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Chapter 1

Basic Representation Theory

Representation Theory studies group via its action on vector spaces and by studying

these actions one can obtain more information on finite groups. The goal of this

chapter is to introduce the readers to the basics of Representation Theory along with

examples.

1.1 Definitions and Examples

Definition 1.1.1 Let G be a group. A representation of G is a homomorphism

ρ : G −→ GL(V ), where V is some finite dimensional vector space. We call the

dimension of V as the degree of the representation, ϕ.

We will write ρg for ρ (g) and ρg (v) or ρgv for the action of ρg on v ∈ V . Following

are a few basic examples of representations.

Example 1.1.2 The first example is that of a Trivial Representation. The trivial

representation of a group G is the homomorphism ϕ : G −→ C∗ defined as ϕ (g) = 1

for all g ∈ G. This is a degree one representation as GL(C) can be identified with C∗.

Trivial representation is possessed by every group.

Example 1.1.3 ϕ : Z/2Z −→ C∗ defined as

ϕ(m) = (−1)m

is clearly a representation.

1



2 CHAPTER 1. BASIC REPRESENTATION THEORY

Example 1.1.4 Another example of a degree one representation can be for G =

Z/4Z, ϕ : G −→ C∗ given by ϕ(m) = im is a representation.

Example 1.1.5 In general one can say that, ϕ : Z/nZ −→ C∗ given by ϕ(m) =

e(2πim)/n is a representation as C∗ is group under multiplication. Next, is the example

of a representation for Symmetric Group Sn on n variables.

Example 1.1.6 Let ϕ : Sn −→ GLn(C) be a map defined on the standard basis

of Cn by ϕσ(ei) = eσ(i). It can be easily checked that it is a homomorphism as it is

defined on the basis elements and therefore is a representation of Sn of degree n.

In particular, when n = 3, we have

ϕ(12) =


0 1 0

1 0 0

0 0 1

 , ϕ(123) =


0 0 1

1 0 0

0 1 0


These matrices are the matrix of linear transformation T : Cn −→ Cn defined as

above.

Next, we will define the concept of equivalence of representations.

Definition 1.1.7 Let ρ : G −→ GL(V ) and ψ : G −→ GL(W ) be two representations

of G. They are called equivalent if there exists an isomorphism T : V −→ W such

that ψg = TρgT
−1∀g ∈ G or equivalently ψgT = Tρg∀g ∈ G.

In this case one writes ρ ∼ ψ. In particular ρ and ψ have same degrees. In pictures,

the following diagram commutes.

V
ρg−−−→ VyT yT

W
ψg−−−→ W

Definition 1.1.8 Let G be a group and ρ : G −→ GL(V ) be a representation of G.

Let W be a subspace of V . W is said to be G − invariant if one has ρgw ∈ W , for

all w ∈ W and g ∈ G .
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Example 1.1.9 Notice that in Example 1.1.6 of representation of Sn,

ϕσ(e1 + e2 + . . .+ en) = eσ(1) + eσ(2) + . . .+ eσ(n) = e1 + e2 + . . .+ en

Here, the first equality is true because ϕ is a homomorphism and the second equality

holds because σ is an element in Sn and also addition of ei’s is commutative. Thus,

one can observe that C(e1 + e2 + . . .+ en) is a Sn − invariant subspace of Cn. Infact

it is identity for all permutations, σ ∈ Sn.

Definition 1.1.10 Let the representations ρ(1) : G −→ GL(V1) and ρ(2) : G −→

GL(V2) of a group G be given. Then one can define the direct sum

ρ(1) ⊕ ρ(2) : G −→ GL(V1 ⊕ V2)

as follows

(ρ(1) ⊕ ρ(2))g(v1, v2) = (ρ(1)
g (v1), ρ(2)

g (v2)).

One can understand it better when it is written in terms of matrices. For that, let

ρ(1) : G −→ GLn(C) and ρ(2) : G −→ GLm(C) be the given representations of G.

Then

ρ(1) ⊕ ρ(2) : G −→ GLm+n(C)

has the following block matrix form

(ρ(1) ⊕ ρ(2))g =

 ρ
(1)
g 0

0 ρ
(2)
g


Example 1.1.11 Define the representation ϕ(1) : Z/nZ −→ C∗ by ϕ

(1)
(m) = e(2πim)/n

and ϕ(2) : Z/nZ −→ C∗ by ϕ
(2)
(m) = e(−2πim)/n. Then

(
ϕ(1) ⊕ ϕ(2)

)
m

=

 e(2πim)/n 0

0 e(−2πim)/n


Definition 1.1.12 Let G be a group and ρ : G −→ GL(V ) be a representation of

G. Let W ≤ V be a G-invariant subspace, then one may restrict ρ to get another

representation ρ|W : G −→ GL(W ) defined as (ρ|W )g(w) = ρg(w) for w ∈ W . We

will always have ρg(w) ∈ W because W is G-invariant space. Then one says ρ|W is

subrepresentation of ρ.
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In mathematics, one generally tries to find some kind of factorization into irreducibles

or primes, so now we will define such elements for representation theory.

Definition 1.1.13 Let G be a group and ϕ : G −→ GL(V ) be a representation of G.

ϕ is said to be irreducible if 0 and V are the only G-invariant subspaces of V .

Example 1.1.14 Every degree 1 representation of a group G,ϕ : G −→ C∗ is

irreducible because there are no proper non-zero subspaces of C. Let us see an

example of a representation which is not irreducible.

Example 1.1.15 The representation of Sn from Example 1.1.6 is not irreducible

because we have seen that C(e1 + e2 + . . .+ en) is a Sn − invariant subspace of Cn.

Definition 1.1.16 Let G be a group and ρ : G −→ GL(V ) be a representation of G.

Then ρ is said to be completely reducible if V can be written as V = V1 ⊕ V2 ⊕

. . .⊕Vn such that Vi are G-invariant subspaces and ρ|Vi : G −→ GL(Vi) are irreducible

representations for all i = 1, . . . , n.

Definition 1.1.17 Let G be a group and ρ : G −→ GL(V ) be a representation of G.

ρ is said to be decomposable if V = V1 ⊕ V2 and V1, V2 are non-zero G-invariant

subspaces. Else, it is said to be indecomposable.

We will now establish the fact that the above notions of decomposability, irre-

ducibility and complete reducibility are dependent only on the equivalence class of a

representation.

Lemma 1.1.18 Let G be a group such that ϕ : G −→ GL(V ) is a representation and

ψ : G −→ GL(W ) is a decomposable representation of G and ϕ ∼ ψ. Then ϕ is also

decomposable.

Proof It is given that ϕ ∼ ψ which implies that there exists a vector space isomor-

phism T : V −→ W such that ϕg = T−1ψgT . Now assume that W = W1 ⊕W2 with

W1,W2 being non-zero G-invariant subspaces of W . This can be done because W is

decomposable.

Let V1 = T−1(W1) and V2 = T−1(W2). Let us first show that V = V1 ⊕ V2.

Indeed if v ∈ V1 ∩ V2 then Tv ∈ W1 and Tv ∈ W2i.e., Tv ∈ W1 ∩W2 = 0, which
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implies Tv = 0. But T is injective and hence v = 0. If v ∈ V , then Tv = w1 +w2 for

some w1 ∈ W1 and w2 ∈ W2. Then v = T−1w1 + T−1w2 ∈ V1 + V2. Thus V + V1⊕ V2.

Next we need to verify that V1 and V2 are G-invariant. If v ∈ Vi, then ϕgv = T−1ψgTv.

But Tv ∈ Wi implies that ψgTv ∈ Wi since Wi is G-invariant. This implies that

ϕgv = T−1ψgTv ∈ T−1(Wi) = Vi. Thus V1 and V2 are G-invariant subspaces of V

such that V = V1 ⊕ V2 making V decomposable as required. � There are similar

results for irreducible and completely reducible representations.

Lemma 1.1.19 Let G be a group such that ϕ : G −→ GL(V ) is a representation and

ψ : G −→ GL(W ) is an irreducible representation of G and ϕ ∼ ψ. Then ϕ is also

irreducible.

Lemma 1.1.20 Let G be a group such that ϕ : G −→ GL(V ) is a representation and

ψ : G −→ GL(W ) is a complete reducibility representation of G and ϕ ∼ ψ. Then ϕ

is also complete reducibility.

1.2 Complete Reducibility and Maschke’s Theo-

rem

Definition 1.2.1 Let G be a group and V be an inner product space. A representation

ρ : G −→ GL (V ) is called unitary if ρg is unitary for all g ∈ G, i.e.,

〈ρg(v), ρg(w)〉 = 〈v, w〉

for all v, w ∈ V . Also one can say that ρ is a map from G −→ U(V, where U(V ) is

the set of all unitary maps from V to V , i.e., T : V −→ V such that TT ∗ = I.

Proposition 1.2.2 Let G be a group and ρ : G −→ GL (V ) be a unitary representa-

tion of G. Then ρ is either decomposable or irreducible.

Proof Let us assume that ρ is not irreducible which implies that there exists a non-

zero proper subspace, W of V such that it is G − invariant. Then, the orthogonal

complement W⊥ of W is also non-zero such that V = W ⊕W⊥. Now, the only thing

left to show is that W ⊥ is a G− invariant subspace of V .
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Let v ∈ W ⊥ and w ∈ W , then

〈ρgv, w〉 = 〈ρg−1ρgv, ρg−1w〉

= 〈v, ρg−1w〉

= 0

Here, the first equality holds as ρ is unitary and the second equality holds because

v ∈ W⊥ and ρg−1w ∈ W ( as W is G− invariant).

Hence, ρgv ∈ W⊥ for v ∈ W⊥. Therefore, W ⊥ is a G− invariant subspace of V and

ρ is decomposable.

Proposition 1.2.3 Let G be a finite group. Then, every representation of G is equiv-

alent to a unitary representation.

Proof Let ρ : G −→ GL(V ) be a representation of G of degree n. Now, choose

a basis B for V and let T : V −→ C∗ be the isomorphism taking coordinates w.r.t

B. Set ϕg = TρgT
−1 for g ∈ G. This leads to a representation, ϕ : G −→ GLn(C)

equivalent to ρ.

Let 〈., .〉 be the standard inner product on Cn. Next we will define a new inner product

(., .) on Cn with the help of averaging trick. Define

(v, w) =
∑
g∈G

〈ϕgv, ϕgw〉 .

Let us verify that it is indeed an inner product-

First, let us see bilinearity

(c1v1 + c2v2, w) =
∑
g∈G

〈ϕg(c1v1 + c2v2, ϕgw〉

=
∑
g∈G

〈(c1ϕgv1 + c2ϕgv2, ϕgw〉

= c1

∑
g∈G

〈ϕgv1, ϕgw〉+ c2

∑
g∈G

〈ϕgv2ϕgv2, ϕgw〉

= c1(v1, w) + c2(v2, w)
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Next,

(w, v) =
∑
g∈G

〈ϕgw,ϕgv〉

=
∑
g∈G

〈ϕgv, ϕgw〉

=
∑
g∈G

〈ϕgv, ϕgw〉

= (v, w)

Now,

(v, v) =
∑
g∈G

〈ϕgv, ϕgv〉

≥ 0

because each term 〈ϕgv, ϕgv〉 ≥ 0. If (v, v) = 0, then

0 =
∑
g∈G

〈ϕgv, ϕgv〉

which implies that

〈ϕgv, ϕgv〉 = 0∀g ∈ G

⇒ 〈ϕ1v, ϕ1v〉 = 0

= 〈v, v〉 = 0

⇒ v = 0

Hence, we have verified that (., .) is the inner product.

We now wish to check that ϕ is unitary w.r.t. inner product (., .).

(ϕhv, ϕw) =
∑
g∈G

〈ϕgϕhv, ϕgϕh〉

=
∑
g∈G

〈ϕghv, ϕgh〉

Let x = gh, then

(ϕhv, ϕw) =
∑
x∈G

〈ϕxv, ϕxw〉

= (v, w)

�
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Corollary 1.2.4 Let G be a finite group and ρ : G −→ GL (V ) be a representation

of group G. Then ρ is either decomposable or irreducible.

Proof From Proposition 1.2.3, one can see that there exists a unitary representation

ϕ such that ρ ∼ ϕ. Now using proposition 1.2.2, ϕ is either irreducible or decompos-

able and so is ρ (By Lemma 1.1.18 and Lemma 1.1.19). �

The theorem that we are now going to state and prove is a very important result

of this chapter.

Theorem 1.2.5 (Maschke) Let G be a finite group, then for any representation

ϕ : G −→ GL(V ) of G it is possible to write V as V = V1 ⊕ V2 ⊕ . . . ⊕ Vn such that

Vi are G-invariant subspaces and ϕ|Vi : G −→ GL(Vi) are irreducible representations

for all i = 1, . . . , n, i.e., it is completely reducible.

Proof Let ϕ : G −→ GL (V ) be a representation of G. We will prove the above

statement by applying induction on dimension of V .

Let dim(V ) = 1, but then ϕ is itself irreducible as V cannot have any non-zero proper

subspace, so we have proved the statement for dim(V ) = 1.

Next, assume that the statement holds true for any vector space having dim(V ) ≤ n.

