

2.2 Noise

When looking at a region of the sky without any sources, system temperature

gives a measure of total random noise in the system, hence it is desirable to make

it as low as possible. Noise from various subsystems is uncorrelated and adds up

linearly. Thus system temperature can be written as

Tsys = Tsky + Tspill + Tloss + Trec (2.7)

Tsky is the contribution from the background sky brightness for example the cos-

mic background radiation which always contributes 3K.

Often the feed antenna also picks up added noise in the form of stray radiation

from the ground, contributing to the Tspill.

Lossy elements in the path of the feed contribute to Tloss, since due to Kirchoff’s

laws good absorbers are also good emitters. Also the ratio of emission to absorp-

tion in thermodynamic equilibrium is given by Planck spectrum at the absorber’s

physical temperature.Thus. almost all of the elements between the feed and the

amplifier are cooled.

The receiver adds noise to the system contributed in the Trec.
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Chapter 3

Mathematical Background

We had asserted previously that the signals and noise were of the ‘time stationary

gaussian’ variety. Time stationary means that the signal in one interval is sta-

tistically indistinguishable from that in another equal duration but time shifted

interval. Just like all probabilistic statements, its validity can only be made more

probable by repeated experimentation but not precisely checked, for example, by

looking at the probability distribution of the signal amplitude. Take a stretch

of the signal, from 0 to time T, say, and make a histogram of N equally spaced

values E(ti) where i goes from 1 to N. The property of time stationarity then

says that this histogram will turn out to be statistically the same to that when

one had chosen an interval t to t + T for any t. The calculable errors decrease

with increasing N. Secondly, as N tends to infinity, random phase superposition

of many frequencies makes this histogram tend to a gaussian with zero mean.

3.1 Weiner Khinchin Theorem

From the Fourier theory, we can write

E(t) ≡
∑

an cosωnt+ bn sinωnt =
∑

rn cos(ωnt+ φn)

where

ωn =
2π

T
; rn =

√
anx2 + b2

n and tanφn =
−bn
an

In the limit of T going to large values, the frequencies form a closely spaced set.

The autocorrelation
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C(τ) = 〈E(t)E(t+ τ)〉

= 〈
∑
n

rn cos(ωnt+ φn)
∑
m

rm cos(ωm(t+ τ) + φm)〉

On the right hand side, the phases φk vary independently from 0 to 2π, which

implies that only terms with m = n survive giving

C(τ) =
∑ 1

2
r2
n cosωnτ

This autocorrelation is time stationary, since it is independent of time t. For zero

delay,

C(0) = 〈(t)2〉 =
∑ 1

2
r2
n

which is the variance of the signal. The number of frequencies in a given bandwidth

∆ω goes as ∆ω
2π/T

. In the limit T →∞, this number blows up.

For C(τ) to have a well defined behavior in this limit, then r2
n will have to scale

inversely with T so that the weight of the terms being added decreases and the

sum reaches a limiting value . Since the number of rn’s even in a small interval

∆ω blows up, their combined effect becomes more important than their individual

one which motivates the following definition for T →∞

∑
ω<ωn<ω+∆ω

r2
n

2
= 2S(ω)∆ω

S(ω) is called the power spectrum since, 2S(ω)∆ω is the contribution to the vari-

ance 〈E2(t)〉 in the interval ω to ω + ∆ω. Thus

C(τ) =

∫ ∞
0

2S(ω) cosωτdω

Define S(−ω) = S(ω) and we obtain
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C(τ) =

∫ +∞

−∞
S(ω)e−iωτdω

This equation represents the Weiner Khinchin Theorem which states that the au-

tocorrelation function is the Fourier transform of the power spectrum. In terms

of frequency

C(τ) =

∫ +∞

−∞
P (ν)e−2πiντdν

Since we did not make use of the fact that the φ’s are independent, this theorem

is valid for all Gaussian as well as Non Gaussian processes.

We can, in principle, perform two different kinds of experiments to measure

C(τ) and S(ω). Either record samples of voltage in the time domain and calculate

averages of lagged products to obtain C or pass the signal through a filter in the

frequency domain admitting a narrow band of frequencies around ω and measure

the average power that gets through.

As an example, consider a flat band power spectrum between νo − B/2 and

νo +B/2. Its autocorrelation function, for P (ν) = K say,

C(τ) = 2K

∫ ∞
0

cos(2πντ)dν

= 2KB cos(2πνoτ)

(
sin(πBτ)

πBτ

)

The factor 2KB is the value at τ = 0, which implies it is the total power, while

the cos factor is an oscillation at the center frequency . If B � νo, then the sinc

factor is close to one, for values of τ extending over say 1/4B, which is still many

cycles of the center frequency. This then approaches the limiting case of a single

sinusoidal wave whose autocorrelation is sinusoidal.

nyquist sampling interval Another example is the case where the band

extends from 0 to B, when the center frequency is νo = B/2 which is the so called
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‘Baseband’. The autocorrelation is

C(τ) = 2KB

(
sin 2πτB

2πτB

)

The correlation between a pair of voltages measured at an interval of 1/2B or any

multiple is zero. Thus, clearly, a set of samples measured at this interval would

be statistically independent since correlations between any pair will vanish. This

is the Nyquist Sampling Interval. This is the minimum number of measurements

which would have to be made to reproduce the signal.

3.2 Shannon Sampling Theorem

It is a general property of a band limited signal i.e. the signal with zero power

outside a bandwidth B, that a set of samples separated by 1/2B is sufficient to

reconstruct the signal.

Count the number of Fourier coefficients: we have ‘a’ and ‘b’ or ‘r’ and ‘φ’ de-

scribing each ωn. Thus the number of parameters defining the signal is twice the

number of frequencies. Hence, the number of real values needed to specify our

signal for a time T is

2
∆ω

2π/T
= 2

(
∆ω

2π

)
T = 2BT

which gives the rate = 2B at which real numbers need to be measured to keep

pace with signal called the Nyquist Sampling Interval. The Shannon criterion is

two samples per cycle of the maximum frequency difference present.

sketch proof: We begin with a band limited signal Er(n/2B) being sampled

at the Nyquist rate. We employ Whitaker’s interpolation formula to construct a

continuous signal Ec(t) from these samples as

Ec(t) =
∑
n

Er(n/2B)sinc(2πB(t− n

2B
))
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where each sinc function is so chosen, so that they give unity at one sample point

and zero at others which implies that Ec is guaranteed to agree with Er(t) samples.

