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Abstract

Standard Model has been very successfull theory in explaining subatomic phenom-

ena. The existence of building blocks of universe such as quarks, leptons (Fermions)

and bosons and laws they follow has been understood very well under the Standard

Model. But some major shortcomings is integral part of the Standard Model i.e.,

(a) It does not consider Gravity, it unifies only electromagnetic force, weak force and

includes also strong force, (b) It does not explain the existence of dark matter and

dark energy, (c) It does not explain the fact Neutrinos change Flavor which is best

explained by the fact that Neutrinos have non-zero mass. So we need Physics Beyond

the Standard Model to explain such facts of nature. With this motivation, in this final

year research thesis project I study B-L Model and Minimal Left-Right Symmetric

Model(MLRSM) which explain the fact that Neutrinos are massive through ‘See-saw

Mechanism’. I explore the gauge sector and Higgs sector of MLRSM. The main focus

of my project is on the Higgs Phenomenology of the MLRSM.

We study the production of Doubly Charged Higgs at 14 TeV at LHC using Mad-

Graph5 and FeynRules-2.3.3. Further, We study different-2 decay channels of Doubly

Charged Higgs(dilepton Channel, double W-boson Channel etc.) and Singly Charged

Higgs decay channels using MadGraph5.
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Chapter 1

Introduction

Standard Model has been very successfull theory in explaining subatomic phenomena.

The existence of building blocks of universe such as quarks, leptons(Fermions) and

bosons and fundamental laws they follow has been understood very well under Stan-

dard Model. But there are some major shortcoming is integral part of the Standard

Model i.e.

� Standard Model(SM) does not consider gravity, it unifies electromagnetic force,

weak force and includes also strong force. The Guage symmetry group of SM is

SU(3)C×SU(2)L×U(1)Y . Eletro-Weak theory is based on the gauge symmetry

group SU(2)L × U(1)Y of left-handed isospin and hypercharge. The Quantum

Chromo-Dynamics (QCD) is based on the symmetry group SU(3)C . These two

theories combined construct Standard Model of Particle Physics which has been

consistent in explaining almost all experiments done at all the particle detectors

such as LHC, Fermilab etc.

� It does not explain the existence of dark matter and dark energy. From Cosmo-

logical observation, we know that universe is made of only 4 percent of visible

matter, 25 percent of DarK matter(No known interaction with visual matter,

only interact gravitationally) and 71 percent of Dark Energy.

� The SM Higgs is not stable under radiative corrections.

� There is no right handed neutrino in SM and no Dirac mass term for neutrinos

in SM. It can not explain flavor change of neutrinos (given by PMNS matrix),
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flavor change of neutrinos is best explained by the fact that neutrinos have non-

zero mass.

The probability that neutrino changes flavor is (considering only two generations):-

|να〉 = ΣiU
∗
αi|νi〉, |νi〉 = ΣαUαi|να〉

here |να〉 are flavor states and |νi〉 are mass eigenstates (with α, i = 1, 2).U is

the PMNS lepton mixing matrix given by :-

U =

 cosθ sinθ

−sinθ cosθ


Then, the probability,

Pα→β,α 6=β = sin2(2θ)sin2

(
∆m2L

4E

)
, (in natural units) (1.1)

Where ∆m2 is the mass square difference of 1st and 2nd generation neutrinos

masses(in the mass eigenstates) and θ is the mixing angle of lepton mixing ma-

trix.

Due to all these inconsitencies of Standard Model, we need Physics Beyond the

Standard Model to explain such facts of nature. There are two approaches to achieve

this goal, one is ‘Top to Bottom approaches’, for e.g. Grand Unified theories(GUTs),

Qunatum Gravity etc. Other is ‘Bottom to Top approaches’. Good Candidates in the

second approaches are ‘B-L Model’ and ‘Left-Right Symmetric models’ which explain

neutrino mass generation through ‘See-saw mechanism’ and consider the existence of

Right handed neutrinos.

1.0.1 B-L Model

The conservation of lepton number(L) and baryon number(B) in Standard Model is

global symmetry at tree level only, not at loop level or quantum level. As we know

that B −L is the global symmetry of Standard model both at classical and quantum

level. In B−L model, this global symmetry is gauged to become local symmetry and

thus gauge group of standard model is extended to get a new model, B − L model:-

SU(3)C × SU(2)L × U(1)Y −→ SU(3)C × SU(2)L × U(1)Y × U(1)B−L.
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This model is minimal in gauge sector (adds one extra neutral gauge boson), fermion(adds

one new right-handed heavy neutrino per generation) and scalar sector(adds one new

neutral complex Higgs, singlet under SM gauge group, has only B-L charge to break

the B-L symmetry).

B-L symmetry breaking takes place at the TeV or even higher energy scale and gives

masses to new gauge boson and right handed neutrino.

The Quantum consistency(anomaly cancellation) of the theory is satisfied by extend-

ing the fermion content with the right handed neutrino (singlet under SM group) for

each generation.

This simple extention of SM satisfy the phenomenological requirement of having a

renormalisable theory that provides a mechanism for giving mass to light Neutrinos

as well as a good candidate for Dark matter in the form of heavy Right-handed Neu-

trinos. Apart from this, it is important to notice that B − L symmetry breaking

takes place at the TeV energy scale or even higher energy scale and leave the open

possibility of being part of the Grand Unified Theories and giving rise to new and

interesting TeV scale phenomenology.

1.0.2 Left-Right Symmetric Models

Left-right symmetric model(LRSM) provide an interesting extension of the standard

model(SM). Left-right symmetric models are extensions of the Standard Model (SM)

based on the gauge group SU(3)C × SU(2)L × SU(2)R × U(1)B−L. Parity is the

exact symmetry of this model and right-handed fermions are the SU(2)R doublets.

SU(3)C × SU(2)L × SU(2)R × U(1)B−L × P is broken spontaneously to SM gauge

group SU(3)C × SU(2)L × U(1)Y by the non-zero VEV of vR.

This model consists the full quark-lepton symmetry of the weak interactions. LRSM

give the U(1) generator of the electroweak symmetry group a definite meaning in terms

of the B-L quantum number. Hypercharge Y , an assigned quantum number in the

SM model, is defined in LRSM with the combination Y = T3,R + (B − L)/2 , where

T3,R is the third component of the right-handed isospin. Finally, for appropriately

chosen Higgs fields (left and right Triplet Higgs fields and a Bidoublet Higgs field),

this model leads to a natural explanation of the smallness of neutrino masses, by

relating to the observed suppression of V + A currents. This model contains two W
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bosons WL and WR and two neutral gauge bosons Z1 and Z2. The WL and Z1 are

those already discovered and contained in standard model. In the Fermion sector,

LRSM contains the usual SM quarks and charged leptons, along with three light

neutrino mass eigenstates νk(k = 1, 2, 3) and three heavy neutrino mass eigenstates

NK(k = 1, 2, 3). Light neutrinos(νk) mostly couple to the WL(standard model’s gauge

boson), while the heavy neutrino(NK) mainly couple to WR.
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Chapter 2

B-L Model

2.1 Introduction

The conservation of lepton number and baryon number in Standard Model is acciden-

tal symmetry(global symmetry) at tree level only, not at loop level. Chiral anomalies

violate this conservation law such that the current associated with baryon and lepton

number has non-zero divergences:

∂µJ
B,L
µ = cGµνG̃µν 6= 0. (2.1)

Here, Gµν is the electroweak field strength and JBµ = Σq̄iγµqi,J
L
µ = Σl̄iγµli . We know

that B −L is the global symmetry of Standard model both at classical and quantum

level. In B−L model, this global symmetry is gauged to become local symmetry and

thus gauge group of the SM is extended to get a new model, B − L model.

2.2 Gauge Group and Representation

Gauge group of B − L model is:-

GB−L = SU(3)C × SU(2)L × U(1)Y × U(1)B−L (2.2)

The Lagrangian of B−L model is invariant under this gauge group. Some key features

of Minimal ’B − L’ model with respect to the standard model, are:-

� It is minimal in gauge sector, adds one extra neutral gauge boson corresponding

to extra U(1)B−L part of the gauge group.
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� It is minimal in fermion sector, adds one new right handed heavy neutrino

per generation, because the quantum consistency(anomaly cancellation) of the

theory is satisfied by extending the fermion content with the right handed neu-

trino(which is singlet under SM gauge group) for each generation.

� It is also minimal in scalar sector, adds one new neutral complex higgs, which is

singlet under standard model gauge group and has only B − L charge to break

the B − L gauge symmetry.

� The B − L gauge symmetry breaking takes place the TeV scale or even higher

scale and gives masses to the new gauge boson and the right handed neutrinos.

2.3 Lagrangian

Total Lagrangian of this model is :-

LB−L = LYM + Lf + LY + LS (2.3)

where LYM is Yang-Mills part, Lf is fermionic part, LY is Yukawa part and LS is

scalar/Higgs part of the Lagrangian.

2.3.1 The Yang-mills sector

As in the Standard model, gauge fields are uniquely determined by the choice of the

gauge group and by the transformation in their adjoint representation.

LYM = −1

4
(Gµν)α(Gµν)α − 1

4
WµνW

µν − 1

4
FµνF

µν − 1

4
F ′µνF

′µν (2.4)

where,

Fµν = ∂µBν − ∂νBµ, F ′µν = ∂µB
′
ν − ∂νB′µ

Gα
µν = ∂µA

α
ν − ∂νAαµ + gfαβγAβµA

γ
ν , (α, β, γ = 1, 2...8)

W a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (a, b, c = 1..3)

here, Bν and B′ν are gauge fields associated with U(1)Y and U(1)B−L . Aαµ are 8

gluons corresponding to SU(3)C generators and Aαµ are 3 gauge bosons corresponding

to SU(2)L generators.
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2.3.2 Fermion Sector

Fermion sector is the same as in the standard model, except the addition of RH

neutrino νR (singlet under SM gauge group) for each generation of leptons. This

addition is essential for anomaly cancellation and preserving gauge invariance.The

covariant derivative is given by:-

Dµ = ∂µ + igsT
αGα

µ + igταW a
µ + ig1Y Bµ + ig′1YB−LB

′
µ (2.5)

And fermionic Lagrangian,

LF = iq̄kLγ
µDµqkL+iūkRγ

µDµukR+id̄kRγ
µDµqkR+il̄kLγ

µDµlkL+iēkRγ
µDµekR+iν̄kRγ

µDµνkR

(2.6)

Where charges of the fields are usual standard model ones plus the B − L charge,

such that, YB−L = 1
3

for all quarks and YB−L = −1 for all leptons.

