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Abstract

The aim of this thesis project was to study the evolution of single cell mathematical
models of the elctrical activity of pancreatic beta cells, find a candidate model that
best matched experimental data present in the existing literature, and to use it to model
gap-junction coupled beta cells present in pancreatic islets. This study found that the
Dual Oscillator Model is currently the best model for the electrical activity of a single
beta cell. It was found that the behaviour of a 1D ring of cells with nearest neighbour
coupling depends upon the number of cells in the ring, the percentage composition
of each of the cell types and the coupling strength (gc) between neighbouring cells.
Also, when multiple cells are coupled, synchronization of the burst goes from 180◦

anti phase (low gc) to out of phase (intermediate gc) to in phase (high gc).
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Chapter 1

Introduction

1.1 Electrically Active Cells

Electrically active cells are those cells that respond to changes in their membrane po-
tential. Typically, their primary functions are regulated by changes in their membrane
potential which occurs due to regulation of ionic fluxes. Examples are – neurons and
conduction of action potentials; the electrical activity of cardiac cells for proper beat-
ing of the heart. Pancreatic beta cells are another example of electrically active cells.
These cells respond to changes in their membrane voltage by secreting insulin.

1.1.1 Pancreatic Islets of Langerhans

Beta cells are specialized cells present in large numbers in structures called Islets of
Langerhans (Fig. 1.1) in the Pancreas. Each islet consists of thousands of cells. In an
islet thousands of beta cells generally form the core, and other cells (delta and alpha
cells secreting glucagon and somatostatin hormones respectively) are present in the
periphery (Fig. 1.1).

Beta cells respond to elevated blood glucose levels by secreting the hormone In-
sulin in a pulsatile manner1,2. Coordinated membrane voltage bursting in beta cells

Figure 1.1: The Pancreas, an Islet and a Beta Cell [9]
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(in an islet) (Fig. 1.2) precedes the rhythmic insulin secretion, and malfunction in
the electrical activity of beta cells can lead to improper insulin secretion - a cause of
Type 2 Diabetes3. Beta cells communicate (electrically) through membrane gap junc-
tions (Connexin proteins). The major gap junction protein found between beta cells is
Connexin-36 6,7,8.

Figure 1.2: (A) Voltage time curves for single beta cells (B) Voltage time curves of 2
coupled cells in the islet [11]

Beta cell bursting consists of two phases: (1) A ’Silent’ phase where the membrane
voltage is approximately equal to the resting membrane voltage and (2) a ’Bursting’ or
an ’Active’ phase where the membrane voltage fluctuates up and down rapidly (Fig.
1.2 (B)). The primary ionic currents responsible for membrane potential changes in
beta cells are calcium and potassium currents of different types. Due to its involvement
in diabetes, electrophysiological and pharmacological experiments and mathematical
modelling of beta cell dynamics have been active areas of research.
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1.2 Modelling the Biological Cell as an Electrical Cir-
cuit

The membrane of a biological cell provides a boundary separating the external en-
vironment from the internal environment of the cell (Fig. 1.3(a)). Typically, the
membrane is selectively permeable thus regulating the passage of materials in and
out of the cell. The cell membrane consists of a lipid bilayer (water insoluble) through
which, irregularly interspersed, are globular proteins. The membrane also consists of
protein lined water pores - channel proteins. Channel proteins (like voltage dependent
calcium channels, VDCCs, ATP dependent potassium channels, KATP etc.) allow the
passage of specific kinds of molecules. The selective permeability of the cell mem-
brane and the presence of channel proteins results in a concentration difference across
the membrane of various ions (Na+, K+, Ca+2, Cl-). These concentration differences
are set-up and maintained by active processes that use ATP to pump ions against their
electrochemical gradients.

(a) The cell membrane [4] (b) Equivalent electrical circuit of a cell
membrane [5]

Figure 1.3: The biological cell membrane as an electrical circuit

Since the cell membrane separates and maintains a charge difference, it can be
thought of as a capacitor (Fig. 1.3(b)). By the definition of the capacitance of a
capacitor (ratio of charge across the capacitor to the voltage necessary to hold that
charge), one can write: Cm = Q

V
Since current is defined as dQ

dt , it follows that the capacitative current is (assuming
Cmto be constant):

Cm
dV
dt

(1.1)

For a given ionic species, say Na+, the potential drop across the cell membrane has
two components: first due to concentration differences, given by the Nernst equation
(VNa =

RT
ZF ln( [Na+]external

[Na+]internal
) and, second, due to an electrical current rINa(if the channel

is Ohmic), where r is the resistance of the channel. Summing the two contributions
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we get:

V = rINa +VNa (1.2)

Solving for current we get: INa = gNa(V −VNa) where gNa = 1
r is the channel

conductance.
Since there is no net build-up of charge on either side of a cell’s membrane, the

sum of the ionic and capacitative charges should be zero. Hence:

Cm
dV
dt

+ Iionic = 0 (1.3)

1.2.1 The Hodgkin-Huxley Model (1952)

In 1952, Alan Hodgkin and Andrew Huxley published their Nobel prize winning work
as a final paper 11 in a series of papers. This last paper is a landmark in the field of
mathematical physiology. In this paper, Hodgkin and Huxley (HH) present elegant
experimental data, a theoretical hypothesis, a fit of the model to the data and, most
crucially, a testable prediction. This work stands out as a rare example of a successful
combination of experiment and theory!

HH developed the first model of the propagation of an electrical signal along the
axon of a nerve in the giant squid. This work is so important because, even though they
originally used it to explain the propagation of electrical signals in a nerve cell, it has
since then been extended and applied to model a wide variety of electrically excitable
cells. The model (and equations) they proposed is mentioned, in brief, below.

In the previous section we described how the cell membrane could be modelled as
a capacitor, resulting in the following equation:

Cm
dV
dt

+ Iionic(V, t) = 0 (1.4)

In the giant squid axon, the main ionic currents are the sodium and potassium
currents. HH lumped together the other, less significant, ion currents into one current
called the leak current (IL). HH assumed the membrane channel conductances to have
linear I-V curves (this choice was largely dictated by experimental data) and so, we
get:

Cm
dV
dt

=−gNa(V −VNa)−gK(V −VK)−gL(V −VL) (1.5)

An important point to note is that the channel conductances are not constant; they
seem to depend on the membrane voltage. Determining the conductances by being
able to measure individual ionic currents and thus deducing the changes in conduc-
tances (with V) was what was brilliantly accomplished by Hodgkin and Huxley. They
found, by performing various voltage clamp and space clamp experiments, that:
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For the potassium current:

gK = ḡkn4

dn
dt

= αn(1−n)−βnn (1.6)

where n is an activating variable.

For the Sodium current:

gNa = ḡNam3h

dm
dt

= αm(1−m)−βmm (1.7)

dh
dt

= αh(1−h)−βhh (1.8)

where m is an activating variable and
h is an inactivating variable.

The specific forms of α:

αm = 0.1
25−V

e(
25−V

10 )−1

αh = 0.07e(
−v
20 )

αn = 0.01
10−V

e(
10−v

10 )−1

The specific forms of β :

βm = 4e(
−V
18 )

βh =
1

e(
30−V

10 )+1

βn = 0.125e(
−V
18 )

Equations 1.5, 1.6, 1.7 and 1.8 are the four main equations, which, along with the
functional forms of the activating/inactivating variables make up the HH model.

All the models describing the electrical activity of beta cells are based on the HH
equations.
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1.3 Glucose Stimulated Insulin Secretion (GSIS) in Beta
Cells

Pancreatic beta cells synthesize and secrete the hormone insulin, the only known hor-
mone responsible for lowering blood glucose levels. Under normal conditions, insulin
is secreted in a pulsatile manner 1,2. Interestingly, insulin oscillations are disrupted
in patients with Type 2 diabetes3. In beta cells, glucose stimulated insulin secretion
(GSIS) is driven by a well established sequence of events (Fig. 1.4).

Glucose is metabolized after it is trans-
ported into the cell by GLUT trans-
porters. This triggers the production
of ATP and the subsequent closure of
KATP channels. The membrane gets
depolarized and VDCCs open, allow-
ing an influx of Ca+2 ions. The in-
crease in [Ca+2]i stimulates insulin se-
cretion in a Ca+2 - dependent manner.

