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Abstract

The concept of Cannon-Thurston maps in Geometric Group Theory was introduced
by Mitra in [1] motivated by the fundamental work of Cannon and Thurston (see
[2, 3]). Given Gromov hyperbolic groups H < G (see [4]) one asks if the inclusion
map i : H — G naturally induces the Cannon-Thurston (CT) map di : dH — dG
which is characterized by the property that for any sequence {h,} in H and & € JH,
h, — & implies h, — di(&). It is well-known that such a map is continuous when
it exists, but it may not, in general, exist (see [5]). In the first part of the thesis,
among other things, we show the existence of CT maps for a pair of hyperbolic
groups H < G where (1) G is the fundamental group of a graph of hyperbolic groups
(¢,Y), say, satisfying qi embedded condition such that G is hyperbolic (see [6]),
(2) H is the fundamental group of a subgraph of hyperbolic subgroups (¢, Z), say,
of (¢4,Y), (3) for any vertex v of Z, the inclusion of the vertex groups H, — G, of
(A,Z) and (¢,Y) admits the CT map and (4) for any edge e of Z, the edge group
H, of (,Z) is same as the corresponding edge group G, of (¢,Y). (One is refered
to [7, Corollary 1.14] for the definition of a subgraph of subgroups of a graph of
groups.) This result is deduced by first proving an existence theorem for CT maps
for certain morphisms of trees of hyperbolic metric spaces, which generalizes earlier
results of M. Mitra ([8]), and (a special cases of) M. Kapovich and P. Sardar ([9,
Theorem 8.11]). Moreover, in the course of this work, we also found a nonexistence
theorem for CT maps which is similar to that of Baker-Riley ([S]) but is conceptually

somewhat easier to understand.

In the second part of the thesis, we prove a combination theorem for trees of
metric bundles extending the combination theorems for trees of hyperbolic metric
spaces due to Bestvina-Feighn ([6]) and metric bundles due to Mj-Sardar ([10]).
More precisely, we prove that if 7 : B — T is a tree of hyperbolic metric spaces
whose edge spaces are points and 7y : X — B is a 1-Lipschitz surjective map then X
is hyperbolic if the following holds:



viii

1. The fibers of mg o wy are hyperbolic metric spaces which are nonelementary
(i.e., their barycentric maps are coarsely surjective as in [10, Section 2]) and

are all uniformly properly embedded in X.
2. B is hyperbolic.

3. For all vertex u of T, let B, = 1tz ' (u) and X,, = 7 ' (B,,). Then the restriction
of mx to X, gives a metric bundle X,, — B,, as defined by [10].

4. Suppose e is the edge in T joining two vertices u,v. Let ep denote the (isomet-
ric) lift of e in B joining b, € B, and b, € B,. Then 7y restricted to 7y ' (ep)
is a tree of metric spaces with the qi embedded condition over eg = [b,, b, | as
defined in [8].

5. The parameters of (1), the bundles in (3) and the trees of metric spaces in (4)

are uniform.

6. Bestvina-Feighn’s hallway flaring condition holds for qi lifts in X of geodesics
in B.

This theorem is then used to prove a combination theorem for certain complexes of
hyperbolic groups.



Notations

N: set of natural numbers.

Z: set of integers.

R: set of real numbers.

For a metric space X, the metric on X will be denoted by dy or simply by d when
X is understood.

For a subset U C X, Px y (or Pxy or Py): X — U is a nearest point projection
map.

Hdx (A, B): Hausdorff distance between A and B for A,B C X

ForAC X andr >0, N,(A) :={x € X : dx(a,x) < rfor some a € A}.

For x,y € X, [x,y]x (or [x,y]): geodesic joining x and y (when X is understood).

Quasiconvex hull of A C X is hull(A) := {[a,b] : a,b € A}.

For trees of metric spaces:

w: X — T, atree of metric space

For a subtree S C T, X5 := 7~ (S); in particular, for u € V(T), X, := 1~ (u).

For a quasiconvex subset A C X,, (u € V(T)), .Z1*(A) is flow space determined
by A.

For trees of metric bundles:

(X,B,T): tree of metric bundles along with maps 7y : X — B, mp : B— T and
nT=ngomyxy :X—T.

For a subtree SC T, Xg:= ! (S), Bs := ngl(S); in particular, for u € V(T),
X, :=n'(u), B, := my "' (u). Fiber over b € B, is Fj,, := 7y | (b).

For an edge [v,w] in T, we denote the edge joining v € B, and to € B, by
[0,10]. Fyp := 71:;1([0, ro]) is §}-hyperbolic, F, , < Fyp and Fy ,, < Fon, are Ly-qi
embedding. Py := PryFy,, : Foro — Fro,w is L}-coarse Lipschitz retraction. Any 28y
quasiconvex subset of Fy, ,, or of Fy ,, is /’L(’)—quasiconvex in Fop.

ForK>1,C>0and€>0,9 isa(K,C,é€)-semicontinuous family with a central
base B over a central tree T. Ty :=hull(7())).

Flow space of X, by Flg(X,) forueT.

Sometimes, we denote %k := .ZIx(X,) and ¥k := Flx(X,) for u,v € T. Also
Ugr = Np.(%k) = NL(F (X)) =: Flgr(X,) for L > 0. Similarly, Vg, = Flgp(X,).

Ladder by Zx or simply by . and .%,, , := £ N F,, Similarly, Lgg := Npr(Zk)
for R > 0.

(¢,Y): graph of groups over an oriented connected graph Y

4 (%/): complex of groups over a connected simplicial complex %

G (% ,Y): complex of groups explained in setup ¢ (see Introduction 1.2)
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Chapter 1
Introduction

This thesis has two parts. In the first part, we show existence of the Cannon-Thurston
(CT) map for certain morphisms of trees of hyperbolic metric spaces. In the second
part, we prove a combination theorem for complexes of hyperbolic spaces with
some restrictions. The general setup that is required for both the parts is that of
complexes of spaces, and the applications of these results are obtained in the context
of complexes of hyperbolic groups. Now we elaborate on each of these two topics in

the following two sections.

Remark 1.0.1. Results discussed in Section 1.1 are part of a preprint [11] and in
Section 1.2 are submitted (see [12]).

1.1 Cannon-Thurson maps for morphisms of trees of

hyperbolic spaces

A natural question in Geometric Group Theory is as follows.

Question 1. Under what condition(s) can a map f :Y — X between hyperbolic
metric spaces be extended continuously to their Gromov boundaries, df : dY — dX?

Such a continuous extension (if exists) is known as the Cannon-Thurston (CT)
map as the first nontrivial examples of such maps was produced by Cannon and
Thurston in ([2, 3]). The term ‘Cannon-Thurston map’ or ‘CT map’ was coined by
Mahan Mitra (Mj) in [1] (and [8]) where he proved the existence of CT maps for any
normal hyperbolic subgroup of a hyperbolic group (resp. vertex group of a graph
of hyperbolic groups with qi embedded condition). Consequently, over the last two
decades, many results on existence of CT maps have been proved. One is refered to

[13] for a wondeful survey. However, the set of examples and nonexamples in this

1



2 CHAPTER 1. INTRODUCTION

context are still very limited. A simple case of the questions addressed in this thesis
is the following.

Question 2. Suppose G1,G, are two hyperbolic groups with a common quasi-
convex subgroup H such that the free product with amalgamation G = G| xg G is
hyperbolic. Suppose that K; < Gj, i = 1,2 are hyperbolic subgroups where H < K;,
i=1,2; let K = K| xg K. Does the inclusion K — G admit the CT map?

It follows from the work of Bestvina and Feighn ([14]) and Gersten ([15, Corol-
lary 6.7]) that K is hyperbolic. However, it follows from the work of M. Kapovich
and P. Sardar, ([9, Theorem 8.71]) that the answer to Question 2 is ‘yes’ if K; is
quasiconvex in Gj, i = 1,2. It easily follows from [8] that the existence of CT maps
for the inclusions K; — G, i = 1,2 are necessary for the answer to Question 2 to be

affirmative. One is referred to Definition 2.5.9 for graph of groups.

Definition 1.1.1 (Subgraph of subgroups, [7, Corollary 1.14]). Suppose (¢',Y’) is
a graph of groups over Y’. Forv e V(Y’) and e € E(Y’), let us denote the correspond-
ing vertex group by G/, and the edge group by G,. Let Y be a connected subgraph
of Y'. A graph of groups (¢,Y) is called a subgraph of subgroups if it is obtained
as follows. For each v € V(Y), G, < G, and for each e € E(Y), we have G, < G,
and the incidence homomorphisms for (¢,Y) are simply the restrictions of those in

(@Y.
In the thesis, we prove the following.

Theorem 1.1.2. Suppose (4',Y’) is a graph of hyperbolic groups with the qi embed-
ded condition such that the fundamental group m1(4',Y’) is hyperbolic. Let (4,Y)
be a subgraph of subgroups overY of (¢',Y') as in Definition 1.1.1. We also assume
the following.

1. Foreachu e V(Y), G, is hyperbolic and the inclusion G, — G|, admits the
CT map.

2. Lete € E(Y). Then:

(a) Gi)N i.(G,) = i.(G,) and Gy(e) Nt.(G,) =1.(G.).
(b) The inclusions i,(G,) — G;(e) and t,(Ge) — G;(e) are qi embedded.
(c) There is D > 0 such that for all g € Gl-(e),

dg/ (Pci(e>ie(ce)(g),PG;( i) (8) <D

i(e) e)



1.1. CANNON-THURSTON MAPS 3

where PG§(€>ie(G’e) : G;(e) — i,(G)) is a nearest point projection map onto
io(G.) in the metric of G;(e) and Fg, i,(G,) : Gi(e) = i.(G,) is that onto
ie(G,) in the metric of Gj(,y. With similar notations, for all g € Gy(,), we
also have

dG; te(G;)(g)) <D.

o) (PGt(e>tg(Ge) (g))PG;

( ()

Then the fundamental group w(9,Y) of (4,Y) is hyperbolic and the natural homo-
morphism 711 (4,Y) — m(94',Y') is injective which admits the CT map.

Remark 1.1.3. (1) In Theorem 1.1.2, the injectivity of the inclusion 7;(¥,Y) —
m1(¢',Y") follows from [7, Corollary 1.14] and the hyperbolicity of 7 (¢,Y) follows
from [14] and [15, Corollary 6.7].

(2) In reference to Question 2 above, when the edge groups are same, i.e.,
G, = G, for all e € E(Y) then it is not hard to show that condition (2)(c) follows
from the mere fact that G}, — G,, admits the CT map, whereas conditions (2)(a) and
(2)(D) are trivially.

So as a consequence of Theorem 1.1.2, we have the following.

Theorem 1.1.4. Suppose (4',Y’) is a graph of hyperbolic groups with the qi embed-
ded condition such that the fundamental group ©11(94',Y') is hyperbolic. Let (4,Y)
be a subgraph of subgroups over Y of (¢',Y') as in Definition 1.1.1 such that for
eachu € V(Y), G is hyperbolic and the inclusion G, — G, admits the CT map. We

also assume one of the followings.
» Foreache € E(Y), G, =G,

* Foreache € E(Y), we have G, Nie(G,) = ie(Ge) and Gy (o) Nt.(G,) =te(Ge);
moreover, the inclusion G, — G, is isomorphic onto finite index subgroup of

the target group.

Then the fundamental group m(4,Y) of (4,Y) is hyperbolic and the natural homo-
morphism 701 (9,Y) — m(94',Y') is injective which admits the CT map.

The above theorem (Theorem 1.1.6) for graphs of groups follows from a geomet-
ric result about trees of metric spaces on which we now elaborate. Suppose X is a
tree of hyperbolic spaces over a tree T satisfying the qi embedded condition such
that X is hyperbolic (see [6]). Mahan Mitra (Mj) showed the existence of CT map
from any vertex space (resp. edge space) to X ([8]). Recently, in their book [9], M.

Kapovich and P. Sardar proved the existence of CT map from a subtree of spaces to
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the ambient space in the setting of trees of hyperbolic spaces generalizing Mitra’s
work. We extend these results as follows. Let us first outline the setup.
We refer to Definition 2.3.1 for the definition of trees of metric spaces below and

Section 2.1 for other terminologies.

1. Suppose w: X — T is a tree of hyperbolic metric spaces satisfying the qi
embedded condition such that X is hyperbolic.

2. Let Y C X be a hyperbolic subspace such that the inclusioni:Y — X is a
proper embedding.

3. The restriction of T on Y, |y : Y — S = n(Y) is a tree of hyperbolic metric
spaces over S with the qi embedded condition.

4. For all u € V(S) and for all e € E(S), inclusions Y, — X, and ¥, — X, admit
the CT maps.

5. Both X and Y are proper metric spaces.

Remark 1.1.5. Under the above hypotheses hyperbolicity of Y is ensured. Indeed,
since X is hyperbolic, 7w : X — T satisfies flaring condition which implies the same
for Y. Basically the proof of [10, Proposition 5.8] works in this case too. Hence, by
[6], Y is hyperbolic.

In addition to the above five hypotheses we shall need the following for Theorem
1.1.6.

Projection hypothesis: There is a constant Ry > 0 such that for all v € V(§) and

e € E(S) incident on v, and for all x € ¥, we have

dx, (Px,x,, (%), Py, (x)) < Ro

where Py x,, : X, — X, 1s a nearest point projection map onto X,, in the metric of X,
and Py, : Y, — Y,, is that onto Y,, in the metric of ¥,..

Theorem 1.1.6. Suppose we have the hypotheses (1)-(5) above plus the following.

1. The inclusion Y, — X, is (uniform) qi embedding for all e € E(S).

2. The projection hypothesis holds.

Then the inclusion i : Y — X admits the CT map.
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A few words on the proof of Theorem 1.1.6: The proof for Theorem 1.1.6 runs
by contradiction. For any two sequences {y,} and {y"} of Y such that lim? ._ y, =
lim?_,_y/, and limX__y,, lim!_,_y, € dX, we show that lim} ,_y, = limX__y/.
This completes the proof (see Lemma 2.2.43). We break the proof up into several
cases depending on types of the sets hull{z(y,) : n € N} and hull{z(y,) : n € N},
and in each case, we compare the geodesics [y, y,]y and [y, ]x. Comparing these
geodesics is the main difficult task. For that we construct a quasiconvex subset in
both X and Y containing y, and y/, using the flow spaces constructed in [9]. [l

When the maps in the vertex space levels are uniform qi embeddings then we
have the following stronger consequence.

Theorem 1.1.7. Suppose we have the hypotheses (1)-(4) mentioned above. Moreover,
suppose for all u € V(S) and for all e € E(S), the inclusions Y, — X, and Y, — X,
are uniform qi embeddings and the projection hypothesis holds. Then

1. the inclusioni:Y — Xy is qi embedding where Xg := n~'(S), and
2. hence by 9], the inclusion i : Y — X admits the CT map.
A particular application of Theorem 1.1.2 is the following.

Example 1.1.8. Consider a hyperbolic group G’ of the form G’ = N x Q, where N
is either the fundamental group of a closed orientable surface of genus at least 2 or
a finitely generated free group of rank at least 3, and Q is a finitely generated free
group of rank at least 2. Examples of this sort are well-known; e.g. see [16], [17].
It is easy to see that Q is a malnormal quasiconvex subgroup of G. Now let FF < Q
be a malnormal free subgroup of rank at least 3 and let ¢ : F — F be a hyperbolic
automorphism. Suppose H; = N x F < G'. Then it follows from [6] that the HNN
extensions (< Hy,t:tat™' = ¢(a),a € F >=)H, = Hix9g < G=G'*y (=< G\t :
tat™! = ¢(a),a € F >), are both hyperbolic. (We note that H, is hyperbolic by the
results of [10].)

However, it easily follows from Theorem 1.1.6 that the inclusion H, — G admits
the CT map.

A nonexistence theorem for CT maps

Baker and Riley ([5]) were the first to produce an example of a free subgroup [F
of a hyperbolic group G for which the inclusion F — G does not admit the CT map.
This class of examples were obtained using small cancellation theory. Later, Matsuda
and Oguni ([18]) using the examples of Baker-Riley showed that any non-elementary

hyperbolic group can be embedded in another hyperbolic group for which there is no
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CT map. In the current thesis, we prove a similar result (see Theorem 1.1.9) using
geometry of trees of spaces. We feel that this is conceptually somewhat easier to
understand than the ones obtained by Baker and Riley.

Theorem 1.1.9. 1. Suppose G’ is a hyperbolic group, and Q and N are hyper-
bolic subgroups where Q is malnormal and quasiconvex in G, but N is not

quasiconvex in G. Moreover, suppose that QNN = (1).

2. Suppose ¢ : Q — Q is an automorphism of Q such that the semidirect product
Q X Z is hyperbolic. Let G = G« be the HNN extension of G’ along ¢ with
stable letter t and let K be the subgroup of G generated by N U{t}.

3. Finally, suppose that there is a sequence {y,} in N such that lim¢ . Poro(yn) =
limnG " oo!" Where Pgig : G' — Q is a nearest point projection map from G' to
0.
Then K = Nx <t > is hyperbolic and the inclusion K — G does not admit the
CT map.

As an application to the above theorem we have the following example.

Example 1.1.10. Consider the groups in Example 1.1.8 so that F = Q and rank
of Q is at least 3. Suppose ¢ is the common stable letter for the HNN extensions
under consideration. Let K be the subgroup of G generated by N U {t}. Clearly,
K = Nx <t > whence it is hyperbolic. However, it is easy to verify the hypotheses
of Theorem 1.1.9 for G and K (see Section 3.7). Thus the inclusion K — G does not
admit the CT map.

One is referred to Definition 3.6.1 for Cannon-Thurston (CT) lamination. In
this thesis, we also investigate the properties of the CT lamination in the situation
where Theorem 1.1.6 holds. One of the main results proved in this connection is the

following.

Theorem 1.1.11. Suppose i : Y — X as in Theorem 1.1.6 such that S =T and
diyx : dY — 09X is the CT map. Let o be a geodesic line in Y. Suppose there is
w € V(S) and t1,t, € R such that Ty = 7(0t|(_w ) and To = (||, o)) lie in two
different components of T \ {w}. Then diyx (at(—oo)) # diyx(a(co)).

A few words on the proof of Theorem 1.1.11: The following dichotomy holds
for the points of dX (where 7 : X — T is a tree of hyperbolic spaces as in Theorem
1.1.6): Either it is a conical limit point of some vertex space or it is not a conical
limit point of any vertex space (see Remark 3.2.10). This is the main fact used in the
proof of Theorem 1.1.11.
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1.2 A Combination theorem for trees of metric bun-
dles

Bestvina-Feighn ([6]) proved that the fundamental group of a finite graph of hyper-
bolic groups with the qi embedded condition and annuli flare condition is hyper-
bolic (see [14, Theorem 1.2]). Motivated by this work of Bestvina and Feighn, M.
Kapovich asked whether one can extend this combination theorem for graphs of
groups to complexes of groups (see [19, Problem 90]). (For more detailed exposition
in complexes of groups, on is referred to [20], [21], [22], [23] or Section 2.5.) One
may formulate the problem of M. Kapovich as follows.

Problem 1.2.1. Suppose 4(%/) is a developable complex of groups over a finite

connected simplicial complex % such that the following holds.

1. All the local groups are hyperbolic.
2. All the local maps are qi embeddings.

3. The universal cover of (%) is hyperbolic.

Under what condition(s) the fundamental group (9 (%)) is hyperbolic.

Here is brief history of the activities around this problem. Suppose ¥ (%) is a
complex of groups with the condition as in Problem 1.2.1. If ¢(%/) is negatively
curved and all the local groups are finite then 1 (¢ (%)) is hyperbolic due to Gersten-
Stallings ([20]). If the local maps are all isomorphisms onto finite index subgroups
of the target groups, local groups are non-elementary hyperbolic and ¢ (%) satisfies
Bestvina-Feighn’s hallway flaring condition then it follows from the work of Mj-
Sardar ([10]) that 7 (¢ (%)) is hyperbolic. If the universal cover of ¢ (%) is CAT(0)
and hyperbolic and the action of 7; (¥ (%)) on the universal cover is acylindrical
then 7 (¢ (%)) is hyperbolic and local groups are quasiconvex in (¢ (%)) due to
A. Martin ([24]). Apart from these extreme cases nothing is known. However, in this
thesis ([12]), we attempt this question for yet another type of complexes of groups.

Let us first outline the setup. We refer this as setup ¢

1. Suppose Y is a finite connected graph and py : %" — Y is a graph of spaces
where the edge spaces are points. We further assume that % is a simplicial
complex. Suppose ¥ (%) is a complex of groups over % such that all the
properties of Problem 1.2.1 hold with the following additional ones.
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2. ForallveV(Y), py ! (v) = %, say, is a finite connected simplicial complex
and the restriction of ¥ (%) on % is a developable complex of groups, say,
4,(%,) over %,. Further, all the local maps in ¥, (%) are isomorphisms onto

finite index subgroups of the target groups.

3. Suppose u,v are two vertices in % such that py is injective when restricted to
the edge e joining u,v. Then the local homomorphisms G, — G, and G, — G,
are not necessarily isomorphisms onto finite index subgroups.

We denote ¢ (%) in this case as ¥ (%/,Y) to emphasize on the extra structure on %'
Then we have the following.

Theorem 1.2.2. ([12, Theorem 1.3]) In addition, if 9(¥,Y) satisfies Bestvina-
Feighn’s hallway flare condition and in (2) of setup €, all the local groups of 4,(%;)
are non-elementary (hyperbolic) then w1 (4 (%,Y)) is hyperbolic.

The above Theorem 1.2.2 follows from a combination theorem for spaces. We
now elaborate on this. In [6], Bestvina and Feighn proved that a tree of hyperbolic
spaces is hyperbolic if it satisfy the qi embedded condition and hallway flaring
condition. In [10], Mj and Sardar proved that if X is a metric bundle over B such that
(1) fibers are uniformly hyperbolic and B is also hyperbolic, (2) the barycenter map
for the fibers are uniformly coarsely surjective and (3) Bestvina-Feighn’s hallway
flaring condition holds then X is hyperbolic. The question that motivated us is if
we can combine these two and still get hyperbolicity. Here is a baby version of the

problem we are attempting to solve.

Question 1.2.3. Suppose m; : X; — B; are metric bundles fori=1,2. Suppose we join
b1 € By and by € By by an edge, say, e. Let X, be a new geodesic metric space. Let
Fy,, and F,, be fibers over by and by of the bundles X, and X, respectively. Suppose
there are qi embeddings X, — Fy,, and X, — Fj,, and we form a new space by gluing
X, x [0,1] to X1 LIX> as follows: We attach X, x {0} to Fy,, and X, x {1} to F,, using
the qi embeddings X, — F,, and X, — F),, respectively. When is the new space
hyperbolic?

In this thesis ([12]), we consider a general version of Question 1.2.3 and provide
a combination theorem (Theorem 1.2.4). One is referred to Definition 2.4.2 for trees
of metric bundles with the qi embedded condition.

Theorem 1.2.4. ([12, Theorem 1.1]) Suppose (X,B,T) is a tree of metric bundles
such that:
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1. Forv e V(T) and a € B,, the fibers, F,, are uniformly hyperbolic geodesic
metric spaces and the barycenter maps 83Fa,v — Fu, are uniformly coarsely

surjective.

2. Let [v,w] be an edge in T and ¢ = [v,w)] be the edge joining v € B, and
t € B,,. Then Tty restricted to Tty ! (¢) is a tree of metric spaces with (uniform)
qi embedded condition over ¢ = [p,10].

3. B is hyperbolic geodesic metric space.

4. Bestvina-Feighn’s hallway flaring condition is satisfied.

Then X is hyperbolic geodesic metric space.

Remark 1.2.5. The overall idea of the proof of Theorem 1.2.4 closely follows from
that of [9] and makes crucial use of [10]. We are intellectually indebted to both of
these works. However it is not a direct consequence of the combination theorems
of [6] and [10] in any obvious way for the following reason. Letv € V(T). As the
space X, over B, is a metric bundle satisfying all conditions of the main theorem
of [10], X, is (uniformly) hyperbolic. Now we can think of X as a tree of metric
spaces over T where vertex spaces are these bundles and the edge spaces are inverse
images under 7g o y of the midpoints of the edges in 7. But we can not apply the
main theorem of [6] to this tree of spaces to conclude our theorem because in this
case the edge spaces of the tree of spaces are not, in general, gqi embedded in the

corresponding vertex spaces.

Necessity of flaring

Gersten (see [15, Corollary 6.7]) showed that the annuli flaring is necessary
for the fundamental group of a finite graph of hyperbolic groups to be hyperbolic
provided the edge groups are qi embedded in the corresponding vertex groups.
Mj and Sardar also showed that the (hallway) flaring condition is necessary for
metric bundles to be hyperbolic provided fibers are uniformly hyperbolic (see [10,
Proposition 5.8]). Let us briefly recall the idea of their proof. They first showed that
small girth ladders bounded by two qi lifts satisfy flaring condition. Then a general
ladder was subdivided into small girth ladders and summing them up showed that a
general ladder satisfies flaring condition. In doing so they used a crucial lemma ([10,
Lemma 5.9]) which is a specialization of the fact that geodesics diverge exponentially
in hyperbolic metric spaces in the context of metric bundles; this lemma also holds
true in trees of metric bundles. In trees of metric bundles, given two qi lifts over the
same base, there is a special ladder (see Definition 2.4.11) bounded by these qi lifts
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(see Lemma 2.4.14). Therefore, the proof of the following remark is analogous to
that of [10, Proposition 5.8], so we omit the full details.

Remark 1.2.6. Suppose (X,B,T) is a tree of metric bundles such that:

1. X is hyperbolic.
2. All the fibers are uniformly hyperbolic.

3. All the edge spaces in the corresponding fibers are uniformly qi embedded.

Then 7y : X — B satisfies Bestvina-Feighn’s hallway flaring condition.

As a consequence of Remark 1.2.6, we have the following.

Corollary 1.2.7. ([12, Corollary 1.7]) Suppose 4 (% ,Y) is a complex of groups as
explained in the setup € such that the fundamental group m(9(%,Y)) of 9(¥,Y)
is hyperbolic. Then 4 (% ,Y) satisfies Bestvina-Feighn’s hallway flare condition.
(Note that we do not require the universal cover of 9 (%) to be hyperbolic.)

A few words on the proof of Theorem 1.2.4: (1) Motivated by that of [9], we
construct semicontinuous families, ladders and flow spaces, and more general flow
spaces in Section 5.1; whereas ladder was invented by Mitra in [8] for trees of metric
spaces. Some properties of these subspaces, most importantly, Mitra’s retraction
of the whole space on these subspaces, are also discussed there. Main construction
starts from here in Section 5.1.

(2) Most difficult job was to show the uniform hyperbolicity of ladders and
flow spaces. In Section 5.2, we prove that the ladders are (uniformly) hyperbolic
by dividing into two cases: small girth and general case. By invoking Bowditch
criterion (see Proposition 2.2.6) for a metric space to be hyperbolic, we prove that
small girth ladders are (uniformly) hyperbolic (Subsection 5.2.1). For general ladder,
we first break it up into small girth ladder and then with the help of Proposition 2.2.7
we conclude its hyperbolicity (Subsection 5.2.2). Section 5.3 is devoted to prove
the (uniform) hyperbolicity of flow spaces. To prove this, we follow the strategy
elaborated in [9, Chapter 5].

(3) In Section 5.4, we prove that union of uniform neighborhood of two inter-
secting flow spaces is uniformly hyperbolic; in the introduction of this section we
elaborate what the properties are required from the earlier sections to prove this.

(4) Section 5.5 contains proof of Theorem 1.2.4 with the help of Theorem 4.0.1.
Theorem 4.0.1 shows the hyperbolicity of total space for a tree of metric spaces

within an axiomatic framework.
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(5) The last Section 5.6, contains some applications to complexes of groups
(Theorem 1.2.2 and Corollary 1.2.7).

Layout of the thesis: In Chapter 2, we recall basics definitions and results which
are used in the subsequent chapters. We define trees of metric bundles in Section
2.4. In Chapter 3, we prove the main theorem for Cannon-Thurston maps (Section
3.4, Theorem 1.1.6). In the subsequent Sections 3.5, 3.6, we prove Theorem 1.1.7,
Theorem 1.1.2, Theorem 1.1.4 and Theorem 1.1.11. We end Chapter 3, by proving
Theorem 1.1.9 and Example 1.1.10 (Section 3.7). Chapter 4 is devoted to proving the
hyperbolicity of trees of metric spaces within an axiomatic framework. In Chapter
5, we prove the main combination theorem (Section 5.5, Theorem 1.2.4). Theorem

1.2.2 and Corollary 1.1.5 are proven in Section 5.6.



1.3 Flowchart

Chapter 2 (Preliminaries) _l

v

2.1 Coarse geometry, 25
2.2 hyperbolic metric Complexes
l spaces, quasiconvex of groups
subsets
2.3 Trees of metric
[ spaces
v
2.2.2 Gromov
| Boundary and CT Y
maps v 2.4 Trees of
metric bundles
Chapter 4 (A
¢ combination l
theorem revisited)
Chapter 3 Chapter 5
Y
4.4 Main theorem 5.5 Main
for CT maps combination
l theorem
4.6 Applications v l

A 4

4.7 Nonexistence of
CT maps

5.6 Applications

12




Chapter 2

Preliminaries

2.1 Coarse geometric notions

Suppose X is a metric space. For x,y € X, a geodesic joining them in X is an
isometric embedding « : [0,d(x,y)] — X with a(0) = x and o (d(x,y)) =y. We refer
to X as a geodesic metric space if there exists a geodesic in X joining every pair of
points in X. We say that X is proper metric space if closed bounded balls in X are
compact. In this thesis, it is assumed that graphs are connected, and their edges are
isometric to a closed unit interval of R. That makes the graph a geodesic metric space
([23, Section 1.9, I.1]). A tree is a connected graph without any embedded circle.
For atree T and u,v € V(T), by a segment or interval joining u,v in T, we mean an
isometric embedding « : [n,m] — T for n,m € Z such that a(n) = u, oe(m) = v. We
denote [u,v] :=Im(a), (u,v] := Im(}41,m) and (u,v) := Im(&| 41 ,m—1))- Degree
of avertex v € V(T) in a tree T is defined to be the number of edges incident on v.

Let us recall some basic notions of large scale geometry (see [4], [25], [23],

[26]). Let (X,dx), (Y,dy) be metric spaces and 6 >0,k > 1,6 >0,r>0,C >0,L >
0,D>0,R>0.

l. Let A,BC X. We say A is r-dense in X if X = N,(A) :={x € X : dx(x,A) <
r}. The Hausdorff distance between A and B is defined to be inf{D : A C
Np(B),B C Np(A)} and is denoted by Hdx (A, B). The subset A is said to be
r-separated subset if for all distinct a,b € A, dx(a,b) > r. We say A and B are
R-separated if dx(a,b) > R,Nac AandV b € B.

2. Amap f: X — Y is called e-coarsely surjective if N:(f(X)) =Y; and, we
say that f is coarsely surjective if it is €-coarsely surjective for some €.

3. Amap f:X — Y is called C-coarsely Lipschitz if

dy (f(x),f(+')) < Cdx (x,x") +-C

13
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for all x,x” € X. In particular, if A C X and f : X — A is a C-coarsely Lipschitz
map such that f(a) = a for all a € A then we say f is a C-coarsely Lipschitz
retraction of X on A.

. Amap ¢ : R>yg — R> is said to be (metrically) proper if the inverse image

of bounded sets are bounded or equivalently lim ,_,.(r) = o. A function
f:X —7Y is called (metrically) ¢-proper embedding (or simply proper
embedding when ¢ is understood) for some proper map ¢ : R>o — R if

dy (f(x), f(x))) < r implies dx (x,x) < ¢(r).

. Amap f:X — Y is said to be (k,€)-quasi-isometric embedding (in short

(k, €)-qi embedding) if
1
%dx(x,x') — & <dy(f(x),f(x)) < kdx(x,x') + € for all x,x" € X.

We say that f is a quasi-isometric embedding (in short qi embedding) if it is
(k, €)-qi embedding for some k > 1 and € > 0. Lastly, by k-qi embedding, we
mean (k,k)-qi embedding.

We say that f is a (k, €,r)-quasi-isometry if it is (k,€)-qi embedding and
r-coarsely surjective. In this case, X and Y are said to be quasi-isometric to
each other. Lastly, by a k-quasi-isometry, we mean (k, k, k)-quasi-isometry. It
is standard that if f : X — Y is a k-quasi-isometry then there is k' depending
on k and a k’-quasi-isometry g : ¥ — X such that dx(go f(x),x) <k’ for all
xeXanddy(fog(y),y) <k'forallyeY (see [10, Lemma 1.1 (2)]). In this
case, we say that f and g are coarse inverses to each other.

. By a (k, €)-quasi-geodesic (resp. k-quasi-geodesic) in X, we mean (k, €)-qi

embedding (resp. k-qi embedding) of an interval in R. For a (k,€)-quasi-
geodesic (resp. a geodesic), say, & in X, most of the time we omit the domain

(i.e. interval in R) of o and work with its image in X.

. Wesay o : I CR — X is a (k,&,L)-local quasi-geodesic if the restriction of

o on any subinterval I'(C I) of length < L is a (k, €)-quasi-geodesic.

. Let A be a closed subset of X. Let x € X. A point a € A is called nearest point

projection of x on A if
dx(a,x) < dx(d',x) forall d’ € A.

For a subset B, the set of nearest point projections of B on A is denoted by
Px 4(B) or simply by P4(B) when X is understood.
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9. Suppose U,V are closed subsets of X. We say that the pair (U,V) is D-
cobounded in X if

max{diam{Py(V)}, diam{Py(U)}} <D.

For the rest of the points, we assume that X is a geodesic metric space and a
geodesic in X joining two points a,b € X is denoted by [a,b] C X.

10. Suppose x,y,z € X. A geodesic triangle in X formed by these three points is
the union of chosen geodesic segments [x,y], [x,z] and [y,z], and it is denoted
by A(x,y,z). We call those geodesic segments as sides of the triangle. We
say a geodesic triangle A(x,y,z) is d-slim if any side is contained in the
0-neighborhood of the union of other two sides.

11. (C-center and C-tripod) Suppose A (x,x,x3) is a geodesic triangle in X
formed by x1,x2,x3 € X. A point z € X is called C-center of this triangle if
7 € Ne([xi,x;]) for i # jand i, j € {1,2,3}. Sometimes we call U3_, [z,x;] as
the C-tripod in X with end points x1,x7,x3.

12. Let a,d’ € X. A discrete path joining a and ¢ in X is a finite set of points
with an order, say, a = ap < a; < --- < a, = d’. A path joining a and a’ based

on a discrete path as above is [ag,a;|U[a1,a2]U---Ulan—_1,an].

The following lemmata (Lemma 2.1.1, 2.1.2, 2.1.3, 2.1.4) are standard. So we

omit the proofs.

Lemma 2.1.1. Given a proper map ¢ : R>o — R there is a proper function
2211 =821.1(0) : R>g — R>q such that the following holds.

Let X be a geodesic metric space and Y be a subspace of X. Suppose the inclusion
Y — X is ¢-proper embedding where Y is considered with the induced path metric
from X. Then for all y,y' € Y and r € R, dy(y,y') > rimplies dx(y,y') > g2.1.1(r).

Lemma 2.1.2. Given D > 0 there is Cp.1 (D) such that the following holds.

Suppose X is a geodesic metric space and Y is a subset of X (not necessarily
connected) such that Y is 1-dense in X. Let U C X and p : Y — U be a map such
that dx (p(x),p(y)) < D for all x,y € Y with dx(x,y) < 1. Then p can be extended
toamap p' : X — U so that p' is Cr.1 2-coarsely Lipschitz.

Lemma 2.1.3. Given a map ¢ : R~g — R~ and constants C > 0, R > 0 there is a
constant Ly 13 = L1 3(9,C,R) such that we have the following.
Suppose X is a geodesic metric space and Y C X such that Ng(Y) is path

connected. Let p : X — Y be a C-coarsely Lipschitz retraction. Further, the inclusion
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i:Ng(Y) — X is ¢-proper embedding. Then i: Ngr(Y) — X is Ly 1 3-qi embedding.
We consider Ng(Y') with its induced path metric from X.

Lemma 2.1.4. Given L > 1, D > 0, there is a constant Ly 1 4 = Ly 1 4(L,D) such
that we have following.

Suppose X is a geodesic metric space and Y C Z C X are geodesic subspaces
such that the inclusion Y < X is L-qi embedding. Let Z C Np(Y'). Then the inclusion
Z — X is Ly 1 4-qi embedding.

2.2 Hyperbolic metric spaces

There are several equivalent definitions for hyperbolic geodesic metric spaces (see
[27], [4]). We consider the following and refer this as Gromov hyperbolic space.

Definition 2.2.1. Suppose X is a geodesic metric space and 0 > 0. We say that X is
o-hyperbolic if all its geodesic triangles are o-slim.

A geodesic metric space X is said to be hyperbolic if it is §-hyperbolic for some
0>0.

For us hyperbolic metric spaces are geodesic (by definition above) and are of
infinite diameter. In hyperbolic metric spaces, quasi-geodesics and geodesics with
same end points are uniformly Hausdorff close. This is known as Morse lemma or
stability of quasi-geodesic (see [23, Theorem 1.7, III.H]).

Lemma 2.2.2 (Stability of quasi-geodesic). Given 6 >0, k > 1 and € > 0 there is a
constant D> 7 = D22 7(8,k, €) such that the following holds.

Suppose X is a O0-hyperbolic metric space. Then for any geodesic o and a
(k, €)-quasi-geodesic B in X with the same end points, Hdx (., ) < D2 5.

For a finitely generated group G with finite generating set S, the Cayley graph of
G with respect to S is a graph whose vertex set is G and two vertices, say, g,h € G

are joined by an edge if g~ 'h € SUS™L.

Definition 2.2.3 (Hyperbolic group). A finitely generated group G is said to be
hyperbolic if its Cayley graph with respect to some finite generating set is hyperbolic.

It is standard that given two finite generating sets, the Cayley graphs associated
with them become quasi-isometric to each other. It is easy to prove from the stability
of quasi-geodesic (Lemma 2.2.2) that the hyperbolicity is quasi-isometry invariant
(see [23, Theorem 1.9, III.H]). Therefore, hyperbolic groups are well-defined.
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Suppose X is a geodesic metric space and « : [s,/] C R — X is a continuous
injective path. Let dy be the induced path metric on Im(a) from X. Then we have
the induced order on Im(a) from [s,¢]. In other words, if p,q € [s,t] with p < ¢
then a(p) < a(q) keeping in mind that dy (ct(s), a(p)) < dg(a(s),o(q)). We have
mentioned above that sometimes we forget the domain of quasi-geodesic (resp.
geodesic) and work with their image. With this terminology, we have the following.

Lemma 2.2.4. Given 8 >0, k > 1 and r > 0, we have constants Ly .4 =Ly 2. 4(8,k,r)
and ky .4 = ky2.4(8,k,r) such that the following hold.

Suppose (X,d) is a 6-hyperbolic metric space. Let o and B be continuous
injective k-quasi-geodesics in X joining points ay,ay and by, b, respectively. Further,
we suppose that d(a;,b;) <r, i =1,2. Let aj < ay and by < b, be the orders on o
and B respectively. Then there is a monotonic (piece-wise linear) homeomorphism
v (a,do) — (B,dg) such that y(a;) = b; and d(x,y(x)) < kp2.4 for all x € a.

Moreover, ¥ is Ly 7 a-quasi-isometry.

Proof. Define a map ¢ : R~ — R such that ¢(¢) = kz +k>. Then o, are ¢-
properly embedded. Now by Lemma 2.2.2 and d-slimness of geodesic triangles,
we have Hd(a, B) < Dy, where D; = 2D 35(0,k,k)+20 + r. Thus by [9, Lemma
1.19], we have amap g : ¢ — B with d(g(x),x) <D;,Vx € a\{ay,ay} and g(a;) =
bi,i = 1,2 such that g is L-quasi-isometry, where L depends on D and ¢. Again,
by [9, Lemma 1.24], we have constants D, D3 depending on L, and a monotonic
(piece-wise linear) homeomorphism g : &« — f such that g is D,-quasi-isometry and
d(g(x),8(x)) < D3. Sod(x,8(x)) <d(x,g(x)) +d(g(x),&(x)) < D1+ D3. Here g
serves as the required .

Therefore, we can take Lo >4 = D> and kr 2.4 = D1 + D3. ]

We end this subsection by stating the following results (Lemma 2.2.5, Proposition
2.2.6 and Proposition 2.2.7). These results are very useful in Chapter 5. One can
look at [28, Theorem 1.4, Chapter 3] for a proof of Lemma 2.2.5.

Lemma 2.2.5 (Local quasi-geodesic vs global quasi-geodesic). Forall 6 >0, k> 1
and € > O there are constants Ly 55 = Ly .5(0,k,€) and X325 = Ay2.5(8,k, €) such
that the following holds.

Suppose X is a 0-hyperbolic metric space. Then any (k,€,L, 2 5)-local quasi-

geodesic in X is a A 5-quasi-geodesic.

In [29, Proposition 3.1], Bowditch provided a criterion for hyperbolicity of a
metric graph. Earlier, in [30], Hamenstadt also gave a similar criterion for a space to

be hyperbolic. In Proposition 2.2.6, we consider Bowditch’s version for space.
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Proposition 2.2.6. ([9, Corollary 1.63]) Given Dy > 1, D > 0 and a proper map
v : R = Ry there exist 826 = 6226(Y,D,Do) and K> 26 = K2 2.6(W,D, Do)
such that the following holds.

Suppose X is a geodesic metric space and Xo C X is a Do-dense subset of X.
Suppose for any pair (x,y) of distinct points in Xy there is a continuous path c(x,y)

joining x and y. Further, for all x,y,z € Xy and r € R>(, we have
1. d(x,y) < rimplies the length of the path c(x,y) is bounded by y(r), and
2. ¢(x,y) S Np(clx,z) Ue(y,2)).

Then X is 8,7 6-hyperbolic metric space and the paths c(x,y) are K 3 ¢-quasi-

geodesic.

The proposition below is a very special case of the main theorem of [6] (see also
[9, Theorem 2.59]). Here, the space is realized as a tree of metric spaces such that
the tree is an interval. (One may look at [10, Corollary 1.52] for this result in metric

graph.) However, it is true for an arbitrary tree also (see [31, Theorem 2]).

Proposition 2.2.7. [9, Theorem 2.59] Given 6 > 0, L > 1, D > 0 there exists
0227 = 022.7(8,L, D) such that the following holds.

Suppose X = U?;OlXi is a geodesic metric space with X;’s are geodesic subspaces
with the induced path metric from X such that:

1. For0<i<n—1, X; is 8-hyperbolic metric space.

2. For0<i<n—2, Yiy1 = XiNXj+1 is a path connected subspace, and the
inclusions Yj,1 — X; and Y\ — Xj11 are L-qi embeddings.

3. Yiy1 separates X; and X1 in X in the sense that every path in X joining points
in X; and X; 1 passes through Y;, 1.

4. For 1 <i<n-—2, the pair (Y;,Y;+1) is D-cobounded in the metric X;.
5.dx, (Y, Y1) > 1for1 <i<n—1.
Then X is 0, 5.7-hyperbolic metric space.

Remark 2.2.8. In Proposition 2.2.7, if n = 2, we only need to check (1) and (2). In
that case, X is ;2.8 = 82.2.8(6,L)-hyperbolic (see also Lemma 2.3.4).



2.2. HYPERBOLIC METRIC SPACES 19

2.2.1 Quasiconvex subsets

In this subsection, we will explore various basic results concerning quasiconvex

subsets that will be useful in later discussions.

Definition 2.2.9. Suppose X is a geodesic metric space and K > 0. A subset U of X is
said to be K-quasiconvex if [a,b] C Ng(U) for all a,b € U and for all geodesics [a, b]
joining a,b in X. We say that a subset U of X is quasiconvex if it is K-quasiconvex
for some K > 0.

In hyperbolic geodesic metric space, a common example of quasiconvex subset

is the convex hull of any subset. This motivates us to define the following.

Definition 2.2.10. Suppose X is a geodesic metric space and U C X. The quasicon-
vex hull of U is defined as hull(U) := {[a,b] : a,b € U}.

Remark 2.2.11. Suppose X is a 8-hyperbolic metric space for some § > 0and A C X

is any subset. Then hull(A) is 26-quasiconvex.

In hyperbolic metric space X, nearest point projection of a point on a quasiconvex
subset, say, U is coarsely well-defined. (Here one requires U to be closed; which
is the standard assumption for us for a quasiconvex subset.) We define a map
Px vy : X — U sending a point to its nearest point projection, called a nearest point
projection map on U. Sometimes we denote this map by Py if X is understood. Now
we collect some facts related to quasiconvex subsets; some are well known and some
are very easy to prove. The following is yet another way to obtain a quasiconvex

subset.

Lemma 2.2.12. ([32, Lemma4.2]) Let 6 > 0 and L > 0. Suppose X is a 6-hyperbolic
metric space and U is a subset of X such that there is a L-coarsely Lipschitz retraction
X — U. Then U is a K-quasiconvex subset of X where K depends on o and L.

Lemma 2.2.13. ([9, Lemma 1.139, Lemma 1.127], [10, Lemma 1.35]) Given

0>0,A>0and R>0, we have Ry».13 = Ry2.13(8,A) =24 + 56, Dys13 =

D3213(0,A) =24 +78 and R, , 13 = 2A + 30 + R such that the following hold.
Suppose X is a 6-hyperbolic metric space. Let Y, Z C X be two A-quasiconvex

subsets in X. Then we have the following.
1. IfY, Z are Ry 3 13-separated then the pair (Y,Z) is D, ».13-cobounded.

2. Ifd(Y,Z) <R then Py(Z) C Ny, (Z)NY and Hd(Py(Z),Pz(Y)) < R}, 3.
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One is referred to [9, Remark 1.142] for the upcoming remark. It is possible to

minimize those constants, similar to what is mentioned in the remark.

Remark 2.2.14. 1. If Y and Z are geodesic segments in Lemma 2.2.13 (1), then
one can take D>, 13 = 88 and Ry 5 13 = 596.
2. If Y and Z are geodesic segments in Lemma 2.2.13 (2), then one can take
R,, ;=48 +R.

The following result follows from the stability of quasi-geodesic.

Lemma 2.2.15. Given 6 > 0, k > 0 there is Dy5.15 = D32.15(0,k) such that the
following holds.

Suppose X is a 8-hyperbolic metric space and U,V C X are k-quasiconvex in X.
LetU' =Py y(V). Let x € U,y € V be any points. Then [x,y]x NNp,, s (U") # 0.

As a corollary we have the following.

Lemma 2.2.16. Let 6 > 0, k > 0 and D > 0. Suppose X is a 8-hyperbolic metric
space, and U and 'V are k-quasiconvex subsets of X. Further, suppose the pair (U,V)
is D-cobounded. Then there are points p € U, g € V and a constant D' depending
on 8, k and D such that for any x € U, y € V, we have p,q € Np ([x,y]).

The following Lemma 2.2.17 (1) follows from the very nature of quasiconvex

subset and Lemma 2.2.16, whereas one can conclude (2) from Lemma 2.2.13 (1).

Lemma 2.2.17. Let 6 > 0, k > 1 and D > 0. Suppose X is a 8-hyperbolic metric
space, and U and V are k-quasiconvex subsets of X. We consider a subset A
containing U and V as follows. (1) If the pair (U,V) is D-cobounded then A =
UUV U|[x,y| for some x € U and 'y € V. (2) If the pair (U,V) is not D-cobounded
then A =UUYV. Then there is a constant K depending on 0,k,D such that A is

K-quasiconvex.

Lemma 2.2.18. ([9, Corollary 1.140 (a)]) Let 6 > 0, k > 0 and D > 0. Suppose X is
a 8-hyperbolic metric space, and U and V are k-quasiconvex subsets of X. Further,
we assume that diam {Px y(V)} < D. Then there is a constant D' > D depending
on 8,k and D such that diam {Pxy(U)} < D'. In particular, the pair (U,V) is
D' -cobounded.

Lemma 2.2.19 (2) follows from (1) and the stability of quasi-geodesic in addition.

Lemma 2.2.19. Let 6 > 0 and k > 0. Then there are constants D3 5 19 = D72.19(0, k)
and K> .19 = K»2.19(0,k) depending on &, k such that we have the following. Sup-

pose X is a d-hyperbolic metric space and U,V C X are k-quasiconvex subsets.



2.2. HYPERBOLIC METRIC SPACES 21

(1) ([9, Lemma 1.113]) For any x,y € X, Hdx (Px .y ([x,y]), [Px.u(x),Px v (y)]) <

D2 19.
(2) Px y(V) is K2.2.19-quasiconvex in X.

Lemma 2.2.20. Given 6 >0, k> 1, A > 0 and D > 0 there is a constant Cy 2 70 =
C2.2.20(8,k, A, D) such that the following holds.

Let X be a 8-hyperbolic metric space. Suppose U is a A-quasiconvex in X and
x,y € X such that dx (Py (x),Py(y)) < D. Let & be a k-quasi-geodesic in X joining x
and y. Then the pair (o,U) is Cp .3 20-cobounded.

Proof. Since quasi-geodesics are quasiconvex subsets, so the lemma follows from
Lemma 2.2.19 (1) and Lemma 2.2.18. [

One is referred to [9, Corollary 1.105] for a proof of Lemma 2.2.21 (2), and (3)

easily follows from (1) and (2), so we omit the proof.

Lemma 2.2.21. Given 6 >0, K > 0, D > 0 and R > 0 there are constants Cy 21 =
C2221(0,K), Ez221 = E2221(8,K,D) and Dy 231 = D2321(8,K,D,R) such that
the following hold.

Suppose X is a 0-hyperbolic metric space, and U and V are K-quasiconvex

subsets of X. Then we have the following.

1. ([4, Hyperbolic Groups, Lemma 7.3.D]) Any nearest point projection map
Pxy : X — U is Cyp21-coarsely Lipschitz retraction.

2. Suppose x € X and Hd(U,V') < D. If x| and x; are nearest point projections
of x on U and 'V respectively, then d(x1,x2) < E>201.

3. Suppose the pair (U,V) is D-cobounded. Then Ng(U) and Ng(V') are K» 21~
quasiconvex, and the pair (Ngr(U),Ng(V)) is D3.3.21-cobounded.

Lemma 2.2.22. For 6 >0, K> 0and L > 1, we have K> 722 = K2222(0,L,K) and
Dy 220 = D22(0,L,K) such that the following hold.

Suppose X and Y are 8-hyperbolic metric spaces, and f :Y — X is a L-qi
embedding. Let U be a K-quasiconvex subset of Y and y € Y. Then we have the
following.

1. f(U) is Ky 3.22-quasiconvex in X. (For this, we do not need Y to be hyperbolic.)

2. ([8, Lemma 3.5]) If y' is a nearest point projection of y on U in'Y and x' is that
of f(y)on f(U) in X. Then dy(f(y'),x") < Dy2.20.
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We saw that qi embedded subspaces are quasiconvex in hyperbolic metric spaces
in Lemma 2.2.22 (1). Now by Lemma 2.2.21 (1) one can conclude Lemma 2.2.23

(1) for a converse; whereas (2) follows from (1) and Lemma 2.1.3 in addition.

Lemma 2.2.23. Given a map ¢ : R~g — R~ and constants § > 0, k > 0 and
R > k+1 there are constants Ly 23 = L 223(0,k,R) and L, 5 3 =L}, 5 ,3(8,k,R, §)
such that we have the following.

(1) Suppose X is a 6-hyperbolic metric space and A is a k-quasiconvex subset
of X. Then NX (A) is path connected and with its induced path metric from X, the
inclusion Nx (A) — X is Ly 23-qi embedding.

(2) Moreover, suppose Y C X is a 8-hyperbolic subspace such that the inclusion
Y — X is ¢-proper embedding. Let A CY be k-quasiconvex in Y. Then N}g (A) is
path connected and both the inclusions N (A) <= X and N} (A) — Y are L, 5 13-qi
embedding.

Lemma 2.2.24. Given 6 >0, L > 1 and K > 0, we have constants
K204 =K2224(8,L,K) and D23 24 = D2224(6,L,K)

such that the following holds.

Suppose X is 8-hyperbolic metric space and Y C X is a geodesic subspace such
that the inclusion i : (Y,dy) — (X,dx) is L-qi embedding where dy is the induced
path metric on Y from X. Let A C Y be K-quasiconvex in Y. Further, we assume that
y €Y, and y' is a nearest point projection of y on A in the metric Y and y" is that of

y on A in the metric X. Then A is K; 5 24-quasiconvex in X and dx (y',y") < D3 .24.

Proof. By Lemma 2.2.22 (1), one can take K3 .24 = K32.22(6,L,K).

