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ABSTRACT 

Retinal damage is a serious problem that affects mankind. Unfortunately, there are no 

feasible solutions available to alleviate this problem. However, lower vertebrates like fishes 

and frogs mount a very robust regenerative response after retinal damage culminating in 

functional restoration of vision. Previously published studies reveal hundreds of genes that 

are up/down regulated post injury. It is probable that most of these genes have CpG islands in 

their corresponding promoter sequences that are susceptible to DNA methylation events by 

DNA methyltransferases (Dnmts). Such events modify gene expression epigenetically. 

Therefore it would be interesting to find out how Dnmts are regulated post-retinal injury 

during retinal regeneration in zebrafish. If so, then we can also try to understand the pro-

proliferative genes whose expression and induction are regulated post injury, by Dnmt 

mediated methylation events.  It is also essential to evaluate the functionality of the identified 

genes in earlier dedifferentiation of the retina using, cell biological, genetic and 

pharmacological approaches during regeneration. One can also try to address the question of 

whether or not Dnmt mediated gene regulation is involved/necessary and sufficient for retina 

regeneration by trying to block the action of Dnmts using pharmacological inhibitors.  

Epigenetic mode of silencing like DNA methylation may be required for maintaining various 

pro-proliferative genes in check in the uninjured condition in the retina. A reversal of this by 

DNA de-methylation is necessary for initiating the Muller glia de-differentiation necessary 

for normal regeneration. Later once regeneration is completed, the retinal homeostasis is 

restored back through epigenetic mechanism of gene silencing. So understanding this 

hierarchy mediated by Dnmts becomes inevitable for these studies.  

This study tries to answer the above questions.  Till date, a specific pathway by which Dnmts 

acts during retina regeneration is not known, however the proposed study might provide us 

some directions to understand it. 
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1. INTRODUCTION 

In contrast to mammals, the teleost fish like the zebrafish have the ability to regenerate its 

central nervous system. The zebrafish retina being a part of CNS is found to self-heal resulting 

in the restoration of its vision1-3. The retina is made up of various types of neuronal cell types 

and glial cells called Muller glia. There are two different cell types that maintain retinal 

neurogenesis and regeneration. They are the Ciliary Marginal Zone cells; or the classic retinal 

stem cells and the Muller glia progenitor cells that are induced soon after injury. The Muller 

glia cells are required for the maintenance of retinal homeostasis4-5. There are many different 

injury paradigms that are standardized and established for delivering specific injury to 

different components of the retina. e.g.: light lesion model for creating photoreceptor cell 

damage11, 12 and needle poke model to injure and activate the Muller glia cells of the retina.  

Upon injury, the Muller glia cells near the site of injury gets activated forming Muller glia 

progenitor cells, to trigger a regenerative response and give rise to and replace all the neuronal 

components and Muller glia at the site of injury6-11. It has been observed that such a 

regenerative response also restores normal vision in the fish. The exact molecular mechanism 

of the injury induced retinal regeneration has not been deciphered yet although there are many 

studies giving us clues in different directions. 

The zebrafish retina grows and expands in both size and cell number as the fish grows, unlike 

the mammalian retina which does not grow. The ability of fishes to mount a robust 

regenerative response can be because there is no tight regulation over cell proliferation on the 

expense of regeneration during retinal neurogenesis. In contrast, the mammalian retina hosts a 

relatively inhibitory environment to adult neurogenesis post injury or embryogenesis, probably 

to maintain a strict control over cell proliferation to avoid tumorigenesis.13 
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1.1. Anatomy of the Retina: Muller Glia, the major player of regeneration 

The three main layers of the vertebrate retina are the outer nuclear layer (ONL), the inner 

nuclear layer (INL) and the Ganglion cell layer (GCL). The ONL is inner to the retinal 

pigment epithelium layer and comprises of the photoreceptor cells (rods and cones). The light 

that traverses to the eye is absorbed by the Retinal Pigment Epithelium (RPE), and then 

received by the photoreceptor cells which transmit the signal to the Ganglion cells of the GCL 

through the inter-neurons. The inter-neurons reside in the INL and comprises of the amacrine 

cells, bipolar cells and horizontal cells. The ganglion cells collect all this information and 

together all the axonal processes of the ganglion cells join into the optic nerve. The optic nerve 

takes the information into the brain which processes this information enabling us to see.  

The Muller glia is the major glial cell type of the retina. The Muller glia is not restricted to a 

particular layer of the retina. Rather it spans the ONL, GCL and the INL and contacts all the 

components of the neural retina via its processes. 

                                                

 

 

 

 

 

 

 

1.2.The Injury Model for Muller Glia 

The retina is poked using a 30 gauge needle from the back side of the eye to create a focal 

injury. In this scenario, the undamaged and uninjured neighbouring tissue acts as control. This 

mode of injury damages all neurons and Muller glia cells at the injury spot in contrast to the 

light lesion model that specifically damages the photoreceptors. 

 

 

                                        

 

Figure A: Ultra structure of the 

retina 

Figure B: Mechanical injury to the 

retina administered using a 30 G 

needle 
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2. OBJECTIVES 

 

 To find out if DNA Methyltransferases (Dnmts) are regulated after retinal injury in 

zebrafish. 

 

 To find out the regulators of Dnmts and their potential gene targets. 
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3. BASIC THEORY 
 

3.1. Chapter 1 

Epigenetic Gene Regulation During Retina Regeneration in Zebrafish by DNA 

methyltransferases (Dnmts) 

The Histone octamer wrapped around with DNA is called a nucleosome. Several repeating 

units of nucleosomes together make up the chromatin, which is a dynamic structure. The parts 

of the chromatin that is subject to active transcription is called the euchromatin and the 

transcriptionally silenced regions of the chromatin are called the heterochromatin36. 

Some of the prominent examples of epigenetic regulation through biochemical modification 

are: DNA modifications (methylation), histone modification (methylation, acetylation, 

sumoylation etc.) and  nucleosome remodelling complexes that also interact with the DNA.  In 

addition to this, some RNAs like non-coding RNA are also known to influence chromatin 

structure eg. X Inactivation20, 21. Of the above mentioned types of epigenetic modifications, 

DNA methylation is known to play a key role in maintaining epigenetic states. 

Heterochromatin state is associated with intense DNA methylation and histone modification of 

the nucleosomes that increases the electrostatic interaction between the DNA and histones so 

that the chromatin becomes inaccessible to transcription factors or DNA binding proteins. In 

contrast euchromatin is associated with absence of methylated  CpG and histone modifications 

like acetylation of lysine residues of various histones etc that decreases the packing density of 

chromatin, rendering the DNA more accessible for active transcription. Histone methylation 

however, can be activating or repressing depending on the position of Lysine that is 

methylated, proximity to the gene promoter region etc. 

