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Abstract

The concept of Cannon-Thurston maps in Geometric Group Theory was introduced
by Mitra in [1] motivated by the fundamental work of Cannon and Thurston (see
[2, 3]). Given Gromov hyperbolic groups H < G (see [4]) one asks if the inclusion
map i : H → G naturally induces the Cannon-Thurston (CT) map ∂ i : ∂H → ∂G
which is characterized by the property that for any sequence {hn} in H and ξ ∈ ∂H,
hn → ξ implies hn → ∂ i(ξ ). It is well-known that such a map is continuous when
it exists, but it may not, in general, exist (see [5]). In the first part of the thesis,
among other things, we show the existence of CT maps for a pair of hyperbolic
groups H < G where (1) G is the fundamental group of a graph of hyperbolic groups
(G ,Y ), say, satisfying qi embedded condition such that G is hyperbolic (see [6]),
(2) H is the fundamental group of a subgraph of hyperbolic subgroups (H ,Z), say,
of (G ,Y ), (3) for any vertex v of Z, the inclusion of the vertex groups Hv → Gv of
(H ,Z) and (G ,Y ) admits the CT map and (4) for any edge e of Z, the edge group
He of (H ,Z) is same as the corresponding edge group Ge of (G ,Y ). (One is refered
to [7, Corollary 1.14] for the definition of a subgraph of subgroups of a graph of
groups.) This result is deduced by first proving an existence theorem for CT maps
for certain morphisms of trees of hyperbolic metric spaces, which generalizes earlier
results of M. Mitra ([8]), and (a special cases of) M. Kapovich and P. Sardar ([9,
Theorem 8.11]). Moreover, in the course of this work, we also found a nonexistence
theorem for CT maps which is similar to that of Baker-Riley ([5]) but is conceptually
somewhat easier to understand.

In the second part of the thesis, we prove a combination theorem for trees of
metric bundles extending the combination theorems for trees of hyperbolic metric
spaces due to Bestvina-Feighn ([6]) and metric bundles due to Mj-Sardar ([10]).
More precisely, we prove that if πB : B → T is a tree of hyperbolic metric spaces
whose edge spaces are points and πX : X → B is a 1-Lipschitz surjective map then X
is hyperbolic if the following holds:
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1. The fibers of πB ◦πX are hyperbolic metric spaces which are nonelementary
(i.e., their barycentric maps are coarsely surjective as in [10, Section 2]) and
are all uniformly properly embedded in X .

2. B is hyperbolic.

3. For all vertex u of T , let Bu = π
−1
B (u) and Xu = π

−1
X (Bu). Then the restriction

of πX to Xu gives a metric bundle Xu → Bu as defined by [10].

4. Suppose e is the edge in T joining two vertices u,v. Let eB denote the (isomet-
ric) lift of e in B joining bu ∈ Bu and bv ∈ Bv. Then πX restricted to π

−1
X (eB)

is a tree of metric spaces with the qi embedded condition over eB = [bu,bv] as
defined in [8].

5. The parameters of (1), the bundles in (3) and the trees of metric spaces in (4)
are uniform.

6. Bestvina-Feighn’s hallway flaring condition holds for qi lifts in X of geodesics
in B.

This theorem is then used to prove a combination theorem for certain complexes of
hyperbolic groups.
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Notations
N: set of natural numbers.
Z: set of integers.
R: set of real numbers.
For a metric space X , the metric on X will be denoted by dX or simply by d when

X is understood.
For a subset U ⊆ X , PX ,U (or PXU or PU ): X →U is a nearest point projection

map.
HdX(A,B): Hausdorff distance between A and B for A,B ⊆ X
For A ⊆ X and r ≥ 0, Nr(A) := {x ∈ X : dX(a,x)≤ r for some a ∈ A}.
For x,y ∈ X , [x,y]X (or [x,y]): geodesic joining x and y (when X is understood).
Quasiconvex hull of A ⊆ X is hull(A) := {[a,b] : a,b ∈ A}.
For trees of metric spaces:
π : X → T , a tree of metric space
For a subtree S ⊆ T , XS := π−1(S); in particular, for u ∈V (T ), Xu := π−1(u).
For a quasiconvex subset A ⊆ Xu (u ∈V (T )), F lX(A) is flow space determined

by A.
For trees of metric bundles:
(X ,B,T ): tree of metric bundles along with maps πX : X → B, πB : B → T and

π = πB ◦πX : X → T .
For a subtree S ⊆ T , XS := π−1(S), BS := π

−1
B (S); in particular, for u ∈ V (T ),

Xu := π−1(u), Bu := π
−1
B (u). Fiber over b ∈ Bu is Fb,u := π

−1
X (b).

For an edge [v,w] in T , we denote the edge joining v ∈ Bv and w ∈ Bw by
[v,w]. Fvw := π

−1
X ([v,w]) is δ ′

0-hyperbolic, Fv,v ↪→ Fvw and Fw,w ↪→ Fvw are L′
0-qi

embedding. Pw := PFvwFw,w : Fvw → Fw,w is L′
1-coarse Lipschitz retraction. Any 2δ0

quasiconvex subset of Fv,v or of Fw,w is λ ′
0-quasiconvex in Fvw.

For K ≥ 1,C ≥ 0 and ε ≥ 0, Y is a (K,C,ε)-semicontinuous family with a central
base B over a central tree T. TY :=hull(π(Y)).

Flow space of Xu by F lK(Xu) for u ∈ T .
Sometimes, we denote UK := F lK(Xu) and VK := F lK(Xv) for u,v ∈ T . Also

UKL := NL(UK) = NL(F lK(Xu)) =: FlKL(Xu) for L ≥ 0. Similarly, VKL = FlKL(Xv).
Ladder by LK or simply by L and La,v := L ∩Fa,v Similarly, LKR := NR(LK)

for R ≥ 0.
(G ,Y ): graph of groups over an oriented connected graph Y
G (Y ): complex of groups over a connected simplicial complex Y

G (Y ,Y ): complex of groups explained in setup C (see Introduction 1.2)
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Chapter 1

Introduction

This thesis has two parts. In the first part, we show existence of the Cannon-Thurston
(CT) map for certain morphisms of trees of hyperbolic metric spaces. In the second
part, we prove a combination theorem for complexes of hyperbolic spaces with
some restrictions. The general setup that is required for both the parts is that of
complexes of spaces, and the applications of these results are obtained in the context
of complexes of hyperbolic groups. Now we elaborate on each of these two topics in
the following two sections.

Remark 1.0.1. Results discussed in Section 1.1 are part of a preprint [11] and in
Section 1.2 are submitted (see [12]).

1.1 Cannon-Thurson maps for morphisms of trees of
hyperbolic spaces

A natural question in Geometric Group Theory is as follows.

Question 1. Under what condition(s) can a map f : Y → X between hyperbolic
metric spaces be extended continuously to their Gromov boundaries, ∂ f : ∂Y → ∂X?

Such a continuous extension (if exists) is known as the Cannon-Thurston (CT)
map as the first nontrivial examples of such maps was produced by Cannon and
Thurston in ([2, 3]). The term ‘Cannon-Thurston map’ or ‘CT map’ was coined by
Mahan Mitra (Mj) in [1] (and [8]) where he proved the existence of CT maps for any
normal hyperbolic subgroup of a hyperbolic group (resp. vertex group of a graph
of hyperbolic groups with qi embedded condition). Consequently, over the last two
decades, many results on existence of CT maps have been proved. One is refered to
[13] for a wondeful survey. However, the set of examples and nonexamples in this

1



2 CHAPTER 1. INTRODUCTION

context are still very limited. A simple case of the questions addressed in this thesis
is the following.

Question 2. Suppose G1,G2 are two hyperbolic groups with a common quasi-
convex subgroup H such that the free product with amalgamation G = G1 ∗H G2 is
hyperbolic. Suppose that Ki < Gi, i = 1,2 are hyperbolic subgroups where H < Ki,
i = 1,2; let K = K1 ∗H K2. Does the inclusion K → G admit the CT map?

It follows from the work of Bestvina and Feighn ([14]) and Gersten ([15, Corol-
lary 6.7]) that K is hyperbolic. However, it follows from the work of M. Kapovich
and P. Sardar, ([9, Theorem 8.71]) that the answer to Question 2 is ‘yes’ if Ki is
quasiconvex in Gi, i = 1,2. It easily follows from [8] that the existence of CT maps
for the inclusions Ki → Gi, i = 1,2 are necessary for the answer to Question 2 to be
affirmative. One is referred to Definition 2.5.9 for graph of groups.

Definition 1.1.1 (Subgraph of subgroups, [7, Corollary 1.14]). Suppose (G ′,Y ′) is
a graph of groups over Y ′. For v ∈V (Y ′) and e ∈ E(Y ′), let us denote the correspond-
ing vertex group by G′

v and the edge group by G′
e. Let Y be a connected subgraph

of Y ′. A graph of groups (G ,Y ) is called a subgraph of subgroups if it is obtained
as follows. For each v ∈ V (Y ), Gv < G′

v and for each e ∈ E(Y ), we have Ge < G′
e

and the incidence homomorphisms for (G ,Y ) are simply the restrictions of those in
(G ′,Y ′).

In the thesis, we prove the following.

Theorem 1.1.2. Suppose (G ′,Y ′) is a graph of hyperbolic groups with the qi embed-
ded condition such that the fundamental group π1(G

′,Y ′) is hyperbolic. Let (G ,Y )
be a subgraph of subgroups over Y of (G ′,Y ′) as in Definition 1.1.1. We also assume
the following.

1. For each u ∈V (Y ), Gu is hyperbolic and the inclusion Gu ↪→ G′
u admits the

CT map.

2. Let e ∈ E(Y ). Then:

(a) Gi(e)∩ ie(G′
e) = ie(Ge) and Gt(e)∩ te(G′

e) = te(Ge).

(b) The inclusions ie(Ge) ↪→ G′
i(e) and te(Ge) ↪→ G′

t(e) are qi embedded.

(c) There is D ≥ 0 such that for all g ∈ Gi(e),

dG′
i(e)
(PGi(e)ie(Ge)(g),PG′

i(e)ie(G
′
e)
(g))≤ D
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where PG′
i(e)ie(G

′
e)

: G′
i(e) → ie(G′

e) is a nearest point projection map onto

ie(G′
e) in the metric of G′

i(e) and PGi(e)ie(Ge) : Gi(e) → ie(Ge) is that onto
ie(Ge) in the metric of Gi(e). With similar notations, for all g ∈ Gt(e), we
also have

dG′
t(e)
(PGt(e)te(Ge)(g),PG′

t(e)te(G
′
e)
(g))≤ D.

Then the fundamental group π1(G ,Y ) of (G ,Y ) is hyperbolic and the natural homo-
morphism π1(G ,Y ) ↪→ π1(G

′,Y ′) is injective which admits the CT map.

Remark 1.1.3. (1) In Theorem 1.1.2, the injectivity of the inclusion π1(G ,Y ) ↪→
π1(G

′,Y ′) follows from [7, Corollary 1.14] and the hyperbolicity of π1(G ,Y ) follows
from [14] and [15, Corollary 6.7].