For the second part, by [10, Lemma 1.31 (2)], we note that the arc-length
parametrization of [y,y']y U[y',y"]y is a (3 + 2K)-quasi-geodesic in Y and so is L;-
quasi-geodesic in X for some constant L; depending on (3+2K) and L. Suppose y; €
[v,"]x such that dx (y',y1) < D222(8,L1,Ly), and so dx (y1,y") < D222(8,L;,Ly).
Therefore, dx (y',y") < dx(y',y1) +dx(y1,Y") <2D222(8,L1,L1) =:D2304. 0O

Here we recall from [9, Section 1.18], a small modification in nearest point

projection on a path connected quasiconvex subset ([9, Definition 1.121]).

Definition 2.2.25 (Modified projection). Suppose X is a geodesic metric space
and U is a path connected quasiconvex subset of X. Then for any subset A C X,
modified projection of A on U is defined as Py (A) := hull(Py(A)) C U, where the
quasiconvex hull is taken in the induced path metric on U from X (see Definition
2.2.10 for notation).
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Lemma 2.2.26. Given 6 > 0, L > 1 and A > 0 there are constants 6,56 =
02226(6,L,A) and D326 = D3.2.26(8,L, L) such that the following hold.

Suppose X is a 6-hyperbolic metric space and Z C X such that Z with the induced
path metric is L-qi embedded in X. Let Z be also &-hyperbolic. Suppose x; € Z
(i=1,2,3) and z is a 6-center of the triangle /\(x1,x2,x3) in Z giving a 8-tripod
Y= U?Zl [z,Xi|z in Z. Further, we assume that U is a A-quasiconvex subset of X.
Let Y be A-quasiconvex in X. Let Py : X — Y and Py : X — U be nearest point

projection maps on 'Y and on U respectively. Then:
1. Hd(Py(U),Py(U)) < 622.6(8,L,2).

2. LetY = f_’y(U ) and X; € Y be the closest to x; in the intrinsic path metric on'Y .
Then:

(a) LetY ¢ [z,xi]z for any i € {1,2,3}. Then dx(Py(x;),Py(%;)) < D222

(b) Let Y C [z,x]z for some i € {1,2,3}. Note that %;11 = X1 = Z (say).

Here i +1 is calculated in modulo 3. Then

dx (Py(%i),Pu(xi)), dx(Py(z),Pu(z)) and dx (Py(xix1),Pu(Z))

are bounded by D> » 5.

Proof. The proof of (1) follows from that of [9, Lemma 1.125]. We only proof (2)
(b) since the proof for (2) () is a line by line argument of that of (2) (b). In (2) (b),
we will specifically address dx (Py(xi—1),Py(Z)) as the other proofs are similar. We
fix i = 2. Then x;_1 = x1.

Let Py(x;) = x| and Py(x}) = x|. Note that x| € [Z,x2]z. Since z is §-center
of the triangle A (x,x2,x3) in Z, so dz(Z, [x1,x{]z) < 28. Thus (by Lemma 2.2.2)
Jz1 € [x1,x]]x such that dy (Z,z1) <28 +D22,(8,L,L). Again, [x|,x]]x U [x],x1]x
is (342A)-quasi-geodesic in X ([10, Lemma 1.31 (2)]), and so 3 z, € [x1,x]]x such
that dx (z1,22) <D222(8,3+2A4,3+21). Then by triangle inequality, dx (Z,z2) < D,
where D =D55(6,34+24,34+24)+28 +D1,,(8,L,L). Notice that as Py (x) = x}
and 2 € [x ,x’l ]x,so0 )c/1 is also a nearest point projection of z» on U in the metric of X.
Then by Lemma 2.2.21 (1), dx (Py(z2),x}) < C2221(0,4). Hence, dx (Py(Z,x]) <
d(Py(2),Pu(z2)) +dx(Pu(z2),x)) < C2221(0,A)(D+2) =: D 2. O

Remark 2.2.27. ([9, Remark 1.124]) In the above Lemma 2.2.26 (1), if both U and
T are geodesic segments in X, one can bound Hd(Pr(U),Pr(U)) by 46.
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2.2.2 Gromov boundary and Cannon-Thurston maps

Suppose X is a Gromov hyperbolic metric space. Then the geodesic or visual
boundary of X is defined as follows. Let ¢(X) be the set of all geodesic rays in
X. One defines an equivalence relation on ¢ (X) by setting @ ~ B if Hd(a, ) < o
for all o, B € ¢4 (X). The set of equivalence classes, denoted by dX, is called the
geodesic boundary of X. The equivalence class of & is denoted by o(e0). If &t (0) = x
then we say that o joins x to ¢¢(eo). In this Subsection 2.2.2 (consequently, in Chapter
3), we shall always assume that our spaces are proper hyperbolic metric spaces or
trees. We shall briefly recall all the properties of geodesic boundaries to be used in
this thesis.

The barycenter map (For more details, one is referred to [10, Section 2]):
Suppose X is a 8-hyperbolic geodesic metric space such that there are more than two
elements in its Gromov boundary, dX. Then by [10, Lemma 2.4], for any n,1’,n” €
dX such that n’ # n”, there is a (uniform) quasi-geodesic ray starting at any point
in X representing 1) and a (uniform) bi-infinite quasi-geodesic line whose one end
represents 1) and the other one represents ””. We denote such a line by (n’,n”).
Notice that we do not assume our space to be proper. Let °X = {(&,&,&;) €
OX x 0X x 0X : 1 # & # E # E1}. Now for € = (§1,&,&) € 93X, we consider
an ideal quasi-geodesic triangle, say, /\(&;, &, &) formed by three (uniform) quasi-
geodesic lines {(§;,&;) :i# jand i, j € {1,2,3}}. Then by [10, Lemma 2.7], there
is a point, say, bg in X uniformly close to each sides of A(&;,&,,&3) and this b is
coarsely well-defined. Thus in this way, we can (coarsely) define a map v : 9°X — X.
Lastly, by [10, Lemma 2.9], the map ¥ : 93X — X is coarsely unique and is called
the barycenter map. Note that for such barycenter map, we always assume that dX

has more than two elements.

Remark 2.2.28. We say a group G is non-elementary hyperbolic if the Gromov
boundary of its Cayley graph with respect to some finite generating set contains
more than two elements. It is a well known fact that for a non-elementary hyperbolic

group the barycenter map is coarsely surjective.

Now we state a couple of results related to boundary. Since they are standard,
we state them without proofs; one may find their proofs in [23, Chapter 1II.H].
Lemma 2.2.29. If X is a proper hyperbolic metric space then X # 0.

Lemma 2.2.30. ([23, Lemma 3.1, Lemma 3.2, Lemma 3.3, [11.H]) Let X be a proper
0-hyperbolic metric space or a tree for some & > 0. Then we have the following.

1) If x € X and & € dX then there is a geodesic ray o in X with o.(0) = x and
o) = &E. If &' any other geodesic joining x to & then Hd(a,a) < 4.
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2) If &1 # &, are two points of dX then there is a geodesic line ¥ in X joining &;
to &. If ¥ any other geodesic joining &) to & then Hd(y,y') < 26.

We note that one can define a Hausdorff topology on X = X UJX in a very
natural way. However, since we do need it we skip the detailed discussion and we
state the following features that will be used in Chapter 3.

The following lemmata (Lemma 2.2.31, Lemma 2.2.32) gives a geometric criteria
for convergence and is well known among experts. One may look at [33, Lemma
2.45] for a proof of Lemma 2.2.32 (2).

Lemma 2.2.31. Suppose {x,} is a sequence in X and & € dX. Then {x,} converges
to & iff the following holds: Suppose x € X is an arbitrary point and suppose 0, is
a geodesic (ray or line according as x, € X or x, € dX) in X joining x, to &. Then

limy, e d(x, 0;) = oo.

Notation. Suppose {x,} is a sequence in X and & € X. Then we write lim®_,_ x, =
& to mean that {x,} converges to £ in X. If limX ,_x, = & for some & € dX then
we say that lim¥ . x, exists. Later in Chapter 3 we shall frequently encounter
situations where there are two hyperbolic spaces Y C X and sequences {y,} in Y. To
differentiate between the limits of this sequences in X and ¥ we use superscript as

above.

Lemma 2.2.32. Suppose X is a proper hyperbolic metric space and x € X. Then the
following hold.

1. Any unbounded subsequence {x,} in X has a subsequence {x,, } with limy_,. xp,
€ dX.

2. Suppose {x,} and {x,,} are two unbounded sequences in X such that limX_,_x, €
0X. If d(x, [x,,x)]) — oo as n — oo then lim* . x/, € dX. Then in that case
limX . x, = limX_ _x, if and only if lim,_,wd(x, [x,,x,]) = oo. Moreover; if

Zn € [, x] then limX 7, = lim* ,_ x,,.
As a corollary of Lemma 2.2.32 (2), we have the following.

Lemma 2.2.33. Suppose X is a hyperbolic metric space and {x,} C X such that
limX . x, exists. Let x € X and x,, € [x,x,] such that d(x,x.,) — oo as n — . Then

. ¢ — 1imX /
limy, ., x, = lim;,_, . x,,.

Definition 2.2.34. Suppose X is a hyperbolic metric space and {A, } is a sequence of
(uniformly quasiconvex) subsets of X. Suppose & € dX. We say that the sequence
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of subsets {A,} converges to £ (in X) if the following holds: Given R > 0 there is
N € N such that for all n > N and x,, € A, and any geodesic ray o joining x, to &,
we have d(x, o) > R.

Suppose H is a subgroup of a finitely generated group G. It is a simple fact
that, for any finite radius ball in the Cayley graph of G with respect to any finite
generating set, there are only finitely many cosets of H that intersect with this ball.
This observation motivates the following definition and has a significant impact in
Chapter 3.

Definition 2.2.35. A family of subsets {Ay}gea in a metric space X is said to be
locally finite if any finite radius ball in X intersects at most finitely many Ay ’s.

The proof of Lemma 2.2.36 follows from the definition; whereas Lemma 2.2.37
also follows from the very nature of quasiconvex subsets in addition. So we choose

to omit their proofs.

Lemma 2.2.36. Suppose {A,, : n € N} is a locally finite collection of subsets in an
infinite diameter metric space X. Then for any point x € X, d(x,A,) — o0 as n — oo.

Proposition 2.2.37. Suppose X is a proper hyperbolic metric space and {A,} is a
sequence of uniformly quasiconvex subsets in X such that the collection {A,, : n € N}
is locally finite. Then there is a subsequence {A,, } of {A,} that converges to a point
of 0X.

Definition 2.2.38. (Cannon-Thurston map) Suppose f : Y — X is a (proper) embed-
ding between hyperbolic metric spaces. We say that f admits the Cannon-Thurston
(CT) map if there is a map d f : dY — dX induced by f in the following sense:

For all £ € dY and for any sequence {y,} in ¥ with lim!__y, = & one has

lim;y ., f(va) =9 f(€).

In this case d f is called the CT map induced by f. We note that in the Definition
2.2.38, the existence of the CT map implies that it is also continuous (e.g. [33,
Lemma 2.50]).

Lemma 2.2.39. ([9, Lemma 8.6]) Suppose f:Z —Y and g : Y — X are maps
between hyperbolic spaces both admitting the CT-maps. Then the composition
go f:Z — X admits the CT-map.

In [8], Mitra gave the following criterion for the existence of CT-maps.
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Lemma 2.2.40. (Mitra’s Criterion, [8, Lemma 2.1]) Suppose f:Y — X is a map
between hyperbolic metric spaces. Fix yo € Y and let xo = f(yo). Then f admits the
CT-map if there is a proper map ¢ : R~y — R such that the following holds.

Lety,y €Y and R > 0. Suppose o is a geodesic inY joining y,y and B is that
in X joining f(y), f(y'). Then dy(yo, o) > R implies dx (xo,8) > ¢ (R).

In the situation of the above lemma we shall say that f satisfies Mitra’s criterion
with respect to the base point yy and we shall refer to the function ¢ to be a CT
parameter for this base point. We note that Mitra’s criterion implies that f : Y — X
is a proper embedding. On the other hand it is easy to check that if Mitra’s criterion
holds for a map f: Y — X as above with respect to a base point yy € Y, then the
same will be true for any other base point in Y although in that case the CT parameter
¢ maybe different. However if there is a group G acting by isometries on both Y
and X such that f is G-equivariant and the G-action on Y is transitive then the same
function ¢ works for all base points in Y. Typically this is the case in group theoretic
situations, i.e., when we have hyperbolic groups H < G and f is an inclusion map

between their Cayley graphs. This motivates the following.

Definition 2.2.41. Suppose f: Y — X is a (proper) embedding between hyperbolic
metric spaces and that f satisfies Mitra’s criterion with respect to a base point. We
say that f satisfies a uniform Mitra’s criterion if there is a function ¢ which works

as a CT parameter for all base points in Y.

We note that although Mitra’s criterion is not necessary for the existence of CT
maps, it is a very reasonable sufficient condition for the existence of CT maps as the
following lemma shows. Since this is quite standard we skip its proof.

Lemma 2.2.42. Suppose X,Y are two proper hyperbolic metric spaces and f:Y — X
is a proper embedding. If f admits the CT map, then f :Y — X satisfies Mitra’s

criterion.

We note that all the spaces in consideration in this thesis, for which CT maps are
to be discussed, are proper. The proofs will run by contradiction and for the same

purpose the following lemma will be very useful.

Lemma 2.2.43. Suppose X,Y are two proper hyperbolic metric spaces, and f :
Y — X is a proper embedding which does not admit the CT map. Then there are
two unbounded sequences {y,} and {y’} in Y such that im)_,__y, = lim! .y but

Km) o, f(yn) # lim) ., £(3)-
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Proof. Since f:Y — X does not admit the CT-map, it does not satisfies Mitra’s crite-
rion for any proper map ¢ : R~y — R>¢ and any fixed point yg € Y. Let xo = f (o).
Therefore, we get two sequences {y,} and {y},} in ¥ such that dy (o, [yn,¥,]y) — oo
as n — oo and dx (xo, [f(yu), f(,)]x) < D for all n € N and for some D > 0. In
particular, both the sequences {y,} and {y),} are unbounded. Since f is proper
embedding, both the sequences {f(y,)} and {f(y})} are unbounded also. Since
both the spaces X and Y are proper, after passing to subsequences, if necessary,
we assume that lim?_,_y,, lim!_,_y/ € Y and limX ,_ f(y,), lim’_,_ f(y}) € 90X
(see Lemma 2.2.32 (1)). Now we through by Lemma 2.2.32 (2). ]

The uniform Mitra’s criterion plays a pivotal role in our main theorem (Theorem
1.1.6) proved in Chapter 3. We can now observe that having the uniform Mitra’s
criterion broadens the applicability of Lemma 2.2.24 to any hyperbolic subspace,
instead gqi embeddings.

Lemma 2.2.44. Given 6 > 0, K > 0 and a proper function ¢ : R>o — Rx, there is
Dy 244 = D2744(0,K, Q) such that the following holds.

Suppose X is a proper O-hyperbolic metric space. Let Y C X be a proper
O-hyperbolic subspace with respect to induced path metric from X and A C Y be
K-quasiconvex in both X and Y. Further, we assume that the inclusioni:Y — X is ¢-
proper embedding and satisfies uniform Mitra’s criterion with function ¢. Suppose yy
and y) are nearest point projections of y € Y on A in the metric X and Y respectively.
Then dy (y1,y2) < D72 44.

Proof. Note that the arc-length parametrization of [y,y1]x U [y1,y2]x is a (3 +2K)-
quasi-geodesic in X (see [10, Lemma 1.31 (2)]). Then there is x € [y, y»]x such that
dx (y1,x) < D, where D = D3 ,,(8,3+42K,3+ 2K). Since ¢ is a proper function,
we fix Ny such that ¢(Np) > D. Then it says that dy (yi, [y,y2]y) < No; otherwise,
dy (y1,[y,y2]y) > No implies dx (y1, [y,y2]x) > ¢ (No) > D (by Mitra’s criterion with
respect to base point y;) and so dx (y;,x) > D which is a contradiction.

Let y3 € [y,y2]y such that dy(y1,y3) < Np. Since y; is a nearest point projection
of y on A in the metric Y and y3 € [y, 2]y, so dy (v3,y2) < dy(y3,y1) < Nop. Therefore,
by triangle inequality, dy (y2,y1) < 2Ny =: D22.44. O

Lemma 2.2.45. Suppose X is a proper hyperbolic space and Y is a proper hyperbolic
subspace with respect to the induced path metric such that the inclusioni:Y — X is
proper embedding and admits the CT-map di : dY — dX. Let A C Y be quasiconvex
in bothY and X. Further, dx(Pxa(y),Pya(y)) is uniformly bounded for all y € Y.
Moreover, let o : [0,00) — Y be a geodesic ray inY such that di(a(e)) € A(A) C dX.

Then « is a quasi-geodesic ray in X.
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Proof. We fix a point yy € A and assume that &¢(0) = yy. Since the inclusion ¥ < X
admits the CT-map, so [yo, @(n)]x converges to the geodesic ray, say, 8 : [0,0) — X.
Since di(a(eo)) = B(e0) € A(A), {Pxa([yo, ®(n)]x) : n € N} is of infinite diameter.
Hence by our assumption, {Pys([yo,@(n)]y) : n € N} is of infinite diameter. Since
o is a geodesic ray in Y and A is quasiconvex in Y, & is in bounded neighborhood of
A. Again since A is quasiconvex in X so « is a quasi-geodesic ray in X.

O

2.3 'Trees of metric spaces

The notion of trees of metric spaces was introduced by Bestvina and Feighn in [6].
A coarsely equivalent definition was given by Mitra in [8]. We are going to adopt

the latter definition.

Definition 2.3.1. Suppose 7 is a simplicial tree and X is a metric space. Then a
1-Lipschitz surjective map 7 : X — T is called a tree of metric spaces if there is a
proper map ¢ : R>o — R>( with the following properties:

1. Forallve V(T), X, := n~'(v) is a geodesic metric space with the path metric
d, induced from X. Moreover, with respect to these metrics, the inclusion
X, — X is ¢-proper embedding.

2. Suppose e is an edge in T joining v,w € V(T) and m, € T is the midpoint of
this edge. Then X, := 7~ ! (m,) is a geodesic metric space with respect to the
path metric d, induced from X. Moreover, there is a map ¥, : X, x [0, 1] —
n~!(e) C X such that

(a) mo Y, is the projection map onto [v, w].

(b) ¥, restricted to X, x (0, 1) is an isometry onto 7~ ! (int(e)) where int(e)

denotes the interior of e.

(c) O, restricted to X, x {0} ~ X, and X, x {1} ~ X, are ¢-proper embed-
dings from X, into X, and X,, respectively with respect to their induced
path metrics. Let us denote these restriction maps by ¥, and ¥,

respectively.

Moreover, we say 7 : X — T is a tree of hyperbolic metric spaces with the
qi embedded condition if additionally we have the following. There is &y > 0 and
Ly > 1 such that X,’s are dp-hyperbolic for all v € V(T') and in (2) (c¢), ¥, and &, ,,
are Ly-qi embedding.
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Notations: Throughout the Chapter 3 and in this subsection, we will use the
following notations. For any subtree T’ of T and an edge e = [v,w], we denote X7,
X,, and X,,, to mean 7~ (7"), e v(Xe) and O, (X,); and we will use X,,,, for Xy )-

In the following lemma we see that if we restrict the tree of metric spaces on

some subtree then the inclusion map is uniformly properly embedded.

Lemma 2.3.2. ([9, Proposition 2.17]) Suppose ® : X — T is a tree of metric spaces.
Then there is a function My32 = M232(0) : R>og — R>¢ depending on ¢ as in
Definition 2.3.1 such that the following holds.

Let T' be a subtree of T and Xy/ := ™! (T"). Then with respect to the path metric
on Xy induced from X, the inclusion X1 — X is My.3.2-proper embedding.

Since proof of the following result is standard, so we omit it.

Lemma 2.3.3. Suppose w: X — T is a tree of spaces such that X is proper metric
space. Letu € T and {e), : A € A} be the collection of edges incident on u. Then the
collection {X,,, : A € A} is locally finite in X,,.

Convention: Unless otherwise specified, we always refer to the constants &y and
Ly as in Definition 2.3.1 for a tree of hyperbolic metric spaces with the qi embedded
condition.

Let us fix some secondary constants 86,L6, lg,L’l in the following Lemma 2.3.4
and these notations will be used through out the thesis.

Lemma 2.3.4. ([9, Corollary 2.62, Lemma 2.27]) Suppose &t : Z — [v,w] is a tree of
metric spaces over an edge e = [v,w| such that Z,, Z,, are &-hyperbolic and Z, is
Lo-qi embedded in both Z,, and Z,,. Then

1. Zis 56-hyperbolic, and Z, and Z,, are L6-qi embedded in Z.

2. Suppose U is a 20y-quasiconvex subset of the fiber Z,, or Z,,. Then U is ),6-
quasiconvex in Z (see Lemma 2.2.22 (1)), where Aj = K3 222(8), Ly, 280). In
particular, Z,,Z,, are /’Lé-quasiconvex in Z. Thus a nearest point projection
map Pzz, : Z — Z,, in the metric Z is L|-coarsely Lipschitz retraction, where
L/] = C2_2_21 (56 l(l))

Lemma 2.3.5. Givenk >0, D > 0 and € > 0 there are constants Ry 35 = Ry 3.5(k, D, €)
and R), 5 s = R, 5 s(k,D) such that the following holds.

Suppose we have assumptions of Lemma 2.3.4. Let A, be a k-quasiconvex subsets
of Z, in Z,-metric and A,, be that of Z,, in Z,,-metric. Let x € Z, and y € Z,, such
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that dz(x,y) = 1, and X' be a nearest point projection of x on A, in Z,-metric and y'
be that of y on A,, in Z,,-metric. Then we have the following.

(A) If Hdz(Pzz,(Ay),Ayw) < € and dz(z,A,) < D for all z € A,,, then dz(x',y") <
Ry 3.

(B) Suppose A, = A, N Z,, is also k-quasiconvex in Z, and A, = A, N Zy,, is
that in Z,,. Let Hdyz, (PZVZe‘, (Av),A(,) <D and Hdz, (Pzwzew (AW),AQ,) < D. Then
dz(x',y') <R}, 5 5(k,D).

Proof. (A) Note that Z is §;-hyperbolic, and Z, and Z,, are Lj,-qi embedded in
Z (see Lemma 2.3.4). Thus A, and A,, are K-quasiconvex in Z for some K =
K>22(84,Liy,k). Suppose x; is a nearest point projection of x on A, and y; is
that of y on A,, in Z. Then by Lemma 2.2.24, dz(x',x1) < D3224(8,L;,,K) and
dz(y',y1) < D2224(8,Lj),K). Hence it is enough to show a bound on dz(x1,y).

Let y, and y3 be nearest point projections of y and y; on A, respectively in
Z. By given condition we have dz(y;,y3) < D and by Lemma 2.2.21 (1) we have
dz(x1,y2) <2C2221(8),K). Consider the pair (A,,Z,) in Z. By Lemma [9, Lemma
1.127], if y}, is a nearest point projection of y, on Z,,, we have dz(y2,y,) < 2K +
39, +D. Again by given condition we have dz(y},A,,) < €, and so dz(y2,Ay) < 2K+
38,4+ D+ €. Now if y) is a nearest point projection of y, on A,,, then dz(y2,y;) <
2K +38,+D+¢e =€ (say).

Now we have dz(y,y3) <dz(y,y1)+dz(y1,y3) <dz(y,y5) +dz(y1,y3) <dz(y,y2)
+dz(y2,¥5) +D < dz(y,y2) + € +D. Let z € [y,y3]z such that dz(y2,z) < K +24
(see [9, Lemma 1.102 (i)]). Then dz(z,y3) = dz(y,y3) —d(y,2) < dz(y,y2) + € +
D —d(y,z) <dz(y2,z) + € +D < K+28)+¢€ +D. Sodz(ys,y3) < dz(y2,2) +
dz(z,y3) <2(K+28)) + €'+ D = D (say).

Therefore, combining all inequalities, we have

dz(X',y') <dz(x',x1) +dz(x1,y2) +dz(y2,y3) +dz(y3,y1)
+dz()’17yl)
<2D3724(80, Ly, K) +2C2221(8),K) +D1 +D =: Ry 3 5.

(B) Abusing notation, we assume that Z,,, Z,,, are also k-quasconvex in Z, and
Al, Al are that in Z. Let x| be a nearest point projection of x on A, in Z,. Now we
prove that dx (x’,x;) is uniformly bounded. Since [x,x'|z, U [x/,x1]z, is a (3 + 2k)-
quasi-geodesic, by stability of quasi-geodesic in Z,, there is x, € [x,x1]z, such that
dz,(x',x2) < D; for some uniform constant D; > 0. Then there is x3 € Z,, such
that dz, (x2,x3) < k, and so dz,(x',x3) < D; +k, and so dz, (X', Pz,z,,(X')) < D; +k.
Thus dz,(x3,Pz,z, (x')) < 2(D1 +k). Then by given condition, there is, x; € A,
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such that dz, (x5, Pz,z,,(x')) < D. This implies by triangle inequality, dz, (x3,x3) <
2(Dj + k) + D; and again by triangle inequality, dz, (x2,x3) < 2D; +3k+ D. Since
x1 is a nearest point projection of x on A/, in the path metric Z, and x, € [x,x1]z,, x; €
Al then dz, (x2,x1) < dz, (x2,x;) < 2Dy +3k+ D. Hence dz, (x',x1) < dz,(xX',x2) +
dz,(x2,x1) <3D; +3k+D.

Now let x4 be a nearest point projection of x on A/, in the path metric Z. Then by
Lemma 2.2.44 dz (x1,x4) < D; for some uniform constant D, > 0.

Therefore, by triangle inequality, dz(x,x4) < 3Dy + 3k + D, = Dj (say).

Now let y4 be a nearest point projection of y on A, in the metric of Z. Then by
the similar argument, we can conclude that dz(y',y4) < Ds.

Again let y5 be a nearest point projection of y on A, in the path metric Z. Since
dz(x,y) =1, by Lemma 2.2.21 (1), dz(x4,ys) < D4 for some uniform constant Dy >
0. Since by given condition, Hdz(A,,A],) < 2D, by Lemma 2.2.21 (2), dz(ys,ya) <
D5 for some uniform constant Ds.

Therefore, by combining all the inequalities above, we get

dz(x',y) < dz(xX',x4) +dz(x4,y5) +dz(ys,y4) +dz(ys,))
< D3+D4+Ds+D3=2D3+Ds+Ds=:R) 5.

Therefore, we are through. O

Lemma 2.3.6. Given k > 0 there is Ry 3.6 = Ry 3.6(k) such that the following holds.
Suppose we have assumptions of Lemma 2.3.4. Let A, be a k-quasiconvex subset
of Z, in Z,-metric. Let x € Z, and y € Z,, such that dz(x,y) = 1, and x' be a nearest

point projection of x on A, in Z,-metric and y' be that of y on A, in Z-metric. Then
dz(¥',)') <Ra36.

Proof. From the first paragraph of the proof of Lemma 2.3.5, A, is K-quasiconvex
in Z where K = K»22(8),Ly,k). If x; is a nearest point projection of x on A,
in Z-metric, then by Lemma 2.2.21 (1), dz(x1,y") < 2C2221(6),K). Again by
Lemma 2.2.24, dz(x',x1) < D224(8),L;,,K). Therefore, we can take Ry 36 :=
D52.24(84, Ly, K) + C2.221(8),K). O

Now we define Mitra’s projection map on a subset of X in the following remark
for later use.

Remark 2.3.77. Mitra’s projection map: Suppose S is a subtree of T and &/ =
UuEV(S)Au where A, C X,, is any subset. Let X,;, = UMGV(T) X,,. Now we define
a map p : X,sp — < as follows. Suppose x € X,5, and w(x) = u. If u € V(S)

then we take p(x) to be a nearest point projection of x on A, in X,,. Now suppose
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u ¢ V(S). Let v be the nearest point projection of  on S in T and w € [v, u] such that
dr(v,w) = 1. First we take a nearest point projection, say, x’ of x on X,, in X and

then p(x) is defined to be a nearest point projection of X’ on A,, in X,,,,.

The following result gives us sufficient conditions for which the above map turns

out to be a coarsely Lipschitz retraction.

Proposition 2.3.8. Suppose o/ and p are as in Remark 2.3.7. We also assume the
following for some constants k,K,C,€ > 0.

(1) Forallv € V(S), A,’s are k-quasiconvex in X,,.

Let [v,w] be an edge in S such that dr(u,v) < dr(u,w). Then:

(2) Forve V(S)andw ¢ V(S), the pair (A,,X,,) is C-cobounded in X,

(3) Forvyw € V(S), A,, C Nk (A,) in X,

(4) For vyw € V(S), Hdx,, (Px,,x,(Av),Aw) < €.

There is a uniform constant L, 3 § depending on various constants above such
that p can be extended to a L, 3 g-coarsely Lipschitz retraction X — <.

Proof. Since X,y is 1-dense in X, by Lemma 2.1.2, it is enough to show dx (p (x), p(y))
is uniformly bounded where x,y € X,,, and dx (x,y) < 1.

Let w(x) = v and w(y) = w. We consider the following cases depending on the
position of v, w.

Case 1: Suppose v,w € V(S). If v =w then dx(p(x),p(y)) < C2221(80,k)
(see Lemma 2.2.21 (1)). Now let v # w and dr(u,v) < dr(u,w). Then dr(v,w) <
dx (x,y) < 1 implies dr (v,w) = 1, dx(x,y) = 1, x € X,,, y € X,,. Then by (3), (4) and
Lemma 2.3.5 (1), dx (p(x),p(y)) < dx,,(p(x),p(y)) < Ra35(k,K, ).

Case 2: Without loss of generality, letv € V(S) and w ¢ V(S).Note that dx (x,y) =
1 and x € X,, y € X,,. Then by Lemma 2.3.6, dx(p(x),p(y)) <dx,, (p(x),p(y)) <
R;3.6(k).

Case 3: Suppose v,w ¢ V(S). Since dr(v,w) < 1, the nearest point projections
of v and w on § are same; suppose that is v'. Let w’ € [V/,v] such that dy (V/,w') = 1.
By (2), the pair (A,/,X,/) is C-cobounded in X,s,,. Thus by the definition of p,
dx (p(),p(5)) < di, (p(3),p (1)) < C.

Therefore, we are through. 0

2.4 'Trees of metric bundles and their properties

The notion of metric bundles (see Definition 2.4.1) was introduced by Mj and Sardar
([10]). Subsuming both metric bundles and trees of metric spaces, we define trees of
metric bundles (Definition 2.4.2).
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Definition 2.4.1. [10, Definition 1.2] Suppose (X,d) and (B, dg) are geodesic metric
spaces; let co > 1 and ¢ : R~y — R>( be a proper map. We say X is a (¢, co)-metric
bundle over B if there is a 1-Lipschitz and surjective map p : X — B such that the
following holds.

1. Letze B. Then F;, := p_1 (z), called fiber, is a geodesic metric space with the
induced path metric from X and the inclusion F, <— X is ¢-proper embedding.

2. Let z1,22 € B such that dg(z1,22) < | and o be a geodesic joining z; and z5.
Then for all z € « and x € F,, there are paths in p~! (o) of length at most ¢
joining x to points in F;, and F,.

Definition 2.4.2 (Trees of metric bundles). Let (X,d) be a geodesic metric space.
Suppose 7g : (B,dg) — T is a tree of spaces over a tree T such that edge spaces are
points. Let ¢ : R>9 — R>( be a proper map and ¢y > 1. A tree of metric bundles is a
1-Lipschitz surjective map 7y : X — B such that the following hold (see Figure 2.1).

1. Forall u € V(T) let B, := mz ' (u) and X,, := 1 ' (B,). Then X, is geodesic
metric space with the induced path metric and the restriction of 7y to X, gives
a (¢, co)-metric bundle X,, — By, (see Definition 2.4.1).

2. Let e = [v,w| be an edge in T, and ¢ = [b, ] be the lift of e joining v € B,
and to € B,,. Then 7y restricted to 7y L(e) is a tree metric spaces over ¢ with

parameter ¢ (see Definition 2.3.1)

3. Foru € V(T) and a € B,, we denote the fiber corresponding to a by F, ,(:=
Tty I(@)). Then the inclusion F, , < X is ¢-proper embedding.

Abusing terminology, we say (X,B,T) is a tree of metric bundles keeping the
structural maps 7y, 7p and parameters ¢, co and other things implicit. We denote
the compositionof 7y : X - Bandng:B—Tbyn:X —T.

Disclaimer: The term ‘trees of metric bundles’ may be misleading for the map
7y : X — B since B is not a tree in general; but it is not misleading for 7 = o 7wy :
X — T. To maintain consistency with existing literature, we will adhere to our
chosen nomenclature.

We will see some properties of a tree of metric bundles (X, B, T) that are used in
the main proof. In our statements, we make the structural parameters ¢, co implicit.

For u € V(T), since fibers are ¢-properly embedded in X, we can show (along the
same line of arguments given in the proof of [9, Proposition 2.17]) that X,, := 7~ (u)

is uniformly properly embedded in X. Then considering (X,B,T) as a tree of metric
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Figure 2.1: Trees of Metric Bundles

spaces T := mpomy : X — T, we get the following as corollary of [9, Proposition
2.17].

Proposition 2.4.3. Suppose (X,B,T) is a tree of metric bundles. Let S be a subtree
of T and Xs := 1! (S). We consider Xg with the path metric induced from X. Then
there exists a proper function Ny 43 : R>o — R>( depending only on the structural
parameters of (X, B, T) such that the inclusion i : Xs < X is 1M.4.3-proper embedding.

Definition 2.4.4 (Quasi-isometric (qi) section). Let K > 1. Suppose (X,B,T) is
a tree of metric bundles. Let By be an isometrically embedded subspace in B and
X1 € X. We say X; is K-qi section in X over By if there is a K-qi embedding
s : By — X such that mx os = id on B and X; = Im(s). Further, we say that it is
compatible if the following hold.

1. For allw € mg(By), X; NX,, is K-qi section over B; N B,, in the path metric of
Xy and X;NX = Im(s|BlﬂBW)-

2. Suppose [v,w]| C mp(B)) is an edge, and [v, tv] is the edge joining v € B, and
t € B,,. Then s(b) and s(t0) are K-apart in the path metric on 7y ' ([v, r0])
induced from X.

Definition 2.4.5. If By, in Definition 2.4.4, is a geodesic segment, say, o : [0,r] C
R — B, then we call the section a K-qi lift of the geodesic . According to our
definition, a K-qi lift of a geodesic ¢ : [0,7] C R — B is Im(&) where @ : Im(a) C
B — X is a K-qi embedding. We will simultaneously use Im(c) and [0, r] as the

domain of ¢&.
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Existence of uniform qi section in metric bundle was one of the difficult jobs
in [10]. We are going to use it frequently in our paper (see Lemma 2.4.12 (1)).
For a short exact sequence, in a different way, it was proved earlier by Mosher
[34]. In a hyperbolic geodesic metric space, geodesics (and hence quasi-geodesics)
diverge exponentially. In a tree of metric bundles X, qi lifts are quasi-geodesics. So,
they diverge exponentially provided X is hyperbolic. This property is captured in
the following definition for special types of quasi-geodesics, namely, qi lifts (see
also necessity of flaring in Introduction 1 to get more on this). This definition is a
generalization of Bestvina-Feighn’s hallway flaring condition ([6]) in a natural way
as defined in [10, Definition 1.12] for metric bundles.

Definition 2.4.6. Suppose k > 1. A tree of metric bundles (X,B,T) is said to satisfy
k-flaring condition (see Figure 2.2) if 3 M} > 0, n; € N and A; > 1 depending on k
such that the following holds.

For every pair (Y, 71) of k-qi lifts of a geodesic y: [—ng,ng] — [a,b] C B joining
a,b with d’ (1(0),7(0)) > M;, we have,

Md” (1(0),7(0)) < max{d’ (y(—nx), vi (=), d’ (Yo (nie), i () }

where d/ denotes the fiber distance in the corresponding fiber. Abusing terminology,
we sometimes simply say that (X, B, T) satisfies k-flaring condition suppressing the
constants My, ny, A. We say that (X, B, T) satisfies a flaring condition if it satisfies
k-flaring condition for all k£ > 1.
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Figure 2.2: Flaring Condition

Now we will state the following Lemma 2.4.7 without a proof. These results
correspond to [10, Lemma 2.17, Lemma 2.18] in metric bundles situation. One

has a similar proofs in trees of metric bundles. The results (1) of Lemma 2.4.7 is
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defined as uniform flaring condition in the book [9], and (2) says that the neck are
quasiconvex subset of the base in the sense of [10].

Lemma 2.4.7. Let k > 1. Suppose (X,B,T) is a tree of metric bundles satisfying
k-flaring condition with constants My,ny,Ar. Then for all D > 0 there is Th.47 =
T .4.7(k,D) and Ry 47 = Ry 4.7(k, D) satisfying the following.

Let %y, 11 be two k-qi lifts of a geodesic v : [0,r] — [a,b] C B joining a,b € B (resp.
a,beV(B)). Let0=ro<r; <---<rp=rsuchthatriyi—ri=1for0<i<n-—2
and ry, —r,—1 < 1. Then:

1. df(}/o(r,-),}/l(ri)) > My foralll <i<n—1and

max{d’ (1(0),%1(0)),&' (1(r), 1 (r)} <D

implies r = dp(a,b) < T.47.

2. max{d’ (1(0),7(0)),d’ (9(r), 11 (r))} < D implies for all 0 <i<n

d’ (0(ri), 71 (r1)) < Roa7.

Throughout the thesis, we directly will not use flaring condition in proving results
instead Lemma 2.4.7. We make the following remark for later use, and it follows
from the Definition 2.4.6.

Remark 2.4.8. Let k > 1. Suppose (X,B,T) is a tree of metric bundles satisfying
k-flaring condition with constants My, n;,A;. Let S be a subtree of 7. Then (a)
it satisfies k’-flaring condition for all k" < k with the same constants, and (b) the

restriction 7y |y, : Xs — By also satisfies k-flaring condition with the same constants.

Motivated by the main theorems of [6] and [10], we define the following.

Definition 2.4.9. We say that a tree of metric bundles (X, B, T) satisfies the hyper-
bolic axioms, in short, axiom H with parameters &y > 0,N > 0 and Ly > 1 if the
following hold.

1. Letu € V(T) and a € B,. Then F, , is §-hyperbolic and the barycenter map
(see Subsection 2.2.2) 83Fa7u — Fy 4 1s N-coarsely surjective.

2. Let e = [v,w]| be an edge in T. Let ¢ = [b, 0] be the edge joining v € B, and
to € B,,, and m, be the mid point of ¢. Then the incident maps Oy : 7Ty ! (me) —
Fov, e ﬂgl(me) — F v are Ly-qi embeddings.

3. Lastly, let B be 8y-hyperbolic. This assumption is the same as B, is &-
hyperbolic for all v € V(T).
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2.4.1 Conventions and notations

1. Unless otherwise specified, our tree of metric bundles (X, B, T) always satisfies
the axiom H with constants &y, N, Ly as in Definition 2.4.9.

2. Suppose B’ is connected subspace of B and S is subtree of T'. Unless otherwise
specified, by b € B' and u € S, we always mean b € B' "By, ;) and u € V(S)

respectively.

3. If X; is a K-qi section over By, then it is a compatible 1, 4.3(2K)-qi section
over By. Thus, now onward, by a K-qi section, we always mean a compatible

K-qi section.

Notation 2.4.10. We use these notations throughout the Chapter 5. We denote
the composition map g o Ty by &. For a subtree S C T, Xg := &~ (S) and
Bg :=m'(S). In particular, for v € V(T), X, := ! (v) and B, := m5' (v). Let
v,w € T, dr(v,w) =1 and [v, 1] is the edge joining v € B, and 1 € B,,. We denote
Fyp = 751}1 ([o,t0]). The induced path metric on Fyy, is denoted by dyy, and we
use N°™ to mean neighborhood of subsets of Fyy, in the dyp-metric. For a fiber
F,u, where u € V(T) and a € B,, we simply use d’, diam’, Nf and [x,y]f (or
[x,¥] F,,) to denote respectively the induced path metric on £, the diameter of a
subset of F, ;, in d’ -metric, the neighborhood of a subset of F , in d’-metric and a
geodesic inside Fy , joining x,y € F; ,. Since it will be clear from the context which

fiber we are working with, we are not being more specific on &/, N/ etc. Lastly,

Pm = PmeFm,w'

We want to put metric bundle (Definition 2.4.1) structure on subspace of X.
Suppose X; C X and S is a subtree of 7" such that the restriction map 7y |y, : X; — Bs

is surjective.

Definition 2.4.11 (K-metric bundle and special K-ladder). With the above, we say
that X; forms a K-metric bundle over By if there is a K-qi section through each
point of X; over Bg such that the image lies inside X;. Further, we say that X; forms a
special K-ladder if X; forms a K-metric bundle along with two K-qi sections X{,%,

over Bgsuchthat X, = U [Fp,NZi,Fp,NXo]E,,. In this case, sometimes we
veS, beB, '

denote X; by Zx(X1,X;) or simply by £ (£;,X,) when K is understood.

Lemma 2.4.12 (2) is proved for metric graph bundles (see [10, Definition 1.5]) in
[10, Lemma 3.1], although it holds for metric bundles. Since the same proof works,

we omit it.
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Lemma 2.4.12. ([10, Proposition 2.10, Proposition 2.12, Lemma 3.1, Lemma 3.3])
Suppose (X,B,T) is a tree of metric bundles satisfying axiom H. (For (3), axiom
H is not required.) Then given K > 1 and R > 2K there is Co.4.10 = Cr.4.12(K) > K
such that the following holds.

(1) There exists a constant Ky 412 > 1 depending only on &,N (constants of
axiom H) such that through each point x € X, there is a K, 4.12-qi section over B,, in
the path metric of X,, where v € V(T).

(2) Letv € V(T) and £1,%; be two K-qi sections over B,. Then £ (¥£1,%,) is a
special Cy 4.12(K)-ladder over B,

(3) Let X be a K-qi section over an isometrically embedded subspace By C B. Let
s : a,b] — X be a qi lift of a geodesic segment [a,b] C B} such that Im(s) C ¥. Then
Ng(X) is path connected and if the induced path metric is d' then d'(s(a),s(b)) <
2Kdg(a,b). Moreover, Ny (¥) is K(2K + 1)-qi embedded inside any geodesic sub-

space containing Ng(X) (with respect to their induced path metric).

Remark 2.4.13. In the view of Lemma 2.4.12 (2), for i € N, we denote the ith
iteration by nguz(K) = C2.4.12(C§l.ﬁ)2(1()), where ng.lz(l() = K. In other words,
if Z(X1,%,) is bounded by two Cg;ll)z(l() -qi sections X1, X, over By, then £ (X,X,)

is a special ngt_lz(K )-ladder over B,.

As an application of Lemma 2.4.12 (2) along with the fact that quadrilaterals are

slim in hyperbolic spaces, we have the following. We omit the proof.

Lemma 2.4.14. Given K > 1 there is K> 4.14 = K».4.14(K) such that the following
holds.

Suppose (X,B,T) is a tree of metric bundles satisfying axiom H. Let S be a
subtree of T. Let 9x s = {y: v is a K-qi section over Bs} # 0. Forw € S, b € B,,
let Hy,\, = hull{y(b) : Y € 9k s} C Fp and H=U,,es. pep, Hp,w- (Here quasiconvex
hull is considered in the corresponding fiber.) Then H is K 4.14-metric bundle over

Bs. In particular, if 9.5 = {71, 12} then U,.cs. pep, [11 (D), 12 (b)) forms a special
K5 4.14-ladder over Bg.

Lemma 2.4.15. Given k > 1 there exists ky 4.15 = kp.4.15(k) such that the following
holds.

Suppose (X,B,T) is a tree of metric bundles satisfying axiom H. Letv € T and
Y; be k-qi section over B, for i = 1,2,3. Suppose {xl(ji)v} =XNF,,i=1,2,3and
b,y is a Op-center of geodesic triangle A(xgv),xgg,xl(jv)) C Fpy, b € B,. Then the
map s : B, — X defined by bz, is a k2,4,1§—qi section over B,,.



40 CHAPTER 2. PRELIMINARIES

Proof. Let by,b; € B, such that dg(by,b;) < 1. Since 7y : X — B is 1-Lipschitz,
we only have to prove that dx, (zp, v,2s,,y) is uniformly bounded. Deﬁne a map
Wi Fpyy = Fry by Wiy ) —xlg)vforl— 1,2,3and ¥z € Fy, \ {xy) | :i=1,2,3},
we take y(z) € Fp, ,, such that d(z,y(z)) < co (as in Definition 2.4.2). Note that
dx, (x,y(x)) < 2k+cq for all x € Fp,, ,. Then by [10, Lemma 1.15], y extends to
a g(2k + co)-quasi-isometry from F;, , to Fp, ,, for some function g : R~ — R>y.
Therefore, by [10, Lemma 1.29 (2)1, &/ (¥(zp, ),25,») is bounded by a constant D,
depending only on & (hyperbolicity constant of Fp, ,) and g(2k + o). Hence, we
can take kp 4 15 := D + 2k. O

Lemma 2.4.16. Given K > 1 there exists Kj 4.16 = K2.4.16(K) such that the following
holds.

Suppose (X,B,T) is a tree of metric bundles satisfying axiom H. Let v € T and ¥,
be K-qi section over B, fori=1,2,3,4. Let £} = £ (X1,%,) and 5 = £ (X3,%4)
be special ladders over B, formed by these sections. Let a € B, and P, : X1 N Fup—
2 N F,, be modified projection in the metric Fy, (see Definition 2.2.25). Further,
suppose Py(41 N Fay) = [Payqal F,., such that pq is closest to X3 M Fy,, and qq is that
to X4 N F,, in the metric F, . Moreover, we define sy : B, — 2> and s, : B, — &5
by a — p, and a — q, respectively, where a € B,,

Then sy and s, are K, 4.16-qi sections over B, lying inside 2.

Proof. Suppose b,c € B, such that dg(b,c) < 1. Let £ NF,, = [x;,y;] and £ N
F., = [s;,t;] fori = 1,2, where X1 (b) = x1, Li(c) = 51, X2(b) = y1, X2(c) =11 and
23(b) = x2, X3(c) = 52, Za(b) = y2, La(c) = 2. Suppose Py ([x1,y1]) = [p1,41] and
P.([s1,11]) = [p2, 2] such that py, p, are closest to x;, s, respectively in the metric
F,, and g1, g; are closest to y;, 1> respectively in the metric F;,. Since mx : X — B
is 1-Lipschitz, we only need to show that dx, (p1, p2) and dx,(q1,¢>) are uniformly
bounded. We will show only the former one as a similar proof works for the later
case.

Let Py (x1) = X}, B,(y1) = ¥}, Pe(s1) = s}, P.(t;) = t. Note that x| € [p1,y}] C
[x2,y2] or x| € [Y|,q1] C [x2,y2] and s € [pa,1]] C [s2,t2] or 5} € [t],q2] C [52,12].
Depending on the position on x} and s, we consider the following four cases.

Like in Lemma 2.4.15, we define a map y : F,,, — F., such that y(x;) =
si, W(yi) =t;, i = 1,2 and for all other points x € F}, ,,, we take y/(x) € F,, such that
dx, (x,y(x)) < co (as in Definition 2.4.2). Then dy, (x, y(x)) < 2K +co,Vx € Fp,,
and so by [10, Lemma 1.15], v extends to a g(2K + co)-quasi-isometry from Fy, ,
to F., for some function g : R>9 — R>¢. Thus by Lemma 2.2.22 (2), there is
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k= 2K+D2.2.22(60,g(2[(+ C()), 5()) such that
dx (x},s]) < kand dx(y},1]) <k (24.1)
Case 1: Suppose x| € [p1,y|] and 5| € [p2,t1]. Then by [9, Corollary 1.116],

there is constant C; depending on & such that d/ (p1,x}) < Cy and d’ (pa,s}) < Cy.
Combining with inequation 2.4. 1, we have dx, (p1, p2) < k+2C;.

Cose | Case2 Cose 3

Figure 2.3

Case 2: Suppose x| € [y|,q1] and 5| € [r{,q2]. In this case, y| € [p1,x}] and
t1 € [p2,s}]. Again by [9, Corollary 1.116], d/(p1,y}) < Ci and d/(p,,#]) < Ci.
Combining with inequation 2.4. 1, we get, dx, (p1,p2) < k+2C;.

Case 3: Suppose x| € [p1,y}] and 5| € [t{,q2]. In this case, ] € [p2,s]]. Applying
[9, Corollary 1.116], we get, dx, (p1,x}) < Cj and dyx, (p2,t]) < C;. We define a map
(like above) y : F,,, — F,, such that y(x]) = s}, ¥(y2) =12 and for all other
points x € Fp,,, we take y(x) € F, such that dx, (x, y(x)) < ¢ (as in Definition
24.2). ThenV x € Fp,, dx,(y(x),x) < k+co (see inequation 2.4. 1). Thus by
[10, Lemma 1.15], y extends to a g(k + co)-quasi-isometry from Fy, to F, for
some function g : R>g — R>¢. Applying Morse Lemma 2.2.2, 3 § € [s],12] C
[s2,12] such that dx, (¥}, ) < co+D2.22(80,8(k+co),8(k+co)) = k' (say). Then
dx,(C.17) <dx,(C.,y))+dx, (y],t]) <k+K. Since fibers are ¢-properly embedded in
X,s0d/(§,t]) < ¢(k+Kk'). In particular, d’ (s},£]) < ¢ (k+Kk'). Thus dx, (p1,p2) <
dx,(p1,x}) +dx, (x],s)) +dx, (s,11) +dx, (1], p2) <2C1 +k+ ¢ (k+ k).

Case 4: Lastly, we assume that x| € [y],¢1] and 5| € [p2,{]. But this is same as
Case 3.

Therefore, we can take Kj 4.16 := 2C) +k + ¢ (k+ k") (maximum of all constants

we get in the above four cases). [
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2.5 Complexes of groups

Bass and Serre in [35] introduced graphs of groups to study infinite groups by their
action on simplicial trees. Given a finite graph of groups there is a simplicial tree,
called Bass-Serre tree, on which the fundamental group of the given graph of groups
acts without inversion such that the quotient is the given graph. This theory also says
the converse that if a group acts by cocompact on a simplicial tree without inversion
then it corresponds to a graph of groups whose fundamental group is isomorphic to
the given group and there is an equivariant isomorphism from the Bass-Serre tree
to the given simplicial tree. With this one wants to know whether this theory can
be generalized to the higher dimension. In other words, suppose a group G acts on
a simply connected simplicial complex X without inversion such that the quotient
G\ X = X is a finite simplicial complex. Can we get back X and the action from the
information on X?

This motivates us to study complexes of groups. Gersten and Stallings studied
triangle of groups, i.e., when X is 2-dimensional ([20]). Later, Haefliger [21] studied
higher dimensional case in a more general setting, called small category without loops
(abbreviated scwol) and Corson [22] studied the 2-dimensional case independently.
Now we will briefly recall some definitions and results for complexes of groups. For
a more comprehensive understanding of the concepts presented here and the overall
theory of complexes of groups over scwol, we refer the reader to [23].

Definition 2.5.1 (Small category without loops (scwol)). A small category without
loop is a set 2~ which is the disjoint union of a set V(.2") called the vertex set of .2~
and a set E(.2") called the edge set of 2~ along with two maps

E(Z)—=V(Z)andt:E(Z) = V(Z).

Fora € E(Z"), i(a) and t(a) are called initial vertex and terminal vertex of a
respectively.
Let E(2)(.2") denote the set of pairs (a,b) € E(2") x E(Z) such that i(a) = 1(b).
A third map
ED(2) =S EZ)

is given that associates to each pair (a,b) an edge ab called their composition (and
we say that a, b are composable). These maps are required to satisfy the following

conditions:

1. Forall (a,b) € E®(Z), we have i(ab) = i(b) and 1 (ab) = t(a).
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2. Foralla,b,c € E(Z"),ifi(a) =t(b) and i(b) =t(c), then (ab)c = a(bc). Thus
we can denote it simply abc and this is called associativity.

3. No loops condition: for each a € E(Z"), we have i(a) # t(a).

Example 2.5.2. Suppose Q is a poset. Then we can associate a scwol as follows. The
set of vertices is Q and the edges are pairs (7,0) € Q x Q such that T < o. Define
i((t,0)) := 0, t((t,0)) := 7 and the composition of (7,0)(c,p) = (1,p).

Suppose k € N and E®)(.2") is the set of sequences (ay,as,- - ,a;) such that
(ai,air1) € E@(Z) foralli=1,2,--- k— 1. By convention E(2) =V(%Z).
The dimension of .2" is defined to be the supremum of k > 0 for which E®) (Z)is
non-empty. To each scwol 2", one can associate a polyhedral complex, denoted by
| 2|, called geometric realization of .2". Roughly speaking it is disjoint union of
standard k-simplices for each (a1, as,--- ,a;) € E®)(.2") with a natural relation. One
is referred to [23, Chapter II1.C, 1.3] for details. Note that in general, the intersection
of two simplices in | 2| is not a common face, rather union faces. So | 2| might not
be a simplicial complex in general. A scwol 2 is connected if | 27| is connected
with respect to quotient topology.

