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Abstract

The Universe that we see around is full of inhomogeneities. These inhomogeneities

arise in a homogeneous universe via gravitational instability. Growth and collapse

of perturbations in a homogeneous universe are studied to get insights into nature

of dark energy, which can significantly affect structure formation. In this project

we study growth and collapse of spherical density perturbations in different dark

energy models. The two models of dark energy that we consider in this work are:

Cosmological Constant and Quintessence.
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Chapter 1

Introduction

1.1 Motivation

Growth of large scale structure in universe is studied not only to get insights into

formation of large scale structures like galaxy,galaxy clusters,etc but also to put con-

strains on cosmological theories. As a result, simplified models of growth & collapse

of over-dense regions are made and studied in different cosmological settings. In

this project we started by studying non-linear growth of spherical over densities in

the Newtonian limit, studied growth of over densities using non-homogeneous met-

ric called Lemaitre,Tolman & Bondi (TLB) metric with background having FRLW

cosmologies and finally simulated isotropic perturbation growth with Quintessence

models of dark energy. The growth & collapse of over densities can be affected by

nature of Dark energy, so such studies are useful in exploring aspects of Dark energy.

1.2 A Brief Introduction to Cosmology

The quest for understanding dynamics of universe has been there in some form or

other ever since the beginning of human intellect. The discovery of Kepler’s law and

Newton’s theory of Gravitation allowed development of models based on concrete

mathematical laws rather than those based on philosophical concepts. Newtonian

Cosmology itself has been plagued with presumptions of steady state universe and

several paradoxes. Any dynamics on such large scale has to be governed by a long

range force like gravity, so cosmology is intimately dependent on the theory of gravity.

When Einstein came up with his theory of General Relativity, he derived cosmological

consequences of his theory. Preoccupied with the notion of a steady universe, he
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tweaked his original theory a bit by introducing a constant now called ”Cosmological

Constant” and thus was able to realize a steady universe cosmology based on GR.

However, observational work carried by Slipher and Hubble gave strong evidence that

universe is indeed expanding and hence ruled out any need for forcing the idea of

a steady state universe in theoretical models. This took away the justification for a

cosmological constant (Einstein later remarked cosmological constant as his ”biggest

blunder”). So one might have thought that things were then settled with respect to

correspondence of theory of gravity with cosmology. But Nature never runs out of

surprises !

1.2.1 Dark Matter

In 1930s Oort reported that the observed matter around the Sun ran short of explain-

ing vertical oscillations of stars in Milky Way disk. It’s called Oort discrepancy[7].

Oort’s results were quickly followed by Zwicky’s[8] interesting observation that ob-

served velocity dispersions of galaxies in a galaxy cluster were too high for them to

remain bound. While in Oort’s discrepancy the required quantity of matter to explain

the motions was roughly twice the observed mass, in case of Zwicky the required mass

was 100 times larger than that observed. This discrepancy kept popping up again and

again in various observations and analysis. Some other phenomena that require extra

mass than observed mass are (this list is far from being exhaustive):

• Stability of galactic disks require unseen mass.[9]

• Flat rotation curves of spiral galaxies[10][11][16]. For objects moving in roughly

circular orbit under Newton’s law for gravity for a concentrated mass distribu-

tion the velocities of outermost stars are proportional to 1/
√
R and the rotation

curve should fall as 1/
√
R, but observed velocity rotation curves for spiral galax-

ies remain roughly flat with increasing radius.

• Observed temperature of gas in galaxy clusters is too high for observed mass to

hold the gas.[12][20]

Above observations along with numerous others force us to consider either modifi-

cations of basic dynamical theories or the existence of a mysterious form of matter,

termed ”Dark Matter”, which interacts primarily through gravity.
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1.2.2 Dark Energy:Return of Cosmological Constant

In the late 1990s, observations[14][15] of Supernovae of type Ia at z ∼ 1 provided ev-

idence that the universe is not only expanding but the expansion rate is accelerating

and it was understood that such an accelerated expansion can be nicely explained

by keeping cosmological constant in Einstein’s equations. Cosmological constant in-

cluded in Einstein’s equations along with hypothetical dark matter form the concor-

dance model of cosmology called ΛCDM. Even before the accelerated expansion had

it’s observational verification, a number of theoretical results suggested that ΛCDM

is needed for explaining many phenomena [19][17][18] . ΛCDM model was used by

Ostriker and Steinhardt[13] to make for energy density(parameterΩ) reach the value

required for spatially flat universe(Ω = 1) in coherence with inflation. It also resolved

the contradictions between age of universe estimated from observed Hubble param-

eter and age predicted from independent methods. Physically cosmological constant

corresponds to an energy density that is not diluted by expansion of universe. Current

observational status is that roughly 68% of net content of universe is in form of dark

energy, 27% in form of dark matter and approximately 5% is contributed by ordinary

matter.

There are basically two approaches one can take in explaining accelerated expansion;

hypothesis existence of a dark energy or modify Einstein’s theory of gravity. Even

in first approach there are several distinct lines of attack. Though the model that

best fits the available data is ΛCDM but there is still enough motivation to look for

alternatives like dynamic dark energy models e.g. quintessence,k-essence,Chaplygin

gas,etc(see [5] and references within).
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Chapter 2

Spherical Inhomogeneities in Flat

FRLW universe

2.1 Introduction

The idea of isotropic and homogeneous universe is a prevalent notion in theoretical

cosmology in the form of ”Cosmological Principle”. The model owes its popularity to

its mathematical simplicity.

For an isotropic and homogeneous universe all points in space are equivalent in terms

of metric at any particular moment of time.

