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Chapter 1

Introduction

The last two centuries were marked with the development of two of the most beau-
tiful and well-tested theories in physics namely, Electromagnetism and General
Relativity. These theories explained two of the four fundamental forces of nature:
Electromagnetic force and Gravitational force. Maxwell, in 19th century, made a
successful attempt to unify electricity and magnetism. Inspired by his work, many
attempts were made to unify the four fundamental forces, one involving postulat-
ing presence of extra dimensions. In this project, I worked on a theory containing
five dimensions which was successful in unifying two of the four fundamental
forces of nature : gravity and electromagnetism.

1.1 Why Extra Dimensions

It is natural to ask that if the universe is four dimensional (three spatial and one
time) then why should we consider extra dimensions? Lisa Randall, in her book
Warped Passages [Ran] motivates the consideration of extra dimensions by arguing
that, as of now there is no Physical theory that puts a bound on the number of
dimensions. Therefore, physicists we not be reluctant to tinker with the dimen-
sionality of the universe. To quote, "Dismissing the possibility of extra dimensions
before even considering their existence might be very premature."

But if there exist other dimensions, why haven’t we observed them yet? One
can argue that these dimensions might be too large or too small and hence beyond
our experimental reach. For example, a two dimensional folded plane will appear
to us as a one dimensional line, if its radius is small as shown in figure 1.1 [Ran].
Similarly, the world we live in might have a small extra dimension, that we are not
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FIGURE 1.1: A 2D plane looking one dimensional

able to observe.

Other possibility is that the extra dimension might be too large. In such a case
we can think of us living on a four-dimensional hyper-plane in this large five di-
mensional bulk. In this case, any other 4D hyper-plane will be too far from us and
hence we effectively see a 4D world.

1.2 Kaluza-Klein Theory

In 1919, just after the development of general relativity, Kaluza [Kal21] attempted
to unify gravity and electromagnetism in a theory containing five dimensional
space-time. He was successful in his approach and was able to get both four dimen-
sional general relativity and electromagnetism from the five dimensional Einstein
equations. After Kaluza’s attempt in the unification, many physicists attempted
increase the number of dimensions in order to unify all the four forces in a single
theory. This approach was used to construct the eleven-dimensional supergravity
theories in the 1980s. It was also used in the development of the theory of ten-
dimensional superstrings which is the current favorite contenders for a possible
"Theory of everything". Kalzua’s theory is now considered as one of the precur-
sors of String theory.

1.3 Randall-Sundrum Model

In this project, I worked on Randall-Sundrum model, which was proposed by Lisa
Randall and Raman Sundrum [LR99] in 1999. In this model, a circular extra dimen-
sion is considered with two 4D hyperplanes sitting on the fixed points of this extra
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dimension. These hyperplanes are called Branes and the two branes are named :
the TeV brane (where all standard model particles live) and the Planck brane (the
hidden brane). It is different from Kaluza’s model in the sense that the extra di-
mension considered here is extremely warped. This model became a huge success
because it was able to provide an explanation to "The Hierarchy Problem"[Her] of
the Standard Model of particle physics. Due to the warping of extra dimension,
the vacuum expectation value of Higgs decay from Planck brane to TeV brane, as
a result all the mass parameters are exponentially suppressed, making the Weak,
Strong and Electromagnetic forces stronger than gravitational force. The detailed
explanation of this phenomenon is provided in Chapter 3.

The radius (length) of this extra dimension, needs to be stabilized. In 1999 it-
self, Goldberg and Wise [GW99] came up with a mechanism to stabilize the radius
of extra dimension. They considered a massive scalar field φ (called it the radion
field) in five dimensional bulk with a potential V (φ).In this case the radius of extra
dimension is determined by the equation of motion of the radion field.

In this project, We have examined the cosmology of RS model i.e. the FRW
spacetime with a warped extra dimension was considered. We found that we don’t
get any viable cosmology, if the radius of extra dimension is taken to be dynamic.
This happens because the bulk cosmological constant and brane tensions give rise
to a term which generates unconventional cosmology. We also analyze the effects
of adding a radion stabilizing potential on the effective 4D cosmology.

The thesis is organized as follows. In Chapter 2, the basics and the features
of Kaluza-Klein theory are discussed. We also explain Kaluza’s original mecha-
nism with a compactified extra dimension. In Chapter 3, we discuss the Randall-
Sundrum model and explicitly shown that this warped metric satisfies Einstein
equations. Further, we introduce the Hierarchy Problem of Standard Model and
explicitly demonstrate how the warped metric helps in providing an explanation
for this Hierarchy. The brane stabilization mechanism given by Goldberg and
Wise [GW99] is also introduced. Chapter 4 is devoted to the introduction of our
approach of incorporating 4D cosmology into Randall-Sundrum Model. In this
Chapter, We derive the equation of motion for an effective four dimensional ac-
tion. Chapter 5 is devoted to the numerical analysis of the equations derived in
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last chapter. We show that a viable cosmology is not achieved in this case. We
also analyze the system after adding a radion stabilizing potential. In Chapter 6
we summarize our results and present concluding remarks. Additional details and
explicit calculations are presented in Appendix A
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Chapter 2

Kaluza-Klein Theory

Inspired by Maxwell’s unification of the theory of electricity and magnetism, Nord-
ström in [Nor14] 1914 and Kaluza[Kal21] independently in 1921 were the first to
try to unify gravity and electromagnetism by considering a five dimensional space-
time.