(2) In reference to Question 2 above, when the edge groups are same, i.e.,
G′

e = Ge for all e ∈ E(Y ) then it is not hard to show that condition (2)(c) follows
from the mere fact that G′

u ↪→ Gu admits the CT map, whereas conditions (2)(a) and
(2)(b) are trivially.

So as a consequence of Theorem 1.1.2, we have the following.

Theorem 1.1.4. Suppose (G ′,Y ′) is a graph of hyperbolic groups with the qi embed-
ded condition such that the fundamental group π1(G

′,Y ′) is hyperbolic. Let (G ,Y )
be a subgraph of subgroups over Y of (G ′,Y ′) as in Definition 1.1.1 such that for
each u ∈V (Y ), Gu is hyperbolic and the inclusion Gu ↪→ G′

u admits the CT map. We
also assume one of the followings.

• For each e ∈ E(Y ), Ge = G′
e.

• For each e∈E(Y ), we have Gi(e)∩ ie(G′
e) = ie(Ge) and Gt(e)∩te(G′

e) = te(Ge);
moreover, the inclusion Ge ↪→ G′

e is isomorphic onto finite index subgroup of
the target group.

Then the fundamental group π1(G ,Y ) of (G ,Y ) is hyperbolic and the natural homo-
morphism π1(G ,Y ) ↪→ π1(G

′,Y ′) is injective which admits the CT map.

The above theorem (Theorem 1.1.6) for graphs of groups follows from a geomet-
ric result about trees of metric spaces on which we now elaborate. Suppose X is a
tree of hyperbolic spaces over a tree T satisfying the qi embedded condition such
that X is hyperbolic (see [6]). Mahan Mitra (Mj) showed the existence of CT map
from any vertex space (resp. edge space) to X ([8]). Recently, in their book [9], M.
Kapovich and P. Sardar proved the existence of CT map from a subtree of spaces to
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the ambient space in the setting of trees of hyperbolic spaces generalizing Mitra’s
work. We extend these results as follows. Let us first outline the setup.

We refer to Definition 2.3.1 for the definition of trees of metric spaces below and
Section 2.1 for other terminologies.

1. Suppose π : X → T is a tree of hyperbolic metric spaces satisfying the qi
embedded condition such that X is hyperbolic.

2. Let Y ⊆ X be a hyperbolic subspace such that the inclusion i : Y ↪→ X is a
proper embedding.

3. The restriction of π on Y , π|Y : Y → S = π(Y ) is a tree of hyperbolic metric
spaces over S with the qi embedded condition.

4. For all u ∈V (S) and for all e ∈ E(S), inclusions Yu ↪→ Xu and Ye ↪→ Xe admit
the CT maps.

5. Both X and Y are proper metric spaces.

Remark 1.1.5. Under the above hypotheses hyperbolicity of Y is ensured. Indeed,
since X is hyperbolic, π : X → T satisfies flaring condition which implies the same
for Y . Basically the proof of [10, Proposition 5.8] works in this case too. Hence, by
[6], Y is hyperbolic.

In addition to the above five hypotheses we shall need the following for Theorem
1.1.6.

Projection hypothesis: There is a constant R0 ≥ 0 such that for all v ∈V (S) and
e ∈ E(S) incident on v, and for all x ∈ Yv we have

dXv(PXvXev(x),PYvYev(x))≤ R0

where PXvXev : Xv → Xev is a nearest point projection map onto Xev in the metric of Xv

and PYvYev : Yv → Yev is that onto Yev in the metric of Yv.

Theorem 1.1.6. Suppose we have the hypotheses (1)-(5) above plus the following.

1. The inclusion Ye ↪→ Xe is (uniform) qi embedding for all e ∈ E(S).

2. The projection hypothesis holds.

Then the inclusion i : Y ↪→ X admits the CT map.
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A few words on the proof of Theorem 1.1.6: The proof for Theorem 1.1.6 runs
by contradiction. For any two sequences {yn} and {y′n} of Y such that limY

n→∞ yn =

limY
n→∞ y′n and limX

n→∞ yn, limY
n→∞ y′n ∈ ∂X , we show that limX

n→∞ yn = limX
n→∞ y′n.

This completes the proof (see Lemma 2.2.43). We break the proof up into several
cases depending on types of the sets hull{π(yn) : n ∈ N} and hull{π(y′n) : n ∈ N},
and in each case, we compare the geodesics [yn,y′n]Y and [yn,y′n]X . Comparing these
geodesics is the main difficult task. For that we construct a quasiconvex subset in
both X and Y containing yn and y′n using the flow spaces constructed in [9].

When the maps in the vertex space levels are uniform qi embeddings then we
have the following stronger consequence.

Theorem 1.1.7. Suppose we have the hypotheses (1)-(4) mentioned above. Moreover,
suppose for all u ∈V (S) and for all e ∈ E(S), the inclusions Yu ↪→ Xu and Ye ↪→ Xe

are uniform qi embeddings and the projection hypothesis holds. Then

1. the inclusion i : Y ↪→ XS is qi embedding where XS := π−1(S), and

2. hence by [9], the inclusion i : Y ↪→ X admits the CT map.

A particular application of Theorem 1.1.2 is the following.

Example 1.1.8. Consider a hyperbolic group G′ of the form G′ = N ⋊Q, where N
is either the fundamental group of a closed orientable surface of genus at least 2 or
a finitely generated free group of rank at least 3, and Q is a finitely generated free
group of rank at least 2. Examples of this sort are well-known; e.g. see [16], [17].
It is easy to see that Q is a malnormal quasiconvex subgroup of G. Now let F < Q
be a malnormal free subgroup of rank at least 3 and let φ : F → F be a hyperbolic
automorphism. Suppose H1 = N ⋊F < G′. Then it follows from [6] that the HNN
extensions (< H1, t : tat−1 = φ(a),a ∈ F >=)H2 = H1∗φ < G = G′ ∗φ (=< G′, t :
tat−1 = φ(a),a ∈ F >), are both hyperbolic. (We note that H1 is hyperbolic by the
results of [10].)

However, it easily follows from Theorem 1.1.6 that the inclusion H2 → G admits
the CT map.

A nonexistence theorem for CT maps

Baker and Riley ([5]) were the first to produce an example of a free subgroup F
of a hyperbolic group G for which the inclusion F→ G does not admit the CT map.
This class of examples were obtained using small cancellation theory. Later, Matsuda
and Oguni ([18]) using the examples of Baker-Riley showed that any non-elementary
hyperbolic group can be embedded in another hyperbolic group for which there is no
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CT map. In the current thesis, we prove a similar result (see Theorem 1.1.9) using
geometry of trees of spaces. We feel that this is conceptually somewhat easier to
understand than the ones obtained by Baker and Riley.

Theorem 1.1.9. 1. Suppose G′ is a hyperbolic group, and Q and N are hyper-
bolic subgroups where Q is malnormal and quasiconvex in G, but N is not
quasiconvex in G. Moreover, suppose that Q∩N = (1).

2. Suppose φ : Q → Q is an automorphism of Q such that the semidirect product
Q⋊φ Z is hyperbolic. Let G = G′∗Q be the HNN extension of G′ along φ with
stable letter t and let K be the subgroup of G generated by N ∪{t}.

3. Finally, suppose that there is a sequence {yn} in N such that limG
n→∞ PG′Q(yn)=

limG
n→∞ tn where PG′Q : G′ → Q is a nearest point projection map from G′ to

Q.
Then K = N∗< t > is hyperbolic and the inclusion K → G does not admit the

CT map.

As an application to the above theorem we have the following example.

Example 1.1.10. Consider the groups in Example 1.1.8 so that F = Q and rank
of Q is at least 3. Suppose t is the common stable letter for the HNN extensions
under consideration. Let K be the subgroup of G generated by N ∪{t}. Clearly,
K = N∗< t > whence it is hyperbolic. However, it is easy to verify the hypotheses
of Theorem 1.1.9 for G and K (see Section 3.7). Thus the inclusion K → G does not
admit the CT map.

One is referred to Definition 3.6.1 for Cannon-Thurston (CT) lamination. In
this thesis, we also investigate the properties of the CT lamination in the situation
where Theorem 1.1.6 holds. One of the main results proved in this connection is the
following.

Theorem 1.1.11. Suppose i : Y → X as in Theorem 1.1.6 such that S = T and
∂ iY X : ∂Y → ∂X is the CT map. Let α be a geodesic line in Y . Suppose there is
w ∈ V (S) and t1, t2 ∈ R such that T1 = π(α|(−∞,t1]) and T2 = π(α|[t2,∞)) lie in two
different components of T \{w}. Then ∂ iY X(α(−∞)) ̸= ∂ iY X(α(∞)).

A few words on the proof of Theorem 1.1.11: The following dichotomy holds
for the points of ∂X (where π : X → T is a tree of hyperbolic spaces as in Theorem
1.1.6): Either it is a conical limit point of some vertex space or it is not a conical
limit point of any vertex space (see Remark 3.2.10). This is the main fact used in the
proof of Theorem 1.1.11.
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1.2 A Combination theorem for trees of metric bun-
dles

Bestvina-Feighn ([6]) proved that the fundamental group of a finite graph of hyper-
bolic groups with the qi embedded condition and annuli flare condition is hyper-
bolic (see [14, Theorem 1.2]). Motivated by this work of Bestvina and Feighn, M.
Kapovich asked whether one can extend this combination theorem for graphs of
groups to complexes of groups (see [19, Problem 90]). (For more detailed exposition
in complexes of groups, on is referred to [20], [21], [22], [23] or Section 2.5.) One
may formulate the problem of M. Kapovich as follows.

Problem 1.2.1. Suppose G (Y ) is a developable complex of groups over a finite
connected simplicial complex Y such that the following holds.

1. All the local groups are hyperbolic.

2. All the local maps are qi embeddings.

3. The universal cover of G (Y ) is hyperbolic.

Under what condition(s) the fundamental group π1(G (Y )) is hyperbolic.

Here is brief history of the activities around this problem. Suppose G (Y ) is a
complex of groups with the condition as in Problem 1.2.1. If G (Y ) is negatively
curved and all the local groups are finite then π1(G (Y )) is hyperbolic due to Gersten-
Stallings ([20]). If the local maps are all isomorphisms onto finite index subgroups
of the target groups, local groups are non-elementary hyperbolic and G (Y ) satisfies
Bestvina-Feighn’s hallway flaring condition then it follows from the work of Mj-
Sardar ([10]) that π1(G (Y )) is hyperbolic. If the universal cover of G (Y ) is CAT(0)
and hyperbolic and the action of π1(G (Y )) on the universal cover is acylindrical
then π1(G (Y )) is hyperbolic and local groups are quasiconvex in π1(G (Y )) due to
A. Martin ([24]). Apart from these extreme cases nothing is known. However, in this
thesis ([12]), we attempt this question for yet another type of complexes of groups.
Let us first outline the setup. We refer this as setup C

1. Suppose Y is a finite connected graph and pY : Y → Y is a graph of spaces
where the edge spaces are points. We further assume that Y is a simplicial
complex. Suppose G (Y ) is a complex of groups over Y such that all the
properties of Problem 1.2.1 hold with the following additional ones.
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2. For all v ∈V (Y ), p−1
Y (v) = Yv, say, is a finite connected simplicial complex

and the restriction of G (Y ) on Yv is a developable complex of groups, say,
Gv(Yv) over Yv. Further, all the local maps in Gv(Yv) are isomorphisms onto
finite index subgroups of the target groups.