Figure 1.4: Schematic of GSIS in beta cells

GSIS begins with the transport of glucose into the cell through glucose transporters
(GLUT). The increased intracellular concentration of glucose accelerates metabolism
and hence, the production of ATP at the expense of ADP. This results in an increase
in the ATP/ADP ratio, causing the inactivation of ATP dependent Potassium channels
(KATP), resulting in the slow depolarization of the membrane potential. Once the
membrane potential crosses a threshold value, Voltage Dependent Calcium Channels
(VDCCs) open and Ca+2 enters the cell. It is this increase in [Ca+2]i that cause insulin
secretion. This is the main pathway of GSIS (also called the triggering or KATP-
dependent pathway).

As a complement to experimental work, mathematical models of beta cells have
been built to better understand how various cellular mechanisms involved in GSIS
interact and to provide feasible explanations of experimental observations and predic-
tions. As more and more experimental evidence has emerged, models have grown in
complexity: from the early, minimal model that just included a few ion channels, to
models that incorporate detailed representations of metabolism, glycolysis and elec-
trical activity.
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1.4 Aim and Organization of the Thesis

The aim of this study is, broadly, to understand how mathematical models are for-
mulated based on experimental information; how models are improved by incorpo-
rating new experimental information; how computational techniques can be used to
mimic experimental manipulations and study the resultant behaviour of the theoretical
model; and finally, to offer new theoretical predictions that can be tested experimen-
tally. Specifically, I have used Pancreatic beta cells as my model.

In chapter 2 all the single cell models and methods used have been described.
In chapter 3 the simulation results of the electrical activity of the single cell mod-

els, two coupled cells and multiple coupled cells have been presented.
In chapter 4 a summary of the results and possible future directions the work in

this thesis can be extended to have been mentioned.
In chapter 5 the literature referred to in this thesis has been listed chapter-wise.
All the MATLAB codes used have been attached in Appendix A.



Chapter 2

Models and Methods

2.1 Models

Mathematical models of beta cells have been proposed as tools to describe how various
cellular processes interact in GSIS. As models have evolved over time, more and more
of the cellular processes (described in the previous section) have been included in
models of beta cells.

The pioneering model was published in 1983 by Chay and Keizer 1. This model
builds on the Hodgkin-Huxley paradigm 2. The first models (Chay-Keizer1, Chay13)
explained fast bursting of membrane potential correctly but predicted oscillations of
cytosolic [Ca+2] with different kinetics than what was seen experimentally. With the
discovery of ATP dependent Potassium Channels (KATP)4,5 in 1984, a set of models in-
cluding KATP channels came up (Keizer and Magnus11,12, Smolen and Keizer6). In or-
der to explain the origins of extremely slow bursting (period of many minutes)15,16,17,
a wave of models in which the ER was included as a second Ca+2 compartment came
up (Bertram et. al.18, Chay et.al.19). Some other scientists have proposed an alter-
native mechanism to explain the wide range in the periodicity of bursting - the idea
that the periodicity is based on the interactions between a fast and a slow variable(s)
(Bertram et. al.7, Bertram and Sherman8, Bertram et. al.9). The current generation of
models can explain the full range of observed bursting periods.

All the models mentioned so far (and the ones described in the next sections) are
based on rodent experimental data. Human pancreatic beta cells differ from rodent
beta cells in a few ways (distribution of cells in the islet20, the types of ion channels
expressed21,22 and kinetics of insulin exocytosis23). Based on these differences (and
based on the existing rodent models), mathematical models of human beta cells are
currently in the early stages of development.

In this section four of the models based on rodent beta cells are described - math-
ematically and in terms of the physiological mechanisms involved.
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2.1.1 Chay-Keizer Model (1983)

Chay and Keizer 1 (CK) developed their pioneering model of the beta cell in 1983.
A schematic of the CK model is shown in figure 2.1. The ion channels they consid-
ered are: Voltage Dependent Calcium Channels (VDCCs), Voltage Dependent Potas-
sium Channels (KV) and Calcium Dependent Potassium Channels (KCa). The form
of the equations used to describe the ion channels is the HH type2. Intracellular cal-
cium handling is modelled in a minimal manner. As proposed by Atwater et. al.
3, the CK model uses the effects of intracellular calcium concentrations ([Ca+2]i) on
KCachannels as the mechanism to terminate or initiate bursts of potential.

The active phase, shown by (1) in fig-
ure 2.1, is sustained by KV and VDCCs
and [Ca+2]i slowly rises. Eventually, the
KCachannels get activated and the mem-
brane repolarizes (shown by (2)). During
the silent phase (shown by (3)), the VDCCs
and KV channels are closed and [Ca+2]i is
extruded from the cell, inhibiting the activ-
ity of the KCachannels. This causes depo-
larization of the membrane potential, acti-
vating the VDCCs and KV channels, initi-
ating a new burst.

Figure 2.1: Schematic of the Chay-Keizer Model [14]

The Model Equations

The differential equations:

dV
dt = 1

Cm
(2ICa + IK + IKCa + Il)

dmCa
dt = φ (αmCa(1−mCa)+βmCamCa)

dhCa
dt = φ (αhCa(1−hCa)+βhCahCa)

dn
dt = φ (αn(1−n)+βnn)

dCa
dt = f

(3
r ICa −KCaCa

)

The ionic currents:

ICa = gCam3
CahCa(VCa −V )

IK = gKn4(VK −V )

IKCa = gKCa
Ca

Ca+Kdiss
(VK −V )

Il = gl(Vl −V )
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Parameter Value
Cm(µF/cm2) 1
gCa(mS/cm2) 6.5
gK(mS/cm2) 12
gl(mS/cm2) 0.04
gKCa(mS/cm2) 0.09
VCa(mV) 100
VK(mV) −75
Vl(mV) −40
V ′(mV) 50
V ∗(mV) 30
T (0C) 20
r(µm) 8.9×10−4

f 0.004
Kdiss(µM) 1
KCa(µM) 0.04

Gating functions:

αmCa =−0.1 (V+V ′−25)

e−
(V+V ′−25)

10 −1

βmCa = 4e−
(V+V ′)

18

αhCa = 0.07e−
(V+V ′)

20

βhCa =
1

e−
(V+V ′)−30

10 +1

αn =−0.01 (V+V ∗−10)

e−
V+V∗−10

10 −1

βn = 0.125e−
V+V∗

80

φ = 3
T−6.3

10

2.1.2 Smolen-Keizer Model (1992)

In 1984 ATP dependent Potassium Channels (KATP) were identified in rodent beta
cells 4,5, emerging as a probably link between metabolism and electrical activity. The
activity of KATP channels is inhibited by ATP and stimulated by ADP. These channels
are responsible for the resting membrane potential of beta cells. Smolen and Keizer 6

(SK) introduced KATP channels to the models of beta cells in order to analyze the role
of cyclical changes in the ATP/ADP ratio on the electrical activity of beta cells. This
model assumes as negative influence of Ca+2 on the production of ATP. A schematic
of the SK model is shown in figure 2.2.

Figure 2.2: Schematic of the Smolen-
Keizer Model [14]

The active phase, shown by (1) in fig-
ure 2.2, is sustained by KV and VDCCs
and [Ca+2]i slowly rises. This exerts a
negative effect on the production of ATP
(reflected in the increase of ADP) caus-
ing a corresponding decrease in the AT-
P/ADP ratio. As a consequence, KATP

channels open, repolarizing the mem-
brane (shown by (2)). During the silent
phase (shown by (3)), the KV channels
and VDCCs are closed and [Ca+2]iis ex-
truded from the cell. As [Ca+2]i de-
creases, the production of ATP is
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potentiated, closing the KATP channels and initiating a slow depolarization of the
membrane, initiating a new cycle.