It is also band limited and has the same Fourier coefficients . In the end therefore,

we have been able to reconstruct successfully a band limited function from its

Nyquist samples.

3.3 Cross Correlations

So far, our signals, after entering the antenna, have been a function of time only.

But electric fields, before entering the antenna, are a function of both space and

time. In this view, we can obtain a delayed version of the same by moving along

the direction to the source, the longitudinal direction. Thus, the frequency content

is obtained by Fourier transforming a longitudinal spatial correlation. The spatial

correlations transverse to the direction of propagation carry information on the

angular power spectrum of the signal i.e. energy as a function of direction in

sky. This is actually a generalisation of the Weiner Khinchin theorem to spatial

correlations of a complex electric field which is a sum of waves propagating in

many different directions, formally the van Cittert Zernike theorem.

As one can see, we are now multiplying and averaging signals coming from

different antennas and is thus appropriately called ‘cross correlation function’.

Now, if the signal at the observer’s plane is E(r), then the spatial correlation

function is defined as

V (x) = 〈E(r)E∗(r + x)〉 (3.1)

The function V is referred to as the visibility function or visibility. Strictly speak-

ing, the angular brackets imply ensemble averaging. For typical radio receivers,

bandwidths are of the order of a few MHz, i.e. typically ∆ω
ω
∼ 0.1 the coher-

ence time then is around microseconds. This means that in a few seconds time,

one get several million independent samples to average on. Thus, practically, one

is averaging over time and assuming that both ensemble and time averaging are

equivalent.
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Chapter 4

Aperture Synthesis

The Rayleigh criterion states that the angular resolution of a telescope or a mi-

croscope is ultimately diffraction limited and is given as

θ ∼ λ

D
(4.1)

where D is the size of the aperture and λ is the wavelength at which the obser-

vations are made. In the radio regime, the wavelengths are as long as a metre,

so even though the aperture sizes are large, the resolution remains limited. For

comparison, human eye has a diffraction limit of 20′′, optical telescopes typically

have limits of 0.1′′, but even the largest radio telescopes (∼ 100m) have angular

resolution of only ∼ 30′ at one metre wavelength!

The need to achieve higher resolutions, without having to increase the antenna

sizes led to the formulation of the technique of Aperture Synthesis based on inter-

ferometry. This involves use of ‘antenna arrays’, which along with increasing the

effective resolution also increase the total collecting area. But on the downside,

this collection of several distinct antenna elements arranged in a particular config-

uration, usually produces an unfilled aperture, which means that we do not have

observations at some points! These array elements could range from fixed dipoles

to steerable parabolic reflector antennas. The output from different elements can

be combined in different ways to obtain different quantities. The outputs if com-

bined with different phase shifts to yield a single total power gives a ‘phased array’,

while if multiplied in pairs and processed to obtain a sky brightness distribution
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Figure 4.1: The use of rotation of Earth for synthesis mapping. Antennas A and

B separated on a East West baseline. [1]

gives a ‘correlator array’ or simply an ‘interferometer’.

As we will see, the spatial correlation of electric field observed by different

telescopes is related to the source brightness distribution on the sky, and is typi-

cally a Fourier Transform relationship. Correlation of voltages from any two radio

antennas then allows the measurement of a single Fourier component of the source

brightness distribution. Given sufficient number of measurements, the brightness

distribution can be obtained by Fourier inversion.

Since the radio sky does not usually vary, it is not necessary to measure all the

Fourier components simultaneously. Thus one can imagine measuring all the re-

quired Fourier components using just two antennas, by moving one antenna from

place to place, gradually building up all the required Fourier components and

using them to image the source. In practice however, it is much more useful to

employ the rotation of the Earth for ‘moving’ the antenna around. As seen from

the distant cosmic source, the baseline vectors change continuously as the Earth
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rotates, changing the Fourier components continuously. If there are N antennas,

then at any given instant NC2 Fourier components are being measured. Figure 4.1

shows two antennas separated on a East West baseline. All the possible spacings,

from the origin to the outermost ellliptical boundary of the lower diagram can be

taken care of by just varying the distance between the two antennas and observing

for 12 h for each configuration. Only 12 h will be required since for the other 12

h the spacings are identical but only the positions of the antennas are interchanged.

The array configuration has a large influence on the kind of sources that can

be imaged. From the inverse relationship of Fourier conjugate variables, it follows

that short baselines are sensitive to large angular structures, longer baselines sen-

sitive to fine scale structure. The GMRT. for example, has three fourteen km long

arms and a densely packed core of one square km, thus gives a combination of long

and short spacings amounting to considerable flexibility in the kind of sources that

can be imaged. Arrays like the VLA, have their antennas mounted on rails giving

even more flexibility!
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Chapter 5

Interferometers

5.1 Phase Switching Interferometer

A source in space continously emits signals. Some of the early interferometer re-

ceiver systems produced output by adding and squaring the total voltage obtained.

Issue with such a methodology was that this output also had additions from other

sources which contributed to noise power. These could be the galactic background

radiation, thermal noise from the ground or the noise generated in the amplifiers.

In general, the signal from the source is several orders of magnitude weaker than

that from the noise!

One of the most important breakthroughs in radio interferometery was made by

Ryle in 1952 [10] when he introduced phase switching mechanism which removed

noise and kept only the fringe oscillations.

If the two signal voltages are V1 and V2 from antenna 1 and 2 respectively, then

addition and squaring yields (V1 + V2)2. The phase switching mechanism reverses

the second signal periodically, which implies the output now oscillates between

(V1 + V2)2 and (V1 − V2)2. The frequency of this switching is few tens of Hertz,

and a synchronized detector takes the difference of these two. As expected, this

is proportional to the product of the two voltages V1V2.

Thus the output is the time average of the product of these two signals, that is

to say it is proportional to the cross correlation of the two signals. The circuitry

which performs these tasks of multiplication and time averaging is known as the

correlator.
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5.2 Two element interferometer

Assume a point source in the sky which we would like to observe. Consider two

antennas on Earth standing in the East-West direction, separated by a distance

D, called the baseline. Under the far field approximation, this cosmic source is

assumed to be sufficiently distant so that the incident wavefront can be consid-

ered to be a plane. One also would like to consider monochromaticity, or single

frequency light.