2.1 Features of Kaluza’s Theory

In this subsection, we review the three main features of Kaluza’s unified theory
[OW97]:

2.1.1 Nature as pure geometry

One of the key assumptions of this theory is that nature is considered as pure ge-
ometry i.e. no five dimensional Energy-Momentum tensor is added. This was
inspired by Einstein’s vision of considering matter as a manifestation of geometry
[Ein56; Whe68; Sal80]. The idea is to get all the four dimensional matters just by
adding extra spatial dimensions. The Einstein equations are given by :

GAB = 0 (2.1)

or,equivalently :
R̂AB = 0 (2.2)

where GAB ≡ R̂AB − R̂gAB/2 is the five dimensional Einstein tensor and R̂AB and
R = ĝABR̂

AB are the Ricci tensor and Ricci scalar respectively.Note that the indices
A,B run form 0 to 4.
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2.1.2 Minimal Extension of General Relativity

Kaluza’s theory is just minimal extension of Einstein’s 4D general relativity. There-
fore all the quantities like five dimensional Ricci tensor, Christoffel symbols are
defined similarly to their four dimensional counterparts.

RAB = ∂CΓCAB − ∂BΓCAC + ΓCABΓDCD − ΓCADΓDBC (2.3)

ΓCAB =
1

2
gCD(∂AgDB + ∂BgDA − ∂DgAB) (2.4)

But now the indices A,B,C,D run from 0 to 4 instead of 0 to 3.

Since there is no five dimensional energy momentum tensor, everything now
depends on the choice of metric. The metric can be parametrized as follows [OW97]:

gAB =

(
gαβ + κ2φ2AαAβ κ2φ2Aα

κ2φ2Aβ φ2

)
(2.5)

where the electromagnetic potential Aα is scaled by a constant κ which can be used
to get the correct multiplicative factors in the action.

2.1.3 The Cylinder Condition

Since the physics that have been observed in experiments till now is not seen to be
dependent on the extra dimension, Kaluza assumed the derivatives of all the phys-
ical quantities with respect to extra dimension to be zero. This strict condition was
criticized a lot. Later on a compactification mechanism was proposed which made
the extra dimensions unobserved at the energy scales of current experiments. This
approach has been very successful, and currently it is the dominant approach in
higher-dimensional unification. Some of the review articles on this approach are
available in [BL87],[Duf94] and [App84].
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Using the metric (2.5) and the equations (2.4), (2.3), one can find the five dimen-
sional Einstein field equations [Les82], [TAF87]. The αβ−, α4− and 44− compo-
nents of the field equations become:

Gαβ =
κ2φ2

2
TEMαβ −

1

φ
[∇α(∂βφ)− gαβ�φ] (2.6a)

∇αFαβ = −3
∂αφ

φ
Fαβ (2.6b)

�φ =
κ2φ3

4
FαβF

αβ (2.6c)

where Gαβ = Rαβ − Rgαβ/2 is the 4D Einstein tensor and TEMαβ ≡ gαβFγδF
γδ/4 −

F γ
αFβγ is the electromagnetic energy-momentum tensor and Fαβ ≡ ∂αAβ − ∂βAα is

the usual electromagnetic tensor.

2.2 Field equations in special cases

2.2.1 The case φ = constant

If the scalar field φ in above equations (2.6) is kept constant, the first two equations
just give us back the Einstein and Maxwell equations.

Gαβ = 8πGφ2TEMαβ (2.7a)

∇αFαβ = 0 (2.7b)

where the parameter κ is defined in terms of 4D Gravitational constant G.

κ2 = 16πG (2.8)

These two equations show that we are getting 4D General relativity and electro-
magnetism from a single 5D equation, hence unifying two of the three fundamen-
tal forces of nature. This result was first obtained by Kaluza and Klein who took
φ = 1. The third equation (2.6c) becomes FαβFαβ = 0, which is true only for elec-
tromagnetic waves.

The above equations can also be derived by varying the action functional. Using
the metric (2.5) and the definitions (2.3-2.4), one can write down the 5D action for
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this case. But now using the cylinder condition not only means to drop derivatives
with respect to y, but we also need to pull the factor

∫
dy out of the action integral.

Using this, one finds that the action contains three components [App84]

S = −
∫
d4x
√
−gφ

(
R

16πG
+

1

4
φ2FαβF

αβ +
2

3κ2
∂αφ∂αφ

φ2

)
(2.9)

where G is defined in terms of 5D counterpart Ĝ :

G ≡ Ĝ/

∫
dy

Now if one takes φ = constant in this case, then the first two terms of this action
are just the Einstein’s action for gravity and Maxwell’s action for electromagnetic
radiation respectively. The third term in the action (2.9), is the action for a massless
Klein-Gordon scalar field.

The fact that the source-less equation (2.1) leads to the equations (2.6) with
source terms was the biggest achievement of Kaluza-Klein theory. The 4D mat-
ter is shown purely as a manifestation of 5D geometry.

2.2.2 The case Aα = constant

If φ is not kept constant in Kaluza-Klein theory, it contains Brans-Dicke type scalar
field theory besides General relativity and Electromagnetism. This can be seen by
setting Aα = 0. This constraint limits us to "graviton -scalar" sector of Kaluza-Klein
theory. In this case the metric (2.5) becomes block diagonal:

gAB =

(
gαβ 0

0 φ2

)
(2.10)

With this metric and the field equation (2.1), the effective 4D action becomes:

S = − 1

16πG

∫
d4x
√
−gRφ (2.11)
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This is the special case of Brans-Dicke action with ω = 0 .[BD87]

S = −
∫
d4x
√
−g
(

Rφ

16πG
+ ω

∂αφ∂αφ

φ2

)
+ SM (2.12)

where ω is the Brans-Dicke constant and SM is the action for the matter fields.
These matter fields may be coupled to the metric or to the scalar field.

By experimental observations [Wil81], the value of ω is constrained to be greater
than 500, which implies that this model is not viable, in the present era. This con-
straint can be satisfied by adding a nonzero potential V (φ) to the above action
[DLB89]. In that case, the Brans-Dicke parameter ω should be allowed to vary as a
function of φ. In the model that we analyzed in this project, we are getting a similar
type of action in which ω is a function of φ.

