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Abstract

This work consists of two chapters. The initial part includes the study of the solutions of
Cauchy’s basic equation which are equations of the form f (x+ y) = f (x)+ f (y). We start by
looking at the solution for this equation when the given function has real domain and range.
Various regularity and algebraic conditions leading to the linearity of the solution function
are discussed in detail starting from continuity and generalizing it to the condition where
only the measurability of the function is needed. Concept of almost additive functions are
introduced and the existence of a unique additive function which coincides almost everywhere
with almost additive function is proved. Stability of the solution of a Cauchy’s equation is
discussed in detail with the cases including | f (x+ y)− f (x)− f (y)| bounded and unbounded.
Solution of the additive functions when the domain and range is extended to complex plane
is also discussed. Finally the most general solution of Cauchy’s basic equation is constructed
using the existence of a Hamel basis for R over Q and the existence of a discontinuous solution
for Cauchy’s equation is shown. Then second chapter covers the study of convex functions.
Various properties of convex functions are discussed. Concept of a weaker form of convexity
namely mid convexity of function is introduced and sufficient conditions satisfied by the mid
convex functions to be convex are discussed starting from continuity and generalizing it to
the condition where the function only needs to be measurable. Finally, a more powerful form
of convexity which is log convexity is introduced and the properties of such functions are
discussed.

Basic knowledge of Measure theory, Functional Analysis and Fourier Analysis is assumed

for understanding the topics presented in this work. Any of the non-standard results which are

being used are carefully stated and proved.
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Chapter 1

Cauchy’s basic equation.

Definition 1. Let f : R→ R be real valued function satisfying:

f (x+ y) = f (x)+ f (y) ,∀x,y ∈ R. (1.1)

Equation (1.1) is called Cauchy’s basic equation and function f satisfying it is called an addi-

tive function.

This equation was first treated by A. M. Legendre and C. F. Gauss. A. L. Cauchy found

the general continuous solution of the same . We begin with a generalization of the Cauchy’s

theorem.

1.1 Solution of Cauchy’s basic equation

1.1.1 Conditions implying continuity of the solution.

Theorem 2. Let f : R→ R be an additive function such that f is bounded in one side on a

non-empty bounded open subset U of R , then f has the general solution

f (x) = cx where c = f (1) . (1.2)

Proof. We first assume that f : R→ R is an additive function bounded above in a non-empty
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bounded open set U ; similar arguments will work for the proof in the case f is bounded below.

f (x)≤ M ,∀x ∈U , M ∈ R. (1.3)

By induction, it follows from (1.1) that

f (x1 + · · ·+ xn) = f (x1)+ · · ·+ f (xn).

Substituting xi = x in the above equation gives

f (nx) = n f (x) ∀n ∈ N

Now

f (0) = f (0+0) = 2 f (0)

=⇒ f (0) = 0.

Also

f (−x) = f (0− x) = f (0)− f (x) =− f (x) ,∀x ∈ R . (1.4)

Define the function g : R→ R by

g(x) = f (x)− x f (1).

If we prove g ≡ 0 , then the proof will be complete. Observe that g is an additive function and

since f is bounded above in U , g is also bounded above in U . Indeed

g(x+ y) = f (x+ y)− (x+ y) f (1)

= f (x)− x f (1)+ f (y)− y f (1) = g(x)+g(y);

g(x) = f (x)− x f (1)≤ M− x f (1)≤ M′ ,∀x ∈U , M′ ∈ R (1.5)

using equation (1.3) and the fact that U is bounded.
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Note that g(x+ 1) = g(x) ,∀x ∈ R which shows g has a period 1, so if U contains an

interval (a,b) of length at least 1, then g will be bounded on R. To the contrary, assume that

U doesn’t contain such an interval. Then since U is a non-empty open set in R, it contains a

non-empty interval (a,b) of length 1
n for some n ∈ N. Since

g(1) = g(
1
n
+ · · ·+ 1

n
) = ng(

1
n
) = 0,

it follows that

g(
1
n
) = 0.

So

g(x+
1
n
) = g(x) ,∀x ∈ R

which shows g has a period 1
n and since g is bounded in (a,b)⊂U , it follows that g is bounded

all over R. From equation (1.4) and equation (1.5) , we get

−B ≤ g(x)≤ B ,∀x ∈ R.

If B ≤ 0 , then the above equation shows

B = 0

which implies g(x)≡ 0. Now, assume that B > 0 . Since g(nx) = ng(x) ,∀n ∈ N ,

−B ≤ g(nx) = ng(x)≤ B ,∀x ∈ R

−B
n
≤ g(x)≤ B

n
,∀x ∈ R.

Letting n → ∞,we obtain g(x)≡ 0, which completes the proof.

The above theorem leads us to think that slight regularity assumption on the function f

satisfying basic Cauchy equation (1.1) implies in fact a strong regularity which in turn yields

f (x) = cx. Next corollary and theorem support the above assertion.
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Corollary 3. If f : R→ R is an additive function that is continuous at a point then f has the

general solution

f (x) = cx where c = f (1) .

Proof. Let f be continuous at x0 ∈ R. Then for any ε > 0, ∃δ > 0 such that

| f (t)− f (x0)|< ε whenever |t − x0|< δ .

This implies for t ∈ (x0 −δ ,x0 +δ )

f (x0)− ε < f (t)< f (x0)+ ε.

That is , f is bounded in the non-empty bounded interval (x0 −δ ,x0 +δ ). The proof is com-

plete on using the above theorem.

Proposition 4. If f : R→ R is an additive function that is continuous at a point then f is

continuous everywhere.

Proof. We will first prove that if f : R→ R is an additive function continuous at x0 ∈ R, then

f is continuous at 0. Let {yn} be a sequence in R converging to 0. Now

f (x0 + yn) = f (x0)+ f (yn),

letting n → ∞

lim
n→∞

f (x0 + yn) = f (x0)+ lim
n→∞

f (yn).

Since x0 + yn converges to x0, continuity of f at x0 implies limn→∞ f (x0 + yn) = f (x0). This

shows that

f (x0) = f (x0)+ lim
n→∞

f (yn)

which yields

lim
n→∞

f (yn) = 0.
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From the additive property of f we know, f (0) = 0; so

lim
n→∞

f (yn) = f (0)

which proves that f is continuous at 0. Let x ∈ R be arbitrary and {xn} a sequence in R

converging to x , then x− xn → 0 as n → ∞. Since f is continuous at 0, it follows that f (x−

xn)→ 0 as n → ∞. Also

f (xn) = f (xn − x+ x) = f (xn − x)+ f (x).

So

lim
n→∞

f (xn) = lim
n→∞

f (xn − x)+ f (x)

which implies

lim
n→∞

f (xn) = f (x).

This proves the continuity of the function f at x.

Now we will give some definitions and state some results without proofs which will be

used in the subsequent sections.

Definition 5. (Convolution product): Let f ∈ L1(R) , g ∈ L1(R). Then the convolution

product f ∗g is defined by

f ∗g(x) =
∫

∞

−∞

f (x− y)g(y)dy < ∞, x ∈ R.

Proposition 6. Let f ∈ L1(R) , g ∈ L1(R). Then

∫
∞

−∞

| f (x− y)g(y)|dy < ∞

for almost all x and for these x, define

h(x) = ( f ∗g)(x) =
∫

∞

−∞

f (x− y)g(y)dy.
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Then h ∈ L1(R) and

∥ h ∥1≤∥ f ∥1∥ g ∥1 .

Definition 7. Let f ∈ L1(R) , the Fourier transform f̂ of f at any real t is defined by

f̂ (t) =
∫

∞

−∞

f (x)e−2πixtdx.

Since f ∈ L1(R) the above integral exists for any t ∈ R. Indeed

∫
∞

−∞

| f (x)e−2πixt |dx ≤
∫

∞

−∞

| f (x)|dx.

Proposition 8. The Fourier transform f̂ : L1(R)→C0(R) defined by the mapping f 7−→ f̂ is

injective.

Proposition 9. Lusin’s Theorem: Let f be a complex measurable function on R and A ⊆ R

with µ(A)< ∞, f (x) = 0 if x /∈ A. Let ε > 0 be arbitrary. Then there exists a g ∈Cc(R) such

that

µ({x : f (x) ̸= g(x)})< ε

and

sup
x∈R

|g(x)| ≤ sup
x∈R

| f (x)|.

The following lemma which was proved by Hugo Steinhaus is crucial for the proof of the

subsequent theorem.

Lemma 10. Let E ⊂R be a set of positive Lebesgue measure. Then F =E+E = {x+ y : x,y ∈ E}

has non-empty interior.

Proof. Without loss of generality, assume that E is of finite Lebesgue measure. Then the

convolution product of the characteristic function χE of E with itself is

h(x) = χE(x)∗χE(x) =
∫

∞

−∞

χE(t)χE(x− t)dt
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=
∫

E
χE(x− t)dt.

It follows from the proposition 6 that h ∈ L1(R). Moreover supp(h)⊆ F . Indeed if x /∈ F and

since x can be written as (x− t)+ t with t ∈ E , it follows that x− t /∈ E which in turn implies

x /∈ supp(h).

We next show that h does not vanish almost everywhere. For this consider the Fourier

transform of h ,

ĥ(y) =
∫
R

e−2πiyxh(x)dx

=
∫
R

e−2πiy(x−t+t)
[∫

R
χE(t)χE(x− t)dt

]
dx

=
∫
R

∫
R

e−2πiy(x−t)
χE(x− t)e−2πiyt

χE(t)dtdx

=
∫
R

χE(t)e−2πiytdt
[∫

R
χE(x− t)e−2πiy(x−t)dx

]
=

(∫
R

χE(t)e−2πiytdt
)(∫

R
χE(x)e−2πiyxdx

)
=

(
ˆχE(y)

)2
∀y ∈ R.