The Model Equations

The differential equations:

dV
dt =− 1

Cm
(ICa + IK + IKAT P)

dn
dt = λa(φk −n) 1

τn

dCa
dt = f · (αICa −akcaCa− dampcahill

ahill
kdamp+cahill

dd
dt = ka((tot −d)−d

d pc
dt = k1p pot(1− f2∞)− k1m pc

d pot
dt =−(k1p pot · (1− f2∞)− k1m pc−λk(k3p · f2∞ · pot − k3m(1− pot · pc))

dii
dt = λi

(φi−ii)
τi

d j j
dt = λ j

(φ j− j j)
τ j

The ionic currents:

ICa = gCabghk

IKV = gk · ii ·n(V −VK)

IKAT P = gAT P(V −VK)
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Other equations:

φCaJ =
1

1+e

Vm j−V
Sm j

φK = 1

1+e
Vn−V

Sn

φCa =
1

1+e
Vm−V

Sm

φi =
1

1+e
Vi+V

Si

φ j =
1

1+e

Vj+V
S j

k1m = λmφICa

k1p = λm(1−φICa)

k2p =−k2sghk

gCab = gCam(χP+(1−χ)φCaJ j j)+gCal

ghk =
Ca0V

1−e
V

13.35

gAT P = ḡAT P
1+ d

k1
1+ d

k1
+ tot−d

k2

f2∞ =
k2p

k2m+k2p

Paramater Values Parameter Values
VK (mV) −75 gcam (pS) 1470
Cm (µF/cm2) 5309 χ 0.27
Vm j (mV) −11 Sm j (mV) 3.6
gcal (pS) 6.3 Ca0(mM) 7
gK (pS) 5000 ḡAT P (pS) 6000
K1 (µM) 0.45 K2 (µM) 0.012
Vn (mV) −20 λa 1.2
Sn (mV) 5.3 f 0.03
ka(ms−1) 2×10−5 r(µm) 0.76
r1(µm) 0.35 λm 0.78
Vm(mV) −15 Sm(mV) 6.2
k2s(ms−1) 1.512 k2m(ms−1) 65
λK 1 k3p(ms−1) 0.02
λi 1 Vi (mV) 36
Si (mV) 4.5 τi(ms) 2600
λ j 1 Vj 50
S j(mV) 6.3 τ j(ms) 50000

α = 3000
8π(96487)73

αn = e
V+75

65

βn = e
V+75

65

τn =
60

αn+βn

τ j = τ jmin+
τ j

e

V+Vj
2S j +e

−
V+Vj

2S j

2.1.3 Phantom Burster Model (2000)

Bertram et. al.7 developed a model based on the idea that the periodicity of bursting
is determined by the interaction between a fast and a slowly oscillating variable. This
model is capable of producing bursting with an intermediate period, distinct from that
of the fast and the slow variables. Hence, models of this type are called phantom
bursters. s1 is the faster variable and s2 the slower one. For the purposes of the model
it is sufficient if Is1 and Is2 are repolarizing, negative feedback currents that turn on
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when the cell is depolarized (Alternatively, they could be depolarizing currents that
turn off when the cell is depolarized). There are many candidates for the identity of
the fast and slow processes - their exact biophysical identities remain obscure. Bertram
et. al.7 suggest that Is1 could be though of as a current through KCa channels and Is2

as a current though KATP channels. Notice that neither of these channels is directly
voltage dependent but both channels respond to changes in [Ca+2]i levels which is
voltage dependent.

The Model Equations

The differential equations:

dV
dt =− 1

Cm

(
ICa + IK + Il + Is1 + Is2 + Istim

)
dn
dt = λ

n∞−n
τn

ds1
dt = s1∞−s1

τs1

ds2
dt = s2∞−s2

τs2

The ionic currents:

ICa = gCam∞(V −VCa)

IK = gKn(V −VK)

Il = gl(V −Vl)

Is1 = gs1s1(V −VK)

Is2 = gs2s2(V −VK)

Gating and other
functions:

m∞ = 1

1+e
Vm−V

sm

n∞ = 1

1+e
Vn−V

sn

τn =
τ̄n

1+e
V−Vn

sn

s1∞ = 1

1+e
Vs1−V

ss1

s2∞ = 1

1+e
Vs2−V

ss2

Paramater Values Parameter Values
Vl (mV) −40 gs1(pS) 32
VCa (mV) 100 gs2(pS) 3
VK (mV) −80 Cm(µF/cm2) 4524
λ 1.1 τ̄n (ms) 9.09
gCa (pS) 280 Vm (mV) −22
gK (pS) 1300 Vn (mV) −9
gl (pS) 25 sm 7.5
Vs1(mV) −40 sn 10
τs1(ms) 1000 ss1 0.5
Vs2(mV) −42 ss2 0.4
τs2(ms) 1.2×105
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2.1.4 Dual Oscillator Model (2007)

In 2004, Bertram and Sherman 8 proposed a model using the phantom bursting mech-
anism with 3 slow processes ([Ca+2]i, [Ca+2]ER, and ATP/ADP). In a later model,
called the Dual Oscillator Model 9 (DOM), they combined this model with a model
of glycolysis 10 and a model for mitochondrial metabolism 11,12. A schematic of the
DOM is shown in figure 2.3.

The interactions between the glycolytic, metabolic
and electrical components drive different electri-
cal behaviours depending on the regime of the gly-
colytic and electrical components. ATP produc-
tion is controlled by the rate at which glucose is
metabolized. Changes in ATP levels mediates the
conductance of KATP channels, depolarization and
Ca+2 influx. All three compartments are affected
by changes in [Ca+2]i.

Figure 2.3: Schematic of the Dual Oscillator Model [14]

The Model Equations

The differential equations:

Cm
dV
dt =−

(
IK + ICa + IK(Ca)+ IK(AT P)

)
dn
dt =

n∞(V )−n
τn

dCa
dt = fcyt(Jmem + Jer)

dCaer
dt =− fer(

Vcyt
Ver

)Jer

dG6P
dt = λ (RGK −RPFK)

dFBP
dt = λ (RPFK − 1

2RGPDH)

dAT P
dt = AT P−ADPe[(r+γ}(1−ca/r1)]

τa

The ionic currents:

IK = ḡKn(V −VK)

ICa = ḡCam∞(V )(V −VCa)

IK(Ca) = gK(Ca)(V −VK)

IK(AT P) = gK(AT P)(V −VK)
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Cytosolic and ER calcium
dynamics:

Jmem = αICa + kPMCACa

Jer = Jleak − JSERCA

Jleak = pleak(Caer −Ca)

JSERCA = KSERCACa

Other functions:

gK(Ca) = ḡK(Ca)
Ca2

K2
D+Ca2

gK(AT P) = ḡK(AT P)o∞(ADP,AT P)

n∞(V ) = 1
1+e−(16+V )/5

m∞(V ) = 1
1+e−(20+V )/12

o∞(ADP,AT P) =
0.08

(
1+ 2MgADP−

17µM

)
+0.89

(
MgADP−

17µM

)
(

1+MgADP−
17µM

)2(
1+ADP3−

26µM +AT P4−
1µM

)

Nucleotide concentrations:

Atot = AMP+ADP+AT P

AMP = ADP2

AT P

MgADP− = 0.165ADP

ADP3− = 0.135ADP

AT P4− = 0.05AT P

Glycolysis:

wik jl =
1

f ik
13 f jk

23 f il
41 f jl

42 f kl
43

(
AMP

K1

)i(
FBP
K2

) j(
F6P
K3

)k(
AT P2

K4

)l

RPFK=Vmax
(1−λ )w1110+λ ∑i jl wi jl1

∑i jkl wi jkl

F6P = 0.3G6P

RGPDH = 0.2
√

FBP

Parameter Value Parameter Value Parameter Value
λ 0.06 K1(µM) 30 K2 (µM) 1
K3 (µM) 5×104 K4 (µM) 220 f23 0.2
f41 20 f42 20 f43 20
C(fF) 5300 τn(ms) 20 ḡK(pS) 2700
ḡCa(pS) 1000 ḡKAT P(pS) 2.5×104 VK(mV) −75
VCa(mV) 25 KD(µM) 0.5 α (µM/ms) 4.5×10−6

kpmca(ms−1) 0.1 pleak(ms−1) 2×10−4 kSERCA(ms−1) 0.4
fer 0.01 fc 0.01 VCyt

Ver
31

Vmax(mV) 2 Atot(µM) 3000 νγ 2.2
kγ (µM/s) 10 RGK(s−1) 0.2 Kdd(µM) 17
Ktd(µM) 26 Ktt(µM) 1 τa(ms) 3×105

r 1 r1(µM) 0.35 ḡK(Ca)(pS) 600
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2.2 Methods

2.2.1 Coupled Map Lattices to Model Islets

Coupled Map Lattices is a method to model the collective dynamics of a system with
interacting parts. I have modelled the pancreatic islet as a 1D ring of cells (with
periodic boundary conditions, Fig. 2.4). Each cell is coupled to its nearest neighbour.