The metric in (r, θ, φ, t) coordinates takes following form:

ds2 = −
(

a2

1− κrr

)
dr2 − a2r2(dθ2 + sin2θdφ2) + dt2 (2.1)

where κ is constant representing curvature which is same everywhere in space.

One can get a(t) by solving Einstein’s Equations. Cosmologies governed by such homo-

geneous and isotropic metrics are collectively called Friedmann-Robertson-Lemaitre-

Walker(FRLW) models.

2.2 Friedmann Equations for FRLW in ΛCDM cos-

mology

Using Einstein’s equation:

Gµν − Λgµν =
8πGTµν
c4

(2.2)
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for the metric (2.1), we obtain following equations called Friedmann equations:

ä

a
= −4πG

3

(
ρ+

p

c2

)
+

Λc2

3
(2.3)(

ȧ

a

)2

+
κc2

a2
=

8πG

3
ρ+

Λc2

3
(2.4)

From observational evidence, κ is taken to be 0. With κ set to 0 in above equations

we get dynamical equations for the flat FRLW universe. Structure formation and

gravitational collapse in this particular model(flat FRLW) have been studied exten-

sively. In this chapter we discuss dynamics of an spherical density perturbation (overs

density) in a universe which has zero curvature i.e. its flat FRLW. The derivations

shown here were originally carried out by Barrow and Saich in their article [2] in 1993.

2.3 Dynamical Equation

A spherical region with an over density can be considered as an isolated closed universe

embedded in a flat universe. So if we assume that density in over dense region is σ

then the Friedmann equation for dynamics of such a shell can be written as(with c=1):(
dR

dt

)
=

8πGσR2

3
+

ΛR2

3
− 1 (2.5)

While the background equation for evolution of scale factor is(
da

dt

)2

=
8πGρa2

3
+

Λa2

3
(2.6)

To solve this equation we have to specify initial conditions which we choose as follow-

ing:

at t = ti we set:

Ri = ai

Ṙi = ȧi

5



Second initial condition allows us to equate (2.5) and (2.6) at time t = ti and hence

obtain following equation for shell dynamics

3Ṙ2 =
ΛR3 + 8πGσiR

3
i − 8πGρi∆iR

2
iR

R
(2.7)

where σi = ρi(1 + ∆i), ∆i being initial density contrast.

At any time t the density contrast can be obtained from following relation:

(1 + ∆) = (1 + ∆i)
( a
R

)3

(2.8)

The background equation has an anlytical solution:

a3 =
8πGρia

3
i

Λ
sinh2

(
t
√

3Λ

2

)
(2.9)

2.4 Turn Around Radius and Critical Values for

Turn Around

One can see from eqn.(2.7) that with the given initial conditions, the velocity (dR/dt)

values are positive initially and the radius of the shell grows. The velocity may or

may not become 0 at some point in time depending upon the competition between

dark energy push away and gravitational attraction. Setting dR
dt

= 0 in eqn.(2.7) we

obtain expression for turn around radius by solving the equation obtained

RT =
3(1 + ∆i)

∆i

Ri

[(
Λc

Λ

)1/2

sin

(
1

3
arcsin

(
Λ

Λc

)1/2
)]

(2.10)

where
Λ

Λc

=
27Ω̄Λ(1 + δi)

2a3
i

4Ω̄nr(δia0)3
(2.11)

Above equation has real solutions only if Λ ≤ Λc. So for a particular value of Λ , there

is a lower cap on over density, anything which has over density less than a particular

threshold can’t collapse. This can be used as a test for validity of ΛCDM model. One

can look for observational contradiction of phenomenon of critical over density. For

details see [3].
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We solved the eqn.(2.7) numerically and reproduced few graphical results from

Barrow & Saich [2] including following graph.

Figure 2.1: Λ/Λc vs δturn in ΛCDM
Here one can see that as Λ→ Λc, δturn → inf.

7



In next graph we show evolution of scale factor for over density versus scale factor

of background. One can see that over densities having less than a critical radius

collapse while others don’t.

Figure 2.2: R vs a for different initial over densities
Here ”zp1” means initial radius is 0.1 times critical radius while op1 stands for 1.1
times critical radius and so on. Initial radius values are between 0.1 and 1.7 times

critical radius.
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2.5 Virialization

Mathematical solutions are oscillatory in nature and the perturbation should shrink

to singularity. But this does not happen in real physical system which we are trying

to model. The system virializes at a particular radius where the average kinetic and

potential energies satisfy an unique relationship stated by Virial theorem:

2Tvirial = Wvirial (2.12)

where T is kinetic energy and W is potential energy. When we have Λ, then contri-

bution from Λ is also considered and we have following relationship [21]

At virial radius

2T +W − 2WΛ = 0 (2.13)

We use this relationship to determine virial radius in ΛCDM model.

9



Chapter 3

Lemaitre Tolman Bondi Metric

Note: c = 1 in this chapter.

3.1 Introduction

Despite it’s tremendous popularity and simplicity, the idea of homogeneous universe

has been susceptible to investigation as well as doubt mainly due to following reasons:-

1) No prior physical/logical reason to assume homogeneity.