Since E is a set of positive Lebesgue measure, χE does not vanish a.e. So from proposition

8 it can be concluded that χ̂E is not the zero function. This in turn implies ĥ is not the zero

function.

Again using proposition 8, it follows that h does not vanish a.e. Next we need to show that

h is continuous. Indeed

h(x+α)−h(x) =
∫

E
(χE(x+α − t)−χE(x− t))dt

=
∫

x−E
(χE(u+α)−χE(u))du.

χE is a complex measurable function such that µ(E)< ∞ and χE(x) = 0 for x /∈ E. Therefore

by Lusin’s theorem , for any ε > 0 there exists a g ∈Cc(R) such that

µ({x : χE(x) ̸= g(x)})< ε
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and

sup
x∈R

|g(x)| ≤ sup
x∈R

|χE(x)|.

So

|h(x+α)−h(x)| ≤ |
∫
R
(χE(u+α)−g(u+α)− (χE(u)−g(u)))+(g(u+α)−g(u))du|

≤
∫
R
(|χE(u+α)−g(u+α)|+ |χE(u)−g(u)|+ |g(u+α)−g(u)|)du

≤
∫
{x:χE(x)̸=g(x)}

(|χE(u+α)−g(u+α)|+ |χE(u)−g(u)|du)

+
∫
R
|g(u+α)−g(u)|du

≤ 2ε +
∫
R
|g(u+α)−g(u)|du.

Since g is uniformly continuous on its bounded support, we can find η > 0 such that |α|< η

will imply |g(u+α)−g(u)|< ε . So∫
R
|g(u+α)−g(u)|du =

∫
{x:χE(x)̸=g(x)}

|g(u+α)−g(u)|du

+
∫
{x:χE(x)=g(x)}

|g(u+α)−g(u)|du

≤ ε
2 + εµ(E)

which implies

|h(x+α)−h(x)|< 2ε + ε
2 + εµ(E).

Since ε was arbitrary, we have shown that h is continuous, and since h(x) ̸= 0 for some x ∈

E, there exists some neighborhood around x in which h is non zero which is contained in

supp(h)⊂ F . This proves the existence of a non-empty open set inside F .

Next we prove the following theorem.

Theorem 11. Let f : R→ R be an additive function that is bounded above by a Lebesgue

measurable function g : R→ R on a subset E of strictly positive Lebesgue measure. Then f

has the general solution,

f (x) = cx where c = f (1)
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Proof. g : R → R is Lebesgue measurable and µ(E) > 0. So for each integer n , the subset

En = {x ∈ E : |g(x)| ≤ n} of E is measurable and

E1 ⊆ E2 ⊆ . . .En ⊆ . . .E.

Since {En} is a sequence of monotonically increasing measurable sets converging to E ,

lim
n→∞

µ(En) = µ( lim
n→∞

En) = µ(E)> 0 ,

where the first equality follows from monotone convergence theorem. Therefore there exists

some integer N such that

µ(EN)> 0.

This implies that g is bounded on a set of positive Lebesgue measure and so is f. So WLOG,

we may assume that ∃ a constant A ∈ R such that

f (x)≤ M ∀x ∈ EN .

Finally let z = x+ y with x,y ∈ EN , then

f (z) = f (x)+ f (y)≤ 2M

which means there exists a non-empty open set inside EN +EN (from Lemma 10) in which f

is bounded above. So the proof is completed once theorem1 is applied.

Corollary 12. A locally Lebesgue integrable function f : R→R satisfying Cauchy’s equation

has the general solution

f (x) = cx where c = f (1).

The above corollary is a direct consequence of the theorem 11, we may also give an alter-

nate independent proof for the same.
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Proof. Given that f is locally integrable, so it makes sense to consider the following integral

∫ 1

0
f (x+ y)dy =

∫ 1

0
f (x)dy+

∫ 1

0
f (y)dy.

Using the substitution x+ y = t, we will get

∫ x+1

x
f (t)dt = f (x)+α where α =

∫ 1
0 f (y)dy.

Differentiating both sides of the above equation and using Fundamental theorem of calculus,

we obtain

f ′(x) = f (x+1)− f (x)

= f (x− x+1) = f (1).

So

f (x) = cx+ k where c = f (1)and k is a constant .

Since f is additive, f (0) = 0 from which we get k = 0. Hence we have proved

f (x) = cx where c = f (1) .

The following generalization is due to W.Sierpinski[refer Sur l’equation fonctionnelle

f(x+y)=f(x)+f(y),Fundam. Mat., 116-120(1996)].

Theorem 13. Let f : R→ R be an additive function. If f is Lebesgue measurable, then f is

continuous.

Proof. f is given to be both additive and Lebesgue measurable. Let x0 ∈ R be arbitrary and

ε > 0 and (a.b) an arbitrary interval. By a version of Lusin’s theorem[refer G. Folland. Real

Analysis: Modern Techniques and Their Applications, 2nd edition, 2nd Chapter] , for every

measurable function g(in this case f ) and for every σ > 0 there exists a continuous function
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F : R→ R such that

µ (E = {x ∈ (a,b) : f (x) ̸= F(x)})< σ (1.6)

where µ is the Lebesgue measure on R.

Take σ to be b−a
3 . Since F is continuous all over the real line, for every ε > 0 and any

x ∈ (a,b) there exists a δ (< σ) such that |F(x+ h)−F(x)| < ε whenever |h| < δ . Since

f (x) = F(x) for x ∈ (a,b)\E , f (x+ h) = F(x+ h) is true for all x ∈ E1, where µ(E1) <

σ + |h|< σ +δ (using (1.6)). Therefore

µ ({x ∈ (a,b) : f (x) ̸= F(x) and f (x+h) ̸= F(x+h)}) ≤ µ(E ∪E1)< 2σ +δ

< 3σ < b−a.

Hence there is a point x ∈ (a,b) dependent on h for which f (x) = F(x), f (x+h) = F(x+h),

|F(x+ h)−F(x)| < ε and therefore | f (x+ h)− f (x)| < ε is valid. Since f (x+ h)− f (x) =

f (x0 +h)− f (x0), for any x0 ∈ R

| f (x0 +h)− f (x0)|< ε.

Which proves the continuity of f at x0. Since x0 ∈R is arbitrary, it follows that f is continuous

on R.
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1.1.2 Algebraic conditions implying linearity of additive functions

In what follows, we make additional algebraic assumption on additive function f and obtain

the solution of the basis Cauchy’s equation. In this direction, the following two results are

interesting and are quite easy to prove.

Theorem 14. Suppose f : R → R is an additive function satisfying the following algebraic

condition

f
(

1
x

)
=

1
x2 f (x) (1.7)

then f is continous and has the general solution

f (x) = cx where c = f (1) .

Proof. Let f : R→R be an additive function satisfying the given algebraic condition 1.7. For

x = 0,±1 , f (x) = x f (1). Indeed,

f (0) = 0 = 0× f (1) ( additive property)

f (1) = 1× f (1)

f (−1) = 1× f (−1) =−1× f (1) (additive functions are odd functions)

Now let x ∈ R\{0,±1} , then

f (x− 1
x
) = f (

x2 −1
x

)

= (
x2 −1

x
)2 f (

x
x2 −1

) (using the algebraic condition) .

Now consider the equation

f (
2x

x2 −1
) = f (

x
x2 −1

+
x

x2 −1
) = 2 f (

x
x2 −1

).
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So, we get

f (x− 1
x
) = (

x2 −1
x

)2 f (
x

x2 −1
)

=
(x2 −1)2

2x2 f (
2x

x2 −1
)

=
(x2 −1)2

2x2 f
(

1
x−1

+
1

x+1

)
=

(x2 −1)2

2x2

[
1

(x−1)2 f (x−1)+
1

(x+1)2 f (x+1)
]

(using the algebraic condition (1.7))

=
(x2 −1)2

2x2

[
1

(x−1)2 ( f (x)− f (1))+
1

(x+1)2 ( f (x)+ f (1))
]

(using additive property of f )

=
(x+1)2

2x2 ( f (x)− f (1))+
(x−1)2

2x2 ( f (x)+ f (1)) .

So,

f (x− 1
x
) =

x2 +1
x2 f (x)− 2

x
f (1). (1.8)

Also from the additive property and equation (1.7) it follows that

f (x− 1
x
) = f (x)− f (

1
x
) = f (x)− 1

x2 f (x). (1.9)

Consequently from equations (1.8) and (1.9) we get

f (x)− 1
x2 f (x) =

x2 +1
x2 f (x)− 2

x
f (1)

x2 −1
x2 f (x) =

x2 +1
x2 f (x)− 2

x
f (1)

x2 +1
x2 f (x)− 2

x2 f (x) =
x2 +1

x2 f (x)− 2
x

f (1)

which implies

2
x2 f (x) =

2
x

f (1)

f (x) = x f (1).



14 Cauchy’s basic equation.

This completes the proof.

Theorem 15. All ring homomorphisms from R→ R are trivial, that is either identity or the

zero map.

Proof. Let f : R→ R be a ring homomorphism; so ∀x,y ∈ R ,

f (x+ y) = f (x)+ f (y),

f (xy) = f (x) f (y). (1.10)

That is, f is an additive function from R → R satisfying an extra algebraic condition,

namely, equation(1.10). Putting x = y in equation(1.10) gives

f (x2) = f (x)2.

That is if x ≥ 0, then

f (x) = f (
√

x)2 ≥ 0.