Figure 2.4: 1D ring of coupled cells

Biologically, coupling is achieved through the
presence of gap junctions in the membranes of
adjoining cells which allows small molecules
and ions to pass through. Hence, neighbouring
cells can sense voltage differences through the
gap junctions. In the 1D ring, each lattice site
(or cell) is described by the DOM system of
equations.

The effect of coupling is modelled by
changing the form of the voltage differential
equation. Equation (1.4) is modified such that the voltage variation of the ith cell can
be written as:

Cm
dVi
dt =−∑ Iionic−gc(Vi−1 −Vi)−gc(Vi −Vi+1)

where, gc is the gap junction coupling strength between two adjacent cells and
Vi+1 and Vi-1 are the voltages of the two nearest neighbours of the ith beta cell.

2.2.2 Synchronization Order Parameter, R

The Synchronization Order Parameter 13, R, is a measure of spatio-temporal syn-
chronicity in a population of coupled oscillators (here beta cells). The value of R
indicates the level of synchronization by comparing the average of the local signal
(here membrane voltage of a beta cell) to the global behaviour. R is explicitly defined
as follows:

R =

〈
M2〉−⟨M⟩2[〈
z2

i
〉
−⟨zi⟩2

]
where [ ] denotes spatial averaging and ⟨⟩ denotes temporal averaging. M is the

spatial average of zi (voltage values in the case of coupled beta cells) over N cells
at every time point. R takes up values between 0 and 1. If all the beta cells are
completely synchronized with respect to their electrical activity, then the average of
the local signal will be the same as the global behaviour. Hence, R ~ 1. If the beta
cells are unsynchronized, the individual states will be different and hence R ~ 0.
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All simulations were programmed on MATLAB R2012b using the ode15s ode
solver, and run on a Workstation with an Intel® Xeon(R) CPU E5-1620 0 @ 3.60GHz
× 8 processor. The operating system used was Ubuntu v14.04 LTS (64-bit). It took
approximately 5 days to run a 107ms simulation of coupled beta cells.



Chapter 3

Results

The results are organized in the following manner: First, the simulation results of the
single beta cell bursting dynamics for the four models mentioned in the Models section
of Chapter 2 are shown, and their drawbacks mentioned. Second, since the Dual
Oscillator Model (DOM) is the only model capable of reproducing most experimental
results, simulation results of two cells (each described by the DOM) coupled through
gap junctions are shown. Finally, simulation results for a ring-like, one-dimensional
CML model of an islet with multiple beta cells, each described by the DOM, coupled
to their nearest two neighbours are shown. For both the two and multiple cell models,
simulations of a 1D ring of both homogeneous and heterogeneous beta cells (in terms
of bursting dynamics) is shown.

3.1 Single Cell Results

3.1.1 Chay-Keizer Model Predictions

The burst pattern and calcium oscillations simulated using the CK model equations
(see section 2.1.1) are shown in figure 3.1(a), for the following initial conditions: v0
= -54.774; n0 = 0.00044035; mca0 = 0.027532; hca0 = 0.086321; ca0 = 0.10749 (All
the values for each of the parameters used are mentioned in the previous chapter). The
experimentally observed time curves are shown in figure 3.1(b). It is clear that the CK
model predicts a slower and different form of the calcium dynamics than observed
experimentally.
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(a) Top: CK predicts the [Ca+2]i time curve
to be square wave. Bottom: CK predicts the
voltage time curve to be square wave with
bursting. (KCa = 0.04; gKCa = 0.09)

(b) Top: Experimentally observed [Ca+2]i time curve.
Bottom: Experimentally observed voltage time curve [1]

Figure 3.1: (a) CK model predicted time curves (b) Experimentally observed time
curves.

Moreover, it was experimentally found that blocking KCa channels with charyb-
dotoxin produced no significant effect on the electrical activity 3. However, modelling
the blocking of KCa channels leads to a disruption in the burst pattern (Fig. 1.2 (a)).

(a) CK model predicts a loss in burst
pattern on blockage of KCa channels by
charybdotoxin/quinine. (KCa = 0.001;
gKCa = 0.09)

(b) CK model predicts an increase in the
voltage dynamics when KV channels are
blocked by TEA. (KCa = 0.04; gKCa =
0.02)

Figure 3.2: (a) CK model predicted burst pattern when KCa channels are blocked (b)
CK model predicted burst pattern when KV channels are blocked by TEA

The hypothesis proposed by the CK model was discarded when [Ca+2]i was mea-
sured (experimentally) 1,2 in beta cells, revealing different and more rapid dynamics
than predicted by the CK model.
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3.1.2 Smolen-Keizer Model Predictions

The burst pattern and calcium oscillations simulated using the SK model equations
(see section 2.1.2) are shown in figure 3.3, for the following initial conditions: v0=-
53; n0=0.002; ca0=0.15; d0=0.42; pc0=0.9; pot0=0.02; ii0=0.98; jj0=0.47 (All the
values for each of the parameters used are mentioned in the previous chapter).

Figure 3.3: The SK model is able to reproduce the fast dynamics of [Ca+2]i oscillations

Dufer et. al. 4 report that electrical activity in beta cells lacking functional KATP

channels persists. All the models (including the SK model) that are based on the oscil-
lations of the ATP/ADP ratio to produce bursting electrical activity by regulating the
conductance of the KATP channels are unable to reproduce this observation. However,
the SK model is able to reproduce the fast dynamics of [Ca+2]i oscillations, and in
fact, includes an improved model of the Ca+2 currents (Fig. 1.2 (b)).

3.1.3 Phantom Burster Model Predictions

The possible burst patterns simulated using the PB model equations (see section 2.1.3)
are shown in figure 3.4(a), for the following initial conditions: v0 = -43.0; n0 = 0.03;
s10 = 0.1; s20 = 0.434 (All the values for each of the parameters used are mentioned in
the previous chapter). The experimentally observed burst patterns are shown in figure
3.4(b). In the model the value for ’gs1’ is changed to see bursting with different time
periods. gs1 = 3 for slow bursting; gs1 = 4 for intermediate, ’phantom bursting’; gs1
= 20 for fast bursting.
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(a) The PB model can reproduce slow (top, gs1=3), fast
(middle, gs1=20) and phantom (bottom, gs1=4) voltage
dynamics.

(b) Experimentally observed burst pat-
terns on fast (A), medium (B), and slow
(C) time scales [9]

Figure 3.4: (a) PB model predicted possible voltage dynamics (b) Experimentally
observed voltage dynamics

Single cell electrophysiological studies 5,6 have established that single cells can
burst as well as spike repetitively, but this bursting is typically much faster than that
in islets. Sometimes bursts much slower than those in islets (period 1–6 min) 7,8 are
seen. Bursting with a period comparable to that in islets is seen, but only rarely. The
Phantom Burster model is capable of reproducing bursting of all these periodicities.
The phantom bursting is significant in light of the fact that no slow process with a
medium-scale time constant has been identified in beta cells.

3.1.4 Dual Oscillator Model Predictions

The burst pattern and calcium oscillations simulated using the DOM equations (see
section 2.1.4) are shown in figure 3.5(a), for the following initial conditions: V0 =
-60; n0 = 0; Ca0 = 0.1; CaER0 = 185; ADP0 = 780; G6P0 = 200; FBP0 = 40 (All the
values for each of the parameters used are mentioned in the previous chapter).

The different types of bursting are reproduced by changing the values of RGK (Rate
of the enzyme Glucokinase), gKATP (conductance of the ATP dependent potassium
channel) and gKCa (conductance of the calcium dependent potassium channel) values.

