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Abstract

Search for Quark-Gluon Plasma (QGP), a deconfined state of quarks and gluons, is the pri-

mary motivation behind several experimental as well theoretical studies in particle physics.

Formation of the QGP state requires extreme condition of temperature and energy density.

Such conditions are believed to exist during the birth of our universe. However, those astro-

nomical observable effectively washed out due to the subsequent evolution of the universe,

and the only means to study this fundamental state of matter is via the collision of heavy

nuclei in the laboratory. Thus, the study of QGP, which enables a detailed and quantitative

characterization of the high density, high temperature phase of strongly interacting mat-

ter, together with the exploration of new phenomena, are some of the important milestones

where we can fully exploit the scientific potential of the front-line experiments at RHIC and

LHC.

Some of the questions that are crucial in understanding the nature of QGP includes the

study of the nature of phase transition between confined hadronic state and the deconfined

QGP state and to determine the location of the critical point in the QCD phase diagram,

the point where the first-order phase transition line terminates. In order to quantify the

confinement-deconfinement phase transition and to search for the critical point, the QCD

phase diagram has been scanned by varying collision energy and studying the thermody-

namical properties such as temperature and the baryon chemical potential of the system

created during such collision. Extracting the temperature, which is a crucial ingredient of

the phase diagram, requires a proper parameterization of transverse momentum (p
T

) spec-

tra. Although the standard theoretical description of the strong interaction comes from the

QCD, however, due to the asymptotic freedom of the QCD coupling constant, it is difficult

to apply QCD theory to study the p
T

-spectra. In this direction, several phenomenological

models with varied physics motivation have been developed to study the spectra of final

state particles produced in high energy collision.



Although there are several phenomenological models, ranging from statistical thermal

models such as Boltzmann-Gibbs statistics & Tsallis statistics to the hydrodynamical mod-

els such as Blast-Wave & Tsallis blast-wave model, majority of them apply only to the

low-p
T

region. It is important to mention here that particle production in high energy col-

lision can be classified into two separate categories. The low-p
T

particles are produced

by the soft processes, whereas the hard scattering process contributes to the majority of

particles in the high-p
T

region. These models have been used extensively to study the

transverse momentum spectra in the low-p
T

region. For fitting the high-p
T

region, a well

defined, QCD inspired power-law form of the distribution function is used. Since there is

no fine line separating these two regions, a unified formalism which can explain both the

low- and high-p
T

region is still an open problem and important to tap into the full poten-

tial of the high energy collision experiment measuring the spectra over a broad p
T

range.

In the thesis, we have discussed a unified thermodynamical framework based on the Pear-

son probability distribution function to study both low- and high-p
T

region in a consistent

manner. Pearson distribution is a generalized probability function, which under limits on

its parameters, reduces to other distributions such as Gaussian, Gamma, Beta, Student’s t

distribution, etc. We have provided the first application of the Pearson formalism in study-

ing the particle production spectra in high energy collision. We have discussed the detailed

mathematical formulation of the unified statistical framework. This thesis also discusses

the detailed derivation of the thermodynamical consistency and the backward compatibility

of this model. The fit results obtained using this formalism on the transverse momentum

spectra at different collision energies, centralities and the collision system are provided,

along with its application to study other quantities such as the response function etc.
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Chapter 1

Introduction

Strong nuclear force, as the name suggests, is the strongest among the four fundamental

forces and acts at the small scale (∼ few fm) inside the nucleus. It binds quarks inside

a nucleon and the corresponding interaction is carried by the exchange particles called the

gluon. A set of quarks bound together by strong interaction makes up a nucleon (hadrons

in general).

The first theoretical description of partons (particle inside proton or other quark-containing

particle), quark model, was proposed in 1964 by Murray Gell-Mann [36] and George Zweig

[37, 38]. This model classifies quarks into six flavors (up, down, charm, strange, top, bot-

tom). A quantum number called “color” (red, green & blue; these are not to be treated as

real colors) was introduced by Oscar Greenberg to explain the coexistence of quarks inside

a hadron without violating the Pauli exclusion principle. The quarks of different color com-

bine to make the hadron “colorless”. Although there was ample theoretical understanding,

but the substructure of nucleons and the identity of quark was first proved experimentally in

the deep inelastic scattering (DIS) experiment at Stanford Linear Accelerator (SLAC) [39].

As per the standard model of particle physics, leptons, quarks, gauge and Higgs bosons

are the only fundamental particle (particle with no known substructure) that exist in nature.

Leptons include electron (e), muon (µ) and tau (τ) and their corresponding neutrinos.

Gauge bosons (gluon, photon and W & Z) mediate the fundamental interactions. And

quarks mix up to form the composite hadrons that are further divided into two separate

categories: baryons and mesons. Baryons are made up of three quarks of different color to

make them colorless, whereas mesons are made up of a quark-antiquark pair.

1
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Interaction of quarks are governed by the potential of the form:

V (r) = −4

3

αs
r

+ kr (1.1)

Here αs is the coupling strength, k is the string tension and 4/3 is the color factor. The first

term in the above potential represents coulomb type attraction, whereas the second term

corresponds to string tension, which tends to confine quarks. The first term will dominate

at a short distance and when we increase the distance, the second term leads to an increase

in potential, making it impossible to pull two quarks apart from each other’s influence.

Hence, the second term is known as the confinement term, making sure quarks are confined

and not free to move around.

Figure 1.1: Variation of running coupling strength versus energy scale. (Image taken from
the Ref. [1]).

The Quantum Chromodynamics (QCD) provides the detailed theoretical description of

the strong interaction between quarks and gluons. The strength of interaction between par-

tons is governed by the strong interaction coupling constant (αs) and the QCD calculation

suggests that with an increase in the momentum transfer scale (Q), the αs decreases as de-

picted in Fig. 1.1. The nature of strong interaction and the requirement of color neutrality

prohibits isolation of quarks and gluons in physical vacuum (laboratories) [40], however,

due to the running nature of coupling constant, partons may behave asymptotically free

at extremely high momentum transfer scale. QCD predicts that nuclear matter undergoes

a phase transition at a temperature of about 1012 K, density 1015 gcm−3 [41, 42] and an

energy density of about 0.7 GeV fm−3 [43]. At such critical conditions, bound states of
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nuclear matter lose their identity and dissolve into a deconfined and chiral symmetric state

of quarks and gluons [44]. In 1973, G. F. Chapline, M.H. Johnson, E. Teller & M.S. Weiss,

discussed the possibility of creating a very hot and dense nuclear matter in the laboratory

by colliding highly energetic heavy-ions [45]. Also, in 1975, J. C. Collins and M. J. Perry

discussed the possibility of existence of such extreme condition of temperature and energy

density in the core of neutron star, exploding black holes and during very early stages of

universe expansion after the big-bang [46]. So, QCD predictions on asymptotic freedom of

quarks and gluons [47, 48] can be tested by probing nucleons at very high four-momentum

transfer squared Q2 (as Q2 → ∞, the coupling constant αs(Q2) → 0) [49, 50]. Later,

in the early 21st century heavy-ion collision experiments managed to provide the experi-

mental evidence for the creation of this new state of deconfined quark and gluon known as

the Quark-Gluon Plasma (QGP). Historically, it is said that the QGP state is ”thermally

equilibrated state of matter in which quarks and gluons are deconfined from hadrons, so

that color degree of freedom become manifest over nuclear volume rather than a nucleonic

volume”1.

Understanding the evolution and dynamics of systems involving strong interaction makes

the study of relativistic heavy-ion collisions an interdisciplinary and emerging field of re-

search in high energy physics. The matter produced in relativistic heavy-ion collision en-

ables the physicists to explore the phase diagram of QCD, the quantum theory which gov-

erns the strong interactions. In a broader sense, it extracts information about the properties

and states of matter that exist at very high temperatures and high densities produced by col-

liding highly accelerated particles. The prediction of standard model can also be examined

by exploring heavy-ion collisions.

A wide variety of ions such as Niobium (9341Nb), Gold (19779 Au), Sulphur (3216S), Lead

(20882 Pb) and Xenon (12954 Xe) has been accelerated in different experiments such as Super

Proton Synchrotron (SPS) [52], Relativistic Heavy Ion Collider (RHIC) [53], Large Hadron

Collider (LHC) [54]. The basic criteria that needs to be followed in the selection of a nu-

cleus are:

• A sufficiently high nucleon density is required for QGP formation and that is why we

go for heavy ions.

• A spherical nucleus is required to simplify the collision geometry (However, there is
1This definition is taken as it is from Ref. [51]
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also a growing interest in the study using nonspherical prolate Uranium nuclei as it

can provide additional information about the dynamics of the system [55, 56, 57, 58]).

• Nucleus should be stable so that it will not decay during the acceleration process.

Gold and lead are the most extensively used nuclei in heavy-ion collision experiments.

RHIC experiment used 197
79 Au because it is the only stable isotope of gold. With advance-

ments in technology, the European Organization for Nuclear Research (CERN) manages

to accelerate heavier ions hence chooses 208
82 Pb, which is the heaviest stable spherical nu-

clei known so far. Although Bismuth (20983 Bi) is also stable, it has a non-zero quadrupole

moment and hence not spherical.

As briefly mentioned above, QCD provides the theoretical description of the strong par-

tonic interaction, in the next section, we will discuss the formalism and the prediction of

this quantum theory of strong interaction.

1.1 Quantum Chromodynamics

The underlying quantum theory, which describes the interaction between quarks and gluons

in a strongly interacting matter, is known as QCD.

Lagrangian of QCD is given as

L = q(iγµ∂µ −m)q − g′(qγµTaq)Ga
µ −

1

4
Ga
µνG

µν
a (1.2)

with

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gfabcGb
µG

c
ν (1.3)

where Ga
µ are gluon field, q, q are quark and antiquark fields, g′ is coupling strength, Ta

are generators, m is quark mass and γµ are gamma matrices. The coupling strength g′

determines the strength of interaction between constituent quark matter in the system.

One loop running β function for QCD is given as

µ′
dg′

dµ′
= −bg′3 ⇒ g′ =

g′0√
1 + 2bg′0ln(µ′/µ′0)

(1.4)

where b =
11−

2nf
3

16π2 . Here nF is number of quark flavors, µ′ is the energy, µ′0 is reference

energy scale and g′0 is value of g′ at that reference energy scale. From Eq. (1.4) we observe
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that the coupling strength decreases with increasing energy scale. The Fig. 1.1 depicts the

variation of strong coupling constant with the momentum transfer scale.

So the Eq. (1.4) and corresponding figure 1.1 tells us that if we keep on increasing en-

ergy scale, we reach a certain threshold value after which quark and gluons appear to be

asymptotically free from their nucleonic volume and form a state called the QGP state. This

decline in coupling strength with energy is popularly known as the asymptotic freedom.

QCD is an elegant approach to study the quark interactions. In order to study the evo-

lution dynamics of such a strongly interacting system, we apply perturbation theory which

involves applying small perturbation and see how the system behaves to this change. How-

ever, the increase in the QCD coupling strength in low energy regime means that the per-

turbation theory is not a viable option to study the dynamics of partons interaction. Several

solutions to this problem is suggested and, in this section, we will discuss the MIT Bag

model and the Lattice QCD model developed to study the quark interactions.

1.1.1 MIT Bag Model

To understand the laws of motion of quarks confined inside a hadron, bag model was pro-

posed for the first time in 1967 by P. N. Bogoliubov [59]. This model assumes a bag of

fixed, infinite, square-well, scalar potentials [60] and quarks are completely confined within

this bag. This model lacked a stabilizing pressure which was later included in the MIT bag

model. The MIT bag model considers a bag of finite dimension where quarks are confined

in it (quarks are assumed to be massless inside the bag). This model also assumes that

the quarks are infinitely massive outside the bag. Confinement is the result of the balance

between the bag pressure B, which is directed inwards and the outward pressure caused by

the quarks field [61].

In the framework of the MIT bag model, for a system of N quarks confined in a bag of

radius R, the energy is given as [62]:

E =
2.04N

R
+

4π

3
R3B (1.5)

At the equilibrium radius, which is determined by the solution of dE/dR = 0, the bag
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pressure constant ‘B’ is given as:

B1/4 =

(
2.04N

4π

) 1
4 1

R
(1.6)

Considering a three quarks system and a confinement radius of 0.8 fm, the value of bag

constant is:

B1/4 = 206 MeV (1.7)

Different groups have calculated the value of bag constant and the values vary significantly

with the Los Alamos National Laboratory (LANL) group reporting a value of 145 MeV

[63] whereas a higher value of 235 MeV is reported by the group at CERN [64].

This model also describes the formation of a deconfined state of quarks. This state is

achieved when the inward bag pressure is not sufficient enough to hold the outward pressure

exerted by quarks. This large pressure of quark can occur at very high temperature or very

high number density. For example, as calculated in Ref. [62], at T = 0 transition from

hadronic matter to QGP occurs at a critical baryon number density of 0.72/fm3, whereas,

this transition occurs at a critical temperature of 144 MeV for the case of no net baryon

number.

1.1.2 Lattice QCD

The growth of the QCD coupling constant in the infrared (low energy) regime limits the

applicability of perturbative QCD theories only to high energies. This leads to serious

problems in developing the theoretical description of QCD matter produced during high

energy collision.

The solution to this problem was proposed in terms of a Lattice gauge theory by Kenneth

Wilson [40] in 1974. His proposal was to discretize the Euclidean space-time into lattices

with lattice spacing a. This discretization of space-time reduces the degree of freedom of

fields from infinity to a finite value which can be controlled. However, the finite lattice

dimension breaks the Lorentz invariance, which can be restored in the continuum (a→ 0)

limit. A simple two-dimensional representation of lattice is shown in the Fig. 1.2. Where

the site represent the lattice points and the shortest distance between two adjacent sites are

the link. Lattice QCD calculations are based on the path integral approach and one can

calculate the partition function in this framework. Following the standard thermodynamics
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Figure 1.2: A sample lattice in two dimension. (Figure from Ref. [2])

relations, we can extract different thermodynamical variables using the partition function.

The importance of the discretization of space-time is that it limits the ultraviolet diver-

gence in theory by utilizing lattice spacing a as an ultraviolet regulator. The continuum

theory can be recovered by applying the limit of vanishing lattice spacing.

The presence of large number of links on the lattice makes Lattice QCD calculation

extremely computer-intensive. Limitation in the availability of computational resources

constrains the usage of Lattice QCD by restricting the minimum value that can be taken for

spacing a.

Figure 1.3: Variation energy density normalized with T 4 as a function of temperature from
lattice QCD calculation for 6, 8 and 10 lattices. (Figure from Ref. [3])

Figures above depicts the variation of normalized energy density (Fig. 1.3), entropy den-



8 Chapter 1. Introduction

Figure 1.4: Variation entropy density normalized with T 3 as a function of temperature from
lattice QCD calculation for 6, 8 and 10 lattices. (Figure from Ref. [3])

Figure 1.5: Variation pressure normalized with T 4 as a function of temperature from lattice
QCD calculation for 6, 8 and 10 lattices. (Figure from Ref. [4])

sity (Fig. 1.4) and pressure (Fig. 1.5) with temperature based on the Wuppertal-Budapest

simulations [3, 4]. Here we observe a steep rise in ε/T 4, p/T 4 and s/T 3 in narrow tem-

perature range after which it saturates at higher temperature. Temperature dependence of

these thermodynamic variables indicate a rapid change in degree of freedom in temperature

range of 150− 200 MeV.

Although Lattice QCD become quite successful in the non-perturbative calculation, there

are certain bottlenecks that limit its application in understanding dynamic properties of

deconfined QCD matter. There are two broad categories of the property of QGP, namely

the static and dynamic (or real-time) properties [65]. The static includes a set of properties

that can be directly deduced using the Euclidean formulation of finite temperature gauge



1.2. Quark Gluon Plasma 9

theory. Lattice QCD plays a crucial role in studying the static properties of QGP in a

strongly coupled, non-perturbative regime. However, the problem arises in studying the

dynamic properties because they are formulated in Minkowski space, whereas Lattice QCD

is inherently Euclidean. Hence, it is a challenging task to utilize Lattice QCD to study

particle production in the low energy regime.

To overcome this constraint in developing theoretical formalism to study the transverse

momentum spectra in the heavy-ion collision, we resort to phenomenological models to

study the low-p
T

part of the spectra, which corresponds to the particle produced in soft

processes. On the other hand, we use a well defined QCD based power-law form of distri-

bution function to study the high-p
T

regime where hard QCD processes dominate particle

production [66].

Both the MIT bag model and the Lattice QCD formalism point toward the formation of

a deconfined state of quark and gluons where the partons are free to move over a nuclear

volume rather than being confined into a nucleonic volume. So far, we have discussed the

theoretical understanding of the QGP and the quark interaction. In the next section, we

will discuss the QGP state and some of the experimental observables that point toward the

formation of QGP in heavy-ion collider experiments.

1.2 Quark Gluon Plasma

The QGP is a transient state of QCD matter where quarks and gluons are no longer bound

into hadrons [67]. Such a state of matter is expected to exist in the primordial universe,

a few microseconds after the Big Bang, and may still exist today in the cores of neutron

stars. Thus, the importance of the QGP study is two-fold: extracting the information about

the early universe and revealing the nature of various phases of QCD matter. The collision

experiments performed to study particle production involve proton-proton (pp), proton-

nucleus (pA) and nucleus-nucleus (AA) collisions [68, 69, 70]. The pp collision provides

baseline data in the nuclear collision study. Meanwhile, pA collision aids in understanding

the transition from pp to AA collisions. In particular, AA collision possesses high particle

multiplicity and serves as an important tool in understanding QCD matter and its phases

[71]. It is evident from the experiments conducted at the RHIC [72, 73, 74, 75] and LHC

[76, 77, 78] that QGP is formed during heavy-ion collision at relativistic energies and be-
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haves as quasi-free particles. The experiments conducted for AA collisions have indicated

that QGP behaves like a hot and strongly interacting matter and its small shear viscosity

makes it a nearly perfect fluid. Let’s look into various experimental signatures that are

widely used to explore the properties of QGP formed in heavy-ion collision.

1.3 High Energy Collision Experiments

The heavy-ion collision experiments at projectile beam energies greater than 10 GeV per

nucleon have been pioneered initially in mid 80’s in Alternating Gradient Synchrotron

(AGS) at Brookhaven National Laboratory (BNL) and in SPS at CERN [79]. The major

breakthrough in heavy-ion collision experiments took place in 2000 when the first mag-

nificent machine in RHIC was set into operation at BNL, New York. Later, the advent of

technology upgraded the collision energy, ion beams and detector fields and made it pos-

sible to accelerate particles from a few GeV to TeV energies in LHC at CERN. RHIC and

LHC are the two largest inoperation heavy-ion colliders. RHIC started its mission in 2000

and is the only collider that collides spin-polarized proton beams. RHIC has four detec-

tors PHOBOS, BRAHMS, STAR and PHENIX. PHOBOS and BRAHMS terminated their

operation in 2005-2006. PHENIX is under upgradation from 2016 for its new state-of-art

sPHENIX.

LHC at CERN also hosts four major experiments, namely A Toroidal LHC ApparatuS

(ATLAS), Compact Muon Solenoid (CMS), A Large Ion Collider Experiment (ALICE)

and Large Hadron Collider beauty (LHCb). ALICE is an experimental setup dedicated to

study the heavy-ion collision. A good performance at high multiplicities makes ALICE

detector system a suitable choice for exploring the high multiplicity pp and AA collision

events. Further, excellent particle identification capabilities make ALICE detector suitable

for studying the different conserved quantities such as strangeness, baryon number and

charge which has a direct connection to thermal system and can shed some light on the

phase transition.

The heavy-ion collision at ultra-relativistic speed in the experiment can deposit a large

amount of energy in a tiny volume providing enough energy density for the formation of

QGP state. The extremely small time scale of QGP formation (∼ 10−22s) and limited

detector capabilities makes it impossible to perform direct observation and confirm the
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formation of this state in heavy-ion collision. However, there are some indirect signatures

that suggest the presence of a strongly interacting medium.

1.4 QGP Observables

The formation of QGP can be manifested through various observables - global observables,

jet quenching, photon and dilepton production, J/Ψ suppression, strangeness enhancement,

antibaryon production, and strong collective flow. Initially, there was no unique signal that

can endorse QGP formation. Jet quenching, strangeness enhancement, and J/Ψ suppres-

sion were proposed as QGP signatures. Later, the commencement of various experiments

along this line predicted other signatures like the collective flow and quark number scaling.

1.4.1 Jet Quenching and Nuclear Modification Factor

The energy modification of high-p
T

partons due to QGP medium is studied in terms of

jet suppression in heavy-ion collisions with respect to pp collision where there is no in-

medium energy loss. Hard scattering processes occurring in the early stage of collision

produce adjoining parton pairs with high transverse momentum. The beam of collimated

hadrons produced from the fragmentation of outgoing partons that travel in the direction of

initially produced partons is called jets. The recoiled partons dissipate energy and finally

fragments into hadrons. Jets are produced in the early stages of collision and interact with

the surrounding ultra-dense and hot medium. This interaction will cause broadening and

softening of final state jet showers – called jet quenching predicted by Xin-Nian Wang and

Mikles Gyulassy [80]. Comparison of jets in AA collision with pp collision can provide

signal of possible QGP formation as the pp collision will not have any medium for jet to

loose energy. This jet quenching or high-p
T

suppression is expressed in terms of the nuclear

modification factor (RAA). It is a p
T

-dependent observable and provides us with crucial

information about the difference in the system produced in pp and pA or AA collisions.

Partons are expected to lose some energy as they pass through the QGP medium. Hence,

high-p
T

particles, which are primarily produced from the jet, provide an essential tool to

understand the energy loss by parton as they traverse the medium. This in-medium energy

loss of parton leads to the suppression of p
T

-spectra in the high-p
T

region compared to the

spectra expected by considering heavy-ion collision as an incoherent superposition of pp
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collision. This suppression in the production of high-p
T

particles is quantified using the

nuclear modification factor.

Measurement of nuclear modification factor has been carried out by different experiments

with varying collision energies. WA98 experiment in SPS at CERN measured the nuclear

modification factor for 12.7% most central PbPb collision at 158A GeV [81]. Different

experiments at RHIC such as BRAHMS, PHOBOS [73], STAR [82] and PHENIX [75] also

analyzed the suppression factor for different collision energies accessible at RHIC. With the

commissioning of LHC, higher energy collisions are accessible and nuclear modification

at these energies are studied by ALICE [16], CMS [27, 28] and ATLAS [5] experiments.

Significant suppression in nuclear modification factor at mid-p
T

range has been observed at

1−10 1 10 210
 (GeV/c)

T
p

1−10

1

A
A

R

0­5 % (ATLAS) 0­5 % (ALICE)

10­20 % (ATLAS) 30­40 % (ATLAS)

50­60 % (ATLAS) 60­80 % (ATLAS)

Figure 1.6: Variation of Nuclear modification factor of charged particles with centrality
for PbPb collision measured by ATLAS experiment (|η| < 2.0) [5] at

√
sNN = 2.76 TeV

energy along with most central data ofXeXe collision at 5.44 TeV from ALICE experiment
(|η| < 0.8) [6].

RHIC (pT > 2 GeV/c) and LHC (5 ≤ pT ≤ 10 GeV/c) energies reflecting strong medium

effect on particle production as shown in Fig. 1.6.

1.4.2 Strangeness Enhancement

The strangeness content of quark matter is cooked up when the fireball is created. Strangeness

is among one of the initially proposed signals of formation of the deconfined state of mat-

ter [83, 84]. The colliding hadronic matter is made up of “up” and “down” quarks and

their quark-antiquark pairs can be easily produced due to their small masses. On the other
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side, strange quarks are massive and their quark-antiquark pairs can be created only at high

temperature or energy density. This temperature scale is equivalent to the magnitude of

temperature required to produce QGP. The detection of strange quarks is sensitive to evo-

lution of QGP [84, 85, 86]. Creation of strange quarks is expected to follow gluon fusion

reaction gg → ss̄ [87]. The strange quark-antiquark pairs formed ultimately reunite with

available non-strange quarks to form final state strange hadrons, which are detected through

tracks formed by their decay products. This enhancement is studied in terms of strangeness

enhancement factor. The experimental data on strangeness enhancement in AuAu collision

at
√
sNN = 200 GeV is shown in Fig. 1.7. Different research groups have reported the

strangeness enhancement from time to time [88, 89, 90, 91, 7]. The enhancement has also

Figure 1.7: The variation of enhancement factor for strange hadrons produced in CuCu
and AuAu collision at 200 GeV [7].

been found in hidden strange φ meson [92]. However, the strangeness enhancement in AA

collision with respect to the pp collision is still debatable on the basis of canonical suppres-

sion. It is predicted that strangeness production is limited in case of pp collision to conserve

strangeness, which gives rise to canonical suppression [93, 94, 95]. The strangeness yield

and yield of photons and dileptons is related to the initial conditions of QGP. But little

background in case of strangeness and its source (gluons) make it a better signal to study

QGP.
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1.4.3 Electromagnetic Probes

Hadrons are the final state product produced from the freeze-out surface whereas photons

and dileptons are emitted from the initial state throughout the entire volume. The photons

and dileptons do not carry any color charge and undergo only electromagnetic or weak

interaction, hence they escape from the strongly interacting medium without undergoing

through any interaction in the QGP medium. So they can bring lot of information about the

QGP, hence they are categorized as electromagnetic probes. The photons produced in high

energy collision can be divided into two different categories, direct photon are produced

during the initial collision and through the decay of partons during the early stage of colli-

sion, whereas the decay photons constitute the photons produced by the decay of hadrons.