Now, let ϕ : G −→ GL (V ) be a representation of degree n + 1. If ϕ is irreducible

then we are through. Else, ϕ must be decomposable (Corollary 1.2.4) which implies

the existence of non-zero G-invariant subspaces V1, V2 of V such that V = V1 ⊕ V2.

It is clear that dimV1 and dimV2 < dimV and we can apply induction on V1 and

V2. Therefore, ϕ|V1 and ϕ|V2 are completely reducible and V1 can be written as

V1 = V11 ⊕ V12 ⊕ . . . ⊕ V1s and V2 = V21 ⊕ V22 ⊕ . . . ⊕ V2r where V1i, V2j are G-

invariant subspaces and ϕ|V1i , ϕ|V2j are irreducible subrepresentations of ϕ for all

1 ≤ i ≤ s; 1 ≤ j ≤ r.

Then

V = V11 ⊕ V12 ⊕ . . .⊕ V1s ⊕ V21 ⊕ V22 ⊕ . . .⊕ V2r

Therefore, ϕ is completely reducible.



Chapter 2

Character Theory and

Orthogonality Relations

2.1 Morphisms and Schur’s Lemma

Definition 2.1.1 A morphism from the representation ρ : G −→ GL(V ) to the

representation ϕ : G −→ GL(W ) is a linear map T : V −→ W such that Tρg =

ϕgT ∀g ∈ G , or equivalently the diagram below commutes.

V
ρg−−−→ VyT yT

W
ϕg−−−→ W

The set of morphisms from ρ to ϕ is denoted by HomG (ρ, ϕ).

One can observe that HomG (ρ, ϕ) ⊆ Hom (V,W ).

Remark For an invertible T ∈ HomG (ρ, ϕ) the equivalence, ρ ∼ ϕ holds and T is

an isomorphism. Also T : V −→ V ∈ HomG (ρ, ρ) if and only if Tρg = ρgT∀g ∈ G,

i.e., T is commutative with ρ(G).

Proposition 2.1.2 Let T : V −→ W be an element in HomG (ϕ, ρ). Then ker(T ) is

a G−invariant subspace of V and T (V ) = Im(T ) is a G−invariant subspace of W .

Proof To prove that ker(T ) is a G−invariant subspace of V , we need to show that

for w ∈ ker(T ), ϕgw ∈ ker(T ) ∀g ∈ G.

9
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So let v ∈ ker(T ) and g ∈ G, then Tϕgv = ρgTv = 0 as v ∈ ker(T ). This implies that

ϕgw ∈ ker(T )∀g ∈ G. Hence, ker(T ) is a G−invariant subspace of V .

Similarly, if w ∈Im(T ) and g ∈ G, then w = Tv for some v ∈ V . Then ρgw = ρgTv =

Tϕgv ∈ T . Therefore, ρgw ∈Im(T ) and hence G−invariant. �

Lemma 2.1.3 (Schur’s Lemma) Let ϕ, ρ be two irreducible representations of G

and T ∈ HomG (ϕ, ρ) then either T is invertible or T = 0. Equivalently-

1. If ϕ � ρ, then HomG (ϕ, ρ) = 0.

2. If ϕ = ρ, then T = λI with λ ∈ C.

Remark Given two equivalent irreducible representations ϕ, ρ ofG, the dimHomG (ϕ, ρ) =

1, because then all linear maps from ϕ to ρ are scalar multiples of I.

Corollary 2.1.4 For an abelian group G, any irreducible representation has degree

1.

Corollary 2.1.5 Let ρ : G −→ GLn (C) be a representation of a finite abelian group

G. Then there exists an invertible matrix T such that T−1ϕgT is a diagonal matrix

∀g ∈ G.

2.2 Orthogonality Relations

From now onwards we will assume that G is always finite. If ρ : G −→ GLn (C) is a

representation of G, then ϕg = (ϕij (g)), where ϕij (g) ∈ C for 1 ≤ i, j ≤ n. Therefore

there are n2 functions.

Proposition 2.2.1 Let ρ : G −→ GL(V ) and ϕ : G −→ GL(W ) be representations

of G and T : V −→ W is a linear map. Then:

1. T 1 := 1
|G|
∑

g∈G ϕg−1Tρg ∈ HomG (ρ, ϕ)

2. If T ∈ HomG (ρ, ϕ), then T 1 = T .
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3. The map P : HomG (V,W ) −→ HomG (ρ, ϕ) defined by P (T ) = T 1 is an onto

linear transformation.

Theorem 2.2.2 Let G be a finite group and ϕ : G −→ GL(V ), ρ : G −→ GL(W ) be

irreducible representations of G let T : V −→ W be a linear transformation, then

1. If ϕ � ρ then T1 = 0.

2. Ifϕ = ρ then T1 = Tr(T )
deg(ϕ)

I

Theorem 2.2.3 (Schur’s Orthogonality Relations) Let ρ : G −→ Un(C) and

ϕ : G −→ Um(C) be irreducible representations of G that are both inequivalent and

irreducible. Then

1. 〈ρij, ϕkl〉 = 0

2. 〈ρij, ρkl〉 =

 1
n

if i = k and k = l;

0 Otherwise.

Corollary 2.2.4 For an irreducible unitary representation of G, ρ of degree d, the d2

functions {
√
dρij : 1 ≤ i, j ≤ d} makes an orthonormal set.

2.3 Class Functions and Characters

Definition 2.3.1 Let G be a finite group and let L(G) := {f : G −→ C}. Then L(G)

is called Group Algebra of G and is also denotes as CG. It forms an inner product

space with operations as pointwise addition and multiplication.

Inner product on L(G) is defined as 〈f1, f2〉 = 1
|G|
∑

g∈G f1(g)f2(g)

Definition 2.3.2 Let G be a group and ϕ : G −→ GL(V ) be a representation of

G. We define the character, χϕ : G −→ C of ϕ as χϕ(g) = Tr(ϕg). We call the

character of an irreducible representation as irreducible character.
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Remark For any degree one representation, ϕ : G −→ C∗ of G, the character is

same as the representation, i.e, χϕ = ϕ. This is true because χϕ : G −→ C such that

χϕ(g) = Tr(ϕg) = ϕ(g)∀g ∈ G and hence,

χϕ = ϕ

So we will assume that for a degree one representation it’s character and representation

is same.

Next are a few properties of character that can be proved easily using the definition.

Proposition 2.3.3 Let G be a group and ϕ : G −→ GL(V ) be a representation of

G. Then χϕ(1) = degϕ.

Proposition 2.3.4 If ϕ ∼ ρ, then χϕ = χρ.

Proposition 2.3.5 Let G be a group and ϕ be a representation of G. Then χϕ(g) =

χϕ(hgh−1)∀g, h ∈ G.

Definition 2.3.6 Let f : G −→ C be a function. f is said to be a class function

if f(g) = f(hgh−1)∀g, h ∈ G. Also, one can say that f is a constant function over

conjugacy classes of G. We use Z(L(G)) to denote the space of class functions.

Remark It can be easily seen that character, χ of a representation lies in Z(L(G)).

Proposition 2.3.7 Z(L(G)) forms a vector subspace of L(G)

We now want to find out the dimension of Z(L(G)).

For that let Cl(G) denote the set of conjugacy classes of G. For a conjugacy class

C ∈ Cl(G), we define the function δC : G −→ C as

δC(g) =

 1 if g ∈ C;

0 Otherwise.

Proposition 2.3.8 Let B = {δC : C ∈ Cl(G)} be a set of functions defined as above.

Then B forms a basis for Z(L(G)). Hence dim(Z(L(G)) = |Cl(G)|.
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Proof Since δC attains the constant value 1 on conjugacy class C, it is a class

function. Therefore, δC ∈ Z(L(G)). We next need to show that B spans Z(L(G)). If

f ∈ Z(L(G)), then f =
∑

C∈Cl(G) f(C)δC . Indeed, because left hand side evaluated

at g ∈ G equals f(g) while right hand side equals
∑

C∈Cl(G) f(C)δC(g). Now, if C ′ is

the conjugacy class of g then right hand side becomes f(C ′) (from the definition of

δC). Since g ∈ C ′, f(C ′) = f(g).

So,the only thing left to prove is that B is a linearly independent set. For that assume,∑
C∈Cl(G)

αCδC =
∑

C∈Cl(G)

βCδC

=⇒ ∑
C∈Cl(G)

αC(δC)(g) =
∑

C∈Cl(G)

βC(δC)(g)

=⇒ ∑
C∈Cl(G)

(αC − βC)δC(g) = 0

If g ∈ C ′, then

αC′ = βC′∀C ∈ Cl(G)

Therefore, B is a linearly independent set of class functions that spans Z(L(G)).

To check thatB is an orthonormal set of non zero vectors, consider that C,C ′ ∈ Cl(G),

then

〈δC , δC′〉 =
1

|G|
∑
g∈G

δC(g)δC′(g) =


|G|
|G| if C = C ′;

0 Otherwise.

Also |B| = |Cl(G)| = dimZ(L(G)). Hence, proved. �

Now we come to one of the important results of this chapter, i.e., First Orthogonality

Relation.

Theorem 2.3.9 (First Orthogonality Relation) Let G be a group and ϕ, ρ be ir-

reducible representations of G. Then

〈χϕ, χρ〉 =

 1 if ϕ ∼ ρ

0 ϕ � ρ

Thus the set of irreducible characters of G forms an orthonormal set of class functions.

Corollary 2.3.10 For a group G, there are at most |Cl(G)| equivalence classes of

irreducible representations.
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Let us define a notation. For a vector space, V , a representation ϕ and m > 0, we

write

mV = V ⊕ V ⊕ . . .⊕ V︸ ︷︷ ︸
m copies

;mϕ = ϕ⊕ ϕ⊕ . . .⊕ ϕ︸ ︷︷ ︸
m copies

.

We also set {ϕ(1), . . . , ϕ(s)} as the complete set of irreducible unitary representations

of G and di = degϕ(i)

Definition 2.3.11 Let ρ be a representation of a group G s.t ρ ∼ m1ϕ
(1)⊕. . .⊕msϕ

(s),

then the number mi is called the multiplicity of ϕ(i) in ρ. It can be easily seen that

deg ρ =
∑s

i=1midi

Lemma 2.3.12 Let ϕ, ρ, ψ be representations of a group G such that ϕ = ρ ⊕ ψ.

Then χϕ = χρ + χψ.

Theorem 2.3.13 Let G be a group and {ϕ(1), . . . , ϕ(s)} be the complete set of rep-

resentatives of the equivalence classes of irreducible representations of G. If ϕ ∼

m1ϕ
(1) ⊕ . . .⊕msϕ

(s) Then mi =
〈
χϕ, χ

(i)
ϕ

〉
. Also, this decomposition of ϕ into irre-

ducible constituents is unique and ϕ is determined by its character upto equivalence.

Proof The main idea used in the proof is that equivalence of representations is an

equivalence relation. Given ϕ ∼ m1ϕ
(1) ⊕ . . .⊕msϕ

(s), χϕ = m1χϕ(1) + . . .+msχϕ(s)〈
χϕ, χϕ(i)

〉
= m1

〈
χϕ(1) , χϕ(i)

〉
+ . . .+ms

〈
χϕ(s) , χϕ(i)

〉
Each 〈

χ(j)
ϕ , χ(i)

ϕ

〉
=

 1 if i = j

0 i 6= j〈
χϕ, χ

(i)
ϕ

〉
= mi∀1 ≤ i ≤ s, because ϕ(j) � ϕ(i) otherwise they would have been in

same equivalence class which is not the case.

From Lemma 2.3.12, the decomposition of ϕ into irreducible constituents is unique

otherwise if there would have been some other decomposition, say ϕ ∼ m′1ψ
(1)⊕ . . .⊕

m′sψ
(s)

m1χϕ(1) + . . .+msχϕ(s) = m′1χψ(1) + . . .+m′sχψ(s)

Then ψ(i) ∼ ϕ(i)∀i �
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Corollary 2.3.14 Let G be a group and ϕ be a representation of G. Then ϕ is

irreducible if and only if 〈χϕ, χϕ〉 = 1.

Theorem 2.3.15 Let G be a group and {ϕ(1), . . . , ϕ(s)} be the complete set of irre-

ducible representations of G such that di = degϕ(i), then |G| = d2
1 + d2

2 + . . .+ d2
s.

Theorem 2.3.16 Let G be a group and ϕi, di, 1 ≤ i ≤ s be the same as above. Then

the set B = {
√
dkϕ

(k)
ij : 1 ≤ k ≤ s, 1 ≤ i, j ≤ dk} forms an orthonormal basis for the

Group algebra, L(G).

So far, we have already seen a basis for the set of class functions, namely {δC : C ∈

Cl(G)}. Next, we would like to look at another basis of Z(L(G)) but it is orthonormal.

Theorem 2.3.17 Let G be a group and Z(L(G)) be set of class functions. Then the

set B = {χ1, χ2, . . . , χs} forms an othonormal basis for Z(L(G)).