Example 2.5.3. Suppose K is a My-polyhedral complex (see [23, Definition 7.37,
1.7]). Now we construct a scwol .2~ from K as follows. The set of vertices of 2 is
the simplices of K (equivalently, the set of barycentres of the cells of K). The edges
of 2 are the 1-simplices of the barycentric subdivision K’ of K: each 1-simplex of
K’ corresponds to a pair of cells T C S; we define i (a) to be the barycentre of S and
t(a) to be that of T.

Definition 2.5.4 (Morphisms of scwols). Suppose 2" and % are two scwols. A
non-degenerate morphism f : 2" — % is a map that sends V(2") to V(%) and
E(Z) to E(%) such that the following hold.

1. Foralla € E(Z), i(f(a)) = f(i(a)) and (f(a)) = f(t(a)).
2. For each (a,b) € EX(Z), f(ab) = f(a)f(b).

3. For each vertex o € V(Z"), the restriction of f to the set of edges with initial

vertex o is a bijection onto the set of edges of ¢ with initial vertex f(0).

An automorphism of a scwol 2" is a morphism f : 2~ — 2 that has an inverse,
ie., thereis f~': 2" — 2 suchthat ff~! = f~!f is the identity on 2.
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Definition 2.5.5 (Group actions on scwols). An action of a group G on a scwol
Z is a homomorphism from G to the automorphism of 2~ such that the following

conditions hold.

1. Foralla € E(Z") and g € G, g.i(a) #t(a).
2. Foralla € E(Z") and g € G, if g.i(a) = i(a) then g.a = a.

Example 2.5.6. Suppose K is a M-simplicial complex. A simplicial action of a
group G on K is said to be without inversion if an element g € G sends a simplex of
K to itself then g fixes that simplex pointwise. Let 2~ be the corresponding scwol
of K as in Example 2.5.3. Then G-action on K induces a natural action on .2". The
action of G on K is without inversion if and only if G acts on 2" as in Definition
2.5.5.

Now we define complexes of groups.

Definition 2.5.7 (Complex of groups). Suppose ¢ is a scwol. A complex of groups
G(%) = (Go,Wa, 8ap) Over % is given by the following data:

1. foreach o € V(%/), a group G called the local group at o,
2. for each a € E(%/), an injective homomorphism y, : Gia) = Gy(a)>

3. for each pair of composable edges (a,b) € E?)(%), a twisting element g, ;, €
Gi(a)»

with the following compatibility conditions:

(@) Ad(gap)Wab = WaWp, where Ad(g, ) is the conjugation by the element
8a,b in Gt(a) and

(b) for each triple (a,b,c) € EG) (%) of composable edges we have the
cocycle condition,

Y (gb,c)ga,bc = 8a,b8ab,c-

Suppose Y is a (Euclidean) simplicial complex and ¢ is the associated scwol (see
Example 2.5.3). Then by a complex of groups over Y, we mean a complex of groups

over % .

Remark 2.5.8. 1. A simple complex of groups over ¢ is a complex of groups

over % such that all the twisting elements g, 5, are trivial.



2.5. COMPLEXES OF GROUPS 45

2. The condition (3), (a) is empty if # is 1-dimensional and the condition (3), ()
is empty if % is 2-dimensional.

3. Let ¢ be 1-dimensional (equivalently, £ (2) (%) is empty). In this case, the
notion of complex of groups over % restrict to the notion of graph of groups
introduced by Bass-Serre ([35]).

For our reference, we define the graph of groups below.

Definition 2.5.9 (Graph of groups ([35])). Let Y be an oriented, connected graph
with vertex set V(Y') and edge set E(Y) ([35]). So we have mapsi: E(Y) — V(Y)
sending an edge to its initial vertex and 7 : E(Y) — V(Y) sending an edge to its

terminal vertex. A graph of groups (¢,Y) over Y consists of following data:

1. For each vertex u € V(Y) there is a group G, and for each edge e € E(Y) there

is a group G,.

2. Lete € E(Y). Then there are monomorphisms i, : Ge — Gj(,) and t, : G, —
G[(e).

The groups G, in (1) are referred to as the vertex groups, and groups G, are called
the edge groups of the graph of groups and the homomorphisms in (2) are called the

incidence homomorphisms.

Definition 2.5.10 (Morphisms of complexes of groups). Let ¥ (%) = (Gs, Wa,8a.p)
and 4(%") = (Go/, Yo, 8 1y) be two complexes of groups over scwols % and &
respectively. Suppose f: % — % is a (possibly degenerate) morphism of scwols. A
morphism ¢ = (¢, ¢ (a)) from 4 (%) to 4(#") over f consists of following data:

1. There is a homomorphism @5 : G — G () of groups for each o € V(¥).

2. There is an element ¢ (a) € G;(f(4)) for each a € E(#/) such that

(a) Ad(9(a)) V(@) Pi(a) = Pi(a) Vas
and for all (a,b) € E?(%),
(b) D(a) (8ab)9(ab) = 0 (@) Ws(a) (9(D))8 f(a). £ (0)

If f is an isomorphism of scwols and ¢ is an isomorphism for every ¢ € V (%),
then ¢ is called an isomorphism.
Let us restate the above Definition 2.5.10 for an important case when %/ is a

single vertex.
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Definition 2.5.11. A morphism ¢ = (¢s,¢(a)) from a complex of groups ¥ (%) =
(Go,Wa,8a) to a group G consists of a homomorphism ¢ : G5 — G for each
o € V(%) and an element ¢ (a) € G for each a € E(%/) such that the following hold.

Br(a) Wa = Ad(9(a)) 9i(a) and @;(,)(8a,p) O (ab) = ¢(a)d (D)

We say ¢ is injective on local groups if ¢s’s are injective for all c € V(%/).

2.5.1 The complex of groups associated to an action

Suppose a group G acts on a scwol 2~ (see Definition 2.5.5) such that quotient
G\ Z =% isascwol. Let p: 2" — % be the natural projection.

For each 6 € V(#'), we choose 6 € V(Z") such that p(6) = 6. For each
a € E(%') with i(a) = o, by condition (2) of Definition 2.5.5, there is an unique
a€ E(Z ) suchthati(d) = 6 and p(a) = a. Note that if T =1(a), in general, T #1(a).
Then there is i, € G such that h,.t(a) = 7. Foreach 6 € V (%), let G be the isotropy
subgroup of &. Then for all a € E(%), we define a map Y, : Gj(,) — Gy(q) by

Wa(g) = haghcjl-

Again condition (2) of Definition 2.5.5 tells that v, is a well-defined homomorphism.
For composable edges (a,b) € E?)(%), we define

Sab = hahph ).

It is not hard to check that g, € G;(,)-

The complex of groups over % associated to the action of G on 2 (along with

the above choices) is

g(g) = (Gda nga,b)'

One can easily check that conditions (3) (@) and (3) (b) of Definition 2.5.7 are
satisfied.

We also note that there is a natural homomorphism associated to this action
0:9(%)—G,

¢ = (¢5,9(a)), where s : G5 — G is the natural inclusion and ¢ (a) = h,. This is

a morphism which is injective on local groups.
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Again another choices of vertices & of o € V(%) will give a complex of groups
which is isomorphic to the previous one (see [23], [21] for details).

Definition 2.5.12 (Developability). A complex of groups ¢ (%) is said to be devel-
opable if it is isomorphic to a complex of groups associated to an action (in the sense
above) of a group G on a scwol 2" with G\ 2" =%

Theorem 2.5.13. ([23, Theorem 2.13, III.C (The Basic Construction)]) Suppose
G(¥Y) = (Go, Wa,8ap) is a complex of groups over a scwol %'.

1. Suppose G is a group. Canonically associated to each morphism ¢ : 4 (%) —
G there is an action of G on a scwol D(¥ ,9) with quotient %. (D(¥ ,¢)
is called the development of % with respect to ¢.) If ¢ is injective on local
groups then 9 (%) is the complex of groups associated to the action of G on
D(%, ) (with respect to canonical choices) and 9 (%) — G is the associated

morphism.

2. If 9(%) is a complex of groups associated to an action of G on a scwol
2 (with respect to some choices) and if ¢ : 9(%) — G is the associated
morphism, then there is a G-equivariant isomorphism D(% | ¢) — 2~ which
projects to the identity on %/'.

We get an immediate corollary of the basic construction as follows. This is an
algebraic condition for a complex of groups to be developable. One notes that not all
complex of groups is developable (see [23, Chapter II.12, Examples 12.17, (5) and
(6)D).

Corollary 2.5.14. ([23, Corollary 2.15]) A complex of groups (%) is developable
if and only if there exists a morphism ¢ from (%) to some group G that is injective
on local groups.

2.5.2 The fundamental group of a complex of groups

Suppose 4 (%) = (Gg, Wa,8a) is a complex of groups over a connected scwol %/
Let |%/| be the geometric realization of %" and T be a maximal tree in the 1-skeleton
12|() of |%|. Then ‘the’ fundamental group of (%) is a group, denoted by
m (¥ (%), T) and is generated by

|| Gs| |EF(#)

ocV(¥%)
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subject to the relations

the relations in the groups G4
(a")"=a and (a7)” =a"
(ab)* =b*at gy, V (a,b) € EX (%)
Va(g) =a ga’, vV g € Gy
lat=1,VaeT

Theorem 2.5.15. ([23, Proposition 3.9, II1.C]) A complex of groups 4 (%) over a
connected scwol % is developable if and only if each of the natural homomorphisms
Go — m (9 (¥),T) is injective.

Now we will talk about the universal covering of a developable complex of

groups over a simplicial complex Y (see Definition 2.5.7).

Definition 2.5.16 (The Universal covering of a developable complex of groups).
Suppose ¥ (%) is a developable complex of groups over a connected simplicial
complex Y, where % is the corresponding scwol of Y. Suppose T is a maximal tree in
|2'|(1) (equivalently, in the first barycentric subdivision of ¥) and G = 711 (4 (%), T)
is the fundamental group of ¢4 (%/). Let T C o C Y correspond to an edge a. Then
we assume that it : (%) — G is the natural morphism mapping each element of the
local group G to the corresponding generator of G and each edge a to the generator
a~ = ir(a) (see Proposition 2.5.15). Let

B:=|]|(Gx0o)/~.

oCY

where for g € G, ¢’ € G5, x € 6 and 6 C Y, we have (g,x) ~ (gir(g’),x); also if
T C o correspond to the edge a and i¢ s : T — © is the natural inclusion then for
g€ G, yet, wehave (g,ir(y)) ~ (gir(a),y).

There is a natural left multiplication action of G on the first factor of B. Here B
is the universal cover of ¥ (%/).

We are interested mostly in combination theorem for complexes of groups. More
precisely, we prove in Chapter 5 (see Section 5.6) that under certain restrictions the
fundamental group of a complex of groups is hyperbolic. So our main object of
study the fundamental group 71 (¢ (%), T) and the natural morphism iy : 4 (%) —
m(¥(%),T) rather than the arbitrary morphism which is injective on local groups
(see Theorem 2.5.13). We will end this subsection by stating the following two
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theorems and we will recap some of the significant points regarding complexes of
groups via algebraic topology in the application in Section 5.6.

Theorem 2.5.17. ([23, Theorem 3.13, II1.C]) The development B = D(% ,ir) above

is connected and simply connected simplicial complex.

Theorem 2.5.18. ([23, Corollary 3.15, III.C]) Suppose G is a group acting on a
simply connected scwol 2~ with quotient % = G\ Z". Also, we assume that 4 (%)
is the complex of groups associated to this action (with respect to some choices). Let
T be a maximal tree in the 1-skeleton of the geometric realization of %. Then G is

isomorphic to w1 (4(%),T) and X is equivariantly isomorphic to D(% ,ir).






Chapter 3

Cannon-Thurston maps for
morphisms of trees of hyperbolic
spaces

This paper makes substantial use of the results and proof techniques of the book [9].
In this books three general constructions are used repeatedly, namely ‘flow spaces’,
‘ladders’ and ‘boundary flow’. Therefore, we shall briefly recall them here for our

reference.

3.1 Flow spaces and their properties

Definition 3.1.1. (Flow spaces) Suppose u € V(T) and A C X, is a k-quasiconvex
subset for some k > 1. Then by Lemma 2.3.4 and Lemma 2.2.22, A is k'-quasiconvex
in Xy := 1 ([u,v]) where k' = K222(8},Ly,k). Suppose R > R} 5 15(8),k')(>
R»2.13(8),A))) is fixed. Then the flow space determined by A, with constants k,R,
is denoted by F1X (A) and is defined inductively as follows: .F1X (A) consists of a
collection {A, : v € V(S)} where

e S is a subtree of T containing u,

e A,=Aand

e cach A,, v e V(S), v#u, is a 20y-quasiconvex subset of X,

The induction is on distance from uin T, and S and the sets A,’s are simultane-
ously constructed in the process.

Base of induction: For each v € V(T ) which is connected by an edge e to u we
check if Al, :== Ng(A) N X, # 0 (neighborhood is considered in X,,) then we include

the segment [u,v] in S and we let A, = hull(A))) where hull is considered in X,;

51
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otherwise, we do not include [u,v] in S. Thus by the first step of induction we get a
subtree of T contained in Ny (u).

Induction step: Suppose v € V(S) with d(u,v) = n. Then for each w € V(T)
which is connected to v by an edge €', say, such that dr(u,w) =n+ 1 we check
if Al, .= Nr(A) NX,, # 0 (neighborhood is considered in X,,,), then we include
the segment [v,w] in S and define A,, = hull(A},) where hull is considered in X,,;

otherwise, we do not include [v,w] in S.

Let us see three fundamental properties of .7 1% (A) as follows. Suppose [v,w] is
an edge in T such that dr (u,v) < dr(u,w).

Property 1: Suppose v € S and w ¢ S. Then by construction Ng(A,) NX,, = 0 (in
X,y-metric). In particular, A, and X,, are R; 7 13(0), A()-separated in X,,,. Again A,
and X,, are Aj-quasiconvex in X,,, (see Lemma 2.3.4 (2)). Then by Lemma 2.2.13,
the pair (A, Xy) is C := D5 13(8), Aj)-cobounded in X,,,.

Property 2: Suppose v,w € S. Then A,, C Nk (A,) for some uniform constant K
depending on k, R, where the neighborhood is considered in X,,,,.

Proof Let x € A,,. Then 3 x1,x; € Al, and x € [x,x2]x,. Let y;,y2 € A, such
that dx,, (xi,yi) <R, i = 1,2. Note that if v = u, then by Lemma 2.3.4 and Lemma
2222, A, = A is Kr22(8),Lj, k)-quasiconvex in X, and if v # u then A, is
K5 222(84, Liy, 280 )-quasiconvex in X,,,. Let

K' = max{K3 2.2 (8y, Lo, k), K2.2.22(8, Ly, 280) }-

Note that A,, is also K’-quasiconvex in X,,,. Then by slimness of quadrilateral in X,,,
with vertices x1,x2,y; and y,, there is x’ € A, such that dx,, (x,x") < D322(6), Ly, Ly) +
K'+R+28) =: K (say).

Property 3: Suppose v,w € S. Then Hdy,, (Px,,x,(Av),Aw) < € for some uni-
form constant € depending on k, R.

Proof: Property (2) says that A,, C Nyg/(Px,, x, (Ay)) (in X,,,-metric). Again by
construction Py, x,(A,) C A,. So Hdy,, (P, x,(A)),Ay) <2K' =:¢.

As a consequence of Proposition 2.3.8 we have the following

Proposition 3.1.2. Consider the map p as in Remark 2.3.7 for the subset Z1X(A).
Then there is a constant L3 1 3(k) depending on k such that p can be extended to a
Ls 1 2(k)-coarsely Lipschitz retraction X — F1X(A).
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3.1.1 Ladders

Ladder is a special type of flow space whose fibers are geodesic segments in the
respective fibers. Construction of a ladder given any geodesic segment is similar to
that of flow space. For a geodesic segment «, let us denote the end points of & by
o and o

Definition 3.1.3 (Ladder). Suppose u € V(T) and « is a geodesic segment in X,,.
Since a is &-quasiconvex, we fix R = R»2.13(8;, &). Now the ladder determined
by a is denoted by £ (o) and is defined inductively as follows: £X(a) consists of
a collection {a, : v € V(S)} where

e S is a subtree of T containing u,

o0y, =,

e cach a,, v € V(S), v # u is a geodesic segment of X,

The induction is on distance from « in 7, and S and @,’s are simultaneously
constructed in the process.

Base of induction: For each v € V(T') which is connected by an edge to u we
check if Ng(a) N X, # 0 (neighborhood is considered in X,,) then we let o, :=
[Px,.x,(07),Px, x,(0")]x, and we include the segment [u,v] in S; otherwise, we do
not include [u,v] in S. Thus by the first step of induction we get a subtree of T
contained in Nj (u).

Induction step: Suppose v € V(S) with dr(u,v) = n. Then for each w € V(T)
which is connected to v by an edge such that dr (u,w) = n+ 1, we check if Ng(c,) N
X,y # 0 (neighborhood is considered in Xj,,), then we include the edge [v,w] in S and
define oy, := [Py, x, (@, ), Px,.x, (0 )]x,; otherwise, we do not include [v,w] in S.

We have the following three fundamental properties for ladder as we had for flow
space. The proof is similar to that of flow space. Suppose [v,w] is an edge in T such
that dr (u,v) < dr(u,w).

Property 1: Suppose v € V(S) and w ¢ V(S). Then the pair (,,X,,) is C-
cobounded in X,,, where C = D, 5 13(8{, d).

Property 2: Let v,w € V(S). Then o, C Nk(c,) for some uniform constant K.

Property 3: Suppose v,w € V(S). Then Hdy,, (Px,, x,(0), ) < € for some
uniform constant €.

Hence as a consequence of Proposition 2.3.8 we have the following.

Proposition 3.1.4. Consider the map p as in Remark 2.3.7 for the subset £X (o).
Then there is a uniform constant L3 14 such that p can be extended to a L3 | 4-

coarsely Lipschitz retraction X — £X(at).
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In a similar way one can define ladder determined by a geodesic ray or line.
Since we will not directly use ladder determined by a geodesic line in this thesis, so

we will define the same only for geodesic ray as follows.

Definition 3.1.5 (Semi-infinite ladder). Suppose « is a geodesic ray in X,, for some
u € V(T). Construction is same as ladder with following changes.

Suppose v € V(T) such that dy(u,v) = 1. If Ng(a) N X, # 0 and is of finite
diameter in X,,, then take a point, say, oz:r € Ng(a) N X, which is farthest from
Px, x,(a(0)). Now we set &, := [Py, x,((0)), & |x,. If Ng(@) N X, # 0 and is of
infinite diameter in X,,, then it is not hard to see that ¢t(e0) € A(X,,). Then we set
@, to be a geodesic ray in X, joining Py, x, (0¢(0)) and 98, (d9,,' (at())). Let us
denote the semi-infinite ladder determined by & by £X (a, ot(e0)). We put a(s) to

emphasize that o is a geodesic ray.

Remark 3.1.6. Conditions (1) — (4) of Proposition 2.3.8 are satisfied by the subset

£X (o, ot(0)) for some uniform constants.

3.2 Boundary of X

In general it is difficult to describe the geodesic rays in X. However, one of the main
result of this subsection is the following theorem that gives a rough understanding of
the points of dX.

Theorem 3.2.1. Suppose & € dX. Then there is a sequence {x,} in X such that
limff _eXn = & along with one of the following additional properties:

(1) {m(x,)} is a constant sequence or

(2) there is a geodesic ray a in T such that 7(x,) € o foralln € N and im!_,_ 7t(x,) =
0/(o).

We postpone the proof of the theorem to collect a couple of facts needed for the

proof.

Lemma 3.2.2. Suppose {x,} is an unbounded sequence in X such that limX ., _x, €
dX. Suppose S is the convex hull in T of the set {m(x,) : n € N} and that there
is a vertex of infinite degree in S. Suppose u is any such vertex and {x, } is any
subsequence of {x,} such that [u, 7t(x,,)|7 N [u, T(xn,)|7 = {u} for k # 1. Let ey be
the edge on [u, 7t(x,, )7 incident on u. Then for all k € N, there is X} € X,,,, such that

. ¢ — 1imX /
limy, ., x, = lim;,_, . x,,.
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Moreover, suppose that the subsequence {x,, } is chosen (see Remark 3.2.3) in
such a way that the sets X, converges to a point of dX,, and suppose x;(’ is an

arbitrary point of X,,, for all k € N. Then lim, x, = limX,_ x//.

Remark 3.2.3. We note that in the case (2) of Lemma 3.2.2, {X,,,, : k € N} is an
infinite, locally finite collection (see Lemma 2.3.3) of uniformly quasiconvex subsets
of X,. Hence, by Lemma 2.2.37 we can always extract a subsequence of {X,,,}

satisfying the cobdition of the second part of the lemma.

Proof of Lemma 3.2.2. Fix x € X,,. Then for all k € N, [x,x,,|x N X, # 0. Let x},
be any point of [x,x,, |x N X,,. Since {X,,,} is a locally finite collection of subsets
in X,,, by Lemma 2.2.36, dx,, (x,Xe,u) — o as k — oo. It follows that dx, (x,x) — oo

as k — oo. Then by Lemma 2.2.33, we have lim

X = lmd .

Moreover if X, , — & € dX,, as k — oo then for any choices of xZ € Xeou» k€N,
we have limy“, . x,, = lim,*, . x/. Since the inclusion X,, — X admits the CT map we
have limX_, %/ = limX_, _x/, = limX_, _x,. O

Proof of Theorem 3.2.1: Let {x’,} be any sequence in X such that lim* , _x, = &.
Let S be the convex hull in T of the set {7(x},) : n € N}. There are two cases to
consider.

Case 1: Suppose S is a locally finite tree, i.e. all its vertices are of finite degree.
Note that if § is bounded then there is a subsequence {x;, } of {x}} such thatx, € X,
for some u € T. Now suppose S is unbounded. Then, by Lemma 2.2.29, there is
a geodesic ray o : [0,00) — S. Let u = o(0) and let {x, } be subsequence of {x,}
such that limy ., 7(x;, ) = a(e). Fix x € X,,. Let vy be the nearest point projection
of 7(x;, ) on &. We note that [x,x,, |x N X,, # 0 for all k € N. Let x; € [x,x,, ]x N Xy,
for all k € N. Then by Lemma 2.2.33 lim* ,__ x/, = limy_,., Xy, = 1My oo Xt

Case 2: Suppose § has a vertex of infinite degree. Then we are done by Lemma
3.2.2.

In the rest of the subsection we prove a few other related results which come to

use in the later part of the paper.

Lemma 3.2.4. Suppose {x,} is an unbounded sequence in X such that limX_,_ x,
exists. Let u, = m(xy,) for all n € N and suppose dy(u,u,) — o as n — oo. Let e, be
the edge on [u,u,) incident on u, for all n € N and let x}, be a nearest point projection
of X, on Xy, in Xy, Then limX_,_x/ =1imX__ x,,.

Proof. We will show that there are uniformly quasiconvex subsets, say, Z, of X
containing both x;, and x/, such that for a fixed x € X, dx(x,Z,) — o as n — oo,
Then by Lemma 2.2.23 (1), there is uniform D such that Np(Z,) is uniformly qi
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embedded in X. So geodesics in Np(Z,) are uniform quasigeodesic in X. Note that
dx (x,Np(Z,)) — oo as n — oo, Hence by stability of quasigeodesic (Lemma 2.2.2),

dx (x, [Xn,x]x) — o0 as n — oo. Therefore, by Lemma 2.2.32, lim* . x,, =1lim* . _x/..

Finding Z,: Let v, € [u,uy] such that dr(v,,u,) = 1. Since X,,,, is uniformly

X,

enlin

quasiconvex in X, , by Lemma 2.2.19 (1), diam{ Py,

Un

([xn,x]x,,) } is uniformly
bounded. Then it follows that the pair (X,,,, [x,,,]x,, ) is uniformly cobounded in
Xy,u,- Let T, be the connected component of 7'\ {v,} containing u,. Let Z, =
£X (o) N X7,. Consider the map p as in Remark 2.3.7 for the subset Z,. Note that Z,
satisfies Property (1), (2), (3) (as in Definition 3.1.3) for uniform constants. Then it
follows from Proposition 2.3.8 (and in addition Lemma 2.1.2) that p can be extended
to a uniformly coarsely Lipschitz retraction X — Z,. Since X is hyperbolic, Z, is

uniformly quasiconvex in X (see Lemma 2.2.12). [

Given & € dX, by Theorem 3.2.1 there is a sequence {x,} such that either
{7(x,)} is constant or lim, e 7(x,) € AT and limX_,_ x, = &. However, these two
possibilities are not mutually exclusive, i.e. we may have two different sequences
{x,} and {x} such that limX . _x, = limX ,_x/ = & where {7(x,)} is constant but
{m(x],)} converges to a point of dT. The following lemma records the implication

of such an instance.

Lemma 3.2.5. Suppose {x,}, {x,} are two unbounded sequences in X such that

Xy = lim2_, . x, € X, and lim!_,  7w(x,) = & € IT. Suppose that the nearest

lim% .,
point projection of each m(x))) on the geodesic ray [u,&) is u for some u € V(T).

Then F1%(X,) and F1%(X,) are not cobounded for any vertex v € (u,&).

Proof. Suppose v € [u, &) is such that 1% (X,,)) and .Z X (X,) are cobounded. Since
X is hyperbolic metric space, by Lemma 3.1.2 and Lemma 2.2.12, .#1%(X,) and
Z1X(X,) are uniformly quasiconvex in X. Let v, be the nearest point projection of
7(x,) on [u,&). Since lim! . 7(x,) = &, there is N € N such that for v, € [v, &) for
all n > N, n € N. Therefore, any geodesic segment [x;l,xn] x has a subsegment, say,
a,, joining a point in X,, to a point in X,. Since .Z1X(X,,), .Z#1%(X,) are cobounded,
by Lemma 2.2.16 there is a point of .# X (X,,) uniformly close to @, for all n > N.
In particular, for any x € X, dx (x, [x},,x,]x) is bounded. This is a contradiction, by

Lemma 2.2.32 (2), as limX ,__x, = lim ,__x/, € dX. Hence we are done. ]
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3.2.1 Boundary flow

Definition 3.2.6. [36, Definition 4.3] (1) Suppose u,v € V(T) are connected by an
edge e. If , € 90X, is in the iamge of V¢, : IX, — 9X,, then 9 Ve, ((d0,) "1 (E))) =
&,, say, is called the boundary flow of &, to X,, (or more precisely dX,).

(2) Suppose u,v € V(T) are any two vertices and ug = u,uy,--- ,u, = v are the
consecutive vertices on [u,v]. Suppose &) € dX, and &, € dX,. We say that &, is the
boundary flow of & if there are & € dX,,, 1 <i <n—1 such that § is the boundary
flow of §;_; forall 1 <i<n.

In this case we say that &y can be flowed to X,. Clearly boundary flow of a point
of dX, to dX, is unique if it exists.

Lemma 3.2.7. [36, Lemma 4.4] Suppose u,v € V(T) are any two vertices. Suppose
&, € 90X, and &, € dX,. Suppose oy, C X, and a,, C X, are geodesic rays in these
vertex spaces such that oy, (o0) = &, and a,(o0) = &,. If &, is the boundary flow of &,
then Hdx (0o, o) < oo.

Proposition 3.2.8. [37, Proposition 2.3] Suppose &, € dX,, and &, € dX, are mapped
to the same point of dX under the CT maps dix x : dX, — dX and dix,x : X, — 9X.
Then there is a vertex w € [u,v] such that both &,,&, can be boundary flowed to X,,,.

Definition 3.2.9 (Conical limit). Suppose Z is a subset of a hyperbolic geodesic
metric space W. A point p € W is said to be a conical limit point of Z if some (any)
(quasi) geodesic ray, say, o : [0,00) — Z such that ¢¢(eo) = p, there is R > 0 and a
sequence {z,} C Ng(a)NZ such that lim!",__z, = p € IW.

Remark 3.2.10. Suppose 7 : X — T is the tree of hyperbolic spaces under considera-
tion. For any & € dX, either it is a conical limit point of some vertex space or it is

not a conical limit point of any vertex space.

Lemma 3.2.11. Suppose a : [0,00) — X is a geodesic ray such that a(eo) is not a
conical limit point of any vertex space of X. Then w(a[0,0)) is a infinite locally
finite subtree in T and hence contains a geodesic ray in T. Moreover, this ray is

unique.

Proof. As we will see in the proof that this is a result for trees of hyperbolic metric
spaces under consideration. So we proof only for 7 : X — T. On contrary, suppose
Ju € m(af0,00)) such that u is a vertex of infinite degree in ([0, 0)). Then there
is a subsequence {r,} C N such that o (r,) € X,, for all n € N. Since X is hyperbolic,
0/(e0) is a conical limit point of X, — which contradicts to our assumption. Hence
m(a[0,00)) is a locally finite subtree in 7.
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Again if ([0, o)) is of finite diameter then we have a vertex u € V(T) with the
same conclusion above.

By Lemma 2.2.29, we have dm(a[0,0)) # 0. Now we show that the geodesic
ray in w(([0,00)) is unique. If it is not and since o is a geodesic ray, then we have
a vertex u € V(T') with the same conclusion as in first paragraph of the proof.

Therefore, we are done. L]

Lemma 3.2.12. Suppose B is a geodesic ray in X,, and o is that in X such that
o (e0) is not a conical limit point of any vertex space. Further, we assume that
limX ., o(n) = imX,_ B(n). Then B(e) has boundary flow in X, for all vertex

vE [u,&) where & € dn().

Proof. Note that by Lemma 3.2.11, m(a) contains an unique ray, say, [u,§) for
some & € dT. For the sake of contradiction, let v,w € [u,&) be a vertices such
that dr(v,w) = 1 and B(e0) flows in X, but does not flow in X,,. We will find a
k-quasiconvex subset, say, Z in X containing 8 such that 7(Z) N [u,&) = [u, w] for
some w € V(T). Then we will be done as follows. Since ¢ (o) is not a conical
limit point of any vertex space, we take r € R such that 7(|(...)) N [u, &) = [w,§)
and dr(w,m(o(r))) > R2.13(6,k) = R where X is 8-hyperbolic. In particular,
dx(Z,t|[s.)) > R, and so by Lemma 2.2.13, the pair (Z, t||..)) is D2.2.13(8,k)-
cobounded in X. Then by Lemma 2.2.16, for all large n € N, every geodesic
joining B(n) and o/(n) passes through a fixed point in X. This is a contradiction to
limX ., o(n) =limX,_ B(n) (see Lemma 2.2.32 (2)).

Finding Z: Note that £X (B, B()) NX, is a geodesic ray in X, but £X (8, B(e))N
X, is a finite geodesic segment in X,,. Let w' € [w,&) such that dy(w,w') = 1.
Suppose T; is the connected component of T\ {w} containing w'. Set Z = £X(B) N
Xt,. Consider the map p as in Remark 2.3.7 for the subset Z. Since £X (8, B(=0)) NX,,
is a finite geodesic segments, conditions (1) — (4) of Proposition 2.3.8 are satisfied
by the subset Z (see also Remark 3.1.6) for some uniform constants. Hence by
Proposition 2.3.8 that p can be extended to uniformly coarsely Lipschitz retraction
X — Z. Since X is hyperbolic, Z is a uniformly quasiconvex in X (see Lemma
2.2.12). 0

3.3 Morphisms of trees of spaces

Definition 3.3.1. (I) Suppose 71 : X1 — T and m, : X, — T; are two trees of metric
spaces. A morphism of trees of spaces from X to X, for us, consists of the following
data:
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1. An isometric embedding 1 : Ty — 7>.

2. A coarsely Lipschitz map f : X; — X> such that diagram below commutes.

X1 L>X2

i A |

T; % T

(Il) A morphism (f,1) : (X1,T1) — (X2, T>) between trees of metric spaces will

be called an isomorphism if the following hold:
1. 1 is an isometry,
2. f is a quasiisometry,
3. there is a morphism (g,17 ') : (X2, T3) — (X1, T1) where g is a quasiisometry,
4. f,g are coarse invereses to each other.

A trivial way to construct examples of morphisms is to take restrictions as defined

below.

Example 3.3.2. Suppose w: X — T is a tree of space and S C T is a subtree. Let
X :=n~1(S). Let m|x, : Xs — S be the restriction of £ : X — T to Xs. We note that
(1) in this case Xj is given the induced length metric from X whence the inclusion
Xs — X is Lipschitz; and (2) the inclusions S — T, Xg — X give a morphism of trees

of spaces.

Although the results sought after this section can be formulated and proved for
more general morphisms of trees of spaces, we will deal with only a very special
type of morphisms as described below. This will include all the examples coming
from graphs of groups.

3.3.1 Induced trees of spaces

Suppose 7 : X — T is a tree of metric spaces, S is a subtree of 7 and Y C Xg such
that the restriction of 7 to Y gives a tree of metric spaces; or equivalently suppose
that there is a tree of metric space 7; : Y — S and a morphism (f,1) : (¥,S) — (X,T)
where f and t are inclusion maps. Then we will say that Y has an induced tree
of metric space structure from X or simply that Y is an induced tree metric space
(obtained from X).
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For the rest of this section and the next section we fix the following notation and
convention.

Convention 3.3.3. 1. m: X — T is a tree of hyperbolic metric spaces with pa-
rameters @, 0y, Lo as defined in Definition 2.3.1.

2. SC T isasubtree and 7y : Y — S is a tree of hyperbolic metric spaces with
parameters @, O, Lo.

3. Y C X, my is the restriction of 7 on Y, and the inclusion Y — X is ¢-proper
embedding.

4. The inclusions Y, — X,, v € V(S) admit the CT-map.
5. The inclusions Y, — X,, e € E(S), are L-qi embeddings for a constant L > 1.

6. Both X and Y are proper hyperbolic geodesic metric spaces.

We shall refer to my : Y — S where Y C X as above as an induced (sub)tree of
spaces satisfying property 7% .

Remark 3.3.4. (1) Under the above hypotheses in Convention 3.3.3 hyperbolicity of
Y is ensured. Indeed, since X is hyperbolic, w : X — T satisfies Bestvina-Feighn’s
flaring condition (see [6]) which implies the same for Y as Y — X is proper embed-
ding. Basically the proof of [10, Proposition 5.8] works in this case too. Hence, by
[6], Y is hyperbolic.

(2) Since Y — X is proper embedding, then by Lemma 2.3.2, for all v € V(S5),
the inclusions Y, — X, are uniformly properly embedded.

Lemma 3.3.5. Suppose {y,},{y,} are two unbounded sequences of points in Y, such
that limX, _y,, lim, _y/ € 9Y,. Iflim! .y, =1lim! .y € dY thenlim’ ,_y, =
limX .y, € 9X.

Proof. Since the CT maps for the inclusions Y, — X, and X,, — X exist, by the
functoriality of CT-maps (see Lemma 2.2.39), we see that limX_, _y, and limX_,_y/,
exist; and they are equal if lim)*, v, = lim*, _y". Suppose limX, _y, # lim%,_y!.
Let o be a geodesic line in ¥, such that a/(—o0) = limX*, v, and (o) = lim¥, /.
Then by [9, Proposition 8.54 (1)], there is a geodesic ray [u,£) in T such that both
o(—o0) and (o) flow in ¥, for all vertex v € [u,&). Since edge spaces are uniformly
qi embedded in corresponding edge spaces of X, so both a(—e) and a(e0) have
boundary flow in X, for all vertex v € [u, &) and they are not equal in dX,. Therefore,
« is a uniform quasi-geodesic in both X, and Y,,. Fix y € ¥;,. Then by the description

of uniform quasi-geodesic given in [9, Proposition 8.49] joining a(n) and a(—n),
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we can conclude the following. If %,’s are uniform quasi-geodesic joining ot (—n)
and a(n) in Y and ¥,’s are that in X, then Hdx(}y,7,) is uniformly bounded for
all n € N. Since lim!_, a(n) = lim!_,__ o(—n), then by stability of quasi-geodesic,
dy (y,Yn) — o0 as n — oo (see Lemma 2.2.32 (2)). Since Y is properly embedded in X,
dx(y,7.) — o as n — oo. Thus, by the same lemma, limX . a(n) = lim* ,_ o/ (n).
Since Y, — X, and X, — X admit the CT-maps (see [8] for later one) and by the
functoriality property of CT-map (see Lemma 2.2.39), we are through. [
A generalization of Lemma 3.3.5 is the following.

Lemma 3.3.6. Suppose {y,} is an unbounded sequence in'Y such that both limX_ _ y,,
and lim? .y, exist. Let Ty be the convex hull of {n(y,) :n € N} in T. Suppose,
moreover, one of the following holds:

(1) {m(yn)} is bounded.

(2) There is a vertex of infinite degree in Tj.

Then there is a point u € V(Ty) and a sequence {y,} in Y, such that lim!_ _y =

lim? ,_y, and lim* ,_ y, = lim*,_y’.

Proof. We note that in case {7(y,)} is bounded, either there is constant subsequence
of {m(x,} or T} has a vertex of infinite degree. Hence we may divide the proof into
the following two cases:

Case 1. Suppose there is a constant subsequence {7(y,, )} of {m(y,)}. Let
u = 7(yn,) for all k € N. Then y,, €Y, forall k € N. Let y; = y,,, k € N. We note
that limX_, .y, = lim¥ ,_y, and lim?_, _y/, = lim)_, _ y,.

Case 2. Suppose T; has a vertex u of infinite degree. Suppose {y,, } is a
subsequence of {y,} such that [u,y, |7 N [u,y, )7 = {u} for all k # [. For all k € N,
let e be the edge on [u,y, |r which is incident on u. By passing to a further
subsequence we may assume that the sequence of quasiconvex sets Y., , converges
to a point of dY, and the sequence of quasiconvex sets {X,,, } converges to a point
of dX, as k — o (see Remark 3.2.3). Therefore, if we take yfc € Yoou C Xgpy for

all k € N then, by the last part of Lemma 3.2.2, we get lim* ,_y/, =lim}__ v, and

Y
n—oo

lim?_, ), =lm)__ y,. O
Proposition 3.3.7. Suppose {y,},{zn} are two unbounded sequences inY converging
to the same point of dY which satisfy the property (1) or (2) of Lemma 3.3.6. If

lim* . y,, imX .z, exist then they are equal.

Proof. Consider the sequence {y,}. By Lemma 3.3.6 we can find a vertex u €

V(T) and a sequence {y,} in ¥, such that lim? ,_y, =1lim! ,_y and lim*_y, =

X

lim;,_,.,y),. Similarly, we can find a vertex v € V(T') and a sequence {z,} in ¥,
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such that lim?_,_z, = lim!_, 7, and limX ,_z, = limX_,_z,. Passing to further

subsequences, if necessary, we may assume that lim!*, _y/ and lim!",

oo 2y EXISL.
Now, it is enough to show that lim* .y, = limX . z/. Let o, and o, be

two geodesic rays in Y, and Y, respectively such that lim,};“_>oo v, = () and

lim?,_ 7/ = o,(0). Since the inclusion map ¥, — ¥ admits the CT map we have
lim! .y, =lim! o, (n) and lim?_,_ 7, = lim!__ o,(n). Similarly, since the

inclusion maps Y, — X, and X, — X admit the CT maps we have lim* ,_y/ =
lim* . a,(n) and limX .z, = limX . _a,(n). Hence, we are reduced to show-
ing that limX ,_ oy, (n) = lim , &, (n). Note that lim?_,_ o, (n) = lim!_, _ &, (n)
Y wYh=1lim! 7. This means that diy y (o, () = diy,y (a(c)). So by
Proposition 3.2.8 there is a vertex w € [u,v] such that both o, (e°) and o, (e) bound-

ary flow to dY,,. Let B and B’ be geodesic rays in Y,, such that the boundary flows

as lim

of oy,(e0) and o, (o) in JY,, are respectively f(co) and '(c0). Then by Lemma
3.2.7 we have Hdy (04, ) < oo, Hdy (o, 8") < oo. This implies Hdx (0, ) < o,
and Hdx(a,, ") < oo respectively since the inclusion ¥ — X is Lipschitz. How-
ever, Hdy (o, ) < o implies lim! . a,(n) = lim!__ B(n). Similarly we have
lim? ., o, (n) = lim?_,_ B'(n), limX_,_ a,(n) = lim*,_ B(n) and limX ,_ o, (n) =
lim* ,__ B/(n). Thus it is enough to show that lim* ,__ B(n) = limX ,__ B’(n). Note
that lim?_,__ B(n) =lim!_,__ B/(n) as we had lim?_,_ o, (n) = lim! ,_ a,(n). There-
fore, we can apply Lemma 3.3.5 to the sequences {(n)} and {f’(n)} to finish the
proof. 0

3.3.2 Induced trees of spaces with projection hypothesis

Projection hypothesis: There is a constant Ry > 0 such that for all v € V(S) and

e € E(S) where e is incident on v, and for all x € ¥, we have

dx, (Px,x.,(x), Py, (x)) < Ro.

Remark 3.3.8. (1) For results proved in Section 3.4 we shall explicitly mention where
the projection hypothesis is needed. mention it all the time.
(2) Although the projection hypothesis may seem unnatural it holds in the fol-

lowing situations:

o If for all v € V(S), ¥, is uniformly qi embedded (or equivalently uniformly
quasiconvex) in X, then the projection hypothesis holds See Lemma 2.2.24.

* Suppose for all e € E(S), the qi embeddings Y, — X, are all uniform quasi-
isometries and there is a proper map ¢ : R>o — Rx>¢ such that for all v € V (S),
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the inclusions Y, — X, satisfy uniform Mitra’s criterion with the function
¢ (see Definition 2.2.41). Then the projection hypothesis holds. Indeed, by
Lemma 2.2.44, it is enough to show that for all v € V(S) the inclusions ¥, — X,
are uniformly properly embedded. This fact is actually Remark 3.3.4 (2).

3.4 Proof of Theorem 1.1.6

Note that Xg is hyperbolic by [6] where X5 := 7£~!(S). By [9, Theorem 8.11], the
CT map exists for the inclusion i : Xg < X. Therefore, it is enough to show that the
CT map exists for the inclusion i : ¥ — X where both X and Y have same base T'.

We are going to assume this for the rest of the proof.

Convention 3.4.1. For the rest of the section we shall assume that the trees of spaces
X and Y satisfy the following:

(1) Properties mentioned in Convention 3.3.3.

(2) The projection hypothesis (see Subsection 3.3.2).

3)S=T.

Lemma 3.4.2. Let u € V(T) and € € E(T) be an edge incident on u. Suppose
A C Y, is a k-quasiconvex in Y, for some k > 0. Let Z1¥ (A) be the flow space of A
inside Y with constants k,R > R}, , (8),k") as in Definition 3.1.1. Let e = [v,w] be
an edge in T such that dr(u,v) < dr(u,w). Then we have the following.

(1) Suppose v € (F1Y(A)) and w ¢ n(F1¥(A)). Then the pair (A,,X,,) is
Ci-cobounded for some uniform constant Cj.

Suppose v,w € T(F1¥ (A)).

(2) Then A,, C Nk, (Ay) (in X,y,-metric) for some uniform constant K, and

(3) Hdx,, (Px,,x,(Av),Aw) < & for some uniform constant €.

Proof. Firstof all, we note that Py, y, (A,) = e (S, (Pr,y,,(Ay))) and Py, x, (A,) =
Yo (8,1 (Px,x,,(Ay))). By Projection hypothesis Hdy, (Px,x,,(Ay), Py,y,,(Ay)) is uni-
formly bounded.

(1) Property (1) of Z1¥ (A) (as in Definition 3.1.1) says that the pair (A,,Y,,) is
C-cobounded in Y,,, where C = D, 5 13(6),k’), i.e., diam{Py, v, (A,)} < C. Since
U,, and ¥, are uniformly qi embeddings, then by the first paragraph of the proof,
we have a uniform bound on Py,y, (A,). It then follows that diam{Px,x,, (A,)} is
uniformly bounded, and so Py, x, (A,) is uniformly bounded. Therefore, by Lemma
2.2.18 we are done.

(2) Since Y,,, C X,,,, we can take K = K| as in Property (2) of Definition 3.1.1.
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(3) Note that Hdy,, (Py,,v, (Ay),Ay) < € (Property (3) of Z1¥ (A)). Then by first
paragraph of the proof and the fact that 9., and 9,,, are uniformly qi embeddings,

we are through. 0

Lemma 3.4.3. Suppose .Z1¥ (A) is the flow space as in Lemma 3.4.2. Consider the
map p as in Remark 2.3.7 for the subset F1¥ (A). Then:
(1) p can be extended to a uniformly coarsely Lipschitz retraction X — F1¥ (A).

(2) F1Y(A) is uniformly quasiconvex in' Y as well as in X.

Proof. Since X and Y are hyperbolic metric spaces, (2) follows from (1) and Propo-
sition 3.1.2 in addition to Lemma 2.2.12.

We first observe that ¥,, N.%1¥ (A) is a uniformly quasiconvex subset of X, for
all w € m(Z1¥ (A)). This is clear for u = w since Y,, is uniformly qi embedded in
Xy. Let v € [u,w] such that dr(v,w) = 1. Note that A,, is 28p-quasiconvex in Y, and
Hdy, (Py,y,(Av),Aw) < €. So Py, y,(A,) is uniformly quasiconvex in ¥,,. Since the
edge spaces of Y are uniformly qi embedded in the corresponding vertex spaces
of X and Py, y,(Ay) C Yo, so Py, y,(A,) is uniformly quasiconvex in X,,. Hence,
Hdy, (Py,y,(Av),Aw) < Hdy, (Py,y,(Ay),A,) < € implies that A, is uniformly
quasiconvex in X,,. Let the uniform quasiconvexity constant be k.

Therefore, by Lemma 3.4.2, conditions (1) — (4) of Proposition 2.3.8 are satisfied
by p : U)Xy = F 1Y (A) for some uniform constants where p is as in Remark
2.3.7; whence (1) follows. O

The following theorem gives a comparison between X -geodesics and Y -geodesics

joining the same pair of end points.

Theorem 3.4.4. There are constants D, D’ such that the following hold:
Suppose u,v € T and w € [u,v]. Let e be the edge on [w,v] (or [u,w]) incident on w.
(1)If y e Y, and y' €Y, belong to some edge spaces in the respective vertex
spaces then Np(Ye,) N [y,Y ]x # 0
(2) If 7 € Y, belong to some edge space of Y, and 7' € Y,,, then d(u,n([z,7]x)) >
d(u,n(F1¥ (Y,))) —D'.

Proof. We first construct a subspace which is the union of flow spaces in ¥ in
the directions away from [u,v]. This then will be a uniformly quasiconvex set
in X containing the various points given in the theorem. The very nature of the
quasiconvex set will help us to prove the theorem. We shall assume that e is on [w, V]
since the proof for the other case is absolutely analogous.

For any edge e incident on u, we assume that Y, is k-quasiconvex in both X, and
Y,. We also fix R' = Ry 5.13(80, k) = 2k +50.
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Suppose u = uy,us,--- ,u, = v is the sequence of vertices on the geodesic
[uy,uy) C T with d(uy,u;) =i—1, 1 <i<n. Suppose ¢; is the edge joining u;
and ;1. Then for all 1 <i <n we first define a uniformly quasiconvex subset
A; C Xy, as follows:

Construction of A;’s:

Let us fix two edges ¢ incident on u; and e, incident on u, such thaty € Y,,,
and y' € Yy,

Type 1. For 1 <i<nifY,, and Y, ,, are R'-separated in X,, then we let
i (Yo, yu;) and z; € Py, y, . (Yeu;). (Note that projection hypothesis says

e

zi-1 € Px, ¥,
that the pair (Y,, 4, Ye,;) is uniformly cobounded in X, if and only if it is so in ¥,,,.)
In this case we define A; = Y, UYe, 4, U Vi, zi] X,

Type 2. On the other hand if dx,, (Ye, ;s Ye, 1u;) < R then we define A; =Y, ,,, U
Y Ci—1U;-

Properties of A;’s:

Property 1. First of all, clearly A; is Ki-quasiconvex in X, for some uniform
constant Ky depending on k, &y. This follows from the fact that the edge spaces of Y
are k-quasiconvex in the corresponding vertex spaces of X and Lemma 2.2.17.

Property 2. Hdy, (Px, x,,. (Ai),Yeu;) and Hdx, (Px, x,. ..(Ai);Ye, \u;) are uni-
formly small. This is clear if A; is of type 2 using the projection hypothesis. When
Aj; 1s of type 1 one has to use Lemma 2.2.19 (1) in addition.

Property 3. Suppose ¢’ is an edge incident on u; which is not on [u,v]. Let
Py, x,, (Ai) = BY, and Py, v, (Yeu;UYe, \u;) = Bl . Then by Lemma 2.2.19 (2), BY,,
is Kz—qluasiconvex in X, for slome K, depending on k, &y. By projection hypothesis
and (1) of Lemma 2.2.19, Hdy, (B

ie"

Y .
B i ») < Ry for some Ry depending on Ry, k,

Y

0o where Ry is coming from projection hypothesis. Hence B ief

both Y, and X, for some K3 depending on K3, R;, 0.

Let K be maximum of all quasiconvexity constants we have above and R =
R»2.13(6),K) = 2K +58) > 2k+ 58 = R’. Given an edge e incident on u and a
K-quasiconvex subset A C Y,,,, we fix .Z1¥ (A) is flow space determined by A in Y as
in Definition 3.1.1 with constant k, R.

is Kz-quasiconvex in

Construction of the flow spaces
Now we construct (some modified) flow spaces of the various A;’s in the direction
away from [u,v]. Let 7; be the maximal subtree of T such that 7; N [u,v] = u;. The
modified flow space o7 of A; is defined as follows.

Casel.i=1and ey =ej ori=nande, =e,_i: Inthis case A; =Y,, ,,, and we
let of = F1¥ (A;) N Yr, where Y7, = 7, ! (T;).
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Case 2: In all other situation we proceed as follows. Suppose ¢’ is an edge
connecting u; to uj, say, such that ¢’ is not on [u,v]. Let 7;, be the maximal
subtree of T containing u; and not containing u;. Now if the pair (4;,X,,) is R-
separated in X,,, we define the ‘flow of A;” in the direction of u] to be <7 , = 0.
Otherwise, we let A; , = 198%(1967”11, (Bl,)) and o o = F1"(A; ) N Y7, ,. (Note that
Hdy , (Bf sAig) <1, B{ s 18 K3-quasiconvex in ¥,,. Then by Lemma 2.3.4, one
can cl(;nclude that A; , C Yelu; is uniformly quasiconvex in Yug. Without introducing
another constant, we assume that it is K-quasiconvex as above.) We let .« = U.a, ,/’s
where the union is taken over all the edges ¢’ incident on u;, other than e;,e; .

We claim that Qy, ,) = (U;A;) U (U;7%) is quasiconvex in X. Since X is hyperbolic,
by Lemma 2.2.12, it is enough to provide a coarsely Lipschitz retraction X — D[mv]-

Let Xy5p = Ugey (1) Xs. We consider the map p : Xy5p — QJ,,,) as in Remark 2.3.7.
Since X, is 1-dense in X, by Lemma 2.1.2, we need to show a uniform bound on
dx(p(x),p(y)) where x,y € X, such that dx (x,y) < 1. Let m(x) =V and m(y) = w'.
We consider the following cases depending on position of v/, w’.

Case 1: Suppose both v/, w' & [u,v]. Since dy(V,w') <1, let u; be the near-
est point projection of v/ and w' on [u,v]. If < » # 0 then by Lemma 3.4.3 (1),
dx(p(x),p(y)) is uniformly bounded. If .27 ,, = @ then by construction of < ./, the
pair (A;,X,,,) is R-separated in X,,,. Then by Lemma 2.2.13, the pair (A;,X,,,) is
D-cobounded in X,,, for D = 2K + 78 whence the pair (A;, X,/ is so in X,,.. Then
by definition of p, dx(p(x),p(y)) < D.

Case 2: Suppose both v/, w' € [u,v]. If v/ =w/, then by Lemma 2.2.21 (1),
dx(p(x),p(y)) < C2221(80,K). If v/ £ w'. then dr(V,w') < dx(x,y) <1 implies
dr(V,w') =1and x € X,s,y € X,,s. It follows from property (2) and Lemma 2.3.5 (2)
that dx (p(x),p(y)) is uniformly bounded.

Case 3: Lastly, without loss of generality, we assume that V' € [u,v] and w' ¢ [u,V].
If v = u orv' = v, then by Lemma 3.4.3 (1), dx(p(x),p(y)) is uniformly bounded.
Now let v/ = u; and w' = u/ for some i and ¢’ = [u;,u}] to make the notation consistent
above. If .27 , = 0 then we are through as explained in Case 1. Now suppose .27 ./ # 0.
By construction dy,, (Ai,Xpy,) < R. Then by Lemma 2.2.13 (2), Bf o © Ng,(A;) in
Xy, for some Ry = 2K + 39y + R whence by Property (3), Bll.fe, C Ng,+r,(A) in X,,,.
Thus it follows that A; » C Ng,+r,+1(Ai) in X,,,,;. Also from Property (3), it follows
that Hdx ,(Px ,x,(Ai),A;e) is uniformly bonded. Hence by Lemma 2.3.5 (1), we
are throuéfl. o

By abusing notation, we assume that p : X — 9, ,j is L-coarsely Lipschitz
retraction for some uniform constant L. Therefore, ) is K'-quasiconvex in X

where K’ depends on L and the hyperbolicity constant of X.
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Now we are ready to prove the two statements of the theorem.