Representations of fermion fields:

Quarks : qkL = (2,
1

6
,
1

3
), ukR = (1,

2

3
,
1

3
), dkR = (1,−1

3
,
1

3
)

Leptons : lkL = (2,−1

2
,−1), ekR = (1,−1,−1), νkR = (1, 0,−1)

2.3.3 Scalar Sector

The choice is essential to preserve the gauge invariance of the model. Here,the B−L

charge of the two scalar fields:-

Y H
B−L = 0 ; Y χ

B−L = +2

Then the most general and gauge invariant scalar Lagrangian is given by:-

LS = DµH†DµH +Dµχ†Dµχ− V (H,χ) (2.7)

With the scalar potential :-

V (H,χ) = −m2H†H − µ2|χ|2 + (H†H |χ|2)

 λ1
λ3
2

λ3
2

λ2

 H†H

|χ|2


= −m2H†H − µ2|χ|2 + λ1(H†H)2 + λ2|χ|4 + λ3H

†H|χ|2 (2.8)

Here, all the parameters are taken positive and λ’s are dimension-less and m and µ

have mass dimension.
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2.3.4 Yukawa Sector

In this model, we have two new types of Yukawa interactions involving right-handed

neutrinos. Yakawa part of the Lagrangian is given by:-

LY = −ydjkq̄LjHdRk − yujkq̄LjH̃uRk − yejk l̄LjHeRk − yνjk l̄LjH̃νRk − yMjk (ν̄cR)jνRkχ+ h.c.

(2.9)

Higgs particles Representation:

H = (2,
1

2
, 0) ; χ = (1, 1, 2)

One can check that every term in the LY has zero charge under the whole gauge

group. In other words that LY is constructed in a way that it is singlet under the

gauge group.

Here, notice that Yukawa interaction can generate both Dirac type and Majorana

type mass terms for the Right handed neutrinos, [Pruna 11], which is responsible

for the ‘see-saw mechanism’ for giving masses to the neutrinos such that 3 neutrinos

have light masses and other 3 neutrinos have heavy masses, will be discussed in next

section.

2.4 Spontaneous Symmetry Breaking SU(2)L×U(1)Y×

U(1)B−L

We generalise the SM discussion of spontaneous Electro-weak symmetry breaking(EWSB)

to the more complicated case represented by the potential of Eqn(2.8). To determine

the condition for V (H,χ) to be bounded from below, the matrix in Eqn(2.8) has to

be positive-definite which gives the conditions :-

4λ1λ2 − λ2
3 > 0, (2.10)

and,

λ1, λ2 > 0. (2.11)

If the above conditions are satisfied, the choice of parameters is consistent with a

well- defined potential, hence we can proceed to the minimisation of V as a function

of constant Vacuum Expectation Values (VEVs) for the two Higgs fields. Now, we

8



make the particular choice of gauge, since minimization is not affected by the gauge

choice :-

〈H〉 =

 0

v√
2

 , , 〈χ〉 =
x√
2

(2.12)

Where, v and x are real and non-negative. Now, when we put these VEVs in the

potential, Eqn(2.8), and take first derivative of V (v, x) with respect to v and x, we

get the set of differential equations :-

∂V

∂v
(v, x) = v(m2λ1v

2 +
λ2

3x
2

2
) = 0 (2.13)

∂V

∂x
(v, x) = x(µ2λ2x

2 +
λ2

3v
2

2
) = 0 (2.14)

The physically allowed solutions are for the case v, x > 0 :-

v2 =
−λ2m

2 +
λ23µ

2

2

λ1λ2 − λ23µ
2

4

(2.15)

x2 =
−λ1µ

2 +
λ23m

2

2

λ1λ2 − λ23µ
2

4

(2.16)

The denominator is positive, Eqn(2.10), then numerator is forced to be positive or

non-negative too, since the VEVs(v, x) are real and non-negative.

2.5 See-saw Mechanism and Neutrino Masses

The minimal B − L model provides a nice solution to generate neutrino masses.The

presence of right-handed neutrinos and Majorana mass terms in the Yukawa La-

grangian (Eqn(2.9)) gives raise to the so-called ‘see-saw’ mechanism.

After the spontaneously broken of gauge Symmetry, we put the VEVs of the Higgs

fileds in Yukawa part of the Lagrangian, Eqn(2.9), we get the mass matrix for the

three Dirac and six Majorana mass eigenstates, [Pruna 11] :-

M =

 0 mD

mT
D Mm

 (2.17)

Where mD and Mm are respectively the Dirac and Majorana mass matrices, defined

by :-
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mD =
(yν)∗√

2
v, Mm =

√
2yMx (2.18)

Once the hierarchy ΛD << ΛM(Λ is energy scale) is assumed to be true, the diago-

nalization of the mass matrix gives us the ‘see-saw’ results for the neutrinos masses.

After this diagonalization, we get three light Majorana neutrinos and three heavy

neutrinos, whose 3× 3 mass matrces(Ml and Mh respectively) are given by :-

Ml = mDM
−1mT

D '
1

2
√

2
yν(yM)−1(yν)T

v2

x
(2.19)

Mh 'Mm =
√

2yMx (2.20)

From these equation see the ‘See-saw’ effect in the sense that, the greater is M, the

smaller is Ml.
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Chapter 3

Minimal Left-Right Symmetric

Model (MLRSM)

3.1 Introduction

Left-right symmetric model(LRSM) provide an interesting extension of the standard

model(SM). In this model, the parity is considered as exact symmetry of the La-

grangian and it is broken spontaneously when Higgs fields get non-zero VEV. This

model consists the full quark-lepton symmetry of the weak interactions and give the

U(1) generator of the electroweak symmetry group a definite meaning in terms of

the B-L quantum number. Finally, for appropriately chosen Higgs fields this model

leads to a natural explanation of the smallness of neutrino masses, by relating to the

observed suppression of V + A currents.This model contains two W bosons WL and

WR and two neutral gauge bosons Z1 and Z2. The WL and Z1 are those already

discovered and contained in standard model. In the Fermion sector, LRSM contains

the usual quarks and charged leptons, along with the three light neutrino mass eigen-

states νk(k = 1, 2, 3) and three heavy neutrino mass eigenstates NK(k = 1, 2, 3).

Light neutrinos(νk) mostly couple to the WL(standard model’s gauge boson), while

the heavy neutrino(NK) mainly couple to WR.
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3.2 Gauge Group and Representation

The Lagrangian of LRSM is invariant under the gauge-group:-

G = SU(3)C × SU(2)L × SU(2)R × U(1)B−L (3.1)

The representation of G is characterized by triplet(dC , dL, dR, Y ), where dL, dR denote

the dimension of SU(2)L and SU(2)R, respectively and Y is the Hypercharge. Relation

between Electric charge and B − L hypercharge is given by:-

Q = T3L + T3R +
Y

2
(3.2)

Here we have Y = B − L.

3.2.1 Fermion Doublet and Higgs Fields of MLRSM

Quarks :: QL(3, 2, 1,
1

3
), QR(3, 1, 2,

1

3
) (3.3)

Leptons :: ΨL(1, 2, 1,−1),ΨR(1, 1, 2,−1) (3.4)

And,

ψjL =

 νj

ej


L

, ψjR =

 νj

ej


R

; j = e, µ, τ

Their antiparticles are given by:-

ψ̂R = γ0Cεψ
∗
L : (1, 2, 1, 1) (3.5)

ψ̂L = γ0Cεψ
∗
R : (1, 1, 2, 1) (3.6)

Where ε = iτ2 with τ ’s are Pauli matrices and C = iγ2γ0 is the charge conjugation

matrix. Now we can obtain fermion bilinears which have net (B-L) quantum number

:-

ψ̄Lψ̂R or ψTLC
−1ψL ∼ (2, 1, 1)

⊗
(2, 1, 1) = (1, 1, 2)

⊕
(3, 1, 2)

ψ̄Rψ̂L or ψTRC
−1ψR ∼ (1, 2, 1)

⊗
(1, 2, 1) = (1, 1, 2)

⊕
(1, 3, 2)

These bilinears will construct Majorana type mass terms in Yukawa part of the La-

grangian.

ψ̄LψR ∼ (2, 1, 1)
⊗

(1, 2,−1) = (2, 2, 0)
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This bilinear will construct Dirac type mass terms in Yukawa part of the Lagrangian.

To make these fermionic bilinears singlet of our gauge group ‘G’, we introduce three

kind of Higgs Fields:-

Φ(2, 2, 0), ∆L(3, 1, 2), ∆R(1, 3, 2) (3.7)

with the representation as :-

∆L,R =

 δ+L,R√
2

δ++
L,R

δ0
L,R − δ+L,R√

2

 ; φ =

 φ0
1 φ+

1

φ−2 φ0
2


Electric Charges(Q) on the matrix components of the Higgs fields(Bidoublet, Left

and Right Triplet Higgs Fields) can found by:-

Qφ = [T3L + T3R, φ], Q∆L
= [T3L +

Y

2
, ∆L], Q∆R

= [T3R +
Y

2
, ∆R]

Under the gauge transformations, the Higgs Fields transformation is given as :-

φ −→ ULφU
−1
R , φ̃ −→ ULφ̃U

−1
R , ∆L −→ UL∆LU

−1
L , ∆R −→ UR∆RU

−1
R (3.8)

Where UL,R = e−iεα
τα
2 and U−1

L,R = eiεα
τα
2 .