Proof We will use the same notation as above for this proof. It is clear from first

orthogonality relations (Theorem 2.3.9) that irreducible characters forms an orthonor-

mal set of class functions. We now need to show that the set B spans Z(L(G)). For

that, let f ∈ Z(L(G)). From the previous theorem, f can be written as

f =
∑
i,j,k

c
(k)
ij ϕ

(k)
ij
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for some constants c
(k)
ij ∈ C. Here 1 ≤ k ≤ s, 1 ≤ i, j ≤ dk. Also because f is a class

function, for any x ∈ G,

f(x) =
1

|G|
∑
x∈G

f(g−1xg)

=
1

|G|
∑
x∈G

∑
i,j,k

c
(k)
ij ϕ

(k)
ij (g−1xg)

=
∑
i,j,k

c
(k)
ij

1

|G|
∑
x∈G

ϕ
(k)
ij (g−1xg)

=
∑
i,j,k

c
(k)
ij

[
1

|G|
∑
x∈G

ϕ
(k)

g−1ϕ
(k)
x ϕ(k)

g

]
ij

=
∑
i,j,k

c
(k)
ij

[
(ϕ(k)

x )1
]
ij

=
∑
i,j,k

c
(k)
ij

Tr(ϕ
(k)
x )

degϕ(k)
Iij

=
∑
i,k

c
(k)
ii

1

dk
χk(x)

Notation (ϕ
(k)
x )1 is same as in Proposition 2.2.1. Therefore,

f =
∑
i,k

c
(k)
ii

1

dk
χk

which in a linear combination of elements in B. Hence, this shows that B forms an

orthonormal basis for Z(L(G)). �

Corollary 2.3.18 Let G be a group. The number of conjugacy classes of G is equal

to the number of equivalence classes of irreducible representations of G.

Proof Clearly from the above theorem we have dim(Z(L(G))) = s and also from

Proposition 2.3.8, dim(Z(L(G))) = |Cl(G)|.

Therefore, s = |Cl(G)|. �

Corollary 2.3.19 Let G be a finite group. G is abelian if and only if number of

irreducible representations of G is equal to number of equivalence classes of G.

Proof It is a well known fact that a finite groupG is abelian if and only if the number

of conjugacy classes of G is equal to |G|. Therefore, from the above corollary, G is
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abelian if and only if it has |G| many equivalence classes of irreducible representations.

�

Theorem 2.3.20 (Second Orthogonality Relations) Let C,C ′ be conjugacy classes

of a finite group G and let g ∈ C and h ∈ C ′. Then

s∑
i=1

χi(g)χi(h) =


|G|
|C| if C = C ′

0 C 6= C ′

Definition 2.3.21 For a finite group G, let χ1, . . . , χs and C1, . . . , Cs be the irre-

ducible characters and conjugacy classes of G respectively. Define X to be a s × s

matrix such that (X)ij = χi(Cj). The matrix X is called the character table of G.
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Chapter 3

Induced Representations

This chapter deals with studying representations of GL2(Fq). Representations on

GL2(Fq) are constructed by inducing representations of Borel subgroup, B of GL2(Fq).

3.1 Basics

Definition 3.1.1 For a subgroup H of a group G let (π, V ) be a given representation

of H. Define a representation of G as (πG, V G) where

V G = {f : G→ V : f(hg) = π(h)f(g) for all h ∈ H, g ∈ G}

and

(πG(g)f)(x) = f(xg).

(πG, V G) is known as induced representation of G from π.

Definition 3.1.2 Given two representations (τ, U) and π, V ) of G, a linear map

φ : U −→ V is called an interwiner or a homomorphism of G-modules if

φ (τ (g) (u)) = π (g) (φ(u)) for all u ∈ U

We will now describe the relation between two induced representations. For that, let

G be a finite group and H1, H2 be two subgroups of G with representations (π1, V1)

and (π2, V2) respectively. For functions f :→ V1 and ∆ : G → HomC (V1, V2), define

a convolution ∆ ∗ f : G→ V2 by

(∆ ∗ f) (g) =
1

|G|
∑
x∈G

∆(gx−1)(f (x))

19
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Denote by D the set of all functions ∆ : G→ HomC (V1, V2) which satisfy

∆(h2gh1) = π2(h2) ◦∆(g) ◦ π(h1)

for all h1 ∈ H1, h2 ∈ H2 and g ∈ G.

Theorem 3.1.3 (Mackey) The space HomG(V G
1 , V

G
2 ) is isomorphic to D as a vec-

tor space. In particular, for a function ∆ ∈ D, the corresponding element L∆ ∈

HomG(V G
1 , V

G
2 ) is given L∆(f1) = ∆ ∗ f1 for f1 ∈ V G

1 .

Proof Given a ∆ ∈ D and f1 ∈ V G
1 , it clearly follows from the definitions that

∆ ∗ f1 ∈ V G
2 and L∆ is an interwiner defined as L∆(f1) = ∆ ∗ f1. Therefore, we have

a linear map D −→ HomG(V G
1 , V

G
2 ).

Conversely, we will construct an inverse map HomG(V G
1 , V

G
2 ) −→ D. Define a collec-

tion, fg,v of elements in V G
1 , indexed by v ∈ V and g ∈ g, defined as

fg,v(x) =

 π1(h)v if x = hg, h ∈ H1

0 if x /∈ H1g

Also, for v ∈ V1

∆(g)(v) = [G : H1]L∆(fg−1,v)(1)

To see this we will solve right hand side by using the definition of L∆(fg−1,v)

[G : H1]L∆(fg−1,v)(1) = [G : H1] (∆ ∗ fg−1,v) (1)

=
[G : H1]

|G|
∑
x∈G

∆(x−1)fg−1,v(x)

=
1

|H1|
∑
h∈H1

∆(gh−1)π1(h)(v)

=
1

|H1|
∑
h∈H1

π2(1)∆(gh−1)π1(h)(v)

=
1

|H1|
∑
h∈H1

∆(1gh−1h)(v)

= ∆(g)(v)

Therefore, from the proof above given any L∆ ∈ HomG(V G
1 , V

G
2 ) one can define an

element of D and it is clear that the two maps defined above are inverses of each

other. �
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Lemma 3.1.4 Let G be a group such that H ≤ G and {g1, g2, . . . , gs} be the set of

coset representatives of H in G. Let (π, V ) and (πG, V G) be the representations of H

and G respectively as mentioned above. Let {v1, v2, . . . , vn} be the basis of V . Then

basis of V G is given by the functions

{δgi,vj : G→ V, 1 ≤ i ≤ s, 1 ≤ j ≤ n}

defined as

δgi,vj(gh) =

 π(h)vj if g = gi

0 else

In particular, the dimV G = dimV × [G : H].

Proof First, we shall show that δgi,vj ’s are linearly independent. That is

s∑
i=1

n∑
j=1

αi,jδgi,vj = 0⇔ αi,j = 0 ∀i, j

which implies,
s∑
i=1

n∑
j=1

αi,jδgi,vj (x) = 0 ∀x ∈ G

In particular if x = gkh for some h ∈ H,

s∑
i=1

n∑
j=1

αi,jδgi,vj (gkh) =
n∑
j=1

αk,jπ(h)vj

= π(h)

(
n∑
j=1

αk,jvj

)
∀h ∈ H

Therefore,
n∑
j=1

αk,jvj = 0⇐⇒ αk,j = 0 ∀1 ≤ j ≤ n.

Next, we will check that δgi,vj ’s span V G, that is, for any f ∈ V G, one should be able

to find αi,j such that

f =
s∑
i=1

n∑
j=1

αi,jδgi,vj



22 CHAPTER 3. INDUCED REPRESENTATIONS

Now if the above holds, then it is true for all g ∈ G, that is,

f (gi0h) =
s∑
i=1

n∑
j=1

αi,jδgi,vj (gi0h)

π (h) f (gi0) =
n∑
j=1

αi0,jπ(h)vj

= π(h)

(
n∑
j=1

αi0,jvj

)

f (gi0) =
n∑
j=1

αi0,jvj

Therefore, each f can be written in terms of {δgi,vj : 1 ≤ i ≤ s, 1 ≤ j ≤ n} and hence

it forms a basis for V G. Clearly, dimV G = dimV × [G : H]. �

3.2 Representations of GL2(Fq)

3.2.1 Conjugacy Classes in GL2(Fq)

G = GL2(Fq) is a group of 2× 2 invertible matrices with entries in Fq. In this section

we will look at conjugacy classes of G.

Clearly, |G| = (q2 − q)(q2 − 1) = q(q − 1)2(q + 1).

Two matrices

 a b

0 c

 and

 a′ b′

0 c′

 are conjugates only when {a, c} = {a′, c′}

because conjugate matrices have same eigenvalues. With this fact in mind we can see

that there are four families of conjugacy classes of G, listed as follows-

1. The matrices

αI =

 α 0

0 α


for α ∈ F∗q belong to the centre of G and hence giving q − 1 conjugacy classes

of 1.

2. Consider the matrices

uα =

 α 1

0 α


for α ∈ F∗q. If

g =

 a b

c d
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is an element of G, then

guα =

 aα a+ bα

cα c+ dα


and

uαg =

 aα d+ bα

cα dα


so g is in the centralizer of uα if and only if c = 0 and a = d. Thus, uα(α ∈ F∗q)

results in q−1 conjugacy classes and the order of centralizer is q(q−1), so, each

conjugacy class contains q2 − 1 elements.

3. Let

dα,β =

 α 0

0 β

 ∈ G and (α, β ∈ F∗q)

Also one can see that  0 1

1 0

−1

dα,β

 0 1

1 0

 = dβ,α

Now, if α 6= β, then gdα,β = dα,βg if and only if b = c = 0. Therefore, the

matrices dα,β, for α, β ∈ F∗q and α 6= β gives us (q − 1)(q − 2)/2 conjugacy

classes. Also the order of the centralizer is (q− 1)2, so each conjugacy class has

q(q + 1) elements.

4. Consider,

νs =

 0 1

−s1+q s+ sq

 (s ∈ Fq2 \ Fq)

Since s1+q and (s+sq) are elements of Fq, νs ∈ G.The characterisctic polynomial

of νs is

det(λI − νs) = λ(λ− (s+ sq)) + s1+q = (λ− s)(λ− sq).

So νs has eigenvalues, (s1+q) and (s+ sq). As s /∈ Fq, νs does not belong to any

of the conjugacy classes constructed earlier.

Observe that

gνs =

 −bs1+q a+ b(s+ sq)

−ds1+q c+ d(s+ sq)
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and

νsg =

 c d

−as1+q + c(s+ sq) −bs1+q + d(s+ sq)


Therefore, νsg = gνs only when c = −bs1+q and d = a+ b(s+ sq). If this holds,

then

ad− bc = a2 + ab(s+ sq) + b2s1+q = (a+ bs)(a+ bsq)

Since (a, b) 6= (0, 0) and s, sq /∈ Fq, (a + bs) and (a + bsq) are non-zero. So, g ∈

centralizer of (νs) if and only if

g =

 a b

−bs1+q a+ b(s+ sq)


Thus, the order of the centralizer of νs is q2−1, and the conjugacy class contain-

ing νs has size q2 − q. Also, the matrix νr has eigenvalues r and rq, so it is not

conjugate to νs unless r = s or r = sq. Therefore, Fq2 \ Fq) can be partitioned

into subsets {s, sq}, each of which gives a conjugacy class representative νs and

different subsets gives representatives of different conjugacy classes.

3.2.2 Parabolically induced representations for GL2(Fq)

Let B ≤ GL2(Fq) which consists of the invertible upper triangular matrices, i.e.,

B =


 a b

0 c

 : ac 6= 0, a, b, c ∈ Fq

 .

B is also called standard Borel subgroup of G. Let T be a subgroup of GL2(Fq) which

consists of invertible upper triangular matices with 1′s along diagonal, i.e.,

N =


 1 b

0 1

 : b ∈ Fq

 .

Also, denote by T the subgroup of G consisting of invertible diagonal matrices.

For χ1 and χ2, characters of F∗q, one can define character χ : T −→ C∗ of T as

χ

 x1 0

0 x2

 = χ1 (x1)χ2 (x2)
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Now, this character can be extended to a character χ of B such that N lie in the

kernel. Therefore,

χ

 x1 x

0 x2

 = χ1 (x1)χ2 (x2)

We will now construct representations, say I(χ1, χ2) of GL2(Fq) induced from the

character of B defined above.

Proposition 3.2.1 For the characters χ1, χ2, µ1 and µ2 of F∗q, we have

dimHomGL2(Fq)(I(χ1, χ2), I(µ1, µ2)) = e1 + e2

where,

e1 =

 1 if χ1 = µ1 and χ2 = µ2,

0 otherwise

and

e2 =

 1 if χ1 = µ2 and χ2 = µ1,

0 otherwise

Theorem 3.2.2 For the characters χ1, χ2, µ1 and µ2 of F∗q, representation I(χ1, χ2)

of GL2(Fq) is irreducible of degree q + 1 unless χ1 = χ2. For χ1 = χ2, I(χ1, χ2) is a

direct sum of two irreducible representations of degrees 1 and q. So

I(χ1, χ2) ∼ I(µ1, µ2)

if and only if either

χ1 = µ1 and χ2 = µ2

or else

χ1 = µ2 and χ2 = µ1

Proof On applying Proposition 3.2.1 with χ1 = µ1 and χ2 = µ2, we can see that

dimHomGL2(Fq)(I(χ1, χ2), I(µ1, µ2)) = dimEndGL2(Fq)(I(χ1, χ2))

=

 1 if χ1 6= χ2,

2 if χ1 = χ2

Also, if (π, V ) is a representation of G and V is a direct sum of distinct irreducible

representations π1, π2, . . . , πs with multiplicities, m1,m2, . . . ,ms then dimEndG(V ) =



26 CHAPTER 3. INDUCED REPRESENTATIONS

∑
m2
i .