2.3 Compactification Mechanism

Kaluza assumed the "Cylinder Condition" (no physical quantity is dependent on
extra dimension) in his calculations, without giving any explanation behind this
assumption. Klein came up with a mechanism to explain the physically silent na-
ture of extra dimension [Kle26].

He assumed that the extra coordinate to be a lengthlike one and assigned two
key properties to it : (1) A circular topology (S1) and (2) small length. Due to the
property (1), all the quantity f(x0, x1, x2, x3, y) becomes periodic in y i.e.f(x, y) =

f(x, y + 2πr) where x = (x0, x1, x2, x3) and r is the radius of the fifth dimension.
Therefore we can now, Fourier-expand all the fields:

gαβ(x, y) =
n=+∞∑
n=−∞

g
(n)
αβ (x)einy/r Aα(x, y) =

n=+∞∑
n=−∞

A(n)
α (x)einy/r

φ(x, y) =
n=+∞∑
n=−∞

φ(n)(x)einy/r

where the superscript (n) refers to the nth Fourier mode. Now from the quantum
mechanics, we know that these modes carry a momentum of the order |n|/r in y-
direction. Now property (2) says that the radius of extra dimension is very small.
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Now, if radius r of extra dimension is very small, then the y-momenta of even
the n = 1 modes will become very large and hence making it unaccessible by the
experiments. Therefore, the only visible modes are the n = 0 modes, which are
y-independent, as required in Kaluza’s theory.

Till now the experiments of the kind [KS91] constrain r to be less than 10−18m

in size. Theorists often set r equal to the Planck length lpl v 10−35m, which is the
natural value (obtained by dimensional analysis). This value is small enough to
make all the n 6= 0 Fourier modes unaccessible.

In general, the five-dimensional metric (2.5) is the one containing all the Fourier
modes. One then makes a "Kaluza - klein ansatz" in which all the massive (n 6= 0)

fourier modes are discarded. In the five-dimensional case, "Kaluza-Klein ansatz"
amounts to simply dropping y dependence in gαβ, Aα and φ. This gives us the
effective "low energy" theory containing the graviton g

(0)
αβ , the photon A

(0)
α and the

scalar φ(0). In higher dimensions, the relationship between Kaluza-Klein ansatz
and the full metric is a bit complicated [Duf86].

2.4 Extension to Higher Dimensions

In order to incorporate strong and weak nuclear interactions in Kaluza-Klein for-
malism, one needs to recognize that electromagnetism was incorporated into gen-
eral relativity by adding U(1) local gauge invariance to the theory. This was done
by imposing local coordinate invariance with respect to the extra dimension (y =

x4).

Assuming the extra dimension to be circular and small, we know that the theory
is now invariant under the coordinate transformation:

y → y
′
= y + f(x) (2.14)

where x = (x1, x2, x3, x4). Now the metric transforms as :

ĝAB → ĝ
′

AB =
∂xC

∂x′A

∂xD

∂x′B
ĝCD (2.15)
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Under the transformation (2.14), the only change in metric (2.5) is given by :

Aα → A
′

α = Aα + ∂αf(x) (2.16)

which is just U(1) local guage transformation. Hence by imposing cylinder condi-
tion (i.e. invariance along extra dimension), one is basically imposing U(1) guage
invariance. It is thus not surprising that we were able to incorporate electromag-
netism and general relativity in a single five dimensional theory.

The same approach can be extended to include strong and weak nuclear forces,
one just needs to incorporate the corresponding symmetry groups and hence have
to include higher dimensions. The corresponding "Kaluza-Klein ansatz" can be
written as :

ĝ
(0)
AB =

(
gαβ + g̃µνK

µ
i A

i
αK

ν
jA

j
β g̃µνK

µ
i A

i
α

g̃µνK
ν
i A

i
β g̃µν

)
(2.17)

where g̃µν is defined to be the metric of the d-dimensional space. Indices µ, ν, .. run
from 1 to d, α, β, ... run from 0 to 3 and A,B, ... run from 0 to (3 + d). Here Kν

i are
the set of linearly independent Killing vectors. Similar to eq. (2.14), the theory can
be assumed to be invariant under the transformations:

yµ → y
′µ = yµ +

n∑
i=1

pi(x)Kµ
i (2.18)

where pi(x) is the set of n infinitesimal parameters. The effect of this transformation
on the metric (2.17) is :

Aiα → Ai
′

α = Aiα + ∂αp
i(x) (2.19)

which is a local gauge transformation. Thus higher- dimensional general relativity
could in principle contain any gauge theory.
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Chapter 3

Randall-Sundrum Model

The Randall-Sundrum model was proposed in 1999 mainly address the Higgs Hi-
erarchy Problem in the Standard Model of the particle physics. This model has
been widely explored in order to study the physics of extra dimensions. There are
two popular models : the Randall Sundrum I (RS1) model and the Randall Sun-
drum II (RS2) model. In the RS1 model, a small extra dimension is considered but
in RS2 model a large extra dimension is considered. These models are explained
below in detail.

3.1 The Randall Sundrum I Scenario

In theRS1 model a small and finite extra dimension is considered. This model was
developed to solve The Hierarchy Problem (3.1.3) of the Standard Model [LR99] of
particle physics.