So that ‘Covariant Derivatives’ are given by :-

Dµφ = ∂µφ− i(gL
1

2
ταW

α
µ,Lφ− gRφ

1

2
ταW

α
µ,R) (3.9)

Dµ∆L = ∂µ∆L − i
1

2
g1Y∆Bµ∆L − igL(

1

2
ταW

α
µ,L∆L −∆L

1

2
ταW

α
µ,L) (3.10)

Dµ∆R = ∂µ∆R − i
1

2
g1Y∆Bµ∆R − igR(

1

2
ταW

α
µ,R∆R −∆R

1

2
ταW

α
µ,R) (3.11)

Where Yφ = 0, Y∆ = +2, and YF = −1.

3.3 Largrangian Of MLRSM

We consider only the leptonic part of the Lagrangian(similart part will be for the

quarks), which will be necessary for the calculations for the Neutrino’s masses(’See-

saw Mechanism’) and calculations of Gauge Boson’s masses.

So, let’s consider only the SU(2)L×SU(2)R×U(1)B−L part of our gauge group ’G’:-

L = LF + LY + LB (3.12)

13



With the kinetic part Fermions:-

LF = iψ̄jLγ
µ(∂µ−i

1

2
g1YFBµ−igL

1

2
τα(Wα

µ )L)ψjL+iψ̄jRγ
µ(∂µ−i

1

2
g1YFBµ−igR

1

2
τα(Wα

µ )R)ψjR

(3.13)

And Yukawa Part given as:-

LY = −ψ̄iL(fijφ+ f̃ijφ̃)ψjR + h.c.− ψT iL Ciτ2h
L
ij∆Lψ

j
L + h.c.− ψT iR Ciτ2h

R
ij∆Rψ

j
R + h.c.

(3.14)

Bosonic and Scalar part:-

LB = Tr|Dµ∆L|2+Tr|Dµ∆R|2+Tr|Dµφ|2−
1

4
FµνF

µν−1

4
(Gµν)α(Gµν)α−V (φ,∆L,∆R)

(3.15)

Where α runs from 1 to 3, is a SU(2)L,R index and V is the Higgs potential of φ,∆L

and ∆R . Here, the notation is as follow:-

ψjL =

 νj

ej


L

, ψjR =

 νj

ej


R

; j = e, µ, τ

And φ̃ = τ2φ
∗τ2. We also have ψ̄cL = (1−γ5

2
ψc)†γ0 = ψTRC and ψ̄cR = ψTLC, where

C = ιγ2γ0 is the Charge Conjugation matrix(and here we have used the property of

this matric :- C−1γµC = −γTµ ).

3.3.1 Spontaneous symmetry breaking

Spontaneously broken gauge symmetry of the SU(2)L×SU(2)R×U(1)B−L is realized

by ’Vacuum Expectation values (VEVS)’ of the Higgs fields. SU(2)L × SU(2)R ×

U(1)B−L gauge group is broken to SU(2)L × U(1)Y due to non-zero vacuum expec-

tation value of ∆R, and further, SU(2)L × U(1)Y is broken to U(1)Q due to non-zero

VEVs of ∆L and φ .

VEVs of Higgs fields are given by :-

〈∆L,R〉 =
1√
2

 0 0

vL,R 0

 ; 〈φ〉 =
1√
2

 k1 0

0 k2


With the assumptions :-

|vL| << |k1,2| << |vR| (3.16)
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The minimization of Higgs potential leads to hierarchy between VEVs, vL and vR

, will be discussed explicitly in section(3.7) :-

vL = γ
k2

+

vR
(3.17)

It is clear from this relation that If vR has very large value than VL will have very

small value same as above stated assumption in Eqn(3.16).

3.4 Yukawa Part of The Lagrangian And Neutrino

Masses

We put the VEVs of the Higgs Fields in the Yuawa part of the Lagrangian, Eqn(3.14),

then we will get the lepton masses in terms of Yukawa couplings and the VEVs of

Higgs fields :-

−LY = ψ̄iL(fij〈φ〉+f̃ij〈φ̃〉)ψjR+h.c.+ψT iL Ciτ2h
L
ij〈∆L〉ψjL+h.c.+ψT iR Ciτ2h

R
ij〈∆R〉ψjR+h.c.

(3.18)

Now using the notation introduced in the section(3.2), we have:-

−LY = (ν̄L
i ēL

i)

fij 1√
2

 k1 0

0 k2

+ f̃ij
1√
2

 k2 0

0 k1

 νjR

ejR

+ h.c.

+(ν̄cR
i
ēcR

i
)

 0 −1

1 0

hLij
1√
2

 0 0

vL 0

 νjL

ejL

+ h.c.

+(ν̄cL
i
ēcL

i
)

 0 −1

1 0

hRij
1√
2

 0 0

vL 0

 νjR

ejR

+ h.c.

After a little bit calculation, we get :-

−LY = ν̄iL(mD)ijν
j
R +

1

2
ν̄cL

i
(mL)ijν

j
L +

1

2
ν̄cR

i
(mR)ijν

j
R + ēiL(m′D)ije

j
R + h.c. (3.19)

Where,

(mD)ij =
fijk1 + f̃ijk2√

2
, (mR)ij =

√
2vRh

R
ij

(m′D)ij =
fijk2 + f̃ijk1√

2
, (mL)ij =

√
2vLh

L
ij
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We need to take every parameter (fij, f̃ij, h
R
ij, h

L
ij) real. We assume that mD and m′D

take values of the order of leptonic masses ml,

mD ≈ m′D ≈ ml

By the use of Eqn(3.16) we have:-

|(mL)ij| << |(mD)ij| << |(mR)ij| (3.20)

Furthermore, Considering Hermitian conjugate parts also, we get :-

LY = ν̄mDN + N̄mDν + ν̄mLν + N̄mRN

In another form :-

(LY )ν,N = (ν̄ N̄)

 mL mD

mD mR

 ν

N

 (3.21)

where

ν =
νL + (νL)C√

2
=
νL + νCR√

2
; N =

νR + (νR)C√
2

=
νR + νCL√

2

After diagonalizing the mass matrix, we have the ‘See-saw’ result for each ij :-

|mail| ' |
(mDij)

2

mRij

|, and |mbij| ' |mRij| (3.22)

With the eigenstates :-

νaj ' νj −
mDij

mRij

Nj, and Nbj ' Nj +
mDij

mRij

νj (3.23)

Then the Eqn(3.20) can be re-written in these new mass-eigenstates as :-

LY = ν̄aimaijνaj + N̄bjmbijNbj (3.24)

Here, each term is diagonal for the three generations; i, j = 1, 2, 3. Due to our

assumption in Eqn(3.16), vR is very heavy than vL, so the mass of RH neutrino(N)

is heavy and LH neutrino(ν) mass is small due to ‘See-saw’ suppression, as evident

from the Eqn(3.22), [Kokado 15].
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3.5 Masses of Charged Guage Boson

After the gauge symmetry is spontaneously broken due to VEVs of the Higgs fields

(〈φ〉, 〈∆R〉, 〈∆R〉), the trace part of the Bosonic Lagrangian(LB) are as follow, [Kokado 15]

:-

Tr|Dµ∆L|2 =
1

2

(
|gLW+

µL|
2 + (g1Bµ − gLW 3

µL)2
)
v2
L (3.25)

Tr|Dµ∆R|2 =
1

2

(
|gRW+

µR|
2 + (g1Bµ − gRW 3

µR)2
)
v2
R (3.26)

Tr|Dµφ|2 =
1

8

(
(gLW

3
µL − gRW 3

µR)2
)

(k2
1 + k2

2) + 2|k1gLW
+
µL − k2gRW

+
µR|

2

+ 2|k2gLW
+
µL − k1gRW

+
µR|

2 (3.27)

Where W±
L,R =

(W 1∓ιW 2)L,R√
2

.

Calculation:

From the use of covariant derivatives as given in Eqns(3.9,3.10,3.11) and putting the

higgs VEVs, we get :-

〈∆L,R〉 =
1√
2

 0 0

vL,R 0

 ; 〈φ〉 =
1√
2

 k1 0

0 k2


In the bosonic part of the Lagrangian we get,

(Lmass)∆R
= tr|Dµ∆R|2

=
1

2
tr

g1Bµ

 0 0

vR 0

+ gR

 W 3
µ

2

W+
µ√
2

W−µ√
2
−W 3

µ

2

 0 0

vR 0

−
 0 0

vR 0

 W 3
µ

2

W+
µ√
2

W−µ√
2
−W 3

µ

2


After doing the further calculation for the diagonal terms and leaving the off-diagonal

terms(as they are not needed in trace calculation), we get :-

(Lmass)∆R
=

1

2

 g2Rv
2
R|W

+
µ,R|

2

2
(...)