Therefore, I(χ1, χ2) is an irreducible representation if χ1 6= χ2. Else in the case when

χ1 = χ2, it is a direct sum of two irreducible representations as 2 = 12 + 12 is the only

way to write 2 as a sum of nonzero squares.

By Lemma 3.1.4, dimension of I(χ1, χ2) = dimC × [GL2(Fq) : B] = q + 1. If

χ1 = χ2, the representation of GL2(Fq), one have an irreducible representation

of degree 1, namely one dimensional invariant subspace generated by the function

f(g) = χ1(det(g)). It clearly satisfies f(hg) = χ(h)f(g) for all h ∈ B and g ∈ G,

hence lies in the space of I(χ1, chi2) resulting in the one dimensional representation

of GL2(Fq). The other component then is q dimensional.

If χ1 6= χ2 then as mentioned earlier, I(χ1, χ2) is irreducible. By proposition 6.3.1,

there is a non-zero element in HomGL2(Fq)(I(χ1, χ2), I(µ1, µ2)) if and only if χ1 = µ1

and χ2 = µ2 or χ1 = µ2 and χ2 = µ1. Since, they are irreducible these homomor-

phisms must be isomorphisms. �

Let χ = (χ1, χ2) be a character of B. We have thus far constructed the following

representations of GL2(Fq):

1. When χ1 6= χ2, the irreducible representation of GL2(Fq) is of degree q + 1.

Since the representations corresponding to the character (χ1, χ2) and (χ2, χ1)

are isomorphic, we have 1
2
(q − 1)(q − 2) irreducible representations of degree

q + 1.

2. When χ1 = χ2, there are two irreducible representations of degrees 1 and q of

GL2(Fq). All these are pairwise non-isomorphic, hence we have q − 1 represen-

tations of degree 1 and q − 1 representations of degree q.

We know that the number of irreducible representations is equal to the number of

conjugacy classes in a group and we have looked at

(q − 1) + (q − 1) +
(q − 1)(q − 2)

2

irreducible representations, and there are q2− 1 conjugacy classes of GL2(Fq). So, we

are left to look at 1
2
(q2 − q) irreducible representations.

Also, if {π1, π2, . . . , πs} forms a complete set of irreducible representations of degrees
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d1, d2, . . . , ds with multiplicities m1,m2, . . . ,ms of a group G, then

|G| =
s∑
i=1

mid
2
i .

On applying above to GL2(Fq), we get

1

2
(q − 1)(q − 2)(q + 1)2 + (q − 1) + (q − 1)q2

and using the above equation, we get the difference as 1
2
(q2 − q)(q − 1)2. Therefore,

1
2
(q2 − q) many representations left are of degree q − 1 each.

3.3 Representations of Frobenius Group

Let q be a power of a prime number and let

Fq,q−1 =


 1 b

0 a

 : a ∈ F∗q, b ∈ Fq


Fq,q−1 is a Frobenius group of order q(q − 1).

It can also be easily verified that Fq,q−1 is isomorphic to the set of affine functions,{
f : Fq −→ Fq : f(x) = ax+ b, a ∈ F∗q, b ∈ Fq

}
.

Let

H =


 1 b

0 1

 : b ∈ Fq


Clearly, |H| = q and H ∼= Fq. Also H is a normal subgroup of the Frobenius group

Fq,q−1. A complete set of coset representatives of H in Fq,q−1 is

C =


 1 0

0 a

 : a ∈ F∗q


Now we will define a representation of H and will then induce it to write representa-

tions of Fq,q−1.

Let ρ : H −→ C∗ be given by

ρ

 1 b

0 1

 = e2πib/q

To check that a given induced representation is irreducible or not we have Mackey’s

Criterion . Below is the version of Mackey’s Criterion for a normal subgroup H of G.
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Theorem 3.3.1 (Mackey’s Criterion) Let H be a normal subgroup of G and ϕ :

H −→ GLd(C) be an irreducible representation. Then the induced representation of

ϕ on G is also irreducible if and only if for some s /∈ H the representation ϕs : H −→

GLd(C) defined as ϕs(h) = ϕ(s−1hs) does not have ϕ as an irreducible constituent.

So to check that the induced representation of ρ on Fq,q−1, say ρFq,q−1 is irreducible or

not, let s =

 1 0

0 a−1

 be such that a 6= 1, then

ρs

 1 b

0 1

 = ρ

 1 0

0 a

 1 b

0 1

 1 0

0 a−1

 = ρ

 1 ba−1

0 1

 = e2πiba−1/q

Therefore, ρ and ρs are inequivalent irreducible characters of H. So, from Mackey’s

Criterion ρFq,q−1 is an irreducible representation of degree [Fq,q−1 : H] = q − 1 (from

Lemma 3.1.4). Hence,

ρFq,q−1 : Fq,q−1 −→ GLq−1(C).

Also, from Theorem 2.3.15,

(q − 1) + (q − 1)(q − 1) = (q − 1)(1 + q − 1) = q(q − 1) = |Fq,q−1|

Now, we are left with q − 1 degree 1 representations of Fq,q−1. Given a character

χ : F∗q −→ C∗ we have

χFq,q−1 : Fq,q−1 −→ C∗

defined as

χFq,q−1

 1 b

0 a

 = χ(a)
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Chapter 4

Fourier Analysis on Finite Groups

This chapter introduces the reader with the concept of Fourier transform and Fourier

Inversion on Finite Abelian as well as non-Abelian Groups. We will also introduce

an algebraic structure on L(G) which comes from the convolution product. The

applications of which we will see in later chapters.

4.1 The Convolution Product

In this section we define the concept of convolution product in L(G), which then will

explain the name, Group Algebra for L(G).

Definition 4.1.1 For a finite group G and f1, f2 ∈ L(G) the convolution product of

f1 and f2 is a function, f1 ∗ f2 : G −→ C defined by

f1 ∗ f2(x) =
∑
y∈G

f1(xy−1)f2(y).

We would now like to show that convolution product provides a ring structure on

L(G).

So, to each g ∈ G, associate the delta function δg defined as

δg(x) =

 1 if x = g

0 otherwise

Proposition 4.1.2 Let g, h ∈ G, then δg ∗ δh = δgh.

31
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Proof Let * be the convolution, then

δg ∗ δh(x) =
∑
y∈G

δg(xy
−1)δh(y)

and the only non-zero term on right hand side is when xy−1 = g and h = y i.e.,

g = xh−1 which implies x = gh. Therefore, δg ∗ δh = δgh. �

Now if f1, f2 ∈ L(G), then

f1 =
∑
g∈G

f1 (g) δg, f2 =
∑
g∈G

f2(g)δg

Theorem 4.1.3 Let G be a finite group and L(G) denotes it’s Group Algebra. Then

L(G) forms a ring with pointwise addition and convolution as multiplication. Also,

the multiplicative identity of L(G) is δ1.

Proof Firstly, we need to show that it is an additive abelian group. Clearly, it is

closed under addition. Also the identity element exists, i.e., the zero function, say

f0 : G −→ C defined by f0(x) = 0∀x ∈ G. Inverse of every function f is −f which is

in L(G) such that f+(−f) = f0. Also for f1, f2 ∈ L(G), (f1+f2)(x) = f1(x)+f2(x) =

f2(x) + f1(x) = (f2 + f1)(x)∀x ∈ G Therefore, it is an abelian additive group.

Next we need to show that convolution is associative and distributive. For associa-

tivity, let f1, f2, f3 ∈ L(G). Then,

[(f1 ∗ f2) ∗ f3] (x) =
∑
y∈G

[f1 ∗ f2(xy−1)]f3(y)

=
∑
y∈G

∑
z∈G

f1(xy−1z−1f2(z)f3(y)

Let u = zy ⇒ y−1z−1 = u−1 ⇒ z = uy−1. Then,

[(f1 ∗ f2) ∗ f3] (x) =
∑
y∈G

∑
u ∈ Gf1(xu−1)f2(uy−1)f3(y)

=
∑
u∈G

f1(xu−1)
∑

y ∈ Gf2(uy−1)f3(y)

=
∑
u∈G

f1(xu−1)[f2 ∗ f3](u)

= [f1 ∗ (f2 ∗ f3)](x)
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Hence convolution product on L(G) is associative.

To see that it distributes over addition, let f1, f2, f3 ∈ L(G), then

(f1 + f2) ∗ f3(x) =
∑
y∈G

(f1 + f2) (xy−1)f3(y)

=
∑
y∈G

f1(xy−1)f2(y) +
∑
y∈G

f2(xy−1)f3(y)

= (f1 ∗ f3) (x) + (f2 ∗ f3) (x)

Similarly, one can check that f1 ∗ (f2 + f3) = f1 ∗ f2 + f1 ∗ f3.

So L(G) forms a ring with pointwise addition and convolution product as multiplica-

tion. Next, let’s check the multiplicative identity. Let a ∈ L(G), then

a ∗ δ1(x) =
∑
y∈G

a(xy−1)δ1(y) = a(x)

The equality holds because δ1(y) will be nonzero only when y = 1. Similarly,

δ1 ∗ a(x) =
∑
y∈G

δ1(xy−1)a(y)

= a(x)∀x ∈ G

Equality holds because δ1(xy−1) is non zero only when y = x. �

In the previous chapter, we denoted the space of class functions by Z(L(G)). We

know that for a ring R,Z(R) is used for the center of the ring so next we will explain

the notation Z(L(G)) for the ring L(G).

Proposition 4.1.4 Let G be a group then the set of class functions Z(L(G)) forms

the center of G.

Proof We need to show that a function f : G −→ C is a class function if and only

if f ∗ a = a ∗ f for all a ∈ L(G)

First, let f be a class function and let a ∈ L(G). Then,

a ∗ f(x) =
∑
y∈G

a(xy−1)f(y)

=
∑
y∈G

a(xy−1)f(xyx−1)
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The first equality holds because f is a class function. Now, let z = xy−1

a ∗ f(x) =
∑
z∈G

a(z)f(xz−1)

=
∑
z∈G

f(xz−1)a(z)

= f ∗ a(x)

Hence, a ∗ f = f ∗ a. Conversely, let f ∈ center of L(G).

Claim f(gh) = f(hg) for all h, g ∈ G

Justification

f (gh) =
∑
y∈G

f(gy−1)δh−1(y) = f ∗ δh−1(g)

= δh−1 ∗ f(g) =
∑
y∈G

δh−1(gy−1)f (y)

= f(hg)

The last equality holds because δh−1 6= 0⇔ gy−1 = h−1 ⇔ y = hg.

Hence, f(ghg−1) = f(hg−1g) = f(h) showing that f is class function. �

4.2 Fourier Analysis on Finite Abelian Groups

For a finite abelian group G, the set of class functions is same as L(G). Clearly,

Z(L(G)) ⊆ L(G). Now for any function f ∈ L(G), f(g) = f(gh−1h) = f(hgh−1) for all g, h ∈

G. So f ∈ Z(L(G))

Hence, L(G) forms a commutative ring when G is an abelian group.

Definition 4.2.1 For a finite abelian group G, we define the the dual group of G as

the set of all irreducible characters, χ : G −→ C∗ It is denoted by Ĝ.

Proposition 4.2.2 For a finite abelian group G and χ, θ ∈ Ĝ, define a product on

Ĝ as (χ.θ) (g) = χ(g)θ(g). Then Ĝ forms an abelian group with respect to the above

defined product and |Ĝ| = |G|.
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Proof Let χ, θ ∈ Ĝ, then

χ.θ(g1g2) = χ(g1g2)θ(g1g2)

= χ(g1)χ(g2)θ(g1)θ(g2)

= χ(g1)θ(g1)χ(g2)θ(g2)

= (χ.θ) (g1). (χ.θ) (g2)

Hence, Ĝ is closed under the defined product. Also, the product is commutative as

well as associative. The trivial character χ1(g) = 1 for all g ∈ G is the identity for Ĝ.

Also, χ−1(g) = χ(g)−1 = χ(g) is the inverse. Indeed, χ.χ−1 = χ1. Therefore, Ĝ forms

an abelian group.

It is known that the number of irreducible characters of an abelian group G is |G|, so

|Ĝ| = |G|. �

Definition 4.2.3 Let G be a finite abelian group and f ∈ L(G). Then the Fourier

transform of f is the function f̂ : Ĝ −→ C defined as

f̂(χ) = |G| 〈f, χ〉 =
∑
g∈G

f(g)χ(g)

The numbers |G| 〈f, χ〉 are known as the Fourier coefficients of f.

Example 4.2.4 If θ1, θ2 ∈ Ĝ, then

θ̂1(θ2) = |G| 〈θ1, θ2〉 =

 |G| if θ1 = θ2

0 else

by the orthogonality relations. So, θ̂1 = |G|δθ1

Theorem 4.2.5 (Fourier Inversion Theorem) For a finite abelian group G and

the function f ∈ L(G),

f =
1

|G|
∑
χ∈Ĝ

f̂(χ)χ.