2) Observations show existence of inhomogeneities at scales of up to 100 Mpc

Work in this direction was pioneered by Lemaitre (1933), Tolman (1934), Bondi

(1947), etc. In this project we use spherically symmetric LTB class of metrics to

study isotropic perturbation growth in completely general relativistic regime with all

non-linearity considered. Here we start from Tolmans formulation [1]

3.2 General form and Einstein’s Equations

One starts with a general form of metric which assumes isotropy but does away the

restriction of homogeneity. As a consequence the metric coefficients are only depen-

dent on radial coordinate r and time t. The metric can be written in the following

form (as prescribed by Tolman [1]):

ds2 = −eλdr2 − eω(dθ2 + sin2θdφ) + dt2 (3.1)

where λ and ω are functions of t and r. We use this metric in Einstein equation:

Gµν = 8πGTµν (3.2)

10



to obtain following equations

8πGT 1
1 = e−ω − e−λω

′2

4
+ ω̈ +

3

4
ω̇2 − Λ = 0 (3.3)

8πGT 2
2 = 8πGT 3

3 = −e−λ
(
ω′′

2
+
ω′2

4
− λ′ω′

4

)
+
λ̈

4
+
λ̇2

4
+
ω̈

2
+
ω̇2

4
+
λ̇ω̇

4
−Λ = 0 (3.4)

8πGT 0
0 = e−ω − e−λ

(
ω′′ +

3

4
ω′2 − λ′ω′

2

)
+
ω̇2

4
+
λ̇ω̇

2
− Λ = 8πGρ (3.5)

8πGeλT 1
0 = −8πGT 0

1 =
ω′ω̇

2
− λ̇ω′

2
+ ω̇′ = 0 (3.6)

where Tµν is taken is comoving in coordinates i.e.

T =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ρ

 (3.7)

3.3 Equations to Solve

In order to proceed towards solving these equation, one needs to put them in a form

in which they can be integrated either analytically or numerically. So we start by

finding first integrals.

Multiplying eqn.(3.6) by e
ω−λ
2

2
we get

e
ω−λ
2

2

(
ω′ω̇

2
− λ̇ω′

2
+ ω̇′

)
= 0

⇒ ∂

∂t

(
e
ω−λ
2

2
ω′

)
= 0

⇒ e
ω
2 ω′

2e
λ
2

= f(r) (is a first integral)

⇒ eλ =
eωω′2

4f 2(r)
(3.8)
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Putting eqn.(3.8) into (3.1) we get for metric

ds2 = −
(
eωω′2

4f 2(r)

)
dr2 − eω(dθ2 + sin2θdφ) + dt2 (3.9)

Substituting eqn.(3.8) into (3.3), we get

f 2(r) = eω
[
ω̈ +

3

4
ω̇2 − Λ

]
+ 1 (3.10)

Multiplying eqn. (3.10) by ω̇eω/2, we obtain

ω̇ω̈e3ω/2 +
3

4
ω̇3e3ω/2 + ω̇e3ω/2Λ + ω̇eω/2(1− f 2(r)) = 0

⇒ ∂

∂t

(
e3ω/2

(
ω̇2

2
+

2

3
Λ

)
+ 2eω/2(1− f 2)

)
= 0

⇒ e3ω/2

(
ω̇2

2
+

2

3
Λ

)
+ 2eω/2(1− f 2) = F (r) (another first integral)

F (r) = e3ω/2

[
ω̇2

2
− 2

3
Λ

]
+ 2eω/2[1− f 2] (3.11)

Rearranging, we get

∂ω

∂t
= 2

[
e−3ω/2F

2
− e−ω(1− f 2) +

Λ

3

] 1
2

(3.12)

Integrating this leads to:∫
deω/2√

f 2 − 1 + 1
2
Fe−ω/2 + Λ

3
eω

= t+ ξ(r) (3.13)

where ξ(r) is another integral of motion obtained by integrating LHS of eqn.(3.13) at

t = 0. Using eqn.3.8 with eqn.3.5 we have

8πGρ = e−ω
(

1− f 2 − 4ff ′

ω′

)
+

3

4
ω̇2 +

ω̇ω̇′

ω′
− Λ (3.14)

Using definition of f from eqn.(3.10) in (3.14) one can show that

8πGρ = −3ω̈ − 2
ω̈′

ω′
− 3

2
ω̇2 − 2

ω̇ω̇′

ω′
+ 2Λ (3.15)
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Bringing F from eqn. (3.11) into eqn.(3.14) we find

8πGρ =
e−3ω/2

ω′
∂F

∂r
(3.16)

3.4 Approach towards solving these equations

By stating ω(r), ω̇(r) and ω̈(r) at initial time ti, one can obtain f 2(r), F (r) and ξ at

t0 using eqns.(3.10), (3.11) and (3.13). Since these first integrals do not change with

time eqn.(3.12) or eqn.(3.13) can be used to obtain ω(r) at any time and hence we

can obtain metric, density(using (3.14) or (3.16)) and other relevant quantities at any

time.

3.5 Equations in modern parlance

The equations derived can be rewritten in modern notation where in one can easily

compare them with established FRLW cases and it is also helpful in setting initial

conditions. Defining

A(r, t) = eω/2 (3.17)

κ(r) = 1− f 2(r) (3.18)

where A(r, t) is function of r and t while κ(r) is function of r only.

Hence,

ω̇ =

(
2Ȧ

A

)
; ω′ =

(
2A′

A

)

ω̈ = 2

Ä
A
−

(
Ȧ

A

)2
 ; ω′′ =

[
A′′

A
−
(
A′′

A

)2
]

and metric (3.1) becomes

ds2 = − A′2

1− κ
dr2 − A2(dθ2 + sin2θdφ) + dt2 (3.19)

13



Now using above equations eqn.(3.11) can be written as(
Ȧ

A

)2

=
F

2A3
+

Λ

3
− κ

A2
(3.20)

Note that above equation looks like the Friedmann equation for FRLW cosmology

with curvature, except for the fact that curvature term as well as density dependent

term are now functions of r besides being dependent on t. Generalized scale factor

A(r, t) depends on r and t.