(...)
g2Rv

2
R|W

+
µ,R|

2+(g1Bµ−gRW 3
µ,R)2v2R

2


=

1

2

(
g2
R|W+

µ,R|
2 + (g1Bµ − gRW 3

µ,R)2
)
v2
R (3.28)

By similar kind of calculations, for ∆L and φ we get:-

(Lmass)∆L
= tr|Dµ∆L|2 =

1

2

(
g2
L|W+

µ,L|
2 + (g1Bµ − gLW 3

µ,L)2
)
v2
L (3.29)
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And,

(Lmass)φ = tr|Dµφ|2

=
1

4

[
|k1gLW

+
µ,L − k2gRW

+
µ,R|

2 + |k2gLW
+
µ,L − k1gRW

+
µ,R|

2
]

+
1

8
(gLW

3
µ,L − gRW 3

µ,R)2(k2
1 + k2

2) (3.30)

Now, collecting the mass terms corresponding to the charged bosons(W+
µ,R and W+

µ,L)

from equations(2.27,2.28,2.29) we get:-

X =
1

2
|gLW+

µ,L|
2v2
L+

1

2
|gRW+

µ,R|
2v2
R+

1

4
|k1gLW

+
µ,L−k2gRW

+
µ,R|

2+
1

4
|k2gLW

+
µ,L−k1gRW

+
µ,R|

2

After squaring 3rd and 4th term and rearranging the all terms, we get :-

X =
1

2
|W+

µ,L|
2

(
g2
Lv

2
L +

1

2
(k2

1 + k2
2)g2

L

)
+

1

2
|W+

µ,R|
2

(
g2
Rv

2
R +

1

2
(k2

1 + k2
2)g2

R

)
− 1

2
k1k2gLgR[W+

µ,LW
−
µ,R +W+

µ,RW
−
µ,L] (3.31)

In the matrix form (in WL −WR basis ) this relation can be written nicely :-

M2
W± =

1

2

 (v2
L + 1

2
(k2

1 + k2
2)) −1

2
k1k2gLgR

−1
2
k1k2gLgR g2

R(v2
R + 1

2
(k2

1 + k2
2))

 (3.32)

Here, M2
W± is the squared mass matrix of the charged gauge bosons(flavor states). It

needs to be diagonalized to get mass eigenstates.

Now let’s introducing the mass eigenstates(Wµ,W
′
µ)L,R :- W±

L

W±
R

 = U

 W±

W ′±

 , U =

 cosα sinα

−sinα cosα


Putting this into equation(2.30), will turns out to be of the form :-

X = |W |2M2
W + |W ′|2M2

W ′ + (W †W ′ +W ′†W )λ (3.33)

Where,

M2
W = GLU

2
11 +GRU

2
21−k1k2gLgRU11U21, M2

W ′ = GLU
2
12 +GRU

2
22−k1k2gLgRU12U22

λ = U11U12GL + U21U22GR −
1

2
k1k2gLgR(U12U21 + U22U11)
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Where Uij’s are the matrix components of U and GL = 1
2
g2
Lv

2
L + 1

4
g2
L(k2

1 + k2
2) ,GR =

1
2
g2
Rv

2
R + 1

4
g2
R(k2

1 + k2
2). Now,due to fact that W and W ′ are the mass eigenstates, the

vanishing condition for the cross term is:-

λ = U11U12GL + U21U22GR −
1

2
k1k2gLgR(U12U21 + U22U11) = 0.

⇒ U11U12GL + U21U22GR =
1

2
k1k2gLgR(U12U21 + U22U11)

⇒ cosαsinαGL − sinαcosαGR =
1

2
k1k2gLgR(−sin2α + cos2α)

⇒ tan(2α) =
k1k2gLgR
GL −GR

=
k1k2gLgR

1
2
(g2
Lv

2
L − g2

Rv
2
R) + 1

4
(g2
L − g2

R)(k2
1 + k2

2)

Because of the condition gLvL << gRvR and k1, k2 << vR,

tan(2α) ' −k1k2(gL/gR)
v2R
2

+
(k21+k22)

4

' −2k1k2ε

v2
R

' 2α

Where ε = gL
gR

, we get :-

|α
ε
| = |k1k2

v2
R

| << 1. (3.34)

So,we see that the mixing angle(WL−WR) is very small(In our MadGraph model file

,k1 = 227.9 GeV ,k2 = 92.5 GeV,and vR = 2543.2 GeV, so we get α ≈ 3 × 10−3 is

quite small). Finally, the charged gauge Boson masses(with approximation vL <<

k1, k2 << vR , sinα ≈ α and cosα ≈ 1− α2

2
) are,from Eqn(3.33) :-

M2
W = g2

L

(k2
1 + k2

2)

4
+

1

2
g2
Lk1k2(

α

ε
) ' g2

L

(k2
1 + k2

2)

4
(3.35)

M2
W ′ =

1

2
g2
Rv

2
R − g2

Lk1k2(
α

ε
) ' 1

2
g2
Rv

2
R (3.36)

So, the mass ratio of W and W’ :-(
MW

MW ′

)2

= 2

(
gL
gR

)2
(k2

1 + k2
2)

4v2
R

= 2ε2δ, δ =
(k2

1 + k2
2)

4v2
R

<< 1, ε < 1

From this it is clear seen that mass of W boson is quite small with respect to W ′

boson.

3.6 Masses of Neutral Gauge Bosons

Let’s collect the all the mass terms corresponding to neutral gauge bosons form

Eqns(3.28,3.29,3.30), we get :-

X ′ =
1

2

[
(g1Bµ − gLW 3

µ,L)2v2
L + (g1Bµ − gRW 3

µ,L)2v2
R +

1

8
(gLW

3
µ,L − gRW 3

µ,R)2(k2
1 + k2

2)

]
(3.37)
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Let us introduce mass eigenstates(A,Z, Z ′) :-
B

W 3
L

W 3
R

 = T


A

Z

Z ′

 (3.38)

Where T matrix,(a unitary matrix) is generally given by the three mixing angles :-

T =


c12 −s12 0

s12 c12 0

0 0 1




c13 0 −s13

0 1 0

s13 0 c13




1 0 0

0 c23 −s13

0 s13 c23

 (3.39)

=


c12c13 −s12c23 − c12s23s13 s12s23 − c12c23s13

s12c13 c12c23 − s12s23s13 −c12s23 − s12c23s13

s13 s23c13 c23c13


From electromagnetic interaction term in fermionic part of the Lagrangian(LF ), we

can get constraints, [Kokado 15] :-

tanθ23 =
g1

gL
, sinθ13 =

e0

gR
, g1cosθ =

e0

c13

, gLsinθ =
e0

c13

, θ = θ12 (3.40)

1

e2
0

=
1

g2
1

+
1

g2
L

+
1

g2
R

(3.41)

By the use of equations(2.36) and (2.37), we get mass term(X’) in terms of the mass

eigenstates(A,Z, Z ′) :-

X ′ =
1

2
Z2M2

Z +
1

2
Z ′2M2

Z′ + µZZ ′ (3.42)

Where,

M2
Z = (g1T12−gLT22)

2v2
L + (g1T12 − gRT32)2v2

R +
k2

1 + k2
2

4
(gLT22 − gRT32)2, (3.43)

M2
Z′ = (g1T13−gLT23)

2v2
L + (g1T13 − gRT33)2v2

R +
k2

1 + k2
2

4
(gLT23 − gRT33)2, (3.44)

And the cross term µ is :-

µ = (g1T12−gLT22)(g1T13−gLT23)v
2
L + (g1T12 − gRT32)(g1T13 − gRT33)v2

R

+(gLT22 − gRT32)(gLT23 − gRT33)
k2

1 + k2
2

4
.
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Since the mass term must be diagonal in mass eigenstates, from this cross term should

be zero, µ = 0. From this vanishing condition of the cross term one can get the solution

to θ23, [Kokado 15],

tanθ23 = −g1s

l
+O(δ) (3.45)

Where, δ =
k21+k22

4v2R
<< 1 and l =

√
g2
R + g2

1c
2. Then, the Z boson mass is given by

Eq.[3.43] :-

M2
Z = v2

R(g1s c23 + l s23)2 +
k2

1 + k2
2

4
(gLc c23 − l s23)2, (3.46)

After substituting the solution in Eq.[3.45] into the first bracket of v2
R term, we get :-

v2
R(g1s c23 + l s23)2 = v2

Rc
2
23(g1s+ l tanθ23)2 = v2

Rc
2
23l

2O(δ2) ∼ 1

v2
R

. And From the second bracket term gives,

(gLcc23− l s23) = c23(gLc− l tanθ23) = c23(gLc+g1s−O(ls)) = c23

√
g2
L + g2

1−O(lc23δ)

Neglecting the O(δ) term one can get the final result,

M2
Z =

k2
1 + k2

2

4
(g2
L + g2

1)c2
23. (3.47)

In the same way One can get,

M2
Z′ = c2

23(l +
g1s

2

l
)2v2

R + c2
23

k2
1 + k2

2

4

(
l − gLg1s c

l

)2

(3.48)

→MZ′ ' l c23(l +
g1s

2

l2
)vR = gRvR

1

c23 c13

. (3.49)

3.7 Higgs Sector of MLRSM

The Higgs field of the LRSM are :-

Φ(2, 2, 0), ∆L(3, 1, 2), ∆R(1, 3, 2)

Where SU(2)L, SU2)R and B − L dimensions are given in the parentheses. In the

case of the ∆R,the B−L has been chosen so as to realize the ‘seesaw mechanism’ for

explaining small left-handed Neutrino masses. A proper representation of the fields

is given by 2× 2 matrices :-

∆L,R =

 δ+L,R√
2

δ++
L,R

δ0
L,R − δ+L,R√

2

 ; φ =

 φ0
1 φ+

1

φ−2 φ0
2


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Where a neutral field φ0 is written in terms of correctly normalized real and imaginary

components as φ0 = 1√
2
(φ0r + ιφ0i).