Figure 5.1: Geometry of an elementary interferometer. [3]

If the wavefront from the source reaches the telescope on the right at time t1,

then it reaches the other at time t2 = t1 + τg, where tg = (D/c) sin θ. This τg is

called the geometric delay. The output is then

F = 2 sin 2πνt sin 2πν(t− τg)

= cos 2πντg − cos 4πνt cos 2πντg − sin 4πνt sin 2πντg

The variation of θ is equal to the Earth’s rotational velocity of the order of 10−4

rad/s. Since D cannot be greater than 107m for terrestrial baselines, the rate of

variation of ντg is smaller than that of νt by atleast six orders of magnitude. The

more rapidly varying functions are filtered out, leaving behind the fringe function
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F = cos 2πντg = cos

(
2πDl

λ

)

where l = sin θ. As the Earth rotates, θ varies, generating quasisinusoidal fringes

at the correlator.

Next, we consider two Fourier components of the signal at frequencies ν1 and

ν2 instead of one. Since they are statistically independent, the output is then a

linear sum of the responses to each component. Hence the output will have F1

and F2 as components, and both will have distinct periods at any given θ. This

difference in periods give rise to interference in F1 and F2, which means that the

fringe maxima will have superimposed on them a modulation function depending

on θ.

Thus, in the case of a continous band of frequencies, the output is

F (l) =
1

∆ν

∫ νo+∆ν/2

νo−∆ν/2

cos

(
2πDlν

c

)
= cos

(
2πlDνo

c

)
sin(πDl∆ν/c)

πDl∆ν/c

where the signals at the correlator are of uniform power spectral density over

a bandwidth of ∆ν. We see that the fringe pattern has an envelope of a sinc

function.

This is an example of a general result that in the case of uniform power spectral

density at the antennas the envelope of the fringe pattern is the Fourier transform

of the instrumental frequency response.

17



Chapter 6

Antenna Patterns

6.1 Description

How efficient is our antenna in collecting radio waves incident on it? We describe

effective aperture as

Ae(θ, φ) =
Power density available at antenna terminals

Flux density of waves incident on antenna
(6.1)

units being
W/Hz

W/m2Hz
= m2 (6.2)

This is a function of the angular coordinates since the antenna ‘sees’ better in

some directions than in others.

This describes the power pattern of the antenna, usually normalized to unity

at the maximum as

P (θ, φ) =
Ae(θ, φ)

Ae
max (6.3)

Another function is the field pattern f(θ, φ) which is described in the same way

for voltage of terminals of antenna as a function of direction to the source also

normalised to unity at maximum.

Recieving antenna’s pattern is same as that of the transmitting antenna by
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Figure 6.1: How an antenna actually ‘sees’ the source. [13]

the property of reciprocity that follows from the Maxwell’s equations. It thus

implies that, electric field far from a transmitting antenna, normalised to unity at

maximum, is the field pattern.

We also know that power is proportional to the square of electric field, then the

power pattern is the square of the field pattern, and is thus real and semi-definite.

Figure 6.2 shows a typical power pattern. The characteristic features to note

are the mainlobe and the severeal subsidiary maxima called the sidelobes. The

points at which the main lobe falls to half the maximum value are called the Half

Power Points and the angular distance between these points is called the Half

Power Beamwidth(HPBW). The minima of power pattern are called nulls.

In order to not confuse the nearby sources with one another, we would want

to keep the HPBW small. Similarly to minimise the stray radiation, the sidelobes

should be low. Diffraction theory gives

ΘHPBW ∼
λ

D
(6.4)

where D is the physical dimension of the telescope and both the wavelength and

dimension of telescope are measured in same units which keeps Θ in radians.
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Figure 6.2: A Typical Power Pattern [4]

Directivity D(θ, φ) and gain pattern G(θ, φ) are defined as:

D(θ, φ) =
power emitted into(θ, φ)

total power emitted/4π
=

4πP (θ, φ)∫
P (θ, φ)dΩ

(6.5)

which being the transmitting pattern of the antenna, is the same as the receiving

pattern within a constant factor, which we calculate below.

G(θ, φ) =
power emmitted into(θ, φ)

total power input/4π
(6.6)

which is same as the directivity above, but with an efficiency factor. A figure of

merit for reflector antennas is the aperture efficiency

η =
Amax
e

Ag
(6.7)

where Ag is the geometric cross sectional area of the main reflector. It can be

atmost 1.0.

Assume a sky with brightness distribution B(θ) and a power pattern Ae(θ, φ)

as shown in the Figure 6.2 . Then the power actually available at the antenna

terminals is the integral of the brightness in a given direction times the effective

area in that particular direction, Figure 6.3

W (θ′) =
1

2

∫
B(θ)Ae(θ − θ′)dθ (6.8)
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Figure 6.3: The antenna temperature is the convolution of sky brightness and the

beam of the telescope. [4]

The available power is a function of θ′ which gives the direction of telescope, the

factor of half is for only one polarization absorbed. In two dimensions,

W (θ′, φ′) =
1

2

∫
B(θ, φ)Ae(θ − θ′, φ− φ′) sin θdθdφ (6.9)

which in temperature units is

TA(θ′, φ′) =
1

2

∫
TB(θ, φ)

λ2
Ae(θ − θ′, φ− φ′) sin θdθdφ (6.10)

TA(θ′, φ′) =
Amaxe

λ2

∫
TB(θ, φ)P (θ − θ′, φ− φ′) sin θdθdφ (6.11)

Thus the antenna temperature is the weighted average of sky temperature, weighed

by the power pattern of the antenna.

Only if the power pattern is a single infinitely sharp spike is the antenna tem-

perature the same as the sky temperature. For all real telescopes, however, the

antenna temperature is a smoothed version of the sky temperature. Supposing

that you are making a sky survey for sources. Then a large increase in the an-

tenna temperature could mean either that there is a source in the main beam,
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or that a collection of faint sources have combined to give a large total power.

From the statistics of the distribution of sources in the sky (presuming you know

it) and the power pattern, one could compute the probability of the latter event.

This gives a lower limit to the weakest detectable source, below this limit,(called

the confusion limit), one can no longer be confident that increases in the antenna

temperature correspond to a single source in the main beam. The confusion limit

is an important parameter of any given telescope, it is a function of the frequency

and the assumed distribution of sources.