3. Suppose u,v are two vertices in Y such that pY is injective when restricted to
the edge e joining u,v. Then the local homomorphisms Ge → Gu and Ge → Gv

are not necessarily isomorphisms onto finite index subgroups.

We denote G (Y ) in this case as G (Y ,Y ) to emphasize on the extra structure on Y .
Then we have the following.

Theorem 1.2.2. ([12, Theorem 1.3]) In addition, if G (Y ,Y ) satisfies Bestvina-
Feighn’s hallway flare condition and in (2) of setup C , all the local groups of Gv(Yv)

are non-elementary (hyperbolic) then π1(G (Y ,Y )) is hyperbolic.

The above Theorem 1.2.2 follows from a combination theorem for spaces. We
now elaborate on this. In [6], Bestvina and Feighn proved that a tree of hyperbolic
spaces is hyperbolic if it satisfy the qi embedded condition and hallway flaring
condition. In [10], Mj and Sardar proved that if X is a metric bundle over B such that
(1) fibers are uniformly hyperbolic and B is also hyperbolic, (2) the barycenter map
for the fibers are uniformly coarsely surjective and (3) Bestvina-Feighn’s hallway
flaring condition holds then X is hyperbolic. The question that motivated us is if
we can combine these two and still get hyperbolicity. Here is a baby version of the
problem we are attempting to solve.

Question 1.2.3. Suppose πi : Xi → Bi are metric bundles for i= 1,2. Suppose we join
b1 ∈ B1 and b2 ∈ B2 by an edge, say, e. Let Xe be a new geodesic metric space. Let
Fb1 and Fb2 be fibers over b1 and b2 of the bundles X1 and X2 respectively. Suppose
there are qi embeddings Xe → Fb1 and Xe → Fb2 and we form a new space by gluing
Xe× [0,1] to X1⊔X2 as follows: We attach Xe×{0} to Fb1 and Xe×{1} to Fb2 using
the qi embeddings Xe → Fb1 and Xe → Fb2 respectively. When is the new space
hyperbolic?

In this thesis ([12]), we consider a general version of Question 1.2.3 and provide
a combination theorem (Theorem 1.2.4). One is referred to Definition 2.4.2 for trees
of metric bundles with the qi embedded condition.

Theorem 1.2.4. ([12, Theorem 1.1]) Suppose (X ,B,T ) is a tree of metric bundles
such that:



1.2. COMBINATION THEOREM 9

1. For v ∈ V (T ) and a ∈ Bv, the fibers, Fa,v are uniformly hyperbolic geodesic
metric spaces and the barycenter maps ∂ 3Fa,v → Fa,v are uniformly coarsely
surjective.

2. Let [v,w] be an edge in T and e = [v,w] be the edge joining v ∈ Bv and
w ∈ Bw. Then πX restricted to π

−1
X (e) is a tree of metric spaces with (uniform)

qi embedded condition over e= [v,w].

3. B is hyperbolic geodesic metric space.

4. Bestvina-Feighn’s hallway flaring condition is satisfied.

Then X is hyperbolic geodesic metric space.

Remark 1.2.5. The overall idea of the proof of Theorem 1.2.4 closely follows from
that of [9] and makes crucial use of [10]. We are intellectually indebted to both of
these works. However it is not a direct consequence of the combination theorems
of [6] and [10] in any obvious way for the following reason. Let v ∈V (T ). As the
space Xv over Bv is a metric bundle satisfying all conditions of the main theorem
of [10], Xv is (uniformly) hyperbolic. Now we can think of X as a tree of metric
spaces over T where vertex spaces are these bundles and the edge spaces are inverse
images under πB ◦πX of the midpoints of the edges in T . But we can not apply the
main theorem of [6] to this tree of spaces to conclude our theorem because in this
case the edge spaces of the tree of spaces are not, in general, qi embedded in the
corresponding vertex spaces.

Necessity of flaring
Gersten (see [15, Corollary 6.7]) showed that the annuli flaring is necessary

for the fundamental group of a finite graph of hyperbolic groups to be hyperbolic
provided the edge groups are qi embedded in the corresponding vertex groups.
Mj and Sardar also showed that the (hallway) flaring condition is necessary for
metric bundles to be hyperbolic provided fibers are uniformly hyperbolic (see [10,
Proposition 5.8]). Let us briefly recall the idea of their proof. They first showed that
small girth ladders bounded by two qi lifts satisfy flaring condition. Then a general
ladder was subdivided into small girth ladders and summing them up showed that a
general ladder satisfies flaring condition. In doing so they used a crucial lemma ([10,
Lemma 5.9]) which is a specialization of the fact that geodesics diverge exponentially
in hyperbolic metric spaces in the context of metric bundles; this lemma also holds
true in trees of metric bundles. In trees of metric bundles, given two qi lifts over the
same base, there is a special ladder (see Definition 2.4.11) bounded by these qi lifts
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(see Lemma 2.4.14). Therefore, the proof of the following remark is analogous to
that of [10, Proposition 5.8], so we omit the full details.

Remark 1.2.6. Suppose (X ,B,T ) is a tree of metric bundles such that:

1. X is hyperbolic.

2. All the fibers are uniformly hyperbolic.

3. All the edge spaces in the corresponding fibers are uniformly qi embedded.

Then πX : X → B satisfies Bestvina-Feighn’s hallway flaring condition.

As a consequence of Remark 1.2.6, we have the following.

Corollary 1.2.7. ([12, Corollary 1.7]) Suppose G (Y ,Y ) is a complex of groups as
explained in the setup C such that the fundamental group π1(G (Y ,Y )) of G (Y ,Y )
is hyperbolic. Then G (Y ,Y ) satisfies Bestvina-Feighn’s hallway flare condition.
(Note that we do not require the universal cover of G (Y ) to be hyperbolic.)

A few words on the proof of Theorem 1.2.4: (1) Motivated by that of [9], we
construct semicontinuous families, ladders and flow spaces, and more general flow
spaces in Section 5.1; whereas ladder was invented by Mitra in [8] for trees of metric
spaces. Some properties of these subspaces, most importantly, Mitra’s retraction
of the whole space on these subspaces, are also discussed there. Main construction
starts from here in Section 5.1.

(2) Most difficult job was to show the uniform hyperbolicity of ladders and
flow spaces. In Section 5.2, we prove that the ladders are (uniformly) hyperbolic
by dividing into two cases: small girth and general case. By invoking Bowditch
criterion (see Proposition 2.2.6) for a metric space to be hyperbolic, we prove that
small girth ladders are (uniformly) hyperbolic (Subsection 5.2.1). For general ladder,
we first break it up into small girth ladder and then with the help of Proposition 2.2.7
we conclude its hyperbolicity (Subsection 5.2.2). Section 5.3 is devoted to prove
the (uniform) hyperbolicity of flow spaces. To prove this, we follow the strategy
elaborated in [9, Chapter 5].

(3) In Section 5.4, we prove that union of uniform neighborhood of two inter-
secting flow spaces is uniformly hyperbolic; in the introduction of this section we
elaborate what the properties are required from the earlier sections to prove this.

(4) Section 5.5 contains proof of Theorem 1.2.4 with the help of Theorem 4.0.1.
Theorem 4.0.1 shows the hyperbolicity of total space for a tree of metric spaces
within an axiomatic framework.
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(5) The last Section 5.6, contains some applications to complexes of groups
(Theorem 1.2.2 and Corollary 1.2.7).

Layout of the thesis: In Chapter 2, we recall basics definitions and results which
are used in the subsequent chapters. We define trees of metric bundles in Section
2.4. In Chapter 3, we prove the main theorem for Cannon-Thurston maps (Section
3.4, Theorem 1.1.6). In the subsequent Sections 3.5, 3.6, we prove Theorem 1.1.7,
Theorem 1.1.2, Theorem 1.1.4 and Theorem 1.1.11. We end Chapter 3, by proving
Theorem 1.1.9 and Example 1.1.10 (Section 3.7). Chapter 4 is devoted to proving the
hyperbolicity of trees of metric spaces within an axiomatic framework. In Chapter
5, we prove the main combination theorem (Section 5.5, Theorem 1.2.4). Theorem
1.2.2 and Corollary 1.1.5 are proven in Section 5.6.





            1.3   Flowchart
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Chapter 2

Preliminaries

2.1 Coarse geometric notions

Suppose X is a metric space. For x,y ∈ X , a geodesic joining them in X is an
isometric embedding α : [0,d(x,y)]→ X with α(0) = x and α(d(x,y)) = y. We refer
to X as a geodesic metric space if there exists a geodesic in X joining every pair of
points in X . We say that X is proper metric space if closed bounded balls in X are
compact. In this thesis, it is assumed that graphs are connected, and their edges are
isometric to a closed unit interval of R. That makes the graph a geodesic metric space
([23, Section 1.9, I.1]). A tree is a connected graph without any embedded circle.
For a tree T and u,v ∈V (T ), by a segment or interval joining u,v in T , we mean an
isometric embedding α : [n,m]→ T for n,m ∈ Z such that α(n) = u, α(m) = v. We
denote [u,v] := Im(α), (u,v] := Im(α|[n+1,m]) and (u,v) := Im(α|[n+1,m−1]). Degree
of a vertex v ∈V (T ) in a tree T is defined to be the number of edges incident on v.

Let us recall some basic notions of large scale geometry (see [4], [25], [23],
[26]). Let (X ,dX),(Y,dY ) be metric spaces and δ ≥ 0,k ≥ 1,ε ≥ 0,r ≥ 0,C ≥ 0,L ≥
0,D ≥ 0,R ≥ 0.

1. Let A,B ⊆ X . We say A is rrr-dense in X if X = Nr(A) := {x ∈ X : dX(x,A)≤
r}. The Hausdorff distance between A and B is defined to be inf{D : A ⊆
ND(B),B ⊆ ND(A)} and is denoted by HdX(A,B). The subset A is said to be
r-separated subset if for all distinct a,b ∈ A, dX(a,b)≥ r. We say A and B are
R-separated if dX(a,b)> R,∀ a ∈ A and ∀ b ∈ B.

2. A map f : X → Y is called ε-coarsely surjective if Nε( f (X)) = Y ; and, we
say that f is coarsely surjective if it is ε-coarsely surjective for some ε .

3. A map f : X → Y is called C-coarsely Lipschitz if

dY ( f (x), f (x′))≤CdX(x,x′)+C

13
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for all x,x′ ∈ X . In particular, if A ⊆ X and f : X → A is a C-coarsely Lipschitz
map such that f (a) = a for all a ∈ A then we say f is a C-coarsely Lipschitz
retraction of X on A.