Proof It is just an easy computation.

f =
∑
χ∈Ĝ

〈f, χ〉χ

=
1

|G|
∑
χ∈Ĝ

|G| 〈f, χ〉χ

=
1

|G|
∑
χ∈Ĝ

f̂(χ)χ
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�

Next, we will show that Fourier transform of a function is a linear transformation.

Proposition 4.2.6 For a finite abelian group G, the map T : L(G) −→ L(Ĝ) defined

as T (f) = f̂ is invertible and linear.

Proof Let G be such that |G| = n. From the definition, T (c1f1 +c2f2) = ̂c1f1 + c2f2

̂c1f1 + c2f2(χ) = n 〈c1f1 + c2f2, χ〉

= c1n 〈f1, χ〉+ c2n 〈f2, χ〉

= c1f̂1(χ) + c2f̂2(χ) ∀χ ∈ Ĝ

Therefore, ̂c1f1 + c2f2 = c1f̂1 + c2f̂2. We need to check T is bijective. Let’s first check

injectivity. Let

f̂1 = f̂2

f̂1(χ) = f̂2(χ) ∀χ ∈ Ĝ

|G| 〈f1, χ〉 = |G| 〈f2, χ〉

〈f1, χ〉 = 〈f2, χ〉

〈f1 − f2, χ〉 = 0 ∀χ ∈ Ĝ

f1 = f2

So, it is injective and also dimL(G) = n = dimL(Ĝ). Therefore, T is an invertible

linear transformation. �

One can also define a ring structure on L(G) using pointwise multiplication defined as

(f.g)(x) = f(x)g(x). And it can be easily checked that if δ1 is the multiplicative iden-

tity of L(G) under convolution, the map I : G −→ C defined by I(g) = 1 for all g ∈ G

is the identity of L(G) under pointwise multiplication.

One can establish an isomorphism between both these rings as done in the next the-

orem.

Theorem 4.2.7 Let G be a finite abelian group and f1, f2 ∈ L(G). Then the Fourier

transform satisfies

f̂1 ∗ f2 = f̂1.f̂2.

So, the linear map T : L(G) −→ L(Ĝ) defined as Tf = f̂ gives an isomorphism

between the rings (L(G),+, ∗) and (L(Ĝ),+, .).
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Proof From Proposition 4.2.6, one already knows that T is an isomorphism of vector

spaces. So it is enough to show that T (f1 ∗ f2) = Tf1.T f2, i.e.,

f̂1 ∗ f2 = f̂1.f̂2

Let |G| = n.

f̂1 ∗ f2(χ) = n 〈f1 ∗ f2, χ〉

= n.
1

n

∑
x∈G

(f1 ∗ f2)(x)χ(x)

=
∑
x∈G

χ(x)
∑
y∈G

f1(xy−1)f2(y)

=
∑
y∈G

f2(y)
∑
x∈G

f1(xy−1)χ(x)

We will now change the variable z, i.e, z = xy−1

f̂1 ∗ f2(χ) =
∑
y∈G

f2(y)
∑
z∈G

f1(z)χ(zy)

=
∑
y∈G

f2(y)χ(y)
∑
z∈G

f1(z)χ(z)

=
∑
z∈G

f1(z)χ(z)
∑
y∈G

f2(y)χ(y)

= n 〈f1, χ〉 .n 〈f2, χ〉

= f̂1(χ).f̂2(χ) ∀χ ∈ Ĝ

Therefore,

f̂1 ∗ f2 = f̂1.f̂2

�

Example 4.2.8 This exapmle is the summary of whatever we have seen so far for

the case when G = Z/nZ. Let f, g : Z −→ C be two periodic functions with period n,

i.e., f(x+ n) = f(x) for all x ∈ Z. It can be clearly observed that periodic functions

with period n are in one one to correspondence with elements of L (Z/nZ). The

convolution product is defined as

f1 ∗ f2(j) =
n−1∑
k=0

f1(j − k)f2(k)
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And the Fourier transform of a function f1 ∈ L (Z/nZ) is

f̂1(j) =
n−1∑
k=0

f1(k)e(−2πijk)/n

By Theorem 4.2.5,

f1(j) =
1

n

n−1∑
k=0

f̂1(k)e(−2πikk)/n

Next, we need a lemma on eigenvector and eigenvalues of the convolution operator

on L(G).

Lemma 4.2.9 For an abelian group G and f ∈ L(G), define the convolution operator

Mf : L(G) −→ L(G) by Mf (f1) = f ∗ f1. Then Mf is a linear map and χ is an

eigenvector of Mf with eigenvalue as f̂(χ) for all χ ∈ Ĝ

Proof To check that Mf is linear, for f1, f2 ∈ L(G) and c1, c2 ∈ C, consider

Mf (c1f1 + c2f2) = Mf ∗ (c1f1 + c2f2)

= f ∗ c1f1 + f ∗ c2f2

= c1f ∗ f1 + c2f ∗ f2

= c1Mf (f1) + c2Mf (f2)

Next, let |G| = n and χ ∈ Ĝ. Then

f̂ ∗ χ = f̂ .χ̂ = f̂ .nδχ

The equality holds as χ̂ = n 〈χ, θ〉 =

 n if χ = θ

0 else

Therefore, χ̂ = nδχ

(f̂ .nδχ)(θ) =

 f̂(θ)n if χ = θ

0 else

for some θ ∈ Ĝ. So f̂ .nδχ = f̂(χ)nδχ Therefore,

f̂ ∗ χ = f̂(χ)nδχ

Now applying the Fourier Inversion Theorem and using χ̂ = nδχ

f ∗ χ =
1

n

∑
θ∈Ĝ

f̂ ∗ χ(θ)θ

=
1

n

∑
θ∈Ĝ

f̂(χ)nδχ(θ)θ
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The only term that will survive is when θ = χ. Therefore, Mf (χ) = f ∗ χ = f̂(χ)χ.

So χ is an eigenvector with eigenvalue as f̂(χ)

4.3 Fourier Analysis on non-abelian Groups

Given a non-abelian group G, it is clear that Z(L(G)) 6= L(G) and hence L(G) be-

comes a non commutative ring. Therefore, one can’t find a Fourier transform that

turns convolution into pointwise multiplication.

Let us look at another interpretation of Theorem 4.2.7 which will lead us in under-

standing the notion of Fourier transform for a non-abelian group:

Let G be a finite abelian group of order n and χ1, χ2, . . . , χn be the irreducible char-

acters. Then for each f ∈ L(G), define T : L(G) −→ Cn as

T (f) = (n 〈f, χ1〉 , n 〈f, χ2〉 , . . . , n 〈f, χn〉) = (f̂(χ1), f̂(χ2), . . . , f̂(χn)).

It is easy to verify that T is an isomorphism of vector spaces. Indeed, it is linear (Prop.

4.2.6). Since dimL(G) = n = dimCn it only remains to show that T is injective which

is also true because of the Fourier inversion theorem as one can recover f̂ and f from

Tf . Therefore,

Theorem 4.3.1 For a finite abelian group G of order n, L(G) ∼= Cn.

Also, this suggests that for an abelian group all irreducible representations are degree

one and for a non-abelian group C should be replaced by matrix rings over C.

For a finite group G of order n, let {ϕ(1), ϕ(2) denote the complete set of irreducible

unitary representations of G such that dk = degϕ(k). Each entry of the matrix of

representation is a function ϕ
(k)
ij : G −→ C given by ϕ

(k)
g =

(
ϕ

(k)
ij (g)

)
. Now let us

define Fourier transform for a finite group.

Definition 4.3.2 For a finite group G define T : L(G) −→ Md1(C) × . . . ×Mds(C)

by

Tf = (f̂(ϕ(1)), . . . , f̂(ϕ(s)))

where, f̂(ϕ(1))ij = n
〈
f, ϕ

(k)
ij

〉
=
∑

g∈G f(g)ϕ
(k)
ij (g). T f is known as the Fourier

transform of f .

Next is the Fourier inversion theorem for a non-abelian group G.
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Theorem 4.3.3 For a non-abelian group G of order n let G :−→ C be a function.

Then

f =
1

n

∑
i,j,k

dkf̂(ϕ(k))ijϕ
(k)
ij .

Proof The computation is carried using the fact that
√
dkϕ

(k)
ij forms an orthonormal

basis of L(G).

f =
∑
i,j,k

〈
f,
√
dkϕ

(k)
ij

〉√
dkϕ

(k)
ij

=
1

n

∑
i,j,k

dkn
〈
f, ϕ

(k)
ij

〉
ϕ

(k)
ij

=
1

n

∑
i,j,k

dkf̂(ϕ(k))ijϕ
(k)
ij

Hence, proved. �

Proposition 4.3.4 Let G be a finite group and T : L(G) −→Md1(C)× . . .×Mds(C)

be the Fourier transform then T is a vector space isomorphism.

Proof It is an easy check that T is a linear map. Also, injectivity of T is ensured

by Fourier inversion theorem and

dimL(G) = |G| = d2
1 + d2

2 + . . .+ d2
s = dimMd1(C)× . . .×Mds(C).

Therefore, T is an isomorphism of vector spaces. �

Theorem 4.3.5 (Wedderburn) Let G be a finite group and

T : L(G) −→Md1(C)× . . .×Mds(C)

be the Fourier transform then T is a ring isomorphism.



Chapter 5

Random Walk on Finite Groups

The most famous analogy to a random walk is that of a drunkard wandering off

a village with no particular direction. So one can assume the village to be a graph

where the intersection of streets represent vertices and the streets represent the edges.

Whenever the drunkard reaches to one of the vertices, i.e., intersection, he randomly

decides which way to go and continues on his path. Natural questions that can be

asked includes the deunkard’s probability to reach a certain point after say, n steps?

amongst many more questions. It doesn’t seem very useful to study an ambling

drunkard, rather on ecan think of the random walker as a particle involved in the

diffusion process. Or may be one can think of vertices representing the configuration

of a deck of cards and edges representing the transformation from one configuration

to other. Then the random walk represents the change of one configuration to the

other.

5.1 Probability on Finite Group

One can define the probability distribution function on a Group. This section deals

with defining a few probabilistic concepts with respect to a finite group. Also a notion

of distance and convergence will be introduced for probabilities.

5.1.1 Basics

Definition 5.1.1 A random variable is a G-valued function X : Ω −→ G where Ω

is a probability space.

41
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Definition 5.1.2 The probability distribution of a random variable X is a

function P : G −→ [0, 1] defined as

P (g) := Prob[X = g]

such that the following holds ∑
g∈G

P (g) = 1.

Also, if we have a subset A ⊆ G, we put

P (A) :=
∑
g∈A

P (g).

Definition 5.1.3 Define the set

supp(P ) = {g ∈ G : P (g) 6= 0}.

This set is called support of the probability P .

Let us consider a few examples of probability distribution functions.

Example 5.1.4 Consider the set G = Z
2Z and let P (0) = 1

2
and P (1) = 1

2
. Then P

is the probability for which 0 and 1 are equally probable.

Example 5.1.5 Let G be a finite group. We define the uniform distribution, U on

G as

U(g) =
1

|G|
∀g ∈ G

Usually it is thought as being unbiased.

Example 5.1.6 LetG be a finite group. Then, for any g ∈ G, we define a probability

distribution δg as

δg(h) =

 1 if h = g

0 else
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5.1.2 Convolution Product on Probabilities

One can observe that P ∈ L(G) and hence one can define convolution product on

probabilities and this product has got a probabilistic interpretation as well. Let G

be a group. Let P and Q be two probabilities on G with X and Y as associated

random variables, respectively. Now we want to look at the quantity Prob[XY = g].

For XY = g to occur and Y = x we must have X = gx−1. Thus, the probability

that these two occur simultaneously is P (gx−1)Q(x). But x can have as many as |G|

choices. Therefore,

Prob[XY = g] =
∑
x∈G

P (gx−1)Q(x) = P ∗Q(g).

Hence, one can think convolution product of probabilities as the probability distri-

bution of XY whenever X and Y are themselves independent random variables with

respect to the probabilities P and Q respectively.

It still remains to show that the convolution product of probabilities is also a proba-

bility.

Proposition 5.1.7 Let G be a finite group and let P and Q be probabilities on

G, then P ∗ Q is also a probability distribution on G. Moreover, supp(P ∗ Q) =

supp(P ).supp(Q).

Proof Clearly, one can see that

0 ≤
∑
h∈G

P (gh−1)Q(h) ≤
∑
h∈G

Q(h) = 1

Therefore, P ∗Q(g) ∈ [0, 1] ∀g ∈ G. Next,

∑
g∈G

P ∗Q(g) =
∑
g∈G

∑
x∈G

P (gx−1)Q(x)

=
∑
x∈G

Q(x)
∑
g∈G

P (gx−1)

=
∑
x∈G

Q(x)

= 1
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The third equality holds because gx−1 runs through every element of G exactly once

as g does when x−1 remains fixed. Therefore, P ∗Q is a probability on G.

Moving onto the second part of the theorem, we can see that P ∗Q(g) 6= 0 if and only

if there exists x ∈ G such that P (gx−1) 6= 0 and Q(x) 6= 0.

Let a = gx−1 and b = x. One can now conclude that P ∗ Q(g) 6= 0 if and only if

there exists a ∈ supp(P ) and b ∈ supp(Q) such that ab = g. Hence, Supp(P ∗ Q) =

Supp(P ).Supp(Q) �

5.1.3 Norm on Probabilities

There are a few notions of distance between the probabilities, so here we will introduce

them and also establish the relations between them.