3.1.1 The Model

In theRS1 model, the existence of one lengthlike extra dimension is assumed. This
dimension is compactified on a circle whose upper and lower half are identified
[Gab06]. This means that we work on S1/Z2 orbifold whereZ2 is the group {−1, 1}
and S1 is the one-dimensional sphere as shown in the fig.(3.1)

This construction gives us two fixed points, y = 0 and y = πR ≡ L. One then
considers a four-dimensional world, standing on each of these fixed points. These
worlds with 3+1 dimensions enclosing the 5D bulk are called 3−branes. Two three
branes seprated by a distance L in 5D bulk are shown in the fig.(3.2)
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FIGURE 3.1: S1/Z2 orbifold

Taking the 5D cosmological constant Λ into account, the fundamental action
can be written as follows. Note that unlike the effective 4D cosmological constant,
the 5D Λ does not need to be small.

S = SH + SM =

∫
d4x

∫ L

−L
dy
√
−g(M3R− Λ) (3.1)

where SH is the Einstein-Hilbert action and SM is the matter part. Here R is the 5D

Ricci scalar, M is the fundamental 5D mass scale and g is the determinant of 5D

metric.

3.1.2 The Metric

Now we need to find a suitable metric, satisfying 5D Einstein equation, for this
setup. Since this 5D theory should give us back a flat and static universe in its 4D

limit, the metric must preserve Poincare invariance. This leads to the following
Ansatz: [Gab06]

ds2 = e−2A(y)ηµνdx
µdxν + dy2 (3.2)

where ηµν = diag(−1, 1, 1, 1) is the 4D Minkowski metric. The factor e−2A(y) is called
the warp factor. Since it is dependent on extra dimension, the metric now is non-
factorisable as in usual Kaluza-Klein scenarios. The dependence of A(y) on y can
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FIGURE 3.2: Randall Sundrum Setup

be found using 5D Einstein equations.

GMN = RMN −
1

2
gMNR = κ2TMN (3.3)

where κ2 ≡ 1
2M3 is the 5D Newton’s constant and the energy momentum tensor is

defined as :
TMN =

−2√
−g

δSM
δgMN

(3.4)

The Einstein tensor for above ansatz (3.2) can be found easily. The 55 component
of Einstein equations give :

G55 = 6A′2 =
−Λ

2M3
(3.5)

This implies that A will be real if the 5D cosmological constant is negative. This
means that the space between the Planck brane and the TeV brane is anti-de Sitter
i.e AdS5. Also from equation(3.5), we see that A′2 is equal to a constant, lets call it
k2:

A′2 =
−Λ

12M3
≡ k2 (3.6)
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Integrating over y, we get :

A(y) = ±ky

Since we want our solution to respect orbifold’s symmetry under the transfor-
mation y → −y we choose

A(y) = k|y| (3.7)

Finally the metric for Randall-Sundrum model is parametrized by:

ds2 = e−2k|y|ηµνdx
µdxν + dy2 (3.8)

with −L ≤ y ≤ L

The µν components of Einstein’s field equations is given by :

Gµν = (6A′2 − 3A′′)gµν

From equation (3.7) we find that

A′ = sgn(y)k

Now the term sgn(y) can be written as a combination of Heaviside functions [Sgn]:

sgn(y) = θ(y)− θ(−y)

so now,
A′′ = 2kδ(y)

This delta function arose from the kink of A at the origin y = 0 as shown in fig.
(3.3) A similar delta function will appear at y = L. So A′′ can be written as:

A′′ = 2k(δ(y)− δ(y − L))

Plugging this in the µν component of Einstein equation, we get

Gµν = 6k2gµν − 6k(δ(y)− δ(y − L))gµν (3.9)
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FIGURE 3.3: The function A(y) and its first and second derivatives.

Now the µν component of energy-momentum tensor can be found using equation
(3.4) :

Tµν =
−2√
−g

δSM
δgµν

= −Λgµν

Now
κ2Tµν =

1

2M3
(−Λgµν) = 6k2gµν

So the first component of equation (3.9) is identified by κ2Tµν . The second term can
be obtained by taking the energy densities of the branes themselves into account.
These terms are called the brane tensions.

S1 = −
∫
d4xdy

√
−gλ1δ(y) (3.10a)

S2 = −
∫
d4xdy

√
−gλ2δ(y − L) (3.10b)

where g stands for the determinants of the metrics induced on the Planck brane
and the TeV brane. The Einstein equations impose

λ1 = −λ2 = 12kM3 (3.11)

3.1.3 The Hierarchy Problem

Three out of four fundamental forces viz. strong, weak and electromagnetic are
well explained by the Standard Model, but it still have some unattractive features.
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One of such features is the gauge Hierarchy Problem, which refers to the large dis-
crepancy between the aspects of weak force and gravity (weak force is 1032 times
greater than gravitational force) [Her]. This discrepancy is a problem because if
we calculate the quantum corrections to Fermi constant (constant for weak force)
using the Standard model, it appears to be very large and closer to Newton’s con-
stant (gravitational force constant), unless the quantum corrections are delicately
canceled the bare value of Fermi constant. This fine tuning constitutes "The Hier-
archy Problem". A number of solutions have been proposed to solve this problem,
namely Supersymmetry [Mar11], Conformal Standard Model [MN06] etc. One
such proposed solution is the Randall-Sundrum Model [LR99].

Solution to Hierarchy Problem

The proposed solution to above problem using RS model is as follows:
Consider the Higgs scalar field on the visible brane in RS model, the action for it
can be written as :

SHiggs =

∫
d4x
√
g2 [gµν2 DµH

†DνH − λ(H†H − v2)2]

where g2 is the determinant of effective metric on visible brane, V is the Higgs
vacuum expectation value.