4. A map φ : R≥0 → R≥0 is said to be (metrically) proper if the inverse image
of bounded sets are bounded or equivalently lim r→∞φ(r) = ∞. A function
f : X → Y is called (metrically) φ -proper embedding (or simply proper
embedding when φ is understood) for some proper map φ : R≥0 → R≥0 if

dY ( f (x), f (x′))≤ r implies dX(x,x′)≤ φ(r).

5. A map f : X → Y is said to be (k,ε)-quasi-isometric embedding (in short
(k,ε)-qi embedding) if

1
k

dX(x,x′)− ε ≤ dY ( f (x), f (x′))≤ kdX(x,x′)+ ε for all x,x′ ∈ X .

We say that f is a quasi-isometric embedding (in short qi embedding) if it is
(k,ε)-qi embedding for some k ≥ 1 and ε ≥ 0. Lastly, by k-qi embedding, we
mean (k,k)-qi embedding.

We say that f is a (k,ε,r)-quasi-isometry if it is (k,ε)-qi embedding and
r-coarsely surjective. In this case, X and Y are said to be quasi-isometric to
each other. Lastly, by a k-quasi-isometry, we mean (k,k,k)-quasi-isometry. It
is standard that if f : X → Y is a k-quasi-isometry then there is k′ depending
on k and a k′-quasi-isometry g : Y → X such that dX(g ◦ f (x),x) ≤ k′ for all
x ∈ X and dY ( f ◦g(y),y)≤ k′ for all y ∈ Y (see [10, Lemma 1.1 (2)]). In this
case, we say that f and g are coarse inverses to each other.

6. By a (k,ε)-quasi-geodesic (resp. k-quasi-geodesic) in X , we mean (k,ε)-qi
embedding (resp. k-qi embedding) of an interval in R. For a (k,ε)-quasi-
geodesic (resp. a geodesic), say, α in X , most of the time we omit the domain
(i.e. interval in R) of α and work with its image in X .

7. We say α : I ⊆ R→ X is a (k,ε,L)-local quasi-geodesic if the restriction of
α on any subinterval I′(⊆ I) of length ≤ L is a (k,ε)-quasi-geodesic.

8. Let A be a closed subset of X . Let x ∈ X . A point a ∈ A is called nearest point
projection of x on A if

dX(a,x)≤ dX(a′,x) for all a′ ∈ A.

For a subset B, the set of nearest point projections of B on A is denoted by
PX ,A(B) or simply by PA(B) when X is understood.
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9. Suppose U,V are closed subsets of X . We say that the pair (U,V ) is D-
cobounded in X if

max{diam{PU(V )}, diam{PV (U)}} ≤ D.

For the rest of the points, we assume that X is a geodesic metric space and a
geodesic in X joining two points a,b ∈ X is denoted by [a,b]⊆ X .

10. Suppose x,y,z ∈ X . A geodesic triangle in X formed by these three points is
the union of chosen geodesic segments [x,y], [x,z] and [y,z], and it is denoted
by △(x,y,z). We call those geodesic segments as sides of the triangle. We
say a geodesic triangle △(x,y,z) is δ -slim if any side is contained in the
δ -neighborhood of the union of other two sides.

11. (C-center and C-tripod) Suppose △(x1,x2,x3) is a geodesic triangle in X
formed by x1,x2,x3 ∈ X . A point z ∈ X is called C-center of this triangle if
z ∈ NC([xi,x j]) for i ̸= j and i, j ∈ {1,2,3}. Sometimes we call ∪3

i=1[z,xi] as
the C-tripod in X with end points x1,x2,x3.

12. Let a,a′ ∈ X . A discrete path joining a and a′ in X is a finite set of points
with an order, say, a = a0 < a1 < · · ·< an = a′. A path joining a and a′ based
on a discrete path as above is [a0,a1]∪ [a1,a2]∪·· ·∪ [an−1,an].

The following lemmata (Lemma 2.1.1, 2.1.2, 2.1.3, 2.1.4) are standard. So we
omit the proofs.

Lemma 2.1.1. Given a proper map φ : R≥0 → R≥0 there is a proper function
g2.1.1 = g2.1.1(φ) : R≥0 → R≥0 such that the following holds.

Let X be a geodesic metric space and Y be a subspace of X. Suppose the inclusion
Y ↪→ X is φ -proper embedding where Y is considered with the induced path metric
from X. Then for all y,y′ ∈ Y and r ∈ R≥0, dY (y,y′)> r implies dX(y,y′)> g2.1.1(r).

Lemma 2.1.2. Given D ≥ 0 there is C2.1.2(D) such that the following holds.
Suppose X is a geodesic metric space and Y is a subset of X (not necessarily

connected) such that Y is 1-dense in X. Let U ⊆ X and ρ : Y →U be a map such
that dX(ρ(x),ρ(y))≤ D for all x,y ∈ Y with dX(x,y)≤ 1. Then ρ can be extended
to a map ρ ′ : X →U so that ρ ′ is C2.1.2-coarsely Lipschitz.

Lemma 2.1.3. Given a map φ : R>0 → R>0 and constants C > 0, R ≥ 0 there is a
constant L2.1.3 = L2.1.3(φ ,C,R) such that we have the following.

Suppose X is a geodesic metric space and Y ⊆ X such that NR(Y ) is path
connected. Let p : X →Y be a C-coarsely Lipschitz retraction. Further, the inclusion
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i : NR(Y ) ↪→ X is φ -proper embedding. Then i : NR(Y ) ↪→ X is L2.1.3-qi embedding.
We consider NR(Y ) with its induced path metric from X.

Lemma 2.1.4. Given L ≥ 1, D ≥ 0, there is a constant L2.1.4 = L2.1.4(L,D) such
that we have following.

Suppose X is a geodesic metric space and Y ⊆ Z ⊆ X are geodesic subspaces
such that the inclusion Y ↪→ X is L-qi embedding. Let Z ⊆ ND(Y ). Then the inclusion
Z ↪→ X is L2.1.4-qi embedding.

2.2 Hyperbolic metric spaces

There are several equivalent definitions for hyperbolic geodesic metric spaces (see
[27], [4]). We consider the following and refer this as Gromov hyperbolic space.

Definition 2.2.1. Suppose X is a geodesic metric space and δ ≥ 0. We say that X is
δ -hyperbolic if all its geodesic triangles are δ -slim.

A geodesic metric space X is said to be hyperbolic if it is δ -hyperbolic for some
δ ≥ 0.

For us hyperbolic metric spaces are geodesic (by definition above) and are of
infinite diameter. In hyperbolic metric spaces, quasi-geodesics and geodesics with
same end points are uniformly Hausdorff close. This is known as Morse lemma or
stability of quasi-geodesic (see [23, Theorem 1.7, III.H]).

Lemma 2.2.2 (Stability of quasi-geodesic). Given δ ≥ 0, k ≥ 1 and ε ≥ 0 there is a
constant D2.2.2 = D2.2.2(δ ,k,ε) such that the following holds.

Suppose X is a δ -hyperbolic metric space. Then for any geodesic α and a
(k,ε)-quasi-geodesic β in X with the same end points, HdX(α,β )≤ D2.2.2.

For a finitely generated group G with finite generating set S, the Cayley graph of
G with respect to S is a graph whose vertex set is G and two vertices, say, g,h ∈ G
are joined by an edge if g−1h ∈ S∪S−1.

Definition 2.2.3 (Hyperbolic group). A finitely generated group G is said to be
hyperbolic if its Cayley graph with respect to some finite generating set is hyperbolic.

It is standard that given two finite generating sets, the Cayley graphs associated
with them become quasi-isometric to each other. It is easy to prove from the stability
of quasi-geodesic (Lemma 2.2.2) that the hyperbolicity is quasi-isometry invariant
(see [23, Theorem 1.9, III.H]). Therefore, hyperbolic groups are well-defined.
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Suppose X is a geodesic metric space and α : [s, t] ⊆ R → X is a continuous
injective path. Let dα be the induced path metric on Im(α) from X . Then we have
the induced order on Im(α) from [s, t]. In other words, if p,q ∈ [s, t] with p ≤ q
then α(p)≤ α(q) keeping in mind that dα(α(s),α(p))≤ dα(α(s),α(q)). We have
mentioned above that sometimes we forget the domain of quasi-geodesic (resp.
geodesic) and work with their image. With this terminology, we have the following.

Lemma 2.2.4. Given δ ≥ 0, k≥ 1 and r ≥ 0, we have constants L2.2.4 =L2.2.4(δ ,k,r)
and k2.2.4 = k2.2.4(δ ,k,r) such that the following hold.

Suppose (X ,d) is a δ -hyperbolic metric space. Let α and β be continuous
injective k-quasi-geodesics in X joining points a1,a2 and b1,b2 respectively. Further,
we suppose that d(ai,bi)≤ r, i = 1,2. Let a1 ≤ a2 and b1 ≤ b2 be the orders on α

and β respectively. Then there is a monotonic (piece-wise linear) homeomorphism
ψ : (α,dα) → (β ,dβ ) such that ψ(ai) = bi and d(x,ψ(x)) ≤ k2.2.4 for all x ∈ α .
Moreover, ψ is L2.2.4-quasi-isometry.

Proof. Define a map φ : R≥0 → R≥0 such that φ(t) = kt + k2. Then α,β are φ -
properly embedded. Now by Lemma 2.2.2 and δ -slimness of geodesic triangles,
we have Hd(α,β )≤ D1, where D1 = 2D2.2.2(δ ,k,k)+2δ + r. Thus by [9, Lemma
1.19], we have a map g : α → β with d(g(x),x)≤ D1,∀ x ∈ α \{a1,a2} and g(ai) =

bi, i = 1,2 such that g is L-quasi-isometry, where L depends on D1 and φ . Again,
by [9, Lemma 1.24], we have constants D2,D3 depending on L, and a monotonic
(piece-wise linear) homeomorphism g̃ : α → β such that g̃ is D2-quasi-isometry and
d(g(x), g̃(x)) ≤ D3. So d(x, g̃(x)) ≤ d(x,g(x))+ d(g(x), g̃(x)) ≤ D1 +D3. Here g̃
serves as the required ψ .

Therefore, we can take L2.2.4 = D2 and k2.2.4 = D1 +D3.

We end this subsection by stating the following results (Lemma 2.2.5, Proposition
2.2.6 and Proposition 2.2.7). These results are very useful in Chapter 5. One can
look at [28, Theorem 1.4, Chapter 3] for a proof of Lemma 2.2.5.

Lemma 2.2.5 (Local quasi-geodesic vs global quasi-geodesic). For all δ ≥ 0, k ≥ 1
and ε ≥ 0 there are constants L2.2.5 = L2.2.5(δ ,k,ε) and λ2.2.5 = λ2.2.5(δ ,k,ε) such
that the following holds.