Definition 5.1.8 Let G be a finite group. L1 − norm on L(G) is defined as

‖f‖1 :=
∑
g∈G

|f(g)| for 1f ∈ L(G)

One can observe that if P ∈ L(G), then ‖P‖1 = 1. Next are a few properties of

L1 − norm.

Proposition 5.1.9 If f1, f2 ∈ L(G) and c ∈ C, then the following holds-

1. ‖f1‖1 = 0 if and only if f1 ≡ 0 ;

2. ‖cf1‖1 = |c|.‖f1‖1 ;

3. ‖f1 + f2‖1 ≤ ‖f1‖1 + ‖f2‖1 ( the triangle inequality);

4. ‖f1 ∗ f2‖1 ≤ ‖f1‖1.‖f2‖1.

Proof

1. First, let ‖f1‖1 = 0. Then by the definition,

‖f1‖1 =
∑
g∈G

|f1(g)| = 0

Since each term is positive and sum of positive terms can be zero if and only if

each term, i.e., |f1(g)| = 0. Hence f1 ≡ 0 on G.

Converse is obvious by the definition.
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2. Consider f1 ∈ L(G) and c ∈ C. Then again using the definition,

‖cf1‖1 =
∑
g∈G

|cf1(g)|

=
∑
g∈G

|c|.|f1(g)|

= |c|
∑
g∈G

|f1(g)|

= |c|.‖f1‖1

3. Let f1, f2 ∈ L(G), then

‖f1 + f2‖1 =
∑
g∈G

|(f1 + f2)(g)|

=
∑
g∈G

|f1(g) + f2(g)|

≤
∑
g∈G

|f1(g)|+
∑
g∈G

|f2(g)|

= ‖f1‖1 + ‖f2‖1

4. Consider f1, f2 ∈ L(G), then

‖f1 ∗ f2‖1 =
∑
g∈G

|f1 ∗ f2(g)|

=
∑
g∈G

∣∣∣∣∣∑
h∈G

f1(gh−1)f2(h)

∣∣∣∣∣
≤
∑
g∈G

∑
h∈G

|f1(gh−1)||f2(h)|

=
∑
h∈G

|f2(h)|
∑
g∈G

|f1(gh−1)|

= ‖f1‖1.‖f2‖1

The last equality holds because gh−1 runs over all elements of G.

We will now define yet another notion of distance between probabilities, i.e., total

variation distance.

Definition 5.1.10 Let P and Q be probabilities on a group G.The total variation

distance between P and Q is defined as

‖P −Q‖TV := max
A⊆G
|P (A)−Q(A)|
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In other words, the two probabilities differ by little with respect to the total variation

distance if they are close enough on every subset of G.

There is a close relation between L1 − norm and total variation distance. To es-

tablish it, we require the following lemma.

Lemma 5.1.11 Let G be a group and P and Q be probability distributions on it. Let

A = {g ∈ G : P (g) ≥ Q(g)} and B = {g ∈ G : Q(g) ≥ P (g)} Then

‖P −Q‖TV = P (A)−Q(A) = Q(B)− P (B).

Proposition 5.1.12 Let P and Q be probabilities on a finite group G. Then the

following equality always holds:

‖P −Q‖TV =
1

2
‖P −Q‖1.

Proof By Lemma 5.1.11

‖P −Q‖TV =
1

2
(P (A)−Q(A) +Q(B)− P (B))

=
1

2

[∑
g∈A

(P (g)−Q(g)) +
∑
g∈B

(Q(g)− P (g))

]

=
1

2

∑
g∈G

|P (g)−Q(g)|

=
1

2
‖P −Q‖1

�

Since we have defined distance between the probabilities, there is also the notion of

convergence.

Definition 5.1.13 Let {Pn}n≥1 be the sequence of probabilities on G. The sequence

{Pn}n≥1 is said to be convergent to a probability P if for given ε > 0, there exists

k > 0 such that ‖Pn − P‖TV < ε whenever n ≥ k.



5.2. RANDOM WALKS ON FINITE GROUPS 47

5.2 Random Walks on Finite Groups

For a probability P on a group G, we will write P ∗k for the kth convolution power of

P .

Definition 5.2.1 Let G be a finite group and P be a probability distribution function

on it. The sequence of probability distributions {P ∗k}k≥1 is called the random walk

on G driven by P .

Let us look at this in simple words. Suppose the walk starts at identity and then an

element of G is chosen according to P , say g1 and the walker moves to g1. Then he

chooses another element g2 according to P and moves to g2g1 and so on.

Definition 5.2.2 Let G be a finite group. Let S be a subset of G such that:

1. 1 /∈ S;

2. s ∈ S implies s−1 ∈ S.

A subset S of G satisfying above properties is called a symmetric subset of G. Given

a symmetric subset S of G, one can define the Cayley Graph of G with respect to

S as a graph for which the vertex set is G and there is an edge {g, h} connecting g

and h if gh−1 ∈ S, or hg−1 ∈ S.

A random walk on a Cayley Graph of a group G, say Γ can be thought of as a random

walk on G.

Example 5.2.3 Let G be a group such that S is a symmetric subset of G. Given

G and S, let Γ be the Cayley graph of the group G w.r.t symmetric subset S. Then

one can define a simple random walk on Γ as a random walk on G which is driven

by the probability (PS = 1/|S|).δS. Here again, the walk starts at the identity of G.

Now, if after the kth step of the walk, the walker is at the vertex g ∈ G, he randomly

choses an element s ∈ S according to PS and the walker moves to the vertex sg. This

is equivalent to the walk of an ambling drunkard through the graph Γ.

Example 5.2.4 Let p and q be numbers between 0 and 1 such that p+ q = 1. Let’s

assume that one has a particle which is moving on a regular n−gon. The particle
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moves one step anti-clockwise with probability q and clockwise with probability p.

Then this forms a random walk on the group Z/nZ which is driven by the probability

pδ1 + qδ−1.

Next we have the model of the diffusion process known as Ehrenfest’s Urn model.

Example 5.2.5 Consider two urns, say A and B and let urn A contain n numbered

balls. Now, the balls from urn A are chosen at random (with equal probability) and

transferres to urn B. With this as the process one can label the configuration space by

elements of the group (Z/2Z)n. For instance, if v = (c1, c2, . . . , cn) ∈ (Z/2Z)n, then

the correspponding configuration is that the ith ball is in urn A if ci = 0 and it is in

urn B if ci = 1. Hence, the initial configuration would be (0, 0, . . . , 0), i.e, all the balls

are in urn A. Consider ei to be the vector for which the only nonzero position is ith

position and it’s value is 1. The configuration ei + v is obtained from v by switching

the position of the ith ball. Thus this process of exchanging the balls in between urns

corresponds to a random walk on group (Z/2Z)n which is driven by the probability

PS =
1

n
(δe1 + δe2 + . . .+ δen)

This can also be thought of as a simple random walk on (Z/2Z)n w.r.t S = {e1, e2, . . . , en}.

Now we will look at an example related to card shuffling.

Example 5.2.6 This example can be considered as a random walk on the Symmetric

group Sn. For example the permutation (3, 2, 1) takes the top card to the third

position, second one to the first position and the third card to the second position,

while the remaining deck is as it is. Let us look at random transpositions.

Suppose that there is a dealer who randomly chooses a card from the deck with each

of his hands (the cards can be same also) and then swaps the two cards. Given the

positions i and j s.t. i 6= j, there are exactly two ways in which the dealer can pick a

pair, i.e., i with left hand and j with right hand or vice versa. So the probability of

performing the transposition (i, j) = 2
n2 . Also, the probability that the dealer picks

the same position, say i with both hands is 1
n2 . However, the resulting permutation

of positions remains identity for all i and the probability of performing identity is 1
n
.

Therefore, one can model this random transpositions shuffle as a random walk on Sn
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which is driven by P according as-

P (σ) =


1
n

if σ = identity

2
n2 if σ = transposition

0 else

One can view a random walk on a group G as a way that randomly generates an

element of G and generally one would like the result to be unbiased, i.e., all the

elements of G to be equally likely. So an interesting question is, does the sequence

{P ∗k}k≥1 converges to U , the uniform probability distribution on G

5.3 Spectrum and Upper Bound Lemma

Let G be a finite group (throughout this section) and P be a probability distribu-

tion on G. When we analyze the random walk on G, it leads us to analyzing and

understanding the convolution powers of P . So for that matter one can associate the

convolution operator to P defined as

M : L(G) −→ L(G) such that M(f1) := P ∗ f1

In particular Mk(δ1) = P ∗k.

Definition 5.3.1 Let G be a finite group. For a random walk on G driven by P , one

can define spectrum of the walk to be the set of all eigenvalues, with multiplicities,

of the linear convolution operator, M . Spectrum of the walk is denoted by Spec(P ).

Consider

P ∗ U(g) =
∑
h∈G

P (gh−1)U(h)

=
1

|G|
∑
h∈G

P (gh−1)

=
1

|G|
= U(g)

One can easily see that U , uniform distribution is an eigenvector of M with eigenvalue

1, i.e., P ∗ U = U . The eigenvalue 1 is called trivial.

Lemma 5.3.2 Let λ ∈ Spec(P ). Then |λ| ≤ 1 for all eigenvalues in Spec(P ).
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Proof Let λ ∈ Spec(P ), then

P ∗ f = λf =⇒ |P ∗ f(g)| = |λ|.|f(g)|

|λ|.|f(g)| =

∣∣∣∣∣∑
h∈G

P (gh−1)f(h)

∣∣∣∣∣
≤
∑
h∈G

|P (gh−1||f(h)|

Summing both sides of the equation over all elements of G

|λ|.
∑
g∈G

|f(g)| ≤
∑
g∈G

∑
h∈G

|P (gh−1)||f(h)|

=
∑
h∈G

|f(h)|
∑
g∈G

|P (gh−1)|

=
∑
h∈G

|f(h)|

|λ|.
∑
g∈G

|f(g)| ≤
∑
h∈G

|f(h)|

Therefore, |λ| ≤ 1, or equivalently Spec(P ) ⊆ {z ∈ C : |z| ≤ 1}. �

In case of an abelian group, it is quite easy to understand the spectrum via Fourier

analysis.

Theorem 5.3.3 Let P be a probability distribution on a finite abelian group G and P̂ )

denote Fourier transform of P . Then Spec(P ) = {P̂ (χ) : χ ∈ Ĝ}, and the multiplicity

of an eigenvalue λ ∈ Spec(P ) is the equal to the number of characters χ for which

P̂ (χ) = λ.

Proof This is a special case of Lemma 4.2.9 �

Let us compute spectrum for some of the random walks that we have already seen.

Example 5.3.4 Lazy Random Walk on Z/nZ is a walk on Z/nZ driven by the

probability

P =
1

2
δ0 +

1

4
δ1 +

1

4
δ−1

As usual we will define,

χk(m) = e(2πikm)/n
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From the above theorem, Spec(P ) = {P̂ (χ) : χ ∈ Ĝ}, so we need to compute P̂ (χk).

P̂ (χk) = |G| 〈P, χk〉

=
n

n

∑
r∈G

P (r)χk(r)

=
1

2
+

1

4
e(−2πik)/n +

1

4
e(2πik)/n

The last equality comes from substituting the expression for P and the fact that the

only terms surviving will be when r = 0, 1,−1

Example 5.3.5 Ehrenfest’s Urn Model As seen earlier it is the random walk on

G = (Z/2Z)n which is driven by P = 1
n
(δe1 +δe2 +. . .+δen). To calculate the spectrum

we have to look at the irreducible characters of G. Consider v = (c1, . . . , cn) ∈ G and

define α(v) = {i : ci = 1}. Given Y ⊆ {1, 2, . . . , n}, define χY : G −→ C by

χY (v) = (−1)|α(v)∩Y |

Then Ĝ = {χY : Y ⊆ {1, 2, . . . , n}}. Clearly, |Ĝ| = |G| = 2n and also each χY is an

irreducible character of G because 〈χY , χY 〉 = 1 ∀Y ⊆ {1, 2, . . . , n}. Now,

P̂ (χY ) = |G| 〈P, χY 〉

=
|G|
|G|

.

[
1

n

∑
g∈G

(δe1 + δe2 + . . .+ δen)(g)χY (g)

]

The only terms that will be surviving in the above equation will be that corresponding

to g ∈ {e1, . . . , en}. So let us calculate χY (ei), i.e.,

χY (ei) =

 −1 if i ∈ Y

1 else

So, |Y | elements of {e1, . . . , en} will contribute a value of −1/n and the rest n− |Y |

will contribute a value of 1/n. Therefore,

P̂ (χY ) = 1− 2|Y |
n

and the multiplicity of each eigenvalue will be
(
n
|Y |

)
because this is the number of

subsets Y with |Y | elements.
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We will now define the norm that comes from the inner product on L(G) and es-

tablish it’s relation with L1-norm. For f ∈ L(G)

‖f‖ =
√
〈f, f〉

It can be easily checked that it satisfies all the properties of norm.

Lemma 5.3.6 For a finite group G and f ∈ L(G) we have ‖f‖1 ≤ |G|.‖f‖.