SHiggs =

∫
d4xe−4KL[e2KLηµνDµH

†DνH − λ(H†H − v2)2]

This action can be re-written in canonical form by redefiningH asH = eKLH̃ . Then
the action becomes

SHiggs =

∫
d4x[ηµνDµH̃

†DνH̃ − λ(H̃†H̃ − (e−KLv)2)2] (3.12)

This is the action of a normal Higgs scalar but its vacuum expectation value (VeV)
is exponentially suppressed.

veff = e−KLv (3.13)

Now all the mass parameters in Standard model are set by Higgs VeV, hence all the
mass parameters suffer an exponential suppression on the visible brane. Now the
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FIGURE 3.4: Generation of exponential Hierarchy

fermi constant (ignoring the muon mass against the mass of the W boson) is given
by [Fec]

GF = (~c)3
√

2

8

g2

m2
w

(3.14)

where mw is the mass of W boson (mediator of weak force) and g is the coupling
constant. Now we have seen that mw will undergo exponential suppression (be-
cause of Higgs VeV), this implies that GF will increase exponentially on visible
brane.
Let us now examine what happens to gravitational force when it reaches to visible

brane from the planck brane. For this we need to calculate the effective 4D action
and find the 4D planck mass. This is done by perturbing the action (3.1) around
the background metric (3.2) [Gab06].

S 3M3

∫
d4x

∫ L

−L
dye−2k|y|

√
−g(0)R4D(h(0)µν )

= M31− e−2KL

k

∫
d4x
√
−g(0)R4D(h(0)µν )
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Therefore, the effective 4D planck mass is given by

M2
pl =

1− e−2KL

k
M3 (3.15)

We see that it is very weakly dependent on the size of extra dimension. Therefore,
we conclude that the Newton’s constant given by

G =
~c
m2
pl

doesn’t change much from planck to TeV brane.
From the last two results we conclude that the weak scale is exponentially sup-
pressed while the gravity scale not changed when an extra dimension is added.
(see fig. (3.4)).
On the TeV brane mass of W boson and planck mass are related byMW ' 10−16Mpl,
therefore, the appropriate size of extra dimension which can generate this Hierar-
chy is given by

kL ' ln1016 ' 35 (3.16)

3.1.4 Radius Stabilization

Till now we have considered radius of extra dimension was treated as a free param-
eter in our theory and its value was put in by hand in order to solve the Hierarchy
problem. However, this degree of freedom implies that there exists a massless
scalar field, corresponding to the fluctuations of the radius, let us call it that field:
the radion. This massless radion field would result in a long range fifth force and
hence will violate the equivalence principle [PS]. Therefore, in order to preserve
the viability of the RS model, the radion must to be stabilized.

Goldberg and Wise [GW99] in 1999 came up with a mechanism to stabilize the
radius of extra dimension. It involves adding a massive scalar field φ in bulk. A
potential V (φ) is added in bulk and two potentials V1(phi) and V2(phi) are added
on the two branes. The corresponding action is :

S =

∫
d4xdy

√
−g[M3R +

1

2
∂Mφ∂Mφ− V (φ)− V1(φ)δ(y)− V2(φ)δ(y − L)]
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Poincare invariance restricts the dependence of φ only on y coordinate. The scalar
field equation is given by:

φ′′ − 4A′φ′ =
∂V

∂φ
+
∂V1
∂φ

δ(y) +
∂V2
∂φ

δ(y − L) (3.17)

The µν and 55 components of Einstein equations give:

2A′2 − A′′ =
κ2

6
φ′2 − κ2

3
(V + V1δ(y) + v2δ(y − L)) (3.18)

A′2 =
κ2

12
φ′2 − κ2

6
V (φ) (3.19)

These three equations (3.17), (3.18) and (3.19) form a gravity-scalar system which
are usually difficult to solve for an arbitrary potential. The value of radius is thus
determined by the equation of motion. Therefore, the solution to Hierarchy prob-
lem provided by RS model doesn’t arise at the cost of another fine-tuning.

3.2 The Randall Sundrum II Scenario

The geometry of RS2 model is similar to that of RS1 model i.e. a circular extra
dimension with AdS5 geometry. But in this case, the extra dimension is considered
to be infinitely large, which is equivalent to saying that there is only one brane (the
Planck brane) and no TeV brane. All the standard model particles are presumed
to stay on the Planck brane. Such an infinitely large dimension would easily have
escaped our attention. In this model, the gravitational fluctuations on the brane
reproduces Newtonian gravity (More details can be found in [LL04]). This model
is of interest for the study of the AdS/CFT conjecture.
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Chapter 4

Cosmology of Randall-Sundrum
Model

4.1 FRW Cosmology

4.1.1 Simplifying assumptions of Cosmology

In order understand the complete evolution of universe, we need to solve the Ein-
stein equation for all the gravitating objects present in the universe. This system
will be impossible to solve. Fortunately, the real universe appears to be much more
simpler by making a reasonable simplifying assumption known as the Cosmolog-
ical Principle.

Cosmological Principle

One of the most important assumption of cosmology is contained in the cosmolog-
ical principle [Nar].

It states that at any given cosmic time, the universe is homogeneous and isotropic.

The surfaces shown below in fig. (4.1) satisfy the above two properties.
Let us derive the metric for a positive curvature surface i.e a 3-sphere. Now the
3-sphere satisfies

x21 + x22 + x23 + x24 = S2
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FIGURE 4.1: Examples of surfaces of (a) zero curvature (b) positive
curvature, and (c) negative curvature

which is satisfied if we choose:

x4 = aCosξ x1 = aSinξCosθ

x2 = aSinξSinθCosφ x3 = aSinξSinθSinφ

Therefore, any line element on this surface is given by

dσ2 = a2[dξ2 + Sin2ξ(dθ2 + sin2θdφ2)]

where ξ ∈ [0, π] , θ ∈ [0, π] and φ ∈ [0, 2π]. Let r = Sinξ then

dσ2 = a2
[
dr2

1− r2
+ r2(dθ2 + sin2θdφ2)

]
The surface we considered (sphere) had a positive curvature, for negative curva-
ture surface we have 1 + r2 in the first term. Therefore, in general, we can write.