The DNA is known to get methylated during and post replication on the cytosine bases. This 

type of methylation is found only in the cytosine of 5’CpG3’ islands and rarely on isolated 

cytosines22. The methylated DNA attracts ‘5 Methyl Cytosine Binding Proteins’ which again 

condenses the chromatin to silence it. The enzymes that catalyze DNA methylation on the 

cytosine residue are called DNA methyltransferases. 

 

 



 

 

 

 

 

 

 

 

 

The

met

 

 

 

 

 

 

 

 

 

 

 

 

ere are two

thyltransfera

F

c

r

F

a

Z
R
 

A
P

o classes of

ases and ma

Figure G: M

catalyse the

residue in Cp

Figure H: Re

and de‐novo 

Zakhari. S, Alcoh
Reviews, Volume

Alessandra Mar
Pathology: Is M

f DNA me

aintenance m

echanism o

 addition of

pG islands of

presentation

methyltrans

hol Metabolism a
e 35, Issue Numb

resca et al, Dna 
Mtdna Methylate

ethyltransfer

methyltrans

f  action of 

f methyl gro

f DNA.  

n of  the  fun

sferases. 

and Epigenetics C
er 1 

Methyltransfer
ed? Front. Gene

rases based

sferases.   

DNA Methy

oup to the 5

nction of ma

Changes, Alcohol 

rase 1 Mutation
et., 12 March 20

d on their f

yltransferase

5th carbon of

aintenance m

Research: Curre

ns and Mitochon
015 

function- d

 

es. Dnmts 

f cytosine 

methyltransf

ent 

ndrial 
1

denovo DNA

ferases 

11 

A 



12 
 

After one round of DNA replication the newly synthesized DNA strand will not have the same 

DNA methylation marks or as that of the template strand and can be in a hemi-methylated 

state. Since DNA methylation marks should be clonally inherited to maintain a stable 

methylation pattern after each division, maintenance methyltransferase enzymes come into the 

picture. Dnmt1 is known to be the major maintenance DNA methyltransferase enzyme in 

zebrafish since it shows higher preference for a hemimethylated state than an unmethylated 

state. In contrast to Dnmt1, there are de novo methyl transferases also known in zebrafish that 

shows higher affinity for unmethylated substrates23, 24. The function of such de novo methyl 

transferases is to silence the viral repeat sequeances and other parasitic element sequences of 

the genome to keep them in a transcriptionally repressed condition25, 26, 27. 

There are five proteins in mammalian cells that have domains with significant similarity to 

prokaryotic DNA methyltransferase domains. They are: DNMT1, DNMT2, DNMT3a, 

DNMT3b and DNMT3L. The domain structures of these enzymes are shown in following 

figure: All these enzymes have an N-terminal regulatory domain and a C-terminal catalytic 

domain. Thus, it is based on their structure, and its similarities that these DNA 

methyltransferases can be divided into three families: DNMTl, DNMT2, and DNMT328. 

 

 

 

 

 

 

Domain Function 

NLS Nuclear localization signal or sequence (NLS) is an amino acid sequence that 

'tags' a protein for import into the cell nucleus by nuclear transport29.  

Replication The RFTS (replication foci targeting sequence) domain of Dnmt1 is not only 

necessary for replication-coupled maintenance DNA methylation, but also 

protects genome from aberrant DNA methylation30. 

Figure IA: The domain structures of the three families of DNA 

methyltransferase  proteins in mammals are shown. 

Kunal Rai, PhD Thesis, University of Utah, 2006
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In case of zebrafish there are eight dnmt genes known. They are dnmt1, dnmt2, dnmt3, dnmt4, 

dnmt5, dnmt6, dnmt7 and dnmt8.   

 

 

 

 

 

 

 

Zn A zinc finger is a small protein structural motif characterized by the 

coordination of one or more zinc ions in order to stabilize the fold. They 

function as interaction modules that bind DNA,RNA, proteins, or other small, 

useful molecules31. 

BAH BAH domain (bromo-adjacent homology) domain acts as a protein-protein 

interaction module specialised in gene silencing32. 

CH Calponin homology domain (or CH domain) is a family of actin binding 

domains found in both cytoskeletal proteins and signal transduction proteins33. 

PWWP PWWP domain is an around 70 amino acids domain that was named after its 

central core 'Pro-Trp-Trp-Pro'. The PWWP domain is found in DNA-binding 

proteins that function as transcription factors regulating developmental 

processes and in Dnmt3a and Dnmt3b which helps in binding strongly to  

DNA34. 

PHD-Like Plant homeodomain (PHD) is found mainly in proteins involved in eukaryotic 

transcription regulation characterized by a conserved Cys4-His-Cys3 zinc finger 

binding motif. This domain in DNMT3a has been shown to be sufficient to 

repress transcription, independent of methyltransferase activity35. 

MET Catalytic domain for the transfer of methyl group to the 5th carbon on cytosine 

residue in DNA at CpG islands28. 

 
Figure IB: Dnmts in zebrafish. 

Table  1:  Meaning  and  functions  of  various  domains  found  in  the  three  families  of  DNA 

methyltransferases in zebrafish 

Kunal Rai, PhD Thesis, University of Utah, 2006 
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Zebrafish harbours all the clear homologs of DNA methyltransferases present in the mammals. 

Dnmt1 belongs to DNMT1 family and DNMT3 family has three members, DNMT3A, 

DNMT3B and DNMT3L.  The N-terminus of Dnmt1 contains five different domains: nuclear 

localization signal (NLS) domain, a replication foci targeting domain, a zinc finger domain 

and two BAH domains of unknown function. Dnmt3, Dnmt4, Dnmt5, Dnmt6, Dnmt7 and 

Dnmt8 belong to the DNMT3 protein family. In fact, the members of DNMT3 family are 

duplicated in zebra fish. Dnmt3 and Dnmt7 contain additional domains in their N-termini 

including a Calponin homology domain28. 

The N terminus of these Dnmt3, Dnmt4, Dnmt5, Dnmt6, Dnmt7 and Dnmt8 enzymes are 

unrelated to the N-terminus of Dnmt1 which suggests that DNMT1 and DNMT3 family of 

enzymes might be regulated differently. DNMT3A and DNMT3B additionally have two 

distinct domains in their N -termini: PHD and PWWP28. 