For (1) we note that [y, y']x NX,,, # 0. Let y; € [y,y]x N Xew. By the quasiconvex-
ity of 9, there is a point y, € 9y, ,| such that dx (y1,y2) < K’. Let w = u;. Since
p : X — 9y, is L-coarsely Lipschitz retraction then dx (p(y1),0(y2)) < LK +K
where p(y2) = y;. It follows that dx (y1,p(y1)) < K'+ LK’ + L = L' (say). This
means dx, (y1,p(y1)) < ¢(L'). We note that in this case p(y1) € A; and Y, = Yooy,
Now, if p(y;) € Y., then we are done. However, otherwise, by Lemma 2.2.15,
vi,p(y1)] X,; 80es through a uniformly small neighborhood of Y,,, in X, whence (1)
follows.

For (2) we appeal to the set |, instead of the whole collection. Note
that [z,7]x € Ng/(Qpy,). Therefore, 7([z,2']x) € Nk/(%(Qy,,))) in T. Hence,
d(u,7([z,Z]x)) > d(u,m(Q},))) — K'. However, it is clear from the construc-
tion of Q) that d(u, T(Qp,,)) > d(u, T(F1" (Aew))) whence (2) follows with
D' =K. [

Let e € E(T) be an edge incident on u € V(T') and Y, is k-quasiconvex in Y,,.
For the rest of the proof we assume .# 1" (Y,,) is the flow space as in Definition 3.1.1
with constant k and R = Ry 5 13(8, k) = 2k + 56.

Proposition 3.4.5. Suppose u € T is a vertex and y € Y,. Suppose {y,} is an
unbounded sequence in Y such that im! .y, and imX .y, both exist. Let u, =
7t(yy,) and suppose that lim,{ Lo lUn = &. Let ¢, be the nearest point projection of uy
on [u,&) and let e, be the edge on [u,c,] incident on c,. Suppose z, € Y, ¢, N[V, Vuly-

Then lim!_, .y, =lim!_,_ z, and lim_, _y, = limX__ z,.

Proof. We note that dy (y,z,) > dr(u,c,) = dr(u, [u,,&)). Since u, — & we have
dr(u,[un,&)) — oo, whence dy(y,zy) — o as n — oo. Then by Lemma 2.2.33
lim?_,_z, =1lim!__y, as z, € [y,y.]y. Hence, it remains to prove the second limit.

Foralln € N, let €], be the edge on [u, u,] incident on u,, and let e, 1, e, 2, - sCni(n) =
e, be all the successive edges on the geodesic from ¢, to u, when ¢, # u,, i.e.
up & [u,&). First we do the following reduction.

Reduction step: Let y/, be a nearest point projection of y, on Y, nY,,. Then by
Lemma 3.2.4 lim!_,__y, =1im!_,_ !, and also by the same lemma and the projection
hypothesis we have limX . _y, =1limX ,_y/. Therefore, we are reduced to proving
lim}

X oy, =1imX ,_z, and so far we have lim!_,_y/ =lim!__z,.

The following recurring argument in the proof.

Claim: Suppose for all n € N there is a set Z, C Y which is uniformly quasicon-
vex in both X and Y such that y',,z, € Z,. Then limX ,_y/, =1limX ,_z,.
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Proof of claim: Suppose Z, is kj-quasiconvex in Y for all n € N. By Lemma
2.2.23 (1), N5(Z,) is uniformly qi embedded in Y for D = k; + 1. Since Y is
properly embedded in X and N}S (Z,) is uniformly gi embedded in Y, it follows that
NY(Z,) is uniformly properly embedded in X. Thus by Lemma 2.2.23 (2), N5(Z,)
is uniformly qi embedded in X. Thus a geodesic, say @, joining y,,,z, in N5 (Z,)
is a uniform quasigeodesic in both X and Y. Now, dy (y, [V, zu]y) — o as n — o
since lim! ,__y/ = lim! .z, (see Lemma 2.2.32 (2)). Therefore, by the stability
of quasigeodesics (Lemma 2.2.2) dy(y, o) — o0 as n — oo. Since Y is properly
embedded in X, it follows that dx (y, o,) — o as n — o whence dx (v, [y}, zn]x) — o©
as n — oo again by the stability of quasigeodesics. Thus limX .y, = lim%_,_y/ =

limX . z,.

The proof is divided into several cases. First we discuss three special cases and
then finally we prove the general case using them. Let e € E(T) incident to w and
Y., is k-quasiconvex in Y,,. Then we consider below the flow space of Y., as in
Definition 3.1.1 with constant k and R = R 5.13(0p, k).

Case 1. Suppose uy, € [u,&) for all n € N. In this case e, = €/, and the reduction
step yields y}, € Y,,.,. Now note that y,,z, € ¥,,, and FI¥(Y,,.,) is uniformly
quasiconvex in both ¥ and X by Lemma 3.4.3 (2). Hence, by the above claim we

have limX .,y =limX ., z,.

Case 2. Suppose u, & [u,&) but F1¥ (¥,

Cnit(n

jun) N Ye,c, # 0 for all n € N. In this
case .Z1¥ (Yen,,(n)un) Uz lY(Ye,,c,,) = 7Z,, say, 1S unlformly quasiconvex in Y as well
in X by Lemma 3.4.3 (2) and the fact that union of two intersecting quasiconvex
subsets is quasiconvex in a hyperbolic metric space. Therefore, we are done by the

above claim.

Case 3. Suppose u, & [u,&) and Z1¥ (Y, sytin) N Yene, = 0 for all n € N. Sup-
pose ¢, = V. 1,Vn 2, -+ are the consecutive vertices on geodesic joining ¢, to u, so
that each edge e, ; joins v, ; and v, ;1. Suppose e, ; is the closest edge from ¢,
for which Y,c, N F1¥ (Yo, v,..,) = 0. Let y, €Y,

€n,iVn,i+1

be any point. Now, by the
second part of Theorem 3.4.4 (2) there is a uniform constant D’ depending only on
the parameter of the tree of spaces under consideration such that d(u, 7([y),yi]x) >

d(u, F1¥ (Yo, ,:.,)) —D'. However, since Y,,c, N F1¥ (Ye,,.,,) = 0, so we have
d(u, FI' (Y,

€n,iVn,i+1

)) >d(u,cp). Thus lim, . dx (v, [y}, ]x) = . Hence, by Lemma
2.2.32 (2) lim* v/ =1limX ,__y”. Applying Theorem 3.4.4 (2) to the case ¥ = X we
similarly get lim! v/ =1im!_,_y”. Let Imy(y") denote the image of y/ in Y, Ve

Since d(y"!,Im(y"n)) = 1, it follows that limX vy, = lim¥_, _y/ = lim ,__ Im(y"!)

and hmn%ooyn - hmn%oo yn - hmnﬂool (yn)
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Next, we may apply the reduction step to /m(y,) to find y,’ € Yo, . v, for
each n € N so that limX _,__ Im(y!) = lim* v/ and lim?_, _ Im(y"") = lim}_, y/"" =

lim?_, . z,. Finally, since .Z 1" Yy 1vni

)N Y, e, 7 0 (by our choice of i) foralln € N
we have lim}_,_ z, = lim*__y" by Case 2.
Case 4. The general case: Let S = {n € N:u, € [u,§)}, S, ={ne N\ S;:
T (Yo, yun) Yere, # 0}, and let §3 = N\ (S1USz). Now, if any S;, 1 <i <3, is
infinite then we have have a subsequence {n; }xcy of the sequence of natural numbers
such that S; = {ny : k € N}. Then Case i applies to the subsequence {y,_ } of {y,}
to give limy_,_y, =1lim{ _ z,, . Thus it follows that lim) ..y}, = im{_, ., z,.
Continuation of the proof of Theorem 1.1.6: Suppose {y, },{y,} are two arbi-

trary unbounded sequences in Y.

Compatible sequences: We will say that {y, }, {y,} are compatible if lim? _._ y, =

lim!_, .y, € Y, and lim}_,_ y,,limX__y/ both exist.

Therefore, to prove the theorem one has to show that for any compatible se-
quences {y,}, {y.} one has lim* ,__y, = limX ,_y/ € X (see Lemma 2.2.43). The
idea of the proof is that given two compatible sequences {y, },{y,} we find a new
pair of compatible sequences, say {w,}, {w/,}, with additional properties so that
checking if limX ,_w, = lim* ,_w/ is easier whereas by construction we have
limX . w, = limX_ .y, and lim¥ ,__w/ =1im}__y’. Sometimes we may need to
do this a number of times.

Now, to start the proof suppose {y, } and {y,} are two compatible sequences. Let
by = nt(yn) and b}, = w(y),) for alln € N. Fix u € T. Let S; = Hull({b, : n € N})
and S, = Hull({b), : n € N}). Now, we have the following three possibilities:

Case 1: Both {b,} and {b),} satisfy the property (1) or (2) of Lemma 3.3.6. In
this case the proof follows from Proposition 3.3.7.

Case 2: Exactly one of the sequences {b, } or {b],} satisfies the property (1) or

(2) of Lemma 3.3.6. Without loss of generality, suppose {b/,} satisfies the property
(1) or (2) of Lemma 3.3.6 but {b, } does not.

Now, first of all, using Lemma 3.3.6 we can find a vertex u# and sequence of points

{2/} in Y, such that lim)_, 7/ =1im? ,_y/ and lim* ,_ 7/, = limX ,_y/. Therefore,
we shall replace the sequence {y/,} by {z,,} for the purpose of the proof.

Secondly, we note that the subtree S is locally finite and unbounded. Hence,
dS| # 0 by Lemma 2.2.29. Up to passing to a subsequence, if necessary, we may
assume that b, converges to & € dS| where ¢, is the nearest point projection of
by on [u,&). Let e, be the edge on [u,c,] incident on ¢,. Then by Proposition
3.4.5, there is a point p, € Y,, for all n € N such that lim!_, . p, = lim?_, _y, and
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lim* ,_ p, =1imX ,_y,. Thus we may replace {y,} by {p,} for the sake of the proof.
Note that {z),}, {pn} is a pair of compatible sequences and it is enough to show that
lim* 7/ =1limX . _ p,.

A part of the remaining arguments is summarized as a lemma below.

Lemma 3.4.6. Suppose {y,}, {y,,} are unbounded sequences of points in Y such
that the following hold:

L lim)_,. v, =1lim}_,.. ¥,
2. The point v, = 7t(y,) is on a geodesic ray [v,&) in T such that lim! v, = &.
3. Nearest point projection of the set {m(y!,)} on [v,&) is bounded.
Then there is a sequence of points {q,} inY such that
1. limY _y, =1lim! g,
2. {n(gn)} is bounded and
3. dx(y1,[gn,yn)x) — 0 as n — co.
In particular if imX v, exists then lim*_,_ v, = lim* ,_ g,,.

Proof. Fix u € [v,&) such that [m(y),),v,]|7 passes through u for all n € N. Let e
be the edge on [u,&) incident on u. Let g, be a point on Y., N [y,,y,]y. Since
lim? .y, =1lim! .y, we have lim! ._y, =1lim! . ¢, by Lemma 2.2.32 (2), and
again by the same lemma we have dy (y1, [¢n, Vu]y) — 0 as n — oo. Now, applying
Lemma 3.2.5 to the sequences {y,},{y,} in ¥ and Lemma 2.2.13, we see that
F1Y (Y, )UZIY (Y,,,) is uniformly quasiconvex in Y and X. Then by Lemma 2.2.23
Ngo (F 1 (Yo )UFIY (Y,,.,)) = Zy, say, is uniformly qi embedded in both ¥ and X for
some uniform Dy. Thus [g,,yn|z, is a uniform quasigeodesic in both ¥ and X. Since
dy (Y1, [qn,yn]y) — o0 as n — oo, it follows, by stability of quasigeodesics (Lemma
2.2.2), that dx (y1, [gn,yn|x) — o0 as n — eo. Thus limff_myn = limff_m qn. O

Applying Lemma 3.4.6 to the sequences {z,,},{pn}, we find a new sequence
{¢n} and the proof boils down to deal with the compatible sequences {z,} and {g,}.
However, {z),} and {g,} satisfy the conditions in Case 1. Hence we are done in this
case too.

Case 3: Suppose neither {b/,} nor {b, } satisfies the property (1) or (2) of

Lemma 3.3.6. In this case both S| and S, are unbounded and locally finite whence
dS; and dS, are both nonempty (see Lemma 2.2.29). After passing to subsequences,
if necessary, we can assume that (y,) =b, — & € dS1, and n(y,) = b}, > &' €9S
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and that the hypotheses of Proposition 3.4.5 are satisfied by both {y,} and {y/,}.
Then applying Proposition 3.4.5 and passing to further subsequences if necessary, we
may also assume that (1) b,,’s are on the geodesic [u, &), (2) b),’s are on the geodesic
[u,E"), (3) the sequences lim! b, = & and lim!_, b/ = £’ and the following: Let
e, be the edge on [u,b,] which is incident on b, and let ¢}, be the edge on [u,b),]
which is incident on b;,. Then (4) we may assume that y, € ¥, and y;, € Y, . This
last statement will be used for dealing with Subcase 3B below.

We note that we have natual inclusions dS; — dT and dS, — dT. In particular,
&,E' € dT. The rest of the proof is divided into two subcases.

Subcase 3A: Suppose & # &’. In this case the nearest point projection of [u, &)
on [u,&’) is a finite diameter set. Thus by applying Lemma 3.4.6 we can find a new
sequence {p,} in Y such that {(p,)} is bounded, and {p,} and {y,,} for which we

need to show that limX , _y/ =1imX ,_ p,. However, this now follows from Case 2.

Subcase 3B: Suppose & = &’. After passing through a subsequence, we assume
that dr (u,b,) < dr(u,b),) <dr(u,bpi1).

Let t, = dr(u,n(F1¥ (Y, ))). Lety € Y,. Suppose limX__y, # lim* _y..
Then there is a R € N such that dx(, [yn,y,]x) < R for all n € N. This implies
dr (u, w([yn,y,]x) < R since 7 is 1-Lipschitz. Now it follows from Theorem 3.4.4
(2) that t,, < R+ D’ where D' as in Theorem 3.4.4.

It then follows that for all large n € N, Z1¥ (Y,,5,) N.ZI¥ (Yo, ) # 0. Hence
by Lemma 2.2.23, there is a uniform constant Dy such that Ngo (F1Y (Y,p,) U
FIY (Yo )) = Wy, say, is uniformly qi embedded in both X and Y. Thus [y, y;]z,
is a uniform quasi-geodesic in both Y and X. Since dy (y, [yn,Y,]y) — o as n — oo,
it follows, by stability of quasi-geodesics (Lemma 2.2.2), that dx (v, [yu, Y}, ]x) — o
as n — o — which is a contradiction by Lemma 2.2.32 (2). Therefore, lim\ .y, =

lim* v/, O

3.5 Proof of Theorem 1.1.7

Let us restate the theorem for readers’ references.

Theorem 3.5.1 (Theorem 1.1.7). Additionally, suppose in Convention 3.3.3, we
have the following. (Here we do not require the spaces X andY to be proper.) For
all v € V(S), the inclusions Y, — X, are uniformly qi embedded. If moreover the
projection hypothesis holds then we have the following:

1. The inclusion Y — X := 1~ '(S) is (uniformly) qi embedded.
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2. The inclusion Y — X admits the CT map.

Proof. Note that Xs is hyperbolic by [6]. Then (2) follows from (1), Theorem [9,
Theorem 8.11] and the functoriality property of CT-maps (see Lemma 2.2.39). So
we proof only (1). For that we prove the existence of a coarse Lipschitz retraction
Xs — Y where Z = Xj i1s with its induced path metric from X. If that is done then
the inclusion Y < X is ¢-proper embedding implies that the inclusion ¥ — Z is
also ¢-proper embedding. Therefore, Y < Z is uniformly qi embedded (see Lemma
2.1.3).

By given condition, for all e € E(S) incident on u € V(S), ¥,’s and Y,,’s are
uniformly qi embedded in X,,. Hence they are uniformly quasiconvex in X, (see
Lemma 2.2.22 (1)).

Let Zysp = Uyey(s)Xu and p : Zysp — Y be the map as defined in Remark 2.3.7.
since Z, is 1-dense in Z, by Lemma 2.1.2, we need to show dz(p(x),p(y)) is
uniformly bounded where x,y € Z,, and dz(x,y) < 1.

Suppose 7(x) = u, w(y) = v. If u = v then by Lemma 2.2.21 (1), dx, (p(x),p(y))
is uniformly bounded and so is dz(p(x),p(y)). Now suppose u # v. Note that
dr(u,v) <dz(x,y) <1 implies dr(u,v) =1 and so x € X,,,y € X,,, where e =
[u,v] € E(S).

Note that ¥, and Y, are uniformly quasiconvex in X,, and X, respectively. Since
Pyy,,(Yy) = Yeu, by projection hypothesis, Hdx, (Px,x,,(Yu),Yeu) < Ro where Ry is
coming from projection hypothesis. Similarly, we have Hdy, (Px,x,,(¥y),Yev) < Ro.
Since Y, is uniformly quasiconvex in X,,, so is Py, x,, (). Similarly Py x,, (Y, ) is also
quasiconvex in X,. Again Hdx, (Ye,,Y.,) =l implies Hdx,, (Px,x,,(Yu), Px,x,,(¥y)) <
2R+ 1. Then, by Lemma 2.3.5 (2), dx,, (p(x),p(y)) is uniformly bounded and so is
dz(p(x),p(y))-

Therefore, we are through.

3.6 Applications and related results

In this section, we will see two main applications of Theorem 1.1.6 (see Theorem
1.1.2 and Theorem 1.1.11).

Proof of Theorem 1.1.2:

It is standard that for a graph of groups (¢’,Y’), there is tree of metric spaces
7 : X — T where T is the Bass-Serre tree of (¢',Y’) such that 7, (4',Y’) acts on X
properly and cocompactly; and so the orbit map 7;(¥4’,Y’) — X is quasi-isometry
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for any finite generating set for 7y (4’,Y’) (see Section 5.6 for detailed explanation).
By hypotheses of Theorem 1.1.2, it turns out that & : X — T is a tree of hyperbolic
metric spaces with the qi embedded condition.

Suppose 7y : Y — S is the tree of hyperbolic metric spaces with the qi embedded
condition corresponding to a subgraph of subgroups (¢,Y) as in Theorem 1.1.2. We
consider the orbit map 7;(¥,Y) — Y which is a quasi-isometry.

By condition 2 (a) of Theorem 1.1.2, it follows from [7, Proposition 2.7, Corollary
1.14, see also 2.15] that the natural inclusion 7 (¢4,Y) — m(¥¢',Y’) is an injective
homomorphism and § — T is an embedding of trees. We also can think of y : ¥ — S
as induced subtree of spaces in 7 : X — T over § C T (via the embedding above).
(See Subsection 3.3.1 for induced subtree of spaces.)

Moreover, the inclusion Y — X is 71 (¥,Y )-equivariant. Therefore, proving the
CT-map for 7 (¥4,Y) — m(¢',Y’), it is enough to show the same for the inclusion
Y - X.

By condition 2 (¢) in Theorem 1.1.2, the induced subtree of spaces under con-
sideration satisfies the projection hypothesis whence satisfies all the hypothesis of
Theorem 1.1.6.

Therefore, we are through. O]

Proof of Theorem 1.1.4:

We will to apply Theorem 1.1.6. For that we only need to prove the projection
hypothesis (see Remark 1.1.3 (2)). Since G, — G/, admits the CT map, so it satisfies

uniform Mitra’s criterion whence the theorem follows from Remark 3.3.8 (2). U

3.6.1 Lamination

Definition 3.6.1. If a map between hyperbolic spaces f : Y — X admits the CT map
then the Cannon-Thurston (CT) lamination Acr ([38]) for f is defined to be

Acr =1{81,862) €Y x9Y : & # &,0f(&1) = df (&)}

where d f : dY — dX is the CT map.

In this thesis, we also investigate the properties of the CT lamination in the
situation where Theorem 1.1.6 holds. We will now prove a couple of result related
to this; which will be used to prove Theorem 1.1.11.

Notation and convention: Suppose the inclusion i : Z < W of hyperbolic metric
spaces admits the CT-map. We denote the CT-map by dizw : dZ — JdW. In this
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subsection, we assume that base for both Y and X are same, i.e., S = T in Theorem
1.1.6.
In the following lemma we prove converse of Lemma 3.3.5. Proof goes along

the same line as Lemma 3.3.5.

Lemma 3.6.2. Let e, e’ be edges in T incident on u. Suppose v and Y two quasi-
geodesic rays in Yy, such that Y C Y,y C Yp,. Then lim’x ., y(n),limX ,_ 7/ (n) exist

and if imX_, _ y(n) = lim_,__ ¥ (n) then lim?_,_ y(n) = lim!__ ¥ (n).

Proof. Since the inclusions Y, — X;, and X,, — X admit the CT-maps (see [8] for
later one), and so by functoriality property of CT-maps (see Lmma 2.2.39), so
limX . y(n),lim%_, ¥/ (n) exist. For the second part, if lim!, _ y(n) =lim!, _ ¥ (n),
then we are done. Now Suppose lim'*, _y(n) # limX, _ ¥ (n). Note that y and ¥
are also qausi-geodesic in X,, since edge spaces of Y are uniformly qi embedded in
the corresponding vertex spaces of X. So limX, _ y(n) # limX*,_ ¥ (n), otherwise,
limy, . y(n) = lim),, ¥ ().

Suppose o is a geodesic line X, such that o(—co) = lim™,_ y(n) and o(e0) =
lim*, ¥ (n). Hence by given condition, we have lim* ., a(—n) = limX . _ a(n).
Then by [9, Proposition 8.54 (1)], there is ray geodesic ray [u,&) in T such that both
o(—o0) and o (o) flow in X, for all vertex v € [u,£). Let B is geodesic line in ¥,
such that Hdy, (B, a) is uniformly bounded. Fix y € ¥,. Then by the description
of uniform quasi-geodesic given in [9, Proposition 8.49] joining 3(n) and B(—n),
we can conclude the following. If 3,’s are uniform quasi-geodesic joining 3 (—n)
and B(n) inY and B,’s are that in X, then Hdx (f3,, B, is uniformly bounded. Since
Hd, (o, B) <eoand limX . B(n) =1limX ,_ B(—n) thendy(y, B.) — oo asn — oo (see
Lemma 2.2.32 (2)). Hence, dy (y, ;) — o0 as n — oo since Y is properly embedded
in X. This shows that lim? . B(n) = lim! ,_p’(n). Note that lim!, B(n) =

limY

YW, oyn and lim%,  B(—n) =1lim!,_y,. Since ¥, — Y admits the CT-map, we

are through. [

A generalization of Lemma 3.6.2 is the following.

Lemma 3.6.3. Suppose o and o are geodesic rays in 'Y, and Y, respectively. Let
u#v. Thenlim!_,_ a(n) #1im? _,_ o (n) implies limX_,_ a(n) #limX . o/ (n).

Proof. On contrary, suppose limX . ai(n) =1lim* ,_ o/(n). Let B and B’ be geodesic
rays in X,, and X, respectively such that diy, x, (a(e)) = B(e0) and diy, x, (0 (0)) =
B’(=0). Then by Proposition 3.2.8, there is a vertex w € [u,v] such that both f3(co)
and fB’(e0) have boundary flow in X,,. Now we consider two cases depending on the

position of w.
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Case 1: Suppose w € [u,v]\ {u,v}. Lete C [u,w] and ¢’ C [w, V] be edges adjacent
to w. Let B; and P be geodesic rays in X,,, and X,, representing the boundary
flow of (o) and B’(eo) respectively. Since we have projection hypothesis, then
by repeated application of Lemma 2.2.45, we conclude that o/(e) flows in Y,
o/ (o) flows in Y,,, and Hdx (a, ) < e, Hdx(a', ") < eo. Now by Lemma 3.2.7,
Hdx(B,B1) < e and Hdx (B, B{) < e. So Hdx (o, 1) < o and Hdx (o, B{) < oo.
By replacing B; and B{ by some quasi-geodesic rays, say, ¥ and ' respectively
such that y C ¥,,, and ¥ C Y,,,, and Hdx (Bi,y) < o> and Hdx(B{,7’) < e=. Then
Hdx(a,y) < oo and Hdx(a',y') < oo, and since Y is properly embedded in X, so
Hdy(a,y) < oo and Hdy(a/,Y) < oo.

Now limX,__ a(n) = lim¥_,__ o/(n) implies lim}_,_ y(n) = limX__ ¥ (n). Then
by Lemma 3.6.2, lim!_,__ y(n) = lim!_,__/(n). Hence lim!_,_ a(n) = lim)_,__ o/(n)
- which is a contradiction.

Case 2: Without loss of generality, we assume that w = u. Since f(e0) flows
in X,,, with the same notation as in Case 1, we have the following facts. (1) « is
a geodesic ray in Yy, (2) ¥ is a quasi-geodesic ray in Y, such that ¥ C Y,/,, and so
is a quasi-geodesic ray in X, (3) imX . ¥ (n) =1im* ,_ o/(n) and lim! .7 (n) =
nsen O (1)

Now if limX«, ¥/ (n) = limX«, _ ct(n), then (since we have projection hypothesis)

lim

by Lemma 2.2.45, o is a quasi-geodesic ray in X,,. Hence Hdy, (a,7Y') < oo, and so
Hdy (o,7) < . This contradicts to lim!_, _ at(n) # lim?_,__ o/ (n).

So we assume that lim, ¥ (n) # lim*«, _a(n). Let y be a geodesic line in
X,, such that limX, _ y(—n) = limX,__ y(n) and lim«, _ yo(n) = limX, _ a(n). Now,
since limX_,__ yo(—n) =limX_,__ 1(n), by [9, Proposition 8.54 (1)], there is a geodesic
ray [u,&) in T such that both 9y(—e0) and (o) have flow in X, for all vertex v €
[u,&). Then by Lemma 2.2.45, ¢ is a quasi-geodesic ray in X,,. Then we can replace
% by a quasi-geodesic line y; such that y; C Y, and lim_,__ 11 (—n) = limX__ y1(n)
and lim!___ y1(—n) = lim!_,_a/(n) and lim!_,__ v (n) = lim!_,_ a(n). Therefore,
by Lemma 3.6.2, lim! . _ ¥ (—n) = lim" . _ 7 (n) - which leads to a contradiction
that lim?_,_ oc(n) # lim! . a/(n). O

One can easily verify the following lemma from definition of conical limit point
(see Definition 3.2.9) and the existence of CT-maps.

Lemma 3.6.4. Suppose o is a geodesic ray in'Y such that () is a conical limit
point of a vertex space Y, for some vertex u € (). Then there is a subsequence
{r;} CN such that a(r;) € Y,,, liml,  o(r;) € Y, and imX_, _ at(r;) = diy x (a(e)).
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In particular, there is a geodesic ray o in Y, such that lim!_, _ a(n) =1lim!_,_ o/ (n)

and im* ,_ o(n) = limX ,_ o/ (n).

Lemma 3.6.5. Suppose a is a geodesic ray in'Y, and o' is that in Y. Further, we
assume that o' (o) is a conical limit point of the vertex space Y, for some vertex
v m(a). Let u#v. Then lim!__ o(n) # lim!__ o (n) implies im* ,_ a(n) #

lim* . o/ (n).
Proof. It follows from Lemma 3.6.4 and Lemma 3.6.3. 0

Lemma 3.6.6. Suppose o and o are geodesic rays in Y. Further, we assume that
o (e0) and /(=) are conical limit points of vertex spaces Y, and Y, respectively
for some u € w(o) and v € w(o'). Let u#v. Then lim!_,_ o(n) # lim!_,_ o (n)

implies limX . a(n) #limX o/ (n).
Proof. By Lemma 3.6.4 and Lemma 3.6.3, we are done. U

Lemma 3.6.7. Suppose o is a geodesic ray in Y, and o/ is that in Y such that o' (o)
is not a conical limit point of any vertex space. Then lim!_,_a(n) =1lim? _,_ o (n)
if and only if imX ,_ o(n) = lim* ,_ o (n).

Proof. Note that ‘only if” part follows from CT-map diyx : dY — dX. Now we
proof ‘if’ part, i.e., we have limX_,_ ot(n) = lim®_, _ &' (n). We will find uniformly
quasiconvex subset, say, Z, in both X and Y containing a(n) and o/(n) for all large
n € N. Then by Lemma 2.2.23, there is a uniform constant D > 0 such that Ng (Z,) is,
with the induced path metric from Y, uniformly qi embedded in both X and Y. Then
by stability of quasi-geodesic and Lemma 2.2.32 (2), lim,,—, dx (X, 1) = e where 7,
is a geodesic in N} (Z,). Therefore, by same lemmas, lim,, .. dy (v, [t(n), &' (n)]y) =
oo and lim!_, . a(n) = lim!__ o (n).

Finding Z,: By Lemma 3.2.11, there is a geodesic ray [u,&) C SNx(a’). Let
{e1,e2,--- } be successive edges directed away from u on the ray [u, &), and u; = u
and ¢; joins u; and u; | for all i € N. Suppose {r;} C N is a subsequence such that
a/(r;) € Ye,. Suppose f3 is a geodesic ray in X, such that diy, x, (a(e)) = (). So
limX . B(n) =1limX &' (n) =1imX_ o/(r,). Suppose Y,.,’s are k-quasiconvex in
Y, Let Z1¥(Y,,,) be the flow space for a fixed R = R .13(8},k) as in Definition
3.1.1. Now by Lemma 3.2.12, (o) has a boundary flow in X, for all vertex v € [u, £).
Hence by Lemma 2.2.45, we can conclude that a(eo) has a boundary flow in ¥, for
all vertex v € [u,&). In particular, we have .F1(Y,,,) N Y, 7 0. By Lemma 3.4.3,
Zy=F1 (Yp,) UF Y (Y,,,) is uniformly quasiconvex in both X and ¥ containing
both o(n) and o' (ry). O
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Lemma 3.6.8. Suppose o and o' are geodesic rays in'Y such that o,(e) is a conical
limit of a vertex space Y, for some u € n(a) and o/ (=) is not a conical limit
point of any vertex space of Y. Then lim! . _a(n) = lim! ., a/(n) if and only if

lim*,_ o(n) =limX ., a'(n).
Proof. It follows from Lemma 3.6.4 and Lemma 3.6.7. 0

Lemma 3.6.9. Suppose o and o' are geodesic rays in' Y such that both & () and
a (o) are not conical limit points of any vertex space of Y. Then lim)_, _ a(n) #

lim? ., o (n) implies limX_,__ a(n) #limX . o (n).

Proof. Let [u,&) and [u,&") be geodesic rays in 7(a) and (') (see Lemma 3.2.11).
On contrary, suppose limX . _ a(n) = lim* ,_ o(n). Let {e1,es,--- } be successive
edges on [u, &) directed away from u and {€}, €5, - } be that on [u,&’). For € N, let
uj,u; € V(T) such that e; joins u; and u; 1, and €] joins u; and u;, ;. Suppose {r;}
and {7;} are subsequences of N such that a(r;) € Y,,,, and o/(t;) € Yy, Now we
consider two cases depending on & # &’ and £ = &'.

Case 1: Suppose & # &'. Let j be the smallest for which e; # €. Then by
Theorem 3.4.4 (1), for all large i, a uniform quasi-geodesic in X joining a(r;) and
o/ (1;) passes through Yeu;- We take a point x; € Yeu; On that quasi-geodesic for all
large i. If necessary, after passing through a subsequence, we assume that lim,’f I
exists. Since lim* . o(n) = lim* ,_ &' (n), we have lim* . _ a/(n) = limX ,_ x, and
lim* o/ (n) = lim*,_ x,. Then by Lemma 3.6.7, lim!__ ot(n) = lim!_,_ x,, and
lim!_, &' (n) =lim?_, _ x,,. This implies that lim!_, _ ct(n) =1lim!_,_ &' (n) — which
is a contradiction.

Case 2: Suppose & = &'. Note that ¢; = ¢} for all i € N. Then by Lemma 3.4.3
(2), we have a quasiconvex subset, namely, .7 ¥ (Ye,;) in both X and Y containing
o(r;) and o (#;). Then by Lemma 2.2.23 (2), there is a uniform constant D > 0 such
that N} (F1¥ (Y,,,)) is uniformly qi embedded in both X and Y. Now by stability
of quasi-geodesic, Lemma 2.2.32 (2) and lim® ,_ a(r,) = limX_,__ &'(t,), we have
lim? . o(r,) = lim!__ o/(t,). Thus lim!_,_ o(n) # lim! . a'(n) — which is a
contradiction. O

Proof of Theorem 1.1.11:

By Remark 3.2.10, each of o/(—e0) and a(eo) have two possibilities. So we have
the following cases.

Case 1: Both o(—eo) and o (o) are conical limit points of some vertex spaces.

Then by Lemma 3.6.6 we are done.
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Case 2: Both a(—o) and (o) are not conical of any vertex spaces. This is
Lemma 3.6.9.

Case 3: Without loss of generality, we assume that a(—oo) is a conical limit
point of some vertex space and (o) is not conical limit point of any vertex spaces.
Then we through by Lemma 3.6.8. ]

3.7 Nonexistence of Cannon-Thurston maps

In this section we prove Theorem 1.1.9 and verify the conditions of this theorem for
Example 1.1.10. We will not rewrite the statement again.
Proof of Theorem 1.1.9: Let A= {t" :n € Z} and let h, = Pgo(y,). Itis a

standart fact A is a quasigeodesic line in G. Let 1%(") be a nearest point projection of

G

h, on A where a(n) € Z. Since im¥ . _ h, = 1im¥ ,_ ", we have lim,_,ca(n) = oo.

n—ro0
Now, this means 1im¢ =% =1im% ,_r~". On the other hand, a nearest point
projection of =" p, = x,, say, on 1~ *"WA = A is 1 € G. Since "G', n € Z form a
geodesic line in the Bass-Serre tree for the HNN extension G« (see Figure 3.1)
and t=*"p, € ="M@, so {dg(1,x,) : n € N} is unbounded. Suppose {n;} is a
subsequence of the sequence of N such that lim,(,; " ooXn, =& € dG. Then clearly
nearest point projection of the geodesic ray [1,£) on A is a bounded set. In particular,

& #1im$,_ t~". Thus

im¢, 4 mWp, £ 1im@, " (3.7. 1)

e ‘ th“)G_:
£ G
Figure 3.1

Claim: lim{ ,_r~¢Wh, =1im{, =y, .
Proof of claim: We consider the geodesic line t"G’, n € Z in the Bass-Serre tree for

the HNN extension under consideration. The vertex space over t"G’ is the coset "G’
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of G and the edge space of "G’ which is gluing to #*~'G’ and "+ G’ is *Q. Since h,,
is the nearest point projection of y, in G', t™h,, is the nearest point projection of "y,
in the vertex space ™G’ for any n € N, m € 7. This verifies the conditions of Lemma
324forX =G, u=G,uy =t"WG, ¢ = [t 'G 1~ F1G] and X,,,,, is the
image of =) in +~() G’ and of course, x; = t‘“(”k)hnk and x; = t‘“("k)ynk for

all k € N. Hence we are done.

It follows from Inequality 3.7. 1 and the claim that

—a(n

lim¢, ey, £ 1im$ ", (3.7.2)

K

n%wt_“("k)ynk =1imX , _=%(%)_ This can be seen as

However, we note that lim
follows. Since QNN = (1), we have K = Nx <t >< G and K obtains an induced tree
of spaces structure from G. Again t’“(”k)ynk,t’“("k) e N C 14 G’ which
is a vertex space for K for all k € N. Since the edge spaces are points in this case
we have an acylindrical tree of spaces. Thus as "G’ are successive vertices on a

geodesic ray in the corresponding Bass-Serre tree we are through.

Hence we get two sequences, namely, {t‘“(”k)ynk}, {t=%} C K such that they
limit to the same point in dK but not in dG. Thus the inclusion K — G does
not satisfy Mitra’s criterion. Therefore, we are done with the theorem by Lemma
2.2.42. [

Now we will show that Example 1.1.10 (see Introduction 1.1) satisfy the condition
of Theorem 1.1.9.

Proof of Example 1.1.10: Note that Q is malnormal and quasiconvex subgroup
of G’, and N is non-quasiconvex hyperbolic subgroups of G’ such that QNN = {1}.
Since N is infinite index normal subgroup, we have Ag/(N) = dG’ where dG’ is
the Gromov boundary of G’ and Ag (N) denotes the accumulation points of N in
G'. Now Q is quasiconvex in G’ and A (N) = dG’ imply that Pgo(N) and Q are
Hausdorff close in G. It then follows that

Ac(Pgro(N)) = Ac(Q) (3.7.3)

Let ¢ be a hyperbolic automorphism of Q and G = G'«g = G'xy <t > be the
HNN extension of G’ over Q along ¢ where 7 is the stable letter; let H = Qxg =
Oxy <t > be the restriction of that to Q. Note that Q is a normal subgroup of
infinite index in H. Hence, Agy(Q) = dH. In particular, lim? , _+*" € Agy(Q). Since
the inclusions Q — G’ — G (by [8]) and H — G (by Theorem 1.1.2) admit the CT
maps, we see that

limS, =" € Ag(Q) (3.7. 4)
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It is clear from Inequalities 3.7. 3 and 3.7. 4 that the hypotheses of Theorem 1.1.9
are satisfied. Let K be the subgroup of G generated by NU {t} = Nx <t > (free
product). Therefore, the inclusion K — G does not admit the CT map. [l



Chapter 4

A combination theorem for trees of

metric spaces revisited

Suppose 7 : X — T is a tree of metric spaces (see Definition 2.3.1). In this chapter
we prove the hyperbolicity of X within an axiomatic framework. As a consequence,
we get a proof of Theorem 1.2.4 in Section 5.5. Now we will explain the hypotheses.
Unless otherwise specified, by u € S (or v € S or w € §) where S is a subtree of 7,
we always mean u (or v or w) to be a vertex of 7. We use the notation Xg := n! (S).

For each vertex u € T there is a subspace, say, .# (X,,) containing X,, and satisfy-
ing the following properties (220) — (74).

(£20) Suppose u,v € T and e is the edge on [u,v] incident on v. Let T’ be the
maximal subtree of 7 containing v but not containing e. Then .# (X,) N Xy C
A (Xy) N Xy

(21) Let L' > 0. For each u € T, there is a L'-coarsely Lipschitz retraction p,, :
X — . (X,). We also have an extra property of p, as follows. Let 7, = n(.# (X,))
and e be an edge in T intersecting 7, at a vertex. Suppose v is the vertex adjacent to
e not in 7;, and S 1s the maximal subtree of 7' containing v but not containing e. Then
diam{p,(Xs)} < C for some uniform constant C > 0.

(£2) There is a threshold constant Ly > 0 such that for L > Ly, N.(# (X)) is
path connected with the induced path metric from X and the inclusion Ny (.# (X)) —
X is n(L)-proper embedding.

For u,v € T, we say [u,v] C T is a special interval if either .# (X,) N X, # 0 or
XN (X,) # 0. If [u,v] is a special interval then for L > Ly,

(223) the inclusion Np (4 (X)) UNL(# (X,)) — X is n’(L)-proper embedding,
and

(P4) Np(A (X)) UNL(A (X)) is 6 (L)-hyperbolic metric space.

81
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Theorem 4.0.1. Suppose w: X — T is a tree of metric spaces satisfying properties
(20) — (P4). Then X is hyperbolic metric space.

Some remarks on Theorem 4.0.1: (1) Lemma 4.0.5 below, says that . (X,) is
hyperbolic (by Theorem 4.0.1 or one can use property &%4).

(2) Suppose w: X — T is a trees of hyperbolic metric spaces with the qi embedded
condition and Bestvina-Feighn’s flaring condition ([6]). Now we thinkof 7 : X — T
as trees of metric bundles. We set .Z (X)) = .ZIx(X,) (flow space of X, with certain
fixed parameters) (see Subsection 5.1.1). In Section 5.5, it is shown, in this case, that
A (X)) satisfies all the conditions 220 — 2?4. This shows that Theorem 4.0.1 covers
the combination theorem for trees of metric spaces considered in [6] and particularly,

acylindrical trees of metric spaces ([39]).

Definition 4.0.2. For a subtree S of T, we define .Z (Xy) := Uyes# (X,). Also
) =AM (X, )U

for finitely many vertices uy,u,--- ,u,, we define '///<X{u17uz,-~

///(Xuz) U"'U%(Xun)-

'7un}

Notation: For a given subtree S C 7', we denote .#7(Xs) to mean Ny (.# (Xs)).

The proof of Theorem 4.0.1 is divided into two parts as follows.

(1) Hyperbolictiy of .#7,(X;) where I is a special interval in 7.

(2) Hyperbolicity of .#7,(X;) where I is any interval in 7.

Finally, using (2), we conclude the proof. Before going into the proof of (1), let
us first prove some lemmata which are required in (1) and (2).

Lemma 4.0.3. Let S be a subtree of T. There is a uniform constant Ly ¢ 3 for which
we have a Ly ¢ 3-coarsely Lipschitz retraction ps : X — M (Xs).

Proof. Let us first define ps: X — .# (Xs). Let x € X and u be the nearest point
projection of 7(x) onto S. Then pg(x) is defined to be p,(x). Note that if x € .Z (X5),
then by (£0), ps(x) = x.

Let X5p = Uuer X, and x,y € X, such that dx (x,y) < 1. Then by Lemma 2.1.2,
we need to show a uniform bound on dx (ps(x),ps(y)). Let u,v be the nearest point
projections of 7(x), (y) on S respectively. If u = v, then by definition of pg, ps(x) =
Pu(x) and ps(y) = pu(y). So by (1), dx(ps(x).ps(y)) = dy (u(x). Pu(y)) < 2L.
Now let u # v. Since dr(7(x),m(y)) < 1, we have x,y € Xs. So by definition of pg,
dx (ps(x),ps(y)) < 1. Therefore, we can take Ly o3 := Ca.12(max{2L',1}). O

Lemma 4.0.4. Let S be a subtree of T. Then for all L > Ly, there is a proper function
N4.0.4 = Na.04(L) : R>9 — R>q such that the inclusion #1(Xs) — X is Na.0.4-proper
embedding.
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Proof. We denote the metric on .7 (Xs) by d’. Suppose x1,y, € .#1(Xs) such that
dx (x1,y1) < rfor some r € R>¢. Then there are x,y € .# (Xs) such that d’(x1,x) <L,
d'(y1,y) <L,and sody(x,y) <r+2L. Let t(x) = u and ©(y) = v, and so dr (u,v) <
r. Let u’ be the nearest point projection of # on S and V' be that of v on S. We consider
the following two cases depending on whether u/ =V or u/ #V'.

Case 1: Suppose u' #V'. Letx’ € X,y N[x,y] and ¥y’ € X,y N [x,y]. Then dx (x,x’) <
r+2L, dx(y,y") <r+2L, and also dx (x',y") < r+2L. Now x,x" € .#}(X,/) implies
d'(x,x') <n(r+2L) (by (£2)). Similarly, d'(y,y') < n(r+2L). Again X,y € Xg
implies d'(x',y") < dx,(x',y") < Ma232(r+2L) (see Lemma 2.3.2). Hence by triangle
inequality, d’(x,y) <21 (r+2L)+ n232(r+2L).

Case 2: Suppose u' =V'. Then by (£0), x,y € #(X,/). Hence d'(x,y) <
n(r+2L).

Therefore, by triangle inequality, in both the cases, d'(x1,y1) < 2L+2n(r+
2L) +M23.2(r+2L) =: N4.04(L)(r). O

Hence by Lemma 2.1.3, we have the following.

Lemma 4.0.5. Let S be a subtree of T. Then for all L > Ly, there is Ly o5 = L4.05(L)
such that the inclusion M1 (Xs) — X is Ly o.5-qi embedding.

Proposition 4.0.6 (Horizontal Subdivision). Let J = [u,v| C T be an interval and
ng € N. Then we can subdivide J into subintervals J = JoUJ U ...UJ,,_| such that
Ji = [wi,wit1], wo =u, w, = v and each J; is further subdivided into subintervals,

Ji = Wi, wi 1)U [wi1,wi2] U wiz,wi3|U[w;3,wir1] such that the following hold.

1. ﬂ(./f(Xwi))ﬁJi = [W,’,W,’J], Vo<i<n-—1.

2. Foralliexcept possibly i=n—1, dr (wi1,wi2) < 2no. Also, [wi,wi 1], [wi2, wi3]
and [w; 3,wiy1] are special intervals. Moreover, dr (w;3,wit1) = L.

3. dr(n( A (Xy,)), n(A (X

Wit1

) >2np,V1<i<n-—2.

Proof. The proof is by induction. Suppose we have constructed J;_; and we want to
construct J;.

Case 1: Suppose .# (X,,) N X, # 0. Then we stop the process and set n — 1 =
i, Ju—1 = [Wn—1,v] and wy_1 s =v=w, fors = 1,2,3.

Case 2: Suppose .# (X,;;) N X, = 0. Consider the vertex w; | € (w;,v] in T, which
is the farthest from w; such that ©(.Z (X,,,)) N [wi,v] = [wi,w; 1]. Now we consider

the following two subcases.
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Subcase (2A): Suppose dr(w; 1, (4 (X,))) < 2ng. Then we consider w;, €
[wi1,v] such that X, N.Z(X,) # @ and dr(w;1,w;2) < 2n9. Then we stop the
processand setn— 1 =iand w,_1 3 =v=w,.

Subcase (2B): Suppose dr (w; 1, (A (X,))) > 2ng. We take wiy € [wi,Vv] is
the farthest from v such that d7 (w; 1, T(. A4 (X,,,,))) > 2no. Let wiz € [w; 1, wiy1]
such that dr(w;3,w;+1) = 1. Then by our choices, dr(w; 1, T(# (Xy,;5))) < 2no.
Now we fix w;2 € [wi 1, w; 3] such that dr (w; 1, wi2) < 2ng and X, NA (X, ;) # 0.
We also note that dr (n(.# (X)), t(AM (Xy,.,))) > 2no, otherwise,

dr (Wi, 1, (A (X)) < 2no.

Therefore, we get J; = [Wi,WiJ] U [W,‘71,W,‘72] U [Wl'jz,wl'g] U [W,‘73,Wl'+1] with the
required properties.
)th

The induction stops at (n — 1) step if w, = v. Therefore, we are through. [

Lemma 4.0.7. Suppose S;,i = 1,2 are two subtrees in T such that S1 NS, = {u}.
Then¥ L >0, 1 (Xs,) N AL (Xs,) = M1 (Xy).

Proof. 1t is clear that .#7(X,) C .#1(Xs,) N4 (Xs,). For the reverse inclusion,
let x € 1 (Xs,) N A1 (Xs,). Then there exists x; € .# (Xs,) such that dy (x,x;) <L
for i = 1,2. Let m(x;) =¢; for i = 1,2. Now by (£0), if dr(t,S1) < dr(t2,52)
then x, € #(X,) or if dr(t1,S2) < dr(t1,S1) then x; € #(X,). In either case,
X € //L(Xu). Now suppose dT(lz,Sl) > dT(l‘Q,SQ) and dT(ll,Sz) > dT(tl,Sl). Then
since T is a tree, at least one of the geodesics [x,x]x or [x,x;]x has to pass through
X, Hence dx (x,X,) < L and so x € .#;(X,). Therefore, we are done. O

The proof of the upcoming lemma follows from a similar line of reasoning as

Lemma 4.0.7. So we omit the proof.

Lemma 4.0.8. Suppose u,v and w lie on an interval in T such that dr(u,v) <
dr(u,w). Then¥ L >0, //L<X{u7v}) H%L(X{v,w}) =M1 (Xy).

Lemma 4.0.9. For all L > Ly there are constants 8409 = 04.09(L) and K409 =
K4.0.9(L) satisfying the following. Suppose u,v and w lie on an interval in T such that
dr(u,v) < dr(u,w) and A (X,) N Xy # 0, A (X,) N X,y # 0. Then M1 (Xgpwy) is
04.0.9-hyperbolic metric space with the induced path metric. Further, the union of any
two intersecting spaces among { #1(X,), #1(X,), #1(Xy)} is Ky.09-quasiconvex
in %L(X{u,v,w})-

Proof. For the first part, we will apply Proposition 2.2.7 for n = 2 (see Remark 2.2.8).
Since ./ (X,) "X, # 0 and .Z (X,) N X,, # 0, by (P4), M1(X{,y) and AL( Xy, 0)
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are 6(L)-hyperbolic. Now by Lemma 4.0.8, .#1(X{,,,1) NV AL(X () = AL(Xy).
Again, by Lemma 4.0.5, .#7(X,) is L4.0.5(L)-qi embedded in X and so is in both
M1 (X)) and A1 (Xy,,,,1) With respect to their corresponding path metric. Thus by
Remark 2.2.8, A1(Xy) UAL(X (1) = AL(X{uw}) 18 O4.0.9-hyperbolic, where
04.0.9 := 022.8(6(L),L4.0.5(L)).

For the second part, we prove that .#}, (X{ M’W}) is a quasiconvex in .7}, (X{MMW})
provided .1 (X,) N.#1(X,) # 0, and the proof is similar for other intersections.
By Lemma 4.0.5, .#;(X,) and .#}(X,,) are Ly os(L)-qi embedded in X and so
are in . (Xg,y,)- Then by Lemma 2.2.22 (1), .#1(X,) and .#1(X,,) are K-
quasiconvex in .///L(X{W’w}), where K| = K22.22(84.09(L),L4.05(L),0). Therefore,
M (Xu) U AL(Xyw) is Kg09-quasiconvex subset of .1 (Xy,,, ), Where Ky 09 :=
K1+ 64.0.0. O

Hyperbolicity of .77 (X;) where [ is a special interval:
Proposition 4.0.10. Let I be a special interval in T. Then for all L > Ly there is

04.0.10 = 04.0.10(L) such that #1(X;) is a 64.0.10-hyperbolic metric space with the
induced path metric from X.

Proof. We will apply Proposition 2.2.6. Let I = [«/,V']. Without loss of generality,
we assume that .Z (X,,) N X,y # 0.

Choices: For a given x € .# (Xj), we fix once and for all u, € I corresponding
to x such that x € .# (X,,). For a pair (x,y) of distinct points .# (X), without loss
of generality, we assume that dr («',uy) < dr(u',uy). Since A (X)) N X,y # 0, so
by (£0), A (Xy,) N Xy, # 0. We take c(x,y) a fixed geodesic path in AL(X{,, .} )-
These paths serve as family of paths for Proposition 2.2.6.

Note that .# (X;) is L-dense subset in .#7(X;). Let x,y,z € .# (Xr). Without loss
of generality, we assume thatx € .Z (X,), y € #(X,), z € M (Xy) foru,v,w € [u/,V]
and dy (u',u) <dr(u',v) <dr(u',w). Soby (20), # (X,)NX, #0, #(X,) "X, #
0 and . (X,) NX,, # 0.

Condition (1): Let 5,7 € {u,v,w} and s # t. By (273), M1(X(s) is n'(L)-
properly embedded in X and so is in .#7(X;). Hence the family of paths are
N’ (L)-properly embedded in ., (X;).

Condition (2): We want to prove that the triangle formed by paths c(x,y), ¢(y,z)
and ¢(x,z) is uniformly slim. Then by Lemma 4.0.9, .#1.(Xy,,}) € AL(X;) is
04.0.9(L)-hyperbolic with the induced path metric and for all distinct s,¢ € {u,v,w},
//L(X{S’,}) is Kj-quasiconvex in ///L(X{uy,w}), where K| = K4.09(L). Now we will
show that .#,(X{, ) is uniformly qi embedded in .2, (Xy, .} ) Where s #t and 5,1 €
{u,v,w}. Let Ng  (A1(X(51)) C A1L(X{uy0y) denote (Kj + 1)-neighborhood of
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AM1(X(spy) in metric of .47 (X, ). Hence by Lemma 2.2.23 (1), N€K1+1) (A1L(Xi511))
is L1-qi embedded in ~///L(X{u,v,w}) for some L; depending on d409(L) and Kj.
Hence by Lemma 2.1.4, the inclusion .#1,(X(, 1) < A1L(X{y,y)) i L2-qi embed-
ding, where Ly = L 1.4(04.0.9(L),Ki +1).

So by the stability of quasi-geodesic (see Lemma 2.2.2), there is constant D =
2D322(64.0.9,L2,L) 4 84.0.9(L) such that the triangle formed by paths c(x,y), ¢(y,2),
c(x,z) is D-slim in the metric of .#1.(X{,,, ) and so is in the metric of .#1(X;).

Therefore, by Proposition 2.2.6, .#7(X;) is 04.0.10-hyperbolic, where 84,010 =
&.26(n'(L),D,L). u

As an iterated application of Proposition 4.0.10 along with Proposition 2.2.7 for
n = 2 (see Remark 2.2.8), we obtain the following. The proof is omitted.

Lemma 4.0.11. Given L > Ly and | € N there is a constant 84011 = 04.0.11(L,1)
satisfying the following. Let I = [u,v] for u,v € T such that dp(u,v) < 1. Then
AM1(Xp) is a 84.0.11-hyperbolic metric space with the induced path metric from X.