Suppose X is a δ -hyperbolic metric space. Then any (k,ε,L2.2.5)-local quasi-
geodesic in X is a λ2.2.5-quasi-geodesic.

In [29, Proposition 3.1], Bowditch provided a criterion for hyperbolicity of a
metric graph. Earlier, in [30], Hamenstadt also gave a similar criterion for a space to
be hyperbolic. In Proposition 2.2.6, we consider Bowditch’s version for space.
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Proposition 2.2.6. ([9, Corollary 1.63]) Given D0 ≥ 1, D ≥ 0 and a proper map
ψ : R≥0 → R≥0 there exist δ2.2.6 = δ2.2.6(ψ,D,D0) and K2.2.6 = K2.2.6(ψ,D,D0)

such that the following holds.

Suppose X is a geodesic metric space and X0 ⊆ X is a D0-dense subset of X.
Suppose for any pair (x,y) of distinct points in X0 there is a continuous path c(x,y)
joining x and y. Further, for all x,y,z ∈ X0 and r ∈ R≥0, we have

1. d(x,y)≤ r implies the length of the path c(x,y) is bounded by ψ(r), and

2. c(x,y)⊆ ND(c(x,z)∪ c(y,z)).

Then X is δ2.2.6-hyperbolic metric space and the paths c(x,y) are K2.2.6-quasi-
geodesic.

The proposition below is a very special case of the main theorem of [6] (see also
[9, Theorem 2.59]). Here, the space is realized as a tree of metric spaces such that
the tree is an interval. (One may look at [10, Corollary 1.52] for this result in metric
graph.) However, it is true for an arbitrary tree also (see [31, Theorem 2]).

Proposition 2.2.7. [9, Theorem 2.59] Given δ ≥ 0, L ≥ 1, D ≥ 0 there exists
δ2.2.7 = δ2.2.7(δ ,L,D) such that the following holds.

Suppose X = ∪n−1
i=0 Xi is a geodesic metric space with Xi’s are geodesic subspaces

with the induced path metric from X such that:

1. For 0 ≤ i ≤ n−1, Xi is δ -hyperbolic metric space.

2. For 0 ≤ i ≤ n− 2, Yi+1 = Xi ∩Xi+1 is a path connected subspace, and the
inclusions Yi+1 ↪→ Xi and Yi+1 ↪→ Xi+1 are L-qi embeddings.

3. Yi+1 separates Xi and Xi+1 in X in the sense that every path in X joining points
in Xi and Xi+1 passes through Yi+1.

4. For 1 ≤ i ≤ n−2, the pair (Yi,Yi+1) is D-cobounded in the metric Xi.

5. dXi(Yi,Yi+1)≥ 1 for 1 ≤ i ≤ n−1.

Then X is δ2.2.7-hyperbolic metric space.

Remark 2.2.8. In Proposition 2.2.7, if n = 2, we only need to check (1) and (2). In
that case, X is δ2.2.8 = δ2.2.8(δ ,L)-hyperbolic (see also Lemma 2.3.4).
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2.2.1 Quasiconvex subsets

In this subsection, we will explore various basic results concerning quasiconvex
subsets that will be useful in later discussions.

Definition 2.2.9. Suppose X is a geodesic metric space and K ≥ 0. A subset U of X is
said to be K-quasiconvex if [a,b]⊆NK(U) for all a,b∈U and for all geodesics [a,b]
joining a,b in X . We say that a subset U of X is quasiconvex if it is K-quasiconvex
for some K ≥ 0.

In hyperbolic geodesic metric space, a common example of quasiconvex subset
is the convex hull of any subset. This motivates us to define the following.

Definition 2.2.10. Suppose X is a geodesic metric space and U ⊆ X . The quasicon-
vex hull of U is defined as hull(U) := {[a,b] : a,b ∈U}.

Remark 2.2.11. Suppose X is a δ -hyperbolic metric space for some δ ≥ 0 and A ⊂ X
is any subset. Then hull(A) is 2δ -quasiconvex.

In hyperbolic metric space X , nearest point projection of a point on a quasiconvex
subset, say, U is coarsely well-defined. (Here one requires U to be closed; which
is the standard assumption for us for a quasiconvex subset.) We define a map
PX ,U : X →U sending a point to its nearest point projection, called a nearest point
projection map on U . Sometimes we denote this map by PU if X is understood. Now
we collect some facts related to quasiconvex subsets; some are well known and some
are very easy to prove. The following is yet another way to obtain a quasiconvex
subset.

Lemma 2.2.12. ([32, Lemma 4.2]) Let δ ≥ 0 and L≥ 0. Suppose X is a δ -hyperbolic
metric space and U is a subset of X such that there is a L-coarsely Lipschitz retraction
X →U. Then U is a K-quasiconvex subset of X where K depends on α and L.

Lemma 2.2.13. ([9, Lemma 1.139, Lemma 1.127], [10, Lemma 1.35]) Given
δ ≥ 0, λ ≥ 0 and R ≥ 0, we have R2.2.13 = R2.2.13(δ ,λ ) = 2λ + 5δ , D2.2.13 =

D2.2.13(δ ,λ ) = 2λ +7δ and R′
2.2.13 = 2λ +3δ +R such that the following hold.

Suppose X is a δ -hyperbolic metric space. Let Y, Z ⊆ X be two λ -quasiconvex
subsets in X. Then we have the following.

1. If Y, Z are R2.2.13-separated then the pair (Y,Z) is D2.2.13-cobounded.

2. If d(Y,Z)≤ R then PY (Z)⊆ NR′
2.2.13

(Z)∩Y and Hd(PY (Z),PZ(Y ))≤ R′
2.2.13.
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One is referred to [9, Remark 1.142] for the upcoming remark. It is possible to
minimize those constants, similar to what is mentioned in the remark.

Remark 2.2.14. 1. If Y and Z are geodesic segments in Lemma 2.2.13 (1), then
one can take D2.2.13 = 8δ and R2.2.13 = 5δ .

2. If Y and Z are geodesic segments in Lemma 2.2.13 (2), then one can take
R′

2.2.13 = 4δ +R.

The following result follows from the stability of quasi-geodesic.

Lemma 2.2.15. Given δ ≥ 0, k ≥ 0 there is D2.2.15 = D2.2.15(δ ,k) such that the
following holds.

Suppose X is a δ -hyperbolic metric space and U,V ⊂ X are k-quasiconvex in X.
Let U ′ = PX ,U(V ). Let x ∈U,y ∈V be any points. Then [x,y]X ∩ND2.2.15(U

′) ̸= /0.

As a corollary we have the following.

Lemma 2.2.16. Let δ ≥ 0, k ≥ 0 and D ≥ 0. Suppose X is a δ -hyperbolic metric
space, and U and V are k-quasiconvex subsets of X. Further, suppose the pair (U,V )

is D-cobounded. Then there are points p ∈U, q ∈V and a constant D′ depending
on δ , k and D such that for any x ∈U, y ∈V , we have p,q ∈ ND′([x,y]).

The following Lemma 2.2.17 (1) follows from the very nature of quasiconvex
subset and Lemma 2.2.16, whereas one can conclude (2) from Lemma 2.2.13 (1).

Lemma 2.2.17. Let δ ≥ 0, k ≥ 1 and D ≥ 0. Suppose X is a δ -hyperbolic metric
space, and U and V are k-quasiconvex subsets of X. We consider a subset A
containing U and V as follows. (1) If the pair (U,V ) is D-cobounded then A =

U ∪V ∪ [x,y] for some x ∈U and y ∈V . (2) If the pair (U,V ) is not D-cobounded
then A = U ∪V . Then there is a constant K depending on δ ,k,D such that A is
K-quasiconvex.

Lemma 2.2.18. ([9, Corollary 1.140 (a)]) Let δ ≥ 0, k ≥ 0 and D ≥ 0. Suppose X is
a δ -hyperbolic metric space, and U and V are k-quasiconvex subsets of X. Further,
we assume that diam {PX ,U(V )} ≤ D. Then there is a constant D′ ≥ D depending
on δ ,k and D such that diam {PX ,V (U)} ≤ D′. In particular, the pair (U,V ) is
D′-cobounded.

Lemma 2.2.19 (2) follows from (1) and the stability of quasi-geodesic in addition.

Lemma 2.2.19. Let δ ≥ 0 and k ≥ 0. Then there are constants D2.2.19 =D2.2.19(δ ,k)
and K2.2.19 = K2.2.19(δ ,k) depending on δ , k such that we have the following. Sup-
pose X is a δ -hyperbolic metric space and U,V ⊂ X are k-quasiconvex subsets.
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(1) ([9, Lemma 1.113]) For any x,y ∈ X, HdX(PX ,U([x,y]), [PX ,U(x),PX ,U(y)])≤
D2.2.19.

(2) PX ,U(V ) is K2.2.19-quasiconvex in X.

Lemma 2.2.20. Given δ ≥ 0, k ≥ 1, λ ≥ 0 and D ≥ 0 there is a constant C2.2.20 =

C2.2.20(δ ,k,λ ,D) such that the following holds.
Let X be a δ -hyperbolic metric space. Suppose U is a λ -quasiconvex in X and

x,y ∈ X such that dX(PU(x),PU(y))≤ D. Let α be a k-quasi-geodesic in X joining x
and y. Then the pair (α,U) is C2.2.20-cobounded.

Proof. Since quasi-geodesics are quasiconvex subsets, so the lemma follows from
Lemma 2.2.19 (1) and Lemma 2.2.18.

One is referred to [9, Corollary 1.105] for a proof of Lemma 2.2.21 (2), and (3)
easily follows from (1) and (2), so we omit the proof.

Lemma 2.2.21. Given δ ≥ 0, K ≥ 0, D ≥ 0 and R ≥ 0 there are constants C2.2.21 =

C2.2.21(δ ,K), E2.2.21 = E2.2.21(δ ,K,D) and D2.2.21 = D2.2.21(δ ,K,D,R) such that
the following hold.

Suppose X is a δ -hyperbolic metric space, and U and V are K-quasiconvex
subsets of X. Then we have the following.

1. ([4, Hyperbolic Groups, Lemma 7.3.D]) Any nearest point projection map
PX ,U : X →U is C2.2.21-coarsely Lipschitz retraction.

2. Suppose x ∈ X and Hd(U,V )≤ D. If x1 and x2 are nearest point projections
of x on U and V respectively, then d(x1,x2)≤ E2.2.21.

3. Suppose the pair (U,V ) is D-cobounded. Then NR(U) and NR(V ) are K2.2.21-
quasiconvex, and the pair (NR(U),NR(V )) is D2.2.21-cobounded.

Lemma 2.2.22. For δ ≥ 0, K ≥ 0 and L ≥ 1, we have K2.2.22 = K2.2.22(δ ,L,K) and
D2.2.22 = D2.2.22(δ ,L,K) such that the following hold.

Suppose X and Y are δ -hyperbolic metric spaces, and f : Y → X is a L-qi
embedding. Let U be a K-quasiconvex subset of Y and y ∈ Y . Then we have the
following.