There are various types of direct photons, including prompt photons, fragmentation pho-

tons, pre-equilibrium photons and thermal photons. The annihilation, Compton process and

Bremsstrahlung are important photon production processes. Direct photon can be consid-

ered as a QGP diagnostic probe, but large background from hadron decay (mainly) hinders

the signal. Many methods have been introduced to abolish background, but it still needs

attention. The study of photons can give us information about the temperature of the plasma

and the evolution of the system size. The elliptic flow of photons can also shed some light

on the momentum anisotropy of initial partons. Dileptons emerging in the collision pro-

cess from the decay of virtual photons are also a profound signal of quark matter. Photons

and dileptons are produced by the annihilation of quark-antiquark and are considered as a

primary diagnostic tool [50]. The yield ratio of photons to dileptons is 300, but the back-

ground in the case of dileptons is very low compared to photons. Further, dilepton pairs

have some other origins and their production pattern is difficult to interpret. A detailed

discussion regarding the electromagnetic probes in high energy collision can be found in

Ref. [96].

1.4.4 J/ψ Suppression

The most common bound state of charm quark-antiquark (J/ψ = cc̄) is observed to be sup-

pressed in 158A GeV PbPb collision. This suppression has been linked to the formation of

QGP, which hinders the binding of charm quark-antiquark (color screening) or break down

their bound state. Charm quarks are formed when colliding nuclei begin to penetrate each
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other as colliding nucleons have sufficient energy to produce charm quarks. The existence

of a QGP during the evolution process hinders the formation of the charmonium as the dis-

tance travelled by J/ψ meson depends on the impact parameter. This effect is predominant

in most central collisions and offers an opportunity to determine interaction strength. It was

proposed in 1986 by Matsui and Satz [97] that J/ψ suppression w.r.t pp collision is a sig-

nature of QGP appearance which was observed in NA50 [98] for the first time and later in

other experiments [99, 100, 101]. The Fig. 1.8, shows a clear suppression of the production

Figure 1.8: Variation of nuclear modification factor with Npart for J/ψ produced in AuAu
collision at

√
sNN = 200 GeV [8].

of J/ψ as we move from peripheral to the central collision. Such suppression are also ob-

served in pA collision which is popularly known as the Cold Nuclear Matter (CNM) effect.

However, as discussed in Ref. [8], the magnitude of suppression in the heavy-ion collision

is much large and cannot be accounted for by simply extrapolating the CNM effects of pA

collision.

From an experiment point of view, an important step ahead in understanding the phase

transition is to scan the QCD phase diagram and look for the critical point. We will discuss

it in detail in the next section.
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1.5 QCD Phase Diagram

Phase transition is a physical processes in which certain thermodynamical property of a

system changes (mostly abruptly) due to change in external parameters such as pressure,

temperature etc. Following the Ehrenfest classification, phase transition can be categorized

based on the order of the lowest derivative of Gibbs free energy (G) which shows a disconti-

nuity upon the transition. During a first order phase transition, entropy {S = −(∂G/∂T )P}

and volume {V = (∂G/∂P )T} is discontinuous. In a second order phase transition, spe-

cific heat {cp = (∂2G/∂T 2)P} shows a discontinuity across a transition. Another type of

transition where there is a phase change is the “crossover” transition. In crossover transi-

tion, the phase change occurs in a smooth manner without involving any discontinuity in

the thermodynamic observables.

It is a natural quest to ask whether the QGP formation is accompanied by some phase

change and if so, what is the phase diagram of the QGP? To answer this question, experi-

ments have been exploring the QCD phase diagram in order to search for the critical point

and to gain more insight into the quark-hadron phase transition.

QCD phase diagram is a plot of temperature (T ) as a function of chemical potential (µ)

of the system under consideration (in our case, we consider chemical potential to be baryon

chemical potential (µB)). We can obtain temperature T from p
T

-spectra and chemical

Figure 1.9: QCD phase diagram.

potential µB from the ratio of hadrons and using these value, we construct T − µB phase
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diagram. In the QCD phase diagram, quark-hadron phase transition at µB close to zero is

expected to be a simple crossover, whereas it is a first-order phase transition at higher µB.

So based on the phase diagram, there are two different ways to explain the QGP. One

way is to increase the temperature at very low baryon chemical potential until we cross

the transition temperature. Other way is to increase the baryon chemical potential at low

temperature. As per Lattice QCD calculations, transition in the direction of increasing tem-

perature is a crossover and the transition point along increasing baryon chemical potential

is a first-order phase transition. And the critical point lies at the end of the first-order phase

transition.

The study of the QCD phase diagram to search for critical point and phase boundary

of the quark-hadron phase transition is one of the major goals of current particle physics

experiments across the globe. Beam Energy Scan (BES) program has been started at RHIC

to scan the QCD phase diagram by colliding AuAu with varying collision energies starting

from 39 GeV to lowest beam energy of 7.7 GeV. These results were complemented by the

earlier datasets for AuAu collision at 62.4, 130 & 200 GeV. The main aim of BES is to

find the critical point and the phase boundary in QCD phase diagram. As we discussed,

any abrupt change in the signatures of QGP with decreasing energy will be a smoking gun

signal of the existence of the QCD phase boundary, below which QGP phase cannot exist,

indicating a quark-hadron phase transition.

It has been suggested in several manuscripts [102, 103, 104] that there would be an

enhancement in fluctuation in multiplicity distribution of net-charge, net-strangeness and

net Baryon number near the critical point. Higher moments of the distribution of these

conserved quantities are expected to be sensitive at the phase boundary. Product of moments

such as κσ2 for the net baryon distribution is believed to show a significant deviation from

unity near the critical point [105, 106]. Further, skewness (S ′) of the distribution as a

function of energy density can also show a change in sign near the phase boundary [102,

107].

A notable reduction in net-electric charge fluctuation as compared to that in ordinary

hadron gas system is also expected in the phase transition from QGP to hadronic phase

because the electric charge in the QGP phase is fractional [108, 109, 110]. A detail under-

standing of the QGP and the study of QCD phase diagram requires the thermodynamical

consideration of the QGP state.
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1.6 Thermodynamics of the QGP

The study of the QCD phase diagram is important to extract information about the type

of phase transition and the critical point. To explain a “phase transition”, one needs to

know the order parameter of such phase changes. And hence, a detailed study of the phase

transition requires the information about the thermodynamical quantities such as the tem-

perature and the chemical potential etc., of the system under consideration. In experiments,

we only have the information of kinematic observables such as the transverse momentum,

pseudorapidity, etc. Hence, a statistical thermodynamical description of particle production

is necessary to extract the thermodynamical parameters of interest from the distribution of

final state particles.

Out of several kinematic observable, the energy distribution of final state particles is an

important variable in the study of thermodynamic properties of the fireball created during

high energy collision. As shown in Eq. (B.5), the energy of a particle is related to its

transverse mass (mT =
√
p2T +m2) and rapidity as:

E = mT cosh(y) (1.8)

Since most of the studies are performed in the mid-rapidity region where cosh(y) ∼ 1

and hence E ∼ mT . This makes the transverse momentum spectra of final state particles

an important observable and the proper parameterization of its distribution an important

challenge that needs to be addressed. The next section includes a detailed discussion about

the transverse momentum spectra.

1.7 Transverse Momentum Spectra

The p
T

-spectra is an important variable for studying the QCD phase diagram. It plays

a pivotal role in understanding the particle production mechanism and evolution of the

system. The analysis of the p
T

-spectra of final state hadrons is crucial in understanding the

mechanisms of nuclear collisions and the properties of QGP. The importance of transverse

momenta and its properties are listed below:

• The component of momenta transverse to the beam axis has very little contribution

from the beam remnants which act as a huge background in the longitudinal direction,
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hence the transverse momentum is preferred over the longitudinal momentum.

• As discussed earlier, the transverse momentum spectra also act as a proxy for the

energy distribution. So, it can be fitted with a statistical thermal model to extract the

thermodynamical quantities such as the temperature of the system.

• The suppression of transverse momentum of the high-p
T

particles in central heavy-

ion collisions compared to pp collisions can signal the presence of a QGP medium.

This suppression of p
T

can be explained through the large energy loss of the high

momentum partons moving in a high density medium of color charges.

• The information about the radial flow can be extracted by analyzing the transverse

momentum spectra. In central heavy-ion collisions with vanishing impact parameter,

radial flow is supposed to play a significant role in the thermodynamic expansion of

the produced fireball.

The measurement of the p
T

-spectra has been carried out in the collision at different energy,

collision system and centrality’s by several experiments. A brief discussion about different

experimental data is provided in the next section.

1.8 Experimental data on transverse momentum spectra

Among the first high energy accelerator for heavy-ion was AGS [111] at BNL, which started

in 1960. Experiments like E866, E895, E891, E917, E802, E877 has measured the trans-

verse mass spectra of different hadron at several low energies like 2A GeV, 4A GeV, 6A

GeV, 10.8A GeV [112, 113, 114, 115, 116, 117, 118, 119, 120, 121]. The measurement of

the p
T

-spectra of φ meson with centrality has revealed an interesting feature of heavy-ion

collision. The yield of both strange φ meson and the non-strange π meson increases as we

move toward central collision, however, as discussed in the Ref. [112], the ratio of φ to π

meson increases as we move toward central collision [112]. This indicates that the enhance-

ment in the production of strange hadrons is stronger than that of non-strange hadrons as

we move toward central collision pointing toward the strangeness enhancement which is a

signature of QGP formation.

SPS is another high energy accelerator that accelerated heavy ions at several beam ener-

gies like 20, 30, 40, 80 and 158A GeV etc. The transverse mass ( mT =
√
m2 + p2T ) spec-
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tra have been measured for different hadrons using NA44, NA49, NA57 and NA61/SHINE

experiment [122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133]. From the
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Figure 1.10: Transverse momentum spectra of π+ produced in most centralAuAu collision
at different energies in BES program [9, 10, 11, 12, 13]
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Figure 1.11: Transverse momentum spectra of K+ produced in most central AuAu colli-
sion at different energies in BES program [9, 10, 11, 12, 14]

study of the energy dependence of charged hadron spectra, a non-monotonic dependence

in the ratio of K+ to π+ on energy has been observed with a peak around 40A GeV after

which the value are nearly constant. This feature is specific to the heavy-ion collision as no

such energy dependence was observed in hadron collisions. As discussed in the Ref. [122],

this energy dependence can be explained by considering the possibility of the formation
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Figure 1.12: Transverse momentum spectra of proton produced in most central AuAu col-
lision at different energies in BES program [9, 10, 11, 12, 13]
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Figure 1.13: Transverse momentum spectra of charged hadrons at different centrality pro-
duced in 200 GeV AuAu collision [15]

of a transient deconfined state in the PbPb collision above 40A GeV. The measurement of

negatively charged hadrons in the collision with different nuclei indicates that their mean

transverse momentum at midrapidity does not depend on the mass of colliding nuclei [123].

Other system size dependent studies of hadron spectra also reveal that there is an enhance-

ment in baryon stopping [124, 129] and the collective flow [125] with an increase in system

size. The study of the energy dependence of inverse slope parameter extracted from the

transverse mass spectra of positive and negative kaons shows a plateau at low SPS energies
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Figure 1.14: Transverse momentum spectra of charged hadrons at different centrality pro-
duced in 2.76 TeV PbPb collision [16]
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Figure 1.15: Transverse momentum spectra of charged hadrons at different centrality pro-
duced in 5.02 TeV PbPb collision [17]

[133]. Further, mean transverse mass (〈mT 〉) also shows energy independence at low SPS

energies. These two observations are in contrast to the rise observed in lower AGS energies

and higher RHIC energies.

The p
T

-spectra for several identified particles (π, K, p, Λ, χ, Ω, φ) have been studied

extensively in the experiments at SPS, RHIC and LHC. The fixed target experiments such

as NA49 and NA61/SHINE have carried out the measurement of spectra by accelerating

the heavy-ion at 20A, 30A, 40A, 80A, 158A etc., in the SPS accelerator at CERN. The
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Figure 1.16: Transverse momentum spectra of charged hadrons at different centrality pro-
duced in 5.44 TeV XeXe collision [6]
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Figure 1.17: Transverse momentum spectra of negative hadrons produced in most central
AuAu collision at different energies in BES program [18]

higher center of mass energies has been achieved in the RHIC accelerator. The experi-

ments at RHIC are the collider experiments and the measurement of the spectra has been

performed by accelerating different heavy-ion (such as AuAu, CuCu) at energies rang-

ing from 7.7 GeV upto 200 GeV. The Fig. 1.10, 1.11 & 1.12 show the p
T

-spectra of π+

, K+ and protons respectively at the highest RHIC energy. Highest energies achieved so

far in particle accelerator is at LHC in CERN. Four main experiment at CERN, ATLAS,

CMS, LHCb and ALICE performed measurement of p
T

-spectra for different particles in
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Figure 1.18: Transverse momentum spectra of deutron produced in PbPb collision at dif-
ferent centrality measured by ALICE experiment [19].
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Figure 1.19: Transverse momentum spectra of He3 produced in PbPb collision at different
centrality measured by ALICE experiment [19].

PbPb and XeXe collision at 2.76, 5.02 & 5.44 TeV energies. Apart from the identified

particle spectra, experiments have also measured the inclusive charged hadron spectra. The

Fig. 1.13, 1.14 & 1.15 show the transverse momentum spectra of charged hadrons at differ-

ent centrality classes produced in 200 GeV AuAu collision, 2.76 TeV PbPb collision and

5.02 TeV PbPb collisions respectively. The Fig. 1.16 presents the p
T

-spectra of charged

hadrons produced in 5.44 TeV XeXe collision whereas the Fig. 1.17 shows spectra of neg-

ative hadron produced in AuAu collision at various energies of the BES program. ALICE
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experiment also analyzed deutron and He nuclei and anti-nuclei production in PbPb colli-

sion at 2.76 TeV [19]. The transverse momentum spectra of deuterons andHe3 produced in

PbPb collision at different centrality measured by ALICE experiment is shown in Fig. 1.18

and Fig. 1.19 respectively. In the study of p
T

-spectra of nuclei, a decline in yield by a factor

of 307± 76 has been observed for each additional nucleon.

The Fig. 1.20 shows variation of mean transverse momentum 〈pT 〉 with mass of differ-
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Figure 1.20: Dependence of mean transverse momentum 〈pT 〉 versus particle mass at dif-
ferent centrality in PbPb collision measured by ALICE experiment [19].

ent particle species. It can be inferred from Fig. 1.20 that mean transverse momentum

increases with the increase in particle mass. This observation is in line with the expectation

considering the particles are emitted from a radially expanding source [19].

In phase I of the BES program, AuAu collision has been performed for 39, 27, 19.6, 11.5

and 7.7 GeV beam energy. These energies and other collision results at 62.4, 130 and 200

GeV allow us to explore phase diagram over a broad range of baryon chemical potential µB.

First-order phase transition and critical point are expected to exist within the BES energy

range [134]. A systematic study of several observables in the heavy-ion collision has been

performed over BES wide energy range in order to understand the evolution dynamics of

the system produced in the collision with varying energy and ultimately look for the critical

point and phase boundary.

An enhancement in hadronic interactions compared to the partonic ones has been ob-

served with the decrease in energy, particularly below 11.5 GeV [135]. Several other pre-
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liminary results helped in understanding the QCD phase diagram. However, statistics are

not sufficient in this phase of BES in order to arrive at any conclusion. Hence, BES phase II

has been proposed by the collaboration to explore the phase diagram with increased statis-

tics at low energies. BES phase II is expected to become operational by 2020. The AuAu

collision will be performed in BES II with
√
sNN = 19.6, 14.5, 11.5, 9.1 and 7.7 GeV

energies.

Apart from the heavy-ion collision, the measurement of transverse momentum spectra

has also been performed for smaller collision system such as pp and pA collision. Exper-

iments such as ATLAS [136] and CMS [26, 27, 28] have measured the spectra of charged

hadron over a broad p
T

range upto few hundred GeV/c produced in pp collision at vari-

ous center of mass energies. The p
T

-spectra of identified particles produced in pp collision

have also been studied in different experiments. For example, in Ref. [137, 138, 139, 140]

the PHENIX collaboration have provided the spectra of neutral & charged mesons and the

direct photon produced in pp collision at 200 GeV. These results are presented in terms of

invariant differential cross-section and it is related to transverse momentum spectra as:

E
d3σ

dp3
= σppinel ×

1

2πpT

1

Nevt

d2N

dpTdy
(1.9)

The measurement of p
T

-spectra are one of the first & initial results published by almost

all experiments. In this context the p
T

-spectra for pp collision has been published for

higher center-of-mass energy at ALICE [141, 142, 143, 144, 145, 146], CMS [147], LHCb

[148, 149, 150] etc. Recently released multiplicity divided data on the transverse momen-

tum spectra of hadrons produced in pp collision at different energies measured by AL-

ICE experiment [151, 29] has opened up a new avenue to search for the presence of QGP

like medium in small collision system. The ALICE experiment results on the spectra of

strange hadrons discussed in the Ref. [152] show the enhancement in the production of

multi-strange particles pointing toward the formation of a QGP like medium in the high

multiplicity pp collision.

The measurement of spectra in pA collision play an important role in the study of the

CNM effect. As discussed in section 1.4.1, to study the in-medium energy loss due to

the presence of strongly interacting QGP, other effects that can mimic these observations

need to be identified and removed. Some of the CNM effects include the modification in

the parton distribution function in nuclear environment (popularly known as the nuclear
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shadowing). Another such effect is the Cronin enhancement [153], where multiple scatter-

ing leads to the hardening of transverse momentum spectra in pA collision. To this end,

measurement has been carried for dAu collision in RHIC and pPb collision at LHC over

different energies and a brief discussion about these can be found in Ref. [154, 155, 156].

Problem Statement

As discussed in the previous sections, p
T

-spectra is an important observable and plays a

significant role in developing our understanding of the QGP medium created during very

early stage of heavy-ion collision. For this purpose, a proper parameterization of the p
T

-

spectra is the need of the hour to extract the quantities of interest. Although, QCD is

the underlying theory to describe the strongly interacting system, due to the asymptotic

freedom and the very nature of QCD coupling it is difficult to apply a perturbative theory in

the low-p
T

region. Hence we rely on the phenomenological models to explain the spectra.

Among these models, the most widely used are the statistical thermal and hydrodynamical

models.

The transverse momentum distribution contains a broad spectrum of physics information.

Several models have been developed to study the physics aspects of it. Further, owning the

difference in the underlying process of particle production, the p
T

-spectra can be divided

into two distinct regions. The low-p
T

regime of the spectra (below 2.2 − 2.5 GeV/c) can

be explained using soft nonperturbative QCD, whereas perturbative QCD comes into play

when we study the high-p
T

region, which corresponds to the hard scattering process. To

study the low-p
T

region of the spectra purely statistical models such as Boltzmann-Gibbs

(BG) approach [68], Levy [157, 158], and non-extensive Tsallis statistics [159, 160, 161]

have been introduced. Apart, from these the statistical hydrodynamical models such as

Boltzmann-Gibbs Blast-wave (BGBW) [162] and Tsallis Blast-Wave (TBW) [162, 163]

are also used to study the low-p
T

part of the spectra. The BGBW and TBW model are

the hydrodynamics inspired models taking into consideration the flow effect in high energy

collision. To parameterize high-p
T

part of the spectra, a well defined QCD inspired power-

law form of the distribution function is used. Further, the distribution function like q-

Weibull [24] also takes into account the effect of hard QCD processes which affect the

high-p
T

part of spectra. The detail of different models is provided in the third chapter of
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the thesis.

A complete model to explain transverse momentum spectra must include the non-

extensivity and collective flow on top of random thermal motion and should also be

able to explain the effects in high-p
T

range arising due to hard pQCD processes.

Although there are different models tackling different aspects of the physics, there

does not exist a unified model that can explain a broad p
T

range in a consistent

manner. It is important to note that although there are different underlying physics

governing perturbative and nonperturbative regimes, there is no fine line separating

these two regions of the spectra hence a unified model is necessary to take ultimate

benefit from the spectra.

With an aim of analyzing the broad p
T

range of the spectra and studying different as-

pect of it, this thesis presents the development of a unified statistical framework using the

Pearson probability distribution.

1.9 Thesis Plan

The primary work discussed in this thesis is related to developing a unified formalism to

study the transverse momentum spectra in both low- and high-p
T

region. An accurate theo-

retical description of transverse momentum spectra is the need of the hour to tap into the full

potential of the ongoing heavy-ion program at RHIC and LHC to study the confinement-

deconfinement phase transition. In this direction, we have worked toward developing a

unified thermodynamical formalism to study the particles produced in soft processes and

hard scattering process.

The thesis is organised in the following ways:

1. The second chapter of the thesis is devoted to the theoretical description of the statis-

tical mechanics and its application in high energy physics. A brief discussion about

the application of the statistical thermal models in studying the spectra of particles

produced in high energy collision is provided in this chapter.

2. In chapter 3, a detailed discussion of statistical thermal models developed to study

the distribution of particles in high energy collision is presented. This chapter also in-
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cludes a comparison of different models that are being used to study different aspects

of transverse momentum spectra.

3. The unified formalism developed based on Pearson distribution to study the parti-

cle production in high energy collision is described in chapter 4. This chapter also

includes a detailed thermodynamical consistency check of unified formalism.

4. The results obtained by fitting transverse momentum spectra over different energies,

different collision systems (pp, AuAu, PbPb , XeXe) and different particles such as

charged hadrons, pions is provided in the chapter 5.

5. Chapter 6 describes the application of unified formalism to study the pseudorapidity

distribution. This also includes a brief discussion about different quantities that can

be extracted using this framework, such as the speed of sound, isothermal compress-

ibility and flow parameter.

6. The final chapter includes the summary of the work done in the direction of param-

eterizing transverse momentum spectra and extracting crucial information related to

the medium created in high energy collision.

7. In Appendix A and B, the basics of heavy-ion collision, space-time evolution, kine-

matic observables and the collision geometry is discussed and the problem of low

χ2/NDF is addressed in appendix C.
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Chapter 2

Statistical Thermal Model

A proper parameterization of transverse momentum spectra of final state particles produced

in high energy collision is important as it can provide us with crucial information about the

macroscopic properties of the medium created during early stage of collision. Due to the

nature of QCD coupling constant, we cannot apply the perturbative QCD to explain the

spectra, hence we rely on the phenomenological models. Several formalism with different

physics input have been developed to study various aspects of the physics of p
T

-spectra.

Some of the broad categories of the models used to study the spectra are listed below:

– The statistical thermal models include Boltzmann-Gibbs (BG) approach [164], Tsal-

lis statistics [165] and its modified form such as Tsallis-Pareto [166] & Tsallis-

factorized statistics [167] etc. These are purely based on the standard statistical me-

chanics or its extension to the non-extensive regime.

– The statistical hydrodynamical models are the hybrid models incorporating the physics

of fluids into the statistical models. This include Blast-Wave model with Boltzmann

statistics [162] and the Blast-Wave model with Tsallis statistics [162] etc.

– The above models are primarily used to study low-p
T

region where the soft-processes

dominate the particle production. For high-p
T

region, where the particle production is

dominated by the hard scattering processes, the QCD based power-law form of func-

tion, known as the Hagedorn function [66], is used to fit the spectra. In Ref. [168],

a relativistic hard scattering model is also introduced to explain the contribution of

hard-scattering processes to the spectra. The q-Weibull [24] is another function in-

troduced to study the broader p
T

range of the spectra.
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– There are also several multi-component models such as two-component BG function

[169], modified Tsallis/Hagedorn function [25] etc., tackling different p
T

range with

different function.

Statistical thermodynamics is the backbone of many phenomenological models that are

used to fit the p
T

-spectra, so in this chapter, we will discuss the basic statistical mechanics

and its application in the high energy physics.

2.1 Basics of Statistical Mechanics

Statistical mechanics is the branch of physics in which we relate the microscopic parame-

ters of the constituent particle to the macroscopic properties of the system. We utilize the

laws of statistical mechanics to analyze the macroscopic thermodynamical behaviour of a

system of large number of constituent particles. In statistical mechanics, we characterize a

macroscopic system in terms of the state variables such as the energy density (ε), number

density (n′) and pressure (P ). These state variables can be further utilized to study the dy-

namics of the system. These quantities can be expressed in term of the distribution function

for energy as:

n′ =

∫
d3p

(2π)3
× f(E) (2.1)

ε =

∫
d3p

(2π)3
E × f(E) (2.2)

P =

∫
d3p

(2π)3
p2

3E
× f(E) (2.3)

The factor that is common to the above three equation and is of significant interest in statisti-

cal mechanics is the distribution function of the energy (f(E)) of constituent particles. Dis-

tinguishable particles are treated under Maxwell-Boltzmann (MB) statistics; Fermi-Dirac

(FD)statistics describe fermions and the Bose-Einstein (BE) statistics explain Bosons. It is

important to mention here that both FD and BE statistics reduces to MB statistics at large

temperature.