This implies that f is an additive function function which is bounded below in the interval

(0,∞) and so from Theorem 2, it follows that f has the general solution of the form

f (x) = cx where c = f (1) .

Now from equation equation(1.10), it follows that

f (1) = f (1×1) = f (1)2

which implies that

f (1) = 0 or 1.

This completes the proof.
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Corollary 16. Let f : R→ R be an additive function satisfying the following algebraic con-

dition

f (x2) = f (x)2 ,∀x ∈ R

then f has the general solution of the form

f (x) = cx where c = f (1).

Proof. Proof is immediate from the proof of Theorem 15
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1.2 Complex valued additive functions

In this this section, we will consider additive functions with range as the field of complex

numbers. Most of the theorems we have proved in the previous section can be generalized to

the case of additive complex valued functions on R. We give the proofs of a few.

Proposition 17. Let f : R → C be a complex valued function satisfying the basic Cauchy’s

equation, that is

f (x+ y) = f (x)+ f (y) ,∀x,y ∈ R (1.11)

If f is continuous at a point, then f has the general solution of the form

f (x) = cx where c = f (1).

Proof. Let f (x) = f1(x)+ ι f2(x) where f1 and f2 are real valued functions on R. Given that

f (x+ y) = f (x)+ f (y) ,∀x,y ∈ R.

if follows that

f1(x+ y)+ ι f2(x+ y) = f1(x)+ ι f2(x)+ f1(y)+ ι f2(y).

On equating the real and imaginary part, we get

f1(x+ y) = f1(x)+ f1(y),

f2(x+ y) = f2(x)+ f2(y)

that is , both f1 and f2 are additive real valued functions on R. Since f is continuous at a point,

so are its real and imaginary parts. And so proposition 4 applies and we get

f1(x) = c1x where c1 = f1(1),
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f2(x) = c2x where c2 = f2(1).

Consequently

f (x) = c1x+ ιc2, ∀x ∈ R

which can be written as

f (x) = cx ∀x ∈ R

where c = c1 + ιc2x.

In the following theorem, we will generalize theorem 2 to the complex valued case.

Theorem 18. Let f : R → C be a complex valued function satisfying the basic Cauchy’s

equation, that is

f (x+ y) = f (x)+ f (y) ,∀x,y ∈ R. (1.12)

If f is bounded in a non-empty open interval of R , then f has the general solution

f (x) = cx where c = f (1).

Proof. Let f (x) = f1(x)+ ι f2(x) where f1 and f2 are real valued functions on R. From the

proof of the previous proposition, it can be concluded that both f1 and f2 are additive functions

on R. Once we prove that both f1 and f2 are bounded in some non-empty open interval of R,

theorem 2 can be applied. Let U be the non-empty open interval in which f is bounded. That

is

∥ f (x) ∥< M, for some M > 0 and ∀x ∈U .

That is√
( f1(x))

2 +( f2(x))
2 < M,

which implies

| f1(x)|< M , ∀x ∈U
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and

| f2(x)|< M , ∀x ∈U .

So both f1and f2 are additive real valued functions which are bounded in a non-empty open

interval of R and it follows using theorem 2 that

f1(x) = c1x where c1 = f1(1)

f2(x) = c2x where c2 = f2(1).

Consequently, f can be written as

f (x) = c1x+ ιc2x, ∀x ∈ R

which, in turn ,can be expressed in the form

f (x) = cx ∀x ∈ R

where c = c1 + ιc2x.

Now we will look at solution of the additive function with Complex domain, that is func-

tions f : C→ C satisfying

f (z+w) = f (z)+ f (w), ∀z,w ∈ C.

We will state a lemma which is crucial in the proof of the subsequent theorem.

Lemma 19. If f : R2 → R is an additive function, that is

f (x+ y) = f (x)+ f (y), ∀x,y ∈ R2

then there exist additive functions f1 :R→R and f2 :R→R such that for any x=(x1,x2)∈R2

f (x) = f1(x1)+ f2(x2).



1.2 Complex valued additive functions 19

Proof. Let x = (x1,x2) ∈ R2 and y = (y1,y2) ∈ R2. The equation

f (x+ y) = f (x)+ f (y)

implies

f ((x1 + y1),(x2 + y2)) = f (x1,x2)+ f (y1,y2). (1.13)

Define f1, f2 : R→ R as

f1(x) = f (x,0), x ∈ R

and

f2(x) = f (0,x), x ∈ R.

We claim that both f1 and f2 are additive functions on R. Indeed

f1(x1 + x2) = f (x1 + x2,0) = f (x1,0)+ f (x2,0) = f1(x1)+ f1(x2),

where the second equality follows from equation (1.13). Similarly,

f2(x1 + x2) = f (0,x1 + x2) = f (0,x1)+ f (0,x2) = f2(x1)+ f2(x2).

Therefore

f (x) = f (x1,x2) = f (x1,0)+ f (0,x2) = f1(x1)+ f2(x2).

This completes the proof.

Theorem 20. If f : C → C is a continuous additive function then there exists complex con-

stants c1 and c2 such that for any z ∈ C

f (z) = c1z+ c2z̄.
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Proof. Let f := f1 + ι f2, where f1 : C→ R and f2 : C→ R. So

f (z+w) = f1(z+w)+ ι f2(z+w). (1.14)

Since f is an additive function,

f (z+w)= f (z)+ f (w)= f1(z)+ι f2(z)+ f1(w)+ι f2(w)= ( f1(z)+ f1(w))+ι ( f2(z)+ f2(w)) ;

equating right hand sides of the above equation and (1.14) , it follows

fk(z+w) = fk(z)+ fk(w), for k = 1,2.

Consequently, both f1 and f2can be seen as additive functions from R2 → R. Therefore by

lemma(19), there exists additive functions f1k : R→ R and f2k : R→ R for k = 1,2 such that

fk(z) = fk1(Re(z))+ fk2(Im(z)) for k = 1,2.

Consequently,

f (z) = f11(Re(z))+ f12(Im(z))+ ι f21(Re(z))+ ι f22(Im(z)).

Since f is a complex continuous function, f1and f2 being the real and imaginary component

of f respectively are continuous. Since fk : R2 → R is continuous , the coordinate functions

fk1 and fk2 are continuous for k = 1,2.

Therefore fk j : R→ R is continuous and additive for k, j = 1,2. Hence there exists real

constants ck j for k, j = 1,2 such that

fk j(x) = ck jx, ∀x∈ R.

Therefore

f (z) = c11Re(z)+ c12Im(z)+ ιc21Re(z)+ ιc22Im(z)
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= (c11 + ιc21)Re(z)+(c12 + ιc22)Im(z);

substitute c11 + ιc21 = a and c12 + ιc22 = b in the above equation to yield

f (z) = aRe(z)+bIm(z) = aRe(z)− ι(ιb)Im(z)

=
a+ ιb

2
Re(z)+

a− ιb
2

Re(z)− ι
a+ ιb

2
Im(z)+ ι

a− ιb
2

Im(z)

=
a− ιb

2
Re(z)+ ι

a− ιb
2

Im(z)+
a+ ιb

2
Re(z)− ι

a+ ιb
2

Im(z)

=
a− ιb

2
(Re(z)+ ιIm(z))+

a+ ιb
2

(Re(z)− ιIm(z)).

This can be written as f (z) = c1z+ c2z̄ , where c1 =
a−ιb

2 and c2 =
a+ιb

2 . This completes the

proof.

Theorem 21. Let f : C → C be an additive function. Then f is analytic if and only if there

exists a complex constant c such that

f (z) = cz;

that is , f is linear.

Proof. Proof of one direction of the theorem is obvious. We will prove the only if part.

Assume that f : C → C is analytic and additive. Since f is analytic, it is differentiable.

Now differentiating

f (z1 + z2) = f (z1)+ f (z2) (1.15)

with respect to z2, we get

f ′(z1 + z2) = f ′(z2)
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for all z1,z2 ∈ C. Therefore letting z1 = z and z2 = 0, we get

f ′(z) = c,

where c = f ′(0) is a complex constant. The above equation implies that

f (z) = cz+b, (1.16)

where b is a complex constant. Putting z1 = z2 = 0 in equation (1.15) gives

f (0+0) = 2 f (0)

which implies

f (0) = 0. (1.17)

From equations (1.16) and (1.17) it follows that b = 0. This completes the proof.
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1.3 Stability of Cauchy’s equation

In this section, we are looking at functions which may not be exact additive functions but are

very close to being additive. We will state and prove some conditions in which these functions

will have the same family of solutions as additive functions.

The problem of stability of an equation arises when we actually want to compute the value

of functions in real life using numerical techniques. Since there are no actual real number

representation on a computer, the numerical solution will be in almost all the cases an approx-

imation of actual one. So stability analysis is essential to make sure that the numerical solution

is not far off from the exact one.

The proof of the following theorem was first presented by Hyers, Isac, and Rassias’s [refer

D.H. Hyers, G. Isac, and Th.M. Rassias, Stability of Functional Equations in Several Variables,

Birkh¨auser, Boston (1998)]

Theorem 22. Let X and Y be Banach spaces and f : X → Y be such that

∥ f (x+ y)− f (x)− f (y) ∥≤ δ (1.18)

for some δ > 0 and ∀x,y ∈ X. Define

A(x) = lim
n→∞

2−n f (2nx).

Then the above limit exists for each x ∈ X and A : X → Y is the unique additive function such

that

∥ f (x)−A(x) ∥≤ δ for any x ∈ X . (1.19)

Moreover, if f (tx) : R → Y is continuous in t for each fixed x ∈ X , then A is linear. Also

continuity of f at a point in X implies that A is linear(A(x) = cx, for some c ∈ X).