dσ2 = a2
[

dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(4.2)
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where k is the curvature of space. Using equation (4.2), we can write down the
cosmological line element as follows:

ds2 = c2dt2 + a2
[

dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(4.3)

4.1.2 FRW Equations of motion

For the line element derived above (4.3), one can write down Einstein field equa-
tions [Nar]:

ȧ2

a2
+
kc2

a2
=

8πGρ

3
+
λc2

3

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+
λc2

3

where λ is the cosmological constant and the universe has been modeled via En-
ergy momentum tensor of a perfect fluid. i.e. T = diag(ρ,−p,−p,−p)

4.2 Cosmology of Randall Sundrum Model

We here examine the cosmology of Randall Sundrum model. In Chapter 3, we have
considered RS model in static background. In order to model the real expanding
universe on TeV brane, we need to analyze RS model in presence of FRW metric
given in equation (4.3). For simplicity, we consider flat spacetime i.e. k = 0. Now
the action for RS1 model is given by :

S = 2

∫
d4x

∫ 1/2

0

dy
√
−G(M3R− Λ) +

∫
d4x
√
−g(+)(L+ − V +)

+

∫
d4x
√
−g(−)(L− − V −) (4.4)

where Λ is the 5D cosmological constant, V + and V − are the brane tensions on
positive and negative branes respectively and L+, L− are the matter actions on
Planck and TeV brane respectively. Since we model the expanding universe, we
choose the following metric [RT99]

ds2 = e−2m0b(t)|y|gµνdx
µdxν + b2(t)dy2 (4.5)
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where b(t) is the scale factor corresponding to the extra dimension and the 4D

metric gµν is given by equation (4.3) for spatially flat universe (k = 0) i. e.

gµν = diag(1,−a2(t),−a2(t),−a2(t)

We are looking for the solutions corresponding to ḃ = 0 i.e solutions with stabilized
radius of extra dimension.

We integrate out y from the action in order to find the effective dynamics of our
brane. After integration, the effective action is found to be (Details can be found in
Appendix A):

S =
3

κ2m0

∫
d4x a3{ ȧ

2

a2
[1− Ω2

b ] +m0Ω
2
b

ȧ

a
ḃ− m2

0

4
Ω2
b ḃ

2}+
1

κ2

∫
d4x 2m0a

3(1− Ω4
b)

where 2M3 = 1
κ2

and Ω2
b = e−m0b.

The cross term in the above action can be removed by integration by parts.
Therefore, the above action can be re-written as :

S =
1

2κ2m0

∫
d4xa3[(1− Ω2

b)R−
3

2
m2

0Ω
2
b ḃ

2]−
∫
d4xa3Vr(b) (4.6)

where

Ωb = e−m0b/2

R = −6[
ȧ2

a2
+
ä

a
]

Vr(b) =
1

κ2
2m0(1− Ω4

b)

κ2 =
1

2M3

Now let us consider the presence of non-relativistic matter on TeV brane and no
matter is considered on Planck brane. In this case, the effective action becomes:

S =
1

2κ2m0

∫
d4xa3[(1− Ω2

b)R−
3

2
m2

0Ω
2
b ḃ

2 − V (b)] +

∫
d4x
√
−g(−)L−

=
1

2κ2m0

∫
d4xa3[(1− Ω2

b)R−
3

2
m2

0Ω
2
b ḃ

2 − V (b) + Ω4
bS

TeV
M ]
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where V (b) = 4m2
0(1 − Ω4

b) and STeVM is the matter term for TeV brane. This action
can be converted into the well-known Brans-Dicke form [BD61] by defining φ =

1− Ω2
b

S =
1

2κ2m0

∫
d4xa3

[
φR− 3

2
(

φ

1− φ
)
φ̇2

φ
]−
∫
d4xa3Vr(φ) (4.8)

where κ2m0 ≡ 8πG and the Brans Dicke parameter ω(φ) is given by:

w(φ) =
3

2
(

φ

1− φ
)

Equations of motion for this system are given by [Sct] :

3H2 =
ω

2

φ̇2

φ2
− 3H

φ̇

φ
− 1

2

V (φ)

φ
+
κ2m0

φ
(1− φ)2ρ (4.9a)

2Ḣ + 3H2 = −ω
2

φ̇2

φ2
− φ̈

φ
− 2H

φ̇

φ
− 1

2

V (φ)

φ
(4.9b)

(2ω + 3)(φ̈+ 3Hφ̇) = −∂ω
∂φ

φ̇2 − 2V (φ) + φ
∂V

∂φ
− κ2m0(1− φ)2ρ (4.9c)

where H = ȧ
a

and V (φ) = 4m2
0φ(2− φ). Also, note that we have taken matter dom-

inated era i.e. we have ignored pressure density term.

The only unknown variables in our system are a(t) and b(t), therefore, two of
the above equations for analysis (one of the equations is redundant), Therefore, we
use equation (4.9a) which gives the evolution of scale factor a(t) and the equation
(4.9c) which gives the evolution of radius of extra dimension b(t).