3.1.1. Significance of Dnmts In Retina Regeneration In Zebrafish 

Previously published studies reveal hundreds of genes that are up/down regulated post injury. 

It is probable that most of these genes have CpG islands in their corresponding promoter 

sequences that is susceptible to DNA methylation events by DNA methyltransferases (Dnmts). 

Such events modify gene expression epigenetically. Therefore it would be interesting to find 

out how Dnmts are regulated post-retinal injury during retinal regeneration in zebrafish. If so, 

then we can also try to understand the pro-proliferative genes whose expression and induction 

are regulated post injury, by Dnmt mediated methylation events.  It is also essential to evaluate 

the functionality of the identified genes in earlier dedifferentiation of the retina using, cell 

biological, genetic and pharmacological approaches during regeneration. One can also try to 

address the question of whether Dnmt mediated gene regulation is necessary and sufficient for 

retina regeneration by trying to block the action of Dnmts using pharmacological inhibitors.  

Epigenetic mode of silencing like DNA methylation may be required for maintaining various 

pro-proliferative genes in check in the uninjured condition in the retina. A reversal of this by 

DNA de-methylation is necessary for initiating the Muller glia de-differentiation necessary for 

normal regeneration. Later once regeneration is completed, the retinal homeostasis is restored 

back through epigenetic mechanism of gene silencing. So understanding this hierarchy 

mediated by Dnmts becomes inevitable for these studies. 
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3.3.Chapter 3 

Analysis of the cause and fate of the increased number of proliferating Muller glia cells 

arising in the presence of Dnmt pharmacological blockers at 2dpi and 4dpi in terms of 

their cell apoptosis at 2 dpi and 4 dpi. 

TUNEL Assay 

Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) is a method for 

detecting DNA fragmentation that results from apoptotic signalling cascades by labelling the 

terminal end of nucleic acids. 

Terminal deoxynucleotidyl transferase or TdT, an enzyme that catalyzes addition of dUTPs  

which are secondarily labelled with a marker, for eg., fluorescein, identifies nicks in the DNA.  

TdT can also label cells that have suffered severe DNA damage37. 

 

 

Figure K: DNA methyltransferase (Dnmt) inhibitors and their inhibitory mechanisms38. 
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3.4. Chapter 4 

Regulation of known pro-proliferative genes- mmp9 and ascl1a, during retina 

regeneration in the context of pharmacological inhibition of Dnmts 

Retina regeneration involves the sequential orchestration of differentially regulated genes 

which may be regulated by epigenetic mechanisms like DNA methylation/de-methylation. 

Many genetic factors like Hb-egf, Fgf2, Tgfβ, Tnfα, Ascl1a, Lin-28, Apobec etc are known to 

play a detrimental role in the earlier induction of regenerative response, further progressed 

through suppression of let-7 micro RNA, induction of Wnt signalling, necessary for the 

proliferation of MGPCs. This is followed by the restriction of the regenerative response 

mediated by the reappearance of let-7 miRNA, delta notch signalling and Insm1a mediated 

transcription repressive events that are necessary for prevention of tumour formation and 

restoration of retinal homeostasis. It is possible that these gene regulation events may be 

happening via an epigenetic mechanism. So, one can also try to address the question of 

whether or not Dnmt mediated gene regulation is involved/necessary and sufficient for retina 

regeneration.  

Epigenetic mode of silencing like DNA methylation may be required for maintaining various 

pro-proliferative genes in check in the uninjured condition in the retina. A reversal of this by 

DNA de-methylation is necessary for initiating the Muller glia de-differentiation necessary for 

normal regeneration. Later once regeneration is completed, the retinal homeostasis is restored 

back through epigenetic mechanism of gene silencing. So understanding this hierarchy 

mediated by Dnmts becomes inevitable 
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Observation: dnmt1 and dnmt8 mRNA expression decreases relative to uninjured control in 

the injured retina. dnmt1 seems to be induced at 4dpi slightly but the level does not cross that 

of the uninjured control. This can be because dnmt1 is present at basal level pan retinal before 

and after retinal injury but only preferentially expressed at the injury spot at 4 dpi, the peak of 

proliferation. dnmt4, dnmt6 and dnmt7 seems to be induced in the retina after injury whereas 

dnmt5 seems to be down-regulated and then induced. 

4.1.3. Spatial regulation of dnmt1- the major maintenance methyltransferase in 

zebrafish at different time points before and after retinal injury using dnmt1 

mRNA in situ hybridization.  
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Figure 2B: mRNA  fold change of dnmt4, dntmt5, dnmt6 and dnmt7 at different  time 

points before and after retinal injury. Method: qRT‐PCR  

 

dnmt1 RNA probe

Figure 3A: dnmt1 RNA Probe that was made and used 

for subsequent in situ hybridization experiments. Size 

of probe is around 1Kb 
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Observation: 

1) 100 nM and 1 μM Azacytidine acts as a Dnmt blocker and increases the number of 

proliferating cells after retinal injury at 2 dpi and 4 dpi  

2) 1 μM and 10 μM RG108 acts as a Dnmt blocker and increases the number of 

proliferating cells after retinal injury at 2 dpi and 4 dpi 

3) 1 μM and 10 μM Zebularine acts as a Dnmt blocker and increases the number of 

proliferating cells after retinal injury at 2 dpi and 4 dpi 
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Graph 5 : Number of BrdU labelled cells at 30 dpi 

migrating to ONL, INL and GCL  

Graph 6 : Comparison of the number of BrdU 

positive cells at 30 dpi control and drug 

treated to 4 dpi control and drug treated. 

Graph 7 : Proportion of BrdU positive cells 

persisting at 30 dpi compared to 4dpi per 

lesion in control and drug treated. 
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4.4. Chapter 4 
 
4.4.1. Regulation of known pro-proliferative genes- mmp9 and ascl1a, during 

retina regeneration in the context of pharmacological inhibition of Dnmts. 

 

                                                                                                                                                                 

 

 

 

 

 

 

 

4.4.2. mmp9 mRNA  in situ hybridization co-stained with BrdU at 4 dpi in control 
and drug treated retinas. 
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retinas at 4 dpi. mmp9 mRNA signal  is expressed  in higher number of cells at the  injury spot  in drug 

Figure 12: mmp9 mRNA  In situ hybridisation  in 4 dpi and Dnmt pharmacological blocker 

treated retinas at 4 dpi co‐ immunostained with BrdU at 4 dpi.  
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5. EXPERIMENTAL TECHNIQUES: 

5.1 RNA Isolation: 

Fishes were injured and Retina was dissected in PBS at different time points. Isolated Retinal 

tissue can be kept in Trizol or stored in -80oC and then processed for RNA isolation or 

immediately after dissection. RNA isolation protocol is as follows: 

1) Take 6 retinae (dissected in 1X PBS or 0.85% saline solution) in an MCT containing 

Trizol reagent (150µl or 200µl) at 4oC.  