Proof. Let x ∈ X , then from 1.18 , we have

∥ f (x+ x)− f (x)− f (x) ∥ ≤ δ ,

∥ f (2x)−2 f (x) ∥ ≤ δ ,
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and

∥ 1
2

f (2x)− f (x) ∥≤ δ

2
. (1.20)

On using induction, it follows that

∥ 2−n f (2nx)− f (x) ∥≤ (1−2−n)δ . (1.21)

Indeed, replace x in 1.20 by 2x to get

∥ 1
2

f (22x)− f (2x) ∥ ≤ δ

2
,

∥ 1
2

f (22x)−2 f (x)− f (2x)+2 f (x) ∥ ≤ δ

2

By applying triangle inequality in LHS of the above inequality, we will get

∥ 1
2

f (22x)−2 f (x) ∥ − ∥ f (2x)−2 f (x) ∥ ≤ δ

2
,

∥ 1
2

f (22x)−2 f (x) ∥ ≤ δ

2
+ ∥ f (2x)−2 f (x) ∥,

≤ δ

2
+δ

which implies

∥ 1
4

f (22x)− f (x) ∥ ≤ δ (
1
2
+

1
22 ).

So we conclude by induction that

∥ 2−n f (2nx)− f (x) ∥ ≤ δ (
1
2
+

1
22 + · · ·+ 1

2n )

= (1−2−n)δ .

Now we will show that the sequence {2−n f (2nx)} is a Cauchy sequence in Y for each x ∈ X .

Let m,n ∈ Z+ with m > n. Then

∥ 2−m f (2mx)−2−n f (2nx) ∥ = 2−n ∥ 2−(m−n) f (2m−n ×2nx)− f (2nx) ∥ .

Right hand side of the above equation by is 2−nδ (1−2−(m−n)) using(1.21 ). So ,

∥ 2−m f (2mx)−2−n f (2nx) ∥ ≤ 2−n
δ (1−2−(m−n))
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∥ 2−m f (2mx)−2−n f (2nx) ∥≤ δ (
1
2n −

1
2m ) (1.22)

which proves that {2−n f (2nx)} is a Cauchy sequence in Y for each x ∈ X .

Since Y is a Banach space, limn→∞ 2−n f (2nx) exists and equals A(x), say. We next show

that A is an additive function. Replace x and y by 2nx and 2ny respectively in 1.18 to get ,

∥ 2−n f (2n(x+ y))−2−n f (2nx)−2−n f (2ny) ∥≤ 2−n
δ .

On letting n → ∞ to get

∥ A(x+ y)−A(x)−A(y) ∥= 0

which implies

A(x+ y) = A(x)+A(y).

To prove the assertion 1.19 , let n → ∞ in 1.21 to get

∥ lim
n→∞

2−n f (2nx)− f (x) ∥ ≤ lim
n→∞

(1−2−n)δ ,

∥ A(x)− f (x) ≤ δ , ∀x ∈ X .

Next we will prove that A is unique. Suppose A′ : X → Y is another additive function

satisfying equation(1.19). Then for x ∈ X ,

∥ A(x)−A′(x) ∥= n−1 ∥ A(nx)− f (nx)−A′(nx)+ f (nx) ∥

≤ 2δn−1

(equation(1.19)). Letting n → ∞, we get A′ = A.

Suppose f is continous at y ∈ X . Let {xn} be a sequence in X such that xn → 0 as n → ∞.

Then for any integer m ∈ Z+,

∥ A(xn + y)−A(y) ∥=∥ A(xn) ∥
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=
1
m
[∥ A(mxn + y)− f (mxn + y)+ f (mxn + y)− f (y)+ f (y)−A(y) ∥]

≤ 2δ + ε

m

(using triangle inequality, equation 1.19 and continuity of f at y for large n and any integer

m); therefore A is also continuous at y. For a fixed x ∈ X , if f (tx) is continuous in t, then it

follows that A(tx) is continuous at t and hence A is linear. This completes the proof of the

theorem.

T. M. Rassias tried to weaken the boundedness hypothesis in the previous theorem and

succeeded in proving what is now known to be the Hyers-Ulam-Rassias stability for the ad-

ditive Cauchy equation. This terminology is due to the fact that theorem proved by Rassias

influenced many Mathematicians to study stability problems of functional equations. We state

and prove this theorem in the following section.

Theorem 23. Let E1and E2be Banach spaces and let f : E1 → E2 be a function satisfying the

functional inequality

∥ f (x+ y)− f (x)− f (y) ∥≤ θ(∥ x ∥p + ∥ y ∥p) (1.23)

for some θ > 0, p ∈ [0,1), and for all x,y ∈ E1.Then there exists a unique additive function

A : E1 → E2 such that

∥ f (x)−A(x) ∥≤ 2θ

2−2p ∥ x ∥p (1.24)

for any x ∈ E1. Moreover, if f (tx) is continuous in t for each fixed x ∈ E1,then A linear.

Proof. First we prove the following inequality using induction

∥ 2−n f (2nx)− f (x) ∥≤ θ ∥ x ∥p
n−1

∑
m=0

2m(p−1). (1.25)
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Putting x = y in (1.23) and dividing by 2 gives

∥ 2−1 f (2x)− f (x) ∥≤ θ ∥ x ∥p . (1.26)

This proves (1.25) for n=1. Assume that (1.25) is true for some n ≥ 1. Replace x by 2x and

divide throughout by 2 in equation (1.25) to get,

∥ 2−n−1 f (2n2x)− f (2x)
2

∥≤ θ2−1 ∥ 2x ∥p
n−1

∑
m=0

2m(p−1),

that is ,

∥ 2−n−1 f (2n+1x)− f (2x)
2

∥≤ θ2−12p ∥ x ∥p
n−1

∑
m=0

2m(p−1),

∥ 2−n−1 f (2n+1x)− f (2x)
2

∥= θ ∥ x ∥p
n

∑
m=1

2m(p−1). (1.27)

Consider the equation

∥ 2−n−1 f (2n+1x)− f (x) ∥=∥ 2−n−1 f (2n+1x)− f (2x)
2

+
f (2x)

2
− f (x) ∥ .

On using triangle inequality on the right hand side of the above equality, we have

∥ 2−n−1 f (2n+1x)− f (x) ∥ = ∥ 2−n−1 f (2n+1x)− f (2x)
2

+
f (2x)

2
− f (x) ∥

≤ ∥ 2−n−1 f (2n+1x)− f (2x)
2

∥+ ∥ f (2x)
2

− f (x) ∥

≤ θ ∥ x ∥p
n

∑
m=0

2m(p−1)

which follows from equations (1.26) and (1.27). This proves (1.25). Since sum of the geomet-

ric series ∑
n
m=0 2m(p−1) is 2

2−2p for p ∈ [0,1),

∥ 2−n f (2nx)− f (x) ∥≤ 2θ

2−2p ∥ x ∥p . (1.28)
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Consider the sequence {2−n f (2nx)}. For m > n > 0, we have

∥ 2−m f (2mx)−2−n f (2nx) ∥= 2−n ∥ 2−(m−n) f (2m−n2nx)− f (2nx) ∥

≤ 2n(p−1) 2θ

2−2p ∥ x ∥p .

Therefore, {2−n f (2nx)}is a Chauchy sequence for each x ∈ E1. Since E2 is complete, the

series converges in E2to the limit defined as the following

A(x) = lim
n→∞

2−n f (2nx).

From (1.23) it follows that

∥ f (2n(x+ y)− f (2nx)− f (2ny) ∥≤ 2np
θ(∥ x ∥p + ∥ y ∥p).

Dividing by 2n and letting n → ∞ in the last expression(p < 1) yields

A(x+ y) = A(x+ y)

which proves that A is an additive function. Letting n → ∞ in equation (1.28) proves (1.24).

We will now show the uniqueness of A. Let A′ : E1 → E2 be another additive function such

that for constants ε ≥ 0 and q ∈ [0,1)

∥ A′(x)− f (x) ∥≤ ε ∥ x ∥q .

∥ A(x)−A′(x) ∥ =
1
n
∥ A(nx)−A′(nx) ∥ (using additive property of A and A′)

≤ 1
n

(
∥ A(nx)− f (x) ∥+ ∥ f (x)−A′(nx) ∥

)
(using triangular inequality)

≤ 1
n

(
2θ

2−2p ∥ nx ∥p +ε ∥ nx ∥q
)

= np−1 2θ

2−2p ∥ x ∥p +nq−1
ε ∥ x ∥q
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Since left hand side of the above inequality is independent of n , letting n → ∞, we get A(x) =

A′(x) for all x ∈ E1.

Assume that f (tx) is continuous in t for any fixed x ∈ E1.Since A is additive in E1, A(qx) =

qA(x) for any q∈Q. Fix an x0in E1 and ρ ∈E∗
2 (dual space of E2). Define a function φ :R→R

by

φ(t) = ρ(A(tx0)).

φ is an additive real valued function, indeed

φ(t1 + t2) = ρ(A((t1 + t2)x0)) = ρ(A(t1x0)+A(t2x0)) (using additive property of A)

= ρ(A(t1x0))+ρ(A(t2x0)) (using linearity of ρ)

= φ(t1)+φ(t2).

Moreover, φ is a Borel measurable function by the following reasoning:

Let φ(t) = limn→∞ 2−nρ( f (2ntx0)) and φn(t) = 2−nρ( f (2ntx0)). Then φn(t) are continu-

ous functions for each n. φ(t) is the point wise limit of continuous functions. Point wise limit

of Borel measurable functions is bore measurable. Therefore φ is a Borel measurable func-

tion. Therefore φ is linear[theorem 13] and hence continuous. Let a ∈R. Then a = limn→∞ qn

for some sequence of real numbers {qn} .