If we consider an antenna terminated in a resistor, with the entire system being

placed in a black box at temperature T, then after thermal equilibrium has been

reached, the power flowing from the resistor to the antenna is

PR→A = kT (6.12)

The power flow from the antenna to the resistor from equation 6.11 and assuming

the sky temperature is same everywhere

PA→R =

(
Amaxe kT

λ2

)∫
P (θ, φ)dΩ (6.13)

Since in thermal equilibrium, the net power flow goes to zero, we obtain the fol-

lowing relationship

Aemax =
λ2∫

P (θ, φdΩ)
(6.14)

which implies that only the shape of power pattern determines the maximum ef-

fective aperture. For example, a narrow pattern would imply a higher aperture

efficiency. For a reflecting telescope,

∫
P (θ, φ)dΩ ∼ Θ2

HPBW ∼
(
λ

D

)2

(6.15)
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Amaxe ∼ D2 (6.16)

From 6.14,

Ae = Amaxe P (θ, φ) =
λ2P (θ, φ)∫
P (θ, φ)dΩ

(6.17)

Finally, on comparison with equation 6.5 we see the constant factor that relates

the effective area with directivity as

D(θ, φ) =
4π

λ2
Ae(θ, φ) (6.18)

6.2 Computing An Antenna Pattern

Take the case of a parabolic reflecting telescope with feed at the focus. The radi-

ation from the feed reflects off the telescope and is beamed off into space. If we

knew the radiation pattern of the feed, then by using geometric optics we could

calculate the electric field on the aperture plane. Also, if the telescope was in-

finitely large, then the electric field would have been a plane wave in the aperture

plane. Since a plane wave would propagate as it is through free space, the far field

would simply be a plane wave travelling along the axis of the reflector. The power

pattern would be an infinitely narrow spike diminishing everywhere else.

In reality, telescopes are finite in size, which means that diffraction comes into

the picture. Consider a one dimensional aperture, of length l, with electric field

distribution or aperture illumination e(x). Then the field at point P (r, θ) due to

a point source at a distance of x from the center of the aperture, according to the

Huygen’s principle is

dE =
e(x)

r2
e

2πx sin θ
λ (6.19)

here r >> l, x sin θ is simply the difference in path length between the path from
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the center of the aperture to the point P and the path from x to point P. Since

the wave from point x has a shorter path length, it arrives at point P at an earlier

phase. The total electric field at P is:

E(r, θ) =

∫ l/2

−l/2

e(x)

r2
e−jkµxdx (6.20)

where k = 2π/λ and µ = sin θ and x is now measured in wavelengths. The shape

of the distribution is clearly independent of r, and hence the unnormalized power

pattern is

FU(µ) =

∫ ∞
−∞

e1(x)e−jkµxdx (6.21)

where

e1(x) = e(x) if |x| ≥ l/2; 0 otherwise (6.22)

For a 1D uniformally illuminated aperture of length l. The far field then is

E(µ) =

∫ l/2

−l/2
e
−j2πxµ

λ dx (6.23)

= λ
sin(πl/λµ)

πµ
(6.24)

and the normalized field pattern is

F (µ) =
sin(πl/λµ)

πl/λµ
(6.25)

This is the 1D sinc function, with the first null at µ = λ/l, the first sidelobe at

µ = 3/2(λ/l) with strength 2/3π. This means that the strength of the power

pattern is (2/3π)2 = 4.5%, which shows that

• The width of a function is inversely proportional to the width of its trans-

form. This means that large antennas will have smaller beams.

24



• Sharp discontinuities in the function will give rise to sidelobes - called ringing

- in the Fourier transform.

Aperture illumination design hence involves the following tradeofs

• A tapered illumination has a broader main beam or equivalently a smaller

aperture but also lower sidelobes than uniform illumination.

• If the illumination is high towards the edges then unless there is a very rapid

cutoff, which causes higher sidelobes, there will be a lot of spillover.
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Chapter 7

Mapping the Sky

We now look at the coordinate systems used in practical aperture synthesis in

detail.

7.1 Angular coordinates

The response of an interferometer

r(τ(t)) = cos(2πνoτ) (7.1)

where we take incoming radiation to be quasi-monochromatic, the source as a

point source located at the phase center, and τ = τo = (D/c) sin(θ(t)) as the

geometric delay with θ being the direction which the antennas are tracking w.r.t

the vertical direction, λ the wavelength, νo the center frequency of the observing

band and D the separation between the antennas.

As the Earth rotates and the antennas track this source, the delay changes

with time which is exactly compensated by a computer controlled delay. For a

point source at the phase center, the output of the interferometer is the amplitude

of the fringe pattern.

For a source at θ = θo+∆θ, for small ∆θ, τ = τo+∆θ(D/c) cos θ(t) Now fringe

stopping compensates for τo, then response of the interferometer for this source is

r(τ(t)) = cos(2π∆θDλ cos θ) (7.2)
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where Dλ = D/λ. If the phase center itself is shifted by an equivalent of λ/4, the

response picks up a phase of π/2 and becomes sinusoidal instead of co-sinusoidal.

This shows that the interferometer will now respond to both odd and even parts

of the brightness distribution and we write it in a complex notation as:

r(τ(t)) = e2πi∆θDλ cos θ (7.3)

As Dλ cos θ is the projected separation between the antennas in units of wave-

length int the direction normal to the phase center, we substitute it as u, also see

that l = sin(∆θ) ∆θ, the response then is given as

r(u, l) = e2πiul = e2πiu∆θ (7.4)

If the normalized power reception pattern of antennas, all assumed to be identi-

cal, at a given frequency is B(∆θ) and the surface brightness be I(∆θ), then the

response of our interferometer for a point source located ∆θ away from the phase

center will be

r(u,∆θ) = I(∆θ)B(∆)θe2πiu∆θ (7.5)

and for an extended source with a continuous surface brightness distribution,

V (u) =

∫
B(∆θ)I(∆θ)e2πiu∆θd∆θ =

∫
B(l)I(l)e2πiuldl (7.6)

This is a one dimensional Fourier Transform relationship between the source

brightness distribution and the visibility function. Although the integral is over

the entire sky visible to antennas, it is finite only for a range of l given by the an-

tenna primary reception pattern B(l). Thus, l specifies the direction of source flux

relative to the pointing center, u then has the interpretation of spatial frequency

and V (u) represents the 1D spatial frequency spectrum of this source.
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7.2 Astronomical Coordinate System

We mostly employ azimuth and elevation angles with respect to different origins

and orientation of axes in order to specify source positions. Most commonly used is

the Equatorial Coordinate system where Right Ascension(RA) and Declination(δ)

are defined. RA is the azimuthal angle from the first point of Aries 1, while δ is

the elevation of the source from the normal to the celestial equator. Since there

are two possible directions for RA, it is measured from the equinox towards the

east.