The production of large number particles during high energy collision motivates us to

apply statistical thermal models to study the equilibrium dynamics of the system created

during high energy collisions. We can utilize the momentum and energy spectra of the final

state particles produced in the collision to analyze several thermodynamical parameters
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such as energy density, temperature, pressure along with the level of equilibrium achieved.

Further, the temperature at which we expect the formation of QGP is of the order 1012 K,

hence we focus on the classical statistics since at such high temperature both FD and BE

statistics reduces to classical MB statistics.

2.1.1 A Brief History of the Application of Statistical Methods in High

Energy Physics

The application of statistical methods to study particle production was proposed for the

first time in 1948 by Heinz Koppe. The statistical model developed by Koppe includes the

particle production, formation and decay of resonances, along with the temporal and the

thermal evolution of the interacting system. It also included the approaches to apply MB,

FD or BE statistics. Koppe also estimated the equilibrium concentration of different type

of produced particles.

The rate of particle (meson) production is given as:

ν(T (t)) =
mbσ

π2~3
T (t)2e−

mbc
2

T (t) (2.4)

here mb is the meson mass, T (t) is the temperature at time t and σ is the cross section of

excited nuclei (resonances). Integration with respect to time [170] will result in

N = a0(m1 +m2)T0e
−mbc

2

T0 (2.5)

with m1(m2) representing mass of projectile (target), a0 = 0.031 and T0 is the temperature

of excited daughter nucleus. Substituting for the values for energy and T0 gives the estimate

for the number of mesons produced per unit time in 380 MeV αA collision to be ∼ 1.7 ×

10−4 [171, 172].

Two years later, in 1950, Fermi proposed a generalized statistical method for the pro-

duction of multiple particles in high energy collision. The abstract of his seminal work

reads: “A statistical method for computing high energy collisions of protons with multiple

production of particles is discussed. The method consists in assuming that as a result of

fairly strong interactions between nucleons and mesons the probabilities of formation of the

various possible numbers of particles are determined essentially by the statistical weights
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of the various possibilities.”1

Fermi model assumes that during high energy collision, energy is localized to a small

spatial volume which further decays into a different final state. This was a generalized

formulation in the sense that it starts with the basic cross-section formula and includes as-

sumptions about the matrix element of the decay process. Here, different decay modes are

assigned to statistical weights. This formalism finds its application in various processes

such as pion and strange particle production in nucleon-nucleon and meson-nucleon colli-

sion. Although the Fermi model was quite successful in the energy range corresponding to

cosmic ray, it breaks at lower energies.

In 1965, Hagedorn provided a systematic thermodynamic description for the strong in-

teraction. He assumed that “higher and higher resonances of strongly interacting particles

occur and take part in thermodynamics as if they were particles.”2 Based on the asymp-

totic bootstrap principle, a limiting temperature Ta was introduced in Ref. [174]. Hagedorn

introduced the mass spectrum J(m), which represents the distribution of number of res-

onances produced with masses lying between m and m + dm. The relation between the

number of resonances produced and their mass given as:

J(m) = const.m−
5
2 e

m
Ta (2.6)

Here, temperature Ta puts an upper bound on the temperature upto which the strong in-

teraction can occur. This model accurately estimates the total multiplicity of the hadron

produced in the collision. The modified version of this model is still used to understand the

hadronic phase of the system created in high energy collision.

A comparative study of the QCD thermodynamics obtained from the statistical ther-

mal model and the Lattice QCD simulation was performed in 2003 in the seminal work

[175, 176]. Results obtained from the statistical model were in line with Lattice QCD’s

expectation, further strengthening the need for a statistical approach to study particle pro-

duction. These seminal works on the statistical description of the spectra of final state

particle produced in high energy collision have, over the past several decades, guided the

formulation of a large number of models with an aim toward characterizing the particle

production spectra. Following the standard laws of statistical mechanics, we can formu-

1These lines are taken as it is from Ref. [173]
2This line is taken as it is from Ref. [174]
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late the distribution function for the transverse momentum spectra within the framework of

MB statistics. The detail description of p
T

-spectra in MB statistics is provided in the next

section.

2.2 Boltzmann-Gibbs approach

Boltzmann distribution is a simple distribution function used to describe the distribution

of classical particles over various energy states in thermal equilibrium. If we consider

purely thermal origin for the system created in high energy collision, BG distribution is the

most appropriate choice to start the study of the energy distribution of particles [177, 164].

Further, the quantum statistics such as FD and BE statistics approaches the classical MB

statistics at high temperature, and theoretical prediction on the environment required for

QGP formation estimated a very high temperature (∼ 1012 K), hence it is justifiable to use

the BG approach in the studies related to the particle production spectra. In BG approach,

the distribution of particles can be described using the distribution function, which is given

in terms of the negative exponential of the energy of macrostates.

In general, for a state s of a statistical system with energy εs, the average number of

particle is given as:

n′s =
1

eβ(εs−µ) ± 1
(2.7)

And, if the total number of particle in the system is fixed, we can determine µ using the

constraint: ∑
s

n′s =
∑
s

1

eβ(εs−µ) ± 1
= N (2.8)

The plus (+) and minus (−) signs in the denominator of the above equation are for Bosons

and Fermions, respectively. In the classical limit, where the temperature is very high, a

large number of high energy states are occupied, and for such high energy states εs >> µ.

In order to satisfy the constraint of keeping N fixed, the relation eβ(εs−µ) >> 1 must hold

true. So, the distribution of the number of particles is given as:

n′s = e−β(εs−µ) (2.9)

As discussed above, considering the classical statistics, the probability of occupancy of each

microstate or the population of particles in a particular state of the system in equilibrium is
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given in the form of the exponential of energy. The number density for a system of particles

following BG distribution is given as:

n′ =
g

(2π)3

∫
d3p exp

(
µ− E
T

)
(2.10)

And the corresponding functional form of energy density and pressure is expressed as:

ε =
g

(2π)3

∫
d3p E exp

(
µ− E
T

)
(2.11)

P =
g

(2π)3

∫
d3p

p2

3E
exp

(
µ− E
T

)
(2.12)

The Eq. (2.10) can be written in the differential form as:

d3N

dp3
=

gV

(2π)3
exp

(
µ− E
T

)
(2.13)

where, g is the spin degeneracy factor and the numerical value of g is 1 for pseudoscalar

mesons (pions, kaons) and 2 for spin half particles (proton and anti-proton). On expanding

the three dimensional momentum element into polar coordinates, we get:

d3p = 2πpT dpTdpz

where p
T

and pz are transverse and longitudinal momentum respectively. Using the expan-

sion above, we can modify the right hand side of Eq. (2.13) as:

E
d3N

dp3
=

d2N

dp2Tdy
=

d2N

2πpTdpTdy
(2.14)

We used the relation dpz
E

= dy where y is the rapidity variable. Using this modification, we

get the final form of the distribution of number of particles as:

d2N

2πpTdpTdy
= E

gV

(2π)3
exp

(
µ− E
T

)
(2.15)

In statistical thermal models, we usually study the energy distribution of the particles; how-

ever, as discussed in section 1.6, transverse momenta can be considered as a proxy for the

energy of the particle as far as measurement is concerned.
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We can express the energy E in terms of transverse mass mT and rapidity y and the

relation is E = mT cosh(y) where mT =
√
m2 + p2T . Further, assuming equal number of

particles and anti-particles at LHC energies, we can put the value of µ to be zero and also

in the mid-rapidity region cosh(y) ' 1 (y = 0). Considering these assumptions, the final

form of the distribution of the transverse momentum spectra following the BG approach

can be described as:
d2N

2πpTdpTdy
= mT

gV

(2π)3
exp

(
−mT

T

)
(2.16)

Application of this equation to study the experimental data on transverse momentum spectra

is discussed in the next chapter.

2.3 Summary

To extract the thermodynamical properties of the medium created in high energy collision

and also the study of the quark-hadron phase transition require a statistical thermal descrip-

tion of the final state particles. So, the main aim of this chapter is to provide a basic intro-

duction of statistical mechanics and its application to study the particle production spectra

in high energy collision. This chapter covers an introduction to the statistical thermal ap-

proach and its application to study the transverse momentum spectra. An overview of some

of the initial works that have paved the way for the application of statistical approach in

high energy physics is also provided in the chapter.

The next chapter, will discuss the different statistical and hydrodynamical inspired ap-

proaches to study the transverse momentum spectra. We will also provide the results ob-

tained by fitting the transverse momentum spectra to various distribution functions.



38 Chapter 2. Statistical Thermal Model



Chapter 3

Phenomenological Models for

Transverse Momentum Spectra

In high energy heavy-ion collision experiment, two nuclei moving at relativistic speed col-

lide and create a fireball of quark and gluons. This fireball expands with time undergoing

the quark-hadron phase transition followed by the chemical and kinetic freeze-out, after

which the hadrons freely stream to the detectors. We observe these final state particles

in the detectors and analyze their trajectory to extract physics. Although it is difficult to

directly observe the initial stages of the expansion, we utilize the information carried by

the final state hadrons to study the properties of the initial fireball, which could give us

the insight into the very early stages of the expansion of universe after the Big Bang. In

experiments, we measure the trajectory of each particles in form of their kinematics such as

the rapidity (y), emission angle (θ), pseudorapidity (η) etc. However, as far as the study of

the thermodynamical properties of the medium created during the collision is concerned,

most important observable is the transverse momentum (p
T

) spectra which is a proxy for

the energy distribution of final state particles.

A good understanding of transverse momentum spectra is crucial in order to understand

the thermal and the bulk properties of the QCD matter created during the high energy heavy-

ion collision. A proper theoretical description of the form of p
T

-spectra is necessary to

extract the parameter of interest such as the volume (V ), temperature (T ) & flow velocity

(βT ) etc. The underlying theory, which governs the strongly interacting system is QCD but

we cannot apply the perturbative QCD to explain the spectra because of the asymptotic be-

haviour of the strong coupling constant. The effect is more prominent in the low-p
T

region

39
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because of the high coupling strength making it impossible to perform the perturbative ex-

pansion in this region of the spectra. Hence, the explanation of the spectra depends mostly

on the phenomenological models. Among several models, statistical thermal models are

widely used due to their simplicity and the possibility to extract macroscopic properties of

the system using the microscopic properties of the constituent particles.

The statistical description of particle production was first proposed in 1948 by Koppe in

his seminal work in the Ref. [171, 172]. This formalism, along with the efforts by Fermi

[173, 178] and Hagedorn [174, 66] are some of the initial works that laid the foundation

for the application of statistical thermal methods to study the particle production spectra.

A detailed discussion on the statistical thermal approach to study particle spectra can be

found in Ref. [179]. Large number of final state particles produced during the heavy-ion

collision, quest to study the equilibrium dynamics of the system and idea of a confinement-

deconfinement phase transition motivates the statistical thermodynamical treatment of the

medium created during such collision experiments. In standard thermodynamics, a macro-

scopic system can be characterized using the state variables such as energy density (ε),

number density (n′), pressure (P ), chemical potential (µ), temperature (T ) etc. The quan-

tity of prime interest in the study of a macroscopic system is the distribution function f(x, p)

of the constituent particles. Considering a statistical system of a large number of particles,

we can use the distribution function to extract the parameters necessary for the thermody-

namical description of the system. The detail thermodynamical treatment of a system with

large number of constituent particles is given in chapter 2 of the thesis.

Several phenomenological models have been developed based on the statistical thermo-

dynamics and its extension to other fields with an aim to study different aspects of the

p
T

-spectra. These models can broadly categorized into three main categories.

1. First category include the standard statistical thermal models such as the BG ap-

proach, Tsallis statistics, Tsallis-Pareto and Tsallis-factorized statistics. BG approach

is the standard choice to study thermodynamical properties of a system with large

number of constituent particles in thermal equilibrium. However, BG approach de-

mands the entropy to be extensive and additive, which limits its applicability. This

condition can be relaxed in the Tsallis statistics, which is a generalized version of

BG approach with an additional parameter q taking care of non-extensivity in the

system. Several modification in the Tsallis statistics has also been proposed such
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as the Tsallis-Pareto, Tsallis-factorized statistics etc., and some of them will be dis-

cussed in the upcoming sections.

2. Next category includes the statistical hydrodynamical models such as the Boltzmann-

Gibbs Blast-Wave (BGBW) and the Tsallis Blast-Wave (TBW) model. These models

also take into consideration the fluid behaviour of the medium created in heavy-ion

collision.

3. The last category of models include some non-standard models such as Single Freeze-

Out Model (SFOM), dynamical initial state model, out-of-equilibrium model, q-

Weibull model etc. Apart from these, the last category also include several multi-

component models such as the two component BG model, Modified Tsallis/Hage-

dorn model wherein we consider different distribution functions to fit different part

of the spectra.

In the upcoming sections of this chapter, we will provide the detailed discussion about

the different models that has been used to study the p
T

-spectra.

3.1 Boltzmann-Gibbs Approach

To explain the energy distribution of particles produced from a purely thermal source, the

natural choice is to use BG approach. Detail of the formalism of this statistics is discussed

in section 2.2. The functional form of p
T

distribution in BG is given in Eq. (2.16) and it has

been extensively used to fit the spectra [164, 180, 181].

Fitting p
T

-spectra with the above equation gives the effective temperature, which is dif-

ferent from thermal freeze-out temperature. Considering the particle produced during the

collision are of purely thermal origin, we have fitted the p
T

-spectra of π+ three different

centralities of 2.76 TeV in Fig. 3.1 and at different energies in Fig. 3.2 with BG distri-

bution. However, a significant deviation from thermal BG distribution is observed at low

and high-p
T

, which suggest that simple BG distribution is not sufficient for a complete

and consistent description of the system produced during the collision. To tackle this is-

sue a two-component BG model is introduced in the Ref. [169] and the detail of which is

discussed below.
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Figure 3.1: The BG distribution fit (Eq. 2.16) to the p
T

-spectra data of π+ at three different
centralities produced at collision energy of 2.76 TeV [20].
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Figure 3.2: The BG distribution fit (Eq. 2.16) to the p
T

-spectra data of π+ at different
energies [9, 10, 11].

3.1.1 Two-Component BG model

In standard BG approach, the general assumption is that the system is in equilibrium and all

the particles originate from the same macroscopic state represented by thermodynamic vari-

ables (T, V, µ). The application of BG distribution function Eq. (2.16) requires the system

of particle to be in equilibrium as the Eq. (2.16) is obtained by using the maximum entropy

principle. Since it is not possible to explain such a complex dynamical processes (particle

production in high energy collision is a complex dynamical process) of the formation of
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large number of particles using one simple equilibrium state of the system. Assuming that

all the particles do not originate from the same macroscopic state of the system, a two-

component BG distribution function is introduced in the Ref. [169]. In this formalism, we

consider a two-source system with particle originating in two different macrostates of the

system. The general function for all three types of particles (bosons, fermions and classical

particles) is given as:

d2N

dpTdy
=
gV1

(2π)2
pT mT cosh(y)

1

e
mT cosh(y)−µ1

T1 + τ

+
gV2

(2π)2
pT mT cosh(y)

1

e
mT cosh(y)−µ2

T2 + τ

(3.1)

Here factor τ is the input for type of particle with τ = −1 for Bose-Einstein statistics,

τ = 1 for Fermi-Dirac statistics and τ = 0 for Maxwell-Boltzmann statistics. In this two-

Figure 3.3: The p
T

-spectra data of π+, K+ and p produced at collision energy of 0.9 TeV,
the dashed curve represent the fit using the two-component BG distribution Eq. (3.1)

whereas the solid curve represent fit to Tsallis-factorized distribution. (The plot is taken
from the Ref. [169].)

component form, each term represents a different macrostate of the equilibrium system.

The first term in the Eq. (3.1) represents particles originate from one macrostate (T1, V1, µ1)

whereas the second term corresponds to the particles from another macrostate (T2, V2, µ2).
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The p
T

-spectra of pions, kaons and protons produced in pp collision at 0.9 TeV are analyzed

using this two-component distribution in the Ref. [169] and corresponding fit is shown in

the Fig. 3.3. In this distribution, the fit yields two different sets of parameters corresponding

to macrostates. The first set corresponds to the low-p
T

(soft) part of the spectra and gives

a smaller temperature and larger volume compared to the second part, which corresponds

to the high-p
T

(hard) part of the spectra. It can be inferred from these results that the high-

p
T

hadrons are created when the system has small volume and high temperature. This two-

component formalism provide better fit to the data compared to standard BG distribution,

however, it starts to deviate in the higher p
T

region of the spectra.

The formalisms discussed above do not take into account the hydrodynamical charac-

teristics, however, the observation of collective flow [182] and shear viscosity to entropy

density [183] in the heavy-ion collision experiments points toward the fluid-like behaviour

of the medium created during collision. An extension of the standard BG distribution was

proposed to include the hydrodynamics description of the medium created in heavy-ion

collision. This model is known as the Boltzmann Gibbs Blast-Wave (BGBW) model and is

discussed in the next section.

3.1.2 Boltzmann Gibbs Blast-Wave Model

During the non-zero impact parameter collision, the initial overlap region is not purely

spherical in shape and leads to some geometrical effect in the produced fireball. This initial

state spatial anisotropy might not get washed away during the course of expansion and bury

some of its imprints into the momentum distribution of the final state particles. Hence, it is

customary to consider that the transverse momentum distribution as a composition of two

distinct parts. The thermal part is because of the random thermal motion of particles after

the kinetic freeze-out and the collective part, which arises from the geometric effect during

the collision and leads to the non-isotropic azimuthal distribution of particles. BGBW (also

known as BW) is a hydrodynamics motivated model developed to enhance our understand-

ing of kinetic freeze-out and the transverse collective flow. The distribution of transverse
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momentum of particles in the BGBW model is of the form:

dN

pTdpT
∝
∫ R

0

r dr mT I0

(
pT sinh ρ(r)

Tkin

)
×K1

(
mT cosh ρ(r)

Tkin

) (3.2)

where ρ(r) = tanh−1β, β represents the transverse radial flow velocity, I0, K are modified

Bessel functions and m
T

is the transverse mass. We can parameterize the transverse flow

velocity profile in the form of a power law given as βT (r) = βs(r/R)w. Here w is the

exponent of the flow profile, βs is the surface flow velocity and r/R provides the informa-

tion about the radial position of thermal source at any given moment andR is the maximum

radius at thermal freeze-out. The average transverse flow velocity (〈βT 〉) is given in term of

βs and exponent w as 〈βT 〉 = βs × 2
2+w

[162]. BGBW fit has been used on many particles
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Figure 3.4: The BGBW fit (Eq. 3.2) to the p
T

-spectra data of π+ at three different centrali-
ties produced at collision energy of 2.76 TeV [20].

to extract the temperature at kinetic freeze-out surface (Tkin) and transverse flow veloc-

ity (βT ) in order to study the freeze-out properties of the fireball produced in heavy-ion

collision at RHIC and LHC [162, 184].

In Ref [162], Ultra-Relativistic Quantum Molecular Dynamics (UrQMD) [185] event

generator is used to investigate the energy and centrality dependence of transverse collective

flow. An increase in collective flow was reported with an increase in the center of mass

energy. Further collective flow also reveals an increasing trend as we go from peripheral to
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Figure 3.5: The BGBW fit (Eq. 3.2) to the p
T

-spectra data of π+ at different energies
[9, 10, 11].

central collision. The effective temperature Teff extracted from Boltzmann and Tsallis fit

contains a contribution from both thermal part and collective flow part and given as [181]:

Teff = Tkin + f(βT ) (3.3)

where f(βT ) is some function of collective transverse velocity βT given in the Ref. [186]

and the kinetic freeze-out temperature (Tkin) can be extracted using BGBW fit. From

Fig. 3.4 and Fig. 3.5 BGBW fit turns out to be a good explanation of the system produced

in the collider experiments at different energies as well as different centralities.

3.1.3 Limitation of Standard BG Approach

Although BG approach is very successful in other areas of physics (such as in condensed

matter physics), there are some constraints related to its application in high energy physics.

One such constraint is that it applies only to the system where the number of the constituent

particles is of the order of Avogadro number (NA = 6.023× 1023). However, as measured

in different experiments, the number of particles produced in a heavy-ion collision is in

few thousand only making it difficult to apply the standard BG approach. Another con-

straint is related to the extensivity of the system, the BG approach requires that the entropy

of the system must be additive and extensive. However, there exist a category of system
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with long-range interactions where entropy can be non-extensive or non-additive. Some

of the processes, including such systems are ferromagnetism, solar neutrinos, black holes,

cosmology, high energy collisions of particles. The presence of long-range interaction,

the formation of Color Glass Condensate (CGC) and other effects in high energy colli-

sion can cause a deviation from thermal equilibrium. These effects might not get washed

away during QGP expansion and the multi-particle interaction and affect the final state

spectra. This is also reflected in the Fig. 3.1, 3.2 where we observe that the fit function

deviate heavily from the experimental data in low- and high-p
T

region. To take care of such

non-equilibrium effect Tsallis statistics has been proposed as a generalization of the BG

approach by C. Tsallis in 1988. Detail of this approach is discussed in the next section.

3.2 Tsallis Statistics

The non-extensive statistical mechanics was constructed as a generalization to BG theory

utilizing the entropy proposed in 1988 by C. Tsallis in his seminal work [165]. An important

property of Tsallis entropy is that it converges to the standard BG entropy within some limit

on its parameter q. This parameter gives us information about the extent of non-extensivity

in the system. Further, this parameter can also be interpreted as a scaling factor necessary

to apply laws of statistical mechanics to the system with the low number of constituent

particles.

Tsallis statistics is also applicable to the system where the temperature fluctuates around

some mean value T0 and the non-extensivity parameter q is related to the variance of the

temperature as [187, 188]:

q − 1 =
V ar(T )

〈T 〉2
(3.4)

A major modification that separates the algebra of Tsallis statistics from that of BG is the

q-logarithm & q-exponential and they are given as:

expq(x) = [1 + (q − 1)x]
1
q−1 (3.5)
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and

lnq(pi) =


ln(pi), if pi ≥ 0, q = 1

p1−qi −1
1−q , if pi ≥ 0, q 6= 1

undefined, if pi ≤ 0

Non-extensive entropy as proposed by Tsallis [165] is defined as:

Sq = −kB
∑
i

pqi lnq(pi) (3.6)

= −kB
∑
i

pqi
p1−qi − 1

1− q
(3.7)

= −kB
∑
i

pi − pqi
1− q

(3.8)

= kB
1−

∑
i p

q
i

q − 1
(3.9)

which in the limit q −→ 1 gives standard BG entropy

S = −kB
∑
i

piln(pi) (3.10)

In Ref. [189, 190], the foundation and application of Tsallis statistics and its thermodynam-

ical aspect has been discussed in great detail.

In order to obtain the functional form of distribution of transverse momentum in Tsallis

statistics, one can replace the normal exponential in BG distribution with the q-exponential.

The distribution function that has been widely used to study the transverse momentum

spectra in the Tsallis framework is given as:

1

2πpT

d2N

dpTdy
=
gV mT

(2π)3

[
1 + (q − 1)

mT − µ
T

]− q
q−1

(3.11)

Here, m
T

is the transverse mass and p
T

is the transverse momentum of the particle, T and

V are the temperature and volume of the system, g is the spin degeneracy factor and y is the

rapidity of particle. The non-extensive generalization of the Fermi-Dirac and Bose-Einstein

statistics and the corresponding entropy is discussed in Ref. [191]. The quantities such as

the number density, pressure, energy density etc., can be derived in the framework of Tsallis

statistics.
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For the distribution function fi, constraint on the total number of particles N and total

energy E in standard BG approach is given as:

N =
∑
i

fi (3.12)

E =
∑
i

fiEi (3.13)

The constraint on N and E in case of Tsallis statistics is given as:

N =
∑
i

f qi

E =
∑
i

f qi Ei

(3.14)

In the classical limit, the functional form of entropy in Tsallis statistics is given as [191]:

ST = −g
∑
i

(f qi lnqfi − fi) (3.15)

were, the q-logarithm (lnq(x)) is defined as:

lnq(x) ≡ x1−q − 1

1− q
(3.16)

On substituting the expansion of lnq(x), we will get the entropy:

ST = g
∑
i

[
qfi
q − 1

− f qi
q − 1

]
(3.17)

On maximising the entropy Eq. (3.17) under the constraints given in Eq. (3.14) we will get

variational equation:

δ

δfi

[
ST + α1

(
N −

∑
i

f qi

)
+ α2

(
E −

∑
i

f qi Ei

)]
= 0 (3.18)

In the equation given above, α1 and α2 are the Lagrange multipliers corresponding to the

total number of particles and total energy, respectively. On solving the variational equation,
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we will obtain the distribution function, fi:

fi =

[
1 + (q − 1)

Ei − µ
T

]− 1
q−1

(3.19)

The function needs to be thermally consistent to be able to apply on a thermodynamical

system. Therefore, we will discuss the thermodynamical consistency of the Tsallis formal-

ism by checking whether the distribution function above follows the standard relation in

thermodynamics.