Hyperbolicity of .7 (X;) where [ is any interval: Before going into the proof,

we first prove the following two lemmata which will be used in the proof.
Let [ € N. Suppose J = U?lei C T is an interval in T such that length of J, < /.
Further Jy,J3,J4 are special intervals, and J; NJ; 1 is a single vertex for 1 <i < 3.

Lemma 4.0.12. Suppose J is as described above. For alll € N and L > Ly there
exists 04.0.12 = 04.0.12(L, 1) such that 41 (Xy) is O4.0.12-hyperbolic metric space with
the induced path metric from X.

Proof. We will apply Proposition 2.2.7 for n = 2 three times, successively on
pairs (AL(Xy, ), AL(X1)), (ALX108,), AL(Xy,)) and (AL(Xp0n00), AL(X1,))-
Since J1,J3,J4 are special interval, by Proposition 4.0.10, .#;(X},) is 64.0.10(L)-
hyperbolic for i = 1,3,4; and by Lemma 4.0.11, .#7.(X},) is 64.0.11(L,!)-hyperbolic.
Suppose 8; = max{d4.0.10(L),04.0.11(L,1)}. Let {u} =J;NJ>. Then by Lemma
4.0.7, M1(Xy) = A1(X5,) N AML(X},). Again by Lemma 4.0.5, .#7.(X,) is Laos(L)-
qi embedded in X and so is in both . (X;, ) and .#}(X},) in their respective path
metric. Therefore, by Remark 2.2.8, .#(X;,) U #1(X},) is 82.28(81,La05(L))-
hyperbolic.

Applying the similar argument as above on the remaining pairs we have men-
tioned, we conclude that .#; (X;,unus;,) U A1 (X),) = #1(X;) is uniformly hyper-
bolic metric space with the induced path metric from X. Let the uniform constant be
04.0.12 = 04.0.12(L,1). O
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Lemma 4.0.13. Given 6 > 0, L > Ly and a proper function g : R>g — R>, there
is a constant Dy .13 = D4.0.13(8,L, g) such that the following holds.

Let Y C X be a d-hyperbolic subspace of X such that #1(X,) U #1(X,) CY
and (M (X,)) N (A (X)) = 0. Suppose Y is g-properly embedded in X. Then the
pair (M1 (Xy), #1(X,)) is Dgg.13-cobounded in'Y .

Proof. We first note that by Lemma 4.0.5, .#1(X,) is L4.5(L)-qi embedded in
X and so is in Y. Then by Lemma 2.2.22 (1), .#1(X,) is Kj-quasiconvex in Y,
where K| = K2222(61,L4.05(L),0). Hence .# (X,) is K>-quasiconvex in Y, where
K> = K| + L. Similarly, .# (X,) is K»-quasiconvex in Y.

Let p:Y — .#(X,) be a nearest point projection map on .# (X, ) in the metric of
Y. Letx,y € . (X,) such that p(x) = x;, p(y) =y;. By Lemma 2.2.21 (3) and the
symmetry of the proof, it is enough to show that dy (x;,y;) is uniformly bounded.

Now by [10, Lemma 1.31 (2)], the arc-length parametrizations of [x,x;]y U
[x1,y1]y and [y,y1]y U [y1,x1]y are (34 2K;)-quasi-geodesic in Y. If dy(x1,y;) <
Ly75(0,3+2K>,3+2K5), then we are done. Suppose dy (x1,y1) > Lr25(8,3+
2K>,3+2K5). So by Lemma 2.2.5, [x,x1]y U [x1,y1]y U[y1,y]y is A1-quasi-geodesic
in Y, where A1 = A4,,5(8,3 + 2K>,3 + 2K;). Therefore, by stability of quasi-
geodesic (see Lemma 2.2.2) and K,-quasiconvexity of .#(X,) in Y, there ex-
ist xp,y2 € . (X,) such that dy(x1,x2) < Dy52(8,A1,41) + K = Ly (say) and
dy (y1,72) < L. Since 7(4 (X)) N 2(-A (X,)) =0, by (1), diam{py (A (X,))} <
C in X. Therefore, x,,y, € . (X,) implies dx (p,(x2),P.(y2)) < C. Again p, is L'-
coarsely Lipschitz retraction of X on .Z (X,) (see (Z1)). Since x1,y; € .4 (X,),
50 Pu(x1) = x1, Pu(y1) = y1. So dx (x1,pu(x2)) = dx (Pu(x1), Pu(x2)) <L'Li + L' =
L, (say). Similarly, dx(y1,pu(y2)) < Lp. Therefore, dx(x1,y1) < dx(x1,p(x2)) +
dx (pu(x2),Pu(3)) +dx (Pu(y2),y1) < 2Ly +C = dy(x1,y1) < g(2L, +C) since Y
is g-properly embedded in X.

Hence, diam{p(.# (X,))} < Lz in Y, where L3 = max{g(2L, +C), L, 5(58,3+
2K5,3+42K3)}. Therefore, (by the symmetry of the proof) the pair (.# (X,),.# (X,))
is Lz-cobounded in Y. Then by Lemma 2.2.21 (3), the pair (.#Z1(X,), #1(X,)) is
Dy .13-cobounded in Y, where D4 .13 = D2221(61,K2,L3,L). O

Now we are ready to proof the main result.

Proposition 4.0.14. Let I be an interval in T. Then for all L > Ly there is 04.0.14 =
04.0.14(L) such that M1 (Xy) is O4.0.14-hyperbolic metric space with the induced path

metric from X.
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Proof. Letl =JyoUJ;U---UJ,_1 be a subdivision of the interval / coming from
horizontal subdivision, Proposition 4.0.6, with ny = [L] + 2, where [L] is the greatest
integer not greater than L. We refer to Proposition 4.0.6 for the description of
Ji = [wi,wit1]. Then by Lemma 4.0.12, .Z1.(X},) is 4.0.12(L,2n0)-hyperbolic metric
space forall i € {0,1,--- ,n—1}.

Now we will verify all the conditions of Proposition 2.2.7. Let X; = .#1.(X},)
for0<i<n—1landY =X;NXip1 = A1(Xy,,,) for 0 <i<n—2 (see Lemma
4.0.7).

(1) For 0 <i<n—1, X;is 6;-hyperbolic metric space, where 8; = 04.0.12(L,2n).

(2) By Lemma 4.0.5, Y; | = .#1(Xy,,,) is L4.0.5(L)-gi embedded in X so is in
both X; and X; | for0 <i<n-—2.

(3) Note that by (220), if x € X;\Yir1 andy € X; 1 \ Yiy 1 then wiyg € [7(x), 7(y)]\
{m(x),m(y)}. Hence every path in .2 (X;) joining points X; and X; | passes through
Y1

(4) Suppose i € {1,2,--- ,n—2}. Note that ©(.# (X,,,)) N w(A (X, ,)) =0 (by
Proposition 4.0.6 (3)). Again X; is 14.0.4(L)-properly embedded in X and so is in
AM(X;). Also, A1 (Xy,)U A1 (Xw,,,) € X;. Then by Lemma 4.0.13, there is D
depending on J;, L and 14.0.4(L) such that the pair (¥;,Y;;1) is D-cobounded in X;.

(5) Let 1 <i <n—2and dy,(Y;,Yiy1) < 1. Then dx (A (Xy,), #(Xy,,,)) <
2L+ 1, and so dy (w(M (X)), (A (Xy,,,))) < 2L+ 1 < 2ng (by our choice of n).
This contradicts to (3) of Proposition 4.0.6.

Therefore, by Proposition 2.2.7, .#1(X;) is 04.0.14-hyperbolic, where 840 14 =
0227(61,L405(L),D). =

As a consequence of Proposition 4.0.14 along with Proposition 2.2.7, we obtain
following. We omit the proof.

Lemma 4.0.15. Given L > L there is 04.0.15 = 04.0.15(L) satisfying the following.
Let u,v,w € T and T,y be the tripod in T with vertices u,v,w. Then .47 (Xt

uvw

) is

04.0.15-hyperbolic metric space with the induced path metric from X.

Proof of Theorem 4.0.1: We fix L = Lj;. We show that X satisfies all the
conditions of Proposition 2.2.6. Let X, = U,crX,. Note that X, is a 1-dense
subspace of X. So given any two points x,y € X,;,, we define path joining them as
follows:

Let x € X, and y € X, for some u,v € T. Note that X[, ) = 7 ([u,v]). We fix
once and for all, a geodesic path c(x,y) in .#1(X},,)) joining x and y. These paths
serve as family of paths for Proposition 2.2.6.

Let x,y,z € V(X) such that w(x) = u, n(y) =v and 7(z) = w.
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Condition (1): For all distinct s, € {u,v,w}, by Proposition 4.0.4, .#1(X[s ) is
N4.0.4(L)-properly embedded in X and so are the paths.

Condition (2): Let 7,,,, be the tripod in T with vertices {u,v,w}. By Lemma
4.0.15, A1 (Xt,,,) is 04.0.15(L)-hyperbolic metric space. Again by Lemma 4.0.5,
ML (Xjuy))s AL(Xy)) and A1 (X[,,) are Lgo.5(L)-qi embedded subspaces of X
and so are of .# (X7, ). Then the hyperbolicity of .#; (Xr,,,) and the stability of

quasi-geodesic in .} (Xt,, ) (see Lemma 2.2.2) imply that the triangle formed by

uvw

paths ¢(x,y), c¢(y,z) and ¢(x,z) is D-slim in .#; (Xr,,,) and so is in X, where

uvw

D =2D352(64.0.15(L),La.05(L),La0.5(L)) + 64.0.15(L)-
Therefore, by Proposition 2.2.6, X is & .2.6(N4.0.4(L),D,1)-hyperbolic. This
completes the proof. O






Chapter 5

A Combination Theorem for Trees of
Metric Bundles

In this chapter we will prove Theorem 1.2.4. Our standard assumptions for this
chapter are that the tree of metric bundles (X,B,T) must satisfy axiom H and a
flaring condition. However, by Remark 2.4.8 (a) one can observe that k-flaring
condition for a large k is enough (see introduction of Section 5.2, Section 5.3 and
Section 5.4).

5.1 Semicontinuous families: flow space and ladder

Motivated by the construction of semicontinuous families of spaces in [9, Chapter
3], we build subspaces analogous to that in trees of metric bundles. We follow the
same terminology used in [9]. Also, following [9], we will see two special kinds of
subspaces: flow spaces and ladders. These are the building blocks, which will be
shown to be hyperbolic, towards proving Theorem 1.2.4.

Suppose (X,B,T) is a tree of metric bundles as in Definition 2.4.2. Suppose
Y = Uvery bes, Qb Where O, C Fj, and Ty := hull(7(2))). With this we define

the following.

Definition 5.1.1 (Semicontinuous subspace). Let K > 1,C > 0 and € > 0. We say
thatY) C X is a (K, C, €)-semicontinuous family in X with a central base B = 75 | (T)
for some central subtree ¥ in Ty if the following hold.

1. Letv € Ty and b € B,. Then @, is a 268p-quasiconvex subset of F;,, and
Upep, Oby € X, forms a K-metric bundle (see Definition 2.4.11) over B,.

Moreover, Uveng. e, O,y forms a K-metric bundle over 5 in X.

91
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2. Let v,w € Ty such that w ¢ T,dr(v,w) = 1,dr(%,w) > dr(%,v). Let [v, 1]
be the edge joining v € B, and w € B,,. Then Hdyw (Pr(Qy.v), Qro,w) < € (see
Notation 2.4.10 for Py) and dyp (¥, Qp.v) < K,V x € Oy . Moreover, if both
v,w € T then Hdpw (Qy v, Orow) < K.

3. Suppose w ¢ Ty, v € Ty such that dr(v,w) = 1. Let [v,10] be the edge joining
v € B, and tv € B,,. Then the pair (Qy,,, Fiy.,w) is C-cobounded in the metric
For.

4. Additionally, let B' C 75 ' (Ty) be (1,68)-qi embedded subspace in B. Sup-
pose v € Ty and B, := B,NB’. ThenVv € Ty) and V b € B, \ B}, diam/ (Qy,,) <
C.Letd :=m ' (B)NY.

Remark 5.1.2. (a) The condition (4) is used in Section 5.3 (more precisely, in Lemma
5.3.14), otherwise, all the time B’ = ﬂgl (Ty)andso Y’ =9).

(b) If T is a single vertex, say, {u} then ) is K-metric bundle over B,,.

(¢) If mp : B— T is a graph isomorphism, then ) is the same as the semicontin-
uous family defined in the book [9, Chapter 3].

(d) (Maximality) ‘Moreover part’ in conditions (1) and (2) are equivalent
provided first parts of (1) and (2) hold. Let z € ) and ¢, be the nearest point
projection of 7(z) on T. Suppose B, = 75 ' ([t;, 7(z)]) UB. Then it follows from
the conditions (1) and (2) that there is a compatible K-qi section (see Definition
2.4.4), say, X, over B, lying inside ). Sometimes (more precisely, in Subsection
5.2.2), we work with maximal qi sections through points in ) as follows. Let
S be a subtree of Ty containing TU [t;,7(z)]. Note that B, C Bs. Let ¥ = {1 :
7 is a compatible K-qi section over By through z lying inside 2)}. We put an order
‘<’ (inclusion) on ¢ as follows. For n,1' € 4, we say n < n’ if and only if n C 1’.
This order ‘<’ makes ¢ a poset. It is easy to see every chain has an upper bound in
¢. Therefore, by Zorn’s lemma, we get a maximal compatible K-qi section through
z over a base, say, By containing B, and contained in 75 ! (T@) By abusing notation,
we still denote the base for this maximal section by B;.

(e) One also can introduce other (uniform) constants for quasiconvexity of
sets O, in F,,, and qi embedding of B" in 75 ! (Ty) instead of 20y and (1,60)
respectively. However, for simplicity, we will exclusively work with these constants.

(f) Later on, in our statements, we suppress the dependence on the constants
C, € and the other structural constants of the tree of metric bundles when dealing

with semicontinuous family.

Now we will see nice properties (see Theorem 5.1.3, Proposition 5.1.4 and

Corollary 5.1.5) enjoyed by semicontinuous families. In the proof, we use the same
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notations as in the Definition 5.1.1. First, we prove that there is uniformly coarsely
Lipschitz retraction of X on semicontinuous families. This is motivated by Mitra’s
retraction in [1] (see also [10, Theorem 3.2] and [9, Theorem 3.3]). In this thesis,

we refer this retraction as Mitra’s retraction.

Theorem 5.1.3. Given K > 1,&€ > 0 and C > 0 there is a constant Ls 1 3 = Ls 1 3(K)
such that the following holds.

IfY is a (K,C,€)-semicontinuous family (as in Definition 5.1.1) in X, then there
is Ls 1 3-coarsely Lipschitz retraction ps. 3= pyy : X =" of X on ',

Proof. Let X,5, = UuerX, and x,y € X, such that dx(x,y) < 1. Then by Lemma
2.1.2, it is enough to define a map p : X,5, — 2’ for which dx(p(x),p(y)) is uni-
formly bounded.

Let us define p : X,5, — 2’ as follows. Suppose x € X5, and b = 7y (x),u = 7(x).
If b € B', then p(x) is defined to be a nearest point projection on Op , In metric F, .
Now suppose b ¢ B'. Let a be a nearest point projection of b on B’ and 7g(a) = v.
Since B' is (1,68)-qi embedded in 75 ' (Ty), so is in B. Then B’ is K'-quasiconvex in
B, where K’ = K> 5.22(80,max{1,68},0). Note that a is coarsely well defined. We
also assume that a_ € [a,b]p such thata # a_ and dg(a,a_) <1, and let mg(a_) = w.
Let x’ be a nearest point projection of x on F,_,, in the metric X. Then we define p(x)
as nearest point projection of x’ on Q, , in the path metric Fp, := Ty 1 (la,a-]B).

Now we prove dx(p(x),p(y)) is uniformly bounded where x,y € X,s, and
dx(x,y) < 1. Let mx(x) = a, mx(y) = b and w(x) = v, n(y) = w. We consider
the following cases, depending on the position of a,b,v and w.

Case 1: Suppose a,b € B'. We consider two subcases, depending on whether
V=worv#w.

Subcase (1A): Suppose v = w. We proof it by dividing into two parts, when
a=banda+#b.

Subsubcase (1AA): Suppose a = b. Since Q,, is 28p-quasiconvex in F, ,, by
Lemma 2.2.21 (1), d/ (p(x),p(y)) < 2C2.221(8,280) = L (say).

Subsubcase (1AB): Suppose a # b. Note that dp(a,b) < dx(x,y) < 1. Now
through each point in ) N X, there is K-qi section over B, lying inside %) N X,,.
Define a map y : F,, — Fj,, as follows. For z € Q,,, take y(z) € Oy, such that
dx,(y(z),z) < 2K. For z ¢ Q,, take y(z) € Fp,, such that d(y(z),z) < ¢o (as in
Definition 2.4.2). In either case, dx, (¥(z),z) < 2K,V z € F,,. Then by [10, Lemma
1.15], v is g(2K + cp)-quasi-isometry for some function g : R>g — R>¢. Again
V& € 0py,3N € Quy such that dx, (§,n) < 2K and 7 is further 2K-close to a point
in Y(Quy),i.e. Opy C Nag(W(Qa,)) in the metric of X,,. Since fibers are ¢-properly
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embedded, Q;, C N£(4K)(Qa,v) (see 2.4.10 for notation). Then y(Qu,) C Op,
implies Hd' (y(Quy),0py) < ¢(4K) in the metric of Fj .

Let y; be a nearest point projection of y on y(Q,,) in the metric of Fp,.
Now by Lemma 2.2.22 (1), there is a constant K} = K32.22(80,8(2K + ¢p),28) >
268y such that y(Q,,) is Kj-quasiconvex in F,,, and so by Lemma 2.2.21 (2),
' (y1,p(y)) < E2221(80,K1,9(4K)). Again Lemma 2.2.22 (2) says that there is
D =D3722(80,8(2K +¢¢),268y) for which dy, (v (p(x)),y1) < D. By the definition
of v, we also have dx, (p(x), y(p(x))) < 2K. Hence combining these four inequal-
ities, we have L, = 2K+D2,2,22(50,g(2K+ C()), 250) +Er001 (5(),K1, ¢(4K>) such
that dx, (p(x), p(y)) < La.

Subcase (1B): Suppose v # w. Then it follows that dx (x,y) = 1, dp(a,b) = 1,x €
Fyy, y € Fyanda € By, b € B,,. To make things notationally consistent, we assume
that a = v,b = 1. Note that [b,10] C B’ C 7! (Ty). Now irrespective of whether
[0, 0] is an edge in B or not, we have Hdyr (P (Qu,v), Or.w) < max{2K,€}. Then by
Lemma 2.3.5 (1), dx(p(x),p(y)) < dow(p(x),p(¥)) <R23.5(280, K,max{2K,e}) =
L3 (say).

Case 2: Suppose one of a,b belongs to B'. Without loss of generality, we assume
that a € B and b ¢ B'. Here we also consider the following subcases, depending on
whether v =w or v # w.

Subcase (2A): Suppose v =w. Let mx(p(y)) = d’. Then dp(a,d’) < 2, and so
Hdx,(Qav,Qnv) < 2K+ K =3K. Again, since diamf(Qb7v) < Cthendiam(Q,,) <
4K +C. Thus diam/ (Q,,) < ¢ (4K +C), and so dx (p (x),p(y)) <3K+ (4K +C) =
Ly (say).

Subcase (2B): Suppose v # w. For the consistency of notation, we assume that
a =v,b = 1. Without loss of generality, we let dr(7g(B NB’),v) < dr(np(BN
B'),w). Note that in this case, p(y) is nearest point projection of y on Qy, in
the metric of Fy,. Then by Lemma 2.3.6, dx(p(x),p(y)) < dow(p(x),p(y)) <
R23.6(280) = Ls (say).

Case 3: Suppose a,b ¢ B'. Letd' = mx(p(x)),b' = mx(p(y)) and &’ € [d’,d],
b’ €[V ,blg such thata’ #d', b’ # D' and dg(d’',a’ ) < 1,dg(b’,b" ) < 1. Since
dx(x,y) <1, then mg(a’) = mp(b’) and mp(a’_ ) = mp(b_). Let us rename 7g(a’) as
v and mg(a’_) as w not to make notation-heavy. We consider the following subcases
depending on whether v =w or v # w.

Subcase (3A): Suppose v =w. Since B’ is K'-quasiconvex in B (where K’ =
K>2.22(80,max{1,680},0)) and dg(a,b) < dx(x,y) < 1, so by Lemma 2.2.21 (1),
dp(d',b') < 2C1721(8,K’). Note that ) NX, forms a K-metric bundle and so
Hdyx,(Qy ,Qp ») <2KC2221(8,K’) + K. Since d’_,b’_ € B, then diam/ (Q, ) <
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¢ (4K +C) and diam/ (Qpv) < (4K +C) (see Subcase (2A) for instance). Hence
dx(p(x),p(y)) <2KCr221(80,K") + K+ ¢ (4K + C) = Lg (say).

Subcase (3B): Suppose v # w. For the consistency of notation, we assume that
ad=b =vandd =b" =ro. In the same way, we consider the following two
subcases.

Subsubcase (3BA): Let [v,1] be an edge in 75 ' (Ty). Without loss of gener-
ality, we assume that dg(7mg(B NB'),v) < dg(mg(B NB’),w). By the assumption
diam/ (Qy ) < C and so diam(Pry(Qy)) < 2€ + C in the metric of Fyy. Then by
Lemma 2.2.18, there is a constant C; depending on A}, §) and 2€ 4 C such that the
pair (Qp,v, Fro,w) is C1-cobounded in the metric of Fyy. Therefore, dx (p(x),p(y)) <
Cy = L7 (say).

Subsubcase (3BB): Suppose [0, 1] is not an edge in 7t ' (Ty). Then by definition
of semicontinuous family 9), the pair (Qy ,, Fiv ) is C-cobounded in the path metric
of Fon- So dx(p(x),p(y)) <C.

Suppose L = max{L;,C:1<i<7}=max{L;: 1 <i<7}. Therefore, by Lemma
2.1.2, one can take Ls 13 = Co.12(L). O

Next we show that a uniform neighborhood of semicontinuous families are path
connected in X and uniformly properly embedded in X with the induced path metric
from X. As a consequence, we will see that it is also (uniformly) qi embedded in X
(see Corollary 5.1.5).

Proposition 5.1.4. Suppose K > 1,C > 0 and € > 0. Then for all L > max{2dy +
1,2K} there exists Ns.1.4 = Ns5.1.4(K,L) : R>g — Rxq such that the following holds.

IfY is a (K,C,¢€)-semicontinuous family (as in Definition 5.1.1) in X, then
N1(2)) is path connected and with the path metric on N.(2)) induced from X, the
inclusion i : N[()') < X is N5.1.4-proper embedding.

Proof. Tt is clear that N7(2)’) is path connected. We denote the path metric on
N (2)') induced from X by d'.

For second part, we first show that for r € R>¢, x,y € %) and dy (x,y) <rwe have
bound on d’(x,y) in terms of r; in the end, we show the same for points in Ny (2)).
Fix u € mg(B N B'). We take ¢, the center of the tripod in T with vertices 7(x),
n(y), uif [m(x), w(y)]r N wg(BNB') = 0; otherwise, t € [n(x),x(y)|]r Nwg(BNB)
arbitrary. Leta = my (x),b = mx (y). Thendp(a,b) < dx(x,y) <r. Since the inclusion
B — ﬂgl(T@) is (1,68p)-qi embedding, dg(a,b) < r+60. Let ¢ € B;N[a,b]p be
arbitrary. Then dg (a,c) < r+60y and dg (c,b) < r+68y. By taking K-qi lifts of
geodesics [a, c|p and [c,b]p in ) (more precisely, in '), we get, x1,y1 € O, such
that d’(x,x;) < 2K(r+668y) and d’(y,y1) < 2K(r+638y) (see Lemma 2.4.12 (3)).
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Now dx (x1,y1) < dx (x1,%) +dx (x,y) +dx (y,y1) < d'(x1,x) +dx (x,y) +d'(y,y1) <
4K(r+680) +r = d’ (x1,y1) < ¢(4K(r+68) +r).

Note that N{cﬁ(ﬁ—l (Qct) CNL(Y')NF.;as L>28+ 1, and x1,y; € Q. Then by
Lemma 2.2.23 (1), there is D(r) depending on r such that d’(xy,y;) < D(r). Hence
d (x,y) <d'(x,x1)+d (x1,y1) +d (y1,y) <4K(r+668y) +D(r).

Now suppose x,y € N.(2)') such that dx (x,y) < r. Then 3 x,y; € 2)’ such that
d'(x,x1) <Land d'(y,y;) < L. So dx(x1,y1) < 2L+ r. Thus by above, d’(x1,y;) <
4K (2L+r+60)+D(2L+nr). Hence combining these inequalities, we get, d’(x,y) <
4K(2L+r+6689) +D(2L+r)+2L.

Therefore, we can take 154 : R>9 — R>¢ sending r — 4K (2L +r+6dy) +
D(2L+r)+2L. O

As a consequence we have the following corollary (see Lemma 2.1.3).

Corollary 5.1.5. Suppose K > 1,C > 0 and € > 0. Then for all L > max{2&y +
1,2K} there exists Ls 15 = Ls.1.5(K,L) := Ly.13(Ns5.1.4(K,L),Ls.1 3(K),L) such that
the following holds.

IfY is a (K,C, €)-semicontinuous family (as in Definition 5.1.1) in X, then the
inclusion i : NL(2)') — X is Ls.1 5-qi embedding in X.

Remark 5.1.6. Conclusion of Theorem 5.1.3, Proposition 5.1.4 and Corollary 5.1.5
hold for %) as well.

5.1.1 Flow space

Suppose (X,B,T) is a tree of metric bundles as in Definition 2.4.2. Letu € T,a € B,,.
Given a subset A, , of Fy ,, we define (rather, construct) the flow space of A, ;,, which
is a semicontinuous family in X with central base (possibly bigger than) B,. The
construction of this flow space is by induction as follows. Let kK > K3 417 be fixed.

Step 1: ¢, = {y: yis a k-qi section over B, through a pointin A, ,}. Let b €
B, and Qp , = hull{y(b) : Yy € 9, .} C Fp,; where quasiconvex hull is considered in
the corresponding fiber. Note that 0y, ,, is 20p-quasiconvex in F;, , and by Lemma
2.4.12 (2), Upep, Qb forms a C; 4.12(k)-metric bundle over B,,.

Step 2: We extend this to other X, by induction on dr(u,v). Suppose we have
extended it till X,, where dr(u,v) =n. Let w € T such that dr(u,w) =n+1 and
dr(v,w) = 1. Let [v,10] be the edge joining v € B, and wv € B,,. We denote Q,, as
the intersection of the flow space we are constructing with F, ; fort € T,a € B;. We
first flow Qy, in Fyy ., and then by Step 1 above in the entire X,,, provided Qy, ,» 7 0.
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Let us fix R > Ry2.13(8), Ay) and let R = R}, , 15(8), A}, R). Note that Qy , is 28-
quasiconvex in F, ,, and so is Aj-quasiconvex in Fyp, (see Lemma 2.3.4 (2)). Suppose
NE®(Qp.v) N Fro e # 0. Then by Lemma 2.2.13 (2), Po(Qo.v) € N3P (Qo.v) N Fro =
Q{mw (say). Let Qu w := hull(Q{nyw) C Fy w, where quasiconvex hull is considered
in Fy . Note that Qy, ,, is 20p-quasiconvex in Fy, ,,. Now we apply Step 1 to Oy
by considering all k-qi section over B,, through points in Q, .

If N3®(Qp,v) N Fypw = 0, then we will not ‘flow” Oy, in that direction. In other
words, let S be the component of T \ {v} containing w. ThenV ¢ € Sand V b € B;,
we have, O ; = 0.

Now we prove the following properties which verify that the subspace we are
constructing is a semicontinuous family. Let v,w € T such that dr(u,v) < dr(u,w).

Property 1: Suppose Oy, # 0 and N3 (Qy.) N Fp,»w = 0. Then the pair (Qy v, Fro,w)
is C := D3 513(6), A})-cobounded in Fyp,. Indeed, Oy, and Fy ,, are Aj-quasiconvex
in Fyy (see Lemma 2.3.4 (2)). So by Lemma 2.2.13 we are done.

Property 2: Suppose Qy , and Qy, ,, are nonempty. Then Qi € NP (Qy,) for
some uniform constant K’.

Proof. Let x € Q. Then 3 xi,x2 € Qy,,, and X’ € [x1,X]F,,, such that
d’(x,xX') < 8. Let y1,y2 € Qu such that dyw(x;,y;) <R, i = 1,2. Note that
Qo 18 L()—qi embedded in F,p, (Lemma 2.3.4). Then by slimness of quadrilat-
eral in Fyy with vertices x1,x2,y; and ys, there is x” € Qy ,, such that dyp, (x',x”) <
2D;22(84, Ly, Lyy) + R +28)+ 28y Thus d(x,x”) < 2Dy 2(84, Ly, Ly) +R' +28)+
260+ 6 =: K.

Property 3: Suppose both Oy, ,, and Qy, ,, are nonempty. Then Hdym (Pro(Qo.v); Orow) <
¢ for some uniform constant €.

Proof. Property (2) tells that Qp, ., € N3 (Po(Qo,v)). Again by construction
Pm(va) C Q- S0 Hdyy (Po(Qo.v), Qnyw) <2K'=:¢e.

We denote Flx(Aqu):= U  QOpy; where K = max{K',Cr.4.12(k)}.

veT,beB,
Definition 5.1.7 (Flow space). We say Flx(Aqu) = Uyerpep, Qb is the flow
space of A, , with parameters k > K> 4 12 and R > R2_2_13(66,7L(’)). It is clear from
the construction that .% [x (A, ) is a (K,C, €)-semicontinuous family, where K =
Ks 1 7(k,R) = max{K',Cy.4.12(k)},C = D3,13(8},A}) and € = &5 17(R) are as in
above properties.

In particular, for any u € T and a € By, suppose .# [k (F,) is the flow space of
Fy, with parameters k > K> 4.12, R > Ry.13(6), A}), where K = Ks 1 7(k,R). Then
by Lemma 2.4.12 (1), X, C FIkx(F,,). In this case, we denote the flow space by
Flkg(X,) and we say Flg(X,) is the flow space of X, with parameters k, R.
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Although ZIk(A,,) depends on the constants C,€ and the other structural
constants of (X, B, T), we make them implicit in our notation.
We have defined the flow space of a subset of a fiber and of X, for u € T in

Definition 5.1.7. Below we make it a bit general and will use this in Section 5.4.

Definition 5.1.8 (Flow space of metric bundles). Fix k > K3 4.1>. Let S be a subtree
of T and R > max{R»,.13(8), ), k}. Suppose H is a k-metric bundle over By (see
Definition 2.4.11). Let H,,, := HNF}, for u € S,b € B,. We also assume that
Hy , is 28p-quasiconvex in F, ,. Suppose .7(S,1) = {w € T : dr(S,w) = 1}. Let
we . (S,1) and v € S such that dr(v,w) = 1. Let T,,, be the connected component
of T'\ {v} containing w along with the edge [v, w|. Suppose [v, 0] is the edge joining
v €B,andw € B,,. Let &% l,?’“ (Hy y) is the flow space of H, , only inside X7, (with
the parameters k, R) such that ﬁllz‘“v (Hy ) NX, = HNX,, where K = Ks ; 7(k,R).
We define F g (H) := U,pe.7(s,1) ﬁl,@w (Hy ) as flow space of H.

It is clear that Z Ik (H) is a (K, C, €)-semicontinuous family with a central base
Bs, where K = K51 7(k,R), C = D32.13(8),A)), € = €5.1.7(R).

Let us record some constants from the above discussion in the following lemma.

Lemma 5.1.9. Given k > K 412 and R > max{R,.13(8),A}),k} there are con-
stants Ks 19 = Ks519(k,R) = Ks.1.7(k,R), €519 = &.19(R) = &.1.7(R) and Cs 1 9 =
Dy 213(8), A)) such that the following hold.

1. LetueT. Then Flk,, (Xy) is a (Ks.1.9,Cs.1.9,€5.1.9)-semicontinuous family
with a central base B,,.

2. Let S be a subtree of T and H be a k-metric bundle over Bs. Then Z g, ,(H)
is a (Ks.1.9,Cs.1.9, €5.1.9)-semicontinuous family with a central base Bs.

Note that in Lemma 5.1.9, (2) needs the condition R > max{R»,.13(8), 7).k},
whereas (1) holds for R > Ry 2.13(6),A)-

Consider the flow spaces with parameters k,R as taken in Lemma 5.1.9. Let
K =Ks19(k,R),C =Cs19 and € = €51 9(R). Flow spaces being semicontinuous
families, we have and restate the following three results for flow spaces (see Proposi-
tion 5.1.3, Proposition 5.1.4, Corollary 5.1.5 and also Remark 5.1.6), as they will be

utilized extensively in Section 5.3 and Section 5.4.

Proposition 5.1.10. There exists Ls .10 = Ls.1.10(K)-coarsely Lipschitz retraction
Ps5.1.10:X — LngK(Z) where Z € {XM,H}.
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Proposition 5.1.11. Given L > max{2K,28y+ 1} there is N5.1.11 = Ns.1.11(K,L) :
N — N such that the inclusion i : N (Flx(Z)) — X is N5.1.11-proper embedding in
X, where Z € {X,,,H}.

Corollary 5.1.12. Given L > max{2K,20y+ 1}, there is Ls 112 = Ls.1.12(K, L) such
that the inclusion i : Ni.(Flg(Z)) — X is Ls.1.12-qi embedding, where Z € {X,,H }.

Flow space being semicontinuous family, the fundamental and crucial property
is the existence of gi sections through each point over the respective domain. If one
carefully analyses the construction, one will realize the following. Given a qi section,
one can construct, by taking larger neighborhood at the junction (more precisely,
in Fyy), a flow space containing the gi section. The following lemma captures this

property. Since it is straightforward, we omit the proof.

Lemma 5.1.13. Given K > Ks 1 9(K>.4.12,R2.2.13(8), A})) there are constants Ks | 13 =
Ks1.13(K) = Ks.19(K,K),Cs.1.13 = Cs.1.9(8), A) and & 113 = €5.1.13(K) = €51 9(K)
such that the following holds.

Suppose S C T is a subtree and u € S. Let Y be a K-qi section over Bg. Suppose
Flks | 5(Xy) is the flow space of X, with parameters K and K. Then y C Flk. | 5(Xu)
and Flk, | ,(Xy) is a (Ks.1.13,Cs.1.13, €5.1.13 ) -Semicontinuous family.

Notation 5.1.14. We define a function x(!) — x(+1) to measure the iteration in the
above Lemma 5.1.13. In other words, suppose kK > Ks.1.9(K2.4.12,R2.2.13(8),A)))-
Define k(0 = i, x(i+1) = K5,1,13(K("), K(i)). Then for the flow space .# 1 (X,) of
X, with parameters k = k")) and R = k=1, we have, Z1 ) (X,) C F1 1) (Xa)-

5.1.2 Ladder

Suppose (X,B,T) is a tree of metric bundles. Let K > 1,C >0, € > 0. A ladder
¥ CXisa(K,C,g)-semicontinuous family with a central base, say, B such that
fibers are geodesic segments. However, in addition, we also have the following extra
properties.

(L1): For all v € Ty (where Ty = hull(n(.%))), £ NX, is a special K-ladder
(see Definition 2.4.11) over B,.. Moreover, .2 N Xq forms a special K-ladder over 8.

We also have the following orientation on fiber geodesic.
Notation 5.1.15. T :=n3(*B), £, =L NF,,Vae B, VveTy.

We fix u € T once and for all. As .Z NX, is bounded by two K-qi sections over B,
we set one of them as top and the other one as bot to give an orientation on .Z" N X,;

where the abbreviation top and bot is coming from ‘top’ and ‘bottom’ respectively.
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So we have an orientation for each fiber geodesics of .Z N X, as ‘bot to top’. We put
orientation on .Z by induction on d7 (u,v) as follows, where v € Ty. Let vyw € Ty
such that dr(u,v) < dr(u,w) and dr(v,w) = 1. We also assume that w ¢ T; and
it is mentioned in the end for the case w € T. The orientation to fiber geodesics
of £ NX, depend on that of Z NX,. Let [v,w] be the edge joining v € B, and
to € B,. Let %, = [xw,ynvv]f and Ly 1= [xmw,ym,w]f such that rop(%, ) =
Xp,y and bot (L) = yov. Let Xy, Yoy € Lo,y such that dyp (Fp v, X,w) < K and
doro (Vo0 Yow) < K. Let hy,y 1 Ly w — 25, be a monotonic map (see Lemma 2.2.4)
sending Xy, t0 Xy, and i t0 Jy , such that dyw (A (x),x) < ka.2.4(8), Ly, K) for
all x € £y ,. We fix this h,, once and for all for such v,w. The orientation in
Z N X, depends on the order of how X, , and y, , appear in .%;,. Let the K-qi
sections 7 and % bound .Z NX,, such that ¥ (10) = xp,, and % (10) = y . If
Yo < Vou < Xy < Xy, then we set ¥y to be top and 9, to be bot for £ NX,. In
other words, top(Z,w) = Y1(a) and bot (L) = Y2(a), a € By,. If yy, < Ky, <
Vo,v < Xp,v, then we set 1 to be top and y; to be bot for £ NX,,. In other words,
top(ZLuw) = 2(a) and bot(Z,,,) = ni(a), a € B,,. However, by renaming, we
always denote %, ,, € Im(h,,,) for the closest point (in the induced metric on .%; )
to xp , and ¥y, € Im(h,,,) for the closest point to yy ,. Otherwise, i.e., if Xy , = Jp.v,
then we set any one of 71,7 as top and the other one as bot. If w € T thenv € T.
Then the monotonic map Ay, 1 L w — ZLo,» S€nds Xy, t0 Xy, and ypy oy t0 Yy . We
let top(L) := Uuep, verytop(ZLay) and bot (L) := Uuep, ver, top(ZLa,y).

(L2) Quasi-isometric (qi) section in . Let x € . such that7 = (x). Suppose

s 1s the nearest point projection of  on ‘€. Then there is a K-qi section through x lying
inside £ over By := B U B, . By a qi section in £, we always mean that it obeys
the order at the junction between two metric bundles given by the family {A,,,}. In
other words, suppose u € ¥ is fixed (as mentioned above) and X is a qi section in .Z’
over, say, By. Let [0, ] be an edge in By joining v € B, and w € B,, corresponding
to the edge [v,w| in T such that dr(u,v) < dr(u,w). Then £(v) = hy,,(£(10)). Thus
Ao (2(0),2(10)) <ks2.4(8), Ly, K). As max{K,ky».4(8),Ly,K)} =k 2.4(8}, Ly, K),
¥ would be a k2 4(6), L), K)-qi section. By abusing notation, we still say X is K-qi

section.

Definition 5.1.16 (Ladder). A ladder .Z C X with parameters K > 1,C > 0,€ >0
is a (K,C, €)-semicontinuous family with a central base, say, B along with a family
of monotonic maps {A,,} (as described above) and (L1), (L2).

We refer . as (K,C, €)-ladder with a central base 5. Sometimes we denote .Z’
by %k to emphasise K.
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One can think of xy, ,, and yyy ,» as uniformly close to nearest point projections (in
dyr-metric) on Fy, ,, of the points x, ,, and yy ,, respectively. (This uniform bound is
measured in terms of €.) Again it follows from the definition of ladder that the pairs
([xn7v,)?t,7v]f,Fm7w) and ([yw,yw]f,Fm’W) are uniformly cobounded in Fyy,. This is

proved in the lemma below.

Lemma 5.1.17. Given K > 1,C > 0,€ > 0 there exist Cs.1.17 = Cs.1.17(K,C, €) and
€5.1.17 = &.1.17(K, C, €) such that the following holds.

Suppose £ is a (K,C,¢€)-ladder with a central base B. Let [v,w] be an edge
in T. Suppose [v,1] is the edge joining v € B, and v € B, such that w ¢ ¥ and
dr(%,v) <dr(%,w). Let z € [fn,v,)_’n,v]f C Loy and hyy (7)) = zfor 7 € Ly 1 (with
the notation used in the Definition 5.1.16). Then:

(1) The pairs ([Xn,v,fw]f,FmM) and ([yw,)'/w]f,Fmvw) are Cs 1 17-cobounded in
Foro.

(2) Hdyy (Pm([xn,v;z]f)7 [-x\’U,Wazl]f) < &.1.17, Hdy (Pru(b’n,v;z]f)a [)’m,WaZ/]f) <
&5.1.17-

Proof. (1) We prove only for the pair ([xy,%p]/, Fow) as the other one has a
similar proof. For ease of notation, let x; = Xy ,,X2 = Xip,w,X3 = Xp,». Let x’l =
Py (x1) and x| € Ly, such that dyp (x],x]) < €. Suppose x4 = hy,(x]) and x);, =
Py (x4). Note that x3 € [x4,x;]/. Now dor (¥} ,x4) < K implies dyy (x7,xy) < 2K. So
dow (x],x)) < €4 2K. Again, [x1,x4)7 is a Lj-quasi-geodesic in Fyy (see Lemma
2.3.4). Then by [9, Corollary 1.116], there is a constant C; depending on &, A, L;,
such that Hdpw (Po ([x1,%4)7), [X], X)) Fyre ) < Ci1. Let x5 = Py (x3). Then dw (5, x]) <
doro (X5, (X}, X ] Fyy ) +dor (X, X)) < C1+€+2K. Again applying [9, Corollary 1.116]
to [x1,x3)/, the diameter of Py ([x1,x3]/) in the metric Fyy, is bounded by < 2C; +
(C1+€+2K) =3C| + €+ 2K. Therefore, by Lemma 2.2.18, we can take a constant
depending on ),6, 5(’) and 3C; + € 4+ 2K as our required constant Cs ;. 17. So, we are
done.

(2) We only prove that Hdyw (Po([Xo.v,2)), [Xrw,w,Z']}) is uniformly bounded
as the other one has a similar proof. We continue with the notations used in (1).
From the above proof, we note that dyy (x],x3) < Ci + € +2K. S0 dyp(x],x2) <
doro (X}, X5) + dor (X5, x3) + dor (x3,%2) < C1 +€+2K+K+K =C;+€+4K. Let
X' = Py(x) forx € [x1,2}/ C %,. If x € [x3,2)7, then 3y € [x2,7')) C Ly, such that
yy(y) = x and dy (y,x) < K. SO dor (y,x") < 2K. If x € [x1,x3], then dyp (¥, x2) <
dor (X', X)) +dow (X}, %2) < Cs.1.17+C1 +€+4K =2(2C, +€+3K). S0 Py ([x0,v,2]7)
is contained in 2(2C; + € + 3K)-neighborhood of [x3,7]/ C #Ay, in the metric
of Fyp. For the other inclusion, let &' € [x2,7/}/ € %y, Then there is & €
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[x3,2)/ € %, such that hy,(E') = & and dyw(&,€’) < K. Then &' is contained
in 2K-neighborhood of Py ([x1,2}/) in the path metric of Fyyp. As £ is arbitrary in
[x2,7]/ C Zow- So, we take €117 = 2(2C; + €+ 3K). O

Definition 5.1.18 (Subladder). Suppose .Z is (K,C, €)-ladder. A subladder .¢” in
Zisa(K',C', ¢")-ladder whose fiber geodesics are subsegments of the corresponding
fiber geodesics of the ladder . and the family of monotonic maps are restrictions of
the given family {A,, }. The constants K’, C’ and &’ depend on the given ones.

Definition 5.1.19 (Girth and Neck). Suppose .Z is a (K, C, €)-ladder with a central
base B. Let B; C B and let /() denote the length of a fiber geodesic a. Girth of the
ladder .Z over Bj is denoted by .Z’$|p, and defined as inf{/(.%},,) : v € mp(B1),b €
B,NB;}. ForaA >0, A-neck of the ladder . inside B is denoted by .Z"(A)|p,
and defined as {b € By : {(%},,) <A, np(b) =v}.

Let .Z be a (K,C,¢€)-ladder. Let x,y € £ and X, X, be K-qi sections through
X,y over By, By respectively. Suppose By, = By M By. Then the restriction of X, and
X, over By, form a special K> 4.14(K)-ladder over By,. We denote the restriction by
Z,y. With these notations, we have the following lemma.

Lemma 5.1.20. Given K > 1, C > 0,€ > 0 and A > Mg (coming from K-flaring
condition) there exists Ks 1 20 = Ks.1.20(K,A) such that the following holds.
Let £ be a (K,C,€)-ladder with a central base B. Then for x,y € £, Z}\(A)|s,,

is Ks.1.20-quasiconvex in By, and consequently, in B as well.

Proof. 1f Z}(A)|p,, = 0, then there is nothing to prove. Suppose -Z}(A)|s,, # 0
and a,b € Z|(A)|p,,- Without loss of generality, we assume that d’ (Z(s),Zy(5)) >
A > Mg, Vs €la,b]\{a,b}. Soby Lemma 2.4.7 (1), dp(a,b) < 12.47(K,A). Hence
one can take K5 1 20 := T2.4.7(K,A). O

We finish this subsection by noting an interesting fact; which gives a criterion for

a family of geodesic segments in the fibers to form a ladder.

Lemma 5.1.21. Given K’ > 1,C" > 0,€’ > 0, we have constants ks.1 21 = ks.121(K’),
c5121 = ¢5.121(C") and €511 = €5.1.21(€') such that the following holds.

Suppose £ is a collection of geodesic segments in the fibers such that:

(1) Ty :== hull(n(L)). Forallv e Ty, £NX, form a special K'-ladder in
X, over B, bounded by two K'-qi sections. We also have a subtree T in Ty with
the following. Suppose v,w € Ty with dr(v,w) = 1. Let [v,10] be the edge joining
veB,andw € B,,. Let £, , = LNk, = [xv,v,yn’v]f and Ly =L NFy =
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[xm7w,ym7w]f. Ifv,w € T, then dyw (X v, Xww) < K’ and dow (yo,v, Yow) < K'. Other-
wise, if dr (v,T) < dr(w,T), then X v, Yow € NP¥ (Lo )
(2) In the second part of (1), where dr (v,¥) < dr(w,T), we have,

Hdyp (P (gn,v),gm,w <ég.

(3) Let v e Ty,w ¢ Ty such that dr(v,w) = 1. Let [v,10)] be the edge joining
v € B, and w € B,,. Then the pair (£, v, Frow) is C'-cobounded in the path metric
Oanm.

Then £ is a (ks.121,¢5.121,€5.1.21)-ladder with a central base B := ngl (%).

Proof. We only need to find k5 1 »; and set an orientation on the fiber geodesics along
with the family {A,,,} of monotonic maps. Fix u € T. Suppose [v,w] is an edge in
Ty with dr(u,v) < dr(u,w). Let us fix once and for all %y ,, ¥y, € %, such that
doro (Xro 05 Fov) <K', dor(Vrows o) < K with %y, € L, N [Xp.0, Vo] ; and in the
case if v,w € T, then Xy, = Xy, Yo,y = Yo,». We inductively fix an orientation as
discussed in Subsection 5.1.2.

Now we apply Lemma 2.2.4 on Fyy, and Ljj-quasi-geodesics .25, , and %, . S0
we get a monotonic map, say, iy, : Ly w — 2o,y such that hy,, is Ly 2 4(8), Li, K')-
quasi-isometry. Also, we have dyw (X, Ay (X)) < k2.2.4(8), Ly, K') for all x € Ly
and Ay (Xo,w) = Xo,vs My (Yro,w) = Yo,v. We fix once and for all such maps £,

Therefore, one can take ks ;o1 = max{ky24(08),Lj,K'),K'} and ¢s5121 = C/,
&.121 =€ O

5.2 Hyperbolicity of ladder

In this section, we show that a uniform neighborhood of a ladder (see Definition
5.1.16) is uniformly hyperbolic with the induced path metric. We divide the proof
into two cases. (1) Ladder with small girth (see Definition 5.1.19); here we construct
paths for any pair of points in the ladder and prove that they satisfy the conditions
of Proposition 2.2.6 (see Proposition 5.2.1). (2) For general ladder, we subdivide it
into (uniformly) small (but not too small) girth ladders and show that they satisfy
all conditions of Proposition 2.2.7 (see Theorem 5.2.11). Let K > 1,C>0,€ >0
and let %k be a (K,C,¢)-ladder with a central base 8. In this section, we fix
notation Lg, := N, (%) for r > 0. Additionally, we will use the same notations
as introduced in Definition 5.1.16 and in Notation 5.1.15 for ladders. In view of
Remark 2.4.8, in this section, we require the tree of metric bundles (X,B,T) to
satisfy Cégi‘]z(K )-flaring condition (see below).
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5.2.1 Hyperbolicity of ladders (small girth)

We refer to Remark 2.4.13 for the notation of ngt.lz(K)’ i € NU{0}. Fix x =

Cﬁz 1»(K) for this Subsection 5.2.1. Given Ag > 0, we let A = max{M 0 (K)’AO :
o 2.4.12
)

i=0,1,2,3}, where M is coming from the Cé’ 4.12(K)-flaring condition. Note

. ' ngt.lz(K)
that €'} 1) (K) > €Y'y 1, (K).

Proposition 5.2.1. Suppose R > 2k and A as above. Then there exists 85,1 =
0s5.2.1(K,Aq,R) such that the following holds.

Suppose L8| < Ag (see Definition 5.1.19). Then Ligr := Ng(ZLx) is 852.1-
hyperbolic with respect to the path metric induced from X.

Proof. 1dea of the proof: The proof of this proposition is long, so we break it up
into several cases. We first define a path, say, c(x,y) for a pair of distinct points
x,y € .Z; and we fix it once and for all. Then we show that this family of paths
satisfies Proposition 2.2.6. Hence the hyperbolicity of Lxr follows.

Notation 5.2.2. Let x,y,z € .Z. We use the following notations for Proposition 5.2.1.
For a fixed u € T, By = BUry ' ([u,7(s)]), s € {x,5,2}; By = BxN By, Byy; =
B.NByNB;. We use X to denote 7x(x) (projection under 7my), and same way,

y=7nx(y), Z= mx(z). We will denote the path metric on Lgg induced from X by d’.

Definition of family of paths: Let x,y € .Z. Suppose X, X, are K-qi sections
in .Z over By, By through x,y respectively. If [m(x), m(y)] 1T = 0 then we take uy,
as the center of the triangle A(u, w(x), 7(y)) for some u € T. Otherwise, uyy is the
nearest point projection of 7(x) on T. Let Uyy = Z£{(A)|p,, be the A-neck of the
special ladder .Z,, bounded by X, X, (see Definition 5.1.19) over the common base
B,y. Then Uy, is K5 1 20 (K,A)-quasiconvex (see Lemma 5.1.20). Let txy be a nearest
point projection of X on Uy, and let vy := 7p(t,). We take K-qi lifts &, and ¥,
of geodesics Oy := [X,1,,|p and Yay = [V,txy]B in . and X, respectively. Denote
Ly = [Ex(tey), Zy (1)) C Ly oy

In general, @y, and ¥, are not continuous. To make them continuous, we
consider the following. Fix points X = ay,az, -+ ,a, = ty, on [X,1]p such that
dp(aj,aiv1) =1for 1 <i<n-2anddg(a,—1,a,) < 1. So we get a discrete path
joining X (a;) and Xy (a,) with an order X,(a;) < Z.(a2) < --- < Xy(an). Consider
the path [0ty] = [X(a1),Ze(a2)] U [Ex(a2),Ex(a3)] U+ - U [Ex(an—1),Lx(an)] based
on this discrete path. Now [@y,] is a continuous path. Similarly, we have the
continuous path [¥,] path corresponding to ¥,.
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We define c¢(x,y) 1= Oy Uty U ¥y and [c(x,y)] = [Oy] U thay U [¥ay] ~, Where
[#xy] ~ denotes the path corresponding to [J,] with opposite orientation. We see that
there is an asymmetry in the definition of [c(x,y)] and the number of choices are
involved. However, for each unordered pair {x,y}, we fix once and for all a choices
and choose either [c(x,y)] or [c(y,x)] as the path joining x and y.

Note that Hd,,(c(x,y),[c(x,y)]) is uniformly bounded. To prove condition (1)
of Proposition 2.2.6 for our family of paths, we show that arc-length parametrization
of [c(x,y)] is properly embedded. For condition (2), we show the slimness of paths
c(x,y)’s; and that is enough. Later on, we will use ¢(x,y) for the notation of paths
instead [c(x,y)].

Different choices of geodesics, [X,ty,] and [y,1y,] give rise to path joining x,y,
that are 2K &y (uniformly) Hausdorff close to ¢(x,y). However, we will have to think

about other two natural questions as follows.
1. Are ¢(x,y) and ¢(y,x) uniformly Hausdorff close?

2. Suppose X and Z; are two different K-qi sections through x and y respectively
lying inside .Z. Let ¢’(x,y) be a path joining x and y coming from the con-
struction above for the qi sections X}, X. Are c(x,y) and ¢’(x,y) uniformly
Hausdorff close?