The position of the source in the sky in this coordinate system remains constant

as the Earth rotates, and the azimuth/elevation of antennas that rotate with Earth

are constantly adjusted to track the point in the sky.

The changing position of the sources in the sky as seen by the observer on the

surface of the Earth is specified by replacing RA by the Hour Angle (HA) which

is the azimuth of the source measured in units of time, with respect to the local

meridian of the source with HA = −6h pointing due East.

7.3 Physical Coordinate System

The antennas are located on the surface of the Earth, and therefore rotate with

respect to the source in the sky. For employing techniques in aperture synthesis,

the antenna positions are specified in a coordinate system so that the separation

of antennas is the projected separation in plane normal to the phase center. In

other words, in this system, the separation between the antennas is as seen by the

observer sitting in the phase center reference frame.

The figure 7.1 depicts a right handed (u, v, w) coordinate system. The u axis

is along the astronomical E-W direction and v axis along the N-S direction. The

(u, v) plane is parallel to the tangent plane in the direction of phase center on

the celestial sphere while w points in the direction of interest, usually kept as the

phase center.

1The celestial equator meets the ecliptic plane at two points, one is the first point of Aries

and the other first point of Libra. The former is chosen as the ‘prime meridian’ for calculating

RA for historical reasons.
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Figure 7.1: Relationship between different coordinate systems. [4]

As the Earth rotates, the (u, v) plane rotates with the source in the sky, chang-

ing the (u, v, w) coordinates of the antennas generating tracks in the uv-plane.

Now the u coordinate of one antenna is with respect to the other antenna

making the interferometer which is located at the origin. If this origin is arbitrarily

located and the coordinates are u1 and u2, then equation 7.5 becomes

r(u, l) = e2πi(u1−u2)l (7.7)

We can see that only the difference matters, so we can work with baseline vectors

specified as the difference between the position vectors of various antennas in the

(u,v,w) coordinates.

7.4 Coordinate Transformation

As we have seen, the (u,v,w) coordinates of antennas lie in the ’imaging’ coordinate

system while antennas are actually located in the terrestrial coordinate system.

This terrestrial coordinate system is a right handed Cartesian coordinate sys-

tem. The (X,Y) plane is parallel to the Earth’s equator, X is in the meridian plane

and Y towards East, and Z points towards the celestial pole. In terms of astro-

nomical coordinate system (HA, δ), the axes will be defined as X = (0h, 0o), Y =
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(−6h, 0o), Z = (δ = 90o). If the components of Dλ are (Xλ, Yλ, Zλ) then the

components in the (u, v, w) coordinate system can be determined by the following

transformation


u

v

w

 =


sin(HA) cos(HA) 0

− sin(δ) cos(HA) sin(δ) sin(HA) cos(δ)

cos(δ) cos(HA) − cos(δ) sin(HA) sin(δ)



X

Y

Z


As the Earth rotates, the hour angle changes giving different set of (u, v, w) co-

ordinates for each antenna pair at each instant of time. The locus of projected

antenna spacings u and v defines an ellipse with hour angle as the variable

u2 +

(
v − Z cos δo

sin δo

)2

= X2 + Y 2 (7.8)

where (HAo, δo) define the phase center direction. This ellipse is referred to as the

uv-track and the pattern generated by the uv points sampled by the entire array

of antennas over the period of observation is referred to as the uv coverage.

The uv points close to the origin form the shorter baselines, provide low reso-

lution information and are sensitive to the coarse structure of the source. The uv

points away from the origin create the longer baselines provide higher resolution

and thus sensitive to finer details. Just by looking at the uv coverage plots we can

observe that, smaller baselines are more sensitive than the longer baselines just by

virtue of the fact that for a given observation time period, there are more points

of observation near the center while lesser number outside. Obviously, sensitivity

is zero where there are no points.

The uv coverage depends on the position of the source in the astronomical

coordinate system. The reference in the astronomical coordinate system is the line

of intersection of the ecliptic and the equatorial planes. Since this reference line

changes due to precession of Earth’s rotation axis, the uv coverage in turn becomes

a function of the reference epoch for which the source is specified. Thus, for

consistency, all source positions are specified in standard epochs (B1950 or J2000).

Since each point in the (u, v, w) plane measures a particular spatial frequency and

this spatial frequency coverage differs from one epoch to another, it is necessary
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Figure 7.2: The array shape of the GMRT

to precess the source coordinates to the current epoch prior to observations; all

processing of the visibility data for the purpose of mapping must be done with

(u, v, w) evaluated for the epoch of observations. But precessing the visibilities to

the standard epoch before inverting will require specifying the real and imaginary

parts of the visibility at coordinates which are in fact not measured - since the

coverage changes with epoch - this introduces errors in the mapping procedures.

However, this change is very slow, happening over years and decades.

7.5 Generalised 2D Fourier transform relation

In the following discussion we assume monochromatic radiation with negligible

frequency bandwidth and that the (u, v) measurements are instantaneous mea-

surements.

Let the vector L̄o give the direction of the phase center,and D̄λ represent the

location of all the antennas of an array with respect to a reference antenna. Then,

τg = D̄λ.L̄o (7.9)

Also, note that 2πD̄λ.L̄o = 2πw is the phase by which visibility should be rotated

to stop the fringe. For any source direction, L̄ = L̄o + σ̄, the output of the inter-
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(a) 12 hr synthesis image for dec = 0o (b) 12 hr synthesis image for dec = 40o

Figure 7.3: u versus v plot for two different declination angles for the GMRT

array.

ferometer after fringe stopping will be

V (D̄λ) =

∫
4π

I(L̄)B(L̄)e2πiD̄λ.(L̄−L̄o)dΩ (7.10)

If L̄ is (l,m, n) in the sky tangent plane, L̄o is unit vector along the w axis, and

D̄λ is (u, v, w), then

D̄λ.L̄ = ul + vm+ wn (7.11)

and

D̄λ.L̄o = w (7.12)

and

dΩ =
dldm

n
=

dldm√
1− l2 −m2

(7.13)

giving

V (u, v, w) =

∫ ∫
I(l,m)B(l,m)e2πi(lu+mv+w(

√
1−l2−m2−1)) dldm√

1− l2 −m2
(7.14)

Note that the complex visibility is a function of the coordinates (u, v, w) since

these represent the spacing of the antennas with respect to the phase tracking

center of the source.
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Figure 7.4: Relationship between (l,m) and (u, v, w) coordinates [4]

In the situation of the array being exactly in plane, w being exactly zero, this

relation would reduce to an exact 2D Fourier Transform relation. This is true for

East-West arrays like the WSRT, the ATCA.