1. f (U) is K2.2.22-quasiconvex in X. (For this, we do not need Y to be hyperbolic.)

2. ([8, Lemma 3.5]) If y′ is a nearest point projection of y on U in Y and x′ is that
of f (y) on f (U) in X. Then dY ( f (y′),x′)≤ D2.2.22.
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We saw that qi embedded subspaces are quasiconvex in hyperbolic metric spaces
in Lemma 2.2.22 (1). Now by Lemma 2.2.21 (1) one can conclude Lemma 2.2.23
(1) for a converse; whereas (2) follows from (1) and Lemma 2.1.3 in addition.

Lemma 2.2.23. Given a map φ : R>0 → R>0 and constants δ ≥ 0, k ≥ 0 and
R ≥ k+1 there are constants L2.2.23 = L2.2.23(δ ,k,R) and L′

2.2.23 = L′
2.2.23(δ ,k,R,φ)

such that we have the following.
(1) Suppose X is a δ -hyperbolic metric space and A is a k-quasiconvex subset

of X. Then NX
R (A) is path connected and with its induced path metric from X, the

inclusion NX
R (A) ↪→ X is L2.2.23-qi embedding.

(2) Moreover, suppose Y ⊆ X is a δ -hyperbolic subspace such that the inclusion
Y ↪→ X is φ -proper embedding. Let A ⊆ Y be k-quasiconvex in Y . Then NY

R (A) is
path connected and both the inclusions NY

R (A) ↪→ X and NY
R (A) ↪→ Y are L′

2.2.23-qi
embedding.

Lemma 2.2.24. Given δ ≥ 0, L ≥ 1 and K ≥ 0, we have constants

K2.2.24 = K2.2.24(δ ,L,K) and D2.2.24 = D2.2.24(δ ,L,K)

such that the following holds.
Suppose X is δ -hyperbolic metric space and Y ⊆ X is a geodesic subspace such

that the inclusion i : (Y,dY ) ↪→ (X ,dX) is L-qi embedding where dY is the induced
path metric on Y from X. Let A ⊆Y be K-quasiconvex in Y . Further, we assume that
y ∈ Y , and y′ is a nearest point projection of y on A in the metric Y and y′′ is that of
y on A in the metric X. Then A is K2.2.24-quasiconvex in X and dX(y′,y′′)≤ D2.2.24.

Proof. By Lemma 2.2.22 (1), one can take K2.2.24 = K2.2.22(δ ,L,K).
For the second part, by [10, Lemma 1.31 (2)], we note that the arc-length

parametrization of [y,y′]Y ∪ [y′,y′′]Y is a (3+2K)-quasi-geodesic in Y and so is L1-
quasi-geodesic in X for some constant L1 depending on (3+2K) and L. Suppose y1 ∈
[y,y′′]X such that dX(y′,y1)≤ D2.2.2(δ ,L1,L1), and so dX(y1,y′′)≤ D2.2.2(δ ,L1,L1).
Therefore, dX(y′,y′′)≤ dX(y′,y1)+dX(y1,y′′)≤ 2D2.2.2(δ ,L1,L1) =: D2.2.24.

Here we recall from [9, Section 1.18], a small modification in nearest point
projection on a path connected quasiconvex subset ([9, Definition 1.121]).

Definition 2.2.25 (Modified projection). Suppose X is a geodesic metric space
and U is a path connected quasiconvex subset of X . Then for any subset A ⊆ X ,
modified projection of A on U is defined as P̄U(A) := hull(PU(A))⊆U , where the
quasiconvex hull is taken in the induced path metric on U from X (see Definition
2.2.10 for notation).
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Lemma 2.2.26. Given δ ≥ 0, L ≥ 1 and λ ≥ 0 there are constants θ2.2.26 =

θ2.2.26(δ ,L,λ ) and D2.2.26 = D2.2.26(δ ,L,λ ) such that the following hold.

Suppose X is a δ -hyperbolic metric space and Z ⊆X such that Z with the induced
path metric is L-qi embedded in X. Let Z be also δ -hyperbolic. Suppose xi ∈ Z
(i = 1,2,3) and z is a δ -center of the triangle △(x1,x2,x3) in Z giving a δ -tripod
Y = ∪3

i=1[z,xi]Z in Z. Further, we assume that U is a λ -quasiconvex subset of X.
Let Y be λ -quasiconvex in X. Let PY : X → Y and PU : X → U be nearest point
projection maps on Y and on U respectively. Then:

1. Hd(PY (U), P̄Y (U))≤ θ2.2.26(δ ,L,λ ).

2. Let Ȳ = P̄Y (U) and x̄i ∈ Ȳ be the closest to xi in the intrinsic path metric on Y .
Then:

(a) Let Ȳ ⊈ [z,xi]Z for any i ∈ {1,2,3}. Then dX(PU(xi),PU(x̄i))≤ D2.2.26.

(b) Let Ȳ ⊆ [z,xi]Z for some i ∈ {1,2,3}. Note that x̄i+1 = x̄i−1 = z̄ (say).
Here i±1 is calculated in modulo 3. Then

dX(PU(x̄i),PU(xi)), dX(PU(z),PU(z̄)) and dX(PU(xi±1),PU(z̄))

are bounded by D2.2.26.

Proof. The proof of (1) follows from that of [9, Lemma 1.125]. We only proof (2)
(b) since the proof for (2) (a) is a line by line argument of that of (2) (b). In (2) (b),
we will specifically address dX(PU(xi−1),PU(z̄)) as the other proofs are similar. We
fix i = 2. Then xi−1 = x1.

Let PU(x1) = x′1 and PY (x′1) = x′′1 . Note that x′′1 ∈ [z̄,x2]Z . Since z is δ -center
of the triangle △(x1,x2,x3) in Z, so dZ(z̄, [x1,x′′1]Z) ≤ 2δ . Thus (by Lemma 2.2.2)
∃ z1 ∈ [x1,x′′1]X such that dX(z̄,z1)≤ 2δ +D2.2.2(δ ,L,L). Again, [x′1,x

′′
1]X ∪ [x′′1,x1]X

is (3+2λ )-quasi-geodesic in X ([10, Lemma 1.31 (2)]), and so ∃ z2 ∈ [x1,x′1]X such
that dX(z1,z2)≤D2.2.2(δ ,3+2λ ,3+2λ ). Then by triangle inequality, dX(z̄,z2)≤D,
where D=D2.2.2(δ ,3+2λ ,3+2λ )+2δ +D2.2.2(δ ,L,L). Notice that as PU(x) = x′1
and z2 ∈ [x1,x′1]X , so x′1 is also a nearest point projection of z2 on U in the metric of X .
Then by Lemma 2.2.21 (1), dX(PU(z2),x′1)≤C2.2.21(δ ,λ ). Hence, dX(PU(z̄,x′1)≤
d(PU(z̄),PU(z2))+dX(PU(z2),x′1)≤C2.2.21(δ ,λ )(D+2) =: D2.2.26.

Remark 2.2.27. ([9, Remark 1.124]) In the above Lemma 2.2.26 (1), if both U and
T are geodesic segments in X , one can bound Hd(PT (U), P̄T (U)) by 4δ .
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2.2.2 Gromov boundary and Cannon-Thurston maps

Suppose X is a Gromov hyperbolic metric space. Then the geodesic or visual
boundary of X is defined as follows. Let G (X) be the set of all geodesic rays in
X . One defines an equivalence relation on G (X) by setting α ∼ β if Hd(α,β )< ∞

for all α,β ∈ G (X). The set of equivalence classes, denoted by ∂X , is called the
geodesic boundary of X . The equivalence class of α is denoted by α(∞). If α(0) = x
then we say that α joins x to α(∞). In this Subsection 2.2.2 (consequently, in Chapter
3), we shall always assume that our spaces are proper hyperbolic metric spaces or
trees. We shall briefly recall all the properties of geodesic boundaries to be used in
this thesis.

The barycenter map (For more details, one is referred to [10, Section 2]):
Suppose X is a δ -hyperbolic geodesic metric space such that there are more than two
elements in its Gromov boundary, ∂X . Then by [10, Lemma 2.4], for any η ,η ′,η ′′ ∈
∂X such that η ′ ̸= η ′′, there is a (uniform) quasi-geodesic ray starting at any point
in X representing η and a (uniform) bi-infinite quasi-geodesic line whose one end
represents η ′ and the other one represents η ′′. We denote such a line by (η ′,η ′′).
Notice that we do not assume our space to be proper. Let ∂ 3X = {(ξ1,ξ2,ξ3) ∈
∂X ×∂X ×∂X : ξ1 ̸= ξ2 ̸= ξ3 ̸= ξ1}. Now for ξ = (ξ1,ξ2,ξ3) ∈ ∂ 3X , we consider
an ideal quasi-geodesic triangle, say, △(ξ1,ξ2,ξ3) formed by three (uniform) quasi-
geodesic lines {(ξi,ξ j) : i ̸= j and i, j ∈ {1,2,3}}. Then by [10, Lemma 2.7], there
is a point, say, bξ in X uniformly close to each sides of △(ξ1,ξ2,ξ3) and this bξ is
coarsely well-defined. Thus in this way, we can (coarsely) define a map ψ : ∂ 3X → X .
Lastly, by [10, Lemma 2.9], the map ψ : ∂ 3X → X is coarsely unique and is called
the barycenter map. Note that for such barycenter map, we always assume that ∂X
has more than two elements.

Remark 2.2.28. We say a group G is non-elementary hyperbolic if the Gromov
boundary of its Cayley graph with respect to some finite generating set contains
more than two elements. It is a well known fact that for a non-elementary hyperbolic
group the barycenter map is coarsely surjective.

Now we state a couple of results related to boundary. Since they are standard,
we state them without proofs; one may find their proofs in [23, Chapter III.H].

Lemma 2.2.29. If X is a proper hyperbolic metric space then ∂X ̸= /0.

Lemma 2.2.30. ([23, Lemma 3.1, Lemma 3.2, Lemma 3.3, III.H]) Let X be a proper
δ -hyperbolic metric space or a tree for some δ ≥ 0. Then we have the following.

1) If x ∈ X and ξ ∈ ∂X then there is a geodesic ray α in X with α(0) = x and
α(∞) = ξ . If α ′ any other geodesic joining x to ξ then Hd(α,α ′)≤ δ .
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2) If ξ1 ̸= ξ2 are two points of ∂X then there is a geodesic line γ in X joining ξ1

to ξ2. If γ ′ any other geodesic joining ξ1 to ξ2 then Hd(γ,γ ′)≤ 2δ .

We note that one can define a Hausdorff topology on X̄ = X ∪ ∂X in a very
natural way. However, since we do need it we skip the detailed discussion and we
state the following features that will be used in Chapter 3.

The following lemmata (Lemma 2.2.31, Lemma 2.2.32) gives a geometric criteria
for convergence and is well known among experts. One may look at [33, Lemma
2.45] for a proof of Lemma 2.2.32 (2).