For Slow bursting: RGK = 0.2; gKATP = 27000; gKCa = 100;
For Fast bursting: RGK= 0.4; gKATP = 25000; gKCa = 600;
For Subthreshold bursting: RGK= 0.2; gKATP = 30000; gKCa = 100;
For Compound bursting: RGK = 0.2; gKATPbar = 25000; gKCabar = 600;
For Accordian bursting: RGK= 0.2; gKATP = 23000; gKCa = 600;
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(a) DOM reproduces the full repertoire of
bursting ’types’ for different RGK, gKATP and
gKCa values.

(b) Experimental recordings of different burst pat-
terns in single mouse beta cells [5]

Figure 3.5: (a) DOM predicted repertoire of bursting (b) Experimental observations

The DOM reproduces the full range of periods observed in electrical bursting ac-
tivity (including the compound and mixed oscillations), seen experimentally 5. Most
of the predications of the DOM have acquired experimental verification. For example;
the DOM predicts oscillations in the glycolytic pathway, which has been seen in direct
experimentation 10. The DOM is the only model capable of reproducing the follow-
ing experimental observation: sub-threshold metabolic oscillations in the absence of
[Ca+2]i oscillations 11 (Fig. 3.4 (a)).

A point to note is that, like every other model, the DOM cannot explain the ob-
servation made by Dufer et. al. 4, that the electrical activity in beta cells lacking
functional KATP channels persists.

The DOM is a really elegant model because of the incorporation of glycolytic,
metabolic and electrical components of the beta cell. There is a clear connection
between the electrical activity of the membrane and the global function of the beta
cell in the secretion of insulin. Since almost all the predictions of the DOM have
experimental support, the Dual Oscillator Model was used to simulate a collection of
coupled beta cells - the Islet of Langerhans.
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3.2 Coupled Cell Results

Simulation results of beta cells (described by the DOM) coupled via gap junctions are
shown. All the constituent cells in the coupled system can have the same dynamics
(Homogeneous), or can be a mix of more than one type of bursting dynamics (Hetero-
geneous).

3.2.1 Homogeneous Cells

First, how coupling two cells (via gap junctions) may change the individual bursting
behaviour of each cell is shown. Second, the emergent, collective behaviour of an islet
is shown by coupling 30 beta cells in a 1D ring with periodic boundary conditions.

3.2.1.1 Two Cells

The voltage differential equation for two coupled cells is:

For Cell 1: Cm
dV1
dt =−Iionic −gc(V1 −V2)

For Cell 2: Cm
dV2
dt =−Iionic −gc(V2 −V1)

The burst frequency and length of burst stabilizes for coupling strengths > 100pS
when two identical cells are coupled.

(a) Voltage time curves (for different gcs) (b) Corresponding space-time plots with the synchro-
nisation order parameter, R, given for coupled cells.

Figure 3.6: (a) Voltage time curves (for different gcs) for two coupled compound cells
(b) Corresponding space-time plots
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(a) Time period of one cycle (Burst followed by
silent phase) versus coupling strength, gc.

As can be seen in figure 3.7(a), the
time period of one cycle (burst fol-
lowed by the silent phase) stabilizes
when the coupling strength increases
beyond ~100pS. In addition, the per-
centage of the time period spent burst-
ing also stabilizes. This is true when
any two identical (fast, slow, accor-
dian or compound) cells are coupled
together.

Figure 3.7: Time period of one cycle stabilizes for gc> 100pS

3.2.1.2 Thirty Cells

On coupling thirty homogeneous cells the burst pattern, time period and burst
percentage is lost when gc is increased. For intermediate gc values (~100pS to 500pS)
the burst pattern is completely lost and replaced by high frequency oscillations.

(a) Voltage time curves (for different gcs) for
30 coupled accordian cells.

(b) Corresponding space-time plots with R given for
coupled cells.

Figure 3.8: Voltage time curves and space-time plots for 30 coupled accordian cells

The specific pattern of the space-time plots for intermediate gcvalues (~100pS,
250pS and 500pS) indicates that the high frequency oscillations of individual beta
cells is actually a wave travelling through the ring of beta cell. The wave travels
through the lattice with uniform velocity.

The table in figure 3.9 shows how the time period of one cycle and the percentage
of the time period spent on bursting changes as gcis increased (for each of the different
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cell types). For each homogeneous 1D ring (and each gc value) multiple simulations
of length between 107 and 108 ms were run and the time period values were calculated
after a suitable period of transient time was allowed to pass.

Figure 3.9: Time period of one cycle and % of time period spent on bursting changes
for increasing gc.

The cells synchronize their burst and silent phases for low and high coupling
strengths. However, for low coupling strengths the bursting time course of neigh-
bouring cells is 180˚ out of phase. As coupling strength increases, bursting becomes
more in phase. For very high coupling strengths bursting is completely in phase.

In figure 3.10, the top panel
shows the superimposed time
curves of two neighbouring
cells (for different gcs). The
bottom panel shows the super-
imposed time curves of all 30
cells in the 1D ring. As can
be seen, the variation between
the time curves is less for a very
high gc value.

Figure 3.10: Synchronization of bursts goes from 180˚ anti-phase (low gc), to out-of-
phase, to completely in-phase (high gc).

3.2.2 Heterogeneous Cells

First, how coupling two different cells may lead to emergent bursting behaviour of a
different type is shown. Second, the emergent, collective behaviour of a heterogeneous
islet is shown by coupling 32 beta cells in a 1D ring with periodic boundary conditions.
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3.2.2.1 Two Cells

Emergent accordian type behaviour is seen on coupling a slow and a compound cell
or a fast and a compound cell (Fig. 3.11).

(a) Coupled Fast and Compound: Voltage time
curves (for different gcs)

(b) Coupled Slow and Compound: Voltage time
curves (for different gcs)

Figure 3.11: Emergent accordian behaviour is seen on coupling a fast/slow cell with
a compound cell.

Coupling any other cell types leads to behaviour intermediate to that of the original
two cell types.

(a) Voltage time curves for different gcs for a fast-
slow coupled pair of cells.

(b) The time period of one cycle for a fast-slow coupled
pair is intermediate to that of the only fast/only slow sit-
uation.

Figure 3.12: Intermediate behaviour of a fast-slow coupled pair of cells.
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3.2.2.2 Thirty-Two Cells

For large number of cells, coupling of compound and fast/slow types does not lead
to emergent accordian type bursting behaviour – instead, the behaviour of such a ring
of cells is similar to that of a homogeneous ring of accordian cells (Fig. 3.13).

(a) Voltage time curves for 32 coupled cells with
varying percentages of compound and fast cells.

(b) Corresponding space-time plots with R given for cou-
pled cells.

Figure 3.13: Coupling large number of compound and fast/slow cells doesn’t lead to
emergent accordian behaviour.

As the percentage of fast cells increases to 100%, the burst time percentage ap-
proaches that of the burst percentage of a homogeneous ring of Fast cells.

The table in figure 3.14 shows how the percentage of the time period spent on
bursting changes as gc is increased and the percentage of fast cells in a mixture of fast
and compound cells is changed. For each heterogeneous 1D ring (and each gc value)
multiple simulations of length between 5X106 and 108 ms were run and the values
were calculated after a suitable period of transient time was allowed to pass.

Figure 3.14: Burst percentage changes with changing coupling strength and percent-
age of fast cells in a mixture of fast and compound cells.
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Concluding Remarks

When single units interact, often what is seen is that the behaviour of such a collection
of interacting units is different from the behaviour of each individual unit - emergent
behaviour. Such is the case with pancreatic beta cells. The dynamics of a single beta
cell is extremely different from that of a cluster of coupled cells. The presence of
gap junctions between neighbouring beta cells in an islet forces each individual cell
to ’talk’ to its neighbouring cells. As a consequence, all the cells in the islet behave
in a synchronized manner. This synchronization is absolutely essential in the proper
functioning of the pancreas; to properly respond to elevated blood glucose levels by
secreting insulin in a pulsatile fashion.

Synchronization of the electrical (hence insulin secreting) activity on coupling
beta cells means that the body is more tolerant to the presence of a greater variety of
beta cells in different ’states’ (initial conditions and parameter values). Through this
study I have tried to understand how emergent, synchronized behaviour is achieved on
coupling cells.