Eqn.(3.14) in our new notation is

8πGρ =
κ+ Ȧ2

A2
+

2ȦȦ′ + κ′

AA′
− Λ (3.21)

Combining eqn.(3.21) with differentiated eqn.(3.20) we get (3.16)

8πGρ =
1

2A′A2

∂F

∂r
(3.22)

We can define the generalized Hubble parameter H(r, t) as

H(r, t) ≡

(
Ȧ

A

)

If we set initial conditions at some time t = ti i.e. if we know Ai = A(r, ti), Ȧi =

Ȧ(r, ti) and F (r) then we can define:

Ωm =
F

2Ȧi
2
Ai

and ΩΛ =
ΛA2

i

3Ȧi
2 =

Λ

3H2
i

(3.23)

then

F (r) = H2
i ΩmA

3
i (3.24)

and from eqn.(3.20)

κ(r) = H2
i (Ωm + ΩΛ − 1) ∗ A2

i = −ΩcH
2
0A

2
0 (3.25)
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where Ωc = (1− ΩΛ − Ωm).

Substituting above definitions in eqn.(3.20) we obtain

H2 = H2
i

[
Ωm

(
Ai
A

)3

+ ΩΛ + Ωc

(
Ai
A

)2
]

(3.26)

Now we have all equations that are needed to solve for a particular model. We can

solve them in following manner:

We have the initial conditions Ai(r), Ȧi(r) and density distribution ρi(r), then

Step 1:

Obtain F using eqn.(3.22)
F

2
= 8πG

∫
ρiA

2
i d(Ai) (3.27)

Step 2:

Get Ωm and ΩΛ from eqn.(3.23) and therefore Ωc

Step 3:

Using eqn.(3.26) obtain

∂A

∂t
= H0

√
Ωm

A3
i

A
+ ΩΛA2 + ΩcA2

i (3.28)

All that remains is to integrate this equation. Note that this partial differential

equation can be solved for each r separately like an ordinary differential equation.

One can either use numerical techniques or can search for analytical solutions of

following integral: ∫ 1

A/Ai

dx

Hi

√
Ωm
x

+ ΩΛx2 + Ωc

= ξ(r) + (t− ti) (3.29)

3.6 Applications

3.6.1 Friedmann Equations as a limiting form

In these cosmological models the universe is isotropic as well as homogeneous. Hence

the density distribution is function of only time (t). Evolution is same everywhere

in universe. Hence the metric coefficients for dr2, dt2 should be independent of all

15



coordinates but time. At some initial time t0 assuming following initial conditions:

ρ(r, t0) = ρ0 (constant everywhere)

A(r, t0) = A0(r) = a(t0)r = a0r (a is a function of t only)

Ȧ(r, t0) = ȧ(t0)r = ȧ0r

From density at initial time we get F (r) using eqn.(3.27):

F

2
=

8πGρ0A
3
0

3
(3.30)

Hence from eqn.(3.20) at initial time we obtain κ

κ = a2
0r

2

[
8πGρ0

3
+

Λ

3
−
(
ȧ0

a0

)2
]

(3.31)

So κ can be written as a constant multiplied by r2 i.e.

κ = κ̄r2

κ̄ = a0

[
8πGρ0

3
+

Λ

3
−
(
ȧ0

a0

)2
]

If 8πGρ0
3

+ Λ
3

=
(
ȧ0
a0

)2

, then κ vanishes and we get a flat FRLW model.

We get following dynamical equation from eqn.(3.20) and above equations/initial con-

ditions: (
ȧ

a

)2

=
8πGρ0

3
+

Λ

3
− κ̄

a2
(3.32)

And metric takes following form:

ds2 = − a2

1− κ̄r2
dr2 − a2r2(dθ2 + sin2θdφ) + dt2

This is the familiar FRLW form.

3.6.2 Modeling Spherical Step Over density

Suppose we have a spherically over dense region of radius r1 centered at origin (r = 0)

followed by an isotropically under dense region between radius r1 and r2 at some

initial time ti. While the rest of universe is flat FRLW universe following dynamics

16



eqn.(3.32) with κ̄ = 0.

In this subsection we will be using different subscript/superscripts for initial time.

Value of any variable X at initial time is represented by Xi while value of X at

current time is denoted by X0; so a variable subscripted/superscripted by 0 is its value

at current time, not at initial time. Also anything with a bar represent background

analogue of that quantity, e.g. ρ̄i represents background density at initial time.

Now we explicitly specify initial conditions at time t = ti

1) Density ρi(r)

ρi(r) = (1 + δi(r))ρ̄i

where

δi(r) =


δ1 if r ≤ r1,

−δ2 if r1 < r ≤ r2,

0 if r > r2.

(3.33)

where δ1 and δ2 are positive constants and ρ̄i is background density at initial time.

We further impose the condition that mass deficit in under dense region is compen-

sated in the inner over dense region i.e.

4π

3

(
r3

1ρ̄i(1 + δ1)− r3
1ρ̄i
)

=
4π

3

(
(r3

2 − r3
1)ρ̄i − (r3

2 − r3
1)ρ̄i(1− δ2)

)
⇒ δ1

δ2

=

(
r2

r1

)3

− 1

For our case we take δ1 = δ2 = ∆i and hence r2 = 21/3r1 and density becomes

ρi(r) =


ρ̄i(1 + ∆i) if r ≤ r1,

ρ̄i(1−∆i) if r1 < r ≤ r2,

ρ̄i if r > r2.