Lemma 2.2.31. Suppose {xn} is a sequence in X̄ and ξ ∈ ∂X. Then {xn} converges
to ξ iff the following holds: Suppose x ∈ X is an arbitrary point and suppose αn is
a geodesic (ray or line according as xn ∈ X or xn ∈ ∂X) in X joining xn to ξ . Then
limn→∞ d(x,αn) = ∞.

Notation. Suppose {xn} is a sequence in X and ξ ∈ X̄ . Then we write limX
n→∞ xn =

ξ to mean that {xn} converges to ξ in X̄ . If limX
n→∞ xn = ξ for some ξ ∈ ∂X then

we say that limX
n→∞ xn exists. Later in Chapter 3 we shall frequently encounter

situations where there are two hyperbolic spaces Y ⊂ X and sequences {yn} in Y . To
differentiate between the limits of this sequences in X̄ and Ȳ we use superscript as
above.

Lemma 2.2.32. Suppose X is a proper hyperbolic metric space and x ∈ X. Then the
following hold.

1. Any unbounded subsequence {xn} in X has a subsequence {xnk} with limk→∞ xnk

∈ ∂X.

2. Suppose {xn} and {x′n} are two unbounded sequences in X such that limX
n→∞ xn ∈

∂X. If d(x, [xn,x′n])→ ∞ as n → ∞ then limX
n→∞ x′n ∈ ∂X. Then in that case

limX
n→∞ xn = limX

n→∞ x′n if and only if limn→∞ d(x, [xn,x′n]) = ∞. Moreover, if
zn ∈ [xn,x′n] then limX

n→∞ zn = limX
n→∞ xn.

As a corollary of Lemma 2.2.32 (2), we have the following.

Lemma 2.2.33. Suppose X is a hyperbolic metric space and {xn} ⊆ X such that
limX

n→∞ xn exists. Let x ∈ X and x′n ∈ [x,xn] such that d(x,x′n)→ ∞ as n → ∞. Then
limX

n→∞ xn = limX
n→∞ x′n.

Definition 2.2.34. Suppose X is a hyperbolic metric space and {An} is a sequence of
(uniformly quasiconvex) subsets of X . Suppose ξ ∈ ∂X . We say that the sequence
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of subsets {An} converges to ξ (in X̄) if the following holds: Given R > 0 there is
N ∈ N such that for all n ≥ N and xn ∈ An and any geodesic ray α joining xn to ξ ,
we have d(x,α)> R.

Suppose H is a subgroup of a finitely generated group G. It is a simple fact
that, for any finite radius ball in the Cayley graph of G with respect to any finite
generating set, there are only finitely many cosets of H that intersect with this ball.
This observation motivates the following definition and has a significant impact in
Chapter 3.

Definition 2.2.35. A family of subsets {Aα}α∈Λ in a metric space X is said to be
locally finite if any finite radius ball in X intersects at most finitely many Aα ’s.

The proof of Lemma 2.2.36 follows from the definition; whereas Lemma 2.2.37
also follows from the very nature of quasiconvex subsets in addition. So we choose
to omit their proofs.

Lemma 2.2.36. Suppose {An : n ∈ N} is a locally finite collection of subsets in an
infinite diameter metric space X. Then for any point x ∈ X, d(x,An)→ ∞ as n → ∞.

Proposition 2.2.37. Suppose X is a proper hyperbolic metric space and {An} is a
sequence of uniformly quasiconvex subsets in X such that the collection {An : n ∈N}
is locally finite. Then there is a subsequence {Ank} of {An} that converges to a point
of ∂X.

Definition 2.2.38. (Cannon-Thurston map) Suppose f : Y →X is a (proper) embed-
ding between hyperbolic metric spaces. We say that f admits the Cannon-Thurston
(CT) map if there is a map ∂ f : ∂Y → ∂X induced by f in the following sense:

For all ξ ∈ ∂Y and for any sequence {yn} in Y with limY
n→∞ yn = ξ one has

limX
n→∞ f (yn) = ∂ f (ξ ).

In this case ∂ f is called the CT map induced by f . We note that in the Definition
2.2.38, the existence of the CT map implies that it is also continuous (e.g. [33,
Lemma 2.50]).

Lemma 2.2.39. ([9, Lemma 8.6]) Suppose f : Z → Y and g : Y → X are maps
between hyperbolic spaces both admitting the CT-maps. Then the composition
g◦ f : Z → X admits the CT-map.

In [8], Mitra gave the following criterion for the existence of CT-maps.
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Lemma 2.2.40. (Mitra’s Criterion, [8, Lemma 2.1]) Suppose f : Y → X is a map
between hyperbolic metric spaces. Fix y0 ∈ Y and let x0 = f (y0). Then f admits the
CT-map if there is a proper map φ : R≥0 → R≥0 such that the following holds.

Let y,y′ ∈ Y and R ≥ 0. Suppose α is a geodesic in Y joining y,y′ and β is that
in X joining f (y), f (y′). Then dY (y0,α)≥ R implies dX(x0,β )≥ φ(R).

In the situation of the above lemma we shall say that f satisfies Mitra’s criterion
with respect to the base point y0 and we shall refer to the function φ to be a CT
parameter for this base point. We note that Mitra’s criterion implies that f : Y → X
is a proper embedding. On the other hand it is easy to check that if Mitra’s criterion
holds for a map f : Y → X as above with respect to a base point y0 ∈ Y , then the
same will be true for any other base point in Y although in that case the CT parameter
φ maybe different. However if there is a group G acting by isometries on both Y
and X such that f is G-equivariant and the G-action on Y is transitive then the same
function φ works for all base points in Y . Typically this is the case in group theoretic
situations, i.e., when we have hyperbolic groups H < G and f is an inclusion map
between their Cayley graphs. This motivates the following.

Definition 2.2.41. Suppose f : Y → X is a (proper) embedding between hyperbolic
metric spaces and that f satisfies Mitra’s criterion with respect to a base point. We
say that f satisfies a uniform Mitra’s criterion if there is a function φ which works
as a CT parameter for all base points in Y .

We note that although Mitra’s criterion is not necessary for the existence of CT
maps, it is a very reasonable sufficient condition for the existence of CT maps as the
following lemma shows. Since this is quite standard we skip its proof.

Lemma 2.2.42. Suppose X ,Y are two proper hyperbolic metric spaces and f :Y →X
is a proper embedding. If f admits the CT map, then f : Y → X satisfies Mitra’s
criterion.

We note that all the spaces in consideration in this thesis, for which CT maps are
to be discussed, are proper. The proofs will run by contradiction and for the same
purpose the following lemma will be very useful.

Lemma 2.2.43. Suppose X ,Y are two proper hyperbolic metric spaces, and f :
Y → X is a proper embedding which does not admit the CT map. Then there are
two unbounded sequences {yn} and {y′n} in Y such that limY

n→∞ yn = limY
n→∞ y′n but

limX
n→∞ f (yn) ̸= limX

n→∞ f (y′n).
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Proof. Since f : Y → X does not admit the CT-map, it does not satisfies Mitra’s crite-
rion for any proper map φ : R≥0 → R≥0 and any fixed point y0 ∈ Y . Let x0 = f (y0).
Therefore, we get two sequences {yn} and {y′n} in Y such that dY (y0, [yn,y′n]Y )→ ∞

as n → ∞ and dX(x0, [ f (yn), f (y′n)]X) ≤ D for all n ∈ N and for some D ≥ 0. In
particular, both the sequences {yn} and {y′n} are unbounded. Since f is proper
embedding, both the sequences { f (yn)} and { f (y′n)} are unbounded also. Since
both the spaces X and Y are proper, after passing to subsequences, if necessary,
we assume that limY

n→∞ yn, limY
n→∞ y′n ∈ ∂Y and limX

n→∞ f (yn), limX
n→∞ f (y′n) ∈ ∂X

(see Lemma 2.2.32 (1)). Now we through by Lemma 2.2.32 (2).

The uniform Mitra’s criterion plays a pivotal role in our main theorem (Theorem
1.1.6) proved in Chapter 3. We can now observe that having the uniform Mitra’s
criterion broadens the applicability of Lemma 2.2.24 to any hyperbolic subspace,
instead qi embeddings.

Lemma 2.2.44. Given δ ≥ 0, K ≥ 0 and a proper function φ : R≥0 → R≥0, there is
D2.2.44 = D2.2.44(δ ,K,φ) such that the following holds.

Suppose X is a proper δ -hyperbolic metric space. Let Y ⊆ X be a proper
δ -hyperbolic subspace with respect to induced path metric from X and A ⊆ Y be
K-quasiconvex in both X and Y . Further, we assume that the inclusion i : Y ↪→ X is φ -
proper embedding and satisfies uniform Mitra’s criterion with function φ . Suppose y1

and y2 are nearest point projections of y ∈Y on A in the metric X and Y respectively.
Then dY (y1,y2)≤ D2.2.44.

Proof. Note that the arc-length parametrization of [y,y1]X ∪ [y1,y2]X is a (3+2K)-
quasi-geodesic in X (see [10, Lemma 1.31 (2)]). Then there is x ∈ [y,y2]X such that
dX(y1,x) ≤ D, where D = D2.2.2(δ ,3+ 2K,3+ 2K). Since φ is a proper function,
we fix N0 such that φ(N0) > D. Then it says that dY (y1, [y,y2]Y ) ≤ N0; otherwise,
dY (y1, [y,y2]Y )> N0 implies dX(y1, [y,y2]X)≥ φ(N0)> D (by Mitra’s criterion with
respect to base point y1) and so dX(y1,x)> D which is a contradiction.

Let y3 ∈ [y,y2]Y such that dY (y1,y3)≤ N0. Since y2 is a nearest point projection
of y on A in the metric Y and y3 ∈ [y,y2]Y , so dY (y3,y2)≤ dY (y3,y1)≤ N0. Therefore,
by triangle inequality, dY (y2,y1)≤ 2N0 =: D2.2.44.

Lemma 2.2.45. Suppose X is a proper hyperbolic space and Y is a proper hyperbolic
subspace with respect to the induced path metric such that the inclusion i : Y ↪→ X is
proper embedding and admits the CT-map ∂ i : ∂Y → ∂X. Let A ⊆ Y be quasiconvex
in both Y and X. Further, dX(PXA(y),PYA(y)) is uniformly bounded for all y ∈ Y .
Moreover, let α : [0,∞)→Y be a geodesic ray in Y such that ∂ i(α(∞))∈Λ(A)⊆ ∂X.
Then α is a quasi-geodesic ray in X.
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Proof. We fix a point y0 ∈ A and assume that α(0) = y0. Since the inclusion Y ↪→ X
admits the CT-map, so [y0,α(n)]X converges to the geodesic ray, say, β : [0,∞)→ X .
Since ∂ i(α(∞)) = β (∞) ∈ Λ(A), {PXA([y0,α(n)]X) : n ∈ N} is of infinite diameter.
Hence by our assumption, {PYA([y0,α(n)]Y ) : n ∈ N} is of infinite diameter. Since
α is a geodesic ray in Y and A is quasiconvex in Y , α is in bounded neighborhood of
A. Again since A is quasiconvex in X so α is a quasi-geodesic ray in X .