The matter density, ρ can be re-written in the form of density parameter [Sch],
which is defined as the ratio of observed matter density ρ to the critical matter
density pcritical of the Friedmann universe. Therefore, ΩM is given by:

ΩM ≡
ρ

ρcritical

The relation between ρ and ρcritical determines the overall geometry of universe.
The expression for critical density can be found from the FRW equations

ρcritical =
3H2

8πG
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Therefore, we get

ρ =
3H2

8πG
ΩM

Now the evolution of ρ with time is given by :

ρ = ρ0a
−3

where ρ0 is the matter density at present. The above expression can be derived
by considering the expansion of universe to be adiabatic [Sch]. Now, the present
matter density ρ0 is given by :

ρ0 =
3H2

0

8πG
ΩM0

where H0 and ΩM0 are the values of Hubble parameter and non-relativistic matter
density at present epoch. Therefore,

ρ =
3H2

0

8πG
ΩM0a

−3 (4.10)

Using equation (4.10) in equations (4.9a) and (4.9c) and substituting for V (φ) and
ω(φ) we get:

3H2 =
3

4

φ

(1− φ)

φ̇2

φ2
− 3H

φ̇

φ
− 2m2

0(2− φ) +
3H2

0

φ
(1− φ)2

ΩM0

a3
(4.11a)

(
3

1− φ
)(φ̈+ 3Hφ̇) = −3

2

φ̇2

(1− φ)2
− 8m2

0φ− 3H2
0 (1− φ)2

ΩM0

a3
(4.11b)

where we have used κ2m0 = 8πG

In the next Chapter, we analyze these equations and attempt to obtain numeri-
cal solutions.
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Chapter 5

Numerical Analysis and Results

5.1 Analyzing Equations of Motion

In this section, we analyze the equation (4.11a) and (4.11b) by comparing the order
of different terms. We can put the factor c back in the equations (4.11a) and (4.11b)
by dimensional analysis. The dimensions of the quantities appearing in equation
of motion are:

[m0] = [L−1] [H] = [T−1]

[H0] = [T−1]

All the other quantities like φ,ΩM0 and a3 are dimensionless. We define dimension-
less variables y = H

H0
, x = tH0. These equations can be re-written as:

y2 =
1

4φ

φ′2

(1− φ)
− yφ

′

φ
− 2m2

0c
2

3H2
0

(2− φ) +
(1− φ)2

φ

ΩM0

a3
(5.2a)

φ′′ + 3yφ′ = −1

2

φ̇

(1− φ)2
− 8m2

0c
2

3H2
0

φ(1− φ)− (1− φ)3
ΩM0

a3
(5.2b)

where ′ denote the derivative w.r.t x.

In order to solve the Hierarchy Problem, we need [3.16] m0b ' ln1016 ' 35.
We also know that the present experiments [KS91] constrain the value of radius of
extra dimension to be below 10−18m. This implies:

b ∼ 10−18m



30 Chapter 5. Numerical Analysis and Results

i.e.
m0 ∼ 1019m−1

φ = 1− e−m0b ∼ 1

1− φ = e−m0b ∼ 10−16

In S.I
H0 ∼ 10−18s−1

This implies

φ′ ∼ δφ

δ(tH0)
∼ 1020

if we consider δt = 0.01. Now let us compare the orders of different terms in
equation (5.5a):

1

4φ

φ′2

(1− φ)
∼ 1046

y
φ′

φ
∼ 1020

2m2
0c

2

3H2
0

(2− φ) ∼ 1090

(1− φ)2

φ

ΩM0

a3
∼ 10−23

So equation (5.5a) can be approximated as:

y2 = −2m2
0c

2

3H2
0

(2− φ)

Since φ ≤ 1, the above equation gives an imaginary solution for y and hence an
imaginary H , which is completely against intuition as well as cosmological obser-
vation.

So we conclude that a viable cosmology is not obtained, if we analyze cosmol-
ogy of RS model in the absence of any radion stability mechanism. This result is
in agreement with the results presented in [DL99], [GS99] and [RT99]. In [RT99], it
is argued that, we get an additional constraint on our system when we try to an-
alyze cosmology of RS model in the absence of Radion stability mechanism. This
additional constraint is in terms of a relation between the matter density on visible
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brane and those on hidden brane (Note that in our case no matter density is added
on hidden brane). This constraint is given by:

ρ∗ = −ρΩ2
0 (5.3)

They have also shown that the matter density on Planck brane is positive i.e.
ρ∗ > 0, therefore, the constraint (5.3) implies that matter density on visible brane
must be negative. Therefore, this constraint also implies that no viable cosmology
is possible in this scenario.

In our case, the constraint can obtained from the G55 equation which can be
obtained by varying the full action function given in equation (A.1). Note that the
values of 5D cosmological constant λ and that of the brane tensions λ1, λ2 that
we have used, are obtained for the static case i.e. ḃ = 0. When we write down
Einstein equations for dynamic case i.e. ḃ 6= 0 and use the same values for 5D

cosmological constant and brane tensions, we will get an additional constraint. We
have not checked whether this constraint and the constraint presented in [RT99]
are the same or not. It is expected that both these constraints will be same because
their origin is quite similar.

5.2 Cosmology in the presence of Radion potential

In [RT99], it is shown that to obtain a viable cosmology, an addition radion poten-
tial has to be added alongwith the 4D cosmological metric.

Let us examine, whether the addition of a radion potential in our case, can give
us a viable cosmology or not. Let us add a radion potential of the form

U(φ) = Kφ(2− φ)

The effective 4D action is given by:

S =
1

2κ2m0

∫
d4xa3

[
φR− 3

2
(

φ

1− φ
)
φ̇2

φ
]−
∫
d4xa3Vr(φ)−

∫
d4xa3U(φ) (5.4)
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This will just add U(φ) term in equation (5.5a) and the corresponding term in equa-
tion (5.5b). So the equations of motion for this system become :

y2 =
1

4φ

φ′2

(1− φ)
− yφ

′

φ
−
[

2m2
0c

2

3H2
0

+
K

6

]
(2− φ) +

(1− φ)2

φ

ΩM0

a3
(5.5a)

φ′′ + 3yφ′ = −1

2

φ̇

(1− φ)2
−
[

8m2
0c

2

3H2
0

+ 2K

]
φ(1− φ)− (1− φ)3

ΩM0

a3
(5.5b)

We can now fine-tune K such that the order of potential term is similar to that of
the other terms. This fine tuning will may us a viable cosmology on the visible
brane.