Also we assume that at initial time

Ai(r) = air

Ȧi = ȧir or equivalently Hi = H̄i

Using above initial settings, we obtain F (r) using eqn.(3.27)

F

2
=

8πGa3
i ρ̄ir

3

3
Ji (3.34)
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where

Ji =


(1 + ∆i) if r ≤ r1,(

1−∆i + 2∆i(
r1
r

)3
)

if r1 < r ≤ r2,

1 if r > r2.

(3.35)

And we obtain Ωm at initial time using (3.23)

Ωi
m = Ω̄i

mJi (3.36)

where (for background flat FRLW)

Ω̄i
m =

8πGρ̄i
3H̄2

i

Using eqn.(3.26) we get

H2 = H2
i

[
Ωi
m

(
A0

A

)3

+ Ωi
Λ + Ωi

c

(
A0

A

)2
]

(3.37)

Since we have some knowledge about current background density and other back-

ground parameters, it is better to translate initial conditions into current background

conditions. Substituting the values for Ωi
m,Ωi

Λ and Ai and using background density

evolution relation ρ̄0a
3
0 = ρ̄ia

3
i , we have

H2 =
8πGρ̄0r

3Ji
3A3

+
Λ

3
− κ

A2
(3.38)

⇒ H2 = H̄2
0

[
Ω̄0
ma

3
0r

3Ji
A3

+ Ω̄0
Λ −

κ

A2

]
(3.39)

where

Ω̄0
m =

8πGρ̄0

3H̄2
0

Ω̄0
Λ =

Λ

3H̄2
0

Now we have to find κ from initial condition Hi = H̄i i.e.

Ω̄0
ma

3
0r

3Ji
A3
i

+ Ω̄0
Λ −

κ

A2
i

= Ω̄0
m

(
a0

ai

)3

+ Ω̄0
Λ (3.40)

⇒ −κ =
Ω̄0
ma

3
0r

2[1− Ji]
ai

(3.41)
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Substituting this value in (3.39) we get:(
∂A

∂t

)2

= H̄0
2

[
Ω̄0
ma

3
0r

3Ji
A

+ Ω̄0
ΛA

2 +
Ω̄0
ma

3
0r

2(1− Ji)
ai

]
(3.42)

Dividing it by the eqn. for evolution of background scale factor(
∂a

∂t

)2

= H̄0
2

[
Ω̄0
ma

3
0

a
+ Ω̄0

Λa
2

]
we get (

∂A

∂a

)2

=

[
Ω̄0
ma

3
0r

3Ji
A

+ Ω̄0
ΛA

2 +
Ω̄0
ma

3
0r

2(1−Ji)
ai

]
[

Ω̄0
ma

3
0

a
+ Ω̄0

Λa
2
] (3.43)

We integrate this equation numerically.

3.6.3 Modeling General Isotropic Over density

At any time we assume that the density can be written in following form:

ρ = ρ̄(1 + δ)

where δ is a function of both time and r. Then using eq. (3.27) and background

density evolution equation

F

2
=

8πGρ̄0a
3
0A

3

3a3

[
1 +

3

A3

∫
δA2dA

]
or

F

2
=

8πGρ̄0a
3
0A

3

3a3
J (3.44)

where

J =

[
1 +

3

A3

∫
δA2dA

]
(3.45)

It is evaluated by performing the integral at a particular instance of time (usually

initial conditions) Now we specify initial conditions:

a = ai A = Ai = air δ = δi(r)
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we also use H̄i = Hi

Using initial conditions we get for t = ti or a = ai:

F

2
=

8πGρ̄0a
3
0r

3

3
Ji (3.46)

where Ji is J evaluated at initial time using initial conditions.

Ji =

[
1 +

3

r3

∫
δi(r)r

2dr

]
(3.47)

Using eqn. (3.20) at initial time:

κ = −8πGρ̄0a
3
0r

2

3ai
[1− Ji] (3.48)

We get (
∂A

∂t

)2

=
8πGρ̄0a

3
0r

3Ji
3A

+
ΛA2

3
+

8πGρ̄0a
3
0r

2

3ai
[1− Ji] (3.49)(

∂A

∂t

)2

= H̄2
0

[
¯Ω0

ma
3
0r

3Ji
A

+ Ω̄0
ΛA

2 +
Ω̄0
ma

3
0r

2(1− Ji)
ai

]
(3.50)(

∂A

∂t

)2

= H̄2
0

[
Ωm

A
+ ΩΛA

2 + Ω0
κ

]
(3.51)

where we have defined

Ωm = Ω̄0
ma

3
0r

3Ji ΩΛ = Ω̄0
Λ Ω0

κ =
Ω̄0
ma

3
0r

2(1− Ji)
ai

(3.52)

Hence for a particular value of r, we get(
dA

da

)2

=

[
Ωm
A

+ ΩΛA
2 + Ω0

κ

][
Ω̄0
ma

3
0

a
+ Ω̄0

Λa
2
] (3.53)

So for specified initial conditions, same equations work for different density contrast

profiles, one has to just evaluate Ji using eqn. (3.47). Evolution of density contrast

profile can be obtained using eqn.(3.30)

(1 + δ) =

(
1

A′A2
r2a3(1 + δi)

)
(3.54)
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3.7 Numerical Results

These results are for over density which has following profile at z ≈ 1000

δi(r) = I
e
−r2
2σ2

√
2πσ3

[
r2

σ2
− 1

]
(3.55)

where I is amplitude.