Conclusions

1. When two homogeneous cells are coupled together (both accordian or com-
pound or fast or slow), the time period of one cycle (burst followed by silent
phase) and percentage of time spent bursting stabilizes for gc values greater
than ~100pS. No emergent behaviour is seen.

2. When two cells, one compound and the other fast or slow, are coupled together
emergent accordian type behaviour is seen. This emergent accordian pattern
has the same time period (~300 seconds) as the ’original’ accordian type cell.
However, the emergent accordian pattern is less dense than the original one.

3. When multiple homogeneous cells are coupled together the original burst pat-
tern of a single cell is lost. For low coupling strengths (gc<~200pS) the burst
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pattern becomes irregular. For intermediate coupling strengths (~250pS < gc<
~500pS) bursting behaviour is lost and replaced by high frequency (1.5-2 sec-
onds) oscillations. For high coupling strengths (gc> 1000pS) the irregular burst-
ing pattern is recovered.

4. On observing the space-time plots (~250pS < gc< ~500pS) of multiple homoge-
neous coupled cells, it appears that the high frequency oscillations are actually
travelling waves that move around the ring with uniform velocity.

5. Synchronization of volatge time curves during bursts goes from 180˚ anti-phase
(low gc), to out-of-phase (intermediate gc ), to completely in-phase (high gc).
Hence, R~1 is seen only when gc is very high (>1000pS).

6. When multiple cells (of compound and fast or slow) are coupled together, the
emergent accordian pattern seen when a pair of cells is coupled, is lost. Irregular
bursting and high frequency oscillations are seen (just like the homogeneous
case).

7. In a mixture of fast and compound cells, as the percentage of fast cells increases
towards 100%, the percentage of time spent bursting by the group of cells tends
to that of the case where all the coupled cells are of only fast type.

Future Directions

1. The effect of heterogeneous coupling has not been studied. It would be inter-
esting to see if and how the results would change by incorporating different
coupling strengths among pairs of cells.

2. The 1D ring with periodic boundary conditions can be modified to a 1D ring
with fixed boundary conditions.

3. The 1D ring can be extended to 2D or even 3D lattices.

Given that beta cell dysfunction is implicated in Type 2 Diabetes, most likely,
models of human beta cells will evolve and develop rapidly. Hopefully, these models
will be biologically sufficiently complicated that they will be able to contribute to the
design and prediction of new therapies and drugs; while being mathematically suffi-
ciently simple enough that mathematical biologists may analyze and simulate them.
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Appendix A

MATLAB Programs

The matlab codes (function files and corresponding script files) for the following mod-
els have been attached:

• Chay-Keizer single cell model

• Smolen-Keizer single cell model

• Phantom Burster single cell model

• The Dual Oscillator Model



1 function dydt = chaykei(t,y)
2 v=y(1);
3 n=y(2);
4 mca=y(3);
5 hca=y(4);
6 ca=y(5);
7

8 % Parameters
9 cm=1;

10 gca=6.5;
11 gk=12;
12 gl=0.04;
13 gkca=0.09; % change to 0.02 to see effects of quinine/TEA
14 vca=100;
15 vk=-75;
16 vl=-40;
17 vprime=50;
18 vstar=30;
19 temp=20;
20 r=8.9e-4;
21 f=0.004;
22 fara=96487;
23 kdiss=1;
24 kca=0.04; %change kca to 0.001 for effects of quinine
25

26 % Gating functions
27 alphamca = -0.1*((v+vprime)-25)/(exp(-((v+vprime)-25)/10)-1);
28 betamca = 4*exp(-(v+vprime)/18);
29 alphahca= 0.07*exp(-(v+vprime)/20);
30 betahca = 1/(exp(-((v+vprime)-30)/10)+1);
31 alphan = (-0.01*((v+vstar)-10)/(exp(-((v+vstar)-10)/10)-1));
32 betan = (0.125*exp(-(v+vstar)/80));
33 phi = 3ˆ((temp-6.3)/10);
34 % To see the effects of TEA use this
35 % n inf = alphan/(alphan+betan);
36 % tau = 1/(alphan+betan);
37 % taun=tau+2*tau;
38

39 % Ionic currents:
40 i ca = gca*mcaˆ3*hca*(vca-v);
41 i k = gk*nˆ4*(vk-v);
42 i kca = gkca*ca/(ca+kdiss)*(vk-v);
43 i l = gl*(vl-v);
44

45 %The differential equations
46 dv = 1/cm*(2*i ca+i k+i kca+i l);
47 dmca = phi*(alphamca*(1-mca)-betamca*mca);
48 dhca = phi*(alphahca*(1-hca)-betahca*hca);
49 dn = phi*(alphan*(1-n)-betan*n);
50 % Use this dn equation for effect of TEA
51 % dn = phi*(n inf-n)/taun;
52 dca = f*(3/(r*fara)*i ca-kca*ca);
53

54 dydt = [dv,dn,dmca,dhca,dca]';
55 end
56 -------------------------------------------------------------------
57

1

Code for the Chay-Keizer model



58 %The script file
59

60 %Initial conditions
61

62 v0 = -54.774;
63 n0 = 0.00044035;
64 mca0 = 0.027532;
65 hca0 = 0.086321;
66 ca0 = 0.10749;
67

68 yinit = [v0,n0,mca0,hca0,ca0];
69 tspan = [0 50000];
70 options=odeset('Stats','off');
71

72 tic
73 [t,y] = ode15s(@chaykei,tspan,yinit,options);
74 toc
75

76 figure
77 ax1= subplot(2,1,1)
78 plot(t,y(:,1),'b','LineWidth',2)
79 title('Voltage (V)','FontSize',12)
80 xlabel ('Time (ms)','FontSize',12)
81

82 ax2 = subplot(2,1,2)
83 plot(t,y(:,5),'b','LineWidth',2)
84 title('[Caˆ{+2}]','FontSize',12)
85 xlabel ('Time (ms)','FontSize',12)
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1 function dydt = smolenkeizer(t,y)
2 v = y(1);
3 n = y(2);
4 ca = y(3);
5 d = y(4);
6 pc = y(5);
7 pot = y(6);
8 ii = y(7);
9 jj = y(8);

10

11 % Parameters
12 vk = -75;
13 captot = 5309;
14 gcam = 1470;
15 x = 0.27;
16 vmj = -11;
17 slopemj = 3.6;
18 gcal = 6.3;
19 cao = 7;
20 gk = 5000;
21 gatpbar = 6000;
22 kone = 0.45;
23 ktwo = 0.012;
24 tot = 1;
25 vn = -20;
26 alambda = 1.2;
27 slopen = 5.3;
28 a = 65;
29 b = 20;
30 c = 60;
31 fr = 0.03;
32 akca = 0.12;
33 rad = 7;
34 farada = 96487;
35 damp = 0;
36 hill = 3;
37 akdamp = 0.6;
38 ka = 2e-05;
39 % change this value to see the effects of glucose
40 r = 0.76;
41 r1 = 0.35;
42 lambdam = 0.78;
43 vm = -15;
44 slopem = 6.2;
45 k2s = 1.512;
46 k2m = 65;
47 lambdak = 1;
48 k3p = 0.02;
49 k3m = 0.005;
50 lambdai = 1;
51 vi = 36;
52 slopei = 4.5;
53 taui = 2600;
54 lambdaj = 1;
55 vj = 50;
56 slopej = 6.3;
57 tj = 50000;
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58 tjmin = 1500;
59

60 % activation and time-constant functions
61 phicaj = 1.0/(1.0+exp((vmj-v)/slopemj));
62 phik = 1.0/(1.0+exp((vn-v)/slopen));
63 phica = 1.0/(1.0+exp((vm-v)/slopem));
64 phii = 1.0/(1.0+exp((v+vi)/slopei));
65 phij = 1.0/(1.0+exp((v+vj)/slopej));
66 alpha = 3.0e+03/(8.0e0*pi*farada*radˆ3);
67 alphan = exp((v+75.0)/a);
68 betan =exp((-v-75.0)/b);
69 taun = c/(alphan+betan);
70 tauj = tjmin+tj/(exp((v+vj)/(2*slopej))
71 +exp(-(v+vj)/(2*slopej)));
72 gcab = gcam*(x*pot+(1.0-x)*phicaj*jj)+gcal;
73 ghk = cao*v/(1.0-exp(v/13.35));
74 gatp = gatpbar*(1.0+d/kone)/(1.0+d/kone+(tot-d)/ktwo);
75 k1m = lambdam*phica;
76 k1p = lambdam*(1.0-phica);
77 k2p = -k2s*ghk;
78 f2inf = k2p/(k2m+k2p);
79