These two questions are proven in [10, Section 3] for the case, metric graph
bundles (see [10, Definition 1.5]). However, we will establish that these are also true
in our case (see Lemma 5.2.3 and Corollary 5.2.5). The proof idea involves playing

with quasiconvex subsets Uy, and lifts in qi sections.

Lemma 5.2.3. With the hypothesis as in Proposition 5.2.1, there exists D53 =
D5A2.3<K7A) such that Hd/(C<X,y),C(y,X)) < D5.2.3-

Proof. We can think of X,,X, as k-qi sections in .Z through x,y respectively. By
our notation, t,, is a nearest point projection of y on Uy (= Uyy). Let & = [tyy, 1yx].
Also, 0ty = [J,tyx], Yox = [fyx, &]; and Gy, Fx are lifts of @y, % in Xy, X respectively.
Further, vy, := 7(tyy) and fyy := [Zy (), Ze(tya)]) L.
Myx U Fyx. Since Uy, is Ks 1 20(k,A)-quasiconvex, the arc-length parametrizations of
Oy U o and o, U o are (3 +2Ks 1 20(k,A))-quasi-geodesics (by [10, Lemma 1.31
(2)]). So by Lemma 2.2.2, there is D depending on &y, 3 + 2K5 1 20(k,A) such that
Hdp(Yx, ey U ) < D and Hdp(Yey, 0y U ot) < D. Again, ot C B,y and tyy, tyx € Uyy.
So by Lemma 2.4.7 (2),V s € @, d/ (Z:(s),Zy(s)) < Ra.47(k,A). Below, we prove
that c(x,y) lies inside uniform neighborhood of ¢(y,x). Then by the symmetry of

Finally, c(y,x) = @, U

Vyx*

proof we will be done.
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Let & € c(x,y) N0y and N = mx(§). Then 3 ' € Y, such that dg(n,n’) =
dp,.,(n,m") < D. So by taking k-qi lift of [17,1'] in X, (see Lemma 2.4.12 (3)), we
get, (€, c(0,)) < d'(&,Tyx) < 2KD.

Let & € c(x,y) N Wyy. Then from above, d'(&,c(y,x)) < 2kD+A.

Finally, let & € c¢(x,y) NJy and N = mx(§). Then 3 n’ € aye U a such that
dg(n,n’) < &. If n’ € oy, then by taking x-qi lift of [n,n'] in X,, we get,
d'(&,c(y,x)) <d'(&,ay) <2Kd. Again if n’ € o, then 1’ is further D-close to Yy,
i.e. 31" € ¥y such that dg(n’,n”) < D. Therefore, by taking lifts of geodesics
[n,1'] and [n’,n"] in £, and E, respectively, we get,

d'(&,%x) < d(Zy(n),Z:(n"))
d'(Z,(n),Ey(n")) +d'(Zy(n'), Zx(n)) +d'(Zc(n), Ze(n"))
2k80 + Rp.47(k,A) +2kD (since ' € )
2k(00+ D)+ Rr.4.7(%,A)

Therefore, we can take Ds 5 3 := 2k (8 +D) +Ra.4.7(k,A) so that Hd' (c(x,y),c(y,x))
< Ds.13. [

IAINA

To prove (1), we first show that if we change one of the qi sections, then the path
we get is uniformly Hausdorff close to the other one. In other words, suppose X' is
another qi section through x. Let ¢(x,y) and ¢ (x,y) be paths coming from the pairs
(., Zy) and (X),X,) respectively. Then Hd'(c(x,y),c1(x,y)) is uniformly small,
say, bounded by D. Hence we complete (1) by applying twice this process. Indeed,
Hd'(c(x,y),c'(x,y)) < Hd'(c(x,y),c1(x,y)) +Hd'(c1(x,y),¢'(x,y)) < 2D, where X}

is another qi section through y and the path ¢’(x,y) is coming from the pair (X, X}).

Lemma 5.2.4. With the hypothesis of Proposition 5.2.1, there is Ds 4 = D5 5 4(K,A)
such that Hd'(¢(x,y),c1(x,y)) < D52 4.

Proof. Here also we consider X, X} and X, as k-qi sections. Let the special ladder
formed by pair (X,X,) restricted over By, be Q?)C’y (see Lemma 5.1.20). Let V be
the A-neck of the ladder . N Xsg (restriction of . on B, see also Notation 5.1.15)
and Uy, be that of .Zy,. Notice that V C Uy, N Uy,. We assume that 7,,, is a nearest
point projection of X on Uy,. Let o, = [X,#;,] and ¥, = [y, 1,,]. First, we prove that
dp(tyy,tyy) is uniformly small,

dp(ty,tyy) is uniformly small: We fix a point t € V and a geodesic o = [%,1].
Now for s € {t,%}, d’(Z:(s),Z.(s)) < A. So by Lemma 2.4.7 (2), for all s € «,
d’/ (Z:(s),Z.(s)) < Rp47(Kk,A). Again Uvy, Uy, are Ks 1.20(k,A)-quasiconvex and
so by [10, Lemma 1.31 (2)], the arc-length parametrizations of ¢y, U [tyy,?] and
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o YUt [xy, t] are (34 2Ks.1.20(k,A))-quasi-geodesics. Thus by Lemma 2.2.2, there
is D depending on &y, 3 + 2Ks 1.20(k,A) such that Hdg(ct, Oy U [ty,7]) < D and
Hdg(a, 0, U tyy,1]) < D. Then Hd(0ty U [tiy,1], 0, U [tyy,1]) < 2D. Hence 3 19 €
Oy, such that dp( nyO) <3D+ 6y or 1y € )’Cy such that dp(tyy,t0) < 3D + dp.
Without loss of generality, we assume that dp(tyy,%) < 3D+ 0 for 1y € oc)’cy. Since
T is tree and B, ’s are isometrically embedded in B, we can take 7o € By. In particular,
[txy7t0] - B

Again for s € xy, 35’ € o such that dg(s,s’) < D. By taking lifts of geodesic
[s,5'] in £, and X, (see Lemma 2.4.12 (3)), dx (Zx(s),Z.(s)) < dx(Z:(s),Z:(s")) +
dx (Ze(s"),ZL(s")) +dx (Z(s"), Zo(s)) <2D& + Ra.47(x,A) +2D& = Dy (say). As
fibers are ¢-properly embedded, d/ (X, (s),Z.(s)) < ¢(D1). In particular,

dx (Z4(10),Z4(10)) < D1 and d” (£(t0), Zi (1)) < ¢(D1).

Note that [tyy,%9] C Byy. Now by taking lifts of [, ] in £, and X, we have,
0x(54(10), Br(t)) < 2K(3D+ 80) and dy (5, (1), 5y (1)) < 2x(3D+ ). Again,
d’ (Zy(try), Zx(try)) < A. Therefore, combining all these inequalities, we have,
dx (Zi(t0),Zy(t0)) < Dy +4x(3D + &) + A = Dy (say). So d/(Z(t),Zy(t)) <
¢ (D). Then by Lemma 2.4.7 (1), dp(t0, 1) < T2.4.7(k,$(D2)). Hence dp(tyy, ty,) <
dp(tyy,t0) +dp(t0, 1, y) < D3 where D3 = 3D + & + T2.47(k, ¢(D2)).

Let us come back to the proof of Hausdorff closeness of ¢(x,y) and c;(x,y). We
only prove that c(x,y) lies inside uniform neighborhood of ¢|(x,y). Then by the
symmetry of the proof we will be done.

Let & € c(x,y) ﬂﬁcxy and N = mx(&). Then dg(n,n’) < D3+ & for some
n' € ay,. Since ' € ay,, from the above paragraph, d’(Z:(n"),ZL(n")) < ¢(Dy).
Therefore, by taking lift of geodesic [n,n’] in £, (see Lemma 2.4.12 (3)), we
get,d'(&,c1(x,y)) <d'(Z:(n),Z (1) <d'(Ze(n), (M) +d! (Ze(n'), (M) <
2Kk(D3 + 60) + ¢(D1).

Now let § € ¢(x,y) N %y and N = mix(§). Then 3 0’ € ¥;, such that dg(n,n’)
D3 + &. Taking lift of [n,n'] in Z,, we get, d'(§,c1(x,y)) <d'(Zy(n),Zy(n))
2Kk(D3+ &).

Finally, we assume that § € ¢(x,y) N ly. Thend'(§,c1(x,y)) <2x(D3+ &) +A.

We note that ¢ (D) > A. Therefore, c(x,y) C Nay(p,+8,)+6(ny)(€1(x,)). Hence,
we can take D5 4 := 2k(D3y + &) + ¢(Dy). O

<
<

Corollary 5.2.5. With the hypothesis of Proposition 5.2.1, there exists D55 =
Ds 5 5(k,A) such that Hausdorff distance between any two paths joining x,y € £



108 CHAPTER 5. MAIN COMBINATION THEOREM

coming from the path-construction with K-qi sections through x,y is bounded by

Ds 5 5 in the path metric of Lgg.
Proof. We can take D5 > 5 = D5.2'3(K,A) + 2D5_2_4(K‘,A). [

Now we show that this family of paths are fellow-travel ([9, Definition 1.60]). In
other words, any two such paths whose starting points are same and ending points

are at uniform distance are uniformly Hausdorff close.

Proposition 5.2.6 (Fellow-travelling property). For all r > 0O there exists D5 ¢ =
Ds 1 6(K,A,r) such that the following holds.
With the hypothesis of Proposition 5.2.1, if x,y,z € £ such that dx (x,y) < r, then

Hd'(c(x,2),c(y,2)) < D526

Proof. We will be working with X, X, ¥, as k-qi sections respectively through x,y, z
over By, By, B; inside the ladder .Z" (explained in Case 1 below). We consider the
following three cases depending on the position of X = 7y (x) and y = 7x ().

Case 1: Let x =y. Since the fibers are ¢-properly embedded, without loss
of generality, we assume that d/(x,y) < r. Applying Lemma 2.4.12 (2), we may
assume that these sections satisfy the following inclusion property when we restrict
them to Byy,. We have three possibilities Xy|p, . C Zx|s,,., Li|s,. € LB, OF
ZZ‘Bxyz - o%cy|B

xyz *

(To get this one has to consider X,,X,,X; as kK = Cfillz(K)—qi
sections instead K-qi sections.) In the Subcase (1A) below, we will see that the
proof for the inclusions X (g, . C Z;|p,,. and X,|p,,. C Z);|p,, are similar. So we
proof this proposition when X, [p . C Z;|p,,. and X;|p, . C £ p,,. in the following
subcases.

Subcase (1A): Suppose L[, € Zx|s,,.. Recall that Uy, = L[ (A)|p,,, U, =
Z5(A)|p,. and Uy, = £ (A)|p,. are Ks120(k,A)-quasiconvex (Lemma 5.1.20).
Since %y|p,,. € Z|B,,.. s0 we have U,; C Uy, NU,.. By our notation, #,; and
ty; are nearest point projections of x and y on Uy, and Uy, respectively. Hence for
M = max{r,A},V s € O, d' (£:(5),Zy(s5)) < Roa7(k,M) (Lemma 2.4.7 (2)).

Claim: dp(ty;,t,;) is uniformly bounded.

Proof of the claim: Since @y, U [ty;,t.;] is (3 +2Ks 1 20(k,A))-quasi-geodesic, 3
t € Qi such that dp(ty;,t) < D for some D depending on & and 3 + 2K5 j 29(k,A)
(Lemma 2.2.2). Since T is a tree and B,’s are isometrically embedded in B, we
can take ¢ € a,; N By;. Then by taking lifts of geodesic [t,.,t] in X, and X, we
get, d'(Zy(1),2.(t)) < d'(B5(1), Zy(ty2)) + d! (B (ty2), Ze(ty2)) + @' (Ze (1), Ze (1)) <
2kD+A+2kD=4kD+A = d’ (£,(t),Z,(t)) < $(4kD+A). So,d’ (£.(1),%,(1)) <
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& (B(1), Ty (1)) + & (2 (1), Z2(1)) < Roa7(1,M) + ¢ (4KD +A) = Ry (say). Then
by Lemma2.4.7 (1), dp(t,t;) < 7.4.7(k,R1). Hence by triangle inequality, dg(ty;, ;)
< dB(l‘yZ,l‘) +dp(t,ty;) < Dy, where D = D+ T 47(k,R}).

Now we show the Hausdorff closeness of paths. We only prove that c(x,z) lies
in uniform neighborhood of ¢(y,z). Then by the symmetry of the proof we will be
done.

Let & € ¢(x,z) N @& and N = mix(&). Then 3 1’ € @, such that dg(n,n’) <
Dy + 8. Note that [n,n'] C By. Then by taking lift of geodesic [n,n’] in X,,
we get, d'(€,¢(3,2)) < d'(5(0),5(0)) < d'(E(1), Zy () ' (£, (1), 5 (1)) <
Ry 47(k,M)+ 2K (D + &).

Now let § € c(x,z) N %, and N = 7x (). Then 3 1’ € ¥, such that dg(n,n’)
Dy + &. Note that [n,7n'] C B;. So, by taking lift of [n,1] in X, d'(§,¢(y,2))
d'(Z;(n),Z;(n")) <2k(Dy + &) (Lemma 2.4.12 (3)).

Finally, let & € ¢(x,z) N Wy;. Then d’(&,c(y,z)) < 2x(D; + &) +A.

Let R, := max{Ry 4.7(k,M) +2x(D; + 8),2k(D1 + &) + A} = Rp.a7(k,M) +
2k(D; + &y). Hence c(x,z) C Ng,(c(y,z)). Therefore, Hd'(c(x,z),c(y,z)) < Ra.

Subcase (1B): Suppose X;|p,,. C Zylp,,.. Here also we will do the same as in

<
<

Subcase (1A). Let a be the nearest point projection of X = y on Byy;. Since .Z' N Xy
has girth < Ag <A, by Lemma 2.4.7 (2), d/ (Z:(s),Zy(s)) < Raa7(k,M),¥ s € [a, .
(Note that [a,%] could be {x} = {a} if & € Byy;.) In particular, @/ (X.(a),Zy(a)) <
Ry47(K,M). Again, since X, C Z,y|p,,., we have, d’ (Z.(a),Z,(a)) < Ras7(x,M)
and d/(Xy(a),X.(a)) < Raa7(k,M). Note that #,, and t,, are also nearest point
projections of a on Uy, and U, respectively. So by Lemma 2.4.7 (1), we have
Dy = T47(K,Ro47(x,M)) such that dg(a,t.;) < D, and dg(a,ty;) < D,. Thus
dp(ty;,ty;) < 2D>. Now we only show that ¢(x,z) lies in uniform neighborhood of
¢(y,z). Then by symmetry of the proof we will be done.

Let & € ¢(x,z) N0, and N = 7x(&). Note that € [ty;,a]Ua,x]. If n €
(0,7, then d'(&,¢(1,2)) < &/ (1), 5, (1)) < Ro.a7(k,M). If 1 € [ra], then
d'(€,c(3,2)) < d'(Z:(n),Zu(a)) +d (Ee(a), Ey(a)) < 2KD2 + Ro.a7 (%, M).

Now let § € ¢(x,z) N§, and N = 7x (). Then 3 1’ € ¥, such that dg(n,n’)
2D; + &. So taking lift of [,n'] in X, we get, d'(&,c(y,2)) <d'(£,(n),Z.(n"))
2K(2D;5 + &).

Finally, if £ € ¢(x,2) N Wy, then d'(&,¢c(y,2)) < 2K(2D3 + &) +A.

Therefore, Hd'(c(x,z),c(y,2)) < max{2x (2D, + &) +A,2kD> + Ry 4.7(k,M) }
= R3 (say).

Let R4(K‘,A, r) = max{Rz,Rg}.

<
<



110 CHAPTER 5. MAIN COMBINATION THEOREM

Now for the rest of the proof for this proposition, we assume that all the paths
(¢, ¢’) are constructed using the qi sections Xy, X, and X, where {,{’ € £, UX,UZ,.

Case 2: Let n(x) = 7(y). Suppose L, (¥) = y;. We also assume that £, =X,.
Since dx (x,y) < r, so dg(X,y) < r. Now by taking lift of geodesic [*,] in X, we get,
d'(y,y1) < 2kr. Thus dx(y1,x) < 2kr+r and so d’ (y1,x) < ¢(2kr+r). Therefore,
by Case 1, Hd'(c(y1,z2),¢(x,2)) < Ry(x,A, ¢ (2kr+7)).

Now we investigate on Hd'(c(y1,z),c(y,z)). For the consistency of notation,
we let j1 = mx(y1). Let t,; be a nearest point projection of §; on Uy,; = U,
(since £y, = X,,). Again Uy, ; is K5 ; 20(k,A)-quasiconvex and dg(y1,y) < 2kr, so by
lemma 2.2.21 (1), we have, dp(ty,;,t,;) < (2kr+1)C22.21(80,K5.1.20(k,A)) = D3
(say). Note that Z = 7y (z) and Qy,; = [J1,y,z), Wiz = [Z:fy,z)- Then Hdp(¥y,z, Yz) <
D3+ & and Hdg(0y, z, &ty;) < D3+ 28 (note that D3 > 2kr). Thus Hd' (@, Oy, ;) <
2K(D3 4 208) and Hd' (¥, ¥y,2) < 2k(D3 + &). Hence, Hd'(c(y,z),c(y1,2)) <
2Kk(D3+28p) +A.

Therefore, Hd'(c(x,z),c(v,2)) < Ra(x,A,¢(2kr+7r)) +2K(D3 +28) + A =:
Rs(x,A,r) (say).

Case 3: Now we consider the general case. Let x| and y; be the nearest

point projections of X and y on B, respectively (see Definition of family of paths

for uyy). Let Xy(X1) = x; and Zy.()‘zl) =yi. Since dp(%,y) < r, so dp(%,x;) <
r and dp(y;,y) < r. Thus by taking lifts of geodesics [¥,%;] and [y,y;] in X,
and X, respectively, we get, d’(x,x;) < 2kr and d'(y,y;) < 2kr. So by triangle
inequality, dx(x;,y;1) < 4kr+r. Note that m(x;) = n(y;). Hence by Case 2,
Hd'(c¢(x1,2),¢(y1,2)) < Rs(k,A,4xr+r). Since d’(x,x1) < 2krand d'(y,y;) <2k,
we have, Hd'(c(x,z),¢(y,2)) < Rs(k,A,4kr+r)+2kr =: R¢(K,A,r) (say).
Therefore, we can take Ds 5 ¢ = max{R;(k,A,r) :i=4,5,6} = Re(x,A,r). O

The proof for slimness of triangle formed by three paths (as in path construction)
inside special K-ladder (see Definition 2.4.11) was done in [10, Lemma 3.11 for
small girth ladder] in case of metric graph bundles (see [10, Definition 1.5]). In their
proof, without changing much, one can proof the same in case of metric bundles
(Lemma 5.2.7); which we will see in Condition (2) below. So we omit the proof and

state below for small girth ladder.

Lemma 5.2.7. ([10, Lemma 3.11]) Givenk > 1,97 >0, there is D557 = D5 7(k, <)
such that the following holds.

Suppose £ (L,Y) is a special k-ladder (in a tree of metric bundles (X,B,T))
bounded by two k-qi sections ¥,X over an isometrically embedded subspace By C B
such that inf{d’ (£(a),X'(a)) :a € B1} < . Letx,y,z € £ (X,%)). Then the triangle
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formed by paths c(x,y),c(x,z) and c(y,z), coming from the path construction, are

D5 5 7-slim in the induced path metric on N, Z(XY)) CX.

250

Proof of Proposition 5.2.1: We verify the condition (1) and (2) of Proposition
2.2.6 for our family of paths. Here . is R-dense in Lgz. We will be working with
L., Xy, X, as k-qi sections (explained in Condition (2), Case 1 below).

Condition (1): Let x,y € .Z such that dx(x,y) = r for r € R>o. We want
to show that the length of c(x,y) in the path metric of (Lgg,d’) is bounded in
terms of . Let ¢ € [¥,]N By, and ¢| € [X,1yy] N By, 2 € [J,1xy] N By, such that
dp(c,ci) < 8y, i =1,2. (We refer to the ’definition of family of paths’ for u,y.)
Since dp(x,7) < dx(x,y) <r, so dp(x,c) < rand dg(y,¢) <r. Let Z,(c) = {x1}
and Xy(c) = {y }. Now taking lifts of [%,c] and [y, ¢] in X, and X, respectively, we
have, d’(x,x;) < 2nk and d'(y,y;) < 2rk (see Lemma 2.4.12 (3)). Then by trian-
gle inequality, dx (x1,y1) < r(4k+1). So dx(Z:(c1),Zy(c1)) < d'(Ze(c1),Zx(c)) +
dx (Zx(c),Zy(c))+d'(Ey(c),Zy(c1)) <2Kk80+r(4k+1)+2K0) = 4K+ r(4K+1).
Thus d/ (Zc(c1),Zy(c1)) < @ (4k8 +r(4k + 1)). Since t,y is a nearest point projec-
tion of X on Uy, by Lemma 2.4.7 (1), dp(ci,txy) < D, where D = 7 4 7(k, ¢ (4K +
n(4x+1))). So dg(ca,tyy) < dp(ca,c1) +dp(cr,ty) <200+ D. Again dp(X,c1) <
r+ 8y and dp(y,¢2) < r+ &. Hence dp(%,try) < dp(%,c1)+dp(ci,txy) <r+8 +D
and dp(y,txy) < dp(y,¢2) +dp(ca,txy) < r+38) + D. Note that o, = [%,1y,] and
Yoo = [V, 1] Therefore, by taking lifts of ay, and ¥, in £, and X, respectively, we
see that the length of ¢(x,y) is bounded by 2x(r+ 8 + D) +A+2k(r+36y+ D) =
4x(r+D+28p)+A. So the paths c¢(x,y) are y-properly embedded, where y: N — N
is a function such that

v(r)=4x(r+D+28)+A (5.2.1)

Condition (2): Recall Uy, = £[(A)|p,,, Ux, = Z}1(A)|p,. and Uy, = £} (A)|p,,
are K51 70(x,A)-quasiconvex and so is in B. We show that paths c¢(x,y), c(x,z),c(y,2),
coming from the above qi sections, are uniformly slim in the path metric of (Lgg,d’).
Depending on the position of fyy, f,;, 1y, With respect to By, we consider the follow-
ing two cases. Note that by the definition of By, either all of #,y,1,;,1,, are in By, or
at most one of them is outside of Byy;,.

Case 1: All of t,y,1,;,ty; are in By,,.

In this case, without loss of generality, we assume that X | By. © C % By 1.e. in
the ladder .Z, we have the order, bot (%) < Xi(a) < Xy(a) <X (a) <top(ZLay),
where a € By, and v = mg(a). (To get this one has to consider X,,X,,%; as kK =
Cg.lz(l( )-qi sections instead K-qi sections, see Lemma 2.4.12 (2)). Let X,y;,Z; be
(the) nearest point projections of X, y, Z on By, respectively. Let X (%) =x1,X,(51) =
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y1 and X,(Z;) = z;. Further, we assume that the restriction of c¢(x,y) from x; to y;
is ¢(x1,y1). Likewise, we have c(x1,z;) and c¢(y;,z1). Note that restriction of X,
and X over By, form a special C34.12(k) = Cg_g_lz(K )-ladder over By, bounded
by two qi sections X[, and X;|p,,. such thatinf {d” (Zx(5),Z;(5)) : 5 € By, } <A.
Since (X,B,T) satisfies Cgin([() = CS‘{AD(CSQ.lz(K))—ﬂaring condition, so by
Lemma 5.2.7, the triangle formed by the paths c(x1,y;),c(x1,z1) and ¢(y;,z;) are
D5A2A7(Cg_‘i_lz(K),A)—slim in the path metric of Lgg. Let D} = D5A2A7(C§212(K),A).

For the point & € ¢(x,y) such that € ¢ ¢(x,y1), & is 2k 8p-close to ¢(x,z) Uc(y,z)
in the path metric of Lgg. Same for others.

Note that 2k 8y < D;. Therefore, the triangle formed by the paths c(x,y), ¢(x,z2)
and ¢(y,z) are D-slim in the path metric of Lgg.

Case 2: One of tyy,1,;, 1, is not in By, (see Figure 5.1). Without loss of generality,
we assume that 7,y ¢ By,y,. In this case, we do not need to consider what exactly is
happening to X, X, and ¥, over B,y;.

Note that 7g(tyy) = viy. Lett € By, such that dp(Byyz, By,,) = dp(Byy,t). Let
us fix s € BN U,y such thatt € [s,t,,]. (We can get such s as Z%|y < Ag <A, see
Definition 5.1.19 for notation.) Since s,ty, € Uy, by Lemma 2.4.7 (2), for all { €
[5,t0y], @ (Z4(£),Z4(£)) < Rp.a7(k,A). In particular, @/ (Z,(t),Z,(¢)) < Ry.4.7(k,A).
Then by the fellow-travelling property (see Proposition 5.2.6), we have,

Hd'(c(x,7)

It e) Utz €O D Ul 7)) < Ds.2.6(K, A, Roa7(K,A)) = D, (say).

Again let 7,1, be the nearest point projections of X and y respectively on By, ..
Then Hd'(c(x, )}, 5, ¢(x,2)|jr,.5) < 2K80 and Hd'(c(x,y) 1,59 ¢(%:2)[}5,.57) < 2K,
Now we only need to analyse what is happening to the paths c(x,y),c(x,z) and

c(y,z) over By, to conclude the slimness, and here we go.

- T
Qo
S By
|IB—IB%$ | \® i 3

Figure 5.1: Case 2

A. The portion of the path c(x,y) over B,  is uniformly close to c(x,z) U
c(y,2):
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Let & € c(x,y) N (@yy U %y) such that N = mx(§). Then N € [tyy, 1] U [ty 1y].
First, we consider 1 € [ty,%]. Since Uy, is K5 20(k,A)-quasiconvex, t,, near-
est point projection of X and s € U,y, so by [10, Lemma 1.31(2)], the arc-length
parametrization of [ty,t,] U [tyy,s] is a (3 +2K5 1 20(k,A))-quasi-geodesic. In par-
ticular, [ty, ] U [tyy,t] is (34+2Ks 1 20(Kk,A))-quasi-geodesic. Therefore, by Lemma
2.2.2, there is D3 depending on & and 3 + 2Ks 1 20(k,A) such that dg(n,n’) < D3
for some 3 N’ € [fy,2]. So by taking lift of [, n'] in X, (see Lemma 2.4.12 (3)), we
get, d'(,c(x,2)) <d'(Zx(n),E:(n")) < 2kDs.

Now suppose 7N € [tyy,ty]. Then the slimness of A(ty,?,t,) says that n €
Ns,([toy, 1] Ur,1,]). Let 30’ € [r,1,] such that dg(1, M) < &o. Then by taking lift of
[n,M'] in £y (see Lemma 2.4.12 (3)), we get, d'(§,c(y,2)) < d'(Z,(n),Z,(n’)) <
2K0. Now let 0’ € [t,1,] such that dg(n,n’) < 8. Again, since [ty fxy] U [tyy, 1] is
(3+2K5.120(K))-quasi-geodesic, 3 n” € [t,1,] such that dg(n’,n”) < D3. Taking
lift of the geodesic [1,n’] in X, and that of the geodesic [n’,n"] in X, we get,
d'(Zy(n),Zy(n')) < 2K and d'(X(n’),Ex(n")) < 2xD3. Recall that V § € [s,1,y],
d’ (Z:(£),Z,(8)) < Rp.a7(k,A); in particular, d/ (£,(n'),Z,(n")) < Rp.47(k,A). So,
by triangle inequality, d’(&,c(x,z)) < d'(Z,(n),Zc(n")) < 2k + Rr.4.7(K,A) +
2KD3 = Dy (say).

Again, if & € Uy, then d'(§,c(x,z)) <2xkD3+A < 2kD3+R47(k,A) < Dy.

B. The portion of the path c(y,z) over B, is uniformly close to c(x,y)U
c(x,2):

Note that the portion of c(y,z) over By, is ¢(y,z) N @y,. Let & € c(y,2) N Gy,
such that = 7y (£). Then N € [ty,7], and the slimness of A(tyy,1,t) says that 1 €
Ns, ([ty,txy] U [txy,1]). First, we consider that 3 1" € [t,,1,] such that dg(n,n’) < &.
So by taking lift of [1,7n’] in £, (see Lemma 2.4.12 (3)), we get d’(§,c(x,y)) <
d'(Zy(n),Zy(n’)) < 2x6. Now, suppose 3 N’ € [tyy,1] such that dg(n,n’) < d.
Recall that [y, | U [tyy, 1] is (3 4+ 2Ks5 1 20(k))-quasi-geodesic and so 3 0" € [ty,1]
such that dg(n’,n") < D3 (defined above in A). Taking lifts of the geodesic [1,1’]
in X, and that of the geodesic [1’,n"] in Xy, we get, d'(£,(n),Z,(n’)) <2k and
d'(Z:(n"),Z:(n")) < 2kD3. Also, ¥ § € [tyy,1],d (£:(8),Zy(¢)) < Raa7(k,A);
in particular, @/ (X,(n’),Z:(n")) < Ra47(x,A). Therefore, by triangle inequal-
ity, d'(&,c(x,2)) <d'(Zy(n),Zx(n")) < 2Ky + Ra.4.7(k,A) +2KxD3 = D4 (defined
above in A).

C. The portion of the path c(x,z) over B, is uniformly close to c(x,y) U
c(y,2):

Note that the portion of c(x,z) over B, is c(x,z) N @&, Let & € c(x,z) N
G, such that N = mx(§). Then 1 € [ty,f], and so N € N, ([tr, tey] U [try,1]). If
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3N’ € [ty, 1] such that dg(n,n’) < &, then by taking lift of the geodesic [n,7n’]
in Xy, we get, d'(§,c(x,y)) < d'(Z:(n),Zc(n’)) < 2Kk. Now, let 3 ' € [ty,1]
such that dg(n,n’) < &. Recall that V § € [t,1y], @/ (£:(8),Zy($)) < Roa7(K,A).
Again, if we look at A(ty,t,t,),3 " € [tyy,1y] U [ty,1] such that dg(n’,n") < &.
If n” € [ty,t,], then by taking lifts of geodesics [1,1’] and [n’,n”] in X, and
I, respectively, we get, d'(§,c(x,y)) < d'(£:(n),Zy(n")) < d'(£:(n), Zc(n")) +
& (S0 Z, (1)) + ' (5,(1'),Z(0")) < 2K+ Ro.a7(K,A) + 28 = Ds (say).
If n” € [ty,1], then the same inequality would imply that § is Ds-close to c(y,z) in
the path metric of Lgg.

Let D' = max{Dy,D3,D4,Ds} +2Ds 5 5(k,A), representing the maximum of all
constants obtained in Case 1, Case 2; additionally, considering Corollary 5.2.5, we
add 2Ds 5 5(k,A). Therefore, the triangle formed by the paths c(x,y),c(x,z) and
c(y,z), which we started with to show the combing criterion, are D’-slim. Hence, by
Proposition 2.2.6, Lgg is 852.1 = 62.6(W,D’,R)-hyperbolic, where v is defined in
Condition (1), equation 5.2. 1. O

5.2.2 Hyperbolicity of ladders (general case)

Lemma 5.2.8 (Bisection of ladders). There are constants Ksyg3 = Ks28(K) =
Cr4.12(K), Csa8 = Cs28(K,C, €) > C, €528 = €523(K,C,€) > € such that the
following holds.

Suppose z € £ N Xy and X, is a maximal K-qi section in £ through z. Then
¥, divide the ladder £ into two (Ks1.8,Cs.2.8,€5.2.8)-subladders, £ and £~ with

central base B such that

top(ZLT) C top(L), X, Cbot(L) and
bot(£L7) C bot( L), X, Ctop( L)

Proof. Since the proofs are similar, we prove only for, say, 2. Note that X, is a
maximal K-qi section over some base, say, B, C 75 ! (Ty). Let T, = mp(B;). There
are two kinds of segments in the fibers of £ as follows.

First kind: For all v € T; and for all b € By, £, = [top(Z},), Z:(b)] € %5 .

Second kind: Let w € T \ T; and v € T, such that d7(v,w) = 1. Let S be the con-
nected component of 7'\ {v} containing {w}. If we have an order A, (fop(ZLp w)) <
X, (v) <top(Z,,) (see Figure 5.2 left one), then ;z’fbj; =0QfortcSandb € B;. If
the order is bot (%, ) < X;(v) < hyy(bot (L w)) (see Figure 5.2 right one), then
X;; = %, fort € Ty NS and b € B; with the same orientation as it was for .Z.
Also, the family of maps {h,,, } for £ are the restriction of that of .Z.
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kOP (Z'\})W)

Figure 5.2

Now with the help of Lemma 5.1.21, we show that union of these fiber geodesics
form a ladder. In view of Lemma 5.1.21, we have to find K’,C’,&’. By Lemma 2.4.12
(2), one observes that K’ = C 4.12(K), C' = Cs.1.17(K,C,€) and €' = €5.1.17(K,C, €)
SErve our purpose.

Therefore, by Lemma 5.1.21, .Z* is a (Ks,.5,Cs2.8,€5.2.8)-subladder in .&,
where K528 = ks.121(K"), Cs28 = ¢5.121(C’) and &5 8 = €5.1.21(€’) for the above
K',C' €. Since the family of maps {h,,} for £ are restriction, so ks 121(K’') =
Cr4.12(K). O

In the same line, we also have the following lemma. Since the proof is similar to

that of Lemma 5.2.8, we omit the proof.

Lemma 5.2.9 (Trisection of ladders). There are constants Ksp9 = Ks529(K) =
C24.12(K),Cs529 = C529(K,C,€),€529 = €29(K,C,€) such that the following
holds.

Suppose x,y € £ N Xwg. Let Xy, X, be maximal K-qi sections through x,y over
By, By respectively. We assume that V' v € ng(ByNBy) and ¥V b € B,,, we have an order
bot(Zpy) < Xx(b) <Xy(b) <top(Lp,y) in L. Then we have (Ks29,Cs529,€52.9)-
subladder in .2 bounded by Y., ¥, with central base B, N B,

Lemma 5.2.10. For all R > 2Ks 5 3(K) there exists Rs .10 = Rs2.10(K,R) such that
the following holds.

Let x € £ N Xy and X, be a maximal K-qi section in £. Then we have two
(Ks5.2.8,Cs.2.8,€5.2.8)-subladders, " and £~, coming from Lemma 5.2.8. Then
NR(ZLT)NNr(ZL ™) C Nis, o () in both the path metric of Ng(-£) and Nr(L 7).

Proof. For ease of notation, let () = £+ 22 = £~ Let d; be the induced
path metric on Ng(.Z"), i = 1,2. Suppose y € Ng(LM)NNp(ZL?)) and y; €
2 such that d;(y,y;) <R, i =1,2. Then dx(y;,y2) < 2R and so dg(5,72) <
2R, where 7y (i) =i, i = 1,2. If TN [w(y1),w(y2)] =0, we let u € T such that
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dr(%,[rm(y1),m(y2)]) = dr(%T,u); otherwise, we take u € TN[m(y;),w(y2)] arbitrary.
Fix ¢ € B, N[y1,y2]p. Then dp(3i;,c) < 2R. Let t; be the nearest point projection
of 7(y;) on T and By, = BUmy ' ([t;, w(y;)]) for i = 1,2. Then there is K5 g(K)-qi
sections, say, X, over By, through y; in 20 i=1,2. Let Ks,3(K) = K; Taking
lifts of geodesic [J;,c]p in Xy, we get, di(yi,Zy,(c)) < 2K1.2R = 4K\R, i = 1,2.
Then dX(ZYI (0)72}’2(0» <dx(Zy,(c),y1) +dx(y1,y2) +dx (y2,Ly,(c)) < 2R(4K; +
1). S0/ (£,,(c), Zy, () < DR(AK: +1)). Since Zulc) € [, (¢), Dy (0))f € Lo
0 &/ (3,,(),54(c)) < O (2R(4K) +1)). Hence di(3,%,) < di(y, Zu(€)) < di(y,y) +
di(yi, Ly, (c)) +di(Xy,(c),Zx(c)) <R+4K1R+¢(2R(4K 1+ 1)), i =1,2. So, we can
take Rs .10 := R(4K; + 1)+ ¢ (2R(4K; + 1)). ]

Now we are ready to state the main result of this Subsection 5.2.2.

Proposition 5.2.11. For all R > 2C§.92.12(K), there exists 0s2.11 = 05.2.11(K,R) such
that Lgg := Ngr(%k) is Os5.2.11-hyperbolic with respect to the path metric induced
from X.

Proof. Subdivision of ladder: We fix a fiber geodesic .Z,, , for some u € T and a €
By. Let K| = Ks5..9(K). We also fix Ag > max{¢ (2K +k2.2.4(06),Ly,K)), p (4K (2R +
1)+2R+1),0(8KR+2R),p(4KD, + D;) } where D, is defined below in the verifi-
cation of condition (4) of Proposition 2.2.7. For x € .Z, ,, £ denote a maximal K-qi

section in .Z over, say, By. Let y: [0,1] — £, be the arc length parametrization
such that y(0) = bot (£, ,) and y(I) = top(Z,.). Now we inductively subdivide .&
into small girth ladders as follows. First, inductively we construct a finite sequence
of points on ., and K-qi sections through that, which will help in subdivision.
Note that set map from B to bot(£) N7y (B) is K-qi section in .Z. Set xo = ¥(0)
and X, = bot (£) N7y ' (B). Suppose x; = ¥(t;) has been constructed. Let

Qi1 ={te€(t,0]:y(t) = xand &’ (Z,,(5),Z:(s)) > A,V s € B, NB,}.

If Q; 1 = 0, then we define x;;| = ¥(I) and stop the process. Otherwise, we take
xip1 = Y(min { inf Q; 1 +A0/2,1}), and x}, | = y(inf Q;; 1 —Ao/2). The construc-
tion of these points and sections stop at n-th step if x,, = y(I).

Claim: Let i > j and d/(Zy,(t), Xy, (t)) > Ao, V t € By, N By,. Then for v €
7g(By, M By;) and b € By, we have the order bot (%}, ,) < Xy, (b) <Xy, (b) <top(Lp,)
in the fiber geodesic .%} ..

Proof of the claim: Indeed, because we have the family of order preserving
monotonic maps {h,,}, if B, is single vertex, then we are done. Otherwise, let

b,b" € B, such that dg(b,b") = 1 and bot (L, ,) < Xy, (b') <Zy,(b') <top(ZLy,) but
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bot(Lpy) < Ly (b) < Xy (b) <top(Lpy). Let o = [bot( Ly ), Ly, (W) C Ly,
and B = [bot(Zb,u),ij(b)]f C %4 Consider the §)-hyperbolic space Fy, :=
7ty ' ([b,b]) (see Lemma 2.3.4). Then we apply Lemma 2.2.4, to L} -quasi-geodesic
a, B in 8)-hyperbolic space Fjy;,. So there is a point z € 8 such that dx, (Xy,(6'),z) <
dr,, (Zx;(b'),2) < k2.2.4(8y, Ly, K). Thus by triangle inequality, dx, (z, Zy, (b)) < 2K +
k22.4(8),L,K). Hence d/(z,5,,(b)) < ¢(2K + k22.4(8),L(,K)). Since Iy, (b) €
[Z,le.(b)]f, 80 df<2xj(b)72xi(b)) < df(zxi(b)7z) < ¢(2K+k2-2-4<867L67K)) < Ao
— which contradicts to the fact that @/ (X, (t),Xx;(2)) > AoVt € By, NBy,.

Fact 1: Hence by Lemma 5.2.9, if d/ (X, (t),5y,(1)) > A V t € By, N By, the
K-qi sections X, and ij bounds a (Kj,Cy, €)-subladder in %k over the central
base By, N By, where K| = K55.9(K),C1 = Cs2.9(K,C,€) and € = &529(K,C,€). If
j =i+ 1, we denote this subladder by £ = (%, %, ).

Again, if d/ (X, (¢),Z,,,(t)) > Ag,Vt €B,,NB

DI then foﬂ is a maximal K-qi

Xiy1>
section in Z% through x§ 41 over Bx<+1 . Also, from the construction, 3 a € By, mBX‘+1
1 1

and 3b € Bx/,+1 N By, , such that

Xit1

@/ (2 (a),Eg, (a)) SAgand @/ (Zy  (b),Zy,,(b)) < Ao (5.2.2)

Y =Xit1

It is very well possible that ngﬂ does not lie fully in .& () In that case, considering
Lemma 2.4.12 (2), we adjust Zx§+1 to lie inside £, turning it into a C; 4.12(K)-qi
section over possibly a smaller base than Bx;+,~ (We refer to the proof of Lemma
2.4.12 (2),i.e., [10, Lemma 3.1].) We still denote this modified qi section as Zx§+1
and its base as Bx§+1' We note that this modification will not effect to the girth
condition 5.2. 2; and K| = K5,9(K) = Cr.4.12(K).

Therefore, by Lemma 5.2.8, the K;-qi section ngﬂ subdivides the ladder .#)
into two (K3, C,, & )-subladders, where K> = K5, 3(K}),Cr = Cs.8(K,C1,€1) and
& = &5,8(K1,C1,£1). Let us denote these subladders of Z) by ! = Z(Z,., Ty, )

and 72 =& (Z¢_, Xy, ). Note that Kp = Cﬁ.lz(l( ) and the ladders .#"! and £
satisfy the small girth condition 5.2. 2.

Therefore, the ladder . is subdivided into (K, Cj, €1 )-subladders .¥ D 0<i<
n—1. Also, .Z’s are further subdivided into two (K,,C,, &)-subladders £, £

in .20 except possibly fori =n—1.

Lemma 5.2.12. Let x € ¥y, and y € ¥y, such that dx (x,y) < D and i # j. Then there
is a point ¢ € By, N By; such that df(ZXi(c),ij (¢)) <¢(4KD+D).

Proof. Let mx(x) = a and 7y (y) = b. Suppose ¢ € [a,b] such that a € By, N By;.
Since B,,’s are isometrically embedded in B, [a,c|p C By, and [c,b]p C By;. Now
dp(a,b) < dx(x,y) < D implies dg(a,c) < D and dg(c,b) < D. By taking K-qi lift
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of [a,c|p and [c,b]p in X, and ¥, respectively, we have dx (x,Xy,(c)) <2KD and
dx (y,2s;(c)) < 2KD. Again by triangle inequality, dx (Xy;(c),Zy;(c)) < 4KD+D.
Hence d” (Ex,(c),Zy;(c)) < 9(4KD + D). O

Proof of Theorem 5.2.11: We use the following notations for the proof.

X; = Ng(LD), L' := Ng(L™), L := Np( L), 0<i<n—1

From the construction, it follows that Lxg = U?;OIX,-. We will verify the condi-
tions of Proposition 2.2.7.

(1) X;’s are uniformly hyperbolic, 0 <i<n—1.

Note that (.& (i))g | BBy, > Ag except possibly for i = n — 1 (see Definition
5.1.19 for notation). If (g(n_l))g’an,lﬂBx,, < Ay then by Proposition 5.2.1, X,,
is 05.2.1(K1,Aq, R)-hyperbolic. Otherwise, the ladder .Z () is subdivided by a K;-qi
section Xy - into two (K»,C, &)-subladders, .#! and .£" such that their girth
over central base < Ay (see inequation 5.2. 2). Since (X,B,T) satisfies flar-
ing condition, by Proposition 5.2.1, L' and L are 85, 1(K>,Aq,R)-hyperbolic.
Note that Nag, (Zx§ ) is a connected subspace in L' N L2, and by Lemma 5.2.10,

+1

L'NL? C Nrs, 10(K:1,R) (V2K (ngﬂ)). Again the inclusions Ny, (ZX;H) < L' and
Nk, (ngﬂ) < L' are K1(2K) + 1)-qi embedding (see Lemma 2.4.12 (3)). So by
Lemma 2.1.4, L' N L is L;-qi embedded in both L' and L? for some L; de-
pending on K;(2K; + 1) and Rs3.10(Ki,R). Therefore, by Remark 2.2.8, LY is
0 = 828(852.1(K2,A0,R),L1). Therefore, for 0 <i<n-—1, X; is 6;-hyperbolic
metric space, where 8 = max{6’,05,.1(K1,Ap,R)}.

(2) Let 0 <i<n—2. By Lemma 2.4.12 (3), Nk (Xy,,,) is K(2K 4 1)-qi em-
bedded in both X; and X; 1. By Fact 1, X, and X, bounds (K7,Cy, &)-ladder. So
by Lemma 5.2.10, X; N Xi 11 C Ng,, ,o(k.R) (Zx,,)- So by Lemma 2.1.4, X; N X4
is L»-qi embedded in both X; and X; | for some L, depending on K(2K + 1) and
Rs5.10(K1,R).

(3) Letx € Xj, y € X;+1 and o be a path in Lgg joining x and y.

Claim: There is a point in o which is R-close to .Z(®) and .Z(+1),

Proof of the claim: Suppose this is not the case. Then there are points z €
z € 2% and z; € £U) such that dy,(z,z;) <R, dx;(z,zj) <Rand j—i>2. So
dx (zi,zj) <2R. Thenby Lemma 5.2.12, 3 ¢ € By, N By; such that df(in(c),ij () <
¢ (8KR+2R) < Ap — which contradicts to the construction of X,’s.

(4) Now we want to prove that the pair (¥;,Y;;1) is uniformly cobonded for
1<i<n—2whereY;=X; NX;andY;,; = X;NX;.. Since X;’s are &;-hyperbolic
and the inclusion Mok (%) < X; is K(2K + 1)-qi embedding (see Lemma 2.4.12 (3)),
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then ¥,.’s are K’-quasiconvex in X;, where K’ = K 2.2,(61,K(2K +1),0) 4 2K (see
Lemma 2.2.22 (1)). By similar argument, we have that X, |
in Xi.

We prove that the set of nearest point projections of X, on X

is also K’-quasiconvex

» in the metric of

Xi is uniformly bounded; which will complete the proof. Indeed, let p : Xy, — Xy, |
be a nearest point projection map in X; such that the diameter of p(X,,) is bonded by
D in the metric of X;. Then by Lemma 2.2.18 there is D depending on &;,K’ and
D such that the pair (Xy,,Xy,,,) is Di-cobounded in X;. By Fact 1, X, | and £,
bounds a (Ki,Cy, €1)-ladder. So by Lemma 5.2.10, Hd(Y;,Xy,) and Hd(Y;11,Xy,, )
are bounded by Rs, 10(K1,R). Hence by Lemma 2.2.21 (2), the pair (Y;,Y;11) is
D’-cobounded where D' = Dy +2E>521(61,K’,Rs55.10(K1,R)).

Let p(y;) = pj fory; € X, and p; € L., ,, j = 1,2. We prove that dx,(p1,p2)
is bounded by D. By [10, Lemma 1.31(2)], the arc-length parametrizations of
1, P1lx; U [p1, p2lx; and [y2, p2]x; U [p2, pilx; are (3 +2K)-quasi-geodesic in X;.

Claim: dx,(p1,p2) < Ly25(81,3+2K',3+2K’) =: D.

Proof of claim: On contrary, suppose dx,(p1,p2) > Ly 2.5(81,3+2K',3+2K’).
Then by Lemma 2.2.5, [y1, p1]x, U [p1, p2]x, U [p2,y2]x, is A-quasi-geodesic in X;,
where A = 4,,.5(01,3+2K’,3+2K"). Now by stability of quasi-geodesic (Lemma
2.2.2) in X; and K’-quasiconvexity of Yy, inX;, 371,22 € Xy, such that dy, (pj,zj) <
Dy, where Dy = Dy55(61,A,A)+K', j=1,2. In particular, dx(Xy,,Xy,,,) < D>.
Then by Lemma 5.2.12, there is ¢ € By, N By,,, such that d/(Zy,(c),Zy,,,(c)) <
¢(4KD, + D,) < Ay which contradicts to our construction of X.’s.

(5) On contrary, suppose dx; (Y;,Yiy1) < 1. Then dx,(X,,, Xy, ,) < 2R+ 1. Then
by Lemma 5.2.12, 3 ¢ € By, N By, , such that d/ (X,,(c), 2y, (¢)) < 9(4K(2R+1) +
2R+ 1) < Ao which contradicts to our construction of X,,’s.

Therefore, we have shown that the collection {X; : 0 <i <n— 1} satisfies all
conditions of Proposition 2.2.7. Hence, Ng(%k) = Lgk is 0s..11-hyperbolic, where

05211 =0227(01,K(2K+1),D"). o

5.3 Hyperbolicity of flow spaces

Suppose R = 68y + 02.2.26(8), L(, Ay) +4A) + 88, > Ra2.13(84, A)) = 24+ 58 and
k=Kya1p. Letu € T and Flg(X,) be the flow space of X, obtained for the
parameters R and k (see Definition 5.1.7). More precisely, .#Ig(X,) is (K,C,€)-
semicontinuous family, where K = K51 9(k,R), C = Cs.19, € = €.19(R). This
section is devoted to proving the (uniform) neighborhood of .# Ik (X,,) is (uniformly)
hyperbolic with the induced path metric. In this section, we work with these flow
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spaces and these parameters. So we reserve K,C and € for the above values.
Sometimes we use the notations % g := .F1g(X,) and Uk, := Flg(X,). The idea
1s to apply Bowditch’s criterion (see Proposition 2.2.6) to show that Uk, is hyperbolic
(see Theorem 5.3.16). Given a pair of points, we first find a ladder inside %
containing those points (see Corollary 5.3.8), and in which we take a fixed geodesic
path joining them for the family of paths to apply Proposition 2.2.6. Then we show
that this family of paths satisfies all conditions of Bowditch’s criterion. This strategy
is elaborated in [9, Chapter 5] when X is a tree of metric spaces. In the line of finding
ladder, we prove something more in the following proposition. This proposition is
kind of heart of this section. In view of Remark 2.4.8, for this section, we require the
tree of metric bundles (X,B,T) to satisfy max{Cégilz(k5.3,1),9?0(2/65,3,3 +1)} =k«
-flaring condition, where %y = Ls 1 3(ks3.38,¢53.8,€53.8) is defined in the proof of
Lemma 5.3.12, Case (1).

Proposition 5.3.1. There are constants ks31 = ks3.1(K),cs53.1 = ¢53.1(K) and
€53.1 = &.3.1(K) such that the following hold.
Suppose x' € Flg(X,) and ¥; is a K-qi section through x' over B := B, n(xi))
3
lying inside Flx(Xy), i =1,2,3. Let B = (| B,i and ¥ = ng(*B). Then we have the
=1

1=

following.

1. Thereis (ks3.1,¢53.1,853.1)-ladder £, i = 1,2,3 containing X; with a central
base *B (possibly bigger) such that:

(a) Let S; = hull(n(£")) and B; = w5 ' (S;), i = 1,2,3, and Biy3 = M3_,B;
and Sy23 = M_,S;i. Then & = {(31 L, vESina, beB}isaks3i-gi
section over Bz and E C Ngao EZZ;K)

(b) X; C bot(L") C Uk and & C top( L"), i=1,2,3.

(c) L C N (%), i=1,2,3

2. There exist (ks3.1,¢5.3.1,€5.3.1)-ladder L with central base B containing X;
and ¥; such that bot(£") C top(L"), bot(£L7) C bot(L"). Also, £V C
Nys, (Z).

Although ks3.1, c53.1 and €531 depend on the constants C,€ and the other

structural constants, we keep those implicit.

Proof. The construction of ., %/ and Z are by induction on dr(u,v), where
v € T. As an initial step, first we explain how to get them in X,,. Note that ¥; N X,
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is a K-qi section over B, in the metric of X,,, i =1,2,3. Let L;NF,, = {xau},
i=1,2,3. Then by Lemma 2.4.15, V b € B,, &y-center, say, z;, , of geodesic triangle
DNpu= A(xé’u,xlzw,xz’u) in the fiber F, ,, forms a ky 4.15(K)-qi section over B, in
the metric of X,.. Let ¥, , := U3, [zbﬂ,xé)’u]pb‘u, b € B,. We call Upep, Y}, as tripod
of ladder over B, and [zbm,x;;’u] Fy. as legs of the tripod Y5, with vertices {xz’u :
i=1,2,3}. Recall that Q , = % N Fp, . Now Qp (= Fp ) is 28p-quasiconvex in
Fj, , implies [xéy,wxi,u]FbM C N{SO(%K) for all distinct 7, j € {1,2,3}. So y-centers,
zp.u Oof geodesic triangles A, , belong to Ng&) (%) and Y, = U?:l [z;,M,xZM]FM C
NgSO(QbM). Here .} , = [zb.u:%, )R, With 10p(Z ) = zpu, bot(Z],) = x}, , for
[ {1,2,3) and 201, = 5}, ] 1, with10p(Z01) = bor (2], = ) vbor( £1)) =
bot(<£}],) = x],,, for all distinct i, j € {1,2,3}. We note that {z,,,, : b € B,} C
(which we are constructing).

[x]

Now we assume the induction hypothesis. In other words, let v,w € m(%) such
that dr(u,v) = n, dr(u,w) =n+ 1 and dr(v,w) = 1. Suppose we have constructed
&', L' and E over B, for all the vertices € [u,v]. Now we will explain how and
when to extend .Z%, #" and Z inside X,,. Let [v, 0] be the edge joining v € B, and
to € B,,.