2) Homogenize the tissue using 200 uL pipette. No tissue clumps should be visible. 

3) Add 0.2 volume of Chloroform (40µl) 

4) Shake vigorously for 30 seconds. 

5) Centrifuge at 12000 rpm at 4oC for 20 minutes. 

6) Using a cut tip (it reduces sucking force per unit area) slowly remove the aqueous 

phase without disturbing the middle inter phase layer (it may otherwise cause genomic 

DNA contamination). 

7) Add 0.6 volume of isopropanol (approximately 40 µl) and store at -80oC overnight or 

in ice for 10 to 20 minutes. 

8) Next day or after 10 to 20 minutes (ice incubation), centrifuge at 12000 rpm at 4oC for 

20 minutes. 

9) Discard the supernatant. 

10) Wash with 200 µl of 70 % EtOH or absolute EtOH. Centrifuged at maximum speed for 

10 minutes at 4oC.  

11) Dry and dissolve the pellet in deionized  H2O and checked on agarose gel. 

12) Stored at -80oC. 

5.2. Gel electrophoresis: 

1) Weigh 1.5g of agarose and mix it in 100 mL of 1X TAE. Boil and melt it in the 

microwave so that it completely dissolves and no clumps are visible. When 

temperature becomes tolerable add 2µL of Ethidium bromide to it and cast the gel in a 

casting tray. 

2) The solidified gel is then placed in the gel electrophoresis tank. 

3) 5µl of sample and 2µl of 10X gel loading dye should be taken on a parafilm. 

4) The sample dye mixture is then loaded it in the wells and gel electrophoreses is 

allowed until the dye moves three fourth of the gel. 
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5) The gel is then observed under UV light and the gel picture also taken for future 

reference 

5.3   cDNA preparation (using superscript III first-strand synthesis system for RT-PCR): 

1) Combine the following 0.2- or 0.5mL tube: 

 Up to 5µg total RNA:                   nµL 

 50µM  oligo (dT)20 :                 0.5µL 

 50ng/µL random hexamers:   0.5µL  

 10mM dNTP mix:                          1µL 

 DEPEC-treated water:                to 10µL 

2)  Incubate the tube at 65oC for 5 min, then placed on ice for at least 1 minute. 

3) Prepare the following cDNA synthesis mix, and add each component in the 

indicated order: 

 10X RT buffer -                          2µL 

 25mM MgCl2 -                           4µL 

 0.1M DTT -                                2µL 

 RNase out (40unit/µL) -                1µL 

 Superscript III Reverse Transcriptase (200U/µL)-   1µL 

4)  Add 10µL of cDNA synthesis master mix to each RNA mixture, mix gently, and 

collect by brief centrifugation followed by incubation as follows: 

 Oligo(dT)20 primer :           50 min at 50oC  

 Random hexamer primer : 10 min at 25oC followed by 50 min at 50oC    

 Termination of reaction at 85oC for 5 min. Chill on ice. 

 cDNA can be stored in -20oC. Or preferably in -80oC. 

5.4. Reverse transcription PCR (RT-PCR): 

 20X Buffer –              1.25 µL 

 dNTPs –               2.5 µL 

 Forward primer -   0.5 µL 

 Reverse primer -  0.5 µL 

 Template -            Adjust µL 

 deionized H2O -   19.35 µL 

 Taq -                     0.4 µL 
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 Total   -                 25µL 

This mixture was collected in 0.2- to 0.5mL tube and incubated as follows for all 

general beta actin standardisation purposes and for checking expression pattern of 

other dnmts using RT primers. 

 95oC – 15 sec for enzyme activation 

 95oC - 1 min for denaturation 

 60oC– 30 sec for annealing 

 68oC – 30 sec extension 

 72oC – 7 min 

 4o C - infinite time 

PCR product was then checked on agarose gel. 

5.5.   Quantitative Real-Time PCR (qRT-PCR): 

Following components should be added to Axygen 0.2- 0.5 mL real time specific tubes and 

the reaction was set in an already calibrated- Real Time PCR machine. 

 SYBr green mix -        5µL 

 Primer: Forward-        0.4µL 

 Reverse-               0.4µL 

 Formamide-                0.4µL 

 H2O-                           3.3µL 

 Template-                    0.5µL 

Data was analyzed on excel sheet and graph was plotted. 

5.6. TOPO TA cloning: 

1) Gene specific band was cut from gel and collected in a 1.5mL MCT 

2) Gel extraction protocol was followed. 

a. Manual  Gel extraction was done.  

The band was cut and transferred into a 0.5mL MCT. The gel is then 

transferred  into another MCT having little peices of aluminium foil in it and a 

small hole at the base created using a fine 30G needle. This setup was placed 

inside another MCT and taped and centrifuged at 10,000 rpm for 5 minutes. 

The flow through is then supplemented with an equal volume of PCI(phenyl 

isoamyl alcohol), mixed and centrifuged at 13ooo rpm for 10 minutes. The 
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aqueous phase from this step is transferred to another MCT and an equal 

volume of chloroform is added to it, followed by mixing and centrifuging at 

13000 rpm for 10 minutes. Again the supernatant in aqueous phase is taken and 

transferred to another MCT to which double the volume of Isopropanol and 

1/10th volume of 10M Ammonium acetate salt solution is added and mixed 

well. Allow to incubate at -80 degree overnight. The next day this sample is 

allowed to centrifuge at 4 degree for 30 minutes and the pellet obtained is 

washed with 200 uL of 70% EtOH, centrifuged for 10 minutes and allowed to 

dry for about half hour. To the pellet around 20 uL of DEPC water or MilliQ 

water is added and allowed to dissolve completey. Extracted product (Insert) 

should be checked on agarose gel for gene specific band. 

3) For cloning, following components should be added in a MCT : 

 Salt solution :                  0.5µL 

 TOPO TA vector:           0.3µL 

 Insert:                               1µL 

 H2O:                               1.2µL 

 Total:                                  3µL 

5)  Transformation: 

 Competent cells stored at -80oC were thawed on ice. 

 3µL of plasmid was added in it, mixed gently (only tapped, should not pipette) 

 Incubated on ice for half an hour 

 Heat shocked at 42oC for 45 sec and immediately kept on  ice for 5 min’ 

 Added 1 mL of LB media in it (inside the hood). 