φ(at) = φ(t lim
n→∞

qn) = lim
n→∞

φ(tqn) (using continuity of φ )

= lim
n→∞

qnφ(t) (using additive property of φ )

= aφ(t)

Therefore, φ(at) = aφ(t), for any a ∈ R. This implies A(ax) = aA(x) for any a ∈ R. This

proves A is linear.
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Remark 24. The above theorem is a generalization of theorem(22). Indeed, putting p = 0 and

replacing δ by δ

2 will yield theorem(22).

Z.Gajda showed that the theorem(23) is not valid when p= 1 by constructing the following

counter example.

For fixed θ > 0 and µ := 1
6θ , define f : R→ R by

f (x) =
∞

∑
n=0

2−n
φ(2nx), x ∈ R,

where the function φ : R→ R is given by

φ(x) =


µ if 1 ≤ x < ∞

µx if −1 < x < 1

−µ if −∞ < x ≤−1.

Proof. φ is continuous and bounded uniformly(|φ(x)| ≤ µ). Therefore the function f (x) is

well defined. Since f is defined in terms of uniformly convergent series of continuous func-

tions, f itself is continuous. Moreover f is uniformly bounded over whole of real line. Indeed

| f (x)| ≤
∞

∑
n=0

µ

2n = 2µ, x ∈ R.

Now we will show that the function f indeed satisfies (1.23) with p = 1. That is

| f (x+ y)− f (x)− f (y)| ≤ θ(|x|+ |y|). (1.29)

If x = y = 0, then f trivially satisfies (1.29). Next assume that

0 < |x|+ |y|< 1.
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Then there exists N ∈ N such that

2−N ≤ |x|+ |y|< 2−N+1.

Hence from the second inequality above , it follows that |2N−1x|< 1,|2N−1y|< 1 and |2N−1(x+

y)|< 1. Therefore for each n ∈ {0,1 . . . ,N −1}, the numbers 2nx , 2ny and 2n(x+y) lie in the

interval (−1,1). Since φ is linear on (−1,1), it follows that

φ(2n(x+ y))−φ(2nx)−φ(2ny) = 0,

for n = 0,1,2, . . . ,N −1.Therefore

| f (x+ y)− f (x)− f (y)|
|x|+ |y|

≤
∞

∑
n=0

|φ(2n(x+ y))−φ(2nx)−φ(2ny)|
2n(|x|+ |y|)

=
∞

∑
n=N

|φ(2n(x+ y))−φ(2nx)−φ(2ny)|
2n(|x|+ |y|)

≤
∞

∑
k=0

3µ

2k2N(|x|+ |y|)

≤
∞

∑
k=0

3µ

2k = 6µ = θ .

which implies f satisfies (1.29). Finally, assume that |x|+ |y| ≥ 1, then from boundedness of

f it follows that
| f (x+ y)− f (x)− f (y)|

|x|+ |y|
≤ 6µ = θ .

Now contrary to claim, suppose that there exists a δ ∈ [0,∞) and an additive function T : R→

R such that

| f (x)|−T (x)≤ δ |x|.

Letting x → ∞

lim
x→0

| f (x)−T (x)| ≤ lim
x→0

δ |x|.

| f (lim
x→0

x)− lim
x→0

T (x)| ≤ lim
x→0

δ |x|

This implies T is bounded in a neighborhood of 0. So by 2, there exists a real constant c such
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that

T (x) = cx, ∀x ∈ R.

Therefor

| f (x)− cx| ≤ δ |x|, ∀x ∈ R

which implie

| f (x)
x

| ≤ δ + |c|, ∀x ∈ R. (1.30)

On the other hand, choose N ∈ Z large enough so that Nµ > δ + |x|. Then picking an x from

the interval (0, 1
2N−1 ), we have 2nx ∈ (0,1) for each n ∈ {0,1, . . . ,N − 1}.Consequently for

such an x, we have

| f (x)
x

|= f (x)
x

=
∞

∑
n=0

φ(2nx)
2nx

≥
N−1

∑
n=0

φ(2nx)
2nx

=
N−1

∑
n=0

µ
2nx
2nx

(since 2nx ∈ (0,1))

= Nµ > δ + |x|

which contradicts (1.30). Therefore such a δ as assumed cannot exist.

1.4 Almost additive functions

Definition 25. Let f : R→ R be a real valued function such that

f (x+ y) = f (x)+ f (y)

for almost every pair (x,y) ∈ R2. That is the set E = {(x,y) ∈ R2 : f (x+ y) ̸= f (x)+ f (y)}

has planar Lebesgue measure zero. Such a function f is called an almost additive function.

Note that in the previous definition the domain of f can also be R\X where X is a set of

linear Lebesgue measure zero.

P.Erdos asked whether there exists an additive function which is almost everywhere equal

to an almost additive function. The following theorem not only answers the above question
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positively but also proves its uniqueness of such an additive function.

1.4.1 Existence of additive function almost everywhere equal to almost

additive function

Theorem 26. [W. B. Jukrat] Let f : R→ R be an almost additive function. Then there exists

an additive function F : R→ R satisfying

F(x+ y) = F(x)+F(y) (1.31)

for all (x,y) ∈ R2 such that the set K = {x ∈ R : f (x) ̸= F(x)} has linear Lebesgue measure

zero. Also such an F is uniquely determined.

Proof. Let E = {(x,y) ∈ R2 : f (x+ y) ̸= f (x)+ f (y)}. Then µR2(E) = 0. Define Ex = {y ∈

R : (x,y) ∈ E} and H = {x ∈ R : (x,y) ∈ E}. Then by Fubini’s theorem,

µR2(E) = µR(Ex)×µR(H) = 0

which implies µR(Ex) = 0 for almost all x ∈ R. Therefore the set N = {x : µR(Ex) ̸= 0} has

linear Lebesgue measure zero. Also if x /∈ N and y /∈ Ex, then equation (1.31) is satisfied for

(x,y). Denote NC by M. We claim that equation (1.31) holds if x,y,x+ y ∈ M. To prove this

claim, select z such that z /∈ Ex+y, z /∈ Ey and y+ z /∈ Ex. This is possible because Ex+y,Ey and

Ex −y are null sets and hence the z can be selected from the complement of the union of these

null sets. Therefore such a selection of z implies

f (x+ y+ z) = f (x+ y)+ f (z)

f (y+ z) = f (y)+ f (z)

f (x+ y+ z) = f (x)+ f (y+ z).

On equating the right hand sides of the first and third equations above and substituting the
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value of f (y+ z) from the second equation, we get

f (x+ y) = f (x)+ f (y), x,y ∈ M. (1.32)

We next claim that if x1,y1,x2,y2 ∈ M and x1 + y1 = x2 + y2 then

f (x1)+ f (y1) = f (x2)+ f (y2). (1.33)

This claim can be proved by selecting z∈M such that y1−z, y2−z, x1+y1−z, x2+y2−z∈M.

This is possible because the sets N, y1 −N, y2 −N and x1 + y1 −N are null sets and hence z

can be selected from the complement of union of these null sets. Denote y1−z by y′1 and y2−z

by y′2 respectively. Then y′1,y
′
2,x1 + y′1 = x2 + y′2 ∈ M and therefore by property (1.32) we get

f (y1) = f (y′1)+ f (z)

f (x1 + y′1) = f (x1)+ f (y′1)

f (y2) = f (y′2)+ f (z)

f (x2 + y′2) = f (x2)+ f (y′2).

From first and second equations above, we get f (x1 + y′1)+ f (z) = f (x1)+ f (y1) and from

third and fourth equations above, we get f (x2 + y′2)+ f (z) = f (x2)+ f (y2) . Therefore on

using the fact that x1 + y′1 = x2 + y′2 we get

f (x1)+ f (y1) = f (x2)+ f (y2).

Our final claim is if x1,x2x2 ∈ M , there exist y1,y2 ∈ M such that

x1 + x2 + x3 = y1 + y2

and

f (x1)+ f (x2)+ f (x3) = f (y1)+ f (y2). (1.34)

To prove this claim select z ∈ M such that z′ = x3 − z, x1 + z, x2 + x3 − z = x2 + z′ ∈ M . This
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is possible by selecting z avoiding the union of null sets N, x3 −N, N − x1 and x2 + x3 −N.

Define y1 = x1 + z and y2 = x2 + z′. On application of property (1.32) we get

f (x3) = f (z)+ f (z′)

f (y1) = f (x1)+ f (z)

f (y2) = f (x2)+ f (z′)

from which we can conclude property (1.34).

To define the required additive function F , we use the fact that every real number z is of

the form x+ y with x,y ∈ M. This sum can be formed by simply selecting x ∈ M such that

y = z− x ∈ M. Such an x exists because N is a null set and such a y exists because N − x is a

null set for all x. Define

F(z) := f (x)+ f (y).

F is a well defined function because of the property (1.33 ). If z ∈ M then by property (1.32),

f (z) = f (x)+ f (y) and hence f (z) = F(z) for all z except a set of linear Lebesgue measure

zero. To prove that F is additive , let z1 and z2be arbitrary real numbers. Let x1,y1,x2,y2 ∈ M

be such that z1 = x1 + y1 and z2 = x2 + y2. By applying property (1.34) twice, we will get

p1, p2 ∈ M such that

x1 + y1 + x2 + y2 = p1 + p2

and

f (x1)+ f (y1)+ f (x2)+ f (y2) = f (p1)+ f (p2).