3.2.1 Thermodynamics Consistency for Tsallis Statistics

The thermal consistency of a formalism requires it to hold the four fundamental relations

as discussed in Ref. [191]:

T =
∂ε

∂s

∣∣∣∣
n′

(3.20)

µ =
∂ε

∂n′

∣∣∣∣
s

(3.21)

n′ =
∂P

∂µ

∣∣∣∣
T

(3.22)

s =
∂P

∂T

∣∣∣∣
µ

(3.23)

Using the equation corresponding to the first law of thermodynamics:

P =
−E + TS + µN

V
(3.24)

To prove the relation we do partial derivative of above equation with respect to µ,

∂P

∂µ

∣∣∣∣
T

=
1

V

[
−∂E
∂µ

+ T
∂S

∂µ
+N + µ

∂N

∂µ

]
(3.25)

On expanding

∂P

∂µ

∣∣∣∣
T

=
1

V

∑
i

[
f qi −

T

q − 1

(
1 + (q − 1)

(Ei − µ)

T

)
∂f qi
∂µ

+
Tq(1− fi)q−1

q − 1

∂fi
∂µ

] (3.26)
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In order to solve the above equation we use the form of fi from Eq. (3.19) and consider

the standard replacement for small intervals
∑
i

−→ V
∫

d3p
(2π)3

. The equation for number

density in Tsallis statistics is given as:

n′ = g

∫
d3p

(2π)3

(
1 + (q − 1)

(Ei − µ)

T

) −q
q−1

(3.27)

Using the equations (3.26) and (3.27) we can verify that:

∂P

∂µ

∣∣∣∣
T

= n′ (3.28)

This proves that Tsallis distribution is thermodynamically consistent.

Tsallis distribution has been shown to fit the spectra much nicely compared to the BG

distribution. The fit of the transverse momentum spectra at different centralities of 2.76

TeV is provided in the Fig. 3.6 and the corresponding fit at different energies is shown in

Fig. 3.7. It is clear from the results presented in Fig. 3.6 and Fig. 3.7 that Tsallis distribution

fit p
T

-spectra very nicely compared to BG distribution. This partly solves the problem in

fitting the p
T

-spectra and provides a function that can fit the spectra with better accuracy.

The Eq. (3.11) has been used extensively to fit data of p
T

-spectra [192, 191, 193, 194,

195, 188] of different particles produced in the high energy collisions. A review on the im-

plementation of Tsallis statistics to describe the heavy-ion collision is provided in Ref. [196,

187], these works also present a novel interpretation of the non-extensivity parameter. The

importance of power-law and the non-extensive statistical mechanics is also discussed in

Ref. [197, 198]. A multiple emission source scenario and its Tsallis form are explored in

Ref. [199] and the transverse momentum spectra of negatively charged pions are analyzed

using these distribution functions.

As evident from the fit results and the discussion presented above, the Tsallis approach to

study the particle spectra is more appropriate as compared to the BG approach. The Tsallis

statistics can provide a good thermal description of the particle production, however, it lacks

the hydrodynamical description of the fluid-like medium created during early stage of the

collision. Hence, to include both the effects in a consistent manner the Tsallis Blast-Wave

(TBW) model [163] has been proposed and its detail is discussed in the next section.
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Figure 3.6: The Tsallis fit (Eq. 3.11) to the p
T

-spectra data of π+ at three different centrali-
ties produced at collision energy of 2.76 TeV [20].
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Figure 3.7: The Tsallis fit (Eq. 3.11) to the p
T

-spectra data of π+ at different energies
[9, 10, 11].

3.2.2 Tsallis Blast Wave Model

One drawback of the BGBW model is that it assumes the system to be in thermal equilib-

rium and it is only applicable on the extensive system which might not always be the case.

Hence a Tsallis generalization known as TBW model [163] was proposed to take care of the

deviation from thermal equilibrium. TBW is a convolution of the Blast-Wave and Tsallis

functions with an aim to include the effect of non-extensivity in the system characterized

by parameter q. TBW fit function is calculated from BW function by incorporating Tsallis
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formalism in place of standard BG formalism [163, 162]. In the framework of TBW model,

p
T

-spectra is given as

dN

pTdpT
∝ mT

∫ Y

−Y
cosh(y) dy

∫ π

−π
dφ

∫ R

0

rdr×(
1 +

q − 1

T
(mT cosh(y) cosh(ρ)− pT sinh(ρ) cosφ)

) −1
q−1

(3.29)

Where ρ is the flow profile in transverse direction given as ρ(r) = tanh−1(βs(r/R)w) and

average transverse flow velocity is 〈βT 〉 = βs × 2
2+w

. Fluctuation around thermal equi-

librium may lead to the creation of several hot spots in the system where more particles

are created and cause a collective flow and increasing local temperature above equilibrium

value. Figures 3.8 and 3.9 show the TBW fit on transverse momentum spectra for posi-
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Figure 3.8: The TBW fit (Eq. 3.29) to the p
T

-spectra data of π+ at three different centralities
produced at collision energy of 2.76 TeV [20].

Table 3.1: This is a table for value of fitting parameters as well as χ2/NDF at different
centralities corresponding to Fig. 3.8.

Centrality 〈βT 〉 q-1 χ2/NDF
0-5% 0.363± 0.0239 0.091± 0.004 2.46

40-50% 0.316± 0.029 0.119± 0.003 2.99
80-90% 0.243± 0.0394 0.141± 0.002 1.89

tive pions at different centralities and at different energies respectively. It can be concluded

from plots above as well as the χ2/NDF values from Table 3.1 that TBW fit transverse mo-
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Figure 3.9: The TBW fit (Eq. 3.29) to the p
T

-spectra data of π+ at different energies [9, 10,
11].
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Figure 3.10: This is a plot for value of temperature extracted by fitting π+ data at different
energies with Boltzmann, Tsallis, BGBW and TBW distribution.

mentum spectra quite nicely for p
T
< 3 GeV/c. The value of the non-extensivity parameter

q approaches one, indicating that the system is going from being highly non-equilibrium in

the peripheral collision to near equilibrium in the central collision.

In Fig. 3.10 we have plotted the best fit values of temperature parameter at different

energies extracted using BG, Tsallis, BGBW and TBW fit to the p
T

-spectra.

Among all the methods discussed above, the best fit to the experimental data is obtained

for the TBW model. However, the applicability of all these models based on BG and
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Tsallis approach discussed above is limited to the low-p
T

region where particle production

is dominated by the soft processes. Apart from these formalisms, there are few other non-

standard distributions have been developed to study the p
T

-spectra. Some of these will be

discussed in the upcoming sections.

3.3 Out-of-equilibrium p
T
-spectra

An out-of-equilibrium process for pion production has been explored in the Ref. [200, 21]

where the assumption of chemical equilibrium at the time of freeze-out is relaxed. This

model considers an excess of positive pions compared to the chemical equilibrium and this

excess is incorporated into the formula in term of a positive chemical potential for pions.

A cylindrical tube of matter of radius R is considered in this model and is assumed to be

expanding longitudinally but with zero transverse flow.

Figure 3.11: The p
T

-spectra of positive pions produced in most central PbPb collision at
2.76 TeV measured by the ALICE experiment [20], the solid line represent the fit using
Eq. (3.30) at µπ = 0.12 whereas the corresponding fit at vanishing µπ = 0 is presented by
the dashed-dotted line. (Image taken from Ref. [21])

The distribution function for the p
T

-spectra of pions at finite rapidity in out-of equilib-

rium scenario reads:

1

2πpT

d2Nπ

dpTdy
= (πR2τfo)

mT cosh(y)

(2π3)

∞∑
n=1

(±)n+1 exp(n
µπ
T

) K1 (n
mT

T
cosh(y)) (3.30)
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In the above equation, p
T

represent the transverse momentum and m
T

is the transverse

mass, τfo is the freeze-out time, y is the rapidity, µπ is the pion chemical potential and K1

represent the modified Bessel function.

The p
T

-spectra of π+ produced in PbPb collision at 2.76 TeV has been examined within

the out-of-equilibrium scenario (µπ 6= 0) in the Ref. [21] and the corresponding fit result

is presented in the Fig. 3.11. The best fit to experimental data is obtained for µπ = 0.12

GeV and µπ = 0 line deviate heavily from the data. This result indicate the importance of

considering a non-zero chemical potential while studying the spectra of identified particles.

Another non-standard distribution developed to study the p
T

-spectra is the Single Freeze-

Out Model (SFOM) which assumes that the chemical and kinetic freeze-out surface coin-

cides. The detail of this model is discussed in the next section.

3.4 Single Freeze-Out Model

During the expansion of the fireball created in the heavy-ion collision, the system under-

goes two stages of freeze-out namely: the chemical freeze-out and the kinetic freeze-out (a

description is added in appendix A). It is generally assumed that these two freeze-out occur

at different times during the expansion, however, in some of the works [201, 202, 203, 23]

a simultaneous kinetic and chemical freeze-out scenario has been explored. SFOM is a

convolution of the thermal model along with the hydrodynamics expansion model with an

interesting assumption that the time difference between the point when the inelastic interac-

tion ceases and point when the elastic hadrons interaction becomes ineffective is extremely

small. This means that the hadrons completely decouple at the freeze-out and there are no

elastic rescattering among hadrons after the chemical freeze-out. This model also includes

the contribution from all the resonance decay in the calculation of hadron multiplicities and

the spectra.

The soft part of the p
T

-spectra of particles like π,K, p,Ω, λ,Ξ at SPS and RHIC energies

have been accurately reproduced using this model. From the Fig. 3.12 we observe a good

agreement between the experimental data of identified hadrons produced in 200 GeVAuAu

collision with the SFOM. These results suggest that the approximation considered in the

SFOM regarding the simultaneous freeze-out works well for the study of p
T

-spectra.

All the models discussed above are used primarily to study the low-p
T

part of the spec-
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Figure 3.12: The SFOM fit p
T

-spectra of identified hadrons produced in most centralAuAu
collision at 200 GeV measured by the BRAHMS experiment [22]. (Image taken from
Ref. [23])

tra and they start to deviate from the experimental data in high-p
T

region. The particle

production in high-p
T

region is dominated by the hard scattering process and we use the

QCD inspired power-law form of the distribution function to study this regime of the spec-

tra. There are certain efforts made to study the broad p
T

range and some of them will be

discussed below.
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3.5 q-Weibull Distribution

In the hunt to determine a distribution function that can be used to study a broad p
T

range of

the spectra, physicists have tried to explore the applicability of q-Weibull distribution. The

Weibull distribution is a continuous probability distribution described in 1951 by Swedish

mathematician Waloddi Weibull. In Weibull distribution, the probability distribution func-

tion is given as:

P (x, λ, k) =


k
λ

(
x
λ

)k−1
e−(x/λ)

k
x ≥ 0

0 x < 0

Here k represent the shape parameter and λ is the scale parameter of the distribution and k

& λ > 0. Weibull distribution has been used previously to describe the process where the

dynamical evolution of the system is driven by the fragmentation and sequential branching

[204, 205], which makes it a suitable & alternate choice to be tested in particle production

study.

With an aim toward developing a thermal model to study broader p
T

range of the spectra,

the Tsallis formalism has been incorporated to the Weibull distribution in the Ref. [24]

giving the q-Weibull distribution of the form:

Pq(x, q, λ, k) =
k

λ

(x
λ

)k−1
e
−( x

λ
)k

q (3.31)

where

e
−( x

λ
)k

q =

(
1− (1− q)

(x
λ

)k)( 1
1−q )

(3.32)

In the limit k = 1 and q 6= 1 ,Eq. (3.32) reduces to q-exponential.

Almost all of the distribution function discussed above are applicable in a limited p
T

range,

mainly in the low-p
T

region. However, q-Weibull show promising results in a broad range

of p
T

including high-p
T

regime.

The Fig. 3.13 shows the fit of q-Weibull distribution to a broad p
T

range and we observe

a good agreement with the data. The fit for low-p
T

range is presented in the Fig. 3.14 and

these result suggest that the q-Weibull distribution provide a good explanation to the data.

Two different p
T

range has been fitted with the q-Weibull distribution in the Ref. [24] to

study the difference in the behaviour of fit parameters when particle production is domi-

nated by hard and soft processes. Soft processes dominate in the low-p
T

range of spectra
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Figure 3.13: The q-Weibull fit (Eq. 3.31) to the p
T

-spectra data of charged hadrons at
different centralities produced in collision energy of 2.76 TeV measured by the ALICE
experiment [16]. (Image taken from the Ref. [24])
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Figure 3.14: The q-Weibull fit (Eq. 3.31) to the p
T

-spectra data of π+ at different energies
[9, 10, 11].

(usually p
T
< 2 GeV/c) and the rest is taken to study particle production dominated by

hard processes. For the fitting with p
T
< 2 GeV/c, q value increases as we go from central

to peripheral collision, which is similar to the trend observed in Tsallis as well as TBW

fits. However, if we consider the entire p
T

range, there is a trend reversal, with more cen-

tral collisions having higher values of q. This can be attributed to a larger deviation from

equilibrium compared to peripheral collisions. This suggests that pQCD hard scattering
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processes (which dominates the high-p
T

regime) favor non-equilibrium scenario.

3.6 Modified Tsallis/Hagedron Distribution

As discussed in the section 1.4.1, the quenching of jet passing through the QGP medium

leads to modification in p
T

-spectra at high-p
T

values. The piecewise modification in Tsal-

lis/Hagedron function has been implemented in the Ref. [25] to incorporate the effect of

the in-medium energy losses with an additional feature to include the transverse collective

flow. Modified function to describe p
T

-spectra is given as:

E
d3N

dp3
=

A1

[
exp

(
−βpT

p[1]

)
+ mT

p[1]

]−n[1]

pT < pTth

A2

[
B
p[2]

(
pt
q0

)α
+ mT

p[2]

]−n[2]

pt > pTth

Here the first function takes care of thermal and flow effect in the spectra with tempera-
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Figure 3.15: Modified Tsallis function [25] fitted to charged particle spectra produced in
PbPb collision at 2.76 TeV [16].

ture given as T = p[1]/n[1] and β is transverse flow velocity. Parameter α quantifies the

in-medium energy loss regime for the light quarks in medium, where p[2] quantifies the

medium size. In Fig. 3.15, we have fitted charged hadron spectra with p
T

upto 50 GeV/c

produced in PbPb collision at 2.76 TeV.

In Ref. [25], the distribution function has been shown to fit p
T

-spectra very nicely over a

wide range of p
T

from 0.2 to 300 GeV/c for charged particle spectra produced in PbPb col-
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lision at 5.02 TeV.

It has been observed that the low-energy section of the hadron transverse energy ET

spectra shows exponential dependence on ET whereas the spectra looks more like a power

law at high ET . Another two-component model has been introduced in Ref. [206, 207] to

explain the hadron spectra. This model uses a combination of exponential form and the

power-law form given as:

d2σ

πdydp2t
= Aeexp

(
−ETkin

Te

)
+

Ap(
1 +

p2T
T 2
pNp

)
Np

(3.33)

Here ETkin =
√
p2T +m2 − m and m is the hadron mass. The rest of the parameters

Ae, Ap, Te, Tp, Np are free parameters and can be obtained by fitting the data with the above

function. A significant improvement in the data-to-fit ratio compared to a single function

has been reported for inclusive charged particle spectra at different energies. Although

these multi-component models provide a good fit to the spectra, however, and important

point to consider is that there is no fine line separating the two region making it difficult to

apply a piecewise function.

3.7 Summary

Before discussing the new model, it is customary to provide brief introduction of the ex-

isting phenomenological models that are being used to study the transverse momentum

spectra. In this chapter, we have introduced some of the widely used models along with the

corresponding fit results to the spectra data.

1. The statistical thermal models form the backbone of the study related to the parame-

terization of transverse momentum spectra in high energy collision. Considering the

thermal distribution of particles, most natural choice to study the spectra is the BG

distribution, however, it deviates heavily from the experimental data. The applica-

bility of BG distribution is constrained only to the extensive system with number of

constituents is of the order of Avogadro number, hence, a generalization is required

to explain the system created in high energy collision where number of constituents

particle is low ( 102− 104). This generalization was put forth by Brazillian physicist

Constantino Tsallis in the year 1988. Tsallis statistics introduces a non-extensivity
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parameter q making the standard statistical mechanics applicable to the non-extensive

system. The q parameter also acts as a scale factor necessary to apply the standard BG

approach to system with low number of particles.The distribution function based on

Tsallis statistics provide better fit to the p
T

-spectra compared to the BG distribution.

2. The observation of flow and shear viscosity to entropy density points toward the

fluid-like behaviour of the system, limiting the use of simple BG or Tsallis statistics.

The hydrodynamics inspired extension of these distribution, known as Boltzmann-

Gibbs Blast Wave (BGBW) and Tsallis Blast Wave (TBW), has been provided in

the Ref. [163, 162]. These models incorporates the flow effects into the statistical

thermal distribution of particles and provide a better explanation to the experimental

data. However, there are certain constraints limiting the applicability of these models

to low-p
T

region.

3. The transverse momentum spectra can be divided into two different regions: the low-

p
T

and the high-p
T

region. The particle production in the low-p
T

regime is dominated

by the soft process and the statistical thermal & hydrodynamical models discussed

above are primarily used to study this region of the spectra. The hard scattering

processes dominate the production of high-p
T

particles and a QCD inspired power-

law form of the distribution function is used to the high-p
T

region. Also, there are

several non-standard models such as q-Weibull and several multi-component methods

have been formulated to study the broader p
T

range of the spectra but there is no fine

line separating the two regions [21]. Hence, the search for a distribution function to

study broad p
T

range is still an open problem.

In the next chapter we have provided the detailed description of the unified statistical frame-

work, developed to study soft processes and hard scattering processes in a unified manner.
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Unified Statistical Framework

The proper parameterization of the transverse momentum spectra is an important task and

it can provide the crucial information related to the medium created in the high energy

heavy-ion collision. Several theoretical models have been developed to study the trans-

verse momentum spectra in collider experiments. A brief discussion of various models are

given in chapter 3. The statistical thermal & hydrodynamical models nicely explain the

low-p
T

part of the spectra, however, these models start to deviate heavily from the experi-

mental data in the high-p
T

region. As a solution, a power-law form of distribution function

is used to study high-p
T

region. Also, several two- and multi-component model have been

developed since it is difficult to explain high- & low-p
T

region using a single probability

distribution function. However, characterizing the clear boundary between these two re-

gions is a complex task. Therefore, formulating a distribution function to study the physics

of both regions in a unified manner is still an open problem and our interest lies in tackling

this problem using Pearson probability distribution.

Calculation based on the perturbative QCD suggest that the p
T

-spectra in the high-p
T

re-

gion can be analyzed using the power-law form of distribution function, which is expressed

as [199, 208, 209, 210, 211, 212]:

f(pT ) =
1

N

dN

dpT
= ApT

(
1 +

pT
p0

)−n
(4.1)

In the equation above, A is the normalization constant and n & p0 are the free parameters

obtained by fitting the function with the experimental data. Our proposal to the question

stated above is to develop a generalized formalism by combining inverse power-law and

63
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Tsallis distribution in a consistent manner.

4.1 Proposal

The proposal is to search for a distribution function which should explain the transverse

momentum spectra of final state particles in heavy-ion collision. New Approach: The

primary goal is to provide a distribution function that not only can mathematically explain

the p
T

-spectra, but also it should be able to establish the particle production mechanisms in

the produced system. Mathematically, one can start with the important question why not to

chose a simple polynomial function to fit the spectra over a thermodynamics function?.

4.1.1 Polynomial function

We have tried to check whether we can use a simple polynomial function to fit the transverse

momentum spectra. We fitted the p
T

-spectra of charged hadron produced in 2.76 TeV

PbPb collision with a fifth order polynomial given as:

f(pT ) = p0 ∗ (p1x
−1 + p2x

−2 + p3x
−3 + p4x

−4 + p5x
−5) (4.2)

Here the parameters p0, p1, p2, p3, p4 & p5 are the free parameters that can be obtained by

fitting the data. The polynomial fit to the experimental data is presented in the Fig. 4.1. The
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Figure 4.1: The polynomial function fitted to charged particle spectra produced in
PbPb collision at 2.76 TeV [16].
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best fit value of χ2/NDF is 0.428 suggesting an excellent explanation to the experimental

data. Although the polynomial function (Eq. 4.2) mathematically fits to the data, however,

it is not simply possible to attribute all extracted parameters into appropriate physics cor-

respondences.. Hence it lacks the ability of explaining physics out of pure polynomial

functions. Therefore, we need a distribution function which must leverage the physics con-

nections.

One can start from already available models that are used to explain a statistical thermal

system must follows the standard laws of thermodynamics. Also, in order to extract detail

physics information from the p
T

-spectra, a model should include the essence of both soft

process and hard scattering processes. In this direction, we have explored different distri-

bution function and observed that the Pearson probability distribution has the structure to

include both Tsallis and the inverse power-law form of functions in a unified manner. Detail

of Pearson function is discussed in the next section.

4.1.2 Pearson Distribution

Pearson probability distribution was first introduced in 1895 by Karl Pearson in his semi-

nal work [213]. The main idea of introducing this formalism was to classify a distribution

function based on the first four moments of the distribution. These moments are related

to the mean, standard deviation, skewness and kurtosis of the distribution and they specify

the shape of a probability distribution. The first moment of the distribution is mean and it

represents the average value, whereas the standard deviation shows the spread or dispersion

in the data around the mean value. Skewness and kurtosis are the shape parameters. The

skewness represents the asymmetry in the data around the mean value and the peakedness

of the distribution is quantified using kurtosis. Pearson family of the curve includes a large

number of distribution function such as Gaussian, gamma, beta, inverse-gamma, Student’s

t-distribution, exponential etc. Hence, it is considered as the generalized probability distri-

bution function and it is used extensively in a broad spectrum of fields such as geophysics,

financial marketing and biostatistics etc. In Pearson formalism, the probability density p(x)

is presented in terms of a differential equation [214]:

1

p(x)

dp(x)

dx
+

a+ x

b0 + b1x+ b2x2
= 0 (4.3)
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with the parameters a, b0, b1, b2 related to the first four moments given as:

a = b1 =
m3(m4 + 3m2

2)

10m2m4 − 18m3
2 − 12m2

3

(4.4)

b0 =
m2(4m2m4 − 3m2

3)

10m2m4 − 18m3
2 − 12m2

3

(4.5)

b2 =
2m2m4 − 6m3

2 − 3m2
3

10m2m4 − 18m3
2 − 12m2

3

(4.6)

In the relations above, m1,m2,m3 and m4 are the first four central moments respectively,

and m1 = 0.

Depending on the root of the quadratic equation present in the denominator of Eq. (4.3),

we can classify the Pearson family of curves into twelve different kinds. A selection cri-

terion known as the Pearson criteria, kp, is also used to classify the curves. It is defined

as:

kp =
b21

4b0b2
(4.7)

And different values and range of the value of kp determine the type of the curve. A brief

discussion about the different type of Pearson curves is provided in section 4.2 and one can

refer to the article [215] for more details.

4.2 Different Solution of Pearson Probability Distribution

As already discussed, considering the differential equation involving the Pearson probabil-

ity function p(x):
1

p(x)

dp(x)

dx
+

a+ x

b0 + b1x+ b2x2
= 0 (4.8)

depending on the root of the quadratic equation in the denominator and the constraints on

its parameters, twelve different category of solution [216, 217] can be obtained. In this

section, we will provide a brief discussion on the different type of solutions to the above

equation.

Type I :

p(x) = C

(
1 +

x

a1

)m1
(

1− x

a2

)m2

(4.9)

−a1 < x < a2 & m1,m2 > 0
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Beta distribution of first kind falls into this category.

Type II :

p(x) = C

(
1− x2

a2

)m′
(4.10)

−a < x < a & m′ > −1

Type III :

p(x) = C
(

1 +
x

a

)µa
exp(−µx) (4.11)

−a < x <∞ & µ, a > −1

Chi-squared distribution and Gamma distribution belong to this type.

Type IV :

p(x) = C

(
1 +

x2

a2

)−m′
exp(−µtan−1(x/a)) (4.12)

−∞ < x <∞ & a,m′, µ > 0

Cauchy distribution is a limiting case of this particular type.

Type V :

p(x) = Cx−pexp {−(α/x)} (4.13)

0 < x <∞ & α > 0, p > 1

Inverse-gamma distribution belongs to this category.

Type VI :

p(x) = Cx−p(x− a)q (4.14)

a < x <∞ & p < 1, q > −1, p > q − 1

Beta distribution of second kind and Fisher–Snedecor distribution (F -distribution) belong

to this category of Pearson solution.
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Type VII :

p(x) = C

(
1 +

x2

a2

)−m′
(4.15)

−∞ < x <∞ & m′ > 1/2

Student’s t distribution is one such example of this type.

Type VIII :

p(x) = C
(

1 +
x

a

)−m′
(4.16)

−a < x ≥ 0 & m′ > 1

Type IX :

p(x) = C
(

1 +
x

a

)m′
(4.17)

−a < x ≥ 0 & m′ > −1

Type X :

p(x) = C exp(−(x−m′)/σ) (4.18)

m′ ≤ x <∞ & σ > 0

This type represents the exponential distribution.

Type XI :

p(x) = Cx−m
′

(4.19)

b ≤ x <∞ & m > 1

Pareto distribution falls into this category.