Now let’s discuss the form of the scalar field potential. The most general scalar

potential, which is invariant under the left-right symmetry(δL ↔ δR and φ ↔ φ†) of

the Higgs multiplets is given by :-

V (φ,∆R,∆L) = −µ2
1Tr(φ

†φ)− µ2
2[Tr(φ̃φ†) + Tr(φ̃†φ)]− µ2

3[Tr(∆L∆†L) + Tr(∆R∆†R)]

+λ1[Tr(φφ†)]2 + λ2

(
[Tr(φ̃φ†)]2 + [Tr(φ̃†φ)]2

)
+λ3[Tr(φ̃φ†)Tr(φ̃†φ)] + λ4

(
Tr(φφ†)[Tr(φ̃φ†) + Tr(φ̃†φ)]

)
+ρ1

(
[Tr(∆L∆†L)]2 + [Tr(∆R∆†R)]2

)
+ρ2[Tr(∆L∆L)Tr(∆†L∆†L)+Tr(∆R∆R)Tr(∆†R∆†R)]

+ρ3[Tr(∆L∆†L)Tr(∆R∆†R)] + ρ4[Tr(∆L∆L)Tr(∆†R∆†R) + Tr(∆†L∆†L)Tr(∆R∆R)]

+α1

(
Tr(φφ†)[Tr(∆L∆†L) + Tr(∆R∆†R)]

)
+α2[Tr(φφ̃†)+Tr(φ†φ̃)][Tr(∆R∆†R)+Tr(∆L∆†L)]

+α3[Tr(φφ†∆L∆†L) + Tr(φ†φ∆R∆†R)] + β1[Tr(φ∆Rφ
†∆†L) + Tr(φ†∆Lφ∆†R)]

+β2[Tr(φ̃∆Rφ
†∆†L) + Tr(φ̃†∆Lφ∆†R)] + β3[Tr(φ∆Rφ̃†∆

†
L) + Tr(φ†∆Lφ̃∆†R)]

Here λi’s , ρi’s ,αi’s βi’s are dimensionless couplings and µi’s are the mass parame-

ters. All the parameters in the above Higgs potential are real due to CP invariance

of the potential. Because of the fact that the potential has minimum, the mass

parameters(µi’s) can be expressed in terms of λi’s , ρi’s ,αi’s ,βi’s and Higgs VEVs as

follow :-

µ2
1 ≈ v2

R

(
α1

2
− α3k

2
2

2k2
−

)
, µ2

2 ≈ v2
R

(
α2

2
+

α3k1k2

4(k2
1 − k2

2)

)
, µ2

3 ≈ ρ1v
2
R (3.50)

As discussed in [Deshpande 91], the CP invariant potential and minimization condi-

tions on the potential impose a set of constraints on the model parameters. First

constraint is that the VEVs of Higgs bidoublet k1 and k2 must be real. Another

constraint emerge from two minimization conditions( ∂V
∂vR

= 0 and ∂V
∂vL

= 0 ), which

leads to some very interesting relation between different VEVs. Insert in the Higgs

potential the VEVs of the Higgs Fields :-

〈∆L,R〉 =
1√
2

 0 0

vL,R 0

 ; 〈φ〉 =
1√
2

 k1 0

0 k2


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Which gives,

Ṽ (vL, vR, k1, k2) = −µ2
1(k2

1 + k2
2)− 4µ2

2k1k2 − µ2
2(v2

L + v2
R)

+λ1(k2
1 + k2

2)2 + (8λ2 + 4λ3)k2
1k

2
2 + 4λ4k1k2(k2

1 + k2
2)

+ρ1(v4
L + v4

R) + ρ3v
2
Lv

2
R

+
[
α1(k2

1 + k2
2) + 4α2k1k2 + α3k

2
2

]
(v2
L + v2

R)

+2
[
β1k1k2 + β2k

2
1 + β3k

2
2

]
vLvR

A kind of ‘See-saw relation’ between the VEVs can be found by simply computing

the vR
∂Ṽ
∂vL
− vL ∂Ṽ

∂vR
= 0, Which gives:-

β2k
2
1 + β1k1k2 + β3k

2
2 = (2ρ1 − ρ3)vLvR (3.51)

or,

vL = γ
k2

1 + k2
2

vR
(3.52)

Where,

γ =
β2k

2
1 + β1k1k2 + β3k

2
2

(2ρ1 − ρ3)(k2
1 + k2

2)
(3.53)

First consider the case that βi’s and ρi’s are order of unity(such that not too large

to preserve unitarity, and not too small to avoid fine tuning) implies that γ ∼ 1. As

we know the fact the light neutrinos masses (proportional to vL via Yukawa coupling)

are bounded to be less than order of 1 eV, then using ‘VEVs Seesaw relation’ vR has to

be at least as large as order of 108 GeV. So, this case leads to the unobservably large

masses for the additional Gauge bosons and Higgs states(masses of the order of 108

GeV).Now, consider the second case,in which βi’s are fine-tuned to reduce γ to about

10−6 and leads vR to be small enough, i.e, vR ∼ order of 103 GeV. In this case, the ad-

ditional gauge bosons and new Higgs particles are become accessible at the LHC(see

the Mass Formulas in Appendix(B)). Now, The case in which, we want to avoid the

fine-tuning of the Higgs couplings by eliminating completely the ’Seesaw Relation Of

VEVs’ by setting βi’s parameters to zero.This may be a possible consequence of some

higher level exact symmetry(e.g. GUT or SUSY), which lies beyond the context of

the LRSM, [Deshpande 91]. The VEV seesaw relation with (βi’s=0) can be satisfied

by setting The VEV of the left-handed triplet, vL = 0. Now, Let’s summarize the

above discussion, the imposed constraints on the Higgs potential parameters and the
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Higgs VEVs are, [Roitgrund 14], [Deshpande 91]:-

1. The VEVs of Higgs bidoublet k1 and k2 are real.

2. The parameters βi’s are set to zero.

3. The Left-triplet Higgs VEV vL is set to zero.

The Higgs mass is then determined as follow :-

∂2V

∂φi∂φj
|φi=φj=0 = m2

i,j (3.54)

By using, first the minimization conditions of the potential and then the three above

stated constraints, one can calculate the physical Higgs masses. The expressions for

the masses of Higgs in terms of free adjustable parameters, are given in the Ap-

pendix(B)(For the case of k1, k2 << vR and vL = 0).
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Chapter 4

Higgs Phenomenology Of MLRSM

4.1 Introduction

We will focus mainly to left handed and right handed triplet Higgs Fields because

their phenomenology is very interesting and amenable to the systematic study. They

have interesting experimental signatures for e.g. because they have B − L = 2, the

doubly charged triplet members can decay to two same sign leptons. It will be useful

at this point to review a few general features of their couplings to leptons and gauge

bosons. The fermion couplings of the triplet Higgs are given by the Yukawa part

Lagrangian(Eqn[3.14]) :-

LY = iψT iL Cτ2h
L
ij∆Lψ

j
L + iψT iR Cτ2h

R
ij∆Rψ

j
R + h.c.

Where the notation has same meaning as in Eqn(3.14). A discussion of the magnitude

and role of the Majorana Yukawa couplings hM is being discussed in section(3.4).

Mass spectrum of Higgs and dependence of masses of Higgs on the parameters of

the potential is also an essential part to figure out, before going towards the decays

of different Higgs via various channels. Production of the Doubly charged Higgs is

discussed in the next section at LHC(at 14 TeV E.O.M. energy).

4.2 Doubly Charged Higgs Phenomenology

Why First Doubly charged Higgs phenomenology?,the reasons are as follow:-
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� We do not have any Doubly charge Higgs in other model such as SM, so it

phenomenological signature only for MLRSM.

� In decay processes such as, Doubly Charged Higgs decays to two like-sign lepton,

decay rates are as follow :-

Γ(δ±±R −→ lRlR) ∼ |h∆R
|2

Γ(δ±±L −→ lLlL) ∼ |h∆L
|2 ∝ |mν |2

pp −→ δ++
L δ−−L −→ e+e+e−e− ∼ |hL|4 ∼ (UmeeU

T )4

Since we know the PMNS lepton mixing matrix(U), then we can estimate the

decay rates for such leptonic decay signatures from Doubly charged Higgs. This

is an interesting connection between collider physics and neutrino oscillations.

4.2.1 Production of δ±±R using Madgraph5/FeynRules2.3 at

14 TeV at LHC

There were 24 different processes/diagrams to generate δ++
R + δ−−R out of the proton-

proton collision. Some sample Feynman Diagrams generated through MadGraph5 are

as follow:-

Figure 4.1: Feynman Diagrams for Doubly Charged Higgs production
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Variation of Cross-section(In pb) with Doubly charged Higgs mass(In

GeV) :-

Figure 4.2: Cross-section(In Pb) Vs. Mass(In GeV) of Doubly Charged Higgs

Now let’s discuss the ‘Reaction Rate’ for this process (p + p−→ δ++
R +δ−−R ).Reaction

rate is defined as number of scattering events per unit time(in collider experiments)

and given by the formula :-

R(s) = σ(s)L (4.1)

Where ‘s’ stands for the square of center of mass energy(In our case
√
s = 14 TeV),

σ(s) is the total scattering cross-section (in our case varying from 0.0005 pb to 0.005

pb, pb = picobarn = 10−24cm2) and L is ‘Luminosity’ of the detector (LHC luminosity

in next run of LHC will be 100 fb−1/year).

Given all this information, For the process(p + p −→ δ++
R + δ−−R ), the reaction rate

will be ‘50 to 500’ event per year in the next run of the LHC at 14 TeV.
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4.2.2 Analytic Estimation of p + p −→ H0
2 −→ δ++

R + δ−−R

Let us consider a process out of those 24 processes to generate δ++
R + δ−−R from the

proton-proton collision.

Figure 4.3: A Feynman diagram for Doubly charged Higgs Production involing H0
2 as

intermediate particle

4-momentum(q1, q2)→ (p1, p2) for this process.