Here are some of the results from simulations

Figure 3.1: R/Ri vs a for two different over densities
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Figure 3.2: Spatial profile R/Ri of over dense region at redshifts near 1000,500 and 0
Note : scale is log-log

Here line marked by 998 gives profile at redshift near 0, that marked by 499 gives
profile at redshift near 500 while profile at z ≈ 1000 is given by line marked by 0.

Figure 3.3: Spatial profile of δ at z ≈ 0, 300, 500, 1000
Here line indexed 700 is at z ≈ (1000− 700) = 300 and so on.
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Figure 3.4: Evolution of Radius(R) for point within the over density
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Chapter 4

Quintessence

Note: In this chapter dot represent ∂
∂t

and dash/prime represents ∂
∂r

4.1 Motivation for studying alternatives to ΛCDM

Despite its tremendous success w.r.t to observations ΛCDM model has a few chal-

lenges. The two biggest problems are:

4.1.1 Fine-Tuning Problem

A Λ energy density indeed has a theoretical basis in Particle Physics in form of vacuum

energy of empty space. But the predicted value in GUT models is very different from

what is observed.

ρΛ ≈ 10−47GeV 4

ρvacuum ≈ 1074GeV 4

So there is huge discrepancy of factor 10121 between the theoretical prediction and

observed values. This is called fine-tuning problem and it existed even before discovery

of accelerated expansion, but in a slightly different form. At the time it was considered

that cosmological constant is zero and one had to explain vanishing of cosmological

constant from the context of particle physics theories. Even if some other theory is

considered in place of Cosmological constant, it has to explain the vanishing/very

small cosmological constant. See [4] for introductory discussion.
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4.1.2 Coincidence Problem

Current energy densities for matter and dark energy are of same order. Both energy

densities evolve differently and one needs special initial conditions to get the observed

energy densities today. Coincidence problem consists of explaining this unique ini-

tial ratio between two energy densities. Models like Quintessence try to address this

problem via a dynamical approach wherein existence of attractors can allow a larger

space of initial conditions converging to a common trajectory.

These two challenges have led people to try alternatives to cosmological constant

resulting in a number of models for dark energy: Quintessence,k-essence, Chaplygin

gas model,Modified gravity theories,etc(see [5] and references within). Here we study

spherical collapse in Quintessence model.

4.2 Quintessence

Quintessence is a scalar field minimally coupled to metric which interacts with other

components via gravity only. The action for Quintessence model is:

I =

∫
dx4
√
−g
{

c3

16πG
R + Lψ

}
(4.1)

where Lψ is Lagrangian density for field:

Lψ =

[
1

2
gµν∂µψ∂νψ − V (ψ)

]
In FRLW background, one can show that pressure and energy density are:

ρψ =
ψ̇2

2
+ V (ψ) (4.2)

Pψ =
ψ̇2

2
− V (ψ) (4.3)

and equation of state parameter(wψ) is given by

wψ =
Pψ
ρψ

=
ψ̇2 − 2V

ψ̇2 + 2V
(4.4)
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Using usual procedure we can get Einstein’s equation for FRLW-Quintessence back-

ground:

H2 =
8πG

3
[ρm + ρψ] =

8πG

3

[
ρm +

ψ̇2

2
+ V (ψ)

]
(4.5)

Ḣ = −4πG
(
ρm + Pm + ψ̇2

)
(4.6)

While Klein-Gordon equation for field dynamics is:

ψ̈ + 3Hψ̇ + V,ψ = 0 (4.7)

4.2.1 Quintessence Models

Tracking Behavior

Some Quintessence models are endowed with behavior that may the resolve coinci-

dence problem. In this class of models called trackers, trajectories from a very large

space of initial conditions are attracted to a common path, and hence allow flexibil-

ity in initial conditions. The density parameter for field closely ”tracks” background

fluid(radiation or matter). Mathematical solutions with potential satisfying following

conditions(see [5] or [6]) give rise to tracker behavior:

V V,ψψ
V 2
,ψ

= Γ > 1 (4.8)

Ωψ = 3(1 + w)/λ2 (4.9)

where λ = −MpVψ/V and Mp = 1/
√

8πG

Quintessence models can be roughly classified into two classes based on evolution

of wψ:

Freezing Models

In this class of models, wψ is slowly stabilizing towards -1 i.e. ẇψ < 0. Example

potentials for these models are:

V (ψ) = M4+nψ−n for n > 0 (4.10)

V (ψ) = M4+nψ−nexp
(
αψ2G

)
(4.11)
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Thawing Models

In these models, the field is initially almost frozen by friction term of H in eqn.(4.7).

It’s only later that wψ starts increasing from 1 and hence ẇψ > 0. Example potentials

are:

V (ψ) = M4−nψn for n > 0 (4.12)

V (ψ) = M4cos2(ψ/f) (4.13)

4.3 Modeling background in Quintessence DE mod-

els

We solve background equations (4.5),(4.6) and (4.7) for two potentials: exp(−ψ) and

ψ2 potential. The results:

Figure 4.1: The evolution of Ωm(in green) and Ωψ(in red) for ψ2 potential as function
of a
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Figure 4.2: The evolution of Ωm(in green) and Ωψ(in red) for exp(−ψ) potential as
function of a

Figure 4.3: The evolution of w v/s a for ψ2 potential
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Figure 4.4: The evolution of w v/s a for exp(−ψ) potential

4.4 Spherical Perturbations in Quintessence

4.4.1 Introduction

Our aim in this sections is to model non-linear evolution of matter perturbation with

Quintessence models of dark energy. When we have a scalar field in addition to

matter there are off diagonal terms in stress-energy tensor and we have to consider

the spherically symmetric metric in it’s general form and cannot resort to simplified

LTB metric (3.9). Hence we don’t have the advantage we had because of first integrals

and have to solve equations numerically.