Type XII :

p(x) = C
(

1 +
x

a

)m′ (
1 +

x

b

)−m′
(4.20)

−a < x < b & |m′| < 1
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4.3 A Generalization of Tsallis Distribution

On solving the differential equation given in Eq. (4.3), we get the Pearson probability den-

sity function as follows:

p(x) = C
′
exp

∫
−P (x)

Q(x)
dx (4.21)

= C
′
exp

∫
− a0 + a1x

b0 + b1x+ b2x2
dx (4.22)

We can express the quadratic equation in following form,

b0 + b1x+ b2x
2 = b2(x+ α)(x+ β) (4.23)

p(x) = C exp

∫
a0 + a1x

(x+ α)(x+ β)
dx (4.24)

= C exp

∫
u

x+ α
+

v

x+ β
dx (4.25)

Where u and v have following definition.

u = −a0 − a1α
α− β

(4.26)

v =
a0 − a1β
α− β

(4.27)

After integrating the Eq. (4.23),

p(x) = C exp {ln(x+ α)u + ln(x+ β)v} (4.28)

= C(x+ α)u(x+ β)v (4.29)

A general solution to the above differential equation (Eq. 4.3) can be written as:

p(x) = C(e+ x)f (g + x)h (4.30)

Here the parameters e, f, g & h are free parameters and C is a normalization constant.

We can prove that when numerator P (x) is constant and the denominatorQ(x) in Eq. (4.21)

is unity, the Pearson function reduces to the exponential function. Further, when P (x) is a
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linear function of x and Q(x) is unity, we get the Normal or Gaussian distribution. Since

the Pearson function reduces to exponential within some limits, it is possible to find a re-

lation between the Pearson function and the thermodynamic system. This suggests that the

Pearson function can be reduced to the Tsallis and BG functions.

Using simple modification, we can rewrite the Eq. (4.30) as:

p(x) = B
(

1 +
x

e

)f (
1 +

x

g

)h
(4.31)

with B = Cefgh. In the above equation, if we do the replacements g = T
q−1 , h = − q

q−1 ,

f = −n and e = p0, we get:

p(x) = B

(
1 +

pT
p0

)−n (
1 + (q − 1)

pT
T

)− q
q−1

(4.32)

where,

B = C
1

(p0)n

(
T

q − 1

)− q
q−1

(4.33)

Hence the functional form of transverse momentum spectra in unified formalism is given

as:
1

2πpT

d2N

dpTdy
= B′

(
1 +

pT
p0

)−n (
1 + (q − 1)

pT
T

)− q
q−1

(4.34)

where B′ = B × V
(2π)3

with the additional V
(2π)3

comes when we move from summation to

integration.

While proposing a generalized theory, an important aspect to consider is backward com-

patibility. Since the unified formalism is proposed as a generalization to the Tsallis distribu-

tion, within some limit on the parameters it must reduce to the Tsallis form of distribution.

It is proved in section 4.4 that in the limit n = −1 and p0 = 0 unified distribution Eq. (4.34)

reduces to the Tsallis form upto some normalization factor.

4.4 Backward Compatibility

We have stated that the unified distribution is a generalization of Tsallis statistics and it

reduces to the same in limit n = −1 and p0 = 0. The proof of this backward compatibility

of distribution function as well as entropy is discussed below.

The functional form of transverse momentum spectra in case of unified distribution is
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given as:
1

2πpT

d2N

dpTdy
= B′

(
1 +

pT
p0

)−n (
1 + (q − 1)

pT
T

)− q
q−1

(4.35)

which can be further simplified to:

1

2πpT

d2N

dpTdy
= C

gV

(2π)3
1

(p0)n

(
T

q − 1

)− q
q−1
(

1 +
pT
p0

)−n (
1 + (q − 1)

pT
T

)− q
q−1

(4.36)

Placing all terms of nth power together we get:

1

2πpT

d2N

dpTdy
= C

gV

(2π)3

(
T

q − 1

)− q
q−1

(p0 + pT )−n
(

1 + (q − 1)
pT
T

)− q
q−1

(4.37)

Putting n = −1 and p0 = 0 we get the Tsallis distribution upto some normalization factor.

1

2πpT

d2N

dpTdy
= C

gV

(2π)3

(
T

q − 1

)− q
q−1

pT

(
1 + (q − 1)

pT
T

)− q
q−1

(4.38)

Further, the entropy in case of unified distribution is given as:

Sp =
qfi

(q − 1) (BfE)
1
q
−1
− f qi
q − 1

(4.39)

where fE is of the form:

BfE =
C

E(p0)n

(
T

q − 1

)− q
q−1
(

1 +
E

p0

)−n
(4.40)

BfE = C

(
T

q − 1

)− q
q−1 1

E
(p0 + E)−n (4.41)

which, in the limit n =−1 and p0 = 0 reduces to unity and hence simplifying the the entropy

to its Tsallis form:

STa = C

(
T

q − 1

)− q
q−1
(

qfTa
(q − 1)

− f qTa
q − 1

)
(4.42)

From the derivation presented above, it can be inferred that the unified function can be

considered as a generalization to the Tsallis formalism with an additional part that needs to

be explored.
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4.5 Parameter Dependence of BG, Tsallis and unified dis-

tribution function

It is important to study how the parameters of a distribution function affects the overall

form, hence, in this section we will discuss the dependence of different fit parameters on

the BG, Tsallis and unified distribution function. In the fig. 4.2, we have shown the variation
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Figure 4.2: The variation of BG distribution function with the change in temperature.

of BG distribution function (Eq. 2.16) with the fit parameter T . It is observed that with the

increase in the temperature, the function shifts upward and the gap between them increases

as we move toward higher p
T

.

The variation of Tsallis distribution function (Eq. 3.11) with the change in its fit parame-

ters q & T is shown in the Fig. 4.3. The results depict that with the change in the parameter

T at fixed q, the Tsallis function rises up which matches with the observation in the BG

distribution. Also, in the case where the q is varied at fixed T , the Tsallis function does

not changes much in the low-p
T

region, however it starts to diverge with larger q line above

the smaller q. The unified distribution function (Eq. 4.35) consist of four parameters T ,

q, p0 & n apart from the normalization parameter. The dependence of unified function on

parameter q and T function is shown in the Fig. 4.4 and the plots shows a trend similar to

what is observed in the Tsallis case. The parameter p0 slightly effect the function and with

the decrease in n the function shifts upwards.

In the Fig. 4.5, we have presented the variation of soft and hard part separately with the
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Figure 4.3: The variation of Tsallis distribution function with a change in its parameters.
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Figure 4.4: The variation of unified distribution function with a change in its parameters.



74 Chapter 4. Unified Statistical Framework

10 20 30 40 50
 (GeV/c)

T
p

3−10

1−10

10

210

)
T

f(
p

q­1

­q

T
T

p
 1 + (q­1)Soft part 

­n

0
p

T
p

 1 + Hard part 

Figure 4.5: The variation soft and hard part of the unified function (Eq. 4.35) separately
with the change in p

T
.

increase in p
T

. This plot depicts that the soft part of the spectra dominate in the low-p
T

re-

gion and it rapidly decays down. After certain p
T

value (in the range of 2 − 3 GeV/c), the

hard part becomes dominant and decays slowly with an increase in the p
T

. From the be-

haviour of curves shown in the Fig. 4.5, we can infer that the first part of the unified equation

(Eq. 4.35) takes care of the contribution of hard scattering processes in the high-p
T

region

whereas the second part of the Eq. (4.34) is same as the Tsallis equation and dominate in

the low-p
T

region. Hence, the unified formalism can be explained as an extension of Tsallis

formalism to include the hard scattering processes in a unified manner.

4.6 Thermodynamical Consistency Check for the Unified

statistical framework

The thermodynamical consistency is an important criterion that must be checked to validate

if the statistical thermal model can be applied to the thermodynamical system. Following

the first and second law of thermodynamics, we get the standard differential equations:

dε = Tds+ µdn′ (4.43)

dP = sdT + n′dµ (4.44)
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From the above two equations, taking the derivative with respect to different variables, we

get the four thermodynamics relations Ref. [191]:

n′ =
∂P

∂µ

∣∣∣∣
T

(4.45)

T =
∂ε

∂s

∣∣∣∣
n′

(4.46)

s =
∂P

∂T

∣∣∣∣
µ

(4.47)

µ =
∂ε

∂n′

∣∣∣∣
s

(4.48)

The equations (4.45),(4.46), (4.47) & (4.48) must be satisfied to show that the developed

statistical thermal model is thermodynamically consistent. For the Tsallis statistics, the

consistency check is discussed in the previous chapter.

The equation of total number of particles and total energy remains same as in the case of

Tsallis distribution:
N =

∑
i

f qi

E =
∑
i

f qi Ei

(4.49)

In case of unified distribution

E
d3N

dp3
= B′

(
1 +

E

p0

)−n(
1 + (q − 1)

(E − µ)

T

)− q
q−1

(4.50)

d3N

dp3
=
B′

E

(
1 +

E

p0

)−n(
1 + (q − 1)

(E − µ)

T

)− q
q−1

(4.51)

We can simplify above equation to

d3N

dp3
= B′fEf

q
Ta (4.52)

where

fE =
1

E

(
1 +

E

p0

)−n
(4.53)

fTa =

(
1 + (q − 1)

(E − µ)

T

) −1
q−1

(4.54)
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Hence, we have
d3N

dp3
=

V

(2π)3

{
(BfE)

1
q fTa

}q
(4.55)

or more generally,
d3N

dp3
=

V

(2π)3
f qi (4.56)

where

fi = (BfE)
1
q fTa (4.57)

The entropy for the unified distribution is given as:

Sp =
∑
i

[
qfi

(q − 1) (BfE)
1
q
−1
− f qi
q − 1

]
(4.58)

4.6.1 Relation 1
{
∂P
∂µ

∣∣∣∣
T

= n′
}

For consistency check, we have to prove that:

∂P

∂µ

∣∣∣∣
T

= n′ (4.59)

where n′ is the number density. Using the first law of thermodynamics, we can express the

pressure as:

P =
−E + TS + µN

V
(4.60)

∂P

∂µ

∣∣∣∣
T

=
1

V

[
−∂E
∂µ

+ T
∂S

∂µ
+N + µ

∂N

∂µ

]
(4.61)

∂P

∂µ

∣∣∣∣
T

=
1

V

∑
i

[
f qi −

T

q − 1

{
1 + (q − 1)

(Ei − µ)

T

}
∂f qi
∂µ

+
Tq

q − 1

1

(BfEi)
1
q
−1

∂fi
∂µ

] (4.62)

fi = (BfEi)
1
q fTai (4.63)

∂fi
∂µ

=
(BfEi)

1
q

T
f qTai (4.64)

∂f qi
∂µ

= Bq
fEi
T
f 2q−1
Tai

(4.65)
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On substitution we will get,
∂P

∂µ

∣∣∣∣
T

=
1

V

∑
i

f qi =
N

V
(4.66)

∂P

∂µ

∣∣∣∣
T

= n′ (4.67)

This proves that the relation Eq. (4.45) is valid for the unified framework.

4.6.2 Relation 2
{
∂ε
∂s

∣∣∣∣
n′

= T

}
Next we try to prove equation relating the energy density with the temperature given as:

T =
∂ε

∂s

∣∣∣∣
n′

(4.68)

The right hand side of this equation can be expanded as:

∂E

∂S

∣∣∣∣
n′

=

∂E
∂T
dT + ∂E

∂µ
dµ

∂S
∂T
dT + ∂S

∂µ
dµ

(4.69)

∂E

∂S

∣∣∣∣
n′

=

∂E
∂T

+ ∂E
∂µ

dµ
dT

∂S
∂T

+ ∂S
∂µ

dµ
dT

(4.70)

In this relation, n′ is constant which add additional constraint given as:

dn′ =
∂n′

∂T
dT +

∂n′

∂µ
dµ = 0 (4.71)

dµ

dT
= −

∂n′

∂T
∂n′

∂µ

(4.72)

Solving for components of Eq. (4.70), we get:

∂E

∂T
=
∑
i

qf q−1i Ei
∂fi
∂T

(4.73)

∂E

∂µ
=
∑
i

qf q−1i Ei
∂fi
∂µ

(4.74)

∂S

∂T
=
∑
i

(
q

(q − 1) (BfEi)
1
q
−1

∂fi
∂T
− qf q−1i

q − 1

∂fi
∂T

)
(4.75)
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∂S

∂µ
=
∑
i

(
q

(q − 1) (BfEi)
1
q
−1

∂fi
∂µ
− qf q−1i

q − 1

∂fi
∂µ

)
(4.76)

∂n′

∂T
=

1

V

∑
i

qf q−1i

∂fi
∂T

(4.77)

∂n′

∂µ
=

1

V

∑
i

qf q−1i

∂fi
∂µ

(4.78)

Using the equations (4.73, 4.74, 4.77 & 4.78), numerator of the Eq. (4.70) reduces to:

∂E

∂T
+
∂E

∂µ

dµ

dT
=
∑
i

qEif
q−1
i

∂fi
∂T
−

∑
i,j

q2Ei(fifj)
q−1 ∂fi

∂µ

∂fj
∂T∑

j

qf q−1j
∂fj
∂µ

(4.79)

∂E

∂T
+
∂E

∂µ

dµ

dT
=

∑
i,j

q2Ei(fifj)
q−1 ∂fi

∂T

∂fj
∂µ
−
∑
i,j

q2Ei(fifj)
q−1 ∂fi

∂µ

∂fj
∂T∑

j

qf q−1j
∂fj
∂µ

(4.80)

This can be further reduced to

∂E

∂T
+
∂E

∂µ

dµ

dT
=

∑
i,j

qEi(fifj)
q−1Cij∑

j

f q−1j
∂fj
∂µ

(4.81)

where

Cij =
∂fi
∂T

∂fj
∂µ
− ∂fi
∂µ

∂fj
∂T

(4.82)

Using the equations (4.75, 4.76, 4.77 & 4.78) the denominator part of the Eq. (4.70) reduces

to:

∂S

∂T
+
∂S

∂µ

dµ

dT
=
∑
i

(
q

(q − 1) (BfEi)
1
q
−1

∂fi
∂T
− qf q−1i

q − 1

∂fi
∂T

)
−

{∑
i

q

(q − 1) (BfEi)
1
q
−1

∂fi
∂µ
− qf q−1i

q − 1

∂fi
∂µ

} 1
V

∑
j

qf q−1j
∂fj
∂T

1
V

∑
j

qf q−1j
∂fj
∂µ

(4.83)

=
1∑

j

f q−1j
∂fj
∂µ

[∑
i,j

{
qf q−1j

(q − 1) (BfEi)
1
q
−1

∂fi
∂T

∂fj
∂µ
− q(fifj)

q−1

q − 1

∂fi
∂T

∂fj
∂µ

}

−
∑
i,j

{
qf q−1j

(q − 1) (BfEi)
1
q
−1

∂fi
∂µ

∂fj
∂T
− q(fifj)

q−1

q − 1

∂fi
∂µ

∂fj
∂T

}] (4.84)
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=
1∑

j

f q−1j
∂fj
∂µ

∑
i,j

[
qf q−1j

(q − 1) (BfEi)
1
q
−1

{
∂fi
∂T

∂fj
∂µ
− ∂fi
∂µ

∂fj
∂T

}
−

q(fifj)
q−1

q − 1

{
∂fi
∂T

∂fj
∂µ
− ∂fi
∂µ

∂fj
∂T

}] (4.85)

∂S

∂T
+
∂S

∂µ

dµ

dT
=

{
qfq−1
j

(q−1)(BfE)
1
q−1
− q(fifj)

q−1

q−1

}
Cij∑

j

f q−1j
∂fj
∂µ

(4.86)

From Eq. (4.81) and (4.86) we get:

∂E

∂S
=

∑
i,j

qEi(fifj)
q−1Cij

∑
i,j

(
q
q−1

)[
fq−1
j

(BfEi )
1
q−1
− (fifj)q−1

]
Cij

(4.87)

∂E

∂S

∣∣∣∣
n′

=

∑
i,j

qEi(fifj)
q−1Cij

∑
i,j

(
q
q−1

)[
1

fq−1
i (BfEi )

1
q−1
− 1

]
(fifj)q−1Cij

(4.88)

∂E

∂S

∣∣∣∣
n′

=

∑
i,j

qEi(fifj)
q−1Cij

∑
i,j

(
q
q−1

)[
1

(BfEi )
1− 1

q fq−1
Ta (BfEi )

1
q−1
− 1

]
(fifj)q−1Cij

(4.89)

∂E

∂S

∣∣∣∣
n′

=

∑
i,j

qEi(fifj)
q−1Cij

∑
i,j

(
q
q−1

)[
1 + q−1

T
(Ei − µ)− 1

]
(fifj)q−1Cij

(4.90)

∂E

∂S

∣∣∣∣
n′

=

T
∑
i,j

Ei(fifj)
q−1Cij∑

i,j

[Ei(fifj)q−1Cij − µ(fifj)q−1Cij]
(4.91)

But
∑
i,j

Cij = 0, Cij = −Cji and also (fifj)
q−1 = (fjfi)

q−1. So term with µ in the

denominator becomes zero and hence we get

∂ε

∂s

∣∣∣∣
n′

= T (4.92)

This shows that the second thermodynamic relation Eq. (4.46) is satisfied for the unified

framework.
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4.6.3 Relation 3

{
∂P
∂T

∣∣∣∣
µ

= s

}

The thermodynamic equation relating the pressure with the entropy density is given as:

∂P

∂T

∣∣∣∣
µ

= s (4.93)

Also,
∂P

∂T

∣∣∣∣
µ

=
1

V

[
− ∂E

∂T
+ S + T

∂S

∂T
+ µ

∂N

∂T

]
(4.94)

So, in order to prove above relation, we have to basically prove that

−∂E
∂T

+ T
∂S

∂T
+ µ

∂N

∂T
= 0 (4.95)

Expanding each term in the Eq. (4.95) separately,

∂E

∂T
=
∑
i

qf q−1i Ei
∂fi
∂T

(4.96)

∂S

∂T
=
∑
i

(
q

(q − 1) (BfEi)
1
q
−1

∂fi
∂T
− qf q−1i

q − 1

∂fi
∂T

)
(4.97)

∂N

∂T
=
∑
i

qf q−1i

∂fi
∂T

(4.98)

Putting it in Eq. (4.95) above we get

−∂E
∂T

+ T
∂S

∂T
+ µ

∂N

∂T
=∑

i

[
− qf q−1i Ei

∂fi
∂T

+
Tq

(q − 1) (BfEi)
1
q
−1

∂fi
∂T
− Tqf q−1i

q − 1

∂fi
∂T

+ µqf q−1i

∂fi
∂T

] (4.99)

−∂E
∂T

+ T
∂S

∂T
+ µ

∂N

∂T
=∑

i

[
− qEi +

Tq

(q − 1) (BfEi)
1
q
−1 f q−1i

− Tq

q − 1
+ µq

]
f q−1i

∂fi
∂T

(4.100)

−∂E
∂T

+ T
∂S

∂T
+ µ

∂N

∂T
=∑

i

[
− q
{

(Ei − µ) +
T

q − 1

}
+

Tq

(q − 1)f q−1Tai

]
f q−1i

∂fi
∂T

(4.101)
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∑
i

[
−qT
q − 1

{
1+

q − 1

T
(Ei−µ)

}
+

qT

q − 1

{
1+

q − 1

T
(Ei−µ)

} q−1
q−1
]
f q−1i

∂fi
∂T

= 0 (4.102)

Hence
∂P

∂T

∣∣∣∣
µ

= s (4.103)

The derivation above presents the validity of thermodynamic relation Eq. (4.47) within the

unified statistical framework.

4.6.4 Relation 4
{

∂ε
∂n′

∣∣∣∣
s

= µ

}
The last thermodynamic relation provide the connection between the energy density and

chemical potential and is given as:
∂ε

∂n′

∣∣∣∣
s

= µ (4.104)

On expanding the left hand side of above equation:

∂E

∂N

∣∣∣∣
s

=

∂E
∂T
dT + ∂E

∂µ
dµ

∂N
∂T
dT + ∂N

∂µ
dµ

(4.105)

∂E

∂N

∣∣∣∣
s

=

∂E
∂T

+ ∂E
∂µ

dµ
dT

∂N
∂T

+ ∂N
∂µ

dµ
dT

(4.106)

Here s is constant so this will add an additional constraint given in the form of equation:

ds =
∂s

∂T
dT +

∂s

∂µ
dµ = 0 (4.107)

Evaluating different terms in the right hand side of the Eq. (4.106):

dµ

dT
= −

∂s
∂T
∂s
∂µ

(4.108)

∂E

∂T
=
∑
i

qf q−1i Ei
∂fi
∂T

(4.109)

∂E

∂µ
=
∑
i

qf q−1i Ei
∂fi
∂µ

(4.110)

∂s

∂T
=

1

V

∑
i

(
q

(q − 1) (BfEi)
1
q
−1

∂fi
∂T
− qf q−1i

q − 1

∂fi
∂T

)
(4.111)
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∂s

∂µ
=

1

V

∑
i

(
q

(q − 1) (BfEi)
1
q
−1

∂fi
∂µ
− qf q−1i

q − 1

∂fi
∂µ

)
(4.112)

∂N

∂T
=
∑
i

qf q−1i

∂fi
∂T

(4.113)

∂N

∂µ
=
∑
i

qf q−1i

∂fi
∂µ

(4.114)

Using the equations (4.108-4.114) we can simplify the numerator of Eq. (4.106) as follows,

∂E

∂T
+
∂E

∂µ

dµ

dT
=
∑
i

qf q−1i Ei
∂fi
∂T
−

∑
i

qf q−1i Ei
∂fi
∂µ

1
V

∑
j

(
q

(q−1)(BfEj)
1
q−1

∂fj
∂T
− qfq−1

j

q−1
∂fj
∂T

)
1
V

∑
j

q

(q−1)(BfEj)
1
q−1

∂fj
∂µ
− qfq−1

j

q−1
∂fj
∂µ

(4.115)

=

∑
i,j

qEif
q−1
i

(BfEj)
1
q−1

∂fi
∂T

∂fj
∂µ
−
∑
i,j

qEi(fifj)
q−1 ∂fi

∂T

∂fj
∂µ
−
∑
i,j

qEif
q−1
i

(BfEj)
1
q−1

∂fi
∂µ

∂fj
∂T

+
∑
i,j

qEi(fifj)
q−1 ∂fi

∂µ

∂fj
∂T∑

j

1

(BfEj)
1
q−1

∂fj
∂µ
− f q−1j

∂fj
∂µ

(4.116)

=
1∑

j

1

(BfEj)
1
q−1

∂fj
∂µ
− f q−1j

∂fj
∂µ

∑
i,j

[
qEif

q−1
i(

BfEj
) 1
q
−1

{
∂fi
∂T

∂fj
∂µ
− ∂fi
∂µ

∂fj
∂T

}
−

qEi(fifj)
q−1
{
∂fi
∂T

∂fj
∂µ
− ∂fi
∂µ

∂fj
∂T

}] (4.117)

=

∑
i,j

(
qEif

q−1
i

(BfEj)
1
q−1
− qEi(fifj)q−1

)
Cij

∑
j

(
1

(BfEj)
1
q−1

∂fj
∂µ
− f q−1j

∂fj
∂µ

) (4.118)

Similarly, the denominator of Eq. (4.106) reduces to:

∂N

∂T
+
∂N

∂µ

dµ

dT
=

∑
i,j

(
qfq−1
i

(BfEj)
1
q−1
− q(fifj)q−1

)
Cij

∑
j

(
1

(BfEj)
1
q−1

∂fj
∂µ
− f q−1j

∂fj
∂µ

) (4.119)

On dividing we get

∂E
∂T

+ ∂E
∂µ

dµ
dT

∂N
∂T

+ ∂N
∂µ

dµ
dT

=

∑
i,j

(
qEif

q−1
i

(BfEj)
1
q−1
− qEi(fifj)q−1

)
Cij

∑
i,j

(
qfq−1
i

(BfEj)
1
q−1
− q(fifj)q−1

)
Cij

(4.120)
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=

∑
i,j

qEi

(
1

(BfEj)
1
q−1

fq−1
j

− 1

)
(fifj)

q−1Cij

∑
i,j

q

(
1

(BfEj)
1
q−1

fq−1
j

− 1

)
(fifj)q−1Cij

(4.121)

=

∑
i,j

Ei[1 +
(q−1)(Ej−µ)

T
− 1](fifj)

q−1Cij∑
i,j

[1 +
(q−1)(Ej−µ)

T
− 1](fifj)q−1Cij

(4.122)

∑
i,j

EiEj(fifj)
q−1Cij −

∑
i,j

Eiµ(fifj)
q−1Cij∑

i,j

Ej(fifj)q−1Cij −
∑
i,j

µ(fifj)q−1Cij
(4.123)

First term in numerator and second term in denominator is zero. So on simplifying we get

∂ε

∂n′

∣∣∣∣
s

= µ (4.124)

The calculations provided above clearly shows that the unified formalism and the corre-

sponding entropy Eq. (4.58) is thermodynamically consistent.

4.7 Summary

Most of the models used to fit the transverse momentum spectra lacks a unified description.

Although, we can use a simple polynomial function, however it lacks a physics explanation

so, in this chapter, we have discussed a unified model based on Pearson probability distri-

bution to study broader range of p
T

-spectra. Some of the key features of the unified model

are:

• It nicely incorporates the physics of soft processes and hard scattering process.