Proof Let χ1 be the trivial character of G, then χ1(g) = 1 ∀g ∈ G. We will write

|f | for the function defined as |f |(g) := |f(g)| for g ∈ G. Then

‖f‖1 =
∑
g∈G

|f(g)| =
∑
g∈G

|f |(g)χ1(g) = |G|. 〈|f |, χ1〉 ≤ |G|.‖f‖.‖χ1‖ = |G|.‖f‖

where the inequality is the Cauchy-Schwarz inequality, i.e, | 〈v, w〉 | ≤ ||v||.||w|| and

the fact that ||χ1|| = 1. �

Next comes a very important formula that relates the original norm of a function to

the norm of it’s Fourier transform.

Theorem 5.3.7 (Plancherel Formula) Let G be a finite abelian group and f1, f2 ∈

L(G). Then

〈f1, f2〉 =
1

|G|

〈
f̂1, f̂2

〉
Consequently, ‖f‖2 = ‖f̂‖2

|G| .

Proof Using Theorem 4.2.5 for f1 and f2 gives

f1 =
1

|G|
∑
χ∈Ĝ

f̂1(χ)χ

f2 =
1

|G|
∑
χ∈Ĝ

f̂2(χ)χ

Then,

〈f1, f2〉 =

〈
1

|G|
∑
χ∈Ĝ

f̂1(χ)χ,
1

|G|
∑
θ∈Ĝ

f̂2(θ)θ

〉

=
1

|G|2
∑
χ∈Ĝ

f̂1(χ)f̂2(χ)

=
1

|G|

〈
f̂1, f̂2

〉
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The second equality holds because of the first orthogonality relation and the third

equality holds due to the fact that G ∼= Ĝ. The second part of the theorem is proved

once we subsitute f1 = f2 above. �

The following inequality was derived by Persi Diaconis and Mehrdad Shahshahani

in 1981.

Theorem 5.3.8 (Upper Bound Lemma) Let G be a finite group and Q be a prob-

ability on G. Then

‖Q− U‖2
TV ≤

1

4

∑
ρ

dρTr(Q̂(ρ)Q̂(ρ)∗)

where the sum is over all non-trivial irreducible representations ρ of G and dρ is the

degree of ρ.

Lemma 5.3.9 (Upper bound lemma for abelian groups) Let G be a finite abelian

group and let Ĝ∗ be the set of non-trivial irreducible characters of G. Let Q be a prob-

ability on G. Then

‖Q− U‖2
TV ≤

1

4

∑
χ∈Ĝ∗

|Q̂(χ)|2

Proof Applying Proposition 5.1.12 and Lemma 5.3.6, one can see that

‖Q− U‖2
TV =

1

4
‖Q− ‖2

1 ≤
1

4
|G|‖Q− U‖2 (5.1)

By Plancherel formula (Theorem 5.3.7 and the fact that Fourier transform is a linear

map,

|G|2‖Q− U‖2 = |G|.‖Q̂− U‖2 = |G|.‖Q̂− Û‖2

= |G|
[〈
Q̂, Q̂

〉
− 2

〈
Q̂, Û

〉
+
〈
Û , Û

〉]
So let us evaluate

〈
Q̂, Q̂

〉
,
〈
Q̂, Û

〉
and

〈
Û , Û

〉
.

Û(χ) = |G| 〈U, χ〉 = 〈χ1, χ〉 =

 1 if χ = χ1

0 else

So,

Û = δχ1 =⇒
〈
Û , Q̂

〉
=
〈
δχ1 , Q̂

〉
=

1

|G|
∑
χ∈Ĝ

δχ1(χ)Q̂(χ) =
Q̂(χ1)

|G|
=

1

|G|
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〈U,U〉 =
1

|G|
∑
χ∈Ĝ

Û(χ)Û(χ) =
1

|G|
∑
χ∈Ĝ

δχ1(χ)δχ1(χ) =
1

|G|〈
Q̂, Q̂

〉
=

1

|G|
+

1

|G|
∑
χ∈Ĝ∗

Q̂(χ)Q̂(χ)

On substituting the above calculated values in ‖Q− U‖2

‖Q− U‖2 =
1

|G|
+

1

|G|
∑
χ∈Ĝ∗

Q̂(χ)Q̂(χ) +
1

|G|
− 2

|G|
=

1

|G|
∑
χ∈Ĝ∗

Q̂(χ)Q̂(χ)

Substituting the above in eq. 5.1 gives

‖Q− U‖2
TV ≤

1

4
|G|

 1

|G|
∑
χ∈Ĝ∗

|Q̂(χ)|2
 =

1

4

∑
χ∈Ĝ∗

|Q̂(χ)|2


�

Corollary 5.3.10 For a finite abelian group G and a probability distribution P on

G, we have

‖P ∗k − U‖2
TV ≤

1

4

∑
χ∈Ĝ∗

|P̂ (χ)|2k.

One can obtain bounds on the rate of convergence for a variety of random walks.

These can be obtained by applying upper bound lemma.

Theorem 5.3.11 Let

PS =
1

n+ 1

(
δ(0,0,...,0) + δe1 + . . .+ δen

)
be the probability distribution on the group (Z/2Z)n, where ei is the vector with 1 in

the ith position and 0 in all other coordinates. Let c be a positive constant. Then for

k ≥ (n+ 1)(log n+ c)/4 the inequality

‖P ∗kS − U‖2
TV ≤

1

2

(
ee
−c − 1

)
holds.

And if k ≤ (n+ 1)(log n− c)/4 where 0 < c < log n and n is sufficiently large then

‖P ∗kS − U‖2
TV ≥ 1− 20e−c

holds.
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Before proving it let us analyze it. It can be observed that

√
ee−c−1

2
−→ 0 extremely

fast as c −→∞ whereas 1− 20e−c goes to 1 very quickly. If c = 10, then

√
ee−c−1

2
≈

0.004765 and 1− 20e−c ≈ 0.999092.

Roughly speaking, theorem says that all the possible configurations of balls in two

urns are almost equally likely in (n + 1)(log n)/4 steps but in any fewer steps it is

not even close to uniform. This phenomenon of changing very rapidly to uniform

behaviour is called the cut-off phenomenon by Diaconis.

Let us prove the theorem. For that the following inequalities are required-

1. For 0 ≤ i ≤
⌊
n+1

2

⌋
,
(
n
i−1

)
≤
(
n
i

)
.

2. If 0 ≤ x ≤ 1, (1− x)2k ≤ e−2kx ∀k ≥ 0.

Proof [Proof of Theorem 5.3.11] The characters of G are already states in Example

5.3.5, so consider |Y | = j and applying the corollary to Upper bound lemma gives

‖P ∗kS − U‖2
TV ≤

1

4

n∑
j=1

(
n

j

)[
1− 2j

n+ 1

]2k

(5.2)

On expanding RHS of eq. 5.2, one can observe that the first and the last term are

equal and similarly one can find that the second term is greater then the second last

term (using inequality 1 stated above) and so on,we obtain

‖P ∗kS − U‖2
TV ≤

1

2

bn+1
2 c∑
j=1

(
n

j

)[
1− 2j

n+ 1

]2k

Also, (
n

j

)
=
n(n− 1) . . . (n− j + 1)

j!
≤ nj

j!

Using inequality 2, when x = 2j
n+1

, one would obtain

‖P ∗kS − U‖2
TV ≤

1

2

bn+1
2 c∑
j=1

nj

j!
e
−4kj
n+1

Suppose now that k ≥ (n+ 1)(log n+ c)/4. Then

e
−4kj
n+1 ≤ e−jlog n−cj =

e−jc

nj



56 CHAPTER 5. RANDOM WALK ON FINITE GROUPS

Therefore,

‖P ∗kS − U‖2
TV ≤

1

2

bn+1
2 c∑
j=1

1

j!
e−jc

≤ 1

2

∞∑
j=1

1

j!
(e−c)j

≤ 1

2

(
ee
−c − 1

)
�

Theorem 5.3.12 For n odd, let PS be the probability distribution on Z/nZ given by

PS = 1/2.(δ1 + δ−1), then

‖P ∗kS − U‖TV ≤ e
−π2k
2n2

for k ≥ n2.

For n ≥ 6 and k ≥ 0, the inequality

‖P ∗kS − U‖TV ≥
1

2
e
−π2k
2n2
−π

4k
2n4

holds.



Chapter 6

Calculations

Let G be a finite group and Q be a probability distribution on G. This chapter

priovides a few examples of the calculation of ‖Q − U‖2
TV with the help of upper

bound lemma for various extraspecial groups like D4, Q8 and D4 ◦ D4. Also we

present some plots obtained from GAP simulations on GL2(Fq) and SL2(Fq).

6.1 Dihedral Group of order 8

Let D4 be the dihedral group of order 8. Then D4 = 〈r, s : r4 = s2 = 1, (sr)2 = 1〉

There are 5 irreducible representations of D4, say ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 defined as following

Representation ϕi(r) ϕi(s)

ϕ1 1 1

ϕ2 1 -1

ϕ3 -1 1

ϕ4 -1 -1

ϕ5

 0 1

−1 0

  1 0

0 −1


The set of generators considered for random walk on D4 is S = {1, r, s} and the

probability used to drive the random walk on D4 is

PS =
1

3
(δ1 + δr + δs)

Let Q = P ∗kS then

‖Q− U‖2
TV ≤

1

4

∑
dρTr(Q̂(ρ)Q̂(ρ)∗)

57
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equals

‖P ∗kS − U‖2
TV ≤

1

4

5∑
i=2

dϕiTr
(
P̂ ∗kS (ϕi) P̂ ∗kS (ϕi)

∗
)

Let us evaluate P̂ ∗kS (ϕi) for i = 2, . . . , 5. Since P̂ ∗kS (ϕi) = P̂S (ϕi)
k, it is sufficient to

evaluate P̂S (ϕi). Hence,

P̂S (ϕi) =
∑
g∈D4

PS(g)ϕi (g)

=
∑
g∈D4

1

3
(δ1 + δr + δs) (g)ϕi (g)

=
ϕi (1) + ϕi (r) + ϕi (s)

3
for i = 2, . . . , 5

Therefore,

P̂ ∗kS (ϕ2) =
1

3k
= P̂ ∗k (ϕ3)

P̂ ∗kS (ϕ4) =
−1

3k

P̂ ∗kS (ϕ5) =

 1 + ki k

k 1− ki


Now on substituting the values of P̂ ∗kS (ϕi) in eq. 5.1, we get

‖P ∗kS − U‖2
TV ≤

1

4

[
3 + 2× (2 + 4k2)

32k

]
≤ 7 + 8k2

4× 32k

Comparison Table for D4

Number of steps, k Part of Upper Bounds GAP Calculation

1 4.2× 10−1 -

2 1.20× 10−1 -

3 2.7× 10−2 2.05× 10−2

4 5.1× 10−3 3.45× 10−3

5 8.7× 10−4 4.53× 10−4

6 1.3× 10−4 6.18× 10−5

7 3.1× 10−5 1.62× 10−5

8 2.01× 10−5 2.65× 10−6

9 4.22× 10−7 2.34× 10−7
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6.2 Quaternion Group,Q8

Let Q8 be quaternion group of order 8. Then Q8 = 〈a, b : a4 = 1, b2 = a2, bab−1 = a−1〉

There are 5 irreducible representations of Q8, say ψ1, ψ2, ψ3, ψ4, ψ5 defined as following

Representation ϕi(a) ϕi(b)

ψ1 1 1

ψ2 1 -1

ψ3 -1 -1

ψ4 -1 1

ψ5

 0 1

−1 0

  i 0

0 −i
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Let S = {1, a, b} be the set of generators to be used for random walk on Q8, and

probability used to drive the random walk be

PS =
1

3
(δ1 + δa + δb)

We need to evaluate P̂ ∗kS (ψi) for i = 2, . . . , 5. So,

P̂S (ψi) =
∑
g∈Q8

PS(g)ψi (g)

=
∑
g∈Q8

1

3
(δ1 + δa + δb) (g)ψi (g)

=
ψi (1) + ψi (a) + ψi (b)

3
for i = 2, . . . , 5

Therefore,

P̂ ∗kS (ψ2) =
1

3k
= P̂ ∗k (ψ3)

P̂ ∗kS (ψ4) =
−1

3k

P̂ ∗kS (ψ5) =

 (
√

2−1)(1−i
√

2)k+(
√

2+1)(1+i
√

2)k

2
√

2

i[(1−i
√

2)k−(1+i
√

2)k]

2
√

2

i[(1+i
√

2)k−(1−i
√

2)k]

2
√

2

(
√

2+1)(1−i
√

2)k+(
√

2−1)(1+i
√

2)k

2
√

2


Now on substituting the values of P̂ ∗kS (ϕi) in eq. 5.1, we get

‖P ∗kS − U‖2
TV ≤

1

4

[
3 +

(
4× 3k

)
32k

]

≤ 3 + 4× 3k

4× 32k

Comparison Table for Q8

Number of steps, k Part of Upper Bounds GAP Calculation

1 7.8× 10−1 -

2 1.6× 10−1 -

3 4.2× 10−2 2.06× 10−2

4 1.3× 10−2 8.7× 10−3

5 4.1× 10−3 2.5× 10−3

6 1.37× 10−4 9.14× 10−4

7 4.58× 10−4 3.05× 10−4

8 1.52× 10−4 1.23× 10−4

9 5.08× 10−5 2.98× 10−5
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Figure 6.2: Comparison graph for Q8

6.3 Central Product of D4 with D4, D4 ◦D4

There are a total of 17 representations ofD4◦D4. The unique non linear representation

is given by, ϕ̂ : D4 ◦ D4 −→ GL(4,C) defined as ϕ̂((a, b)) = ϕ(a, b), where (a, b) =

(a, b)N and (a, b) ∈ D4 ×D4.