4.4.2 General Spherically Symmetric Metric

Since we are going to deal with only isotropic perturbations, we start with a completely

general isotropic metric which consists of two undetermined functions B(t, r) and

R(t, r) which are functions of both space(r) and time(t). From hereon B(t, r) and

R(t, r) are written as B and R with assumption that it is understood that B and R

are functions of r and t. The metric in (r, θ, φ, t) coordinates has following form:

ds2 = −e(2B)dr2 −R2(dθ2 + sin2θdφ2) + dt2
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4.4.3 Action

The action I can be written as sum of action for scalar field and Einstein-Hilbert

action (The actual action also has a component for matter density summed up, but

here we take care of that term by using the well known Stress-Energy tensor for

variation of that term).

I = IEin−Hilb + Iψ

Dynamical equations for different variables can be obtained by varying the action

w.r.t to that variable, equating it to 0 and thus obtaining Euler-Lagrange equation

for that variable.

δI = δIEin−Hilb + δIψ = 0

Equations for Dynamics of Scalar Field ψ

Since Einstein-Hilbert part of action is independent of field coordinates, variation of

total action w.r.t field ψ is

δI = δIψ = 0

where

Iψ =

∫
(drdθdφdt)

√
−gLψ

and

Lψ = [
1

2
gµν∂µψ∂νψ − V (ψ)] (4.14)

Using the standard procedure for obtaining Euler-Lagrange equations for this La-

grange density, we obtain:

ψ̈ = c2

[
−∂V
∂ψ

+ e−2B

{
ψ
′′ −

(
B′ − 2R′

R

)
ψ′
}]
−

(
Ḃ +

2Ṙ

R

)
ψ̇ (4.15)

We will see in upcoming sections that same equation can be obtained by setting four

divergence of stress-energy tensor for field to 0.

Stress Energy tensor for scalar field ψ

Equations for unknown metric coefficients can be obtained by varying the action w.r.t

to metric coefficients.

δI = δIEin−Hilb + δIψ = 0
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δIψ =

∫
(drdθdφdt)δ

[√
−gLψ

]
=

∫
(drdθdφdt)

[
δ(
√
−g)Lψ +

√
−g(δLψ)

]
It can be shown that

δ(
√
−g) = −1

2

√
−ggµνδgµν

then

δIψ =

∫
(drdθdφdt)

√
−g
[
∂Lψ
∂gµν

− 1

2
Lψgµν

]
δgµν

In order to get Einstein’s equation in the familiar form, we have to define stress-energy

tensor as follows:

Tµν = −2c

[
∂Lψ
∂gµν

− 1

2
Lψgµν

]
Owing to spherical symmetry we get the following non-vanishing components for T νµ :

T νµ = c [∂µψ∂νψ − Lψgµν ]

T 0
0 = c

[
ψ̇2

2c2
+
e−2Bψ′2

2
+ V

]
(4.16)

T 1
1 = −c

[
ψ̇2

2c2
+
e−2Bψ′2

2
− V

]
(4.17)

T 2
2 = T 3

3 = −c

[
ψ̇2

2c2
− e−2Bψ′2

2
− V

]
(4.18)

T 1
0 = −ce−2Bψ̇ψ′ (4.19)

T 0
1 =

ψ̇ψ′

c
(4.20)

Vanishing of four divergence of stress energy tensor gives:

T µ0 ,µ = cψ̇

[
e−2B

(
B′ψ′ − ψ′′ − 2

R′

R
ψ′
)

+
Ḃψ̇

c2
+

2ψ̇Ṙ

Rc2
+
ψ̈

c2
+ V,ψ

]
= 0

= c
ψ′

ψ̇
T µ1 ,µ = 0

This gives us the Euler-Lagrange equation(4.15) for scalar field dynamics.
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Variation of Einstein-Hilbert part and Einstein’s Equations

Variation of IEin−Hilb gives:

δIEin−Hilb =
c3

16πG

∫
(drdθdφdt)

√
−g
[
Rµν −

1

2
gµνRE

]
δgµν

where Ricci scalar is represented as RE to distinguish it from metric coefficient

R. Combining this variation with the stress- energy tensor for ψ in previous sub-

subsection, we get Einstein’s equations

Gµ
ν = Rµ

ν −
1

2
δµνRE =

8πG

c4
T µν

(1
1) component[

1

R2
− e−2BR

′2

R2
+

Ṙ2

c2R2
+

2R̈

c2R

]
= −8πG

c3

[
ψ̇2

2c2
+
e−2Bψ′2

2
− V

]
(4.21)

(2
2) and (3

3) component

e−2B

[
R′B′

R
− R′′

R

]
+

1

c2

[
ṘḂ

R
+
R̈

R
+ Ḃ2 + B̈

]
= −8πG

c3

[
ψ̇2

2c2
− e−2Bψ′2

2
− V

]
(4.22)

(0
0) or (4

4) component

−e−2B

[(
R′

R

)2

− 2R′B′

R
+

2R′′

R

]
+

1

R2
+
Ṙ2

c2R2
+

2ṘḂ

c2R
=

8πGρ

c2
+

8πG

c3

[
ψ̇2

2c2
+
e−2Bψ′2

2
+ V

]
(4.23)

(1
0) and (0

1) components yield same equation

R′Ḃ − Ṙ′ = 4πG

c3
ψ̇ψ′R (4.24)

Combining equations for (0
0),(1

1) and (2
2) components, we obtain:

B̈ =
8πG

c

[
e−2Bψ′2 + V +

ρc

2

]
+ 2e−2Bc2

[
R′′

R
− R′B′

R

]
− 2ḂṘ

R
− Ḃ2 (4.25)
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or equivalently we can obtain

B̈ = −c2e−2BR
′2

R2
+
c2

R2
+
Ṙ2

R2
− Ḃ2 − 4πGρ− 8πG

c

[
ψ̇2

2c2
− e−2Bψ

′2

2

]
(4.26)

and from (1
1), we already have eqn.(4.21). Rewriting it again

R̈

R
= −4πG

c

[
ψ̇2

2c2
+
e−2Bψ′2

2
− V

]
− 1

2

Ṙ2

R2
+
c2

2

[
e−2BR

′2

R2
− 1

R2

]
(4.27)

and we have the equation of motions for the scalar field (4.15)

ψ̈ = c2

[
−∂V
∂ψ

+ e−2B

{
ψ
′′ −

(
B′ − 2R′

R

)
ψ′
}]
−

(
Ḃ +

2Ṙ

R

)
ψ̇

Equations to be solved numerically

For dynamics of scalar field we have (4.15)

ψ̈ = c2

[
−∂V
∂ψ

+ e−2B

{
ψ
′′ −

(
B′ − 2R′

R

)
ψ′
}]
−

(
Ḃ +

2Ṙ

R

)
ψ̇

for evolution of R we use eqn.(4.27)

R̈

R
= −4πG

c

[
ψ̇2

2c2
+
e−2Bψ′2

2
− V

]
− 1

2

Ṙ2

R2
+
c2

2

[
e−2BR

′2

R2
− 1

R2

]

for B we can either use either eqn.(4.25) or eqn.(4.26), but eqn.(4.26) needs less spatial

derivative evaluations, hence we use eqn.(4.26) for simulation

B̈ = −c2e−2BR
′2

R2
+
c2

R2
+
Ṙ2

R2
− Ḃ2 − 4πGρ− 8πG

c

[
ψ̇2

2c2
− e−2Bψ

′2

2

]

While for evolution of matter density, we get following equation from four divergence

of matter stress-energy tensor

˙ρm = −

(
Ḃ +

2Ṙ

R

)
ρm (4.28)
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For convenience, we do a scaling by multiplying all of above equations by 1
H2
i

and

scaling r and t as follows:

r → rHi

t→ tHi

and hence

R→ RHi

Setting up Initial Conditions

Like we did in case of cosmological constant we assume that at initial time ti, the H

parameter for perturbation is same everywhere and is equal to that of background.

Using this with initial condition Ri = air, we can obtain initial conditions for all

variables except ψ and ψ̇:

Bi = ln(ai)−
1

2
ln

[
1− 3

r

Ω̄ima
2
i

c2

∫
drr2δ(r)

]
(4.29)

Ḃi = 1 (4.30)

Ṙi = Ri = air (4.31)

R′′ = 0 (4.32)

For field we start with w=-1;

ψ̇i = 0 (4.33)

ψi = 1 (4.34)

4.5 Numerical Results

These results are for over density which has following profile at z ≈ 1000

δi(r) = M
e
−r2
2σ2

√
2πσ3

[
r2

σ2
− 1

]
(4.35)

where M is amplitude. The potential we try is

V (ψ) = V0ψ
2 (4.36)
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Here for simplicity, we have taken the virialization condition to be as follows:

Rvirial =
Rmax

1.8
(4.37)

And we also assume that scalar field ψ also virializes and hence we stop the evolution

of both metric terms and field terms when we reach virial radius(Rvirial). Above

stated conditions are considered just to test the code and get a robust program. Once

we have a reliable program, it can be used to consider various virialization conditions

and also different potentials. For these settings we got following primitive results:

Figure 4.5: Spatial density contrast(matter) for z ≈ 900, 500, 0 in Quintessence model
Here data set indexed as 499 is at z ≈ 1000− 499 ≈ 500 and so on
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Figure 4.6: Spatial density contrast(field) for z ≈ 900, 500, 0 in Quintessence model
Here data set indexed as 499 is at z ≈ 1000− 499 ≈ 500 and so on

Figure 4.7: Equation of state parameter (w) for field at z ≈ 0 after evolution from
z ≈ 1000
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There is a spatial discontinuity in w and δψ, that appears in these primitive sim-

ulations. It is a matter of further investigation if this discontinuity is a numerical

artifact or result of imposed virialization condition.

We also solved ΛCDM model using Einstein’s equation by replacing field energy den-

sity and pressure of scalar field with that of cosmological constant and compared

it with results from previous chapters(where we used first integrals). A comparison

Figure 4.8: R/Ri for ΛCDM after evolving through z ≈ 200

between ΛCDM solution from previous chapter(green) and solution using equations

from this chapter(red). Small discrepancy is there because the initial conditions are

not exactly same and also both use different algorithms .
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Figure 4.9: δm(r) for direct equations (red) and for equations using first integral(green)
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Chapter 5

Summary

During this project, we studied and modeled evolution of spherically over dense re-

gions:

• in Newtonian limit

• in flat FRLW cosmology using LTB metric with and without cosmological con-

stant

In models with Λ there is a lower limit on initial density contrast for collapse to

happen.

The aim of the project was to extend the analysis done for Λ model to quintessence

models. This constituted the second half of project. Until the submission of this

thesis we have had limited success in this aspect and for Quintessence models, We are

able to

• model background.

• model spherical perturbation for limited set of initial conditions and virial con-

ditions. More work needs to be done to validate the code and interpret the

results.
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