But the left hand side of the second equation above equals F(z1)+F(z2) by definition and

right hand side equals F(p1 + p2) = F(z1 + z2). Since z1and z2 were arbitrary, this proves F

is additive.

To show the uniqueness of the additive function F , let F1 and F2be additive functions which

coincide with each other almost everywhere except on a set of measure zero. Let M be the set

on which F1agrees with F2. F1 −F2 = 0 for all z ∈ M. But every real number z can be written

as the sum x+ y with x,y ∈ M and hence F1 −F2 vanishes everywhere on the real line. This

proves the uniqueness of the additive function F.
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1.5 Most general solution for Cauchy equations

In 1905, G.Hamel used the existence of Hamel Basis to find the most general solution of an

additive function on R. In this section we will look at the construction of additive functions

using a Hamel basis of R over Q.

1.5.1 Construction of additive functions using Hamel basis

Theorem 27. Let B be a Hamel basis of R over Q and f : B → R be any arbitrary function.

Then there exists an additive function F : R→ R such that F |B = f .

Proof. Let B be a Hamel basis of R over Q and f : B → R be any arbitrary function. Every

x ∈ R can be written uniquely as finite linear combination of elements of B. That is

x =
n

∑
i=1

qibi,

where qi ∈Q and bi ∈ B. Define the new function F : R→ R by

F(x) =
n

∑
i=1

qi f (bi). (1.35)

Clearly, F |B = f . Moreover, F is additive also. Indeed if x1 = ∑
n
i=1 q1ibi and x2 = ∑

n
i=1 q2ibi

are two real numbers with q1i,q2i,∈Q and bi ∈ B. Then

F(x1 + x2) = F(
n

∑
i=1

q1ibi +
n

∑
i=1

q2ibi)

= F(
n

∑
i=1

(q1i +q2i)bi)

=
n

∑
i=1

(q1i +q2i) f (bi)

=
n

∑
i=1

q1i f (bi)+
n

∑
i=1

q2i f (bi)

= F(x1)+F(x2)

which follows from the definition of F . This proves that F is additive.
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Corollary 28. Basic Cauchy Equation has discontinuous solutions.

Proof. Let B be a Hamel basis of R over Q and f : B → R be a function such that there exists

distinct b1and b2 in B such that
f (b1)

b1
̸= f (b2)

b2
. (1.36)

Such a b1 and b2 exist whenever there does not exists a constant c ∈ R such that f (bi) = cbi

for all bi in B. Let F be as defined in the previous theorem. Then F is additive and F |B = f .

From Corollary 3 of Theorem 2, continuity of F at a single point will imply that

f (x) = cx ∀x ∈ R ,where c = f (1)

which is not possible due to condition(1.36). Thus F is discontinuous everywhere which

proves our Corollary.





Chapter 2

Convex functions and inequalities.

2.1 Convex functions on R.

Definition 29. Let I be an open interval in R. A function f : R→ R is called convex if

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y) (2.1)

for all x,y ∈ I and λ ∈ [0,1].

If the inequality in (2.1) is strict, then f is called strictly convex.

In all our further discussions in this section, f and λ are defined according to 29 unless

otherwise stated.

2.1.1 Geometric interpretation of convex functions.

If A,B and C are three distinct points on graph of a convex function f with B lying between A

and C, then B lies on or below chord AC. This can be stated in terms of slopes as

slope(AB)≤ slope(AC)≤ slope(BC) (2.2)

with strict inequalities in case of strictly convex functions.
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2.1.2 Properties of Convex functions.

In this subsection, we will discuss the implications or necessary conditions for a convex func-

tion.

Theorem 30. A finite convex function f defined on a closed interval [a,b] is bounded above

by M = max{ f (a), f (b)} and bounded below by m = 2 f (a+b
2 )−M.

Proof. For any z = λx+(1−λ )y in [a,b], we have

f (z)≤ λ f (a)+(1−λ )y ≤ λM+(1−λ )M = M

where the first inequality follows from the convexity of f . Also we can write any arbitrary

point in [a,b] in the form a+b
2 + t for some t ∈ R and from the convexity of f , it follows that

f (
a+b

2
)≤ 1

2
f (

a+b
2

+ t)+
1
2

f (
a+b

2
− t)

which implies

f (
a+b

2
+ t)≥ 2 f (

a+b
2

)− f (
a+b

2
− t).

Now using − f (a+b
2 − t)≥−M we get

f (
a+b

2
+ t)≥ 2 f (

a+b
2

)−M = m.

Convex functions can be discontinuous on end points of the interval in which they are

defined. To show this consider the example of f : [0,1]→ R defined by

f (x) =

0 0 ≤ x < 1

1 x = 1
.

f is clearly discontinuous at x = 1 and still convex.

Our next theorem shows how they behave in the interior of the domain interval.
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Theorem 31. Let f : I → R be a convex function , then f satisfies Lipschitz condition on any

closed interval [a,b]in interior I0of I. That is there exists a real constant k such that

| f (x)− f (y)| ≤ k|x− y| (2.3)

for all x,y ∈ [a,b]. Consequently f is absolutely continuous on [a,b].

Proof. Let ε > 0 be such that a− ε , b+ ε ∈ I, this also implies [a,b] ∈ Io. Let x and y be

distinct points in [a,b]. Define

z = y+
ε(y− x)
|y− x|

,

and

λ =
|y− x|

ε + |y− x|
.

Then clearly z ∈ [a,b] and y = λ z+(1−λ )x. Indeed

λ z+(1−λ )x =
|y− x|

ε + |y− x|
y+

ε

ε + |y− x|
(y− x)+

ε

ε + |y− x|
x

=
ε + |y− x|
ε + |y− x|

y = y.

Therefore from convexity of f we have

f (y)≤ λ f (z)+(1−λ ) f (x) = λ ( f (z)− f (x))+ f (x)

which implies

f (y)− f (x)≤ λ (M−m)<
|y− x|

ε
(M−m)

where M and m are the upper and lower bounds of f in [a,b] respectively. Since this is true

for any x,y ∈ [a,b], putting k = M−m
ε

in the above inequality gives

| f (y)− f (x)| ≤ k|y− x|

as desired.
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Now for any ε1 > 0 , we can define δ = ε1/k so that for any collection {(ai,bi)}n
1 of

disjoint open subintervals of [a,b] with ∑
n
i=1(bi −ai)< δ , ∑

n
i=1 | f (b)− f (ai)|< ε1. Thus we

have proved the uniform continuity of f on [a,b].

Definition 32. Left and right derivatives of a function are defined respectively as

f ′−(x) = lim
y↑x

f (y)− f (x)
y− x

and

f ′+(x) = lim
y↓x

f (y)− f (x)
y− x

.

Theorem 33. Let f : I → R be a convex function, then both f ′−(x) and f ′+(x) exist and are

increasing(strictly increasing if f is a strict convex function).

Proof. Let w,x,y,z ∈ Io with w < x < y < z and A,B,C and D be (w, f (w)),(x, f (x)),(y, f (y))

and (z, f (z)) on the graph of f . From inequality (2.2), we get

slope(AB)≤ slope(AC)≤ slope(BC)≤ slope(BD)≤ slope(CD). (2.4)

Therefore
f (x)− f (y)

x− y
≤ f (z)− f (y)

z− y
. (2.5)

Also it can be seen that slope(BC) increases as x ↑ y and slope(CD) decreases as z ↓ y. So the

LHS of inequality(2.5) increases as x ↑ y and RHS of inequality(2.5) increases as x ↓ y. Thus

f ′−(y) and f ′+(y) exist and satisfy

f ′−(y)≤ f ′+(y). (2.6)

Also from inequality(2.4),

f ′−(w)≤
f (x)− f (w)

x−w
≤ f (y)− f (x)

y− x
≤ f ′−(y) (2.7)

which combined with inequality(2.6) gives

f ′−(w)≤ f ′+(w)≤ f ′−(y)≤ f ′+(y)
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for all w < y in Io. This proves that f ′+ and f ′− are increasing functions.

Replacing all the inequalities in the above discussion with strict inequalities, it follows that

f ′+ and f ′− are strictly increasing functions when f is strictly convex.

We will now look at the existence of the derivative of a convex function.

Theorem 34. Let f : I → R be a convex(strict convex) function defined on an open interval I,

then the set

E =
{

x ∈ I : f ′(x) f ail toexists
}

is countable and f ′(x) is continuous on I\E.

Proof. Let w,x,y,z be as in the proof of the previous theorem. Then from inequality(2.4),

f+(x)≤
f (y)− f (x)

y− x
.

Also from the previous theorem, f+ is a monotone function, so the right hand limit and left

hand limit exists. Therefore

lim
x↓w

f ′+(x)≤ lim
x↓w

f (y)− f (x)
y− x

=
f (y)− f (w)

y−w
, (2.8)

where the equality follows from the continuity of f in Io. Also

lim
y↓w

f (y)− f (w)
y− x

= f ′+(w)

and combining this inequality with inequality(2.8) gives

lim
x↓w

f ′+(x)≤ f ′+(w).

But w < x implies

f ′+(w)≤ f ′+(x)

and therefore implies

lim
x↓w

f ′+(x) = f ′+(w). (2.9)
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Similarly we can show that

lim
x↑w

f ′+(x) = f ′−(w). (2.10)

From equations (2.9) and (2.10), it is clear that f ′+(w) = f ′−(w) if and only if f ′+ is con-

tinuous at w. Therefore existence of f ′at a point is same as the continuity of f ′+ at that point.

Since f ′+ is a monotone functions, all its discontinuities are jumps and hence the number of

discontinuities are countable. Therefore on I\E, f ′+ is continuous and hence f ′ which agrees

with f ′+ on I\E is continuous.