In order to maximise uv coverage, the arrays should not be exactly East-West,

like the GMRT or VLA. Now, if the field of view being mapped is small, ie for

small l and m,
√

1− l2 −m2 can be neglected which gives

V (u, v, 0) =

∫ ∫
I(l,m)B′(l,m)e2πi(ul+vm)dldm (7.15)

where B′ = B/
√

1− l2 −m2, and this is a Fourier transform relation.

As there are a finite number of antennas, the uv coverage is not continuous.

We define a sampling function as:

S(uk, vk) = δ(u− uk, v − vk) (7.16)

which means the value of S is one for all sampled (u,v) points and zero everywhere

else. Then in reality, equation 7.15 becomes

V (u, v)S(u, v) =

∫ ∫
I(l,m)e2πi(lu+mv)dldm (7.17)
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Since the visibility function for a point source at the (l,m) origin is a constant in

u and v, the Fourier transform of the transfer function indicates the response to

a point source i.e. the synthesized beam. Inverting the above equation, and using

the convolution theorem, we get

ID = I ∗DB (7.18)

Here, DB i.e the Dirty Beam is the Fourier Transform of S. ID is the raw image

produced by an Earth rotation aperture synthesis telescope, is called the Dirty

Map.

The assumptions of monochromaticity and instantaneous measurements is not

true in real life. Observations for continuum mapping are made with as large a

frequency bandwidth as possible so as to maximize sensitivity and the data are

recorded after finite integration. Both the issues result in the degradation in the

map plane.

The approximation of w term being zero implies that the source brightness

distribution is limited to the tangent plane at the phase center in the sky rather

than on the surface of the celestial sphere. However, at low frequencies where

antenna primary beams are larger and radio emission is also on a larger scale, this

assumption restricts the mappable part of the sky to a fraction of the primary

beam!
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Chapter 8

The van Cittert Zernike Theorem

It relates the spatial coherence function V (r1, r2) = 〈E(r1)E∗(r2)〉 to the dis-

tribution of intensity of incoming radiation I(s). We can show that the spatial

correlation function depends only on the difference r1−r2, and if the measurements

are in plane, then

V (r1, r2) = F (8.1)

where F implies taking the fourier transform. We now derive this relation [4].

Assuming that the source is distant and that it can be approximated as a

brightness distribution on the celestial sphere of radius R as shown in figure 8.1.

Let the electric field at a point P ′1(x′1, y
′
1, z
′
1) at the source be given by E(P ′1) then

the field E(P1) at the observation point P1(x1, y1, z1) is given as

E(P1) =

∫
E(P ′1)

e−ikD(P ′1,P1)

D(P ′1, P1)
dΩ1 (8.2)

where D(P ′1, P1) is the distance between P ′1 and P1. Here we have assumed that

the electric field is a scalar. Now if E(P2) is the field at some other observing

point P2(x2, y2, z2) then the cross correlation between these two fields is given as

〈E(P1)E∗(P2)〉 =

∫
〈E(P ′1)E(P ′2)〉e

−ik(D(P ′1,P1)−D(P ′2,P2))

D(P ′1, P1)D(P ′2, P2)
dΩ1dΩ2 (8.3)

Further assumption that the radiation from astronomical objects is not spatially

35



Figure 8.1: Geometry for van Cittert Zernike theorem. [4]

coherent, i.e. 〈E(P ′1)E∗(P ′2)〉 = 0 except for P ′1 = P ′2, then

〈E(P1)E∗(P2)〉 =

∫
I(P ′1)

e−ik(D(P ′1,P1)−D(P ′2,P2))

D(P ′1, P1)D(P ′2, P2)
dΩ1 (8.4)

where I(P ′1) is the intensity at point P ′1. Our assumption that the source lies on

the celestial sphere of radius R gives x′1 = R cos(θx) = Rl, y′1 = R cos(θy) = Rm,

z′1 = R cos(θz) = Rn where (l,m, n) are direction cosines. It is clear that

l2 +m2 + n2 = 1 and dΩ = dldm√
1−l2−m2

D(P ′1, P1) = [(x′1 − x1)2 + (y′1 − y1)2 + (z′1 − z1)2]1/2 (8.5)

= [(Rl − x1)2 + (Rm− y1)2 + (Rn− z1)2]1/2 (8.6)

= R[(l − x1/R)2 + (m− y1/R)2 + (n− z1/R)2]1/2 (8.7)

≈ R[(l2 +m2 + n2)− 2/R(lx1 +my1 + nz1)]1/2 (8.8)

≈ R− (lx1 +my1 + nz1) (8.9)

(8.10)
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Substituting this back,

〈E(P1)E∗(P2)〉 =
1

R2

∫
I(l,m)

e−ik[l(x2−x1)+m(y2−y1)+n(z2−z1)]

√
1− l2 −m2

dldm (8.11)

Intensity is a function of only (l,m) since they are sufficient to uniquely define

a point on the sphere as l2 + m2 + n2 = 1. The spatial correlation function

〈E(P1)E∗(P2)〉 is also referred to as the visibility V(u, v, w).

In terms of baseline coordinates, u = (x2 − x1)/λ, v = (y2 − y1)/λ, w =

(z2 − z1)/λ and ignoring the constant factor

V(u, v, w) =

∫
I(l,m)e−i2π[lu+mv+nw] dldm√

1− l2 −m2
(8.12)

This relation between the source brightness and the visibility is referred to as the

van Cittert Zernike Theorem.
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Chapter 9

Wide field observations

9.1 Cartesian Basis

Recall that the original expression for visibility was

V (u, v, w) =

∫ ∫
I(l,m)B(l,m)e−2πi[lu+mv+

√
1−l2−m2w] dldm√

1− l2 −m2
(9.1)

Only in the small FoV limit (l2 + m2 << 1) or in the case where antennas were

arranged in E-W line, did this relation become a simple 2D Fourier Transform.

In more practical situations, antennas are arranged in arrays that maximize uv

coverage, for example the Y shaped GMRT array. The FoV of a telescope is lim-

ited by the primary beams of the antennas. If the observations are to be made at

larger FoV, the full expression above needs to be used to map full primary beams

of the antennas. Thus wide field imaging requires non-trivial handling of the third

term - w
√

1− l2 −m2 called the w term.