Amplitude of this process :-

iM = v̄s
′
(q2)

(
−i gmq

2mw

)
us(q1)

i

(q1 + q2)2 −m2
h2

(−2iρ1 − 4ιρ2)vR (4.2)

Vertex(H0
2 , δ++

R , δ−−R ) can be simplified as follow :-

(−2iρ1 − 4iρ2)vR
vR
vR
≈ i

gRM
2
δ

mW ′
(4.3)

Here we have used M2
δ±±R

= 1
2
(α3k

2
− + 4v2

Rρ2) and mW ′ ≈ 1√
2
gRvR to simplify the

vertex term. Now, the square of the amplitude can be written as :-

|M |2 ≈ g4
m2
qm

4
δ

m2
Wm

2
W ′

1

[(q1 + q2)2 −m2
h2]2

1

4
tr[(γµq2µ −mq)(γ

νq1ν +mq)]

= g4
m2
qm

4
δ

m2
Wm

2
W ′

1

[(q1 + q2)2 −m2
h2]2

1

4
(q2.q1 −m2

q)
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In Center of Mass frame:- We have q1 = (Eq, ~q),q1 = (Eq,−~q) and p1 = (Ep, ~p),p2 =

(Ep,−~p). After putting these in the above expression, the square amplitude can be

written as :-

|M |2 = g4
m2
qm

4
δ

4m2
Wm

2
W ′

(E2
q + |~q|2 −m2

q)

(4E2
δ −m2

h2)2
(4.4)

And the two-body Lorentz invariant phase space(LIPS ) for our process is :-

LIPS =
|~p|

8π
√
|~p|2 +m2

δ

Then the Total Cross-section is:-

σ =
1

8E2
q

|M |2(LIPS) ∼ 1

mδ

(4.5)

Similarly we get for σ(pp −→ h −→ δ++
R δ−−R ) ∼ 1

mδ
.

Further, if we can calculate all the 24 diagrams cross-sections then the sum-up effect

or the results will probably match the computational result which we got from curve

fitting of Cross-section Vs. Mass curve for Right-handed Doubly Charged Higgs :-

σ(TotalCross− section) =
0.5782

mδ

− 2502.8

m2
δ

+
2.66781× 106

m3
δ

(4.6)

4.3 Mass Spectrum of Higgs Sector Of MLRSM

There are total 20 degree of freedom(6 degrees of freedom from each Higgs Triplet

and 8 degrees of freedom from Higgs Bi-doublet) of Higgs particle states in minimal

left-right symmetric model, Out of these 20 degrees of freedom 6 are absorbed in giving

masses to the 6 left and right handed gauge bosons, so there remains only 14 physical

degrees of freedom. The expressions are given in Appendix(B) for the masses of all

the physical states of Higgs. Here, we study the dependence of the Higgs masses on

the parameters of the Higgs potential(As given in section(3.7)).

Standard values of the parameters of Higgs potential as used in MadGraph5 model

file to create all the processes of MLRSM :-

λ1 = 0.118, λ1 = 0.2, λ3 = −0.234, λ4 = 0

ρ1 = 0.5, ρ2 = 0.05, ρ3 = 1.25, ρ4 = 0.125

α1 = 0.5, α2 = 0.5, α3 = 0.5
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LRSM symbols Symbols in Madgraph model files

W+
L , W+

R ,Z1,Z2 w+, w2+, z, z2

h(SMHiggs), δ++
L , δ++

R h, hl++, hr++

δ0
L, δ0

R(H0
1 ,H0

2 ), δ+
L , δ+

R() h03, h2, h02, h+, hp2

ρ1..4, α1..3, ρdiff. = ρ3 − 2ρ1 rho1..4, alpha1..3, rhodifference

Couplings e, g, g’, gs

Table 4.1: The MLRSM parameters and their corresponding symbols in MadGraph

model file.

v = 246 GeV, k1 = 227.91 GeV, k2 = 92.7 GeV, vR = 2543.2 GeV, vL = 0

By varying these parameters, we study the variation of the Higgs masses and the

variation of the difference in different-2 Higgs Masses. The motivation of this analysis

is phenomenological for e.g. the decay mode δ++
L → δ+

LW
+
L is forbidden for the

standard values of the parameters as stated above, But this decay mode is possible

for the some range of the parameters(ρdiff. = (ρ3 − 2ρ1) ≤ 0.01) if we vary them,

[Gunion 89].

MadGraph5 Notation and notation used in plotting these curves are given in

Table(4.1).
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Figure 4.4: Dependence of Left-handed Triplet Higgs masses on α3

Figure 4.5: Dependence of Right-handed triplet Higgs masses on α3
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Figure 4.6: Dependence of Leftt-handed triplet Higgs masses on ρ1

Figure 4.7: Dependence of Left-handed triplet Higgs masses on ρDifference or (ρ3−2ρ1)
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Figure 4.8: Dependence of Rightt-handed triplet Higgs masses on ρ2 and α3

4.4 Decays Modes of Doubly and Singly Charged

Higgs Using Madgraph5

Here we have divided this section into two parts Discussions and Results.

4.4.1 Discussion

Coupling of the ∆L triplet Higgs bosons to WL are of phenomenological significance.

Let’s first consider vertices involving one ∆L member and two gauge bosons, these

are all proportional to vL(without of i factor):-

δ++
L W−

LW
−
L : −

√
2g2vL, δ0r

L W
+
LW

−
L : g2vL, δ++

L W−
L Z1 : − g2vL√

2cosθW
(4.7)
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As discussed in [Gunion 89], we know that the potential couplings involving the pho-

ton are absent at the tree level, which is a common feature of extended Higgs sector.

δ+
LW

−
L γ = 0, δ0r

L Z1γ = 0. (4.8)

The second type of coupling in which we are interested are those in which one

Higgs couples with other higgs and a gauge boson :-

δ++
L δ−−L W−

L : g, δ0r
L δ

+
LW

−
L :

g√
2
, δ0i

L δ
+
LW

−
L : −i g√

2
(4.9)

Furthermore, there are couplings involving three Higgs bosons. The δ++
L δ−L δ

−
L

coupling is proportional to (ρ1 + ρ2)vL and vanishes when vL = 0 is considered, still

δ++
L δ−L δ

−
L two body on-shell mode is not possible at because of the fact that mass of

two δ−L is more than mass of the δ++
L , in our case and couplings of the δ0

L to δ+
L δ
−
L or

δ++
L δ−−L are not relevant for δ0

L decays due to mass argument. Now there remains just

couplings of the type, δ0r,i
L h0h0, δ0r,i

L h0H0 etc., which are all proportional to vL, thus

are suppressed or zero in case of vL = 0.

Now, let’s discuss about a straightforward estimation of vR,L and k2
+ = k2

1 + k2
2. By

this estimation a value is found for Dirac and Majorana type Yukawa couplings(f

and h respectively). The hierarchy between VEVs plays an important role in this

argument as given by :-

vL = γ
k2

1 + k2
2

vR
, with γ =

β2k
2
1 + β1k1k2 + β3k

2
2

(2ρ1 − ρ3)(k2
1 + k2

2)

Where γ will be the free parameters on which the quantities of our interest will depend.

We will use the mass formulas for Neutrinos and electron :-

mν = 2hvL −
(f1k1 + f2k2)2

2hvR
(4.10)

me = f1k2 + f2k1 (4.11)

Due to the motivation that leptons(electron and LH neutrinos) masses are order of

dirac mass,ml ' mD, we made assumptions :- 1. k2/k1 << 1 ; 2. f := f1 ≈ f2 ;

3. the two terms in mν are more or less equal to mν . As we know from Eqn(3.35)

that mW ≈ 1
2
gk+ and experimental value of W boson mass ≈ 80 GeV, this gives

us k ≈ k+ ≈ 246 GeV. Another experimental input is me = 0.5 MeV and lastly we

estimate mν ≈ 1 eV(experimental), so in the following calculation both terms in mν
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γ vR(In GeV) vL(In eV) h

1 1× 108 4× 105 1× 10−6

10−1 3× 107 1× 105 4× 10−6

10−2 1× 107 4× 104 1× 10−5

10−4 1× 106 4× 103 1× 10−4

10−6 1× 105 4× 102 1× 10−3

10−8 1× 104 4× 101 1× 10−2

Table 4.2: The values of some key parameters depending on γ

expression can be taken of the order of 1 eV.

Now, Using the assumptions 1st and 2nd we get: f1k1 + f2k2 ≈ f1k2 + f2k1 ≈ fk+(≈

me), which gives, f = me/k+ ≈ 3 × 10−6. Furthermore, when we set the two terms

in mν ∼ 1 eV, then the 3rd assumption makes possible to express all the unknowns

in terms of k+,me,mν and γ :-

vL =
mνk+

me

√
γ ≈ 4

√
γ × 10−4 GeV

vR =
mek+

mν

√
γ ≈ 4

√
γ × 108 GeV

f = 2h
√
γ ≈ me

k+

≈ 3× 10−6

mN = 2hvR =
m2
e

mν

≈ 3× 102 GeV

The following table shows the values of vL,vR and h for some values of gamma :-

From the right handed gauge boson formula(mWR
≈ 1

2
gvR), that vR set the mass

sale of RH gauge bosons. Direct experimental searches for these heavy extra gauge

bosons has resulted in lower bound of mWR
> 720 GeV, [Eidelman 04]. A second

lower bound was obtained by considering the KL − KR mass splitting, resulting

in MWR
> 1.6 TeV. These lower bound has been satisfied with the value of vR in

our above discussion.The value of vL is small enough not to disturb the value of

ρew = m2
WL
/(MZcosθW )2 = (k2

+ + 2v2
L)/(k2

+ + 4v2
L). It should be within one per-

cent of the unity, implying vL < 14 GeV(this is our roughly estimated bound on vL’s

value, its value is bounded from above from electroweak precision tests vL < 10 GeV),

[Deshpande 91], [Duka 00] and [Gunion 89].
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The limits listed in the Table(4.2) are important in examining the decays of the dif-

ferent ∆L scalar Higgs bosons. If all the hM ’s are as small as given by hM < 1×10−4,

then widths for δ++
L → e+e+ and δ+

L → e+ve and for many others are very small, and

any other open channel (e.g. δ++
L → W+W+, if vL 6= 0) would dominate over these in-

teresting leptonic signatures, although we can check that the lifetimes(Γ ∼ 10−4−10−5

GeV) are short enough that these decays will be contained in the typical detectors.