Since we have established the countability of discontinuities of a convex functions, now

we will look into what happens when the derivative exists.

Theorem 35. Let f : (a,b)→R be a differentiable function. Then f is convex(strictly convex)

if and only if f ′ is an increasing(strictly increasing) function.

Proof. Let f : (a,b) → R be differentiable and convex(strictly convex), then from theorem

33, it is obvious that f ′ is an increasing(strictly increasing) function. Now for the converse

suppose that f : (a,b)→ R is differentiable with increasing derivative. From the fundamental

theorem of calculus,

f (y)− f (x) =
∫ y

x
f ′(t)dt (2.11)

for any x,y ∈ (a,b). Now let a and b be arbitrary positive reals such that a+b = 1. For proving

convexity of f , it is enough to show that f (ax+ by) ≤ a f (x)+ b f (y) for any x,y ∈ (a,b).

Assume that x < y, then from (2.11), it follows that

a f (x)+b f (y)− (a+b) f (ax+by) = b( f (y)− f (ax+by))−a( f (ax+by)− f (x))

= b
∫ y

ax+by
f ′(t)dt −a

∫ ax+by

x
f ′(t)dt

≥ b f ′(ax+by)
∫ y

ax+by
dt −a f ′(ax+by)

∫ ax+by

x
dt

= f ′(ax+by) [ax+by− (ax+by)(a+b)]

= 0.
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which implies

f (ax+by)≤ a f (x)+b f (y).

This completes the proof for the convex functions. Replacing inequalities in the above discus-

sions with strict inequalities proves the case for strictly convex functions.

Theorem 36. Let f : (a,b)→ R is a twice differentiable function on (a,b). Then f is convex

if and only if f ′′(x)≥ 0, also if f ′′(x)> 0on (a,b), then f is strictly convex on the interval.

Proof. Given that f ′′(x) exists for all x in (a,b), therefore f ′(x) exists for all x in (a,b). But

f ′′(x) ≥ 0 if and only if f ′(x) is an increasing function which happens if and only if f is a

convex function from the previous theorem. Also if f ′′(x)> 0, then f ′(x) is strictly increasing

and again from the previous theorem, it follows that f is a strictly convex function. This

completes the proof.

It is interesting to note that there exists function f which is strictly convex , but f ′′(x) = 0.

To see this, take the example of f (x) =xn where n is any positive even integer greater than 2

defined on any open interval (a,b) containing 0. It is clear that f (x) is strictly increasing, but

f ′′(x) = n(n−1)xn−2

f ′′(0) = 0.

Now we will define a weaker condition than convexity.

2.2 Mid convex functions

Definition 37. A function f : (a,b)→ R is called mid convex or weakly convex if

f (
x+ y

2
)≤ 1

2
( f (x)+ f (y)) (2.12)

for all x,y ∈ (a,b).
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2.2.1 Properties of Mid convex functions

Theorem 38. Finite sum of mid convex functions which are defined on the same interval is

mid convex. Also let f1, f2, · · · be an infinite sequence of mid convex functions defined on the

same interval such that { fn(x)} has a point wise limit f on the interval, then f is mid convex.

Proof. Let f1, f2, · · · , fn be a finite collection of mid convex functions defined on an interval

(a,b). Then for any x,y ∈ (a,b),

( f1 + f2)(x+ y) = f1(x+ y)+ f2(x+ y)≤ 1
2
( f1(x)+ f1(y))+

1
2
( f2(x)+ f2(y))

which follows from the mid convexity of f1 and f2. This indeed imply

( f1 + f2)(x+ y)≤ 1
2
(( f1 + f2)(x)+( f1 + f2)(y)) .

This proves that f1 + f2 is mid convex. Now using induction it can be proven that f1 + f2 +

· · ·+ fn is a mid convex function. Now let f1, f2, · · · be an infinite sequence of mid convex

functions defined on the interval (a,b) such that { fn(x)} has a point wise limit f on (a,b).

Then for any x,y ∈ (a,b), mid convexity of fn gives

fn(
x+ y

2
)≤ 1

2
( fn(x)+ fn(y))

and on taking limits on both sides

lim
n→∞

fn(
x+ y

2
)≤ 1

2

(
lim
n→∞

fn(x)+ lim
n→∞

fn(y)
)
,

which indeed gives

(
x+ y

2
)≤ 1

2
( f (x)+ f (y)) .

This completes the proof.

It should be noted that convexity implies mid convexity(take λ = 1
2 ), but the converse is

not true.
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Consider R as a vector space over Q with the Hamel basis {hi} . Every real number x can

be written as a

x = ∑ci(x)hi,

where the summation is taken over all elements of the Hamel basis and ci(x) corresponds to

the rational coefficient of hi in th summation. c can be seen as a function of x taking rational

values. Also c is additive, indeed if

x = ∑ci(x)hi;

y = ∑ci(y)hi,

then

x+ y = ∑ci(x)+ ci(y)hi

which implies

c(x+ y) = c(x)+ c(y).

Also 1
2 is a rational which implies

c(
x+ y

2
) =

1
2
(c(x)+ c(y))

proving that c is mid convex. On the other hand , c cannot be convex. Indeed c is a non-

constant function taking only rational values and therefore discontinuous everywhere, hence

by theorem 31 c cannot be convex.

We shall prove this after looking at the following set of conditions which has to be satisfied

by weakly convex functions to be convex.

Lemma 39. Let f : (a,b) → R be a mid convex function and x1,x2, . . . ,xn ∈ (a,b). Also let

r1,r2, . . . ,rn ∈Q such that rixi ∈ (a,b) for i = 1,2, . . . ,n and ∑
n
i=1 ri = 1. Then

f (r1x1 + · · ·+ rnxn)≤ r1 f (x1)+ · · ·+ rn f (xn). (2.13)
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Proof. Let f and x1,x2, . . . ,xn ∈ (a,b) be as in the hypothesis of the theorem. Then we will

first show

f (
x1 + x2 + · · ·+ xn

n
)≤ 1

n
f (x1 + x2 + · · ·+ xn). (2.14)

Let inequality (2.14) be true for some n ∈ N, then it is also true for 2n. Indeed

f (
x1 + · · ·+ xn + xn+1 + · · ·x2n

2n
) = f (

x1+···+xn
n + xn+1+···x2n

n
2

)

≤ 1
2

f (
x1 + · · ·+ xn

n
)+ f (

xn+1 + · · ·x2n

n
)

≤ 1
2

f (
x1 + · · ·+ xn + xn+1 + · · ·+ x2n

n
)

where the first inequality follows from the mid convexity of f and the second inequality fol-

lows from the assumption that inequality (2.14) is true for n. Next we will show that if in-

equality (2.14) holds for some n+1 ∈ N, then it holds for n as well. Let x1,x2, . . . ,xn ∈ (a,b)

and define xn+1 = x1+x2+...+xn
n . It is clear that xn+1 ∈ (a,b) since min{x1, . . . ,xn} ≤ xn+1 ≤

max{x1, . . . ,xn}. Also

f (xn+1) = f (
nxn+1 + xn+1

n+1
)

= f (
x1 + x2 + · · ·+ xn + xn+1

n+1
)

≤ 1
n+1

[ f (x1)+ f (x2)+ · · ·+ f (xn)+ f (xn+1)]

f (xn+1)−
1

n+1
f (xn+1) ≤ 1

n+1
[ f (x1)+ f (x2)+ · · ·+ f (xn)]

n
n+1

f (xn+1) ≤ 1
n+1

[ f (x1)+ f (x2)+ · · ·+ f (xn)]

f (
x1 + x2 + · · ·+ xn

n
) ≤ 1

n
f (x1)+ f (x2)+ · · ·+ f (xn)

where the first inequality follows from our assumption that inequality (2.14) holds for n+ 1.

Hence (2.14) is true for n when it is true for n+ 1. Since 2n can be as large as required, we

have proved the result (2.14) for all n ∈ N.

Now let r1,r2, . . . ,rn ∈Q such that rixi ∈ (a,b) for i = 1,2, . . . ,n and ∑
n
i=1 ri = 1. Let l be

the least common denominator of r1,r2, . . . ,rn. Then

r1x1 + · · ·+ rnxn =
1
l
(lr1x1 + · · ·+ lrnxn) =

1
l
(s1x1 + · · ·+ snxn)
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where si = lri ∈ Z and ∑i si = l for i = 1, . . . ,n. Therefore

f (r1x1 + · · ·+ rnxn) = f (
s1x1 + · · ·+ snxn

l
)

= f (
∑

s1
i=1 x1 + · · ·+∑

sn
i=1 xn

l
)

≤ 1
l
(s1 f (x1)+ · · ·+ sn f (xn))

= r1 f (x1)+ · · ·+ rn f (xn)

where the first inequality follows from the property (2.14) applied to each si. This completes

the proof.

2.2.2 Sufficient conditions for mid convex functions that implies Convex-

ity

Theorem 40. Let f : (a,b)→ R be a continuous mid convex function, then f is convex.

Proof. Let f be as in the hypothesis of the theorem. Let λ ∈ (0,1), by denseness of Q, there

exists a rational sequence {rn} converging to λ . Also for any x,y ∈ (a,b)

f (λx+(1−λ )y) = f ( lim
n→∞

rnx+(1− lim
n→∞

rn)y)

= lim
n→∞

f (rnx+(1− rn)y)

≤ lim
n→∞

rn f (x)+(1− rn) f (y)

= λ f (x)+(1−λ ) f (y).

where the first equality follows from the continuity of f and first inequality follows from

lemma 39. This completes the proof.

Theorem 41. Let f : (a,b)→R be a mid convex function that is bounded above in (a,b) then

f is convex.