Interpreting the w-term A wavefront originating from the phase center

direction is received by all the antennas and the signal is multiplied in-phase at

the correlator, effectively phasing the array. As is obvious, the celestial sphere is

the locus of all the points in the 3D space for which the array will remain phased.

Therefore, away from the phase center, the wavefront will carry an extra phase

which is due to its separation from the center and not the geometry of the array.

Thus, this term carries information about the source’s structure.
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Then the 2D approximation for a small FoV takes the form of approximating

the sky by a 2D plane close to the phase center and ignoring this w term. But,

for a source far away, we need to rotate visibility by this w term so as to continue

the 2D approximation for that source, which is equivalent to shifting the phase

center and thus shifting the equivalent point in the image plane. This shift is, as

expected, different for each part of the image since the w term depends on the

image coordinates, and thus a constant phase rotation of all the visibilities would

not of be of much effect in removing errors due to removal of the w term.

9.2 Spherical Basis

As we have understood, many issues arise due to the 3D nature of the problem

at hand. Deconvolution to obtain the Brightness function, followed by handling

the w term in the wide FoV regime are difficulties that have the power to, even in

principle, accommodate a lot of errors. We now look at another method of doing

the same things, only simpler.

Carozzi in 2015 [1] proposed the use of spherical basis, instead of the usual

Cartesian, for the geometry here seems to follow the same. The relation derived

here is inherently wide field.

For the sake of illustration, we assume that the electric field is scalar and not

polarized. The relation can be easily generalized to other components.

Begin with the scalar intensity component of the extended vCZ theorem[2] i.e.

relation between visibility V and the brightness B on the celestial sphere as

VI(r, k) =

∫
BI(Ωk)e

−ik.rdΩk (9.2)

where r is the baseline vector, k is the wavevector, Ωk = (θk, φk) are the angular

components of k on the celestial sphere.

The subscript k denote that the angles refer to the spherical components of the

wavevector. Now, if measurements are considered in vacuum, then the wavenum-

ber k = |k| is given by the frequency (used for measurements of visibility) divided
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by the speed of light, k = 2πν
c

.

The subscript I denotes the Stokes I component - the scalar flux density.

If we only deal with this component, we can discard this subscript for further

calculations. The phase reference position is taken to be as origin.

Observe that the equation 9.2 satisfies the Helmholtz wave equation. Operate

with Laplace on both sides and obtain,

∇2V + k2V = 0 (9.3)

This is the wave equation in the visibility domain. Recall that it has solutions in

both Cartesian and Spherical coordinates.

Therefore eigenfunctions of the spherical wave equation, given as

jlYlm(θ, φ) for l = 0, 1, 2... and m = −l, ..., l

should produce a vCZ relation. The boundary condition put in here says that

the visibility should be finite at the origin. The Ylm(Ω) is the usual orthonormal

spherical harmonic function where l and m are the polar and azimuthal quantum

numbers respectively. The jl(kr) is the spherical Bessel function of the first kind.

Using the plane wave decomposition formula

e(−ik.r) = 4π
∞∑
l=0

l∑
m=−l

(−i)ljl(kr)Ylm(θr, φr)Y ∗lm (θk, φk) (9.4)

Substituting this in equation 9.2 as,

V =

∫
B(Ωk)

(
4π

∞∑
l=0

l∑
m=−l

(−i)ljl(kr)Ylm(θr, φr)Y
∗
lm(Ωk)

)
dΩk (9.5)

= 4π
∞∑
l=0

l∑
m=−l

(−i)ljl(kr)Ylm(θr, φr)

∫
B(Ωk)Y

∗
lm(Ωk)dΩk (9.6)

Expanding the brightness function in the basis of spherical harmonics,

B(Ωk) =
∞∑
l=0

l∑
m=−l

blmYlm(Ωk) (9.7)
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where blm will be the multipole moments of the sky. Substitute this back in equa-

tion 9.6 and obtain,

V = 4π
∞∑
l=0

l∑
m=−l

(−i)ljl(kr)Ylm(θr, φr)

∫ (
∞∑
l=0

l∑
m=−l

blmYlm(Ωk)

)
Y ∗lm(Ωk)dΩk

(9.8)

Using the orthogonality relation of the spherical harmonics,

∫ 4π

0

Ylm(Ω)Y ∗l′m′(Ω)dΩ = δll′δmm′ (9.9)

we obtain

V = 4π
∞∑
l=0

l∑
m=−l

(−i)ljl(kr)Ylm(θr, φr)blm (9.10)

Also expanding the visibility distribution in terms of the eigenfunctions of the

wave equation

V =
∞∑
l=0

l∑
m=−l

ṽlmjl(kr)Ylm(Ωr) (9.11)

Inserting this in equation 9.10, we get

∞∑
l=0

l∑
m=−l

ṽlmjl(kr)Ylm(Ωr) = 4π
∞∑
l=0

l∑
m=−l

(−i)lblmjl(kr)Ylm(θr, φr) (9.12)

Again, applying orthonormality of the spherical harmonics, we obtain a simple

proportionality relation as

ṽlm = 4π(−i)lblm (9.13)

We can take this calculation further, and see that the above Brightness function

is a convolution of the Intensity function and the Antenna Pattern as

B(Ωk) =

∫
I(Ω)A(Ω− Ωk)dΩ (9.14)
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We now expand the functions B(Ωk) and I(Ω) as

B(Ωk) =
∑
l

∑
m

blmYlm(Ωk) (9.15)

I(Ω) =
∑
l

∑
m

ilmYlm(Ω) (9.16)

which upon substituting in equation 9.14 yields

∑
l

∑
m

blmYlm(Ωk) =

∫ ∑
l

∑
m

ilmYlm(Ω)A(Ω− Ωk)dΩ (9.17)

and, for a given l and m value set,

blm = ilmY
∗
lm(Ωk)

∫
Ylm(Ω)A(Ω− Ωk)dΩ (9.18)

We almost always are aware of the antenna patterns for our telescopes as a function

of the angular coordinates. Thus, this relation determines the Intensity compo-

nents ilm.

Comparing equations 9.13 and 9.18, we can see that we have finally obtained

a direct relationship between the required Intensity function and the measured

Visibility. This expression is a much simpler version of the Cartesian counterpart,

and is easily computed.
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Chapter 10

Case Study I: Ooty Wide Field

Array

10.1 Design

Located at Ootacamund in southern part of India, the Ooty Wide Field Array

(OWFA) is of the cylindrical paraboloid variety. This 530 m long (North-South)

and 30 m wide (East-West) telescope operates at a center frequency of 326.5 MHz,

i.e. about one meter long wavelength, with a 15 MHz bandwidth.