Also, ϕ(a, b) = (ϕ5 ⊗ ϕ5)(a, b) = ϕ5(a)⊗ ϕ5(b).

S = {(1, 1), (r, 1), (s, 1), (1, r), (1, s)}



62 CHAPTER 6. CALCULATIONS

For 15 linear representations of D4 ◦D4, P̂ ∗kS (ϕ) (P̂ ∗k)∗ (ϕ) = 1
52k

for 10 of the repre-

sentations and P̂ ∗kS (ϕ) (P̂ ∗kS )∗ (ϕ) =
(

3
5

)2k
for the rest 5 linear representations. Also,

P̂ ∗kS (ϕ̂) =


k (k + 1) + 1 k2 k2 k (k − 1)

−k2 −k (k − 1) + 1 −k (k − 1) −k (k − 2)

−k2 −k (k − 1) −k (k − 1) + 1 −k (k − 2)

k (k − 1) k (k − 2) k (k − 2) k (k − 3) + 1


Therefore, on substituting the above calculated values in the Upper Bound Lemma,

we get

‖P ∗kS − U‖2
TV ≤

5× 32k + 10 + 16k4 − 32k3 + 32k2 + 4

4× 52k

≤ 5× 32k + 16k4 − 32k3 + 32k2 + 14

4× 52k

Comparison Table for D4 ◦D4

Number of steps, k Part of Upper Bounds GAP Calculation

1 7.5× 10−1 -

2 2.188× 10−1 -

3 7.01× 10−2 -

4 2.26× 10−2 2.16× 10−2

5 7.2× 10−3 5.84× 10−3

6 2.73× 10−3 1.9× 10−3

7 9.8× 10−4 7.29× 10−4

8 3.53× 10−4 2.47× 10−4

9 1.27× 10−4 1.04× 10−4

6.4 Random Walk on GL2(Fq)

GL2(Fq) =


 a b

c d

 : ad− bc 6= 0 and a, b, c, d ∈ Fq


The set of generators considered for random walk on GL2(Fq) is

S =


 1 0

0 1

 ,
 1 λ

0 1

 ,
 1 0

µ 1

 ,
 1 0

0 d

 : λ, µ, d ∈ F∗q, d 6= 1
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Figure 6.3: Comparison graph for D4 ◦D4

And probability used to drive the walk is

PS =
1

|S|
∑
s∈S

δS

6.4.1 Upper Bound for GL2(F3)

Let G := GL2(F3). There are a total of 8 representations of GL2(F3) say ϕ1, ϕ2, ϕ3, ϕ4,

ϕ5, ϕ6, ϕ7, and ϕ8 such that ϕ1 is trivial and ϕ2 = I(χ1, χ2) for χ1 = χ2 be degree

one representation and ϕ3 = I(χ1, χ2) for χ1 6= χ2 be degree 4 representation (no-

tation same as in Section 3.2). These are the only representations of G that we are

considering for Upper Bound Lemma because we want to see the effect of these on

upper bounds as compared to the remaining representations of G. Set of generators
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considered for random walk is

S =


 1 0

0 1

 ,
 1 1

0 1

 ,
 1 2

0 1

 ,
 1 0

1 1

 ,
 1 0

2 1

 ,
 1 0

0 2


We need to evaluate P̂ ∗kS (ϕi) for i = 2, 3. So,

P̂S (ϕi) =
∑
g∈G

PS(g)ϕi (g)

=
∑
g∈G

1

6
(δ1 + δa + δb + δc + δd + δe) (g)ϕi (g)

=
ϕi (1) + ϕi (a) + ϕi (b) + ϕi (c) + ϕi (d) + ϕi (e)

6
for i = 2, 3

Here, 1, a, b, c, d, e are the elements of S. Now,

P̂S (ϕ2) =
4

6

P̂S (ϕ3) =


2 0 1 −1

0 0 −1 1

1 −1 1 −1

−1 1 −1 1



P̂ ∗kS (ϕ2) (P̂ ∗kS )∗ (ϕ2) =

(
2

3

)2k

tr
(
P̂ ∗kS (ϕ3) (P̂ ∗kS )∗ (ϕ3)

)
=

4
(
1 + 122k + 382k

)
602k

Thus a part of Upper Bound Lemma turns out to be

(
2

3

)2k

+
4
(
1 + 122k + 382k

)
602k
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Comparison table for GL2(F3)

Number of steps, k Part of Upper Bounds GAP Calculation

1 1.988 -

2 6.7× 10−1 -

3 2.61× 10−1 -

4 1.03× 10−1 8.12× 10−2

5 4.15× 10−2 4.26× 10−2

6 2.67× 10−2 2.41× 10−2

7 6.68× 10−3 1.32× 10−2

8 2.68× 10−3 7.31× 10−3

9 1.08× 10−3 4.57× 10−3

10 4.31× 10−4 2.57× 10−3

11 1.73× 10−4 1.47× 10−3

12 6.93× 10−5 7.9× 10−4
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Figure 6.4: Comparison graph for GL2(F3)
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GAP Calculation for GL2(Fq)

Number of steps, k q = 2 q = 3 q = 5 q = 7

1 - - - -

2 - - - -

3 4.01× 10−2 - - -

4 1.69× 10−2 8.11× 10−22 - -

5 7.48× 10−3 4.26× 10−2 0.150557 -

6 3.54× 10−3 2.41× 10−2 9.44845× 10−2 0.131479

7 1.48× 10−3 1.33× 10−2 5.71× 10−2 7.94× 10−2

8 7.82× 10−4 7.32× 10−3 3.382× 10−2 4.79× 10−2

9 3.10× 10−4 4.571× 10−3 2.078× 10−2 2.77× 10−2

10 1.2× 10−4 2.57× 10−3 1.19334× 10−2 1.711× 10−2

11 4.91× 10−5 1.472× 10−3 7.33× 10−3 1.116× 10−2

12 1.64× 10−5 7.88× 10−4 4.704× 10−3 8.37× 10−3

13 1.95× 10−5 5.9341× 10−4 3.10× 10−3 6.264× 10−3

14 2.33× 10−5 3.61× 10−4 2.204× 10−3 5.12× 10−3

15 2.78× 10−5 2.68× 10−4 1.76× 10−3 4.41× 10−3

6.5 Random Walk on SL2(Fq)

Let us first have a look at a set of generators for SL2(Fq).

6.5.1 Transvections

Definition 6.5.1 Let V be a vector space. A map τ ∈ GL(V ) not equal to the

identity map is called a transvection, if there exists a hyperplane W of V satisfying

τ |W = 1W and τ(v)− v ∈ W for all v ∈ V . We call W as the fixed hyperplane of

τ .

Proposition 6.5.2 Let τ be a transvection in GL(V ). Then τ always lie in SL(V ),

i.e., for a given basis of V and W determinant of the matrix of τ is always 1.

Theorem 6.5.3 The set of transvections generate the group SL(V ).
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Let S be the set of transvections on V = (Fq)n. We would like to ask as to how large

k has to be for the product of k transvections to yield a uniformly random element

of SLn(Fq).

Theorem 6.5.4 (M. Hildebrand[Hil92]) For sufficiently large n and all c > 0,

where c = k − n, there exist positive constants A and λ such that

||P ∗kS − U ||TV < Ae−λc

holds.

Given ε > 0, there exist c > 0 such that for k = n− c and sufficiently large n,

||P ∗kS − U ||TV > 1− ε

holds.
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From above theorem one can conclude that for any k < n, it is not possible for

the product of k transvections to be uniform on SLn(Fq), and for any k > n, it is

always possible to get close enough to the uniform distribution on SLn(Fq) through

transvections.

6.5.2 GAP Calculation

SL2(Fq) =


 a b

c d

 : ad− bc 6= 0, ad− bc = 1 and a, b, c, d ∈ Fq


The set of generators considered for random walk on SL2(Fq) is

S =


 1 0

0 1

 ,
 1 λ

0 1

 ,
 1 0

µ 1

 : λ, µ,∈ F∗q


And probability used to drive the walk is

PS =
1

|S|
∑
s∈S

δS

GAP Calculation for SL2(Fq)

k q = 2 q = 3 q = 5 q = 7 q = 11 q = 13

1 - - - - - -

2 - - - - - -

3 4.1× 10−2 - - - - -

4 1.67× 10−2 6.19× 10−2 1.16× 10−1 1.448× 10−1 1.756× 10−1 1.87× 10−1

5 7.4× 10−3 3.32× 10−2 5.634× 10−2 6.70× 10−2 7.56× 10−2 7.90× 10−2

6 3.36× 10−3 1.9× 10−2 2.61× 10−2 2.95× 10−2 3.12× 10−2 3.42× 10−2

7 1.56× 10−3 9.84× 10−3 1.324× 10−2 1.36× 10−2 1.433× 10−2 1.57× 10−2

8 6.28× 10−4 5.67× 10−3 6.613× 10−3 6.56× 10−3 7.034× 10−3 9.17× 10−3

9 3.37× 10−4 2.98× 10−3 3.03× 10−3 2.704× 10−3 4.25× 10−3 5.85× 10−3

10 1.62× 10−4 1.56× 10−3 1.50× 10−3 1.64× 10−3 3.18× 10−3 4.818× 10−3

11 8.63× 10−4 9.29× 10−4 8.65× 10−4 1.091× 10−3 2.66× 10−3 4.028× 10−3

12 5.595× 10−5 5.42× 10−4 5.27× 10−4 7.53× 10−4 2.38× 10−3 3.582× 10−3

13 3.029× 10−5 3.39× 10−4 3.161× 10−4 7.24× 10−4 2.213× 10−3 3.62× 10−3

14 8.61× 10−6 2.478× 10−4 2.27× 10−4 6.753× 10−4 2.042× 10−3 3.652× 10−3

15 1.153× 10−5 1.640× 10−4 2.023× 10−4 5.4× 10−4 2.16× 10−3 3.35× 10−3
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Figure 6.6: GAP Calculation for Upper Bounds of SL2(Fq)

6.6 Upper Bound on Frobenius Group

Let q be a prime power and

Fq,q−1 =


 1 b

0 a

 : a ∈ (Z/pZ)∗ , b ∈ (Z/pZ)


Clearly order of Fq,q−1 is q(q − 1).

The set of generators considered for random walk on Fq,q−1 is

S =


 1 0

0 1

 , a =

 1 1

0 1

 , b =

 1 0

0 µ

 : µ ∈ Fq and is of order q − 1


And probability used to drive the walk is

PS =
1

|S|
∑
s∈S

δS
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6.6.1 Upper Bound for F3,2

There are 3 representations of F3,2 say ϕ1, ϕ2 and ϕ3 such that ϕ1 is trivial and ϕ3 is

the degree 2 representation. The set of generators used for random walk is

S =


 1 0

0 1

 , a =

 1 1

0 1

 , b =

 1 0

0 2


We need to evaluate P̂ ∗kS (ϕi) for i = 2, 3. Since P̂ ∗kS (ϕi) = P̂S (ϕi)

k, it is sufficient to

evaluate P̂S (ϕi). So,

P̂S (ϕi) =
∑
g∈F3,2

PS(g)ϕi (g)

=
∑
g∈F3,2

1

3
(δ1 + δa + δb) (g)ϕi (g)

=
ϕi (1) + ϕi (a) + ϕi (b)

3
for i = 2, 3

Now,

P̂S (ϕ2) =
1

3

P̂S (ϕ3) =

 1 + e2πi/3 1

1 1 + e4πi/3


P̂ ∗kS (ϕ2) (P̂ ∗kS )∗ (ϕ2) =

(
1

3

)2k

P̂ ∗kS (ϕ3) (P̂ ∗kS )∗ (ϕ3) =

 2 2 + 2e2πi/3

2 + 2e4πi/3 2


Thus Upper Bound Lemma turns out to be

||P ∗kS − U ||2TV ≤
1

32k
+

8

32k

≤ 1

32k−2



Appendix A

GAP Program

We have written a GAP Program for simulation of a random walk on a given group

G and S be set of generators. Given k, the number of steps, it also returns the total

variation norm ‖P ∗kS − U‖2
TV .

#Simulation of Random Walk for any group G, with its set of

Generators, S and k is the number of steps we want to traverse.

All G, S and k are to be given by the user.

P := [];

iter := 100000;

for i in [1..iter] do

a := Identity(G);

for j in [1..k] do

b := Random(S);

a := b*a;

od;

Add(P,a);

od;

Q := Collected(P);

#Also this calculates ||P^*k-U||_TV for the specified group, G.

L := Concatenation(Q);

s := Length(L);

c := Order(G);

71
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if s = 2*c then

f := 0;

for i in [1..c] do

d := 2*i;

e := Float(L[d]/iter);

g := (e-Float(1/Order(G)));

if SignFloat(g) = -1 then

g := -1*g

fi;

f := f+g;

od;

f := Float((f*f)/4);

s := s+1;

fi;
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