• It is thermodynamically consistent as it obeys standard laws of thermodynamics.

• It is backward compatible to the Tsallis and BG distribution.

The results obtained by analyzing the spectra at different energies and for different colli-

sion system using the unified formalism is discussed in the next chapter.
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Chapter 5

Transverse Momentum Spectra in

Unified Statistical Framework

This chapter gives a detailed discussion, validation & test of the unified model using real

data taken in various experiments. We will show the results obtained by fitting unified

distribution to the p
T

-spectra data over a wide range of energies and centralities. We will

also present a comparison with other models used to explain the p
T

-spectra.

We have tested the formalism over a broad energy range, centrality and for different col-

lision system. The data used in this analysis includes the transverse momentum spectra

of charged hadrons produced in different centrality PbPb collision at 2.76 TeV [16], 5.02

TeV [17] and XeXe collision at 5.44 TeV [6] measured by the ALICE experiment. We

have also used the spectra of identified hadron (π+) produced in AuAu collision at 19.6

GeV [9], 27 GeV [9] & 39 GeV [9] measured by STAR experiment at RHIC, 130 GeV

[10] & 200 GeV [11] measured by the PHENIX experiment and PbPb collision at 2.76

TeV [20] measured by ALICE experiment. To test the applicability of formalism over dif-

ferent collision system, apart from the heavy-ion collision we have also used the charged

hadron spectra produced in pp collision at 900 GeV [26], 2.76 TeV [27], 5.02 TeV [28]

& 7 TeV [26] measured by the CMS experiment. Recently released multiplicity divided

data for charged hadron spectra produced in pp collision at 7 TeV [29] measured by AL-

ICE experiment is also considered in the study. All the data discussed above are publicly

available and we have downloaded it from the high energy physics data repository named

‘HEPData’ and other repositories. Different data discussed above are measured in different

rapidity window and the detail is provided in the table 5.1. The ROOT [218] data analysis

85
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Table 5.1: Description of the datasets used in the study

Energy Collision System p
T

range (GeV/c) Experimental cuts Experiment
19.6 GeV AuAu 0-2 |y| < 0.1, PID: π+ STAR [9]
27 GeV AuAu 0-2 |y| < 0.1, PID: π+ STAR [9]
39 GeV AuAu 0-2 |y| < 0.1, PID: π+ STAR [9]
130 GeV AuAu 0-2.3 |y| < 0.5, PID: π+ PHENIX [10]
200 GeV AuAu 0-3 |y| < 0.5, PID: π+ PHENIX [11]
2.76 TeV PbPb 0-3 |y| < 0.5, PID: π+ ALICE [20]
2.76 TeV PbPb 0-5 |η| < 0.8, Charge X ALICE [16]
5.02 TeV PbPb 0-5 |η| < 0.8, Charge X ALICE [17]
5.44 TeV XeXe 0-5 |η| < 0.8, Charge X ALICE [6]
900 GeV pp 0-37.2 |η| < 2.4, Charge X CMS [26]
2.76 TeV pp 0-112.2 |η| < 1.0, Charge X CMS [27]
5.02 TeV pp 0-400 |η| < 1.0, Charge X CMS [28]
7 TeV pp 0-201.2 |η| < 2.4, Charge X CMS [26]
7 TeV pp 0-40 |η| < 0.5, Charge X ALICE [29]

framework along with the MINUIT [219] algorithm is used to perform the fitting of spectra

using different functions.

5.1 Analysis of the Spectra

We have first analyzed the data of the transverse momentum spectra of charged hadrons

produced in the 2.76 TeV PbPb collision at different centralities [16] measured by the AL-

ICE experiment. Figures 5.1, 5.2 & 5.3 present the fit to the data using the BG, Tsallis and

unified distribution function respectively. From Fig. 5.1 we can conclude that the BG distri-

bution function is not in good agreement with the experimental data. The Tsallis function,

as shown in Fig. 5.2, shows a better fit to the data but only in the intermediate p
T

range,

it starts to deviate at very low- and high-p
T

. The best fit is obtained using the unified

distribution function, shown in the Fig. 5.3. The goodness of a fit function, i.e., how close

a fit function to the experimental data, is quantified using the χ2/NDF values. In table

5.2, the χ2/NDF for different centralities have been provided. The corresponding value

of the fit parameters obtained by fitting the BG, Tsallis and unified function is provided in

the table 5.3. From the table 5.2 we can conclude that the best fit is obtained for the unified

distribution, which complements the observation from Fig. 5.3.

From the statistical point of view, better fit using the unified distribution can be attributed

to the presence of higher-order moments as the free parameters because, in other distribu-
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Figure 5.1: BG distribution fit of charged particle p
T

-spectra produced in PbPb collision
for four different centrality bins at 2.76 TeV measured in ALICE experiment [16] at LHC.
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Figure 5.2: Tsallis fit of charged particle p
T

-spectra produced in PbPb collision for four
different centrality bins at 2.76 TeV measured in ALICE experiment [16] at LHC.

tion, we mainly use the mean and standard deviation as the fitting parameter. As shown in

Fig. 5.2, the Tsallis function starts to deviate from the experimental data at higher p
T

val-

ues suggesting that the Tsallis function is unable to fit the tail of the distribution and the

presence of additional parameter may resolve the issue. The unified function nicely fits the

distribution as shown in Fig. 5.3. From the successful fitting of unified distribution, it can

be inferred that the tail part depends on the higher moments. Thus any function with higher

order moment as free parameter would nicely fit the data. Having such free parameters in
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Figure 5.3: Pearson fit of charged particle p
T

-spectra produced in PbPb collision for four
different centrality bins at 2.76 TeV measured in ALICE experiment [16] at LHC.

Table 5.2: Best fit value of χ2/NDF for different centrality bins

Centrality BG Tsallis Unified
0 to 5% 25.3451 1.99445 0.10100
5 to 10% 25.5971 1.86747 0.08545
10 to 20% 26.5224 1.75271 0.08609
20 to 30% 27.6911 1.57784 0.08423
30 to 40% 28.3606 1.34457 0.06994
40 to 50% 29.8191 1.1226 0.05170
50 to 60% 29.4844 0.88907 0.03901
60 to 70% 27.9139 0.65552 0.02568

the model is an extra advantage as far as fitting is concerned and unified model offers extra

parameter as compared to earlier models yet standing through the thermal test.

Upon careful observation of the best fit value of parameters, we observe that the nu-

merical value of parameter n is of the order 10−1, whereas the value of non-extensivity

parameter q is close to unity. This set of numerical values point towards a rapid decay of

the Tsallis part of Eq. (4.34) and a slow decay of the hard scattering part. This further sup-

ports that in unified distribution, the contribution of the first part of the Eq. (4.34), which

corresponds to the spectra of particles produced in hard scattering processes, is dominant

at higher p
T

values.

Although, multi-component models fit the data separately, but miss a unified explanation

of the particles produced in the collision. Thus, the formalism developed based on the

Pearson probability distribution can be considered a better explanation to the experimental
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Table 5.3: Numerical values of the parameters obtained by fitting the experimental data of
p
T

-spectra fitted with the BG, Tsallis and unified function.

Centrality
BG Tsallis Unified

T T q T q p0 n

0-5%
0.317 0.163 1.095 0.393 1.048 0.105 0.749
±0.003 ±0.004 ±0.003 ±0.038 ±0.003 ±0.207 ±0.348

5-10%
0.318 0.161 1.098 0.386 1.053 0.088 0.700
±0.003 ±0.004 ±0.003 ±0.041 ±0.003 ±0.191 ±0.319

10-20%
0.319 0.158 1.101 0.370 1.060 0.060 0.619
±0.003 ±0.004 ±0.003 ±0.069 ±0.006 ±0.179 ±0.302

20-30%
0.320 0.152 1.106 0.352 1.070 0.038 0.548
±0.003 ±0.004 ±0.003 ±0.079 ±0.008 ±0.180 ±0.295

30-40%
0.318 0.146 1.112 0.330 1.081 0.026 0.489
±0.003 ±0.004 ±0.003 ±0.071 ±0.008 ±0.197 ±0.343

40-50%
0.316 0.137 1.119 0.311 1.094 0.034 0.474
±0.004 ±0.004 ±0.003 ±0.077 ±0.008 ±0.248 ±0.461

50-60%
0.313 0.128 1.125 0.292 1.106 0.046 0.468
±0.004 ±0.004 ±0.003 ±0.079 ±0.008 ±0.317 ±0.608

60-70%
0.308 0.119 1.132 0.273 1.121 0.075 0.487
±0.005 ±0.004 ±0.003 ±0.108 ±0.011 ±0.487 ±1.034

data. Moreover, the unified statistical framework is thermodynamically consistent and it

also reduces to the Tsallis and the BG distributions under different limits on its parameters

and it nicely explains the data over a broad p
T

range.

From the results presented above, we observe that the unified formalism provides a better

explanation of charged hadrons spectra produced in 2.76 TeV PbPb collision. To further

strengthen our approach, we also performed a similar comparative study over different

energies ranging from 19.6 GeV to 2.76 TeV.

5.1.1 Energy Dependent Study

We have analyzed the transverse momentum spectra of positive pions over a broad energy

range. The collision data selected for this study includes theAuAu collision at 19.6 GeV, 27

GeV, 39 GeV, 130 GeV, & 200 GeV measured by the RHIC experiment, and the PbPb col-

lision data at 2.76 TeV measured by the ALICE experiment at LHC. A table including the

χ2/NDF values representing the goodness of fit of BG, Tsallis and unified functions fitted

to p
T

-spectra at several energies is given in table 5.4.

In Fig. 5.4, we have provided the BG, Tsallis and unified fit the transverse momentum

spectra at different energies. We observe that the unified formalism provide the best expla-
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(a) 19.6 GeV measured in STAR experiment [9] at
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(b) 27 GeV measured in STAR experiment [9] at
RHIC
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(c) 39 GeV measured in STAR experiment [9] at
RHIC
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(d) 130 GeV measured in PHENIX experiment
[10] at RHIC
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(e) 200 GeV measured in PHENIX experiment
[11] at RHIC
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(f) 2.76 TeV measured in ALICE experiment [20]
at LHC

Figure 5.4: The Boltzmann, Tsallis and unified function fit to the transverse momentum
data of π+ particles produced at different collision energies. Data points are scaled for
clear presentation.
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Table 5.4: The χ2/NDF values of transverse momentum data of π+ particles fitted to
Boltzmann, Tsallis and unified functions at various collision energies is given along with
the fitted value of Temperature and q parameter for unified distribution.

Collision energy χ2/NDF χ2/NDF χ2/NDF T (MeV) q
(GeV) Boltzmann Tsallis Unified

19.6 9.7695 0.3916 0.05225 181.087 1.04675
27 9.9343 0.3163 0.03979 195.473 1.04482
39 10.2994 0.27538 0.002487 243.247 1.03941
130 45.747 5.11838 1.91187 268.51 1.03346
200 337.676 14.5667 1.7977 422.745 1.01778
2760 23.9804 2.31356 0.06369 381.422 1.03301

nation to the data over a wide energy range.

5.2 Model Comparison

This section presents a comparative study of the application of different distribution func-

tions used to explain the p
T

-spectra. We analyze the charged hadron spectra produced in

2.76 and 5.02 TeV PbPb collision and study the χ2/NDF values to determine which dis-

tribution provides best fit to the experimental data [220]. As discussed in the chapter 3,

different models developed to study transverse momentum spectra have different types of

physics explanation. For example, the BG distribution function is a purely thermal de-

scription of the spectra, whereas Tsallis is a generalization of BG approach to include a

non-extensive system. BW and TBW are hydrodynamically inspired models that also in-

clude flow effects and q-Weibull distribution takes into account hard QCD processes. On

the other hand, unified distribution is a generalized form that takes into account hard QCD

process as well as non-extensivity in the system. In our preliminary check, we found that

the unified model has a direct connection to second-order flow coefficient v2.

In Fig. 5.5 & 5.6, the results obtained by fitting different phenomenological models to the

charged hadron spectra produced in 2.76 TeV and 5.02 TeV PbPb collision are presented.

We have performed this analysis for different centrality classes ranging from most central

collision (0 − 5%) to most peripheral (70 − 80%) centrality. The corresponding best fit

values for different free parameters is presented in the tables 5.5, 5.6 & 5.7. The variation

of parameter q and the χ2/NDF values with centrality for different models is shown in

figures 5.7, 5.8, 5.9 & 5.10.
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(a) Boltzmann fit
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(b) Tsallis fit

1 2 3 4 5
 (GeV/c)

T
p

6−10

10

810

1010

­2
 (

G
e

V
/c

)
η

d
T

d
p

T
p

N
2

d
 N

π
2

1

 1e5×(0 to 5%)  1e4 ×(5 to 10%) 
 1e3×(10 to 20%)  1e2×(20 to 30%) 
 1e1×(30 to 40%)  1e0×(40 to 50%) 
 1e­1×(50 to 60%)  1e­2×(60 to 70%) 
 1e­3×(70 to 80%) 

(c) Blast-Wave fit

1 2 3 4 5
 (GeV/c)

T
p

6−10

10

810

1010

­2
 (

G
e

V
/c

)
η

d
T

d
p

T
p

N
2

d
 N

π
2

1

 1e5×(0 to 5%)  1e4 ×(5 to 10%) 
 1e3×(10 to 20%)  1e2×(20 to 30%) 
 1e1×(30 to 40%)  1e0×(40 to 50%) 
 1e­1×(50 to 60%)  1e­2×(60 to 70%) 
 1e­3×(70 to 80%) 

(d) Tsallis Blast-Wave fit
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(e) q-Weibull fit
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(f) Unified function fit

Figure 5.5: The transverse momentum data of charged hadrons produced at different cen-
tralities of PbPb collision at

√
sNN = 2.76 TeV [16] measured by the ALICE experiment

fitted with different fitting functions.
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(a) Boltzmann fit
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(b) Tsallis fit
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(c) Blast-Wave fit
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(d) Tsallis Blast-Wave fit
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(e) q-Weibull fit
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(f) Unified function fit

Figure 5.6: The transverse momentum data of charged hadrons produced at different cen-
tralities of PbPb collision at

√
sNN = 5.02 TeV [17] measured by the ALICE experiment

fitted with different fitting functions.
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Table 5.5: Table of parameter values obtained after fitting charged hadron spectra at 3
different centralities with different functions

Variable Method Energy (TeV) 0 to 5% 40 to 50% 70 to 80%

Teff (MeV)

BG
2.76 316.95 316.30 305.23
5.02 319.75 330.97 338.52

Tsallis
2.76 163 137.52 111.22
5.02 176.10 148.43 117.75

Pearson
2.76 393.54 311.34 296.08
5.02 407.45 369.10 329.40

Tkin(MeV)
BW

2.76 124.25 163.18 157.73
5.02 113.57 157.64 164.25

TBW
2.76 76.98 52.01 21.14
5.02 − 76.29 44.36

q

Tsallis
2.76 1.095 1.119 1.138
5.02 1.097 1.120 1.142

TBW
2.76 1.014 1.055 1.097
5.02 − 1.047 1.086

q − weibull 2.76 1.021 1.061 1.091
5.02 1.003 1.047 1.085

Pearson
2.76 1.048 1.094 1.133
5.02 1.048 1.085 1.131

χ2/NDF

BG
2.76 25.34 29.82 24.09
5.02 396.78 735.27 1080.25

Tsallis
2.76 1.99 1.13 0.51
5.02 34.30 36.37 23.62

BW
2.76 0.29 0.60 0.53
5.02 2.09 12.05 20.65

TBW
2.76 0.67 0.52 0.35
5.02 − 4.75 1.74

q − weibull 2.76 0.11 0.06 0.02
5.02 1.42 2.19 1.16

Pearson
2.76 0.10 0.05 0.02
5.02 1.71 1.96 1.09
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Table 5.6: The best fit value of exponent ‘w’ and average transverse flow velocity obtained
by fitting the charged hadron transverse momentum spectra using BW and TBW models.

Centrality
w (BW) 〈βT 〉 (BW) 〈βT 〉 (TBW)

2.76 TeV 5.02 TeV 2.76 TeV 5.02 TeV 2.76 TeV 5.02 TeV

0 to 5 %
1.2633 0.9471 0.5544 0.6303 0.4241 -
±0.7737 ±0.1236 ±0.1442 ±0.0291 ±0.0048 -

5 to 10 %
1.3660 0.9538 0.534 0.6316 0.4244 0.4181
±0.6137 ±0.1322 ±0.1059 ±0.0308 ±0.0048 ±0.0014

10 to 20 %
1.5316 0.9740 0.5047 0.6302 0.4247 0.4192
±1.6441 ±0.1465 ±0.2528 ±0.0334 ±0.0052 ±0.0013

20 to 30 %
1.8038 1.1591 0.4642 0.5862 0.4254 0.4186
±0.5546 ±0.1704 ±0.0714 ±0.0338 ±0.0052 ±0.0014

30 to 40 %
2.1756 1.4738 0.4199 0.5225 0.4263 0.4199
±0.4673 ±0.2004 ±0.0487 ±0.0319 ±0.0054 ±0.0012

40 to 50 %
2.6499 1.9766 0.3771 0.4479 0.4281 0.4189
±0.4699 ±0.0814 ±0.0389 ±0.0095 ±0.0048 ±0.0014

50 to 60 %
3.1212 2.4192 0.3446 0.4033 0.4305 0.4200
±0.4993 ±0.0799 ±0.0341 ±0.0075 ±0.0051 ±0.0016

60 to 70 %
3.6574 3.2153 0.3149 0.3424 0.4330 0.4209
±0.5502 ±0.0877 ±0.0309 ±0.0054 ±0.0052 ±0.0016

70 to 80 %
3.9250 3.4730 0.3041 0.3301 0.4355 0.4257
±0.5907 ±0.0797 ±0.0305 ±0.0048 ±0.0083 ±0.0013

Table 5.7: The best fit value of parameters k and λ obtained by fitting the charged hadron
transverse momentum spectra using q-Weibull model.

Centrality
k λ

2.76 TeV 5.02 TeV 2.76 TeV 5.02 TeV
0 to 5 % 0.8183± 0.0481 0.7666± 0.0127 0.1953± 0.0170 0.1974± 0.0049
5 to 10 % 0.8218± 0.0493 0.7741± 0.0132 0.1949± 0.0172 0.1988± 0.0049
10 to 20 % 0.8297± 0.0503 0.7788± 0.0118 0.1940± 0.0172 0.1972± 0.0044
20 to 30 % 0.8407± 0.0520 0.7998± 0.0115 0.1910± 0.0171 0.1968± 0.0040
30 to 40 % 0.8545± 0.0546 0.8035± 0.0110 0.1865± 0.0172 0.1894± 0.0037
40 to 50 % 0.8684± 0.0574 0.8295± 0.0111 0.1791± 0.0171 0.1853± 0.0035
50 to 60 % 0.8816± 0.0621 0.8492± 0.0119 0.1703± 0.0175 0.1772± 0.0035
60 to 70 % 0.8971± 0.0690 0.8717± 0.0156 0.1611± 0.0182 0.1678± 0.0032
70 to 80 % 0.8909± 0.0783 0.8662± 0.0123 0.1489± 0.0197 0.1536± 0.0033
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Figure 5.7: Fitted value of χ2/NDF for different functions fitted with p
T

-spectra data of
particles produced at 2.76 PbPb collision.
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Figure 5.8: Fitted value of χ2/NDF for different functions fitted with p
T

-spectra data of
particles produced at 5.02 PbPb collision.

The trend in the value of parameter q with centrality can provide us with an insight into

the deviation of the system from thermal equilibrium. A value of q close to one indicates

a near-equilibrium system and any deviation from q = 1 shows how much a system drifts

away from equilibrium. In Fig. 5.9 & 5.10, we observe an increasing trend in q value as

we move from central to the peripheral collision for four different methods. This indicate

a deviation from equilibrium as we move towards peripheral collision. These results are

already reported for different energies in the Ref. [163, 162, 24].
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Figure 5.9: Fitted value of non-extensivity parameter ‘q’ for different fitting functions fitted
with p

T
-spectra data of particles produced at 2.76 TeV PbPb collision.
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Figure 5.10: Fitted value of non-extensivity parameter ‘q’ for different fitting functions
fitted with p

T
-spectra data of particles produced at 5.02 TeV PbPb collision.

Studying different phenomenological models on the spectra, we observe that the unified

distribution nicely describe the dataset for charged hadrons at two different LHC energies.

This observation is also complemented by the low χ2/NDF values as shown in table 5.5.
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5.3 Large Transverse Momentum

As discussed in the chapter 1, presence of the strongly interacting QGP medium leads to

the quenching of jets. Due to this effect, there is a suppression in the high-p
T

region of

the p
T

-spectra as the final state particles coming from the jet primarily populate the high-

p
T

region. From the Fig. 5.11, we clearly observe a suppression in the p
T

-spectra starting

around 4 − 5 GeV/c. The suppression in more prominent in the central collisions. We

can conclude that the presence of the quenching effect in heavy-ion collision modify the

spectra at large p
T

and hence the application of statistical thermal models is limited upto 5

GeV/c. However, we know that the effect of in-medium energy loss is absent in the spectra

of particles produced in pp collision, which requires us to analyze the data of pp collision

at different energies using unified formalism to test whether the developed formalism cover

a broad range of p
T

.

Figure 5.11: Transverse momentum spectra of charged hadron produced in 2.76 TeV
PbPb and pp collision. Solid lines represent the scaled pp collision. (Image taken from
the Ref. [5].)

Tsallis statistics, in its original form, is not suitable to study the spectra in the broad

p
T

region particularly in the high-p
T

regions, hence some modifications have been pro-

posed in Ref. [168, 25, 221] to include the effect of hard scattering processes. One such
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Figure 5.12: The three-component Tsallis function (Eq. 5.1) fit to the transverse momentum
data of charged hadrons produced in pp collision at four different energies measured by
CMS experiment [26, 27, 28].
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Figure 5.13: The three-component Tsallis function (Eq. 5.1) fit to the transverse momentum
data of charged hadrons divided into multiplicity classes produced in pp collision at 7 TeV
measured by ALICE experiment [29].

modification is the three-component Tsallis distribution [221], which is introduced to study

the p
T

-spectra of charged hadrons produced in pp collision at 0.9 & 7 TeV and it has been

shown that the modified formalism nicely fit the spectra even at very large p
T

values. The

three-component Tsallis formalism considers that the charged hadron spectra consist pri-

marily of pions, kaons and protons, the distribution function for the charged hadrons spectra
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Figure 5.14: The unified function (Eq. 4.34) fit to the transverse momentum data of charged
hadrons produced in pp collision at four different energies measured by CMS experiment
[26, 27, 28].
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Figure 5.15: The unified function (Eq. 4.34) fit to the transverse momentum data of charged
hadrons divided into multiplicity classes produced in pp collision at 7 TeV measured by
ALICE experiment [29].

in this formalism is given as:

1

2πpT

d2N

dpTdy
= 2

V

(2π)3

3∑
i=1

gimT,i

[
1 + (q − 1)

mT,i

T

]− q
q−1

(5.1)

Here the summation index i runs over π+, K+ and p with the additional factor 2 taking care

of the corresponding antiparticles. The degeneracy factor for different mesons are given by
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Table 5.8: Multiplicity classes 〈dNch/dη〉.

Multiplicity class 7 TeV pp collision
V0M I 21.3± 0.6
V0M II 16.5± 0.5
V0M III 13.5± 0.4
V0M IV 11.5± 0.3
V0M V 10.1± 0.3
V0M VI 8.45± 0.25
V0M VII 6.72± 0.21
V0M VIII 5.4± 0.17
V0M IX 3.9± 0.14
V0M X 2.26± 0.12

gπ+ = gK+ = 1 and for proton gP = 2.

Although this function fits the data but the number of parameters becomes large. Also the

three-component Tsallis model doesn’t provide any explanation of the hard process whereas

the unified distribution explains both soft and the hard processes. In this section, we test

the applicability of unified model over a broad p
T

range [222], i.e., upto a few hundreds of

GeV/c. We have also provided the results for the three-component Tsallis formalism [221]

as a reference for comparison.

The dataset considered for this analysis includes the p
T

-spectra of charged hadrons that

are produced in pp collision at 900 GeV [26], 2.76 TeV [27], 5.02 TeV [28] and 7 TeV [26]

measured by the CMS experiment. The high multiplicity pp collision data at 7 TeV [29]

measured recently by the ALICE experiment are also taken. In the ALICE experiment,

the event can be divided into separate multiplicity classes depending on the number of

charged particles deposited in the V0 detectors in a given pseudorapidity window. This

high multiplicity dataset includes the spectra divided into different multiplicity classes as

per the ALICE classification as shown in table 5.8. The dataset taken for the analysis has a

varied pseudorapidity range. The spectra at 0.9 TeV & 7 TeV belong to |η| < 2.4 [26] and

|η| < 1 for 2.76 TeV [27] & 5.02 TeV [28] as measured by CMS experiment. The V0M

multiplicity class divided data measured by ALICE experiment at 7 TeV [29] correspond

to |η| < 0.5. The fit results from the unified model & three-component Tsallis model are

discussed below.