80 % Ionic currents
81 ica = gcab*ghk;
82 ikv = gk*ii*n*(v-vk);
83 ikatp = gatp*(v-vk);
84

85 % The differential equations
86 dv = -(ica+ikv+ikatp)/captot;
87 dn = alambda*(phik-n)/taun;
88 dca = fr*(-alpha*ica-akca*ca-damp*caˆhill
89 /(akdampˆhill+caˆhill));
90 dd = ka*((tot-d)-d*exp(r*(1.0-(ca/r1))));
91 dpc = k1p*pot*(1.0-f2inf)-k1m*pc;
92 dpot = -(k1p*pot*(1.0-f2inf)-k1m*pc)-
93 lambdak*(k3p*f2inf*pot-k3m*(1.0-pot-pc));
94 dii = lambdai*(phii-ii)/taui;
95 djj = lambdaj*(phij-jj)/tauj;
96 dydt =[dv,dn,dca,dd,dpc,dpot,dii,djj]';
97 end
98 ------------------------------------------------------------------
99 %The script file

100

101 % Initial conditions
102 v0=-53;
103 n0=0.002;
104 ca0=0.15;
105 d0=0.42;
106 pc0=0.9;
107 pot0=0.02;
108 ii0=0.98;
109 jj0=0.47;
110

111 yinit = [v0,n0,ca0,d0,pc0,pot0,ii0,jj0];
112 tspan = [0 50000];
113 options=odeset('Stats','off');
114
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115 tic
116 [t,y] = ode15s(@smolenkeizer,tspan,yinit,options);
117 toc
118

119 figure
120 ax1 = subplot(2,1,1)
121 plot(t,y(:,1),'b','LineWidth',2)
122 title('Voltage (mV)','FontSize',20);
123 set(gca,'FontSize',17) % xlabel('Time (ms)');
124

125 ax2 = subplot(2,1,2)
126 plot(t,y(:,3),'b','LineWidth',2)
127 title('[Caˆ{+2}]','FontSize',20);
128 xlabel('Time (ms)','FontSize',20);
129 set(gca,'FontSize',17)
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1 % Phantom bursting model, with 2 fast and 2 slow variables.
2 % Units: V = mV; t = ms; g = pS; I = fA
3

4 function dydt = phantomburster(t,y)
5 v = y(1);
6 n = y(2);
7 s1 = y(3);
8 s2 = y(4);
9

10 % Parameters
11 vl = -40;
12 vca = 100;
13 vk = -80;
14 lambda = 1.1;
15 gca = 280;
16 gk = 1300;
17 gl = 25;
18 vs1 = -40;
19 taus1 = 1000; %could go upto 10s
20 vs2 = -42;
21 taus2 = 120000; %could be as small as 1min
22 gs2 = 32;
23 gs1 = 3; % for slow bursting
24 % gs1 = 4; %for medium bursting 'phantom bursting'
25 % gs1 = 20; % for fast bursting
26 cm = 4524;
27 tnbar = 9.09;
28 vm = -22;
29 vn = -9;
30 sm = 7.5;
31 sn = 10;
32 ss1 = 0.5;
33 ss2 = 0.4;
34

35 % activation and time-constant functions
36 minf = 1.0/(1.0+exp((vm-v)/sm));
37 ninf = 1.0/(1.0+exp((vn-v)/sn));
38 taun = tnbar/(1.0+exp((v-vn)/sn));
39 s1inf = 1.0/(1.0+exp((vs1-v)/ss1));
40 s2inf = 1.0/(1.0+exp((vs2-v)/ss2));
41

42 % Ionic currents
43 ica = gca*minf*(v-vca);
44 ik = gk*n*(v-vk);
45 il = gl*(v-vl);
46 is1 = gs1*s1*(v-vk);
47 is2 = gs2*s2*(v-vk);
48

49 % The differential equations
50

51 if 15000<t && t<45000
52 istim = 0;
53 else
54 istim=0;
55 end
56

57 dv = -( ica + ik + il + is1 + is2 )/cm - istim/cm;
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58 dn = lambda*(ninf - n)/taun;
59 ds1 = (s1inf - s1)/taus1;
60 ds2 = (s2inf - s2)/taus2;
61

62 dydt = [dv, dn, ds1, ds2]';
63 end
64 ------------------------------------------------------------------
65 % The script file
66

67 % Initial conditions
68

69 v0 = -43.0;
70 n0 = 0.03;
71 s10 = 0.1;
72 s20 = 0.434;
73

74 yinit = [v0,n0,s10,s20];
75 tspan = [0 100000];
76 options=odeset('Stats','off');
77

78 tic
79 [t,y] = ode15s(@phantomburster,tspan,yinit,options);
80 toc
81

82 figure(1);
83 % t(t<3e4) = NaN;
84 plot(t,y(:,1),'b','LineWidth',2)
85 title('Fast bursting - Voltage (mV)' ,'Fontsize',21)
86 xlabel('Time (ms)' ,'Fontsize',21);
87 set(gca,'FontSize',25)
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1 % Program for a beta-cell model coupled to glycolysis -DOM
2 % This was published by Bertram, Sherman et. al.
3 % Biophysical Journal, 87:3074-3087, Nov. 2004.
4

5 % State variables: % V -- membrane potential
6 % n -- activation of delayed rectifier
7 % Ca -- free cytosolic calcium concentration
8 % ADP -- cytosolic ADP concentration
9 % CaER -- concentration of free calcium in the ER

10 % G6P -- glucose 6-phosphate concentration
11 % FBP -- fructose 1,6-bisphosphate concentration
12

13 function dydt = dualoscillator(t,y)
14

15 % y = [V, n, Ca, CaER, ADP, G6P, FBP];
16 V = y(1);
17 n = y(2);
18 Ca = y(3);
19 CaER = y(4);
20 ADP = y(5);
21 G6P = y(6);
22 FBP = y(7);
23

24 % Parameter sets for various behaviors:
25 % k gamma = 10 for all of the sets!
26 % Note: An inc. in R GK is like an inc in gluc.
27

28 % for compund bursting
29 % R GK = 0.2; gKATPbar = 25000; gKCabar = 600;
30

31 % for slow bursting
32 % R GK = 0.2; gKATPbar = 27000; gKCabar = 100;
33

34 % for subthreshold bursting
35 % R GK = 0.2; gKATPbar = 30000; gKCabar = 100;
36

37 % for accordian bursting
38 %R GK = 0.2; gKATPbar = 23000; gKCabar = 600;
39

40 % for fast bursting
41 % R GK = 0.4; gKATPbar = 25000; gKCabar = 600;
42

43 % ------------------------------------------------------------
44 % Channel properties
45

46 Cm = 5300;
47 VK = -75;
48 gK = 2700;
49 taun = 20;
50 ninf = 1/(1+exp(-(16+V)/5));
51 gCa = 1000;
52 VCa = 25;
53 minf = 1/(1+exp(-(20+V)/12));
54 % gKCabar = 600; (uncomment out one of the sets!)
55 Kd = 0.5;
56

57 % Ionic currents:
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58 IK = gK*n*(V-VK);
59 ICa = gCa*minf*(V-VCa);
60 gKCa = gKCabar/(1+(Kd/Ca)ˆ2);
61 IKCa = gKCa*(V-VK);
62

63 % IKATP (see below, after calc. of nucleotide concs.)
64 % gKATPbar = 25000;(uncomment out one of the sets!)
65

66 % Calcium Handling
67 alpha = 4.50e-6;
68 kPMCA = 0.2;
69 fcyt = 0.01;
70 fer = 0.01;
71 % sigmav=cyt volume/ER volume = V cyt/V er
72 sigmav = 31; pleak = 0.0002;
73 kSERCA = 0.4;
74 Jmem = -(alpha*ICa + kPMCA*Ca);
75 JSERCA = kSERCA*Ca;
76 Jleak = pleak*(CaER - Ca);
77 Jer = Jleak - JSERCA;
78