 Incubated at 37oC for 30 min. 

 Cells were plated on Amp-resistant LB plates. 

 Incubated plates at 37oC overnight. 

 Next day, single colonies were visible. 

 Single colonies were streaked on LB agar + IPTG + X-Gal plates. Blue and 

white colonies were visible next day. 

 White colonies were selected and dissolved in 20µL H2O in a MCT. 

 Colonies were mixed well using pipette and centrifuged at 10,000rpm for 

10min. 
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 This solution was added in a culture vial (5mL of LB media). Placed overnight 

at 37oC for growth. 

5.7. Plasmid Isolation: 

1) 1.5mL of Overnight incubated culture was centrifuged at 10,000 rpm at room 

temperature for 2 min (2 times). 

2) Add 100µL of prechilled H2O to the pellet. Pellet was resuspended by gentle 

vortexing. 

3) Add 100µL of freshly prepared lysis buffer in it. 

4) Mix by gentle tapping, no vortexing. 

5) Boil for 2 min at 100oC. 

6) Add 50µL of 1M MgCl2 (to get rid of chromosomal DNA). Tapped and kept in ice 

for 2 min. 

7) Spin it at 12,000 rpm for 2 min at RT. 

8) Add 50µL of 3M potassium acetate buffer in it. 

9) Tap it immediately and centrifuged at 10,000 rpm for 2 min at RT. 

10) Supernatant should be decanted in a fresh MCT and 60µL isopropanol was added 

in it. 

11) Keep on ice for 5 min. 

12) Centrifuge at maximum speed for 2 min at RT. 

13) 70% EtOH wash was given and pellet dried. 

14) Pellet is then dissolved in 50µL of TE/autoclaved DEIONIZEDH2O. Stored at -

20oC  

Composition of solutions used for Plasmid isolation: 

Lysis buffer: 920µL H2O, 50µL 20%SDS, 20µL 0.5M EDTA, 10µL 10N NaOH  

Potassium acetate buffer: 60mL potassium acetate, 11.5mL glacial acetic acid, 28.5mL H2O, 

Total :      100mL (stored at 4oC) 

5.8. Plasmid digestion: dnmt1-TOPO clone: 

     1)  Following components should be combined in a MCT: 

             i) H2O -                       37 µL 

            ii) buffer-                      5 µL 

            iii) DNA-                     7 µL 
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            iv) enzyme stuI-      1 µL 

                   Total-                50 µL 

2) Incubate at 37oC for 3 hours. 

3) Check on agarose gel 

4) Manual Gel extraction protocol was followed: 

Excise the DNA fragment from an agarose gel using sterile blade/ scalpel.  Centrifuged 

for 1 min at 11,000 rpm and stored at -80oC or immediately used for RNA probe 

making. 

5.9. RNA probe making: 

     1) Following components should be added in an MCT: 

 Buffer (10X) NEB 3.1-         4µL 

 Template(digested DNA)-    7µL (100-500ng) 

 Dig-UTP-                              2µL 

 T7 RNA polymerase-          2µL 

 H2O-                                       25µL 

 Total-                                      40µL 

     2) Incubate at 37oC for 4 hours. 

     3) Stop the reaction by adding 0.5M Tris EDTA (4µL). 

     4) For precipitation add 5M LiCl2 (4µL). 

     5) To add weight, add 10mg/mL glycogen (2µL). 

     6) Tap it and add 70µL of absolute EtOH. 

     7) Tap again and keep in -80oC overnight or one hour. 

     8) Centrifuge at 4oC for 15 min. 

     9) 100% EtOH wash should be given (200µL) – and centrifuged for 10 min. 

    10) Dry and dissolve in 50µL of DEPEC H2O. 

    11) Store at -80oC after aliquoting.  

5.10. Tissue fixation: 

1) Remove lens from eye in 4% PFA in 1X phosphate buffer and eye was kept in a 

MCT containing 600µL of 4% PFA in 1X phosphate buffer. 

2)  Mix on rotator for two hours at RT on same day or next day. 
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3)  Pipette out old solution and added 600µL of 5% sucrose in MCT. Mix on rotator    

for 45 min at RT.  

4)  Pipette out old solution and added 400µL of 5% and 200µL of 50% sucrose in 

MCT. Mix on rotator for 45 min at RT. 

5)  Pipette out old solution and added 300µL of 5% and 300µL of 20% sucrose in 

MCT.  Mix on rotator for 45 min at RT.   

6) Pipette out old solution and added 200µL of 5% and 400µL of 20% sucrose in 

MCT. Mix on rotator for 45 min at RT. 

7) Pipette out old solution and added 600µL of 20% sucrose in MCT.  Mix on rotator 

for 45 min at RT. 

8) Add 600µL of OCT in it and mixed on rotator for 30 min. 

9) Tissue was fixed and block was made using OCT and eye was kept in it. 

Composition of solutions used for tissue fixation: 

 4% PFA in 1X Phosphate buffer:   

 2g PFA 

 5mL of 10X phosphate buffer 

 Volume made up till 50mL using autoclaved deionized H2O (stored at -20oC) 

2) 5% sucrose: 

 2.5g sucrose dissolved in 50mL of autoclaved deionized H2O (stored at 4oC) 

3) 20% sucrose: 

 10g sucrose dissolved in 50mL of autoclaved deionized H2O (stored at 4oC) 

Fixed tissue should be sectioned using cryosectioner and slides stored at -20oC, which 

can be used for In-Situ Hybridization, TUNEL Assay or Immunostaining. 

5.11. PCNA and BrdU Immunostaining: 

1) Slides stored at -20oC were incubated at 37oC for 30 min 

2) Wash the slides using 1X PBS (twice- 10 min each) 

3) Then treat the slides with 2N HCL (should be at 37oC before hand) for 20 min 

4) Wash the slides with 0.1M sodium borate solution (twice- 10 min each) 

5) Block the sections using 3% BSA +0.1% Triton in 1X PBS for 30 min. 



40 
 

6) Overlay the slides using anti-Mouse 1o Ab for PCNA (1µL Ab was diluted in 500µL 

of    1X PBST+1% BSA). In case of BrdU, anti-Rat 1oAb for BrdU(1 µL Ab was 

diluted in  500µL of 1X PBST+1% BSA) was used. 

7) Keep the slide container at 4oC overnight. 

8) Next day slides were washed using PBST (0.1% Triton) (thrice-10 min each). 

9) Overlay the slides using anti-Rabbit 2o Ab (0.5µL Ab was diluted in 500µL of 1X 

PBST+1% BSA). 