In Fig. 5.12, the three component Tsallis fit to the data is presented for four different

collision energy with the maximum p
T

range upto 400 GeV/c. The similar fit for the mul-

tiplicity divided 7 TeV data is provided in the Fig. 5.13. Figure 5.14 & 5.15 depicts the
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Table 5.9: Best fit value of the parameters T (GeV), q, p0 (GeV/c) & n and the χ2/NDF
value obtained by fitting the multiplicity class divided charged hadron spectra produced in
pp collision at 7 TeV measured by the ALICE experiment [29] with the unified distribution
function Eq. (4.34).

Mult. class T q p0 n χ2/NDF

V0M I
0.221 1.146 73.878 −7.282

0.996±0.011 ±0.004 ±11.3 ±0.367

V0M II
0.211 1.145 86.114 −8.973

0.787±0.010 ±0.004 ±10.817 ±0.377

V0M III
0.202 1.142 44.988 −5.967

0.639±0.011 ±0.005 ±6.725 ±0.274

V0M IV
0.194 1.132 17.558 −4.231

0.518±0.010 ±0.005 ±1.945 ±0.293

V0M V
0.190 1.136 18.987 −3.811

0.518±0.017 ±0.009 ±9.757 ±0.483

V0M VI
0.182 1.129 13.101 −3.903

0.321±0.017 ±0.009 ±2.540 ±0.522

V0M VII
0.166 1.114 7.026 −4.336

0.337±0.003 ±0.001 ±1.062 ±0.151

V0M VIII
0.167 1.121 11.110 −4.583

0.107±0.005 ±0.002 ±1.306 ±0.433

V0M IX
0.156 1.135 13.28 −3.342

0.377±0.005 ±0.003 ±3.067 ±0.095

V0M X
0.126 1.077 6.417 −9.693

0.726±0.005 ±0.002 ±0.195 ±0.557

Table 5.10: Best fit value of the parameters T (GeV), q, p0 (GeV/c) & n and the χ2/NDF
value obtained by fitting the charged hadron spectra produced in pp collision at 0.9 TeV
[26], 2.76 TeV [27], 5.02 TeV [28] and 7 TeV [26] measured by the CMS experiment with
the unified distribution function Eq. (4.34).

Energy T q p0 n χ2/NDF

0.9 TeV
0.078 1.032 3.603 −25.58

1.79±0.009 ±0.003 ±0.131 ±3.119

2.76 TeV
0.132 1.07 4.014 −8.926

0.996±0.006 ±0.002 ±0.231 ±0.363

5.02 TeV
0.146 1.122 2.737 −2.603

3.119±0.007 ±0.001 ±0.422 ±0.011

7 TeV
0.125 1.147 0.849 −1.184

4.559±0.001 ±0.001 ±0.046 ±0.009
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Figure 5.16: The ratio plot for four different energies fitted with the Tsallis distribution
Eq. (5.1).
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Figure 5.17: The ratio plot for four different energies fitted with the unified distribution
Eq. (4.34).

unified function fit to different energies and different multiplicity classes divided 7 TeV

data respectively. Although both of the function provide a good explanation to the data,

however, the unified model show some improvement in the fit quality compared to the

three-component Tsallis model. This improvement can be become more prominent in the

ratio plot where we study the ratio of data to the fit function. The ratio plots are presented

in the figures 5.16, 5.17, 5.19 & 5.18.

We observe a similar range of variation from the ideal value of one in the different energy
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Figure 5.18: Ratio plot for three different multiplicity classes of 7 TeV pp collision data
fitted with the Tsallis distribution Eq. (5.1).
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Figure 5.19: Ratio plot for three different multiplicity classes of 7 TeV pp collision data
fitted with the unified distribution Eq. (4.34).

ratio plots obtained from Tsallis fit (Fig. 5.16) and unified function fit (Fig. 5.17). However,

from the ratio plots for multiplicity divided 7 TeV collision data, we observe a significant

improvement in the fit quality from the unified distribution (Fig. 5.19) as compared to the

three-component Tsallis distribution (Fig. 5.18). This improvement is more prominent in

the high-p
T

region where the hard scattering processes dominate, stressing that the unified

formalism improves the fit in high-p
T

region.

We observe a log-periodic form of the oscillation pattern in the ratio plots presented
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in figures 5.16, 5.17, 5.19 & 5.18 over a broad p
T

range for both the unified and three-

component Tsallis formalism. Similar oscillation pattern was also reported for different

datasets in the Ref. [221, 223, 224]. At the same time we observe an interesting trend in

the oscillation pattern for different multiplicity classes. We observe a clear reversal in the

oscillation pattern as we move from multiplicity class V0M1 to V0M10. We could not

find any explanation regarding this strange oscillation pattern. Thus we suspect there may

be some interesting phenomena hidden inside this & need a further theoretical explanation

which is beyond the scope of this thesis work.

5.4 Summary

In the words of Nobel laureate physicist Richard P. Feynman, It doesn’t matter how beauti-

ful your theory is, it doesn’t matter how smart you are. If it doesn’t agrees with experiment,

it’s wrong. So in this chapter we have tested whether the unified statistical framework dis-

cussed in chapter 4 agrees with the experimental data of transverse momentum spectra. In

this chapter we aim to test the applicability of unified model over a broad energy range,

different centralities and collision systems. We also aim to study whether the unified model

provides improvement in the fit quality compared to the existing phenomenological models.

We have fitted the transverse momemtum spectra of charged hadrons and positive pion

produced in different energy collision including RHIC energies (19.6, 27, 39, 130 & 200

GeV) and the LHC energies (0.9, 2.76, 5.02, 5.44 & 7 TeV). The datasets belongs to differ-

ent collision system such as PbPb , AuAu, XeXe & pp. We have performed the analysis

over different centralities to study the variation of different fit parameters with the extent

of overlap in the collision. The fit quality of unified model has been compared with the

different phenomenological models including the BG, Tsallis, BW, TBW, q-Weibull and

three-component Tsallis model.

The result obtained in this study are listed below.

• The study over a broad energy range and different collision system suggests that the

unified model provide a good explanation of the p
T

-spectra.

• A model comparison study shows that the lowest χ2/NDF values are obtained from

the unified model advocating that the unified model provides best explanation of the

p
T

-spectra.
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These results suggests that the unified formalism agrees well with the experimental data of

transverse momentum spectra. The application of the unified model to estimate different

quantities of interest is provided in the next chapter and will also discuss the study of the

pseudorapidity distribution within the unified statistical framework.



Chapter 6

Application & Further Discussion

A statistical thermal model, apart from fitting the spectra, can also provide information

about the system created in high energy collision. In this direction, we have attempted

to utilize the unified statistical framework developed & discussed in the early chapters to

investigate some of the quantities of interest that are not directly observed.

A brief description of the quantities that we will discuss in the following sections are

provided below.

• The pseudorapidity distribution of the final state particles in heavy-ion collision gives

a quantitative description of number of particles produced as a function of velocity

of particle, which in turn can give information about the entropy of the system. We

will discuss the multiple fireball scenario within the unified statistical framework to

study the pseudorapidity distribution of particles created in high energy collision.

• Since the unified distribution is thermally consistent, we will also check the ther-

mal response functions in the unified framework. The thermodynamical response

functions such as the isothermal compressibility and the speed of sound are not di-

rectly observable, however, they play a crucial role in understanding the nature of

the system created in the collision. We will discuss the formalism to estimate these

quantities within the framework of unified distribution.

• We will also explore the relation between the parameter of the unified distribution

and the second order flow coefficient.

107
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6.1 The Rapidity and Pseudorapidity Distribution

As discussed in Appendix B, the rapidity variable is defined as

y =
1

2
ln
E + pz
E − pz

(6.1)

where E is the energy and pz longitudinal momentum of the final state particles. The

estimation of y requires the precise measurement of E & pz, i.e. we need the information

about ’mass’ of each particles. In experiments, sometimes we lack the information of mass

of the particles, so the pseudorapidity is measured instead of the rapidity and it is given as

η = −ln(tan(θ/2) (6.2)

Pseudorapidity (η) is defined only in term of the angle θ at which a particle is emitted with

respect to the beam axis.

The distribution of the pseudorapidity of the final state charged particle provides us with

the information crucial to understand the mechanism of particle production and the initial

energy density of the system created in high energy collision. The study of the centrality

and the collision system dependence of the primary charged particle pseudorapidity density

(dNch/dη) over a broad η range also gives us an insight into the relative contribution of

hard and soft processes in the production of final state particles [225].

In an experiment, the geometry of the detectors systems is traditionally in the form of

a cylinder and hence it covers primarily the central rapidity region. Due to difficulties in

setting up the detector at forward rapidities, most of the experiments measure the kinematic

observable such as η and p
T

primarily in the mid-rapidity region. Hence the study of particle

distribution over a wide η range requires a theoretical model that could extrapolate the data

with good precision & is equally important to understand the η dependence of particle

production.

Several theoretical models [226, 227, 228] with varied underlying physics have been

proposed. A multi-source thermal model with four sources along with its Tsallis general-

ization is discussed in Ref. [226, 229]. Another model considering a three source scenario

within the framework is the non-equilibrium statistical relativistic diffusion model and it

is discussed in the Ref. [227]. This model considers that the charged hadrons produced
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in the gluon-gluon interaction belong to the midrapidity source. And the remaining two

sources at large rapidities correspond to the quark-gluon interaction. Hence, a large portion

of the produced charged hadrons belong to the mid-rapidity source and the size of the mid-

rapidity dip is controlled by their relative particle content. The mid-rapidity dip is mainly a

mathematical artifact of particle production at θ = 90o. Another three source model, where

the Landau hydrodynamics model describes the central source is discussed in Ref. [228].

In Ref. [230, 231], a model with a large number of fireballs along with the BG distribu-

tion is used to explain the pseudorapidity distribution of particles produced in high energy

collision and its Tsallis generalization is discussed in Ref. [232, 233, 234]. This multi-

ple fireball scenario assumes two cluster of fireballs and a q-Gaussian function is used to

explain the rapidity distribution of these fireballs.

As discussed in the previous chapter, the energy distribution of the particles within the

unified formalism is given as:

E
d3N

dp3
= B′

(
1 +

E

p0

)−n(
1 + (q − 1)

(E − µ)

T

)− q
q−1

(6.3)

We can replace E with mT cosh(y) and µ to zero for LHC energies, so the above equation

modifies to:
1

2πpT

d2N

dpTdy
= B′

(
1 +

mT cosh(y)

p0

)−n
(

1 + (q − 1)
mT cosh(y)

T

)− q
q−1

(6.4)

By integrating the above equation over p
T

, we obtain the rapidity distribution of the sec-

ondaries produced from the decay of a fireball moving in the laboratory frame with the

rapidity yf .
dN

dy
= A

∫ ∞
0

dpTpT

(
1 +

mT cosh(y − yf )
p0

)−n
(

1 + (q − 1)
mT cosh(y − yf )

T

)− q
q−1

(6.5)

In multiple fireball scenario, we consider a large number of such fireballs. The rapidity

distribution of fireball ν(yf ) given in term of a double q-Gaussian function:

ν (yf ) = G(y0, σ; yf ) +G(−y0, σ; yf ) (6.6)
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Here G(y0, σ; yf ) is the q-Gaussian given as:

G(y0, σ; yf ) =
1√
2πσ

eq

(
−(yf − y0)2

2σ2

)
(6.7)

and the q-exponential eq(x) [165] is defined as:

eq(x) ≡ [1− (q − 1)x]−
1
q−1 (6.8)

On substituting q-exponential and q-Gaussian in Eq. (6.6) we get:

ν (yf ) =
1√
2πσ

[
1 + (q − 1)

(yf − y0)2

2σ2

]− 1
q−1

+
1√
2πσ

[
1 + (q − 1)

(yf + y0)
2

2σ2

]− 1
q−1

(6.9)

in Eq. (6.9) y0 represents the peak position and σ is the width of q-Gaussian.

As already discussed, we do not have always the information about the mass of individual

particle, hence we measure the pseudorapidity of particle instead of rapidity. We use the

Jacobian transformation from rapidity space to pseudorapidity space given as:

dy

dη
=

√
1− m2

0

m2
T cosh(y)

(6.10)

Further, the relation between y and η will be of the form:

y =
1

2
ln


√
p2T cosh2(η) +m2

0 + pT sinh η√
p2T cosh2(η) +m2

0 − pT sinh η

 (6.11)

Finally, one can obtain the distribution of charged hadrons pseudorapidity by integrating

over p
T

and yf in the equation:

dN

dη
=A

∫ ∞
−∞

dyf

∫ ∞
0

dpTpT

√
1− m2

0

m2
T cosh2(y)

× ν (yf )

(
1 +

mT cosh(y − yf )
p0

)−n
×
[
1 + (q − 1)

mT cosh (y − yf )
T

]− q
q−1

(6.12)
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with the distribution of the fireball as in Eq. (6.9). The rapidity y can be replaced by

Eq. (6.11). The numerical integration is performed to solve the integral equation Eq. (6.12).

The experimental data of pseudorapidity distribution are fitted with the Eq. (6.12) consider-

ing y0 and σ as the free parameters that needs to be tuned to obtain the best fit. As we have

shown earlier, the numerical value of parameters q, T , p0 & n that appears in the Eq. (6.12),

are obtained by fitting transverse momentum spectra using the Eq. (4.34).

Discussion

We have tested the applicability of unified framework based pseudorapidity distribution

function [235] by analysing the experimental dNch/dη distribution of charged hadron pro-

duced in 2.76 TeV PbPb [30, 31] and 5.44 TeV XeXe [32] collision. To extract the
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Figure 6.1: The unified pseudorapidity function fit (Eq. 6.12)over the range −6 ≤ η ≤ 6
for the pseudorapidity distribution of charged hardon produced in

√
sNN = 2.76 TeV

PbPb collision [30, 31].

numerical value of the thermodynamical parameters q, T , p0 and n, we have fitted the

transverse momentum spectra of charged hadrons produced in 2.76 TeV PbPb [16] and

5.44 TeV XeXe [6] collision with the unified distribution function Eq. (4.34). The good-

ness of fit is tested in term of the χ2/NDF values and the corresponding best fit data is

provided in table 6.1.

The Fig. 6.1 & 6.3, depict the unified function (Eq. 6.12) fit to the pseudorapidity dis-

tribution data of charged hadrons at two different energies. These figures shows that the
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Table 6.1: The χ2/NDF values for the pseudorapidity data at 2.76 TeV and 5.44 TeV fitted
with the distribution function Eq. (6.12).

Centrality
χ2/NDF

2.76 TeV 5.44 TeV
0 to 5 % 3.99/39 -
5 to 10 % 3.135/39 -
10 to 20 % 2.757/39 3.671/53
20 to 30 % 1.988/39 3.366/53
30 to 40 % 1.611/31 2.831/53
40 to 50 % 1.407/31 3.5/53
50 to 60 % 1.269/31 5.112/53
60 to 70 % 4.557/31 4.849/53
70 to 80 % - 4.382/53

Table 6.2: Numerical values of dNch/dη obtained from the fit function Eq. (6.12) along with
the experimentally measured values for PbPb collision at 2.76 TeV and the ratio (data/fit)
for two different centralities.

η
Centrality 0 to 5 % Centrality 60 to 70 %

Data Fit Ratio Data Fit Ratio
-3.375 1388 1387.43 1.00 76.10 74.94 1.01
-2.875 1504 1526.06 0.98 80.00 79.77 1.00
-2.375 1627 1629.76 1.00 83.10 82.58 1.01
-1.875 1709 1691.15 1.01 84.30 83.24 1.01
-1.375 1739 1705.59 1.02 81.90 81.81 1.00
-0.875 1674 1678.64 1.00 78.90 78.82 1.00
-0.375 1627 1635.87 0.99 75.80 75.76 1.00
0.375 1627 1635.87 0.99 75.80 75.76 1.00
0.875 1674 1678.64 1.00 78.90 78.82 1.00
1.375 1739 1705.59 1.02 81.90 81.81 1.00
1.875 1709 1691.15 1.01 84.30 83.24 1.01
2.375 1627 1629.76 1.00 83.10 82.58 1.00
2.875 1504 1526.06 0.98 80.00 79.77 1.00
3.375 1388 1387.43 1.00 76.10 74.94 1.02
3.875 1209 1223.56 0.99 66.00 68.38 0.96
4.375 1046 1045.42 1.00 59.10 60.55 0.98
4.875 888 864.677 1.03 53.60 52.08 1.03
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Figure 6.2: Ratio of data to the fit function for three different centralities PbPb collision
data at 2.76 TeV.
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Figure 6.3: The unified pseudorapidity function fit (Eq. 6.12) over the range −6 ≤ η ≤ 6
for the pseudorapidity distribution of charged hardon produced in

√
sNN = 5.44 TeV

XeXe collision [32].

function provided in Eq. (6.12) nicely explains the experimental data for different central-

ities and energy. The ratio of the value obtained from the data and the fit function plotted

with respect to η in Fig. 6.2 & 6.4 also complement the above observation.

The rapidity of the two clusters that are considered to be moving toward each other in

the multiple fireball scenario is presented in Fig. 6.5. And the distribution of the fireball

rapidity within a cluster represented by the width of the q-Gaussian function is presented in



114 Chapter 6. Application & Further Discussion

Table 6.3: Numerical values of dNch/dη obtained from the fit function Eq. (6.12) along
with the experimentally measured values for XeXe collision at 5.44 TeV and the ratio
(data/fit) for two different centralities.

η
Centrality 10 to 20 % Centrality 70 to 80 %

Data Fit Ratio Data Fit Ratio
-3.375 617.80 621.20 0.99 31.70 31.35 1.01
-2.875 669.90 670.69 1.00 33.50 32.76 1.02
-2.375 696.10 704.72 0.99 33.40 33.74 0.99
-1.75 732.20 731.57 1.00 33.60 34.22 0.98
-1.25 741.30 735.22 1.00 34.00 33.84 1.00
-0.75 725.50 724.08 1.00 33.00 32.89 1.00
-0.25 704.90 709.88 0.99 31.90 31.99 1.00
0.25 704.90 709.88 0.99 31.90 31.99 1.00
0.75 725.50 724.08 1.00 33.00 32.89 1.00
1.25 741.30 735.22 1.00 34.00 33.84 1.00
1.75 732.20 731.57 1.00 33.60 34.22 0.98
2.375 696.10 704.72 0.99 33.40 33.74 0.99
2.875 669.90 670.69 1.00 33.50 32.76 1.02
3.375 617.80 621.20 0.99 31.70 31.35 1.01
3.875 547.10 576.31 0.95 28.20 29.63 0.95
4.375 520.10 512.91 1.01 27.60 27.64 1.00
4.875 473.30 459.63 1.03 25.80 25.58 1.01
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Figure 6.4: Ratio of data to the fit function obtained for three different centralities XeXe
collision data at 5.44 TeV.

Fig. 6.6.

From above results it can be concluded that the formalism developed considering the

multiple fireball scenario within the unified statistical framework is in good agreement with

the experimental data. Hence, this formalism can be utilized to study the pseudorapidity
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0 50 100 150 200 250 300 350 400

partN

2

3

4

σ

2.76 TeV PbPb

5.44 TeV XeXe

Figure 6.6: Variation of parameter σ with charged particle multiplicity for two different
energies.

distribution over large η beyond the detector acceptance with good accuracy.

6.2 Thermodynamical Response Function

The response functions quantify the response of a system to the change in external param-

eters such as temperature, pressure etc. Some of the response functions that are of interest

in high energy physics include the isothermal compressibility (κT ), speed of sound (cs)
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and specific heat (CV ) [236, 237, 238]. These response functions play a crucial role in

understanding the equation of state and the nature of the medium created in high energy

collision.

Since the response functions are not directly observable, they can be extracted by study-

ing the distribution of the transverse momentum as it is related to the energy distribution of

the system. We have developed the formalism to study the isothermal compressibility and

speed of sound within the unified statistical framework [239]. The section below discusses

the mathematical formulation along with the result obtained for κT and c2s using the exper-

imental data of charged hadron spectra from the PbPb collision at
√
sNN = 2.76 TeV [16],

5.02 TeV [240], and XeXe collision at 5.44 TeV [32].

6.2.1 Isothermal Compressibility

The isothermal compressibility (κT ) quantifies the change in volume of a system on the

application of pressure at a fixed temperature and is important in studying the nearness of

a system to a perfect fluid. The perfect fluids are ideal fluids that do not conduct heat and

do not possess shear stress. The κT value for a perfect fluid is zero, which signifies that the

fluid is incompressible. The perfect fluid does not exist, however, the value of κT close to

zero as discussed in Ref. [241], suggests a near-perfect behaviour of the medium created in

high energy collision. Other observations related to the shear viscosity to entropy density

(η/s) ratio also points toward the near-perfect behaviour of medium [242, 243, 244].

In mathematical terms, the κT is given as:

κT = − 1

V

(
∂V

∂P

)
T

(6.13)

Further, κT is also related to the multiplicity fluctuation and the average number of particles

[245] and the relation is given as:

〈
(N− < N >)2

〉
= var(N) =

T < N >2

V
κT (6.14)

The variance of particle multiplicity N is related to derivative of number density with re-
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spect to chemical potential as:

〈
(N− < N >)2

〉
= V T

∂n′

∂µ
(6.15)

From above two equations, we can deduce the functional form of κT [236]:

κT =
∂n′/∂µ

n2
(6.16)

where n′, in case of unified formalism, is of the form:

n′ =

∫
d3p

(2π)3
× B

E

(
1 +

E

p0

)−n[
1 + (q − 1)

(E − µ)

T

] −q
q−1

(6.17)

and,

∂n′

∂µ
=

∫
d3p

(2π)3
× q

T
× B

E

(
1 +

E

p0

)−n[
1 + (q − 1)

(E − µ)

T

] 1−2q
q−1

(6.18)

Using the equations 6.16, 6.17 & 6.18, we have estimated the isothermal compressibility of

the system created in heavy-ion collision at three different energies.
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Figure 6.7: Unified function fit to the transverse momentum spectra of charged hadrons
produced in 2.76 TeV PbPb collision [16].

The estimation of κT requires information about the parameters T , q, p0 & n. To obtain

the numerical values analysis is performed using the p
T

-spectra of charged hadrons pro-

duced in PbPb collision at 2.76 [16] & 5.02 TeV [17] and XeXe collision at 5.44 TeV [6].
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Figure 6.8: Unified function fit to the transverse momentum spectra of charged hadrons
produced in 5.02 TeV PbPb collision [16].

Table 6.4: The χ2/NDF values for the p
T

-spectra data at three different energies fitted
with the unified distribution function Eq. (4.34).

Centrality
χ2/NDF

2.76 TeV 5.02 TeV 5.44 TeV
0 to 5 % 3.43404/34 58.1109/34 -
5 to 10 % 2.90539/34 47.8639/34 -
10 to 20 % 2.92695/34 51.5548/34 11.4889/34
20 to 30 % 2.86397/34 56.5746/34 9.54121/34
30 to 40 % 2.37782/34 60.2901/34 9.9481/34
40 to 50 % 1.75793/34 66.8039/34 6.34837/34
50 to 60 % 1.32635/34 56.914/34 6.85773/34
60 to 70 % 0.873108/34 52.6224/34 7.97269/34
70 to 80 % - 36.9991/34 8.75661/34

Since we are trying to study the bulk properties, so we have restricted the p
T

range to p
T
< 5

GeV/c because the large p
T

particles are primarily produced in hard processes.

The p
T

-spectra of charged hadron produced in heavy-ion collision at 2.76 TeV, 5.02 TeV

& 5.44 TeV is analyzed and the corresponding fit at different centralities are provided in the

figures 6.7, 6.8 and 6.9 respectively. The χ2/NDF value, which represent the goodness

of fit is presented in the table 6.4. In tables 6.5, 6.6 and 6.7, the numerical value of the

fit parameters T, q, p0 & n that best describe the data is provided for different energies.

These values have been used in the formalism discussed in the previous section to calculate

the value of κT/V . The estimated values of isothermal compressibility is presented as a

function of the charge particle multiplicity. At a particular centrality, the corresponding
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Figure 6.9: Unified function fit to the transverse momentum spectra of charged hadrons
produced in 5.44 TeV XeXe collision [6].

value of charged particle multiplicity
〈
dNch
dη

〉
is obtained from the Ref. [20, 246, 32].

Figure 6.10 depicts the isothermal compressibility over volume, κT/V , calculated using

the equation (6.16), (6.17) & (6.18). We observe a decline in the value of κT/V with an

increase in the charged particle multiplicity and at higher multiplicity the value approaches

closer to the ideal behaviour. The trend observed in the Fig. 6.10 is within the expecta-

tion. This may be because the presence of a larger number of particles makes it difficult to

compress at a higher multiplicity. Further, we observe similar values of κT/V at different

energies which suggest similar dynamics of the medium produced in such collision. In the

present analysis, the values calculated for κT/V using the unified formalism is in the range

of 10−3 − 10−5 GeV −1.

Next missing part of this estimation is the correct evaluation of volume of the system.

This is because calculating the numerical value of kT (fm3/GeV ) require a proper esti-

mation of volume. In this direction, several efforts have been made to extract the volume

parameter using wide range of datasets [247, 191, 248, 249, 250, 221, 251, 252]. Different

models give a different estimates of the volume, however, most of them lies in the range of

103−104 fm3. So, considering the range of values for the volume parameter, the estimated

value of kT using unified formalism is in the order of 1 − 10 fm3/GeV . Such low values

of kT indicate the near-ideal behaviour of the system created in the heavy-ion collision.