Proof. Let f be as in the hypothesis of the theorem and be bounded by M ∈ R in (a,b).

Suppose to the contrary assume that f is not convex. Then there exists λ ∈ (0,1) and x,y ∈

(a,b) such that

f (λx+[1−λ ]y)− (λ f (x)+ [1−λ ] f (y)) = h > 0.
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Choose n ∈ N big enough so that M−min{ f (x), f (y)}< nh. Let a ∈ R such that

λ −a ∈ Q (2.15)

λ +na ∈ Q. (2.16)

Such an a exists because of the denseness of rational numbers. Also

1
n+1

((λ +na)x+(1− [λ +na])y)+
n

n+1
((λ −a)x+(1− [λ −a])y)

= λx+[1−λ ]y,

on applying lemma 39 gives

1
n+1

f ((λ +na)x+(1− [λ +na])y)+
n

n+1
f ((λ −a)x+(1− [λ −a])y)

≥ f (λx+[1−λ ]y);

which implies

f ((λ +na)x+(1− [λ +na])y)

≥ (n+1)(λ f (x)+ [1−λ ] f (y)+h)−n f ((λ −a)x+(1− [λ −a])y). (2.17)

Also from (2.15) and lemma 39 gives

f ((λ −a)x+(1− [λ −a])y)≤ (λ −a) f (x)+(1− [λ −a]) f (y). (2.18)

On combining equations (2.17) and (2.18), we will get

f ((λ +na)x+(1−[λ +na])y)≥ f (x) [nλ +λ −nλ +na]+ f (y) [n−nλ +1−λ −n+nλ −na]+(n+1)h
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= [λ +na] f (x)+ f (y)[1− (λ +na)]+(n+1)h

≥ min{ f (x), f (y)}+n(n+1)h

> M,

which contradicts our assumption that f is bounded above by M. Therefore f should be convex

and this completes the proof.

Now we shall give a weaker sufficiency condition for a mid convex function to be convex.

Theorem 42. Let f : (a,b)→ R be a mid convex function that is Lebesgue measurable, then

f is continuous and hence convex.

Proof. To the contrary, we start with the assumption that f is not continuous. Let x0 ∈ (a,b)

be a point of discontinuity. Choose c such that (x0 −2c,x0 +2c)⊆ (a,b) and define

Bn := {x ∈ (a,b) : f (x)> n}.

for n ∈ N. Note that {Bn} is a collection of measurable sets since f is measurable. For a fixed

n, choose u∈ Bn∩(x0−c,x0+c). Such a u exists for each n since otherwise f will be bounded

in a neighborhood of x0and hence by theorem 41 f will be continuous at x0. Select λ ∈ [0,1].

Then

n < f (u) = f [
u+λc

2
+

u−λc
2

]≤ 1
2
[ f (u+λc)+ f (u−λc)] (2.19)

where the inequality follows from the mid convexity of f . From equation (2.19) it follows

that either f (u+λc) > n or f (u−λc) > n which implies either u+λc ∈ Bn or u−λc ∈ Bn.

This is equivalent to saying if Mn = {x : x = y−u, y ∈ Bn}, then either λc ∈ Mn or −λc ∈ Mn.

Since λ was arbitrary chosen, it is true for all λ ∈ [0,1]. Now we shall show that

c ≤ µ(Mn) = µ(Bn). (2.20)

Equality in the above equation follows from the translation invariant property of Lebesgue
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measure. Also for a fixed n, λc or −λc lies in Mn for all λ ∈ [0,1]. Therefore if A1 =

Mn ∩ [−c,0] and A2 = Mn ∩ [0,c], then −A1 ∪A2 = [0,c]. Therefore

c = µ[0,c]≤ µ(−A1)+µ(A2) = µ(A1)+µ(A2) = µ(A1 ∪A2)≤ µ(Mn),

where the first inequality follows from the sub additivity of measure, second equality fol-

lows from the translation invariant property of measure and third inequality follows from the

additive property of measure. This proves equation (2.20) which implies

c ≤ lim
n→∞

µ(Bn) = lim
n→∞

µ(∩∞
n=1Bn),

where the equality follows from the fact that {Bn} is a sequence of decreasing measurable set.

This implies ∩∞
n=1Bn is nonempty and hence there exists a point v ∈ (a,b) such that f (v)> n

for every n ∈ N which contradicts the definition of f as a function to the real line. This shows

our assumption that f is not a continuous function is wrong which completes the proof.

Now we will look at a stronger condition than convexity.

2.3 Log convex functions

Definition 43. A positive function f : (a,b)→ R is called a log convex function if log◦ f is a

convex function.

It is easy to note that a log convex function is always convex, indeed if f is a log con-

vex function then the function itself is the composition of exponential function with log◦ f .

However a convex function may not be log convex. Consider the example of f (x) = x on an

interval (0,1). f (x) is convex but log◦ f (x) = logx is not convex on (0,1).

Now we shall look at some properties of log convex functions.
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2.3.1 Properties of Log convex functions.

Theorem 44. Finite product of log convex functions is log convex. Let f1, f2, · · · be an infinite

sequence of log convex functions defined on the same interval such that { fn(x)} has a point

wise limit f which is positive on the same interval. Then f is a log convex function.

Proof. Let f1, f2, · · · , fn be a finite collection of log convex functions defined on an interval

(a,b). Then

log( f1 f2 . . . fn) = log( f1)+ log( f2)+ · · ·+ log( fn).

Since finite sum of convex functions is convex , log( f1 f2 . . . fn) is convex from the above ex-

pression and hence f1 f2 . . . fn is log convex by definition. Let f1, f2, · · · be an infinite sequence

of log convex functions defined on the same interval (a,b) such that { fn(x)} has a point wise

limit f which is positive on the same interval. Then for x,y ∈ (a,b) and λ ∈ [0,1],

log◦ fn(λx+(1−λ )y)≤ λ log◦ fn(x)+(1−λ ) log◦ fn(y).

On taking limit of n on both sides ,

lim
n→∞

log◦ fn(λx+(1−λ )y)≤ λ lim
n→∞

log◦ fn(x)+(1−λ ) lim
n→∞

log◦ fn(y)

which implies

log◦ lim
n→∞

fn(λx+(1−λ )y)≤ λ log◦ lim
n→∞

fn(x)+(1−λ ) log◦ lim
n→∞

fn(y)

where the limit is taken inside due to the continuity of log function. Therefore

log◦ f (λx+(1−λ )y)≤ λ log◦ f (x)+(1−λ ) log◦ f (y)

which shows that f is a log convex function and hence completing the proof.

Theorem 45. Let f : (a,b)→R is a strictly positive function satisfying the following inequal-
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ity
f (x) f ′′(x)− ( f ′(x))2

( f (x))2 ≥ 0,

then f is log convex.

Proof. Define g(x) = log◦ f (x). Then

g′(x) =
f ′(x)
f (x)

and

g′′(x) =
f (x) f ′′(x)− ( f ′(x))2

( f (x))2 .

Therefore f (x) f ′′(x)−( f ′(x))2

( f (x))2 ≥ 0 implies g′′(x) ≥ 0 and theorem 36 shows that g is a convex

function and hence f is a log convex function.

Next we present a result which is not so obvious from the definition of log convex func-

tions.

Theorem 46. Let f and g are log convex functions on the same interval, then f +g is also log

convex on the same interval.

Proof. Let f and g be log convex functions defined on (a.b). We shall show that log( f + g)

is mid convex and hence from the continuity of log( f + g), it will follow that log( f + g) is

convex.

Let x1,x2 ∈ (a,b), then the log convexity of f and g gives the mid convexity of log◦ f and

log◦g.

log( f (
x1 + x2

2
))≤ 1

2
(log( f (x1))+ log( f (x2))),

on taking the exponential of both LHS and RHS,

f (
x1 + x2

2
)≤ ( f (x1) f (x2))

1
2

which implies

f (
x1 + x2

2
)2 ≤ f (x1) f (x2). (2.21)
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Similarly we get

g(
x1 + x2

2
)2 ≤ g(x1) f (x2). (2.22)

To show the mid convexity of f +g, we have to show given conditions (2.21) and (2.22),

( f (
x1 + x2

2
)+g(

x1 + x2

2
))2 ≤ ( f (x1)+g(x1))( f (x2)+g(x2)).

This is proven once we show that if a1,a2,b1,b2,c1,c2 are positive real numbers with aici −

b2
i ≥ 0 for i = 1,2 , then

(a1 +a2)(c1 + c2)− (b1 +b2)
2 ≥ 0.

Consider the real quadratic form aix2 +2bixy+ ciy2 for i = 1,2 where ai > 0. Then

ai(aix2 +2bixy+ ciy2) = a2
i x2 +2aibixy+aiciy2

= (aix+biy)2 +(aici −b2
i )y

2.

From the above expression its clear that if aici−b2
i ≥ 0, the quadratic form aix2+2bixy+ciy2

can never take negative values for any x,y. That is

aix2 +2bixy+ ciy2 ≥ 0

for i = 1,2 which implies

(a1 +a2)x2 +2(b1 +b2)xy+(c1 + c2)y2 ≥ 0.

Therefore the determinant of the matrix corresponding to the quadratic form (a1 + a2)x2 +

2(b1 +b2)xy+(c1 + c2)y2 is non negative. In other words

(a1 +a2)(c1 + c2)− (b1 +b2)
2 ≥ 0.

This proves the mid convexity of f +g. Since both f and g are convex and hence continuous
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functions inside the defined interval, f +g is also continuous inside the interval and hence by

theorem 40 , f +g is convex. This completes the proof.
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