79 % -------------------------------------------------------------
80 % Glycolytic and Keizer-Magnus components
81 % Parameters
82 % R GK--glucokinase rate
83 % Atot--total adenine nucleotide concentration (micromolar)
84 % K1--Kd for AMP binding
85 % K2--Kd for FBP binding
86 % K3--Kd for F6P binding
87 % K4--Kd for ATP binding
88 % famp, etc--Kd amplification factors for heterotropic binding
89 % famp corresponds to f13 in the paper
90 % fmt corresponds to f41 in the paper
91 % ffbp corresponds to f23 in the paper
92 % fbt corresponds to f42 in the paper
93 % fatp corresponds to f43 in the paper
94 % R GPDH--glyceraldehyde phosphate dehydrogenase rate
95

96 % Glycolytic parameters
97 K1 = 30;
98 K2 = 1;
99 K3 = 50000;

100 K4 = 1000;
101 famp = 0.02;
102 fmt = 20;
103 ffbp = 0.2;
104 fbt = 20;
105 fatp = 20;
106

107 % Glycolytic expressions
108 F6P = 0.3*G6P;
109 % nucleotide concentrations used for R PFK
110 Atot = 3000;
111 rad = sqrt((ADP-Atot)ˆ2-4*ADPˆ2);
112 ATP = 0.5*(Atot-ADP+rad);
113 % Use this to see how the glyc. comp. osc. independently!
114 % ATP = 2000;
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115 AMP = ADPˆ2/ATP;
116

117 % Iterative calculation of R PFK
118 %(cf. Smolen95, Eq. 12)
119 % alpha = 1 -- AMP bound
120 % beta = 1 -- FBP bound
121 % gamma = 1 -- F6P bound
122 % ∆ = 1 -- ATP bound
123 % (alpha,beta,gamma,∆)
124

125 % (0,0,0,0)
126 weight1 = 1;
127 topa1 = 0;
128 bottom1 = weight1;
129

130 % (0,0,0,1)
131 weight2 = ATPˆ2/K4;
132 topa2 = topa1;
133 bottom2 = bottom1+weight2;
134

135 % (0,0,1,0)
136 weight3 = F6Pˆ2/K3;
137 topa3 = topa2+weight3;
138 bottom3 = bottom2+weight3;
139

140 % (0,0,1,1)
141 weight4 = (F6P*ATP)ˆ2/(fatp*K3*K4);
142 topa4 = topa3+weight4;
143 bottom4 = bottom3+weight4;
144

145 % (0,1,0,0)
146 weight5 = FBP/K2;
147 topa5 = topa4;
148 bottom5 = bottom4+weight5;
149

150 % (0,1,0,1)
151 weight6 = (FBP*ATPˆ2)/(K2*K4*fbt);
152 topa6 = topa5;
153 bottom6 = bottom5+weight6;
154

155 % (0,1,1,0)
156 weight7 = (FBP*F6Pˆ2)/(K2*K3*ffbp);
157 topa7 = topa6+weight7;
158 bottom7 = bottom6+weight7;
159

160 % (0,1,1,1)
161 weight8 = (FBP*F6Pˆ2*ATPˆ2)/(K2*K3*K4*ffbp*fbt*fatp);
162 topa8 = topa7+weight8;
163 bottom8 = bottom7+weight8;
164

165 % (1,0,0,0)
166 weight9 = AMP/K1;
167 topa9 = topa8;
168 bottom9 = bottom8+weight9;
169

170 % (1,0,0,1)
171 weight10 = (AMP*ATPˆ2)/(K1*K4*fmt);
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172 topa10 = topa9;
173 bottom10 = bottom9+weight10;
174

175 % (1,0,1,0)
176 weight11 = (AMP*F6Pˆ2)/(K1*K3*famp);
177 topa11 = topa10+weight11;
178 bottom11 = bottom10+weight11;
179

180 % (1,0,1,1)
181 weight12 = (AMP*F6Pˆ2*ATPˆ2)/(K1*K3*K4*famp*fmt*fatp);
182 topa12 = topa11+weight12;
183 bottom12 = bottom11+weight12;
184

185 % (1,1,0,0)
186 weight13 = (AMP*FBP)/(K1*K2);
187 topa13 = topa12;
188 bottom13 = bottom12+weight13;
189

190 % (1,1,0,1)
191 weight14 = (AMP*FBP*ATPˆ2)/(K1*K2*K4*fbt*fmt);
192 topa14 = topa13;
193 bottom14 = bottom13+weight14;
194

195 % (1,1,1,0) -- the most active state of the enzyme
196 weight15 = (AMP*FBP*F6Pˆ2)/(K1*K2*K3*ffbp*famp);
197 topa15 = topa14;
198 topb = weight15;
199 bottom15 = bottom14+weight15;
200

201 % (1,1,1,1)
202 weight16 = ...

(AMP*FBP*F6Pˆ2*ATPˆ2)/(K1*K2*K3*K4*ffbp*famp*fbt*fmt*fatp);
203 topa16 = topa15+weight16;
204 bottom16 = bottom15+weight16;
205

206 % Phosphofructokinase rate
207 % lambda, Vmax as in Smolen95, Eq. 3
208 lambda = 0.06; %in the paper lambda <<1
209 Vmax = 2;
210 R PFK = Vmax*(lambda*topa16 + topb)/bottom16;
211 % GPDH flux:
212 R GPDH = 0.2*sqrt(FBP);
213

214 % KATP channel
215 Kdd = 17;
216 Ktd = 26;
217 Ktt = 1;
218

219 % KATP channel open probability
220 %(reference: Magnus and Keizer (1998))
221 mgADP = 0.165*ADP;
222 ADP3m = 0.135*ADP;
223 ATP4m = 0.05*ATP;
224 topo = 0.08*(1+2*mgADP/Kdd) + 0.89*(mgADP/Kdd)ˆ2;
225 bottomo = (1+mgADP/Kdd)ˆ2 * (1+ADP3m/Ktd+ATP4m/Ktt);
226 oinf = topo/bottomo; gKATP = gKATPbar*oinf;
227 IKATP = gKATP*(V-VK);
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228

229 % glycolytic input to mitochondrial ADP equation:
230 k gamma = 10;
231 v gamma = 2.2;
232 gamma = v gamma*(R GPDH/(k gamma+R GPDH));
233 r = 1;
234 taua = 300000;
235 r1 = 0.35;
236

237 % conversion parameter for glycolytic subsystem
238 % kappa erroneously called lambda in paper;
239 % renamed kappa for consistency with Smolen,
240 %JTB, 1995 and Pedersen et al, 2005.
241 kappa = 0.005;
242 % R GK = 0.2; (uncomment out one of the sets!)
243

244 % Differential equations
245

246 dV = -(IK + ICa + IKCa + IKATP)/Cm;
247 dn = (ninf-n)/taun;
248 dCa = fcyt*(Jmem + Jer);
249 dCaER = -fer*sigmav*Jer;
250 dADP = (ATP-ADP*exp((r + gamma)*(1-Ca/r1)))/taua;
251 dG6P = kappa*(R GK - R PFK);
252 dFBP = kappa*(R PFK - 0.5*R GPDH);
253

254 dydt = [dV, dn, dCa, dCaER, dADP, dG6P, dFBP]';
255 end
256 ----------------------------------------------------------------
257 %The script file
258

259 % Initial conditions:
260

261 V0 = -60;
262 n0 = 0;
263 Ca0 = 0.1;
264 CaER0 = 185;
265 ADP0 = 780;
266 G6P0 = 200;
267 FBP0 = 40;
268

269 yinit = [V0,n0,Ca0,CaER0,ADP0,G6P0,FBP0];
270 tspan = [0 1000000];
271 options=odeset('Stats','off');
272

273 tic
274 [t,y] = ode15s(@dualoscillator,tspan,yinit,options);
275 toc
276

277 % figure
278 % plot(t,y(:,1),'b','LineWidth',2)
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