Since the estimation of volume parameter is still an ongoing field of research, so, instead
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Table 6.5: Numerical values of the fit parameters obtained by fitting the 2.76 TeV PbPb col-
lision experimental data of charged hadron p

T
-spectra fitted with the unified formalism

Eq. (4.34).

Centrality T q p0 n

0 to 5 %
0.393 1.048 0.105 0.749
±0.045 ±0.004 ±0.213 ±0.356

5 to 10 %
0.386 1.053 0.088 0.700
±0.041 ±0.004 ±0.191 ±0.319

10 to 20 %
0.370 1.060 0.060 0.619
±0.069 ±0.006 ±0.179 ±0.302

20 to 30 %
0.351 1.070 0.038 0.548
±0.079 ±0.008 ±0.179 ±0.302

30 to 40 %
0.331 1.081 0.026 0.489
±0.071 ±0.008 ±0.197 ±0.343

40 to 50 %
0.311 1.093 0.034 0.474
±0.077 ±0.008 ±0.248 ±0.461

50 to 60 %
0.292 1.106 0.046 0.468
±0.079 ±0.008 ±0.317 ±0.608

60 to 70 %
0.273 1.121 0.075 0.487
±0.108 ±0.012 ±0.487 ±1.034

Table 6.6: Numerical values of the fit parameters obtained by fitting the 5.02 TeV PbPb col-
lision experimental data of charged hadron p

T
-spectra fitted with the unified formalism

Eq. (4.34).

Centrality T q p0 n

0 to 5 %
0.407 1.048 0.002 0.562
±0.003 ±0.001 ±0.030 ±0.045

5 to 10 %
0.415 1.049 0.017 0.604
±0.004 ±0.001 ±0.033 ±0.050

10 to 20 %
0.422 1.052 0.039 0.659
±0.004 ±0.001 ±0.033 ±0.055

20 to 30 %
0.424 1.059 0.081 0.744
±0.012 ±0.001 ±0.042 ±0.072

30 to 40 %
0.412 1.068 0.082 0.749
±0.013 ±0.001 ±0.038 ±0.070

40 to 50 %
0.369 1.085 0.050 0.614
±0.018 ±0.002 ±0.042 ±0.084

50 to 60 %
0.340 1.101 0.053 0.578
±0.023 ±0.002 ±0.051 ±0.114

60 to 70 %
0.311 1.118 0.066 0.557
±0.025 ±0.002 ±0.071 ±0.169

70 to 80 %
0.329 1.131 0.156 0.855
±0.034 ±0.003 ±0.094 ±0.293
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Figure 6.10: Isothermal compressibility over volume as a function of average charged par-
ticle multiplicity for XeXe collision at

√
sNN = 5.44 TeV, PbPb collision at

√
sNN = 5.02

TeV and PbPb collisions at
√
sNN = 2.76 TeV using Unified formalism.

of selecting a particular model, we have presented the result in terms of kT/V .

6.2.2 Speed of Sound

The speed of sound is pivotal in understanding the hydrodynamical evolution of the system

produced in heavy-ion collisions [253]. It also provides information regarding the equa-

tion of state, which relates the energy density (ε) and the pressure (P ). The value of the

squared speed of sound c2s is 1/3 for a non-interacting massless ideal gas [254], hence, the

comparison of c2s value with the ideal gas can reveal the nature of the medium [255].

The squared speed of sound, c2s, is defined as the rate of change of pressure with the

energy density at constant volume.

c2s =

(
∂P

∂ε

)
V

(6.19)

In the above equation, P is pressure and ε is energy density of the system. The Eq. (6.19)

can be further reduced to:

c2s =
∂P
∂T
∂ε
∂T

(6.20)

In standard statistical mechanics, pressure can be presented in terms of the distribution
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Table 6.7: Numerical values of the fit parameters obtained by fitting the 5.44 TeV XeXe
collision experimental data of charged hadron p

T
-spectra fitted with the unified formalism

Eq. (4.34).

Centrality T q p0 n

10 to 20 %
0.409 1.072 0.098 0.720
±0.012 ±0.001 ±0.075 ±0.148

20 to 30 %
0.460 1.067 0.225 1.101
±0.032 ±0.003 ±0.106 ±0.237

30 to 40 %
0.447 1.079 0.229 1.112
±0.037 ±0.004 ±0.097 ±0.235

40 to 50 %
0.455 1.091 0.288 1.306
±0.050 ±0.005 ±0.127 ±0.360

50 to 60 %
0.434 1.108 0.290 1.317
±0.084 ±0.008 ±0.152 ±0.512

60 to 70 %
0.357 1.123 0.198 0.943
±0.070 ±0.006 ±0.170 ±0.533

70 to 80 %
0.338 1.139 0.206 0.974
±0.094 ±0.011 ±0.257 ±0.873

function of energy as:

P =

∫
d3p

(2π)3
p2

3E
× f(E) (6.21)

Considering the Tsallis prescription of replacing f(E) with f q(E) and then replacing f(E)

with the unified distribution of energy, we get:

P =

∫
d3p

(2π)3
×B × p2

3E2

(
1 +

E

p0

)−n[
1 + (q − 1)

E

T

] −q
q−1

(6.22)

and,

ε =

∫
d3p

(2π)3
×B

(
1 +

E

p0

)−n[
1 + (q − 1)

E

T

] −q
q−1

(6.23)

By using the above equations, the squared speed of sound c2s,

c2s =

∫
p2d3p
3E2

(
1 + E

p0

)−n[
T
q−1 + E

] 1−2q
q−1

∫
d3p

(
1 + E

p0

)−n[
T
q−1 + E

] 1−2q
q−1

(6.24)

For a deeper understanding of the system produced in the heavy-ion collision, the squared

speed of sound is estimated for different energies. This quantity helps in understanding

the equation of state, which in turn is crucial to study the hydro-dynamical properties of
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Figure 6.11: Squared speed of sound as a function of average charged particle multiplic-
ity for XeXe collision at

√
sNN = 5.44 TeV, PbPb collision at

√
sNN = 5.02 TeV and

PbPb collisions at
√
sNN = 2.76 TeV using Unified formalism. The dotted line represents

the theoretical value for ideal gas system.

the medium. The insight into the nature of the medium created in high energy collision

can be gained by comparing with the ideal gas values of c2s. The squared speed of sound

values obtained for three different energies calculated using the Eq. (6.24) are presented

in Fig. 6.11. The theoretical value for the ideal gas is represented using the blue dotted

line in the same figure. From the result obtained for 2.76, 5.02 and 5.44 TeV, we observe

that the value of c2s is close to the ideal gas value of 1/3. Further, the values increase

slightly with the increase in the charged particle multiplicity, suggesting the formation of

a near ideal system at higher multiplicity. This observation complements the near-ideal

behaviour already indicated from the measurement of isothermal compressibility in the

previous section.

In conclusion, we have made an attempt to study some thermodynamic response func-

tions such as isothermal compressibility and speed of sound using the unified statistical

framework. The values of κT/V and c2s estimated using the unified formalism point toward

the near-ideal behaviour of the system created in the heavy-ion collision.
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6.3 Discussion on the Geometrical Effect

Geometry effect in the non-zero impact parameter relativistic heavy-ion collision gives rise

to non-sphericity in the system. The quantity used to quantify the departure from sphericity

in the system is known as anisotropic flow. This initial geometry effect, via multiple colli-

sions, results in momentum anisotropy in the final state particles Thus, the transverse mo-

mentum distribution of final state particles must have some imprint of azimuthal anisotropy

produced due to flow. A precise understanding of anisotropic flow is crucial in order to

understand the evolution dynamics of the QGP state.

Flow parameter can be characterized by doing the Fourier series expansion in azimuthal
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Figure 6.12: Variation of anisotropic flow coefficients vn as a function of centrality of
charged particles for 5.02 TeV with p

T
range 0.2 <p

T
< 3 GeV/c [33] and 2.76 TeV with

p
T

range 0.2 <p
T
< 5 GeV/c [34] measured by ALICE experiment (|η| < 0.8) . Here, {2}

represent that vn is calculated using two-particle cumulant method.

angle φ of particle yield spectra given as:

E
d3N

dp3
=

1

pT

d2N

dpTdy
× N

2π
[1 + 2

∑
h

vhcos {h(φ− ψ)}] (6.25)

where p is the momentum of particle, E the energy, p
T

the transverse momentum, φ the

azimuthal angle, y the rapidity, ψ the reaction plane angle, and vh represent hth order flow

coefficient [82, 256]. Due to the presence of reflection symmetry with respect to the reaction

plane, we do not have any sine term in the Fourier expansion [257].
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Flow coefficient of hth order (vh) can be calculated using following equation:

vh = 〈cos[h(φ− ψ)]〉 =

∫
dφdN

dφ
cos[h(φ− ψ)]∫
dφdN

dφ

(6.26)

with angle bracket representing average over all particles in all events.

The differential flow coefficient depends on the transverse momentum and the emission

angle of particle with respect to collision axis. Integrated flow represents flow coefficient

integrated over p
T

and y as in Eq. (6.26). On the other hand, the differential flow coefficient

is given as [2]:

vh = 〈cos[h(φ− ψ)]〉 =

∫
dφ d3N

pT dpT dφdy
cos[h(φ− ψ)]∫

dφ d3N
pT dpT dφdy

(6.27)

The standard nomenclature for the naming of each of these coefficient are, v1 is known

as directed flow, v2 the elliptic flow, v3 the triangular flow and so on. During heavy-ion

Figure 6.13: Elliptic flow in heavy-ion collision. (Image taken from Ref. [35])

collision with non-zero impact parameter, the overlapping area between colliding nuclei is

dominantly ellipsoidal, as shown in the Fig. 6.13. Because of this ellipsoidal dominance

in the collision geometry, major contribution in anisotropic flow comes from second-order

flow coefficient v2, whereas initial state fluctuation generates higher-order harmonics, as

can be verified from Fig 6.12. Search for flow coefficient has been carried out in different

heavy-ion collider experiments and large values observed at RHIC and LHC make it a key
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Figure 6.14: Unified function parameter f versus centrality (%) for charged hadrons at 2.76
TeV and inlay shows the v2{2} at same energy.

experimental finding from these experiments [33, 34, 51, 72, 73, 75, 243, 258, 259, 260,

261, 262, 263, 264].

6.3.1 Elliptic Flow and Unified Function Parameter

Since the flow coefficients are related to the azimuthal anisotropy in the distribution of

transverse momentum, an imprint of flow might be present in the p
T

-spectra of final state

particles. In this direction, we have explored the relation of the flow coefficient and the

unified function parameters obtained by fitting the transverse momentum spectra.

In order to examine the correlation between fit parameter and the flow coefficient, we

have investigated the elliptic flow coefficient (v2 {2} extracted using the two particle cu-

mulant method) of charged hadrons produced in PbPb collision at 2.76 TeV measured

by ALICE experiment [34]. We have considered the p
T

integrated flow coefficient with

p
T

range from 0.2 to 5 GeV/c measured within the pseudorapidity interval of |η| < 0.8.

The corresponding value of the unified function parameter is obtained by fitting the p
T

-

spectra of charged hadrons produced in 2.76 TeV PbPb collision [16] in same p
T

and η

interval for different centralities. In Fig. 6.14, we have provided the variation of the unified

function fit parameter f and the elliptic flow coefficient with centrality. We observe that

the variation of both the quantities with centrality is similar in nature. Another interesting
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Figure 6.15: Elliptic flow coefficient versus unified function parameter f at 2.76 TeV
PbPb collision and the curve is fitted with a linear equation.

observation is that both flow coefficient and the unified function parameter peaks in the

50− 60% centrality bin. A linear relation between the two quantities is obtained by fitting

the data points in Fig. 6.15 with the linear equation v2 = 0.267426f + 0.230294. The

Pearson correlation coefficient obtained for these two data is 0.9976, which shows that the

unified function parameter f is linearly related to the elliptic flow coefficient.

The result discussed above shows that it is possible to obtain the flow coefficient v2

directly from the transverse momentum spectra instead of the conventional flow analysis.

At this stage the evaluation of theoretical connection is beyond the scope of this thesis

work. However a detailed study can be performed to find out the relationship of unified

model to the flow coefficient.

6.4 Summary

It is important to explore the other avenues whether a statistical thermal model can be

applied to gain more insight into the system created during the heavy-ion collision. So, in

this chapter we have given few important applications of the unified statistical framework.

• We have discussed the multiple fireball scenario within the unified framework to

study the pseudorapidity distribution and it is shown that this formalism nicely ex-

plains the pseudorapidity distribution of charged hadrons produced in 2.76 TeV PbPb and
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5.44 TeV XeXe collision.

• The theoretical formalism to estimate some of the thermodynamical quantities such

as the isothermal compressibility and the speed of sound using the unified framework

is provided in the chapter. Using the developed formalism, we have also estimated the

thermodynamical response functions for the medium created in heavy-ion collision

at 2.76 TeV, 5.02 TeV and 5.44 TeV.

• We have also explored the connection between the unified function fit parameter and

the second-order flow coefficient and we observed a linear relation for the charged

hadron produced in PbPb collision at 2.76 TeV.



Chapter 7

Summary and Outlook

A significant portion of research going on in heavy-ion collision is focused on studying the

QGP state, which is believed to be formed a few microseconds after the Big Bang. Although

it is not possible to directly detect this state in experiments, some indirect signatures such as

jet quenching, J/ψ suppression and strangeness enhancement point toward the formation

of QGP in experiments at RHIC and LHC.

The temperature that is sufficient to support the formation of QGP droplet is known

as the transition temperature and at this point, the phase transition from hadronic state to

QGP occurs. Therefore, estimating the value of the transition temperature, determining the

QCD critical point and understanding the type of phase transition are some of the important

milestones in the study of this deconfined state of quarks and gluons. An essential step

toward estimating these quantities is the study of the QCD phase diagram, which is a plot

of temperature (T ) versus baryon chemical potential (µB). The temperature is extracted

from the transverse momentum (p
T

) spectra, whereas the particle ratio is used to calculate

the baryon chemical potential. Hence, in order to extract the temperature, which is a crucial

ingredient of the QCD phase diagram, a proper parametrization of the form of transverse

momentum spectra is necessary.

In this direction, several phenomenological models with varied physics inputs have been

developed to study the transverse momentum spectra of final state particles produced in

high energy collisions. This includes the statistical thermal models, hydrodynamical mod-

els and some multi-component models. Boltzmann-Gibbs distribution, Tsallis statistics,

Blast-Wave model, Tsallis Blast-Wave model, q-Weibull distribution & modified Tsallis

distribution are some of the models used to study different aspects of the p
T

-spectra. Most
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of these models nicely explains the spectra in the low-p
T

region, however, they start to de-

viate in the high-p
T

part of the spectra. In high energy collision, particle production can be

broadly classified into two distinct classes. The soft processes dominate the particle pro-

duced in the low-p
T

region, whereas the majority of high-p
T

particles belong to the hard

scattering processes. The statistical thermal and hydrodynamical models nicely explain the

bulk part of the spectra and we have a well defined QCD inspired power law form of the

distribution function to explain the hard part of the spectra. Since there is no fine line sep-

arating the soft and hard part of the spectra hence, a formalism to describe both region in a

unified manner is required to obtain the ultimate benefit from the spectra.

In this thesis, we have discussed a unified statistical framework based on the Pearson

probability distribution function to study different aspect of particle production in high

energy collision. Some of the important features of this unified model are:

• This framework nicely explains the transverse momentum spectra including both soft

and hard part.

• The applicability of this formalism over different collision energies, centralities and

collision system has been tested in the thesis and the result shows excellent agreement

with the experimental data.

• The unified formalism discussed in this thesis has been proved to be thermodynami-

cally consistent following the laws of thermodynamics.

• The formalism is also proved to be backward compatible with the Tsallis statistics

within the limit on its parameters.

• Some of the results also suggest that the unified formalism can be used to estimate

the second order flow coefficient.

• We have discussed a multiple fireball scenario within the unified statistical framework

to study the pseudorapidity distribution of charged hadrons produced in PbPb and

XeXe collision.

• Unified statistical framework can also be used to estimate the some of the response

functions such as the isothermal compressibility and speed of sound.



In conclusion, this thesis presents a unified formalism to study the soft and hard part of

the transverse momentum spectra in a consistent manner. Application of this formalism to

study the pseudorapidity distribution and to extract the isothermal compressibility & the

speed of sound is also discussed in the thesis.

7.1 Future Direction

The formalism discussed in the thesis motivates the study of plenty of other thermody-

namical and hydrodynamical quantities of interest. Some of these quantities such as the

isothermal compressibility and speed of sound has been discussed in the thesis. The study

of several other quantities such as mean free path, thermal pressure, isobaric expansivity

etc., can be carried out within the unified framework in the future to enhance our under-

standing of the system created in the high energy collision. The unified formalism can

also be extended to study the multiplicity distribution of the particles. The effect of jet

quenching on the transverse momentum spectra is significant beyond a certain p
T

range in

the heavy-ion collision. Hence, a parameterization scheme to include the quenching ef-

fect along with the unified formalism is important to study full p
T

range in the heavy-ion

collision.
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Appendix A

Dynamics of HI Collision and

Space-time evolution of QGP

Figure A.1: Heavy ion collision.

Figure A.1 depicts a schematic diagram of heavy-ion collision. Two Lorentz contracted

nuclei approach each other in the beam direction. These nucleons are categorised into

two categories, viz.- participants and spectators. The participant nucleons undergo colli-

sion, whereas spectators move unaffected due to collision geometry, which is determined

by length of overlap region called “impact parameter-b” [265, 266]. The least values of

impact parameter correspond to more central collisions and deposit highest energy density

and temperature [267]. The collision is defined as peripheral collision for high values of

impact parameter. Impact parameter can take maximum value equals the sum of two radii

of participating nuclei. The colliding nuclei deposit energy density equivalent to a tempera-

ture of about 300 MeV, which is sufficient to form QGP. It produces a fireball of extremely

hot and dense matter [268]. The fireball of hot and dense matter produced in such collision
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evolves with time over the extended region of space – termed as space-time evolution of

fireball. A comprehensive understanding of heavy-ion collision dynamics can be achieved

through space-time evolution of matter produced at the collision point. The system ex-

pansion is governed by the initial stage pressure gradient and collective flow velocity in

hadronic phase [269, 44, 270]. The schematic space-time evolution is shown in Figure

A.2. The beam axis is along z− direction and collision occurs at point z = 0 and t = 0.

The space-time evolution of fireball occurs in various phases pre-equilibrium phase, expan-

sion phase, hadronisation phase and finally freeze-out phase [271]. In the pre-equilibrium

Figure A.2: Spacetime evolution of heavy-ion collision process.

phase, the two colliding nuclei overlap with each other in a finite region of space. The

parton-parton hard scattering processes predominate in overlap region and deposit a large

amount of energy. This produces a fireball that is not in equilibrium and its dynamics can

be studied by perturbative QCD models. The constituents of fireball keep on colliding to

establish the local equilibrium of the system – which is known as thermalisation. Compari-

son of experimental results with hydrodynamic models deduced that thermalisation time is

of the order of 0.5− 1fm/c [272, 273, 274].

The thermal pressure of the system acts against the vacuum, the system starts expanding

and the matter cools down. At this point of evolution of fireball, QGP is formed. Here

parton-parton and string-string interactions achieve an equilibrium state. On reaching a

temperature of 150-200 MeV, the system rapidly expands that decreases its temperature

and energy density.

A mixed-phase of QGP and hadronic resonance gas can co-exist if the phase transition is

1st order. This will not happen if the transition is 2nd order or cross-over. In this phase, the

quarks and gluons confine into hadrons at a critical temperature of Tc. In the mixed-phase,
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fast expansion is prevented and leads to an enhanced lifetime > 10 fm/c [275, 276]. During

the transition period, the collective flow does not grow much and eventually, partonic matter

converts to a hadronic bound state of the matter until the freeze-out phase. This is called the

hadronic phase of evolution. At this point, inelastic collisions cease and hadron abundance

does not change, which is referred as chemical freeze-out. However, the hadrons will con-

tinue to collide to maintain local thermodynamic equilibrium due to elastic collisions and

results in expansion and cooling of the fireball until the mean distance between hadrons ex-

ceeds the range of strong interactions. This is referred as kinetic freeze-out where particle

decouples from each other. At this point, hadrons pop out as free non-interacting particles

[277].
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Appendix B

Kinematic Observables in Experiment

Kinematic variables that are used to study the dynamics of heavy-ion collision primarily

include transverse momentum spectra (p
T

), rapidity variable (y), pseudo-rapidity (η) and

transverse mass (m
T

) of the emitted particles [2].

Transverse momenta, as the name suggest, represents the component of momenta in the

direction perpendicular to the beam axis. In standard convention, beam direction is con-

sidered to be the z-axis and the x-y plane represent transverse plane as shown in Fig. B.1.

As per the conservation of p
T

, the sum of all p
T

turns to be zero, i.e., the vector sum of

the p
T

of all particles will give net value zero since we had zero transverse momenta in the

beam before the collision. The benefit of studying transverse momenta over longitudinal

momenta is that we have a huge background of beam particles in the longitudinal direction.

Transverse mass m
T

is given in term of the mass of particle under investigation and trans-

verse momenta as:

mT =
√
m2 + p2T (B.1)

The rapidity (y) can be considered as a relativistic analogue of non-relativistic velocity.

The main benefit of using rapidity instead of relativistic velocity is that the rapidity is addi-

tive under a longitudinal boost. This means that if a particle’s rapidity is y1 in a particular

inertial frame, it simply transforms to y1 + y2 in a frame that moves with a rapidity y2. It is

expressed in terms of energy and longitudinal component of momentum (pz) as:

y =
1

2
ln
E + pz
E − pz

(B.2)

Pseudorapidity variable (η) is another variant of rapidity that finds its usage in the analysis
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Figure B.1: Geometry of a heavy-ion collision

where we do not have information about mass and momentum etc. of particle and just

the emission angle θ is known. Also, in high energy collider experiments, particles are

emitted with large momenta as compared to their mass and hence the pseudorapidity is

more widely used compared to the rapidity. Another benefit of using η is that its estimation

requires only one observable θ whereas y depend on the observables E, p & θ and hence

evaluating y involve larger uncertainties compared to the η. We can write E =
√
m2 + p2

and pz = p cos(θ), putting it in the Eq. (B.2) we get:

y =
1

2
ln

√
m2 + p2 + p cos(θ)√
m2 + p2 − p cos(θ)

(B.3)

And in the high energy limit, where we can consider the approximation p >> m, above

equation reduces to

y = −ln (tan(θ/2)) ≡ η (B.4)

In term of transverse mass and rapidity variable, we can write particle four-momenta as:

pµ = (E, px, py, pz) = (mT cosh(y), px, py, mT sinh(y)) (B.5)

The quantities discussed above has been extensively used in the experiments to characterize

the final state particles. The kinematic variables has been used to formulate the indirect

signatures that can tell us about the presence of a strongly interacting medium.
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Appendix C

Explanation of χ2 Estimation

The chi-square analysis is a technique to compare the experimental data with a theoretical

model and to estimate the value of free parameters in the model. It has long been used to

study the goodness of fit and the estimation of the best fit value of the parameters in the

theory. The χ2 is defined as:

χ2 =
N∑
i=1

(xi − xti)2

σ2
i

(C.1)

In the equation above, xi represent the experimental value of ith data point and the corre-

sponding standard deviation is represented by σi, total number of data points is given by N

and xti is the theoretical value for the ith point.
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Figure C.1: A toy model representing the distribution of an particular experimental data
obtained by repeating the experiment one million times.
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If we repeat the experiment n number of times, for any point i we obtain a distribution

of experimental value xi. The distribution will be of Gaussian form with the mean µi and

the standard deviation σi. In Fig. C.1, we have provided a randomly generated Gaussian

distribution mimicking ith experimental value xi for one million trials. The mean value for

the above distribution is µi = 2 and the standard deviation is σi = 2.

Assuming the theoretical model correctly represent the data, the theoretical prediction

xti will be equal to the mean (µi) of the experimental data. So, for a particular trial j (0 <

j ≤ n), the value of ith (0 < i ≤ N) term in the Eq. (C.1) is given as:

Ri,j =
(xi,j − µi)2

σ2
i

(C.2)

From the Fig. C.2, we conclude that, statistically, each term in the Eq. (C.1) will contribute
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Figure C.2: The distribution of Ri,j for one million trials with the corresponding xi,j pre-
sented in Fig. C.1.

a value close to unity. So, the probability distribution of χ2/NDF peaks around unity.

In high energy physics experiments, the data of the distribution of p
T

and η is also pro-

vided in term of xi ± σi however, the xi in this case does not belong to a random trial j but

the mean value of distribution of ith data point taken for large number of events. So, while

considering the p
T

-spectra, the formula for χ2 will be:

χ2 =
N∑
i=1

(µi − xti)2

σ2
i

(C.3)
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If the theoretical model correctly represents the data, xti will also be equal to µi, hence,

each term in the summation will contribute a value close to zero and not unity. So, a model

which best describe the data will have the χ2 value closest to zero.
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