It is strategically placed on a hill that has a slope of about 11o equal to the

latitude of the place which implies that it is naturally an equatorial mount.

The reflecting surface is a set of 1100 stainless steel wires, each 530 m long,

0.38 mm in diameter and supported by 24 parabolic frames separated by 23 m

from each other.

The reflector is an offset type reflector, in that, the feed eventhough located

at the focal point of the reflector, does not obstruct the FoV. This is because the

reflector is an asymmetric segment of the parabola and therefore keeps the focus

offset to one side of the reflector.

1056 dipoles arranged in a linear and uniform array along the focal line illumi-

nate the focal reflector.

Mechanical rotation through a common driveshaft of the telescope steers it

along the East-West, while the North-South steering is obtained by introducing

delays.
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Figure 10.1: The geometry of the OWFA antenna. [14]

One antenna element is a combination of 4 dipoles, making a total of 264

antenna elements for 1056 dipoles. Each such antenna element is 1.9m long along

the length of the cylinder and 30m wide. The smallest baseline thus corresponds

to 1.9m and the longest to 505m.

10.2 Wide field observations with OWFA

The primary beam pattern decides the FoV of the interferometer. For OWFA,

this FoV is asymmetric with FWHM of 1.75o corresponding to 30m width in the

East-West direction, and a FWHM of 27.4o in North South direction.

We consider a case where we have one antenna observing one source in the

sky. The antenna remains fixed while the source moves. We take the phase center

at the center of the FoV, mark it as the origin, and point the antenna towards

this direction. We consider the same dipole like antenna as the OWFA, and make

it a simple one dimensional problem. This means that we take only one baseline

into consideration, B = 1.9m ∼ 2m and consider zero change in the azimuthal

coordinate of the source.
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The antenna pattern along this baseline for OWFA is a Gaussian function.

Another added simplicity is that we take the Intensity function I as a Delta

function. The source moves from θ = 0 radian to θ = 1 radian. This is far beyond

the FoV of the antenna, and thus we are in the wide field regime.

According to the Cartesian method,

V (u, v, w) =

∫
I(l,m)A(l,m)e−i2π[lu+mv] dldm√

1− l2 −m2
(10.1)

we can see that a wide field regime implies taking care of the damping term in the

denominator i.e.
√

1− l2 −m2.

We plot the visibility measurements of this source using the Fourier method

for two antenna patterns - Gaussian and Sinc functions, for different values of the

baseline. The antenna patterns were taken to be

Asinc = sinc2

(
πloB

λ

)
(10.2)

and

Agauss = exp

(
−1

2

πloB

λ

)
(10.3)

where lo = sin(θ).

Figures 10.2 and 10.3 show how visibilities vary with changes in baseline. Also

visible is the change in the visibility measurements due to damping by the wide

field factor.
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(a) visibility plot for u = 2 (b) error due to damping for u = 2

(c) baseline u = 4 (d) error due to damping for u = 4

Figure 10.2: Column 1: Plot of visibilities for a source moving for one radian, for

comparison between two antenna patterns - Gaussian and Sinc functions;

Column 2: Plot of the difference of visibilities with and without damping factor

for comparison between the two antenna patterns.
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(a) baseline u = 8 (b) error due to damping for u = 8

(c) baseline u = 16 (d) error due to damping for u = 16

Figure 10.3: Column 1: Plot of visibilities for a source moving for one radian, for

comparison between two antenna patterns - Gaussian and Sinc functions;

Column 2: Plot of the difference of visibilities with and without damping factor

for comparison between the two antenna patterns.
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Chapter 11

Case Study II: Murchison

Widefield Array

Next, we also look at the Murchison Widefield Array (MWA) located in Western

Australia. It operates in the frequency range 80–300 MHz. The FoV is large by

the standard of astronomical instruments, being on the order of 30 degrees across.

11.1 Design

The antenna comprises four by four regular grid of dual-polarization dipole el-

ements arranged on a 4m x 4m steel mesh ground plane. Each antenna (with

its 16 dipoles) is known as a ‘tile’. It is the first so-called large-N array, fully

cross-correlating signals from 128 such phased tiles.

The core area has 50 antenna tiles uniformly distributed over a 100 metre

diameter core, surrounded by 62 tiles which are distributed over a 1.5 km diameter

circle. The final 16 tiles have been placed even further out on a 3 km diameter

circle to optimize solar imaging performance, and for the highest angular resolution

imaging.

11.2 Wide field observations with MWA

These rectangular tiles make the antenna pattern a Sinc function, with the x and

y dimensions to be four. We take a baseline value of u = 10 and v = 10 and plot
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the two dimensional visibilities.

The antenna pattern was taken as

Asinc = sinc2

(
πloBx

λ

)
sinc2

(
πmoBy

λ

)
(11.1)

where lo = sin θ and mo = sinφ.

Figure 11.1a and 11.1b show visibility values without and with damping. To

see the errors, we plot the difference plot as in Figure 11.1c.
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(a) Visibility without Damping

(b) Visibility with Damping

(c) Difference in visibilities with and without Damping

Figure 11.1: Two dimensional visibility plots for MWA using Sinc function as the

antenna pattern
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Chapter 12

Conclusions

We have looked at the van Cittert Zernike theorem in both the narrow and the

wide FoV limit.

For the plots of visibility versus angle, we kept the antenna fixed and move the

source from this position to a wide angle. We see that while the Gaussian antenna

response decays at higher angles, the Sinc function induces sidelobes.

We correspondingly plot the difference between the visibilities with and with-

out taking into consideration the damping factor. For the Gaussian case, this

difference fluctuates to a maximum of about 0.2%, by the time it reaches the large

angles, the difference goes to zero since there is no detection of the source. For

the Sinc case however, after initial fluctuations comparable to the Gaussian func-

tions, the difference starts to increase when the sidelobes kick in. With increase

in baseline, we see increase in fringe oscillations.

For the MWA case, we plot the two dimensional visibility, along with the

difference plot. Again, the difference is less than 1%.

For the spherical basis, similar plots can be made. Then the first step would be

to calibrate both the methods. This is being carried out presently, the difficulty is

to take into account numerical issues that come into the picture due to functions

like the spherical harmonics and integration techniques employed.

Once the calibration is done, we can move on imaging, thus exploiting the full

benefits of the easier solution in spherical basis.
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