10) Slides were incubated for 3 hours at RT. 

11) Wash slides with PBST (thrice- 10 min each) 

12) Wash slides with autoclaved deionized H2O (thrice-10 min each) 

13) Dry for one hour at RT. 

14) Slides should be mounted using DABCO and stored at -20oC or immediately 

proceeded for imaging.  

Composition of solutions used for PCNA Immuno-staining: 

 1X PBS: 5mL PBS (from 10X stock)+ 45mL autoclaved MQ 

 1X PBST: 5mL PBS (from 10X stock)+ 45mL autoclaved MQ+ 0.1% 

Triton(50µL) 

 1X PBST + 3% BSA: 5mL PBS (from 10X stock)+ 45mL autoclaved MQ+ 

0.1% Triton(50µL) + 1.5gm BSA 

 1X PBST+ 1%BSA: 5mL PBS (from 10X stock)+ 45mL autoclaved MQ+ 0.1% 

Triton(50µL)+ 0.5gm BSA 

 0.1M Sodium Borate: 9.53g Sodium Borate dissolved in 500mL of deionized 

H2O 

 5.12. mRNA in situ Hybridization: 

Day 1: Hybridization: 

1) Hydrate the slides in an EtOH series and SSC for 1 min each : 

a. 100% EtOH  



41 
 

b. 95% EtOH 

c. 70% EtOH 

d. 50% EtOH 

e. 2XSSC 

2) Incubate slides in Proteinase K solution for 1-5 min at 37oC 

a. Prewarm Proteinase K buffer to 37oC 

b. Add 250µL of 10mg/mL proteinase K 

3) Rinse slides briefly in room temp DEPEC water. 

4) Rinse slides in 0.1M TEA pH 8.0 for 3 min. 

5) Rinse in Acetic anhydride/TEA for 10 min 

a. Add 130µL of acetic anhydride to dry dish. 

b. Add 50mL of TEA 

6) Dehydrate the slides in SSC and EtOH series for 1 min each: 

a. 2X SSC 

b. 50% EtOH 

c. 70% EtOH 

d. 95% EtOH 

e. 100% EtOH 

7) Slides should be air dried for at least 1 hour at RT. 

8) Hybridization solution should be pre warmed at 56oC (200 to 300ng per slide). 

9) Probe preparation: 

a. 4µL probe should be added to hybridization solution and mixed. 

b. Boil at 100oC for 5 min. 

c. Cool immediately on ice 

10) Add 60µL of Hyb/probe solution to each slide and coverslip with siliconized hybrid 

slips should be placed. 

11)  Place slides in humid chamber dampened with 50% formamide/5X SSC and 

incubate at 56oC overnight. 

Composition of solutions used for In-Situ 1st day: 

1)  20X SSC  

 Dissolve 87.6g of NaCl in350mL of DEPEC H2O  

 Add 44.12g sodium citrate  

 Make up final volume to 500mL with DEPEC H2O. 
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2) TEA solution 

 9.3g Triethanolamine (TEA) 

 Make up upto 490mL with DEPEC H2O 

 Add 12-14 NaOH pellets 

 Adjust pH to 8.0, bring up to 500mL 

3) Proteinase K buffer 

 25mL 1.0 M Tris-HCL 

 25mL 0.5M EDTA 

 Bring up to 250mL with DEPEC H2O 

4) Hybridization solution (50mL) 

 3.6mL TEN solution 

 25mL 100% formamide 

 10mL 50% Dextran sulphate 

 5mL 10% RMB blocker 

 6.4mL DEPEC H2O 

 Store at -20oC 

5) TEN solution 

 5mL of 1.0M Tris-HCL, pH 7.5 

 30mL of 5M NaCl 

 1mL of 0.5M EDTA 

Day 2: Post Hybridization 

1) Preheat 50% formamide/2X SSC solution to 65oC. 

2) Preheat two 50mL RNase buffer washes, one to 37oC and the other to 65oC. 

3) Preheat two 2X SSC washes to 37oC. 

4) Soak slides  with coverslips in 2X SSC for 30 min at RT on shaker table 

a. If the slides do not come off, gently tease them apart from slide with forceps. 

5) Rinse slides in 50% formamide/2X SSC solution for 30 min at 65oC. 

a. Gently agitate for the first 5 min. 

6) Rinse slides in 2X SSC for 10 min at 37oC (twice). 

7) Add 100µL of RNase (10mg/mL) to the 37oC RNase buffer: Incubate slides for 30 

min. 

8) Wash slides in 65oC RNase buffer for 30 min. 
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9) Wash slides for 2-3 hours in 1X Maleate buffer/0.05% Triton X-100/1% RMB blocker 

solution at RT 

a. Thaw 3mL aliquot 

b. Add 7mL of deionized H2O. 

10)  Wash slides in 1X Maleate buffer for 5 min (twice). 

11)  Incubate slides with 205µL antibody (of choice) diluted in 1X Maleate/0.05% Triton 

X-100/1% RMB blocker solution overnight at RT. 

a. Add antibody solution to cover  

Composition of solutions used for In-situ 2nd day: 

1) RNase buffer:0.5M NaCl, 10mM Tris-HCL,1mM EDTA 

 29.23g NaCl 

 10mL 1.0M Tris- HCl, pH 7.5 

 2mL 0.5M EDTA  

 Brought up to 1L with deionized H2O  

2) 1X Maleate/0.05% Triton X-100/1% RMB blocker solution 

 2mL of 5X Maleate stock 

 5µL Triton X-100 

 1mL of 10% RMB blocker 

 Made 3mL aliquots and freezed at -20oC 

3) 5X Maleate buffer 

 8g Maleic acid in 850mL deionized H2O 

 pH to 7.5 using lots of NaOH pellets 

 Added 43.8g NaCl 

 Brought up to 1L with deionized H2O 

Day 3 

1. Wash slides twice with 1X Maleate buffer for 5 minutes. 

2. Incubate twice for 5 minutes each in Genius buffer. 

3. Add NBT/BCIP, incubated overnight at room temperature in dark.           

4. Colour detection: In bright field microscope, slides were visualized at time intervals to 

check whether reaction worked or not. 
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6. SUMMARY & CONCLUSIONS 

Quantitative PCR of dnmt1 and dnmt8 reveals that mRNA expression level decreases in the 

whole-retinal tissue at around  4 dpi and 2 dpi respectively. dnmt8 mRNA level then again 

increases from 11 dpi to 21 dpi compared to that of uninjured control.  dnmt1 and dnmt8 

mRNA expression decreases relative to uninjured control in the injured retina.  dnmt1 seems 

to be induced at 4dpi slightly but the level does not cross that of the uninjured control. This 

can be because dnmt1 is present at basal level pan retinally before and after retinal injury but 

only preferentially expressed at the injury spot at 4 dpi, the peak of proliferation.  dnmt1 

mRNA  in situ hybridization result suggests that dnmt1 is present at a basal level pan-retinal in 

the uninjured retina. At 2dpi, the de-differentiation phase, a very slight color reaction seems to 

develop in the INL nearby the injury spot indicating a very low expression level of dnmt1 

gene. 