Now, let’s consider these alternative possibilities for vL 6= 0 scenario. For e.g. con-

sider whether the following decays are kinematically allowed and if so which one will

dominate :-

1. δ++
L → W+

LW
+
L

2. δ++
L → W+

L δ
+
L

3. δ++
L → δ+

L δ
+
L

4. δ++
L → W+

LW
+
L δ

0
L

5. δ++
L → δ+

L δ
+
L δ

0
L

� It is clear that 3rd and 4th are not possible due to fact that the total of masses

of the final states are more than mass of the initial state. The 2nd and 4th

modes are possible or not that depends on the value chosen for mδ+L
.

� In the range mδ+L
< 200 GeV allowed by ρdiff. limits (as shown in Figure 4.7),

mδ++
L
− mδ+L

≤ 80 GeV, the 2nd decay mode is not possible. Although, 1st

and 4th modes are possible once mδ++
L

=
√

2mδ+L
is larger than 2mWL

. For

the δ++
L → W+

LW
+
L mode, the coupling is of the order of g2vL (as in Eqn[4.7]).

we if vL 6= 0 and large(order of a few GeV) but less than maximum allowed

bound,then the W+
LW

+
L mode will dominate the dilepton decay mode(δ++

L →

e+e+).

� 4th decay mode δ++
L → W+

LW
+
L δ

0
L will be less significant compared to two body

mode due to the three body phase space. but it could be important if vL is small

and its signature will be quite similar to two body mode when δ0
L is appeared

approximately massless and invisible(coupling, δ++
L → W+

LW
+
L δ

0
L : −2g2).

� Notice though, in W+
LW

+
L decay mode the leptons need not to be of the same

generation, whereas, to the extent that hM is almost diagonal in generation
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space, the directly produced leptons would tends to be from the same generation.

In the case of the δ+
L we should consider the competing modes

δ+
L → Z1W

+
L , δ+

L → Z1W
+
L δ

0
L, δ+

L → δ0
LW

+
L (4.12)

We can ignore the first mode of Eqn(4.12), since the third has a much larger cou-

pling(Eqn[4.7]), the same cubic dependence on mδ+L
and is always allowed when the

first is allowed. The second mode has the three body phase space, hence it is sup-

pressed compared to third mode. Note also that, the δ+
L → δ0

LW
+
L decay mode can

produce a final state same as to the mode δ+
L → l+vl, since the δ0

L decays invisibly

and the W+
L can decay to l+νL, [Gunion 89].

4.4.2 Results

Figure 4.9: Decay Width dependence on the mass of Higgs for the process δ++
L → l+ l+
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Figure no. Process Value of adjusted parameters

4.2 p p → δ++
R δ−−R vR is adjusted to give the relevant Mδ++

R
.

vL = 0,MNe,µ,τ = 100GeV

4.9 δ++
L → l+ l+ (l = e, µ, τ) ρ1 is adjusted to give the relevant Mδ++

L
.

vR = 2543.2GeV ,vL = 0,MNe,µ,τ = 100GeV

4.10 δ++
L → l+ l+ (l = e, µ, τ) ρ1 is adjusted to give the relevant Mδ++

L
.

vR = 2543.2GeV ,vL = 0,MNe,µ = 100GeV ,MNτ =

1600GeV

4.11 δ++
L → W+

L W+
L ρ1 is adjusted to give the relevant Mδ++

L
.

vR = 2543.2 GeV, MNe,µ,τ = 100GeV

vL = (2GeV, 5GeV, 8GeV ),If vL = 0 then,

Γ (∆++
L → W+

LW
+
L ) = 0

4.12 δ++
R → l+ l+ (l = e, µ, τ) ρ2 is adjusted to give the relevant Mδ++

R
.

vR = 2543.2GeV ,vL = 0,MNe,µ,τ = 100GeV

4.13 δ++
R → l+ l+ (l = e, µ, τ) ρ2 is adjusted to give the relevant Mδ++

R
.

vR = 2543.2GeV ,vL = 0,MNe,µ = 100GeV ,MNτ =

1600GeV

4.14 δ+
L → l+ νl (l = e, µ, τ) ρ1 is adjusted to give the relevant Mδ+L

.

vR = 2543.2GeV ,vL = 0,MNe,µ,τ = 100GeV

4.15 δ+
l → l+ νl (l = e, µ, τ) ρ1 is adjusted to give the relevant Mδ+L

.

vR = 2543.2GeV ,vL = 0,MNe,µ = 100GeV ,MNτ =

1600GeV

4.16 δ+
R → l+ νl (l = e, µ, τ) α3 is adjusted to give the relevant Mδ+L

.

vR = 2543.2GeV ,vL = 0,MNe,µ,τ = 100GeV

4.17 δ+
R → l+ νl (l = e, µ, τ) ρ1 is adjusted to give the relevant Mδ+R

.

vR = 2543.2GeV ,vL = 0,MNe,µ = 100GeV ,MNτ =

1600GeV

Table 4.3: Adjusted values of parameters which were used in the validation processes

in MadGraph5-aMC@NLO.

38



Here, for the three decay modes(δ++
L → l+ l+; l = e, µ, τ) we consider same masses(100

GeV) of the three heavy Neutrinos(Ne, Nµ, Nτ ) corresponding to three lepton gener-

ations, that is why we get same decay width due to decay width formula:-

Γ(δ++
L → l+l+) =

hMll
8π

mδ++
L

(4.13)

Where the Yukawa couplings are given in terms of the Neutrino’s mass by the expres-

sion, (hR)ij =
mRij√
2vR

(as discussed in section 3.4). So if the mass of the right handed

neutrinos is same for all generations than the Yukawa couplings hM are also same for

all the three generations.

Figure 4.10: Decay Width dependence on the mass of Higgs for the process δ++
L →

l+ l+ with different Neutrino masses.

Here, for the decay modes(δ++
L → l+ l+ ; l = e, µ, τ) we consider same masses(100

GeV) of the two heavy neutrinos(Ne, Nµ) corresponding to e+, µ+ generation and 1600
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GeV mass of the third generation Neutrino(Nτ ). Due to this fact we get same decay

width for the two modes(δ++
L → l+ l+ ;l = e, µ) and large decay width(compared to

former two modes) for the mode(δ++
L → τ+ τ+ ) since MNτ = 1600 GeV, is quite

large than MNe = MNµ = 100 GeV.

Figure 4.11: Decay Width dependence on the mass of Higgs for the process ∆++
L →

W+ W+.

Here, We take three scenarios of non-zero VEV of left-handed triplet, vL =

(2 GeV, 5 GeV, 8 GeV ) and get results as shown in Figure[4.11], for the decay width

of the mode(δ++
L → W+

L W+
L ). In the case of vL = 0, the direct couplings to two

gauge bosons vanish(because the Coupling is proportional to vL), therefore, we get

zero decay width for this mode. The analytic formula of decay rate for this decay
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mode is given by, [Melfo 12] :-

Γ(δ++ → W+W+) =
g4v2

L

8πmδ++

(
1− 4m2

W

m2
δ++

) 1
2
[
2 + (

m2
δ++

2m2
W

− 1)2

]
(4.14)

Figure 4.12: Decay Width dependence on the mass of Higgs for the process ∆++
R →

l+ l+ with same Right-handed Neutrino masses.

Here also, for the three decay modes(δ++
R → l+ l+; l = e, µ, τ) we consider same

masses(100 GeV) of the three heavy Neutrinos(Ne, Nµ, Nτ ) corresponding to three

lepton generations, that is why we get same decay width because the coupling depends

on Neutrinos masses.
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Figure 4.13: Decay Width dependence on the mass of Higgs for the process δ++
R →

l+ l+ with different Right-handed Neutrino masses.

Here also, for the decay modes(δ++
R → l+ l+ ; l = e, µ, τ) we consider same

masses(100 GeV) of the two heavy neutrinos(Ne, Nµ) corresponding to e+, µ+ gen-

eration and 1600 GeV mass of the third generation Neutrino(Nτ ). Due to this fact

we get same decay width for the two modes(δ++
R → l+ l+ ;l = e, µ) and large decay

width(compared to former two modes) for the mode(δ++
R → τ+ τ+ ) since MNτ = 1600

GeV, is quite large than MNe = MNµ = 100 GeV.
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Figure 4.14: Decay Width dependence on the mass of Higgs for the process δ+
L → l+

νl with same Right-handed Neutrino masses.

Here, for the three decay modes(δ+
L → l+ νl; l = e, µ, τ) we consider same

masses(100 GeV) of the three heavy Neutrinos(Ne, Nµ, Nτ ) corresponding to three

lepton generations, that is why we get same decay width due to decay width formula

because the coupling depends on Neutrinos masses.
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Figure 4.15: Decay Width dependence on the mass of Higgs for the process δ+
L → l+

νl with different Right-handed Neutrino masses.

Here, for the decay modes(δ+
L → l+ νl; l = e, µ) we consider same masses(100 GeV)

of the two heavy neutrinos(Ne, Nµ) corresponding to e+, µ+ generation and 1600 GeV

mass of the third generation Neutrino(Nτ ). Due to this fact we get same decay width

for the two modes(δ+
L → l+ νl; l = e, µ) and large decay width(compared to former

two modes) for the mode(∆++
L → τ+ τ+ ) since MNτ = 1600 GeV, is quite large than

MNe = MNµ = 100 GeV.
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Figure 4.16: Decay Width dependence on the mass of Higgs for the process δ+
R → l+

νl with same Right-handed Neutrino masses.

Here, for the three decay modes(δ+
R → l+ νl; l = e, µ, τ) we consider same

masses(100 GeV) of the three heavy Neutrinos(Ne, Nµ, Nτ ) corresponding to three

lepton generations and we get different-2 decay rates for different-2 generations.
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Figure 4.17: Decay Width dependence on the mass of Higgs for the process δ+
R → l+

νl with different Right-handed Neutrino masses.