We divide the construction into following cases and subcases. Before going into

fabrication, let us fix some notations and collect some facts.

Notations: We use the following notations .iﬁt =N Fay, éff, = Zn Fuy
for t € T and a € B;. Consider the nearest point projection maps by Py : Fyp —
Fow, Py @ Fow — Yy, and the modified projection (see Definition 2.2.25) map by
Py : Fw — Yy . In the construction, we will see that either Y, , is a genuine tripod
or a degenerate tripod (i.e., a geodesic segment). We denote the tripod, in the
former case, by Y, ,, := U?:] [xi,y, zw]f "(in Case 1 and Case 2 below); and in the later
case, by Yy, := [x} ¥} ]/ (in Case 3 and Case 4 below) with fop(Zi ) =, , and
bot (£ ,) = xi . Let Ty, be the connected component of 7'\ {v} containing w and
Br,, = T (Tw), X1, = T (T).

Facts: Let X{,,V € Yy, be the point closest to x{w(: bot (,iﬂnlv)) in the induced
path metric of Yy ,, i = 1,2,3. Suppose £, , := P (%, ). Againif ¥, , C %! | then
%, = x5! (i+11s considered in module 3). In this case, we set 3%, , := %, . Note
that y{,’v is the point closest to zy, in the induced path metric of Yy ,. Suppose
Ty = Po(F5,)-

Fact (1): Suppose ¥y, € % . Then by Lemma 2.2.26 (2) (b),

doro (P (X5,), X4y 10)5 doro (Pro (Zo,0) Fro.,) and dog (Poo (x551), 515.10)
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are bounded by D> 5 26(6), L, Aj) = D (say).

Fact (2): Suppose ¥, , & %, , forany i € {1,2,3}, i.e., 2y, is in the interior of
Y, in the induced metric of ¥;, ;. By Lemma 2.2.26 (2) (a), dow (Po (x;,,) 5 ) < D.

Now suppose the pair (Y} ,, Fiy ) is not C-cobounded in Fyp. Then Lemma
2.2.13, dyw (Yo, Frow) < 25+ 58 and s0 Hdyw (Py (Fro ), Po (Yo,0)) < 4Af+ 8.

Fact (3): Note that &, , € Py (Frp,). SO, dur (X5 . %4 ) < 4A)+88) < K. Again
df(i;w, Qy,v) < 60 and since R > 68y +4A)+ 85, so )Efmw € O, (see construction
of flow spaces 5.1.1).

Fact (4): Suppose ¥y, , C .Z; , for some i € {1,2,3}. By the same argument as
in Fact (3), §,,, € Onw and dyw (75 7 ) < 445+ 88) < K. Now suppose that
dor (X5, Oro ) < K. Then dr (Py 0 P (x1),x511) < 2K and Py o Py (x)) € Y.
Sod/ (PyoPy (xf,fvl),xf,fvl) < ¢(2K). Again z,,, is dp-center of geodesic triangle with
vertices {x}, , : i = 1,2,3} in the fiber Fy, 50 d” (2o, [Py 0 Po(xy") ), 555 1) < 28.
Thus @/ (zpv,x55 ) < @(2K) +28. Hence dow (2o,s Orow) < K+ ¢(2K) + 280

Fact (5): Fact (3) and Fact (4) also say that if ¥, , = Zniv = [x£,7v,yi,7v] (i.e.,
Y, has one leg) then dow (%, .5, ,) < K, dow (¥} ,,7,,) < K. Also by Fact (1),
dor (Pro (x,,) Kty ) < D and dog (Poo (¥.,)s Tt ) < D-

Now we are ready to explain how and when to extend the tripod Y, ,, in particular,
L LU and B, first in Fy w and then in the entire X,,. In the end of some cases and
subcases, we make some note which will be used in Lemma 5.3.6 and Lemma 5.3.7.
We recommend the reader first to read the construction and then look at those notes
while reading Lemma 5.3.6 and Lemma 5.3.7. Also, all the time we refer to the
Figure 5.3.

Case 1: Suppose Y, , has three legs and the pair (Y, ,, Fr ) 18 C-cobounded
in Fyp. Depending on X; N Fy, ,, is empty or nonempty, we consider the following
subcases.

Subcase (1A): If ;N Fy,w # 0,V i € {1,2,3}, then we have tripod of ladder
inside X,, formed by qi sections X; N X,,, i = 1,2,3 as described in initial step of the
induction.

Subcase (1B): Suppose Y11 NX,, # 0 and X;NX,, = 0. Now we prove that
dor (2o,v, Zi—1()) < Dy. Now the pair (Y, ,,Fyp ) is C-cobounded in Fyn and
dor (Zix1(0),Y,,) < K together imply dpw (Xi41(0),Zi—1(v)) < 4K+ C. Then
d’(Zis1(0),Zi-1(v)) < ¢(4K +C) and so d/ (E;_1(0),20) < (4K +C) + & (as
Zp,v 18 dp-center geodesic triangle with vertices {Z;(v) : i = 1,2,3} in the fiber Fy ,).
Therefore, by triangle inequality, dyw (Zi—1(10),20) < K+ ¢(4K +C)+ 6 =: D;.

Let i, , € % , be the point closest to x;, , in the induced metric of .Z; , such

that )Z{w is D close (in dyy-metric) to a point i{w € Ow,w- Let Y be a K-qi section
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through )Efmw lying inside %k N X,, over B,,. Then we have tripod of ladder inside X,
(as described in the initial step of the induction) formed by qi sections X; | N X,, and
Y-

Subcase (1C): Suppose X; N Fy ,, # 0 and X;1 N Fy, ,» = 0. We consider the point
)7{',7‘, € .,2”0"” closest to zy , (in the fiber metric) which is K-close (in the metric of Fyy,)
to a point in Qy .. (Existence of such points are clear as X; N Fy, ,, # 0.) We take
)7fn,w € Ouw,w a nearest point projection of y‘{w on O  1n dy-metric. Here we have
a degenerate tripod of ladder (i.e., special ladder) inside X,, formed by the qi section
Y;NX, and a K-qi section Yy through yfw lying inside %k N X,, over B,,. We set
this as part of the ladder .2 with rop(%, ) = y(a) and bot (£}, ;) = Zi(a), a € B,
Also, we set £t NX,, = ZNX, with same orientation as .#" has and the other
L’ are empty over Br,,.

Note (1C): Since the pair (Y, ,, Fiy ) is C-cobounded in dyw-metric, so by the
construction of §, ., dow (Pro(Z0,v)s T ) < C and dop (P (xi,ﬁl),igjw) <C.

Subcase (1D): Suppose £;NX,, =0,V i = 1,2,3. Then .Z", £/ are empty over
Br,,, for all distinct i, j € {1,2,3}.

LkAPRKIe

(2 A-C-B)

Figure 5.3: For ease of notation, we only use i, &' to denote .Z; , %, , respectively in
the figure and so on. We also omit some not to make it clumsy.
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Case 2: Suppose Y, ,, has three legs and the pair (Y; ,, Fiv,w) is not C-cobounded
in Fyy. We consider the following two subcases depending on ¥y ,, C .ft,]; , for some
je{l,23}or¥,, ¢ jﬁ,’;v forany j € {1,2,3}.

Subcase (2A): Suppose ¥y, C fn’; , for some j € {1,2,3}. In this subcase, we
consider further division (24-A), (24-B), (2A-C), (2A-D) as follows.

(2A-A): Suppose X;NX,, # 0,V i=1,2,3. Then we go back to Subcase (1A).

(2A-B): Suppose X1 NX,, # 0 and £; N X,, = 0. Here in Subcase (24), depend-
ing on j, we have further following division (2A-B-A) and (2A-B-B).

(2A-B-A): Let Y, , C £ . i.e, j=i. Then by Fact (3), dw (%, ,,%.,) < K.
Here we will have a tripod of ladder inside X,, formed by K-qi sections ;11 N X,
and a K-qi section 7 lying inside %k N X,, through )mew over B,,. To set " and £/
over B,,, we go back to the initial step of induction with qi sections X, N X,, and v.

Note (2A-B-A): By Fact (1), dyw (Po(x;,,) 4 ,,) < D.

(2A-B-B): Suppose Yy, C .Zt,j;v, je{ix1} (i.e. j #1i). By second part of Fact
(4), doro (20,0, Orow) < K+ ¢(2K) +28). Take a point &, , € %, closest to x, ,
(in the fiber metric) such that &, , is (K + ¢ (2K) +28)-close (in dyn-metric) to a
point )Zimw € Ow,w- Let Y be a K-qi section through fﬁn’w lying inside %k N X,, over
B,,. Then we have a tripod of ladder inside X,, (as discussed in the initial step of
induction) formed by qi sections X, N X,, and 7.

(2A-C): Suppose £; N X,, # 0 and X; 1 NX,, = 0. Here in Subcase (2A4), depend-
ing on j, we have further following division (2A-C-A) and (2A-C-B).

(2A-C-A): Yo, C L, ie., j=i. Weset &, =Xi(tv). Now by Fact (4),
doro (y{,}v,fzf.o’w) < K. Here we will have a degenerate tripod of ladder inside X,
formed by the qi section ¥; N X,, and a K-qi section Y through ifmw lying inside Zx N
X,, over B,,. We set this as part of the ladder £ with top(.Z. ) = ¥(a), bot (£} ,) =
Yi(a), a € B,,. Also, we set L1 NX, = #'NX, with the same orientation as
Z£'NX, has and .11 NX,, is empty over Br,,.

Note (2A-C-A): By Fact (1), dow (P (x5 ), 5%.,,) < D and doy (Po (20,1, 7 ) <
D. Also, dyr (Po(x;,,), %5 ) < 2K.

(2A-C-B): Let Y, C .ZUJ;V, j€{it+1},ie., j+#i. By second part of Fact (4),
dor (2o,v; OQrow) < K+ ¢(2K) +289. We maintain the order of + and — depending
on j =i=+ 1. Take a point X{fv] € fﬁl closest to x{,ﬁl (in the fiber metric) such that
X{fvl is (K+ ¢(2K) 4 28p)-close (in dyp-metric) to a point )Effvl € Op,w- Let yand
Y be K-qi sections through )Zf; 1 and )Efnf 1 lying inside % N X,, over B,,. Then we
will have a tripod of ladder inside X,, (as described in the initial step of induction)
formed by the qi sections £;NX,,, yand Y.
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(2A-D): Suppose X;NX,, =0,V i € {1,2,3}. Note that ¥, ,, C .an;v (we are in
Subcase (24)). By Fact (3) and Fact (4), dow (% s T ) < K and dow (7 1, 5y 1) <
K. Here we have a degenerate tripod of ladder inside X,, formed by K-qi sections ¥
and ¥ through )ZQW and y@w lying inside %k N X,, over B,, respectively. We consider
this as a part of ./ with top(.i”aj;w) =7 (a), bot(faj;w) =¥(a), a € B,,. Also, we set
LIFEINX, = £/NX,, with the same orientation as .Z7 NX,, has and £/t -1nX,
is empty over Br,, .

Note (2A-D): By Fact (1), dow (Poo ('), Foav) < Dy doro (Poo (1) %y ) < D
and dyp, (ZD,V7)7J\*;),W) <D.

Subcase (2B): Suppose Yy, & XUJ;V for any j € {1,2,3}, i.e., 2y, belong to the
interior of vav in the induced metric of Y}, ,. We set )Efmw to be X; N Fyy , provided
YN X, # 0. We consider K-qi section through )Z{'U’W lying inside %k N X,, over B,,
if ;N X,, = 0; otherwise, the qi section to be X; N X,,. Then we have a tripod of
ladder inside X,, as described in the initial step of the induction formed by these K-qi
sections through £, .

Note (2B): By Fact (2), dyrw (Po (%), X4 ,,) < max{2K,D} fori=1,2,3.

Case 3: Suppose Y, ,, has only one leg, i.e., Y, , = gtf?v for some i € {1,2,3} and
the pair (¥y y, Fip ) is C-cobounded. So .Z NX,isa special ladder bounded by two
K-qi sections ¥; and 7, lying inside %k N X, over B,. Then by our construction in
Case 1 and Case 2, either 7y (say) is restriction of some X; or both y; and 9 are not
restriction of ¥;’s. In the later case, .#" is empty over By, . Now we assume that
N = X;NX,. We consider the following subcases depending on whether X; N X, is
empty or non-empty.

Subcase (3A): Suppose X;NX,, # 0. Note that top(Zn"’v) = yi,jv and bot(‘,?n"?v) =
Xy, =ZiNFy,. Weset &, , = X;(w). Then take , , € % , is the closest to y} ,
(in the fiber metric) such that ¥, , is K-close (in dyy-metric) to a point Ji, , € Or -
(Existence of such points are clear as X; N Fyy ,» 7 0.) Let y be a K-qi section through
y{nyw lying inside %k N X,, over B,,. Then we have a degenerate tripod of ladder
inside X,, bounded by qi sections X; N X,, and y. We set this as part of %’ with
top(<Z,,,) = v(a) and bot (£, ) = Zi(a), a € B,,. Also, note that this is the part of
the same .Z/ as it was over B, with orientation same as .2 N X,,.

Note (3A): Since the pair (Y ,, Fiy ) is C cobounded in the metric of Fyy, S0
doro (P (X} ), %oy ) < 2K and don (P (¥,), 5y 1) < 2K +C.

Subcase (3B): Suppose X;NX,, = 0. Then £ is empty over Br, .

Case 4: Suppose Y, , has only one leg, i.e., ¥, , = f,iﬂtfy for some i € {1,2,3}
and the pair (¥y v, Fip,w) is not C-cobounded in F,n. Then we have two extreme

points %, , and J, , of ¥, , C %, which are K-close to points )an’w and 3, of O
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respectively in dyp-metric (see Fact (5)). If £;NX,, # 0, then we set &}, , = Z;(1).
Suppose 7 is a K-qi section through %, , lying inside % NX,, if ;NX, = 0;
otherwise, ¥y =X;NX,,. Let ¥ be K-qi sections through yfmw lying inside Zx N X,
over B,,. Then we have a degenerate tripod of ladder inside X,, bounded by vy and ¥/
with orientation is same as described in Subcase (3A). Further, this is the part of the
same £ as it was over B, with the orientation same as .2 N X,,.

Note for Case 4: dor (P (xh ), %5, ,,) < max{2K +D} and dow (Pro (¥5 ), Fro ) <
D (see Fact (5)).

Lemma 5.3.2. Suppose ¥y, C £}, for some i € {1,2,3}. Then there is a constant
Cs.3.0 satisfying the following.

(1) (I9, Corollary 5.4]) The pair (<3 ,,
metric of Fyy fort =i+ 1.

(2) The pair (.i”tfj;”_l,Fm,w) is C5.3.0 cobounded in the path metric of Fyy.

Fow) is Cs32-cobounded in the path

Proof. (1) Fix t € {i+1}. Then by Fact (1), dow(Po(x,,),Po(zoy)) < 2D (by
triangle inequality). Again dy w (P (xf,fvl),Pm (xf,fvl)) < 2D. Then by Lemma 2.2.20,
we can take Cs 32 := C22.20(0, Lj), A}, 2D). O

Lemma 5.3.3. There is a constant Cs 3 3 satisfying the following.
If the pair (Yy v, Fow) is C-cobounded in Fyy, then the pairs (XJ{V,F,U,W) and
(X&V,Fm?w) are Cs 3 3-cobounded in Fyy, for all distinct i, j € {1,2,3}.

Proof. By Lemma 2.2.20, we can take Cs 3 3 = C2.20(0), L(), A}, C). ]

The above construction yields .#% and £/ for all distinct i,j € {1,2,3} as a
collection of geodesic segments in fibers. We still need to show that they form
ladders (Lemma 5.3.6 and Lemma 5.3.7) using Lemma 5.1.21. Let B; := mx (.£")
and S; := mp(B;) forall i € {1,2,3}. Let v € S123. Recall for b € B,, 25 ,, is Op-center
of geodesic triangle in the fiber F;, , with vertices {bot (£} ) :i=1,2,3}. As we saw
in the initial step of induction that {z,, : b € B, } form k2.4./1 5(K)-qi section in X,, over
B,. Therefore, to show & = {Zb,v :v € S123,b € B, } form a uniform qi section over
Bj23 (Corollary 5.3.5), we only need to prove dyw (2., Zw,w) is uniformly bounded,
where v,w € S123, dr(v,w) = 1 and [b, 1] is the edge joining v € B, and tv € B,,.

Lemma 5.3.4. ([9, Lemma 5.8]) There exists ks 3 4 such that dyw (2o v, Zrow) < k534,
where v,w € S123 such that dr(v,w) = 1 and [v,)] is the edge joining v € B, and
to € B,,.

Proof. This situation happens in Subcase (14), Subcase (1B), (24-A), (2A-B-A),
(2A-B-B), (2A-C-B) and Subcase (2B). We denote A\, and A, for geodesic triangle
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with vertices )E{,_‘v,i =1,2,3in Fy,, and Fyy, respectively. We also denote A\, and
AW for geodesic triangle with vertices )an’w, i=1,2,31in Fy ,, and Fyy respectively.
In all these cases, dyw (¥, ,, % ) < max{D1,K + ¢ (2K) +28,K} = D; (say), i €
{1,2,3}. Since zy, is d-center of A(xéy,x%’v,xg?v) in Fy , 80 2y, 18 38p-center of
Ayin Fy . Thus zy, 18 (300 + D2.2.2(6, Ly, L) )-center A, in Fyp (as the inclusion
Fyy — Fow is L{j-qi embedding, see Lemma 2.3.4). Since the corresponding end
points of the triangles A, and A,, are D,-distance apart from each other in the
path metric of Fyy, then by slimness of quadrilateral in Fyy, We get, zy, is (360 +
Dy 22(80,Liy, Ljy) + 268} + Dy )-center of A,,. Again, as Zw,w 18 p-center of A, and
s0 is (8 + D2.2.2(0, Lj), Lj,))-center of A,,. Thus Zpv and zy ,, are two D3-center
of A,, in the path metric of Fyy, where D3 = 38 + D3 52(00, Ly, Lyy) + 28+ D».
Hence, by [9, Lemma 1.76], we have, dow (zo,v, Zwo.w) < 2D3 + 98] =: ks 3 4. O

Corollary 5.3.5. We have a constant ks 3.5 = max{ks 4.15(K),ks3.4} such that £ =

U {zpy} forms a ks 3 5-qi section over Bioz with & C Ngao(ai/K).
beB,, vES|23

Here we show that .Z' and .#"/ form ladders.

Lemma 5.3.6. There are constants ks 3 ¢,¢5.3.6 and €s 3.6 such that L' is a ladder
with a central base *B containing X; with constants ks 3 ¢,c53.6 and €536, i = 1,2,3.

Proof. We check all conditions of Lemma 5.1.21.

Condition (1): Note that for all v € S;, Z'NX, is a special Cy.4.12(k3.4.15(K))-
ladder over B,. Let v,w € S; such that dr(v,w) = 1 and [v, 0] is the edge joining
v € B,andto € B,,. If v,w € T, then dyp, (top(,%"’v),top(f&w)) = dor (20,95 Zo.w) <
ks 3.4 and dy (bot (Z3),bot (£ ;) = dow (Ei(0),Zi(10)) < K. Otherwise, suppose
dr(v,T) < dr(w,T). Now let v,w € Si23, i.e. both ¥; ,, and Yy, ,, have three legs (this
happens in (1A), (1B), (2A-A), (2A-B-A), (2A-B-B), (2A-C-B) and (2B)). Note that
)anyw = bot(féw),zmyw = top(féw). Then ifn,w and zy , are max{ks34,Dr} =
ks 3 4-close to (th.y, where D5 is as in Lemma 5.3.4. Now let v € Sjp3 and w ¢ S123,
i.e. Y, has three legs but Yy, ,, has one (this happens in (1C), (2A-C-A), (2A-D)).
Then (by our construction) top(.Zy, ), bot (£} ) are K~close to .Z; , in dyp-metric.
Finally, v,w ¢ Si23, i.e., both ¥y, = ,,%U’l’v and Yy, = f&w have one leg, then
top(,?‘gw),bot(ft{;’w) are K-close to Zt,"?v. Therefore, for the condition (1) of
Lemma 5.1.21, we can take K = max{C>.4.12(K2.4.15(K)),ks3.4,K}.

Condition (2): Let v,w € S; such that dr (v,w) = 1 and d7 (v, %) < dr (w,T). To
show a uniform bound on Hdyw (P (%), L ,,)» We first show that

doro (P (b0t (2;,)), b0t (L3,.,,)) and dow (P (top(23,)) top(Lry 1))
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are uniformly bounded, and then we apply [9, Corollary 1.116].

Suppose both ¥, ,, and Y}, ,, have three legs (this happens in (1A4), (1B), (24-A),
(2A-B-A), (2A-B-B), (2A-C-B) and (2B)). In all these cases, dyw (P (Zov): Zrow) <
2ks34. So we need bound only for dyw (P (xfw),iﬁmw). In (1A) and (24-A),
dor (P (X} ), %y ) < 2K. In (1B), doro (P (X}, ), Ky ) < max{2K,2D; +C}. In
(2A-B-A) and (2B), dow (P (X} ), %y ,,) < max{2K,D}. In (2A-B-B) and (2A-C-B),
doro (P (X} 1) Fro) < max{2K,2(K + ¢ (2K) + &)}

Suppose Yy, has three legs and Y, ,, has one (this happens in (1C), (2A-C-
A), (2A-D)). Then dyw(Po(xy,), %k ,,) and dor(Po(2o,v), T4 ,,) are bounded by
max{2K + C,2K, D} (see the Note in the end of each case).

Finally, we assume that both Y, ,,, Yy ,» have one leg (Case 3 and Case 4). Then
doro (P (x5 ), %y 1) and dor (Pro (yo,0), 7ty ) are bounded by max{2K,2K +C,2K +
D} (see Note for Case 3 and Note for Case 4).

Let D4 be the maximum of all the above constants. Now by [9, Corollary 1.116],
we have C; depending on Jj, A and L;, such that

Hdow(Po(Z;,), [P (bot (£5,)). Po(top(Z5,)))) < C1.

Since fnij’w are Lj-quasi-geodesic in Fyy, by slimness of quadrilateral in Fyy, there
is € depending on &), D4, C) and L;, such that Hdyp, (P ($g7v),°2”rf,7w) <ée
Condition (3): Suppose v € S; and w ¢ S; such that dr(v,w) = 1 and v, tv] is the
edge joining v € B, and w € B,,. That is .%}, , = 0. Then the pair (£, , Fro,w) is
C' = max{Cs3,,Cs33}-cobounded in Fyy (see Lemma 5.3.2, Lemma 5.3.3).
Therefore, to conclude the lemma, we take, k5 3.6 =ks.1.21(K’), ¢5.3.6 = ¢5.1.21 (C")
and €536 = €.1.21(€’) for the above K',C’, €’ O

Lemma 5.3.7. There are constants ks37,cs5.3.7 and €s.3.7 such that LV is a ladder
with a central base *B containing X; and X.j with constants ks 37,¢537 and €37 for
all distinct i, j € {1,2,3}.

Proof. Here also we verify all conditions of Lemma 5.1.21.

Condition (1): Note that for all v € w(£Y), £ NX, is a special Cs.4.12(K)-
ladder over B,. Suppose v,w € 1t(.£"/) such that dr (v,w) = 1 and [, ] is the edge
joining v € By and w € B,. If vyw € T, dyp(Xi(v),Z;i(t0)) < K for all i € {1,2,3}.
Otherwise, we assume that d7 (v, %) < dr(w,T). In the construction, we have seen
that 3&,’ ,» matches with féw or iﬂnﬁ'_‘w unless both Y, , and Y, ,, have three legs.
Note that Hd/ (£ ,U Ll L) <28. Also, X} and 3, |, are Dy-close (in dyp-

metric) to fn"’v U.;Sf,{w, where D, is as in Lemma 5.3.6. Hence, in all the cases, there
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are points, x1,y; € .Zn”v such that dyy (%, ,,,x1) < D4+ 38 and dyr ()Zéjw,xl) <
Dy + 38y with an order bot(.,%{v) = bot(i”tf{.v) <y <x < top(.,%ifv) = bot(L},).

Therefore, for the condition (1) of Lemma 5.1.21, we can take K’ = max{D4 +
300,C2.4.12(K)}.

Condition (2): Let v,w € (%) such that dy (v,w) = 1 and d7 (v, %) < dr (W, T).
We prove that Hdy, (P (.,ft,”v),.,%’f ) 18 uniformly bounded.

If both Y, , and Yy, have one leg, then Hdyy (P (.,%”v),fnljw) < &3¢ (by
Lemma 5.3.6). I ¥, ,, has three legs but Yy, ,, has one, then Zg}w =0 for s is equal
to either i or j. So by Lemma 5.3.6, diam (P (%} ,)) < ¢5.3.6 in dyp-metric. Again
if both ¥, , and Yy, have three legs, Hdow (P (27 ,), L ) < €5.3.6 for s € {i, j}.
Now Hd' (L5 U f&w, .,2”‘;] w) < 28 implies that in either case, Hdyw (Po (%, U
fn{v),fg;w) < &536+200+¢53.6. Again de(éfniy UZUJ;V,Z;’];,) <26y and so by
Lemma 2.2.21 (1), Hdow (Po(Zi, U.Z,), Po(Z00)) < C2221(84,24).(280 + 1).
Therefore, combining these inequalities, we get, Hdyn (Po (.Zé’v),.,iﬂ,{,j w) < €, where
€=1¢8536+28+cs536+C2221(8),A).(200+1).

Therefore, for condition (2) of Lemma 5.1.21, we take €' = max{€e,e536} = €.

Condition (3): So for the condition (3) of Lemma 5.1.21, we can take C' =
max{Cs3,,Cs 33} (see Lemma 5.3.2, Lemma 5.3.3).

Hence, to conclude the lemma, we take, k537 = ks5.1.21(K’), ¢5.3.7 = ¢5.1.21(C’)
and €537 = €s.1.21(€’) for the above K',C’, €’. O

Therefore, to complete Proposition 5.3.1, we take ks3; = max{ks3.¢,k53.7},
¢5.3.1 = max{cs3.6,cs5.3.7} and €31 = max{€s3.6,€53.7} O

Therefore, Proposition 5.3.1 gives us the following Corollary 5.3.8. Below
in Lemma 5.3.9, we will investigate the (uniform) hyperbolicity of a (uniform)
neighborhood of U?:l.,% " in a bit larger neighborhood of .Z Ik (X,,), where .£"’s are
the ladders obtained in Proposition 5.3.1.

Corollary 5.3.8. Let x,y € Flx(X,). Suppose X and X, are K-qi sections through
x and y lying inside Uk over By, z(x) and By, x(y) respectively. Then there is a
(ks3.8,¢538,€538)-ladder, £y, with a central base (possibly bigger than) B, con-
taining the sections X, X, such that bot(%y,) C Uk, top(ZLyy) C Uk and 2, C
szgo(%l()’ where ks 38 =ks3.1, ¢538 =531 and €538 = €53.1.

: 9 :
Lemma 5.3.9. Given R > 2C§.i_12(k5,3,1), there exist 0539 = 053.9(ks3.1,R) and
Ls39 = Ls39(ks3.1,R) such that the following hold.

1. Y := Ng s, (U, L) is a 853 9-hyperbolic subspace (with the induced path
metric) in UK(R+880) = N(R+850)<le(Xu))'
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2. The inclusion LV = Ng(LV) < Y is Ls 3.9-qi embedding with their induced

path metric.

Proof. (1) Note that " is a (ks 3.1,¢53.1,€5.3.1)-ladder such that £ C Ng&)(%j{) for
i=1,2,3,and so Y C Ug(rissy)- Let L' = Ngi»5,(£"), i =1,2,3. Since the tree of
metric bundles (X, B, T) satisfies Cg. 1> (ks 3.1)-flaring condition, by Theorem 5.2.11,
L' is &;-hyperbolic, where 8; = 855,11 (ks.3.1,R +28). Now we apply Proposition
2.2.7 twice on LVs, i = 1,2,3; first on L' UL? and then on (! ULZ) UL3 to show Y
is hyperbolic.

L'UL?is Hyperbolic: We verify the conditions of Proposition 2.2.7 for n =2
(see Remark 2.2.8).

(1) L' and L? are §;-hyperbolic.

(2) Note that Ny, (E) € L' NL?, and by Lemma 2.4.12 (3), Ny, () is
ks3.1(2ks 3.1 + 1)-qi embedded in both L' and L2. Let NE(Nstg_l (£)) denote the
D-neighborhood of Ny, (£) in Li-metric for i = 1,2. If L' NL? C N (Ny 5, (E)),
then by Lemma 2.1.4, L' NL? is L;-qi embedded in both L' and L? for some L,
depending on D and ks 3.1(2ks3.1 + 1). Now we will find D.

Finding D: Letx € L'NL?. Then 3 x; € " such that d;; (x,x;) <R+2&, i=1,2.
So dx(x1,x) <2(R+2d) and dp(ay,az) <2(R+2d), where mx (x;) = a;,i = 1,2.
Let v be the center of the tripod with vertices 7(x;),7(x2),u in T. If any one of
mt(xy), m(xp) is u then we set v to be u. Let ¢ € B,N[aj,az]. Then dp(a;,c) <

2(R+2d),i = 1,2. Suppose ¥; is ks 3 1-lift through x; of geodesic |a;,c] lying
inside .Z". Let ¥(a;) = ¢;,i = 1,2. So dji(x;,¢;) < 4(R+28)kss.1,i = 1,2. Thus
dx(01,62) < dx(cl ,xl) —l—dx<xl ,xz) —l—dx(Xz,Cz) < 2(R + 25())(4]{5.3.1 + 1), and so
d’(c1,c3) < 9(2(R+28))(4ks31 + 1)) = Dy (say). We also note that v € B where
B is a central base for all .Z"’s. Since Zey € B is Op-center of geodesic triangle
with vertices {bot(iﬂc{ v);j=1,2,3}in F.,, so z, is 36p-close (in fiber distance)
to a point ¢3 € [c1,¢2)/. Then, fori = 1,2, d;i(ci,zen) < d'(ciyzen) < df(ciyc3) +
d’(c3,z¢v) < Dy +38. Hence, for i = 1,2, d;i(x,zc) < dpi(x,x;) + dyi(xi, ) +
dyi(ciyzen) < R+280+4(R+280)ks 3.1 + Dy +38 =: D. Therefore, L' N L2 C
Nh(Z) C N} (Nakg 5, (2)), where Nj(§) denotes D-neighborhood around § € L' in
the path metric of L', i = 1,2.

Therefore, by Remark 2.2.8, we conclude that L'UL?is 0,-hyperbolic, where
& = 825(01,L1).

The exact proof works mutatis mutandis for (L' UL?) UL?, and we conclude that
Y is uniformly hyperbolic with the induced path metric. We take that hyperbolic
constant to be 05 3 9.
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(2) Note that LV = Ng(£V) C Y C Ug(riss,) as LY C Ngo(.,%i U.#7). Since
£V is a (kss.1,¢53.1,€5.3.1)-ladder (see Proposition 5.3.1), then by Corollary 5.1.5,
the inclusion LY < X is Ls | 5 (ks.3.1,R)-qi embedding and so is the inclusion L s
Y. Therefore, we can take Ls 3.9 = Ls.1 5(ks3.1,R). O

Given a pair of points in .% [g(X,,), we get a ladder according to Corollary 5.3.8.
But this ladder is far from being canonical. In the following proposition, we show
that different ladders for different choices of qi sections for the same pair of points
give rise to uniform Hausdorff-close geodesic paths joining those points in the
respective ladders. In fact, this is more generally true, but we prove it according to

our requirements. For the proposition below, r; is defined in Lemma 5.3.14.

Proposition 5.3.10. There is a constant Ds 310 = Ds3.10(ks3.8,C5.3.8,€5.3.8) such
that the following holds.

Let x,y € Zlg(Xy). Suppose ¥, and X, are K-qi sections through x and y
lying inside Uy over By, n(x) and By, z(y) respectively. Let ,,?jcly and Dg/ﬁny be two
(ks3.8,¢53.8,€538)-ladders containing ¥.,%, (see Corollary 5.3.8). Further we
assume that c'(x,y) and c*(x,y) are geodesics joining x,y inside L}Cy =N, (.,iﬂxly)
and L)%y := N,,(L?xy) respectively. Then c'(x,y) and ¢*(x,y) are Ds 3.1o-Hausdorff-

close in X.

Proof. In this proposition, we omit the subscript xy when denoting the ladders
to avoid excessive notation. We denote £ := .i”x’} L' := N,,(#¢") and the fibers
of Z" by gbl,v CF,,i=1,2. Let ix (") = B, n(Z£") =S;,i =1,2. Note that
both the ladders £, #? contain X, and £y, so for v € 7(X,) Un(L,) and b € B,,
d’ ($;7v,$b2’v) < &; in particular, the pair (.,?bl’v,.,iﬂbz,v) is 58p-close in Fp, ,..

The proof is divided into two steps. In Step 1, we find a common base B and
develop lemmas which are needed in Step 2. In Step 2, we show that there is a
common subspace containing x,y which is qi embedded in both L', L. Finally, we
conclude the proposition.

Step 1: Construction of common base B: Let B = {b c B, : d/ (fb{v,sz.v) <
580, € S NS, }. Note that B, C my () Uty (%) C B'. Let B, = hull(B') N B, and
B, = Ns (B,) N B,, where v € mz(B'). Suppose B| = UVEEB(B’)BV and so 7g(B1) is a
subtree of S; N S,. Then by [9, Lemma 1.93] and the fact that B,’s are isometrically
embedded in B, we note that By is (1,68))-qi embedded in B. Finally, we will add
a few more vertices and edges to By to complete the construction of B. Suppose
v € ng(By),w ¢ mp(B;) and w € S1 NS, such that dr(v,w) = 1. Let [b,w] be the
edge joining b € B, and tv € B,,. Further, we assume that v € B, and the pair
(ﬁt,]’v,ﬁt,z’v) is 58p-close in the fiber F; ,. Then we include only the vertex v and
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the edge [v,tv] to By. And, we will use the same notation for these extra vertices,
i.e., here B,, = BNB,, = {tv}. Notice that B is still (1,68))-qi embedded in B. Let
S =T7ip (B)

Letve S1NSand b € B,. Let le; oo Fpy — Zb" , be a nearest point projection
map in F}, , (see Lemma 2.2.21 (1)) and P} | : F,, — %} is modified projection (see
Definition 2.2.25) corresponding to P , i =1,2. We denote ., =P} (£7?) C
%, and jb%v = Pliv(fb{v) C fb%v. We take £':= U _jbi,wi =1,2.

beB,, veS
Note 5.3.11. (i) Let v € ng(B’) and b € B N B,. Then by Remark 2.2.14 (2),
Hd! (P} (£;,), P, (Z),) <280 +58 =78&. So HA! (£, £;,) < 136) by Re-
mark 2.2.27. However, we will prove below in Lemma 5.3.12 thatVve Sand V b €
B,, Hd! (£} ,.£}) is uniformly bounded.

(i) If v € S NSy, then by Lemma 2.4.16, Z'NX, := Upep, £}, form a (uni-
formly) special C>.4.12(K7.4.16(K))-ladder bounded by K3 4.16(K)-qi sections, i =
1,2.

Lemma 5.3.12. With the above notations, we have Rs 3 1o such that¥ v € S and ¥ b €

Bv,
de(jbl,wjbz,v) <Rs312.

Proof. Letv € S, c € B,. We divide the proof into following cases. First three cases
deal with the vertices v € g(B1) = mg(B’) and Case (4) with the extra vertices.

Case 1: Suppose ¢ € hull(B’) such that ¢ € [a,b]p for some a,b € B’ and a € B,,.
Let w = ng(h),v = mp(c). We prove that d/ (.ch’v,.i”c%v) is uniformly bounded
and hence we are through by Remark 2.2.14 (2) and Remark 2.2.27. As the pair
(,fbllw,fb%w) is 58p-close, we take x € .Zb{w such that d/ (x7$b%w) < 568). Consider
k5‘3‘/8—qi section, say, Y through x over B, in the ladder . I (since £"’s are
(ks.3.8,¢5.3.8, €5.3.8)-ladders). Now we apply Mitra’s retraction (see Theorem 5.1.3),
P2 on ¥ and get a Zy(2ks 3.8+ 1)-gi section, say, ¥, over By, in £?, where
Ry :=Ls.13(ks38,C53.8,€53.8). Then we have two Z(2ks 3.8+ 1)-qi sections Y4, Y.
over By, such that (as a € By) d’ (1:(s),%(s)) <58, s € {a,b}. Again the tree
of metric bundles (X,B,T) satisfies %Z((2ks3.g + 1)-flaring condition. Thus the
restriction of ¥, 7. on geodesic [a,b] and Lemma 2.4.7 (2) imply d’ (1(c),7.(c)) <
Ry, where R| = Ry.47(Lo(2ks 33+ 1),58). Hence df(DZ}l’w.,?fv) < R; and so by
Remark 2.2.14 (2) and Remark 2.2.27, Hd/ (£}, £2,) <88 +R;.

Case 2: Suppose ¢ € hull(B’) such that ¢ € [a,b]p for some a,b € B’ and none
of a,b belong to B,. Let v = mg(c). More precisely, we assume that v is the center
of the geodesic triangle A(7p(a),u, np(b)), otherwise, it will land in Case 1. Let
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d' € B,. Then by &-slimness of the geodesic triangle A(a,b,a’) and without loss
of generality, we may assume that dg(c,c’) < & for some ¢’ € [d’,b]. So by Case
1, we have df(fcl,’v,,iﬂiv) <R;. Letx € fcl,y,y € éfcz,v such that d/(x,y) < Ry.
Now we take ks 3 g-qi lifts, say, 7, and 9 of geodesic [c,c’] in £ and .#? through x
and y respectively. Then dx (71 (c),v2(c)) < dx(1i(c),x) +dx(x,y) +dx(y,1(c)) <
2ks 3800 +R1 +2ks 3,88 = 4ks 3880 +R1. Thus d/ (£}, L2%,) < ¢ (4ks 3880 +R1),
where fibers are ¢-properly embedded in X. Therefore, by Remark 2.2.14 (2) and
Remark 2.2.27, Hd/ (£}, Z2,) < 88+ ¢ (4ks 358+ R1).

Case 3: Suppose ¢ € By and 7g(c) = v. Then by construction of By, there
exists ¢; € B, C hull(B’) such that dg(c,c1) = dp,(c,c1) < 8. Since ¢ € hull(B’),
by Case 2, we know that &/ (L} | .2 ) < ¢(4ks3300 + R;). Now we use the

cvr=Zery
same argument used in the last plart of 1Case 2. Letx € i”clw,y € oiﬂczlv such that
d’(x,y) < ¢(4ks3.300 + Ry). By taking ks3g-qi lifts through points x and y of
the geodesic [c,c;] in the ladders .Z’! and .#? respectively, one can conclude that
d/ (L}, L) < ¢ (4ks 3300+ ¢ (4ks 3880+ R1)). Hence, by Remark 2.2.14 (2) and
Remark 2.2.27, Hd/ ()}, Z2,) < 880+ ¢ (4ks 3.5+ ¢ (4ks 3580+ R1)).

Case 4: Here we will check for extra vertices if any. Suppose ¢ € B\ B;. Let
ng(c) = w and [v,w] be the edge such that dr(u,v) < dr(u,w). Let [v,10] be the
edge joining v € B, and v € B,,. Note that ¢ = tv. Then by the construction of
w e B, d/ (4}, LF,) <58 and so Hd/ (£, £2F) < 138 (see Remark 2.2.14
(2)). Suppose x € .7, and y € £}, such that @/ (x,y) < 138. We consider x’ €
fnlw, y e féyw such that dyy (P (x),x") < €5.3.8 and dyy (Po (v),)) < €5.3.8 (since
LPs are (ks3.8,¢53.8,€5.3.8)-ladders). Again Py, is L’1 -coarsely Lipschitz retraction
in the metric Fyy (see Lemma 2.3.4 (2)) and S0 dyw (P (X), Po () < L dow (x,y) +
L} < L|(138+ 1). Thus by triangle inequality, dyw (x',)") < 2€538+L| (1380 + 1)
= d/(x,y') < ¢(2e538 +L| (138 +1)). Now X' € 4], Y € £Z,, and so by
Remark 2.2.14 (2) and Remark 2.2.27, we have, df(jnﬁ,w, j‘%’w) <88+ ¢(2e533+
Li(138+1)).

Therefore, we can take Rs 3 1, to be the maximum of all four constants we get
in four cases, i.e., Rs3.12 = max{¢(2ks 35+ ¢(2ks 386 +R1)),80 + ¢(2&53.1 +

L(138 +1))}. O

Next we show that .Z”’s are more general ladders. More precisely, they are
semicontinuous families and they need not satisfy the condition (5) of Definition
5.1.1 trivially (i.e., in the notation of Definition 5.1.1, B' C 7, ' (Ty)), and they
behave like ladders.
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Lemma 5.3.13. There are constants ks 3.13, ¢5.3.13 and €s 3.13 such that the following
hold.

Suppose [v,w] is an edge in T such that dr(u,v) < dr(u,w) and [v,10] is the edge
joining v € B, and w € B,,. Let v,w0 € B. Then:

L CND ()

= "ks3.13

2. Hdnm (Pm (jtfy)?jl{gw) < &3.13-

3. Suppose a € B, b ¢ B with dg(a,b) = 1 and ng(a) = s, ng(b) =t. Then
diamf(jis) < c¢53.13 if s =t or the pair (j‘f?S,FbJ) is ¢5.3.13-cobounded in
the path metric of Fy, := 71:;1 (la,D)) if s #t.

In particular, £ is (ks3.13,C53.13, 5.3.13 ) -semicontinuous family, i = 1,2.

Proof. (1) We will only prove for i = 1 as the proof for i = 2 involves a simple change

of indices. Since .#"’s are (ks 33,533, €5.3.8)-ladders, for x € jr}hw, dx € ZUI’V

such that do (x,x1) < ks 3. Lety € 23, y1 € 47, such that d’ (x,y) < Rs 3,12 (by

Lemma 5.3.12) and dyw (y,y1) < ks5.3.8. Then dow (x1,y1) < dow (x1,x) +d’ (x,y) +
dow (y,¥1) < 2ks 3.8+Rs 3.12. Hence @/ (x1,y1) < Ro, where Ry = ¢ (2ks 3.5 +Rs 3.12)-

Note that Pé’V cFyy — fb{v is a nearest point projection map in the metric of Fy ,,. For

simplicity, let P= Py ,. Then d’ (P(x), P(y1)) = d” (x1,P(y1)) < C2221(8o, &) (Ra +
1) (see Lemma 2.2.21 (1)). So, d/(x1,.4),) < C2221(80,80)(R2 4+ 1). Hence

dow (%, 2 ) < dor (x,x1) +d (x1,.2,) ) < ki, where ki = ks 3.8 +C2.2.21(80, 60) (Ro +
1). Therefore, £, ,, C NZ® (). Thus ki works for (1) but for the second part of

this lemma, we have defined k5 3 13 > k| in the end.

(2) Here also we will only prove for i = 1. Let x € £, and we take y €
j&v such that d/(x,y) < Rs3.1» (by Lemma 5.3.12). We take x’ € f&w, y €
Z&W such that dyp (Po(x),x') < €538 and dow (Po(¥),y’) < €538 (since £"’s are
(ks3.8,¢5338,€5.38)-ladders). Again P, is L-coarsely Lipschitz in the metric of
For S0 dyp (P (%), P (¥)) < Lidyw (x,y) + L} < L} (Rs3.12+ 1). Therefore, (by tri-
angle inequality) dyw(¥',y') < 26538 +L|(Rs312+1) = d/(x',y) < ¢ (2538 +
Li(Rs3.12+ 1)) = R3 (say). Note that Prl:,w tFow — an,’w is a nearest point projec-
tion map in the metric of F,,. For simplicity, let P = P, . Since d/(x',y') <R3,
then by Lemma 2.2.21 (1), d/ (¥, P(y')) = d/ (P(¥'),P(y')) < C2.221(80,80)(R3 +
1) =Ry (say). So d/ (X',.Z ) < Rs. Hence dyw (Po(x),Zs,,) < duro(Po(x),x) +
doro (x’,jéw) < &538+ Ry = € (say), i.e., Py (jnl,v) C Ng® (jtéyw).

For the other inclusion, let x € .2 ,. Then by (1), 3 x; € 4], such that
dyro (%, x1) < k1. Then dyr (P (x1),x) < 2k;. Hence Zy, \, € N®(Zy,,)-



5.3. HYPERBOLICITY OF FLOW SPACES 135

Therefore, we can take €5 313 := max{€;,2k; }.

(3) Suppose s =t. Then a,b € By. Since b ¢ B, so df(fb{s,gb%s) > 568y. Then
by Remark 2.2.14 (1), diam/ (7} ) < 88 for i = 1,2. Let Z; = [n;, G, ] for
i =1,2. Since dp(a,b) = 1, by Note 5.3.11 (i), dx(ni ,,-Z; ) < 2K2.4.16(K) and
dx ( ci,s’jbi,s) < 2K; 4.16(K) for i = 1,2. Then by triangle inequality, dx (1} ;. &! ;) <
4K; 4.16(K) + 86 for i = 1,2. Therefore, diamf(.,?gis) < @(4K34.16(K) +88) for
i=1,2.

Now suppose s # 7. Note that since a € B, b ¢ B, then dr(u,s) < dr(u,t) and
a,b] is the edge joining a € By, b € B;. If 1 ¢ S; US;, then the pair (£, ,F,,) is
¢s.3.8-cobounded in F;. So by Lemma 2.2.18, there is a constant C| depending on
), Ay and cs 3 g such that the pair (jcis, Fp,) is Ci-cobounded in Fy.

Now let 7 € §; N S. Since b ¢ B, then by the construction of B, d/ (£}, £2) >
58. Thus by Remark 2.2.14 (1), diam/ (£} ) < 88 for i = 1,2. Therefore, by
Lemma 2.2.18, there is a constant C; depending on &), A} and 83 such that the pair
(L s Fpy) is Cy-cobounded in Fy, for i = 1,2.

Finally, we assume that ¢ belong to only one of the S, S>. Without of loss
of generality, let t € S| butz ¢ S,. Note that s € S,. Then the pair (XQ%S,FM) is
¢5.3.8-cobounded in F;,. So by Lemma 2.2.18, the pair (ja%s, Fy ;) is C1-cobounded
in F,, (where C) is defined above). Again, Hd/ (£}, Z2) < Rs 3.1, and a nearest
point projection map P : F,, — F,, is L}-coarsely Lipschitz (see Lemma 2.3.4 (2))
together imply that the diameter (in the metric of F,;) of {P(ja{ )} is bounded
by 2L’l (Rs3.12+ 1)+ Cy = D (say). Then by Lemma 2.2.18, there is a constant C3
depending on &, Aj and D such that the pair (£, ,

Therefore, we can take ¢s3.13 = max{¢ (4K, 4.16(K) +80),C1,C>,C3}.

For second part, we note that B is (1,668)-qi embedded in B. Now by Note 5.3.11
(ii), L' NX, is special C 4.12(K>.4.16(K))-ladder in X,,v € S; N S,. Therefore, by
Lemma 5.1.21, Z" is (ks3.13,C5.3.13, €5.3.13)-ladder, where ks 3.13 = ks.1.21 (k') > ki
and k/ = max{lq ,C2.4.12(K2.4.16(K))}, and i = 1,2. O

Fp, ;) is C3-cobounded in F.

Lemma 5.3.14. Let r| = max{2k5,3,13, 280 + 1}, Iy = max{2C§.92.12(k5.3.8),R5,3,12 +
ri+8}and L' := N, (L"), L' := N,,(£"), i = 1,2. Then there is a constant Ls 3 14
such that the inclusion L' — L' is Ls 3 14-qi embedding.

Proof. Note that £ is (ks 3.13,¢5.3.13, €5.3.13 )-semicontinuous family (see Lemma
5.3.13)and L' C L'. Then by Corollary 5.1.5, the inclusion L' < X is L5 5(k5.3.13,71)-
qi embedding and so is the inclusion L < L',i = 1,2. Therefore, we can take

L5314 =Ls15(ks3.13,71). ]
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Step 2: We fix r; and r, as in Lemma 5.3.14 for the rest of the proof. Here
we construct a common qi embedded subspace of L! and L? containing both x and y
and which will show that ¢! (x,y) and ¢?(x, y) are uniformly Hausdorff-close.

Construction of common qi embedded subspace of L' and L* LetveSandbe
B,. Suppose 25, := hull(jb{v Ujb%v) CF,, & =UZ,andZ:=N, (Z), where
the quasiconvex hull and its neighborhood is taken in the corresponding fiber. We
also have de(.,?b{v, .,?b%v) < Rs3.12 (by Lemma 5.3.12). Suppose L' and L are as in
Lemma 5.3.14. Then L' CZ C N, &, 1, +6,(-Z") = Nis 5 1,16, (L') in the metric L'
and so Hdj; (l_,i, Z) <Rs3.12+ 0 fori=1,2. The subspace Z is our required common
subspace and in the below lemma we will see that it is uniformly qi embedded in L'
fori=1,2.

Lemma 5.3.15. With the above notations, there is a (uniform) constant Ls 3 15 such
that the inclusion Z < L' is Ls 3 15-qi embedding in the path metric of L', i = 1,2.

Proof. By Lemma 5.3.14, the inclusion L' < L' is Ls3 14-qi embedding. Since
Hd,i(L,Z) < Rs3.12 + &, with the reference to [9, Lemma 1.19], our task is to show
that Z is uniformly properly embedded in L'.

Z is properly embedded in L': Let x,y € Z and n € N such that d;;(x,y) < n.
Then 3 x1,y; € L' such that dz(x,x;) < Rs3.12 + 8, dz(»,y1) < Rs3.12+ 8. So,
dri(x1,y1) <2(Rs3.12+ &) +n and by Lemma 5.3.14, dz(x1,y1) < dji(x1,y1) <
(2(Rs3.12+60) +n)Ls314+ L§.3.14 = D(n) (say). Thus,

dz(x,y) < dz(x,x1)+dz(x1,y1)+dz(y1,y)
< Rs312+060+D(n)+Rs3.12+ &

= 2(Rs3.12+ ) +D(n) =: g(n) (say)

So Z is g-properly embedded in L' for the function g : N — N defined above. There-
fore, for i = 1,2, the inclusion Z < L' is Ls 3 15-qi embedding, where Ls 3 ;5 depends
on Ls3.14, R53.12+ 0y and g (see [9, Lemma 1.19]). O

Conclusion: Let c*(x,y), c'(x,y) and ¢?(x,y) be geodesic paths in Z, L' and
L? respectively joining x,y. Since (X,B,T) satisfies Cégilu(kb-_g_g)—ﬂaring condi-
tion. So by Theorem 5.2.11, L’ is 855,11 (ks.3.8,72)-hyperbolic, i = 1,2. Therefore,
by stability of quasi-geodesic (Lemma 2.2.2), Hdx (c'(x,y),c*(x,y)) < Ds3.10 :=
2D552(852.11(ks3.8,72),L53.15,L5.3.15)- O

Now, we are at a stage to show the uniform hyperbolicity of a uniform neighbor-
hood of .Z Ik (X,,) with the induced path metric.



5.3. HYPERBOLICITY OF FLOW SPACES 137

Theorem 5.3.16. Suppose ry as in Lemma 5.3.14. Then for any R > ry + 80y there
is 053.16 = 05.3.16(K,R) such that Flxr(X,) := Np(Fk(X,)) is 85 3.16-hyperbolic

metric space.

Proof. We show that Flgg(X,) satisfies all the conditions of Proposition 2.2.6. Note
that Z g (X,) is R-dense in Flgg(X,). For a point x € .Z# Ik (X,,), we fix once and for
all a K-qi section X through x over By := B, 11(y) lying inside %x. Now given a pair
(x!,x?) of distinct points in %, by Corollary 5.3.8, there is a (ks3.3,C53.8,€5.3.8)-
ladder, say, .Z'? containing X1, X such that top(L'?) C Uk, bot(L'?) C Uk
and #'2 C Ng&)(%]{).

We take &(x!, x?), a geodesic path joining x', x? in L'? := N, (.Z'?). For a given
pair of points, once and for all, we fix this ladder and the geodesic path. These paths
serve as family of paths for Proposition 2.2.6.

Let us start with three points x' € .Z g (X,,), i = 1,2,3 and geodesic paths &(x', x/)
in the respective ladders L'/ := N,,(.Z") for all distinct i, j € {1,2,3}. Note that
LYV C Ukg.

Condition (1): As LV is Ls 1 5(ks3.3,72)-gi embedded in X and so is in Ugg.
Then the path &(x,x/) is h-properly embedded in Uxg, where i : R0 — R>q sending
r>rLss(ks3g,m2) + (Ls.1.s(ks.3.8,m2))%.