At 4 dpi, when the cell proliferation peaks, dnmt1 in situ signal is found to preferentially 

increase at the site of injury in the INL. The Muller glia that responds to injury is about 2% of 

the total Muller glia cells. At 4 dpi it was observed that the basal signal of dnmt1 which was 

present at the areas of the retina excluding the injury spot also decreased compared to 

uninjured control retina. At 7 dpi, there was no injury site specific expression of dnmt1 

mRNA, it was quite similar to that of uninjured control retina, with a pan- retinal basal level 

expression of dnmt1 mRNA. Therefore, this suggests that dnmt1 mRNA expression is 

selectively induced at 4 dpi at the injury spot in the retina and in this process, dnmt1 mRNA 

level decreases in the neighbouring un- injured regions of the retina.  However it is not clear 

whether it is the proliferating Muller glia at the site of injury that had responded to injury 

initially that expressed dnmt1. To find this out, a BrdU co-immuno-staining with dnmt1 

mRNA in situ signal was done at 4 dpi, and the cell expressing dnmt1, BrdU and both dnmt1 

mRNA and BrdU at 4 dpi at the injury spot was counted and analysed.. It was observed that 

dnmt1 mRNA signal and BrdU did not co-localise perfectly at 4 dpi. This can be because 

dnmt1 is required for cell cycle exit of the proliferating Muller glia cells that had responded to 

injury. Therefore, those Muller glia that express a higher signal of dnmt1 mRNA and less 

BrdU signal has probably come out of the cell- cycle and is no longer proliferating. Hence 

they will not be able to uptake BrdU unlike the cells expressing high BrdU and low dnmt1 

mRNA in situ signal that just entered cell cycle and is also proliferating at the site of injury.  
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After continuous dipping of the uninjured fishes in various concentrations of Dnmt targeting 

pharmacological blockers, until the fourth day the retina was isolated and PCNA 

immunostaining was done. It was seen that there was no induction of freshly proliferating cells 

in the absence of injury but in the presence of drug. However, in the presence of injury, 100 

nM and 1 μM Azacytidine acts as a Dnmt blocker and increases the number of proliferating 

cells after retinal injury at 2 dpi and 4 dpi, 1 μM and 10 μM RG108 acts as a Dnmt blocker 

and increases the number of proliferating cells after retinal injury at 2 dpi and 4 dpi, 1 μM and 

10 μM Zebularine acts as a Dnmt blocker and increases the number of proliferating cells after 

retinal injury at 2 dpi and 4 dpi. At 30 dpi, a higher number of BrdU positive cells than control 

was observed in drug treated fishes with no preferential bias to ONL, INL or GCL.  However 

the proportion of BrdU positive cells staying back at 30 dpi to the BrdU positive proliferating 

cells in 4dpi in Dnmt blocker treated fishes decreased compared to 30dpi control in water. 

This means that all proliferating cells produced in the presence of drug after injury at 2dpi and 

4dpi fail to stay back at 30dpi compared to control. The increased number of proliferating 

cells at 2dpi and 4dpi in presence of Dnmt blocker is not due to increased cell death as no 

significant number of tunel positive cells were seen. 

It was also seen that some of the known pro-proliferative genes like ascl1a and mmp9 is up-

regulated at the site of injury from mRNA in situ hybridization and cell counting analysis in 

Dnmt inhibitor treated retina. This was also confirmed by real time pcr analysis of these genes 

in the Dnmt blocker treated retinas at 2dpi. 
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7. CONCLUDING REMARKS 

DNA methyltransferases (Dnmts) are regulated post retinal injury in zebrfish as evident from 

the RT-PCR and qRT-PCR data. dnmt1 being the only maintenance methyltransferase in 

zebrafish  is induced at the site of injury at 4 dpi in 56.51% of the then proliferating Muller 

glia, indicating the anti-proliferative nature of dnmt1.  The lack of complete co-localization of 

all BrdU positive proliferating and dnmt1 mRNA expressing Muller glia at 4dpi can be 

because Dnmt1 is required for cell cycle exit of the proliferating MG cells since cells having 

intense BrdU signal are lower in the dnmt1 mRNA level and vice-versa.  

Treatment of fishes with pharmacological Dnmt blockers indicates an increased number of 

proliferating (BrdU positive) cells at 2dpi and 4dpi per lesion. At 30 dpi, a higher number of 

BrdU positive cells than control was observed in drug treated fishes with no preferential bias 

to ONL, INL or GCL. However the proportion of BrdU positive cells staying back at 30 dpi to 

the BrdU positive proliferating cells in 4dpi in Dnmt blocker treated fishes, decreased 

compared to 30dpi control in water. This means that all proliferating cells produced in the 

presence of drug after injury at 2dpi and 4dpi fail to stay back at 30dpi compared to control. 

The increased number of proliferating cells at 2dpi and 4dpi in presence of Dnmt blocker is 

not due to increased cell death as no significant number of tunel positive cells were seen. Even 

in the presence of drug, dnmt1 mRNA is induced at site of injury indicating that dnmt1 is not 

auto-regulatory.   

It was also seen that some of the known pro-proliferative genes like ascl1a and mmp9 is up-

regulated at the site of injury from mRNA in situ hybridization and cell counting analysis in 

Dnmt inhibitor treated retina. This was also confirmed by real time PCR analysis of these 

genes in the Dnmt blocker treated retinas at 2dpi. This may be because the promoter of these 

pro-proliferative genes may harbor some potential CpG islands that were subject to the 

regulation by Dnmts during retinal injury and recovery that regulated and restricted their 

expression at the injured location. So the increased number of proliferating cells that one finds 

at 2 dpi and 4 dpi at the injury spot when the fishes were dipped in Dnmt pharmacological 

inhibitor might be because Dnmts had a role to play in restricting and timing the injury 

response. So in the absence of the Dnmt mediated regulation, maybe the whole regenerative 

response got accelerated and  showed higher number of proliferating cells at 2 dpi and 4 dpi. 
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8. FUTURE PERSPECTIVES 

We already understand that DNA methyltransferases are regulated post retinal injury. 