Here, for the decay modes(δ+
R → l+ νl; l = e, µ) we consider same masses(100 GeV)

of the two heavy neutrinos(Ne, Nµ) corresponding to e+, µ+ generation and 1600 GeV

mass of the third generation Neutrino(Nτ ).
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Mδ++ (In

GeV)

Cross-section(In

pb),σ

Branching Ratios (B.R.) σ×B.R.(In pb)

1043.5 0.00003079 (a) 0.007753 (for

e+e++µ+µ+ modes) .

(b) 0.992247 (for τ+τ+)

(a)2.387149 × 10−7 (for

e+e+ + µ+µ+ modes)

(b) 3.055129 × 10−5 (for

τ+τ+)

911.13 0.0002871 (a) 0.007741 (for

e+e++µ+µ+ modes) .

(b)0.992259 (for τ+τ+)

(a) 2.222441 × 10−6

(for e+e++µ+µ+ modes)

(b) 2.2669396 ×10−4(for

τ+τ+)

664.9 0.002287 (a) 0.007753 (for

e+e++µ+µ+ modes) .

(b) 0.992247 (for τ+τ+)

(a) 1.773111 × 10−5 (for

e+e++µ+µ+ modes)

(b) 2.269269 ×10−3(for

τ+τ+)

428.23 0.00711 (a) 0.007754 (for

e+e++µ+µ+ modes) .

(b) 0.992246 (for τ+τ+)

(a)5.513094 × 10−5 (for

e+e++µ+µ+ modes)

(b) 7.054869 ×10−3(for

τ+τ+)

Table 4.4: Cross − section× Brancing Ratios for δ++
L → e+e+ ,µ+µ+, τ+τ+ when

MN1 = MN2 = 100 GeV and MN3 = 1600 GeV.
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Chapter 5

Conclusion

We have seen through the study of the B−L model and Left-Right Symmetric Mod-

els(LRSM), that these models resovle the neutrino mass problem and smallness of the

left-handed neutrinos because of the ‘See-saw Mechanism‘ as discussed in section(2.4

and 3.4). Both of these models gives rise to interesting TeV scale Phenomenology

which includes extra gauge bosons(Z ′,W ′) and other Higgs fields searches at next

generation colliders and upgraded LHC(at 14 TeV). In LRSM, there are 14 physical

Higgs, these give rise to rich and interesting higgs phenomenology. In this project, we

study mainly the higgs phenomenology of LRSM. First, we studied the production of

the Right-handed Doubly charged Higgs at LHC at 14 TeV, which gave quite inter-

esting results about the dependence of the cross-section on the mass of the Doubly

Charged Higgs:-

σ(pp→ δ++
R δ−−R ) =

0.5782

mδ

− 2502.8

m2
δ

+
2.66781× 106

m3
δ

(5.1)

Later, I studied the decays of Doubly charged Higgs into interesting decay modes of

two like-sign leptons(l+ l+) and two charged gauge bosons(W+ W+) using MadGraph.

Further, we studied the singly charged Higgs decay into a lepton plus neutrino(l vl)

mode.The results have been plotted in section(4.4), which shows the dependence of

the decay width on the masses of Higgs. We have also studied the dependence of the

Higgs masses on the parameters of the Higgs potential in the section(4.3), which is a

important thing to explore before studying the decays of Higgs.

At last, I want to make some concluding remarks on the importance of Higgs Triplet

Fields phenomenology of MLRSM, [Melfo 12] :-
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� Probing the Flavor Structure : The Doubly Charged Higgs decaying to two

like-sign charged leptons probe the neutrino masses and mixings. The decay

rate is given by :-

Γ(δ++ → lilj) =
mδ++

8π(1 + δij)
|(U

∗mνU
†)ij

vL
|2 (5.2)

This makes an interesting connection between the collider physics and the low

energy processes. If this were the only mode, then one could probe the Yukawa

flavor structure through the branching ratios to the different flavor modes. In

addition, the deacy modes of Singly Charged Higgs,δ+ → liνl may also be

important to probe Yukawa flavor structure.

� Probing the Neutrino Mass Scale : The probing of flavor structure as

above gives the information about ratios of the neutrino masses and by using the

neutrino oscillations data one might get the absolute neutrino mass scale.There

is also a chance of directly measuring the scale at LHC. The other decay mode,

δ++ → W+W+ open up for non-zero vL.

Γ(δ++ → W+W+) =
g4v2

L

8πmδ++

(
1− 4m2

W

m2
δ++

) 1
2
[
2 + (

m2
δ++

2m2
W

− 1)2

]
(5.3)

If this channel is large enough, it would determine the vL. The critical value is

obtained for Γ(δ++ → lilj) = Γ(δ++ → W+W+), which give us vL = 10−4 to

10−3.
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Appendix A

Notation and Adjustable

Parameters as used in FeynRules

and Madgraph

The input parameters of MLRSM and their symbols in the model file are collected in

Table A.1. The list of adjustable parameters in the model file is given in Table A.1.

We can also adjust other dependent parameters in the file,but the consistency must be

kept, e.g., we can set numerical value of MW2 instead of vR, but then the consistency

of the model require that vR =
MW2

MW

√
(k2

1 + k2
2)/2. The model file of FeynRules uses

the unitary gauge, so that all the Goldstone modes are omitted in the Feynman rules

calculations, [Duka 00].
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Category LRSM symbols FeynRules model symbols

Fermion

doublet(rotated-

unphysical)

QiL, QiR, LiL, LiR, (Lc)iL, (Lc)iR

(i=1,2,3)

QL, QR, LL, LR, LCL, LCR

Gauge boson

fields(rotated-

unphysical)

WiL, WiR,B (i=1,2,3) Wi, WRi, B

Particle

names(physical

states)

W,Z,A,g (SM Gauge bosons)

W2, Z2 (Extra SM gauge bosons)

u, c, t (Up type quarks)

d, s, b (Down type quarks)

e, µ, τ (Charged leptons)

νe, νµ, ντ (Light neutrinos)

Ne, Nµ, Nτ (Heavy neutrinos)

H0
0 ,H0

1 ,H0
2 ,H0

3 (Neutral higgs scalars)

A0
1,A0

2(Neutral higgs pseudoscalars)

H±1 ,H±2 (Singly charged Higgs)

δ±±L ,δ±±R (Doubly charged Higgs)

G̃0
1,G̃0

2(Neutral Goldstone bosons)

G±L ,G±R(Charged Goldstone bosons)

W,Z,A,G

W2,Z2

u, c, t (class name: uq)

d, s, b (class name: dq)

e, mu, ta (class name: 1)

NeL,NmL,NtL

NeH,NmH,NtH

(class name: N1)

H,H01,H02,H03

A01,A02

HP1,HP2

HPPL,HPPR

G01,G02

GPL,GPR

Particle masses MRelevantParticle the letter M + Particle name

Decay widths ΓRelevantParticle Either zero or the letter W + Par-

ticle name

Mixing matrices UCKM
L ,UCKM

R ,KL,KR CKML, CKMR, KL, KR

Quasi manifest ma-

trices

W l,WU ,WD Wl, WU, WD

Mixing angles sinθW ,cosθW ,sinξ,cosξ,sinφ,cosφ sw,cw,sxi,cxi,sphi,cphi

Higgs VEVs k1,k2,vL,vR k1,k2,nuL,nuR

Higgs multiplets φ,φ̃,∆L,∆R BD,BDtilde,LT,RT

Higgs multiplets

field components

φ0
1,2,φ±1,2,δ0

L,R,δ±L,R,δ±±L ,δ±±R Phi01,Phi02,PhiP1,PhiP2,

H0L,H0R,HPL,HPR,HDPL,HDPR

Table A.1: The MLRSM parameters and their corresponding symbols in the Feyn-

Rules model file
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Appendix B

Parameters,Masses and Mixing

Angles of MLRSM

The non-adjustable parameters of the model file(FeynRules/Madgraph model file) are

defined by the expressions given in this appendix. These expressions consist both ad-

justable and non-adjustable parameters which are listed in Table A.1, Here, for these

expressions, we considered the phenomenological motivated constraints and approxi-

mations k1, k2 << vR and vL = 0, Expressions are as follow,[Duka 00], [Roitgrund 14]:-

M2
Z1
≈

g2k2
+

4cos2θW
, M2

Z2
≈ g2v2

Rcos
2θW

cos2θW
, Mixing Angle, sin2φ = −

k2
+(cos2θW )

3
2

2v2
Rcos

4θW

M2
W1
≈
g2k2

+

4
, M2

W2
≈ g2v2

R

2
, Mixing Angle, tan2ξ = −2k1k2

v2
R

M2
H0

0
≈ 2k2

+

(
λ1 +

4k2
1k

2
2

k4
+(2λ1 + λ3)

+ 2λ4
2K1K2

K2
+

)
, M2

H0
1
≈
α3v

2
Rk

2
+

2k2
−

,

M2
H0

2
≈ 2ρ1v

2
R, M2

H0
3
≈ 1

2
v2
R(ρ3 − 2ρ1)

,

M2
A0

1
=
α3v

2
Rk

2
+

2k2
−

, M2
A0

2
=

1

2
v2
R(ρ3 − 2ρ1) ,

M2
H±1

=
1

4
α3k

2
− +

1

2
v2
R(ρ3 − 2ρ1), M2

H±1
=

1

4
α3

(
k2
− + 2

k2
+

k2
−
v2
R

)
,

M2
δ±±L

=
1

2
(α3k

2
− + v2

R(ρ3 − 2ρ1)), M2
δ±±R

=
1

2
(α3k

2
− + 4v2

Rρ2),

µ2
1 ≈ v2

R

(
α1

2
− α3k

2
2

2k2
−

)
, µ2

2 ≈ v2
R

(
α2

2
+

α3k1k2

4(k2
1 − k2

2)

)
, µ2

3 ≈ ρ1v
2
R

Where k± =
√
k2

1 ± k2
2 and λi,ρi and αi are the couplings in the Higgs potential.
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