The constraint can also be removed in this case. By appropriately choosing the
exact form of U(φ), the constraint equation obtained from G55 equation, can be au-
tomatically satisfied. Therefore, the system is not over constrained in this case.

Hence we conclude that a viable cosmology may be obtained from Randall Sun-
drum model, if we add a radion potential.
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Chapter 6

Conclusions and Outlook

We have analyzed the cosmology of Randall Sundrum model by using a 4D FRW
metric with a time-dependent warp factor. We also choose the radius of extra di-
mension b as a dynamic quantity in our system. We have also taken into account
the bulk cosmological constant and the brane tensions, which was ignored in most
of the papers analyzing similar setup.

We found that the radion potential (which gets a significant contribution from
the bulk cosmological constant term and the brane tensions) generated in this cos-
mological setup, becomes very large and hence generates unconventional cosmol-
ogy on the visible brane. This can be attributed to the fact that when radius of extra
dimension is taken as a dynamic quantity, a constraint appears when 5D Einstein
equations are written. Due to this, the system becomes over-constrained and hence
cosmological solutions are absent.

We then analyzed this system by adding a radion stabilizing potential. This
system is expected to give back the conventional cosmology on visible brane. This
happens because this additional potential can now be fine tuned to cancel the ef-
fects of the potential generated by the cosmological setup. In this case, the ad-
ditional constraint can also be avoided by choosing appropriate form of radion
potential.

So we conclude that, a viable cosmology is possible in Randall Sundrum setup
only in the presence of radion stabilizing potential.
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Future Directions

We will explicitly calculate the exact form of radion potential that needs to be
added in order to cancel the effects of potential generated via cosmological met-
ric. Also, we need to explicitly check whether this form of potential eliminates the
constraint equations, as expected or not.

In the analysis presented here, we have ignored the matter fields on Planck
brane. Once we take those into account, we can then compare the results we obtain
with [RT99] paper in which they have ignored the presence of bulk cosmological
constant and the brane tensions.
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Appendix A

4D Effective Action

S = 2

∫
d4x

∫ 1/2

0

dy
√
−G(M3R− Λ) +

∫
d4x
√
−g(+)(L+ − V +)

+

∫
d4x
√
−g(−)(L− − V −) (A.1)

where

V + = −V − = 12m0M
3

Λ = −12m2
0M

3

Now the line element we choose is given by :

ds2 = e−2mb(t)|y|gµνdx
µdxν + b2(t)dy2 (A.2)

gµν = diag(1,−a2(t),−a2(t),−a2(t)

Taking the first term from action(A.1), the action can be written as

S = 2

∫
d4x

∫ 1/2

0

dy
√
−G(M3R− Λ)

= 2M3

∫
d4x

∫ 1/2

0

dy
√
−G(R + 12m2

0) (A.3)

Now from the metric (A.2), we can found the Ricci tensor(R) to be :
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R = 20m2
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ȧ

a

ḃ
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2ḃ2 − 6

ä

a
− 2

b̈

b
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ȧḃ
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ḃ2
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b
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ȧḃ

a
+ 4m0

ḃ2

b
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√
−G(R + 12m2

0) = 32m2
0a

3be−4m0b(t)y + {−6
ȧ2

a2
− 6

ȧ

a

ḃ

b
− 6m2

0y
2ḃ2 − 6

ä

a
− 2
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b
}

a3be−2m0b(t)y + a3bye−2m0b(t)y{18m0
ȧḃ

a
+ 4m0

ḃ2

b
+ 6m0b̈}

where G = −a6b2e−8m0b(t)y is the determinant of metric (A.2). Evaluating the y in-
tegral of (A.3), term by term

First term is given by:

I =

∫ 1/2

0

32m2
0a

3be−4m0b(t)ydy

I = 8a3m0[1− e2m0b(t)] (A.4)

Dropping a3 factor for some time., the second term is given by:

II = {−6
ȧ2

a2
− 6

ȧ

a

ḃ

b
− 6

ä

a
− 2

b̈

b
}b
∫ 1/2

0

e−2m0b(t)ydy

=
1

2m0

{−6
ȧ2

a2
− 6

ȧ

a

ḃ

b
− 6

ä

a
− 2

b̈

b
}[1− e−m0b(t)] (A.5)

Third term:
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III =

∫ 1/2

0
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0ḃ

2by2e−2m0b(t)ydy

= −6m2
0ḃ
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4

e−m0b
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{1

2
+

1

m0b
+

1
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2
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1

4m3
0b

3
]

=
3

4
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−m0bḃ2 +
3

2
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ḃ2
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+

3
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ḃ2
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−m0bḃ2 +
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2
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ḃ2

b
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2m0

ḃ2

b2
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Fourth term:

IV =

∫ 1/2

0
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a
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ḃ2
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ȧ

a
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b
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2
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Now adding (A.5),(A.6) and (A.7) , we get

II + III + IV =
1
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Multiplying by a3 that was dropped earlier, here we also multiply bym0(will divide
by it later)
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m0(II + III + IV ) = −3aȧ2[1− e−m0b(t)]− 3a2ä[1− e−m0b(t)]− 3

2
a2ȧ

ḃ

b
[1− e−m0b(t)]

+
3

4
m2

0a
3e−m0bḃ2 − 1
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2ȧḃe−m0b − 3

2
m0a

3b̈e−m0b

= 3aȧ2[1− e−m0b(t)] + 3m0a
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Now dropping the total derivative term in action, the effective action A.1(ignoring
the matter part) is given by :

S = 2M3

∫
d4x(I + II + III + IV ) +

∫
d4x
√
−g(+)(−V +) +

∫
d4x
√
−g(−)(−V −)

= 2M3
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4
Ω2
b ḃ
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∫
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where 2M3 = 1
κ2

and Ω2
b = e−m0b.
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