Moreover, in the absence of Dnmt during retinal injury, the number of proliferating cells 

increase at 2 dpi and 4 dpi compared to control. This can be because the whole regeneration 

response is accelerated due to absence of Dnmt mediated gene regulation.  It will interesting to 

see what the effect of blocking Dnmt after 2 dpi and then collecting the retinas at 4 dpi will be. 

The number of proliferating cells in this case will tell us the role of dnmts during active 

proliferation phase once the dedifferentiation is completed by 2dpi.  Next we can try to block 

Dnmt until 2dpi and let the fish survive until 4 dpi for next two days in water and again collect 

the retina and see the difference in the number of proliferating cells. We can also injure the 

fishes and let them survive in water until 4 dpi and then block Dnmts and collect the retina at 7 

dpi and see the proliferative response in this case too. Such regime experiments will tell us 

whether the drug is by itself creating a fresh injury response or not. 

One major drawback of using pharmacological inhibitors of Dnmt is that we are never sure of 

the specificity of the drug and whether it has some off target effects. Therefore to be on the 

safe side, we can try to knock down individual dnmt genes by using different dnmt gene 

specific morpholinos and see the effect of dnmt gene knockdown on Muller glia mediated de-

differentiation, proliferation and re-differentiation following retinal injury. 

Since the fraction of BrdU labelled proliferating cells at 4 dpi that contributes to the re-

differentiated and migrated cell population at 30 dpi in the Dnmt blocker treated retinas is 

lesser than that of 30 dpi control retinas, it is obvious that the portion of the proliferating cells 

dying after 4 dpi in the Dnmt blocker treated retinas is greater than that of control. It would be 

interesting to find out when exactly these extra cells are dying during the re-differentiation 

phase and the reason why they are dying too. 

It is possible that the early event of Muller glia mediated de-differentiation may be the after 

effect of some de-methylation event in some regeneration specific genes. The pre- requisite 

for DNA Methylation or de- methylation mediated gene regulation is that the promoter and 

enhancer elements of such genes harbour CpG islands. Therefore, using an already known list 

of genes that is absolutely essential  for regeneration, one can perform an in- silico analysis  to 

select out those genes whose promoter elements harbour such CpG islands. It is possible that 

such genes may be regulated during retinal regeneration via DNA methylation/ de-methylation 

mediated epigenetic gene regulation.  Such genes are excellent candidates to study the role of 
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Dnmt. It would be worthwhile to monitor what happens to the expression of these genes in the 

context of Dnmt inhibition both globally, by using pharmacological inhibitors as well as by 

specific blockade of specific dnmt genes by using morpholinos. We could block the 

expression one of the early-induced gene that is regulated through epigenetic mechanism and 

see if it was important for normal regeneration. Also this could provide information if any of 

the later induced gene expression got affected because of this initial blocking, that is necessary 

for normal regeneration. 

To test if Muller glia de-differentiation can occur through an early DNA de-methylation event, 

we can use the drug 3-amino benzamide known to cause DNA methylation and see if the drug 

mediated DNA hyper methylation could block the early Muller glia de-differentiation event 

immediately after the retinal injury. We can then compare the effects of DNA hyper-

methylation on Muller glia de-differentiation can be reversed or homeostasis re-stored by 

blocking the DNA methylation event through pharmacological reagents like 5-Azacytidine- 

and 5-aza-deoxycytidine (5-aza-CdR), which is capable of blocking the maintenance methyl 

transferase DNMT1, . This way we can understand whether the restoration of homeostasis was 

through DNA methylation event.  

We can also see whether the conditional genetic activation or inactivation of DNA 

methylation on selected genes can also affect the retina regeneration  by functionally evaluate 

the role of selected CpG island in the retina regeneration events. This would be largely 

achieved through conditional deletion of the endogenous CpG islands through either CRISPR-

CAS system or TALEN mediated DNA deletion in vivo. 
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10. APPENDIX 

Primer Sequences used in this study are: 

dnmt1-RT-Fwd 5’ACCTTTGGTGTGCTGCAGGCTGGAC3’ 
dnmt1-RT-Rev 5’AACCAGGGCACTCATGTCCTTGCAG3’ 
dnmt1-FL-Fwd 5’CAAAATCGAACTTGAAATGCCTACC3’ 
dnmt1-FL-Rev 5’ATAAAACATCACATGAATGGCACTGC3’ 
dnmt3-RT-Fwd 5’GACGGACGGTGGTGgttatg3’ 
dnmt3-RT-Rev 5’CTGACAAAAAGCAGCACctgagc3’ 
dnmt3-FL-Fwd 5’catgacagctgctgtcgCTC3’ 
dnmt3-FL-Rev 5’GTCACAGCTCAACATGGGAAAGC3’ 
dnmt4-RT-Fwd 5’caagatgactgccacgGCTG3’ 
dnmt4-RT-Rev 5’ctgttcacactctcatCTGCGG3’ 
dnmt4-FL-Fwd 5’ccgtgttgccaagTTCGG3’ 
dnmt4-FL-Rev 5’accacacattaaggcatcagagtgc3’ 
dnmt5-RT-Fwd 5’ggagtacatcacctgctcagAAACTC3’ 
dnmt5-RT-Rev 5’tggagtctgtctgcagatggc3’ 
dnmt5-FL-Fwd 5’CATGACAGCTGCTGTCGctg3’ 
dnmt5-FL-Rev 5’gctttcccatgttgagctgtgac3’ 
dnmt6-RT-Fwd 5’tgatgggatcgcaacagGGC3’ 
dnmt6-RT-Rev 5’CGACCGGTGCCCTcgtag3’ 
dnmt6-FL-Fwd 5’gtgcactgagatggagagGGTG3’ 
dnmt6-FL-Rev 5’TATAGGGACCAGACGCAGTAAGCG3’ 
dnmt7-RT-Fwd 5’ggagcaatgtcgttcagGTGC3’ 
dnmt7-RT-Rev 5’tcgttcacaggaactggCTCTG3’ 
dnmt7-FL-Fwd 5’TCCTAGGACGGTCCTGGAGC3’ 
dnmt7-FL-Rev 5’attagatgccagtccaatgaggcc3’ 
dnmt8-FL-Fwd 5’caaccatgaccaggactttGAGC3’ 
dnmt8-FL-Rev 5’gaagtgtcctgtggttgaatggtc3’ 
 

 

 

 

 

 

 