Condition (2): By Proposition 5.3.1, given any three points x',i = 1,2,3, we
have, (ks3.1,¢53.1,€5.3.1)-ladders, £/ containing ¥;, ¥; such that top(£") C
Uy, bot(LV) C Uy and LV C N{SO(@/K). Let c(x',x/) be a geodesic path join-
ing x',x/ in LY := N,,(£") C Ukg. Note that k531 = ks33, c53.1 = ¢53.8 and
€531 = €538 (Lemma 5.3.8). So by Proposition 5.3.10, Hdx (é(x',x/),c(x',x/)) < D,
where D = D5 3.10(ks.3.8,¢53.8,€5.3.8). Thus by Proposition 5.1.11, their Hausdorff
distance is bounded by 71 (D) in the path metric of Ugg, where 1; := ns5.1.11 (K, R).

Now by Lemma 5.3.9, there is a 8s53.9(ks.3.1,72)-hyperbolic subspace Y (:=
N,2+250(u§:1$i)) such that the inclusion i : L'/ < Y is Ls3.9(ks3.1,72)-qi em-
bedding. Also, note that ¥ C Uk(,,1s5,) € Ukr. Let 01 = 6539(ks3.1,r2) and
Ly = Ls39(ks3.1,r2). Then by Lemma 2.2.2, the triangle formed by the paths
c(x!,x/) for all distinct i, j € {1,2,3}, are Dy-slim in the path metric of ¥ and so is
in the path metric of Ugg, where Dy := 2D ,(61,L1,L1) + 6.

Hence the triangle formed by the paths ¢(x’, x/) for all distinct i, j € {1,2,3}, are
D;,-slim in the path metric of Ugg, where D, :=21(D) + D;.

Therefore, by Proposition 2.2.6, Figg(X,) is 05 3.16-hyperbolic metric space with
the induced path metric from X, where 85316 = 62..6(h,D2,R), where h and D, are
defined above. [
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5.4 Hyperbolicity of Np(.7 Ix(X,) U.ZIk(X,))

Let u,v € T, and ZIx(X,) and .ZIk(X,) are the flow spaces as described in the
first paragraph of Section 5.3. We also assume that .7 lg(X,,) N .Z g (X,) # 0. In
this section, we will prove that Np(-# Ik (X,) U.ZIx(X,)) is uniformly hyperbolic.
We use the notations Flgp := Np(FIk(X,)), Flgp := Np(ZIk(X,)) for D > 0.
Here, we require (X, B, T) to satisfy (2(L')?(2K + 1) + L')-flaring condition where
L' = Ls 1.10(K).

So far we have the following (#°0) — (7#°6). We will use these properties in this
section.

(0) Suppose w,w' € T and e is the edge on [w,w'] incident on w'. Let T’ be
the maximal subtree of T containing w’ not containing e. Then F I (X,,) N X7 C
Flg(X,) N X7,

(A1) For all w € T, we have L' := Ls 1 19(K)-coarsely Lipschitz retraction
Pw: X = Zlg(Xy) such that V x € Flg(X,), mx (pw(x)) = mx (x) (see Proposition
5.1.10).

(#2) Letw € T. For all x € #lg(X,,) there is a K-qi section lying in % [ (X,,) N
7~ ([w, m(x)]) through x over By, z(x)]-

(A3) Letw € T. For L > 2K, there is (L) : R>9 — R>q such that the inclusion
Flgr(Xy) — X is n(L)-proper embedding (see Proposition 5.1.11).

(#4) Let 9 = {y: yis a (2KL' + L')-qi section over By, }. Note that T # 0
as Flx(Xu)NX, #0. Forw € [u,v], b € B, let Hy,, =hull{y(b) : y€ T} C Fp,,
and H = U,cu], beB, Hpw- (Here quasiconvex hull is considered in the corre-
sponding fiber.) Then by Lemma 2.4.14, H is k-metric bundle over By, ,) where
K =Ky4142KL' +L') > 2KL' + L'. Now we consider flow of H with parame-
ters K, K (see Definition 5.1.8). According to our notation (see 5.1.14), we have
Z1 )(H) and it also satisfies the following. Let w € T and T, be the tripod
with vertices u,v,w. Since k > 2KL' + L', by Lemma 5.1.13, we have that for any
(2KL' 4 L')-qi section y over By, Y C Z 1 ) (H).

By Notation 5.1.14, we also have flow spaces %[, (X,) containing .# Ix (X,) U
Fl )(H) and Z1, ) (X,) containing FIx(X,)U.F1 ) (H).

(J€5) Let Ry be large enough so that F[, ) Ry (X,) are d-hyperbolic for some
0 > 0 (see Theorem 5.3.16).

(°6) Since flow spaces are semicontinuous family, for all L > max{2x(1), 28, +
1} there is L(L) such that the inclusions Flgy (X,) — X, Flxz(X,) — X and FI_q; (H)
— X are L(L)-qi embedding (see Proposition 5.1.5).
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We know that uniform neighborhood of flow spaces are uniformly properly
embedded in the total space (see (##°3)). In the following proposition, we prove the

same for the union of two intersecting flow spaces.

Proposition 5.4.1. Let ks 41 =2(L)?(2K+ 1) +L'. For all L > M;,, (> 2K) there
exists Ns.a1 = Ns.a.1(K,L) : Rso — R>¢ such that the inclusion Np(Flx(X,) U
Flk(X,)) — X is N5 4.1-proper embedding.

Proof. Our proof goes in the same methodology as in the book [9] for trees of
metric spaces (see [9, Subsection 6.1.1]). We denote the induced path metric on
Flkr(X,) UFkr(X,) by d’. We divide the proof by reducing the tree T to intervals
and the general tree in the following three cases. We first prove in all the cases that
for r € R>g and x,y € Flg(X,)U FIk(X,) with dx (x,y) = r, d'(x,y) is bounded in
terms of r. In the end, we prove for the points in Flgz(X,) U Fxr(X,).

Letx,y € Flx(X,)UFIk(X,) such that dx (x,y) = r. Suppose 7(x) =u’, w(y) =
Vi mx (x) =%, mx(y) =y. As L > 2K, we may assume that x € Flx(X,) \ Zlk(X,)
andy € Zlg(X,)\ Zlk(X,), otherwise, by (3), d'(x,y) < n(L)(r).

Case 1: We first assume that 7 = [u,v]. Then u’ # v, otherwise, x € X, C
Flk(Xy). Also V' # u, otherwise, y € X, C FIk(X,). Depending on positions of
u',v',x and y, we consider following subcases.

Subcase (1A): Suppose u' =V and x = p,(y) (see (##'1)). Consider a K-qi
section, ¥, over B ,) through y in Flg(X,) (see (#°2)). Since p, is L'-coarsely
Lipschitz retraction (see (.7°1)) and .# Ik (X,) N X, # 0, so applying p, on ¥, we get
a (2KL'+L')-qi section, say, % in F g (X,) over B} ,) such that x = p,(y) = %(5).
Let b be the nearest point projection of X on B, (note that such b exists as v/ = ' #
v). Applying p, (see (1)) on % and we get a 2.(2KL' + L')L' + L' = ks 41-qi
section, say, % in Flg(X,) over B, ). Note that %(b) = ¥%/(b) (as % (b) € X,).
Let %,(¥) =)". Then p,(x) = y" and since p,(y) =y, dx(y',y) = dx (pv(x), pv(y)) <
L'dx(x,y)+L <L(r+1). Sodx(x,y) <dx(x,y)+dx(y,y) <r(L'+1)+ L  and
d’ (x,y") < ¢(r(L' +1)+L"), where the fibers are ¢-properly embedded in total space.
Here we have two ks 4.1-qi sections ¥, and ¥, over By, ,; such that %,(b) = %,(b) and
d’ (3,(%), (%)) = d’ (x,y') < @ (r(L’ +1) +L'). Let a be the point on [¥,b]p closest
to & such that @/ (%(a), % (a)) < My, ,. Since L > My, ,, d'(¥(a),%(a)) < My, -
Again, the tree of metric bundles (X, B, T) satisfies flaring condition, so by Lemma
247 (1), dp(x,a) < 1.47(ks4.1,C), where C = max{My,,,,¢(r(L’+1)+L")}. Let
C1 = T.4.7(ks4.1,C). Then by taking lifts of geodesic [¥,a]p in %, and ¥, (see Lemma
2.4.12 (3)), we get, d'(x,%(a)) < 2ks4.1C) and d'(y,%(a)) < 2ks4,C;. Hence
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d'(x,y) <d'(x,}(a)) +d' (%(a), B(a) +d' (H(a),y) < 4ks41C1 + Mg, , = Mi(r)
for some 11 : R>9 — R>o.

Subcase (1B): Let y = p,(y). In this subcase, y' need not be equal to x.
Since py(x) =x, dx (x,)') = dx (pu(x),pu(y)) < L'r+ L' =L'(r+1). Sodx(y',y) <
dx(y,x)+dx(x,y) <L'(r+1)+r. Since L > 2K, Flg1(X,) is n(L)-properly em-
bedded in X (see (##3)). Sod'(x,y") <n(L)(L'(r+1)). Note that 7ty (y') = 7mx(y)
(as Flg(X,NX, #0)and y' € Flg(X,). Then by Subcase (1A),d'(y,y") <ni (L' (r+
1)+ 7). Hence d'(x,) < d(x,/) +d'(¥,y) < L)L+ D) + i (L (r+ 1) + 7).

We assume §(r) := max{n(r),n(L)(L'(r+ 1))+ (L'(r+ 1) +r)}, maxi-
mum distortion in this Case 1 for some §; : R>¢ — R>o.

Then V' ¢ [w,u], otherwise, by (0), y € Flg(X,). Also, u’ ¢ [v,w], otherwise, by
(70), x € Flg(X,). We consider the following subcases depending on the position

Case 2: We now assume that 7 = [w,w'] 2 [u,v] such that u is closest to w.

of u and V.

Let S = [u,v] and X5 := 7w~ !(S). Let d” denote the induced path metric on L-
neighborhood (in Xg-metric) of (% Ik (X,) U.ZIx(X,)) N Xy inside X5. We note that
the restriction 7y |x, : Xs — By also satisfies flaring condition (Remark 2.4.8 (b)).

Subcase (2A): Suppose u' € [w,u] and V' € [v,w/]. Let b’ be the nearest point
projection of ¥ on B, and b” be that of y on B,. Then dg(x,y) < dx(x,y) < r implies
dg(x,b’) <r, dg(b',b") < r and dp(b”,y) < r. Let . be K-qi lift through x of
geodesic [x,0'|p in Flk(X,) and ¥, be that through y of [b”,7]p in FIk(X,) (see
(72)). Let 1(b') =x"and %,(b") =y'. Then d’(x,x') <2Krand d'(y,y") <2Kr (see
Lemma 2.4.12 (3)). So by triangle inequality, dx (x’,y") < 4Kr+ r, and that implies
dx,(x',y") < M2.43(4Kr+r) (see Proposition 2.4.3). Then by Case 1, d"(x',y’) <
C1(M.as(4Kr+7)). Therefore, d'(x,y) < d'(x,xX)+d"(x',y)+d'(y,y) <4Kr+
Ci(M2.43(4Kr+7)).

Subcase (2B): Suppose ' € (u,v) and V' € [v,w']. Let b” be the nearest point
projection of y on B,. Then dg(x,y) < dx(x,y) < r implies dg(y,b") < r (as u’ €
(u,v)). Let % be a K-qi lift of the geodesic [b”,y]p in .Z Ik (X, ) through y (see (.72))
and let %,(0”) ='. Then d'(y,y’) < 2Kr (see Lemma 2.4.12 (3)). Again, dx (y',x) <
dx(y',y) +dx(y,x) < 2Kr+r. So by Proposition 2.4.3, dx,(y',x) < N2.43(2Kr+r).
Hence by Subcase (1A), d"(x,y") < §i(M2.43(2Kr+7r)). So d'(x,y) <d'(x,y") +
d'(y,y) <d"(x,y) +d'(y',y) < §i(M2.43(2Kr+7)) +2Kr.

Subcase (2C): Suppose v’ € [w,u] and V' € (u,v). Then this is a symmetry of
Subcase (2B). So d'(x,y) < §1(N2.43(2Kr+7r))+2Kr.
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Subcase (2D): Finally, we assume that ',V € (u,v). Then by Proposition
2.4.3, dx,(x,y) < M2.43(r). Soby Case 1, d"(x,y) < §1(n2.43(r)). Hence d’(x,y) <
d"(x,y) < Ci(1M2.4.3(r)).

We assume £, (r) := max{4Kr+C;(1n2.43(4Kr+7)), 81 (N2.43(2Kr+r))+2Kr,
$1(M2.4.3(r)) }, maximum distortion in this Case 2 for some &, : R>g — Rxy.

Case 3: Here we consider the general case, where T is any tree. Depending on
the position of u,v,u’ and v/, we consider the following subcases.

Let S be an interval in T containing u,v and X5 := 7~ !(Xs). We denote the
induced path metric on L-neighborhood (in Xs-metric) of (.F Ik (X,) U.Z Ik (X,)) N Xy
inside Xg by d”. We will use this notation below. We note that the restriction
Tty |x, : Xs — By also satisfies flaring condition (see Remark 2.4.8 (b)).

Subcase (3A): Suppose u,v,u’ and V' lie on an interval in 7. We fix one such
interval S in T containing u,v,u’,V'. So dx,(x,y) < n2.4.3(r) (by Proposition 2.4.3).
Now we restrict the flow spaces to Xs. Then by Case 2, d”(x,y) < §(12.4.3(r)). So
d'(x,y) <d"(x,y) < &(M2.43(r)).

Now we consider the subcases when all of u,v,u’ and V' do not lie on an interval.

Subcase (3B): Suppose there is no interval containing u, v that contains both u,V/;
but there is an interval containing u, v which contains one of «’,v'. We give a proof
when an interval containing u, v also contains «’, and leave the other case because its
involves only a change in indices. We fix one such interval S in 7 containing u,v and
u'. Let t be the nearest point projection of v/ on S in d7-metric and " be that of y on B,
in dp-metric. Since dx (x,y) < r, then dg(y,b") < dp(7,%) < r. Let ¥, be a K-qi lift of
the geodesic [b”,3]p through y in .F g (X,) (see (72)). Suppose ¥%,(b") =y'. Then
d'(y,y') < 2Kr (see Lemma 2.4.12 (3)). Again dx(y',x) < dx(y,y) +dx(y,x) <
2Kr+ r, and so by Proposition 2.4.3, dx,(y',x) < 12.43(2Kr+r). Now we restrict
the flow spaces to Xs. Hence by Case 2, d”(y',x) < {(12.43(2Kr+r)). Therefore,
d'(x,y) <d'(x,y")+d'(y,y) <d"(x,y') +d'(y,y) < &(M2.43(2Kr + 1)) + 2K

Subcase (3C): Suppose there is no interval containing u,v that contains either of
u' V. We fix S = [u,v]. Let #; and 1, be the nearest point projections of ' and v/ on S
respectively. Then 1,7, € (u,v), otherwise, it will land in Subcase (3B). We divide
the proof into two cases depending on whether #;,#, are same or not.

(a) Suppose #; # 1. Let b’ be the nearest point projection of X on B;, and b” be that
of y on By,. Since dp(¥%,7) < dx(x,y) <r, then dp(%,b') < rand dp(y,b") <r. Let ¥
be a K-qi lift of the geodesic [¥,b']p through x in .# g (X,) and ¥, be that of [7,b"]p
through y in Zlx(X,) (see (7£2)). Letx’ = y,(b') and y' = %,(b"). Then d’(x,x) <
2Kr and d'(y,y') <2Kr. So dx(x,y") < dx(x',x)+dx(x,y) +dx(y,y') < 4Kr+r.
Then by Proposition 2.4.3, dx,(x',y") < N2.4.3(4Kr+r). Note that X' € Z g (X,) and
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y € Zlk(X,). Now we restrict the flow spaces to Xg = X[, ;. Hence by Case 1,
d"(xX',y) <& (M2a3(4Kr+r)), and so d'(x',y") < &1 (M2.4.3(4Kr +7)). Therefore,
d'(x,y) <d'(x,x") +d'(x',y") +d'(y',y) < 4Kr + & (M2.43(4K7 +7)).

(b) Suppose t; =1, =1t (say). Let s be the center of A(«',7,v") and ¢ € [%,7] N By.
Since dp(X,y) < dx(x,y) <r,sodp(x,c) <randdp(c,y) <r. Lety beaK-qilift
through x of the geodesic [, ¢]p in Flg(X,) and 9, be that through y of the geodesic
[V,c]p in Flg(X,) (see (A°2)). Letx; = ¥ (c) and y; = 1»(c). Then d’(x,x1) < 2Kr
and d'(y,y1) < 2Kr.

Now we only need to show that d’(x1,y;) is bounded in terms of r. We will
apply the same trick as in Case 1. Let %, be a K-qi section over By, ,) through y; in
Flg(X,) (see (7£2)). Now we apply p, (see (#°1)) on ¥, and get a L'(2K + 1)-
qi section, say, ¥, over By, in FIk(X,) (see Figure 5.4). (This is possible as
[s,v] C m(Flk(X,)).) By triangle inequality, dx (x1,y;) < 4Kr+r. Let p,(y1) =
x2. Since p,(x1) = x1, then dx (x1,x2) = dx (pu(x1),pu(y1)) < L'dx(x1,y1) + L <
L'(4Kr+r+1). Then dx(y1,x2) < dx(y1,x1) +dx(x1,x2) < 4Kr+r+ L' (4Kr+
r+1) = (4Kr+r)(L'+1)+L'. Again we apply p, (see (1)) on ¥, and get a
ks 4.1-qi section, say, %, over B, in 7 Ix(X,) (see Figure 5.4). Let p,(x2) = ya.
Since py(y1) = y1, dx (v1,¥2) < dx(py(y1),pv(x2)) < L'dx (y1,x2) + L' < Ly, where
Li =L ((4Kr+r)(L'+ 1)+ L)+ L. Thendx(xz,y2) < dx(x2,y1)+dx(y1,y2) < L,
where Ly = (4Kr+r(L' + 1)+ L +L1. So d/ (x2,y2) < ¢(Ly).

Figure 5.4

Note that dx(x1,x2) < L'(4Kr+r+1) and dx(y1,y2) < L;. Again x1,x; €
Flk(X,) and y1,y2 € Flg(Xy), so by (H3), d' (x1,x2) < n(L)(L'(4Kr+r+1))
and d'(y1,y2) < n(L)(Ly). So to get a bound on d’(x1,y;), we need to get a bound
on d’(x2,y2); which we will show now.

Let b be the nearest point projection of ¢ on B,. Then %,(b) € X, and so
%(b) = %(b). Note that %, and %, are two ks 41-qi sections over By, such that
d (3(c), %(c)) = d’ (x2,y2) < ¢(L) and %,(b) = %(b). Now we restrict the qi
sections %, and ¥, on the geodesic [c,b]gp C B. Let a be the point on [c, b] closest
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to ¢ such that d/ (%(a), %(a)) < My, ,. Since the tree of metric bundles (X,B,T)
satisfies flaring condition, by Lemma 2.4.7 (1), dg(c,a) < 1.47(ks4.1,D), where
D = max{My,, ,9(L»)}. Let D = 72.4.7(ks4.1,D). Then by taking ks 4 1-qi lifts of
the geodesic [c,alp in %, and %, we get, d’(x2, (a)) < 2ks 41Dy and d'(¥(a),y2) <
2ks 4.1D1 (note that %, (c) =x2, %/(c) =y2). Again L > M., , implies d'(%(a), %(a)) <
M, - Hence d'(x3,y2) < 4ks 41Dy + My, , (by triangle inequality).

Again by triangle inequality, d’(x1,y1) < d'(x1,x2) +d' (x2,y2) +d' (y2,y1) < L3,
where Ly = n(L)(L'(4Kr+r+1)) +4ks41D1 + My, ., +n(L)(L1). So d'(x,y) <
d' (x,x1)+d (x1,y1) +d' (y1,y) <4Kr+ Ls.

Let 3(r) := max{{(M2.43(r)), &o(M43(2Kr+7))+2Kr, {i(N243(4Kr +
r)) +4Kr, 4Kr+ L3}, maximum distortion in this Case 3 for some {3 : R>o — R>o.

Let  : R>¢ — R>q such that {(r) := max{n(L)(r), i (r),(r),E3(r)} for r €
R>¢. We have proved that if x,y € .Z g (X,) U.#Ik(X,) are at most r-distance apart
in the metric of X, then they are at most {(r)-distance apart in the induced metric
on Flgr(X,)UFkr(X,). Now we take points x,y € Flg(X,) U Fgr(X,) such that
dx(x,y) <rforr e Rxg. Let x1,y; € Flx(X,)UZIg(X,) such that d’(x,x;) <L
and d'(y,y1) < L. Then dx(x,y) < dx(x,x1) +dx(x1,y1) +dx(y1,y) <r+2L. So
d' (x1,y1) <&(r+2L). Hence d'(x,y) <d'(x,x1)+d'(x1,y1)+d'(y1,y) <2L+{(r+
2L).

Therefore, we can take 1s.4.1 : R>0 — R0 sending r — {(r+2L) +2L. O

To show the hyperbolicity of Np(.F Ik (X,)U.ZIk(X,)), we construct a bigger
uniformly hyperbolic space Y = Y, UY; containing both #Ix(X,) and FIx(X,)
as uniformly quasiconvex subsets. As Zlx(X,)NX, # 0, so a uniform neigh-
borhood of .Zlk(X,)U.ZIk(X,) in Y is uniformly hyperbolic. Let N},(y) denote
D-neighborhood at y € Y in the path metric of Y. Next, we show that N},(.Z Ix(X,) U
Flk(Xy)) €Y and Np(Flg(X,) UFIg(X,)) C X are (uniformly) quasi-isometric,
and that completes the proof.

Construction of the space Y: By (J5), Fl, o (Xy) is 8-hyperbolic metric
space. Also by (°6), Flkg,(Xy) is L(Rp)-qi embedded in X and so is in Fl g, (Xu)-
Then by Lemma 2.2.22 (1), there is K; depending on & and L(Ry) such that
Flgg,(Xu) is Ki-quasiconvex in Fl,o)p (Xu). So F 1k (Xy) is (K1 + Ro)-quasiconvex
in Fl o, (Xu). Also by (J6), Fl,a)p (H) is L(Ro)-qi embedded in X and so is
in Fl g (Xu). Then by Lemma 2.2.22 (1), there is K> depending on 6 and L(Ro)
such that FI, ) (H) is K>-quasiconvex in Fl g (Xu). So Fl ) (H) is (K2 + Ro)-
quasiconvex in Fl o) (Xy). Let K3 = max{K; + Ro,K2 + Ro}. As Flg(X,)N
Flany(H) # 0, so Flg(Xu) U FL)(H) is (K3 + 8)-quasiconvex in Flop (Xu).
Let Y{p 1= Np(F Ik (Xu) UZ 1 1) (H)) be R-neighborhood of .7 Ix (X, ) U.Z1. 1) (H) C
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Flo)g,(Xu) in the induced path metric on FI ) (Xu) where
R = max{Kz+0+1, My, } 5.4. 1)

Hence, by Lemma 2.2.23 (1), there is L; depending on 8, K3 and R such that the
inclusion Y| — Fl, ) Ro (X,) is L-qi embedding.

We fix this R for the rest of this section. Thus there is 6; depending on 6 and
L such that Y{ is 6;-hyperbolic with the induced path metric. Again, the inclusion
Fliog, (Xu) = X is L(Ro)-qi embedding (see (.#°6)). Thus the inclusion Y{, < X
is L,-qi embedding for some L, depending on L; and L(Ry).

Let Y :=Np(Flk(Xy)UZL ) (H)) be R-neighborhood of Z Ik (X,) U Z 1, ) (H)
C Fly)g,(Xy) in the induced path metric on F/, )z (Xy). Then by similar argument,
we can show that Y}, is 0;-hyperbolic and the inclusion Y, < F1, ) Ry (Xv) 18 L2-qi
embedding.

We take Y := Y1 UYog where Yig := Ng(FIx(X,) UF 1 1)(H)) CX and Yo :=
Nr(Flx(X,) UF 1 ) (H)) C X. Note that these neighborhoods are considered in X.

Hyperbolicity of Y :

Lemma 5.4.2. There is a uniform constant 054, such that Yig is 05.4.-hyperbolic

metric space with the induced path metric fori=1,2.

Proof. Since Y}, < X is L-qi embedding, so is the inclusion Y}, < Yig. Also
Y}, < Yig is R-coarsely surjective. Hence the inclusion Y}, < Yig is (La, Ly, R)-quasi-
isometry for i = 1,2 (see Subsection 2.1). Since the hyperbolicity is quasi-isometry
invariant and Y/ is 8;-hyperbolic, Y is 85.4.2-hyperbolic for i = 1,2, where 8542

depends on 6;,L,,R. O

Lemma 5.4.3. There exists a uniform function Ns43 : R>9 — R>¢ such that the
inclusion Yig — X is N5.4.3-proper embedding for i =1,2.

Proof. We prove it only for i = 1 as the proof for i = 2 is similar. We denote the
induced path metric on Y g and Yl’ r by d and di respectively. Let x,y € Yg such
that dx (x,y) = r for r € R>o. We take points x1,y; € Flg(X,)UZF 1) (H) C Y|y
such that d;(x,x1) <R, di(y,y1) <R. So dx(x1,y1) < r+2R. Since Yy is L,-
qi embedded in X, then dj(x1,y1) < (r+2R)L, —i—L%. Since Y{z C Yig and so
di(x,y) <di(x,x1) +dj (x1,31) +di(v1,y) < (r+2R) Lo+ L3 +2R =: M5 45(r).

Lemma 5.4.4. Let d; denote the induced path metric on Yig fori = 1,2. There is a
uniform constant Ds 4 4 such that Yig N Yog C N bs » (Yy), where N, bs » (Yo) denotes
the Ds 4 4-neighborhood of Yy in d;i-metric.
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Proof. Let x € YigNYog. Then there exist x; € Flx(X,) U FI )(H) and x; €
Flx(X,)UFI ) (H) such that d;(x,x;) <R, i =1,2. So dx(x1,x2) <2R. With-
out loss of generality, we assume that x; € g (X,)\ 1 0)(H), x2 € Flg(X,) \
Z1. )(H), otherwise, x € Yy := FI ) (H). Let mx (x;) = X;, w(x;) =¢; fori=1,2.
Let w; be the nearest point projection of #; on [u, v],i = 1,2. We consider the following
two cases, depending on whether w; = wy or w; # wys.

Case 1: Suppose w; # wa. Let y; be the nearest point projection of X; on B,
for i = 1,2. Then dp(%;,%) < dx(x1,x2) < 2R implies dp(%;,y;) < 2R fori=1,2.
Let %, be a K-qi section through x; inside .#Ix(X,) over By, , and %, be that
through x; inside F Ik (X,) over By, ,| (see (2)). Suppose Yx,(3i) = yi, i = 1,2.
Then by taking lift of the geodesic [X;,7i]p in 1,, we get, di(x;,yi) < 2K.2R =
4KR (see Lemma 2.4.12 (3)) for i = 1,2. Now we restrict the K-qi section 7,
over By, ,; and apply p, (see (1)) on this restriction of Y, over By, .. We set
this projection as . Note that By, ,j C 7(FIk(X,)), then P is a (2KL" + L')-qi
section over By, ,| inside F Ik (X,). As ZFlg(X,NX, # 0, then we can extend >
to a (2KL'+ L')-qi section over By, ;. Then in particular, we have, %» C H (see
(F°4)). Again, dx (y1,y2) < dx(y1,x1) +dx(x1,x2) +dx(x2,y2) < 8KR+2R. Note
that p,(y1) = y1 and p,(y2) = $2(¥2). Since p,, is L'-coaresly Lipschitz retraction (see
(1)), dx (y1,(72)) < lex(yl,yz) +1I' < L/(SKR—f— 2R) + L. Since yi,(h) €
Flg(X,) CYig, by Lemma 5.4.3, d1(y1,%2(32)) < Ns5.43(L'(8KR+2R) + L'). Now
% C H implies d;(x,Yy) < di(x, 12(52)) < di(x,x1) +di(x1,y1) +di1(y1, o (72)) <
R+4KR+ns543(L'(8KR+2R)+L).

Again, dx (x2, 12(72)) < dx(x2,x1) +dx (x1,y1) +dx(y1,2(72)) < 2R+4KR +
L'(8KR+2R)+ L. Since x; € Flx(X,) C Yo, and 95 C H C Y5,, so by Lemma
54.3, do(x2,7(52)) < Ns.43(2R+4KR+ L'(8KR +2R) + L'). Thus d»(x,Y,) <
dr(x,x0) +da(x2,%(72)) <R+ 1N543(2R+4KR+ L/(SKR +2R) —|—LI).

Case 2: Suppose w; = wy. Let w be the center of the tripod A(#1,t,,wy). Sup-
pose y; is the nearest point projection of X; on B, for i = 1,2. Let ¥, be a K-qi section
through x; inside F Ik (X,) over By, , and %, be that through x, inside Flk(X,)
over By, | (see (£°2)). Again dp(¥%,%2) < 2R implies dp(¥;,y;) < 2R fori = 1,2.
Let ¥, (Ji) = yi, i = 1,2. Then by taking lift of the geodesic [X;,;]p in };,, we have
di(xi,yi) < 2K.2R = 4KR (see Lemma 2.4.12 (3)). Now let us restrict the K-qi
section, ¥,, over By, ) and apply p, (see (1)) on this restriction of 7, over By,
We denote the image under p, by %. Since By,,,) C #(Flx(Xy)), Y2 isa KL +L')-
qi section over By, ). Let Ty 1s the tripod in 7" with vertices u,v,w and By, :=
g (Tw)- As Flx(X,) N X, # 0, we can extend P to a (2KL' + L')-qi section over
Br,

uvw *

Then in particular, we have y» C .#[ ) (H) (see (774)). Now we apply line
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by line argument as in Case 1. Note that dx(y1,y2) < dx(y1,x1) + dx (x1,x2) +
dx (x2,y2) < 8KR+2R and p,(y1) = y1. Pu(y2) = %(52). So dx(y1,12(72)) <
L'dx(y1,y2)+L <L'(8KR+2R)+L'. Since y1,%(72) € Flg(X, C Y1, by Lemma
54.3,di(y1,72(2)) < Ns43(L'(8KR+2R) +L'). Again, we have, y» C Z1 ) (H),
so di(x,Yy) < dj(x,x1) +di(x1,y1) +di(y1,2(2)) < R+4KR+ 1”[5_4_3(L/(8KR +
2R)+L').

Again, dx(x2,12(52)) < dx(x2,x1) +dx(x1,y1) +dx(y1,72(52)) < 2R+4KR +
L'(8KR+2R)+ L. Since x; € Flg(X,) C Yog and o C F1 1) (H) C Yag, so
by Lemma 5.4.3, da(x2,%(32)) < Ns543(2R+4KR+ L' (8KR+2R) + L'). Thus
dr(x,Yp) < dr(x,x2) +da(x2,2(372)) <R+ M543 (2R+4KR+LI(8KR—|—2R) —}-Ll).

Therefore, we can take Ds 4.4 = max{R+4KR+ Ns.43(L'(8KR+2R)+L'),R+
Ns43(2R+4KR+ L' (8KR+2R)+L')}. O

Lemma 5.4.5. There is 0545 = 05.45(R) such that Y is 8s 4.5-hyperbolic metric

space.

Proof. We verify all the conditions of Proposition 2.2.7 for n = 2 (see Remark 2.2.8).
Note that Y = Y g U Yar.

(1) Yig, i = 1,2 are 05 4»-hyperbolic.

(2) Yo is L(R)-qi embedded in X (see (5#°6)), so is in both Yz and Yig. Again
YirNYir € Nps, ,(Yo) (see Lemma 5.4.4), so by Lemma 2.1.4, the inclusion Yjg N
Yir < Yig is L.1.4(L(R),Ds.4.4)-qi embedding for i = 1,2.

Therefore, Y is 8545 := 622.8(85.4.2,L2.1.4(L(R),Ds.4.4),1)-hyperbolic. O

Lemma 5.4.6. The inclusion Y < X is Ns.4.6 = Ns.4.6(R)-proper embedding for
some uniform function N5 4.6 : R>9 — R>o.

Proof. Letr € R>p and x,y € Y such that dx(x,y) <r. Then 3 x1,y; € Zlx(X,)U
Fl )(H)U ZIg(X,) such that dy(x,x;) < R and dy(y,y1) < R. So by triangle
inequality, dx (x1,y1) < r+ 2R. Without loss of generality, we may assume that x| €
Flg(Xy) and y; € Flg(X,). Otherwise, by Lemma 5.4.3, dy (x1,y1) < N5.43(r +
2R). Again R > M., ,, and thus by Proposition 5.4.1, dy (x1,y1) < Ns5.4.1(K,R)(r+
2R). Therefore, in either case, dy (x,y) < 2R+ max{Ns43(r+2R),Ns.4.1(K,R)(r +
2R)} =: Ns.4.6(r). O

Proposition 5.4.7. There exists a constant Ds 47 such that for all D > Ds 47 we have
0547 = 05.47(D) for which Np(Flg(X,) U ZIk(X,)) is 8 .47-hyperbolic metric
space with the induced path metric from X.
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Proof. In the proof, we define Ds 47. For D > D5 4.7, we denote the induced path
metric on Np(Zlx(X,) U ZIk(X,)) by d. By (526), Flgr(X,) is L(R)-qi em-
bedded in X and so is in Y. Hence Flgg(X,) is Kj-quasiconvex in Y for some
K depending on 8s54.5(R) and L(R). So Flk(X, is K>-quasiconvex in Y, where
K, = K| +R. Also, by the similar argument .% [k (X, ) is K»-quasiconvex in Y. Since Y
is 85.4.5(R)-hyperbolic and F g (X,,) N.Z Ik (X)) # 0, so Flg(X,)UZF Ik (X,)is (K +
3s4.5(R))-quasiconvex in Y. Let N}, (.Z Ig (X,) U Z k(X)) be the D-neighborhood
of Zlx(X,)U ZIk(X,) (inside Y) in the path metric on Y. We set D547 > K» +
3s5.45(R)+ 1. Thus for D > Ds 47, (by Lemma 2.2.23 (1)) the inclusion N, (Z Ik (X,,) U
Flg(X,)) — Y is L1-qi embedding, where L; = L 223(05.45(R), K2 + 85.45(R), D).
Therefore, Nj, (F Ik (X,) U.Z k(X)) is 81-hyperbolic, where 6; depends on Js 4 5(R)
and L;. Now we show that the subset N}, (% I (X,) U ZIx(X,)) C Np(Flk(X,) U
Flk(X,)) satisfies all the conditions of Proposition 2.2.6. Note that Nj,(.Z Ik (X,) U
Zlk(X,)) is a D-dense in Np(Flx(X,) U.Zk(X,)) in the d-metric. For any pair
(x,y) of distinct points in Nj, (:F Ix (X,,) U.Z Ik (X,)), we fix once and for all a geodesic
path, say, c(x,y) joining x and y in the &;-hyperbolic space N},(-F Ix(X,) U.Z Ik (Xy)).
These paths serve as family of paths for Proposition 2.2.6. Then any triangle formed
by these paths are §;-slim in the induced path metric of N}, (Z k(X)) U ZIk(X,))
and so is in Np(Flg(X,) U FIk(X,)). Hence we are left to show the proper
embedding of these paths in Np(.Zlg(X,) U FIk(X,)). Indeed, suppose x,y €
N (ZFlx(X,) U ZIk(X,)) such that d(x,y) < r for some r € R>¢. Then dx (x,y) <r
and by Lemma 5.4.6, dy (x,y) < Ns.4.6(r). Since N, (Flx(X,) U FIk(X,)) is Li-qi
embedded in Y, the path c(x,y) is n;-properly embedded, where 7)1 : R>g — R>g
sending r — Ms.4.6(r)L; —i—L%.

Therefore, Np(F Ik (X,) U.Z k(X)) is 85 4.7-hyperbolic metric space with the
induced path metric from X, where 8547 = 8.2.6(N1,901,D). ]

5.5 Proof of Theorem 1.2.4

We think of the tree of metric bundles (X,B,T) as a tree of metric spaces 7: X — T
as explained in Remark 1.2.5. For a vertex u € T, we take .# (X,) = FIx(X,) as
in Lemma 5.1.9. Now we show that it satisfies property (Z0) — (£?4) of Chapter
4. Note that (#20) follows from the definition of .% [k (X,,). Again by Proposition
5.1.10, L' = Ls 1 10(K) and we have C = D;13(5),L;) for (£1). Taking into
account of Proposition 5.4.7, we set Ly large enough so that for L > Ly, we can
take '(L) = ns5.4.1(K, L) (by Proposition 5.4.1) for (£?3) and 6 (L) = 85.47(L) (by



148 CHAPTER 5. MAIN COMBINATION THEOREM

Proposition 5.4.7) for (£24). Finally, by Proposition 5.1.11, for L > L, we can take
N(L) = ns.1.11(K, L) for (22). 0

5.6 Applications to complexes of groups

We refer to [23, Chapter III.C], [21] and [22] or Section 2.5 for basic notions of
developable complexes of groups. All the groups we consider here are finitely
generated.

The construction of a tree of metric bundles for a given complex of groups in the
setup € explained in Introduction 1.2 follows from the idea of [22], [21]. We briefly
discuss the same below.

Suppose % is a finite connected simplicial complex and ¢ (%) is a developable
complex of groups over %. Let G be the fundamental group of 4(%/). As in [22] and
more generally, [21, Theorem 3.4.1], we consider a cellular aspherical realization
(see [21, Definition 3.3.4]) 2" of the complex of groups ¢4 (%) with cellular map
p: Z — % . Note that 2" is constructed by gluing along the Eilenberg-Mac Lane
complexes of the local groups of the complex of groups ¢ (% ); where for each local
group G4 corresponding to a face ¢ of %/, the 0-skeleton of K(Gg,1) is a point
xo and the 1-skeletons form wedge of circles coming from a finite generating set
of Gs. Now we consider the universal covering 7 : Z — 2~ with the standard
CW-complex structure on 2 coming from .2". We identify G with the group of
deck transformation of the covering map p: Z — 2. Let y € % and o be the
face containing y in its interior, and a be the barycenter of 0. Now we collapse
each connected component of {(pom)~!(y)} to a point. Note that since ¢ (%) is
developable, the inclusion p~!(a) < 2 is mj-injective and hence {(pox)~!(y)}
are copies of universal cover of 2 := p~!(a). We do this for all y € %. Let %
be the space we get after collapsing and ¢ : 2 — 2 be the quotient map. There is
a natural G-equivariant isomorphism between % and the universal cover of 4 (%)
as in Definition 2.5.16. Thus we get the quotient map @ : # — /G = % and the

following commutative diagram.

T -1 »
ﬂl m lﬁ'
2 L

Figure 5.5
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Let X .= 2 () and B := %(1), where Z(1) denotes the 1-skeleton of a CW-
complex Z. Assume that each edge in X and B has length 1. Put the length metric on
X and B. Since the groups are finitely generated, by covering space argument, we
have the following facts.

1. The restriction of the map g on X, ¢|x : X — B is G-equivariant, surjective and
1-Lipschitz.

2. The action of G on X is proper and cocompact; and, G-action on B is cocompact

(but not necessarily proper unless local groups are all finite).

3. There is an isomorphism of graphs r: B/G — #(1) such that for all o5 € % (0
and a € {r'(cy)}, G, (the stabilizer subgroup of a € B()) is conjugate to
Gg, in G.

4. Let a € B and F, := (q|x)"'(a). Then the action of G, (the stabilizer
subgroup of a) on Fa(o) is transitive and on Fa(l) is uniformly cofinite. In

particular, G, is uniformly quasi-isometric to F;, (with the induced path metric
from X).

5. Since a finitely generated subgroup of a finitely generated group is properly
embedded (with respect to their finite generating sets), for all a € B, the
inclusion F, < X is uniformly properly embedding, where F, := (¢|x)~'(a).

Complexes of groups as explained in setup 4: Now suppose ¥ (#/,Y) is a com-

plex of groups over % as explained in Introduction 1.2. Note that for this discussion,
we do not require the hypotheses of Problem 1.2.1 but those of Theorem 1.2.2.
Then we have a natural graph of groups, say, (¢,Y) over Y such that the vertex
groups are Gy := 1 (%(%;)),V s € Y9 and the edge groups are G, for e = [u, V]
joining two vertices u,v € % so that restriction of py on e is injective. Note that
the monomorphisms from edge groups to the corresponding vertex groups are the
restriction of 4 (#,Y ).

As a corollary of [23, Proposition 3.9, III.C], we have the following lemma.

Lemma 5.6.1. The complex of groups (% ,Y) is developable.

5.6.1 Trees of metric bundles coming from complexes of groups

Consider the above discussion on complexes of groups for ¢ (#/,Y) (setup &). For

now onward, we denote the restriction map g|x by mx. Let s €Y ©) and G, =
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71 (%;(%5)). Consider the corresponding graph of groups (¢,Y) as explained above.
Then note that X is the corresponding tree of metric spaces over the Base-Serre tree
of the graph of groups (¢,Y). Let T be the Base-Serre tree and 7 : X — T be the
projection map. Again vertex spaces of X are acted (properly and cocompactly)
upon by the conjugates of Gy in G, s € Y. Now by condition (2) of setup €
(see Introduction 1.2), it follows from [33, Section 3.3] that the vertex spaces of
7w : X — T are metric graph bundles with uniform parameters. For instance, if
sey0), g€ G, u=gGsc T and B is the 1-skeleton of the universal cover of
Gy(%;), then X,, := ! (u) is the metric graph bundle over B, = gB,; C B and the

I acts on X,, properly and cocompactly. Also, note that 7 is obtained

subgroup gGsg~
by collapsing the universal cover of ¥;(%;) (for s € % (9)) in B and its G-translates to
points. Let g : B — T be the projection map. The maps 7y : X - Bandng: B — T

are G-equivariant. Therefore, we have the following proposition.

Proposition 5.6.2. Suppose G is the fundamental group of ¢(%). Then there is a
natural tree of metric bundles (X,B,T) and an action of G by isometries on both X
and B such that the following hold.

1. The map nx is G-equivariant.

2. The action of G on X is proper and cocompact; and, G-action on B is cocom-

pact (but not necessarily proper unless all local groups are finite).

3. There is an isomorphism of graphs r : B/G — % ) such that for all oy € %0
and a € {r~'(0y)}, G, (the stabilizer subgroup of a € B©)) is conjugate to
Gg, in G.

4. Let a € BY) and u = mg(a), Fy, = ng'(a) = g~ ' (a)V). Then the action of
G, on Fc,(fb),) is transitive and on Fa_‘lu is uniformly cofinite. In particular, if
0o € %O and G, is hyperbolic, then for all a € {r~"(0o)}, Fy is uniformly
hyperbolic, where u = mg(a).

Note that condition (2) of setup & (see Introduction 1.2) in Proposition 5.6.2 is
necessary to get trees of metric bundles.
Now we are ready to prove the main application of Theorem 1.2.4.

Proof of Theorem 1.2.2 : 1t follows from Proposition 5.6.2 and Theorem 1.2.4.
O]

Proof of Corollary 1.2.7: 1t follows from Proposition 5.6.2 and Remark 1.2.6.
O
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Further Questions

6.1 On Cannon-Thurston maps

In [9, Chapter 9], Kapovich and Sardar generalize the theorem of Mj-Pal ([40]) to a

subtree of relatively hyperbolic spaces. This motivates to the following question.

Question 6.1.1. Prove a result analogous to Theorem 1.1.6 in relatively hyperbolic

setup.

Suppose 7' : Y — B is a hyperbolic metric bundle and A is a qi embedded
subspace of B. In [33], Krishna and Sardar showed that the inclusion (7/)~!(A) < Y
admits the CT map. Keeping these in mind, we have Question 6.1.2 below. This
question put both the theorems of Kapvich-Sardar [9, Theorem 8.11] and Krishna-

Sardar in a single frame.

Question 6.1.2. Let mx : X — B be a tree of metric bundles as in Theorem 1.2.4.
Suppose A is a qi embedded subspace of B. Prove that the inclusion T ! (A) =X
admits the CT map.

6.2 On combination theorems

Motivated by the combination theorem of Bestvina-Feighn ([6]), Mj and Reeves

proved an analogous combination theorem for trees of relatively hyperbolic spaces

151
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([41]). In [42], Krishna proved a combination theorem for relatively hyperbolic
metric bundle. Subsuming these two we have the following question.

Question 6.2.1. Prove a combination theorem analogous to Theorem 1.2.4 for

relatively hyperbolic spaces.



Bibliography

[1] M. Mitra. Cannon-Thurston Maps for Hyperbolic Group Extensions. Topology
37, pages 527-538, 1998.

[2] J. Cannon and W. P. Thurston. Group Invariant Peano Curves. preprint,
Princeton, 1985.

[3] J. Cannon and W. P. Thurston. Group Invariant Peano Curves. Geom. Topol.
11, pages 1315-1355, 2007.

[4] M. Gromov. Hyperbolic Groups. in Essays in Group Theory, ed. Gersten,
MSRI Publ.,vol.8, Springer Verlag, pages 75-263, 1987.

[5] O. Baker and T. R. Riley. Cannon-Thurston maps do not always exist. Forum
Math., vol 1, e3, 2013.

[6] M. Bestvina and M. Feighn. A Combination theorem for Negatively Curved
Groups. J. Differential Geom., vol 35, pages 85-101, 1992.

[7] H. Bass. Covering theory for graphs of groups. J. Pure Appl. Algebra, 89:3-47,
1993.

[8] M. Mitra. Cannon-Thurston Maps for Trees of Hyperbolic Metric Spaces. J.
Differential Geom. 48, pages 135-164, 1998.

[9] M. Kapovich and P. Sardar. Trees of hyperbolic spaces.
https://arxiv.org/abs/2202.09526, 2022.

[10] M. Mj and P. Sardar. A combination theorem for metric bundles. Geom. Funct.
Anal. Vol. 22, page 1636-1707, 2012.

[11] R. Halder and P. Sardar. Cannon-Thurston Maps for Morphisms of Trees of
Hyperbolic Spaces. preprint.

153



154 BIBLIOGRAPHY

[12] R. Halder. A combination theorem for trees of metric bundles.
https://arxiv.org/abs/2206.14692, 2022.

[13] M. M;j. Cannon-thurston maps. Proceedings of the International Congress
of Mathematicians (ICM 2018), ISBN 978-981-3272-87-3, pages pp 885-917,
2019.

[14] M. Bestvina and M. Feighn. Addendum and correction to: “A combination
theorem for negatively curved groups” [J. Differential Geom. 35 (1992), no. 1,
85-101; MR1152226 (93d:53053)]. J. Differential Geom., 1996.

[15] S. M. Gersten. Cohomological lower bounds for isoperimetric functions on
groups. Topology, pages 1031-1072, 1998.

[16] B. Farb and L. Mosher. Convex cocompact subgroups of mapping class groups.
Geom. Topol. 6, pages 91-152, 2002.

[17] M. Bestvina, M. Feighn, and M. Handel. Laminations, trees and irreducible
automorphisms of free groups. GAFA vol.7 No. 2, pages 215-244, 1997.

[18] Y. Matsuda and S. Oguni. On Cannon-Thurston maps for relatively hyperbolic
groups. J. Group Theory, pages 41-47, 2014.

[19] M. Kapovich. Problems on Boundaries of groups and Kleinian Groups.

http://www.aimath.org/pggt/Boundaries boundaries-version4.pdf, 2008.

[20] J. R. Stallings and S. M. Gersten. Non-positively curved triangle of groups.
Group Theory from a Geometrical Viewpoint (E. Ghys, A. Haefliger, A. Ver-
Jovsky eds.), pages 491-503, 1991.

[21] A. Haefliger. Extension of complexes of groups. Ann. Inst. Fourier, Grenoble,
42, 1-2, pages 275-311, 1992.

[22] J. M. Corson. Complexes of groups. Proc. London Math. Soc. (3) 65, pages
199-224, 1992.

[23] M. Bridson and A Haefliger. Metric spaces of nonpositive curvature.
Grundlehren der mathematischen Wissenchaften, Vol 319, Springer-Verlag,
1999.

[24] A. Martin. Non-positively curved complexes of groups and boundaries. Geom.
Topol., pages 31-102, 2014.



BIBLIOGRAPHY 155

[25] D. Cooper V. Ferlini M. Lustig M. Mihalik M. Shapiro J. Alonso, T. Brady
and H. Short. Notes on word hyperbolic groups. In: Group Theory from a
Geometrical Viewpoint (E. Ghys, A. Haefliger, A. Verjovsky eds), pages 3—63,
1991.

[26] E. Ghys and P. de la Harpe(eds.). Sur les groupes hyperboliques d’apres
Mikhael Gromov. Progress in Math. vol 83, Birkhauser, Boston Ma., 1990.

[27] H. Short. Notes on word hyperbolic groups. Group Theory from a Geometrical
Viewpoint (E. Ghys, A. Haefliger, A. Verjovsky eds.), pages 3—63, 1991.

[28] M. Coornaert, T. Delzant, and A. Papadopoulos. Geometrie et theorie des
groupes. Lecture Notes in Math., vol. 1441, Springer Verlag, 1990.

[29] B. H. Bowditch. Uniform hyperbolicity of the curve graphs. Pacific J. Math.,
pages 269-280, 2014.

[30] U. Hamenstadt. Geometry of complex of curves and teichmuller spaces. in
Handbook of Teichmuller Theory Vol. 1, EMS, pages 447-467, 2007.

[31] A. Pal and S. Paul. Strongly contracting geodesics in a tree of spaces. To
appear in Proc. Indian Acad. Sci. (Math. Sci.), 2022.

[32] B. H. Bowditch. Stacks of hyperbolic spaces and ends of 3 manifolds. preprint,
Southampton, 2002.

[33] S. Krishna and P. Sardar. Pullbacks of Metric Bundles and Cannon-Thurston
Maps. 2020.

[34] L. Mosher. Hyperbolic Extensions of Groups. J. Pure Appl. Algebra 110(3),
pages 305-314, 1996.

[35] JP Serre. Trees. Springer Monographs in Mathematics, Translated from the
French original by John Stillwell, Corrected 2nd printing of the 1980 English
translation, Springer-Verlag, Berlin, 2003.

[36] P. Sardar. Graphs of hyperbolic groups and limit set of intersection theorm.
Proc A.M.S, Volume 146, Number 5, pages 1859-1871, May 2018.

[37] P. Sardar. Corrigendum to “Graphs of hyperbolic groups and a limit set inter-
section theorem”. Proc. Amer. Math. Soc., pages 2271-2276, 2022.



156 BIBLIOGRAPHY

[38] M. Mitra. Ending Laminations for Hyperbolic Group Extensions. Geom. Funct.
Anal. 7, pages 379-402, 1997.

[39] 1. Kapovich. The combination theorem and quasiconvexity. Internat. J. Algebra
Comput., pages 185-216, 2001.

[40] M. Mj and A. Pal. Relative Hyperbolicity, Trees of Spaces and Cannon-
Thurston Maps. Geom. Dedicata 151(1), pages 59-78, 2011.

[41] M. Mj and L. Reeves. A combination theorem for strong relative hyperbolicity.
Geom. Topol., 12:1777-1798, 2008.

[42] S. Krishna. Relatively hyperbolic metric bundles and cannon-thurston map.
https://arxiv.org/abs/2204.01073, 2022.



	Acknowledgements
	Abstract
	Notations
	Table of contents
	1 Introduction
	1.1 Cannon-Thurston maps
	1.2 Combination theorem
	1.3 Flowchart

	2 Preliminaries
	2.1 Coarse geometric notions
	2.2 Hyperbolic metric spaces
	2.2.1 Quasiconvex subsets
	2.2.2 Gromov boundary and Cannon-Thurston maps

	2.3 Trees of metric spaces
	2.4 Trees of metric bundles and their properties
	2.4.1 Conventions and notations

	2.5 Complexes of groups
	2.5.1 The complex of groups associated to an action
	2.5.2 The fundamental group of a complex of groups


	3 Cannon-Thurston maps
	3.1 Flow spaces and their properties
	3.1.1 Ladders

	3.2 Boundary of X
	3.2.1 Boundary flow

	3.3 Morphisms of trees of spaces
	3.3.1 Induced trees of spaces
	3.3.2 Induced trees of spaces with projection hypothesis

	3.4 Proof of Theorem 1.1.6
	3.5 Proof of Theorem 1.1.7
	3.6 Applications and related results
	3.6.1 Lamination

	3.7 Nonexistence of Cannon-Thurston maps

	4 A combination theorem revisited
	5 Main combination theorem
	5.1 Semicontinuous families: flow space and ladder
	5.1.1 Flow space
	5.1.2 Ladder

	5.2 Hyperbolicity of ladder
	5.2.1 Hyperbolicity of ladders (small girth)
	5.2.2 Hyperbolicity of ladders (general case)

	5.3 Hyperbolicity of flow spaces
	5.4 Hyperbolicity of ND(FlK(Xu)FlK(Xv))
	5.5 Proof of Theorem 1.2.4
	5.6 Applications
	5.6.1 Trees of metric bundles coming from complexes of groups


	6 Further Questions
	6.1 On Cannon-Thurston maps
	6.2 On combination theorems

	Bibliography