2.3 Trees of metric spaces

The notion of trees of metric spaces was introduced by Bestvina and Feighn in [6].
A coarsely equivalent definition was given by Mitra in [8]. We are going to adopt
the latter definition.

Definition 2.3.1. Suppose T is a simplicial tree and X is a metric space. Then a
1-Lipschitz surjective map π : X → T is called a tree of metric spaces if there is a
proper map φ : R≥0 → R≥0 with the following properties:

1. For all v ∈V (T ), Xv := π−1(v) is a geodesic metric space with the path metric
dv induced from X . Moreover, with respect to these metrics, the inclusion
Xv ↪→ X is φ -proper embedding.

2. Suppose e is an edge in T joining v,w ∈V (T ) and me ∈ T is the midpoint of
this edge. Then Xe := π−1(me) is a geodesic metric space with respect to the
path metric de induced from X . Moreover, there is a map ϑe : Xe × [0,1]→
π−1(e)⊆ X such that

(a) π ◦ϑe is the projection map onto [v,w].

(b) ϑe restricted to Xe × (0,1) is an isometry onto π−1(int(e)) where int(e)
denotes the interior of e.

(c) ϑe restricted to Xe ×{0} ≃ Xe and Xe ×{1} ≃ Xe are φ -proper embed-
dings from Xe into Xv and Xw respectively with respect to their induced
path metrics. Let us denote these restriction maps by ϑe,v and ϑe,w

respectively.

Moreover, we say π : X → T is a tree of hyperbolic metric spaces with the
qi embedded condition if additionally we have the following. There is δ0 ≥ 0 and
L0 ≥ 1 such that Xv’s are δ0-hyperbolic for all v ∈V (T ) and in (2) (c), ϑe,v and ϑe,w

are L0-qi embedding.
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Notations: Throughout the Chapter 3 and in this subsection, we will use the
following notations. For any subtree T ′ of T and an edge e = [v,w], we denote XT ′ ,
Xev and Xew to mean π−1(T ′), ϑe,v(Xe) and ϑe,w(Xe); and we will use Xvw for X[v,w].

In the following lemma we see that if we restrict the tree of metric spaces on
some subtree then the inclusion map is uniformly properly embedded.

Lemma 2.3.2. ([9, Proposition 2.17]) Suppose π : X → T is a tree of metric spaces.
Then there is a function η2.3.2 = η2.3.2(φ) : R≥0 → R≥0 depending on φ as in
Definition 2.3.1 such that the following holds.

Let T ′ be a subtree of T and XT ′ := π−1(T ′). Then with respect to the path metric
on XT ′ induced from X, the inclusion XT ′ ↪→ X is η2.3.2-proper embedding.

Since proof of the following result is standard, so we omit it.

Lemma 2.3.3. Suppose π : X → T is a tree of spaces such that X is proper metric
space. Let u ∈ T and {eλ : λ ∈ Λ} be the collection of edges incident on u. Then the
collection {Xeλ u : λ ∈ Λ} is locally finite in Xu.

Convention: Unless otherwise specified, we always refer to the constants δ0 and
L0 as in Definition 2.3.1 for a tree of hyperbolic metric spaces with the qi embedded
condition.

Let us fix some secondary constants δδδ
′′′
000,,,LLL

′′′
000,,,λλλ

′′′
000,,,LLL

′′′
111 in the following Lemma 2.3.4

and these notations will be used through out the thesis.

Lemma 2.3.4. ([9, Corollary 2.62, Lemma 2.27]) Suppose π : Z → [v,w] is a tree of
metric spaces over an edge e = [v,w] such that Zv, Zw are δ0-hyperbolic and Ze is
L0-qi embedded in both Zv and Zw. Then

1. Z is δδδ
′′′
000-hyperbolic, and Zv and Zw are LLL′′′

000-qi embedded in Z.

2. Suppose U is a 2δ0-quasiconvex subset of the fiber Zv or Zw. Then U is λλλ
′′′
000-

quasiconvex in Z (see Lemma 2.2.22 (1)), where λ ′
0 = K2.2.22(δ

′
0,L

′
0,2δ0). In

particular, Zv,Zw are λ ′
0-quasiconvex in Z. Thus a nearest point projection

map PZZw : Z → Zw in the metric Z is LLL′′′
111-coarsely Lipschitz retraction, where

L′
1 =C2.2.21(δ

′
0,λ

′
0).

Lemma 2.3.5. Given k≥ 0, D≥ 0 and ε ≥ 0 there are constants R2.3.5 =R2.3.5(k,D,ε)

and R′
2.3.5 = R′

2.3.5(k,D) such that the following holds.
Suppose we have assumptions of Lemma 2.3.4. Let Av be a k-quasiconvex subsets

of Zv in Zv-metric and Aw be that of Zw in Zw-metric. Let x ∈ Zv and y ∈ Zw such
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that dZ(x,y) = 1, and x′ be a nearest point projection of x on Av in Zv-metric and y′

be that of y on Aw in Zw-metric. Then we have the following.
(A) If HdZ(PZZw(Av),Aw)≤ ε and dZ(z,Av)≤ D for all z ∈ Aw, then dZ(x′,y′)≤

R2.3.5.
(B) Suppose A′

v = Av ∩ Zev is also k-quasiconvex in Zv and A′
w = Aw ∩ Zew is

that in Zw. Let HdZv(PZvZev(Av),A′
v) ≤ D and HdZw(PZwZew(Aw),A′

w) ≤ D. Then
dZ(x′,y′)≤ R′

2.3.5(k,D).

Proof. (A) Note that Z is δ ′
0-hyperbolic, and Zv and Zw are L′

0-qi embedded in
Z (see Lemma 2.3.4). Thus Av and Aw are K-quasiconvex in Z for some K =

K2.2.22(δ
′
0,L

′
0,k). Suppose x1 is a nearest point projection of x on Av and y1 is

that of y on Aw in Z. Then by Lemma 2.2.24, dZ(x′,x1) ≤ D2.2.24(δ
′
0,L

′
0,K) and

dZ(y′,y1)≤ D2.2.24(δ
′
0,L

′
0,K). Hence it is enough to show a bound on dZ(x1,y1).

Let y2 and y3 be nearest point projections of y and y1 on Av respectively in
Z. By given condition we have dZ(y1,y3) ≤ D and by Lemma 2.2.21 (1) we have
dZ(x1,y2)≤ 2C2.2.21(δ

′
0,K). Consider the pair (Av,Zw) in Z. By Lemma [9, Lemma

1.127], if y′2 is a nearest point projection of y2 on Zw, we have dZ(y2,y′2) ≤ 2K +

3δ ′
0+D. Again by given condition we have dZ(y′2,Aw)≤ ε , and so dZ(y2,Aw)≤ 2K+

3δ ′
0 +D+ ε . Now if y′′2 is a nearest point projection of y2 on Aw, then dZ(y2,y′′2)≤

2K +3δ ′
0 +D+ ε = ε ′ (say).

Now we have dZ(y,y3)≤ dZ(y,y1)+dZ(y1,y3)≤ dZ(y,y′′2)+dZ(y1,y3)≤ dZ(y,y2)

+dZ(y2,y′′2)+D ≤ dZ(y,y2)+ ε ′+D. Let z ∈ [y,y3]Z such that dZ(y2,z)≤ K +2δ ′
0

(see [9, Lemma 1.102 (i)]). Then dZ(z,y3) = dZ(y,y3)− d(y,z) ≤ dZ(y,y2)+ ε ′+

D− d(y,z) ≤ dZ(y2,z) + ε ′ +D ≤ K + 2δ ′
0 + ε ′ +D. So dZ(y2,y3) ≤ dZ(y2,z) +

dZ(z,y3)≤ 2(K +2δ ′
0)+ ε ′+D = D1 (say).

Therefore, combining all inequalities, we have

dZ(x′,y′)≤ dZ(x′,x1)+dZ(x1,y2)+dZ(y2,y3)+dZ(y3,y1)

+dZ(y1,y′)

≤ 2D2.2.24(δ
′
0,L

′
0,K)+2C2.2.21(δ

′
0,K)+D1 +D =: R2.3.5.

(B) Abusing notation, we assume that Zev, Zew are also k-quasconvex in Zv and
A′

v, A′
w are that in Z. Let x1 be a nearest point projection of x on A′

v in Zv. Now we
prove that dX(x′,x1) is uniformly bounded. Since [x,x′]Zv ∪ [x′,x1]Zv is a (3+ 2k)-
quasi-geodesic, by stability of quasi-geodesic in Zv, there is x2 ∈ [x,x1]Zv such that
dZv(x

′,x2) ≤ D1 for some uniform constant D1 ≥ 0. Then there is x3 ∈ Zev such
that dZv(x2,x3)≤ k, and so dZv(x

′,x3)≤ D1 + k, and so dZv(x
′,PZvZev(x

′))≤ D1 + k.
Thus dZv(x3,PZvZev(x

′)) ≤ 2(D1 + k). Then by given condition, there is, x′3 ∈ A′
v
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such that dZv(x
′
3,PZvZev(x

′))≤ D. This implies by triangle inequality, dZv(x3,x′3)≤
2(D1 + k)+D; and again by triangle inequality, dZv(x2,x′3)≤ 2D1 +3k+D. Since
x1 is a nearest point projection of x on A′

v in the path metric Zv and x2 ∈ [x,x1]Zv , x′3 ∈
A′

v, then dZv(x2,x1)≤ dZv(x2,x′3)≤ 2D1 +3k+D. Hence dZv(x
′,x1)≤ dZv(x

′,x2)+

dZv(x2,x1)≤ 3D1 +3k+D.
Now let x4 be a nearest point projection of x on A′

v in the path metric Z. Then by
Lemma 2.2.44 dZv(x1,x4)≤ D2 for some uniform constant D2 ≥ 0.

Therefore, by triangle inequality, dZ(x′,x4)≤ 3D1 +3k+D2 = D3 (say).
Now let y4 be a nearest point projection of y on A′

w in the metric of Z. Then by
the similar argument, we can conclude that dZ(y′,y4)≤ D3.

Again let y5 be a nearest point projection of y on A′
v in the path metric Z. Since

dZ(x,y) = 1, by Lemma 2.2.21 (1), dZ(x4,y5)≤ D4 for some uniform constant D4 ≥
0. Since by given condition, HdZ(A′

v,A
′
w)≤ 2D, by Lemma 2.2.21 (2), dZ(y5,y4)≤

D5 for some uniform constant D5.
Therefore, by combining all the inequalities above, we get

dZ(x′,y′) ≤ dZ(x′,x4)+dZ(x4,y5)+dZ(y5,y4)+dZ(y4,y′)

≤ D3 +D4 +D5 +D3 = 2D3 +D4 +D5 =: R′
2.3.5.

Therefore, we are through.

Lemma 2.3.6. Given k ≥ 0 there is R2.3.6 = R2.3.6(k) such that the following holds.
Suppose we have assumptions of Lemma 2.3.4. Let Av be a k-quasiconvex subset

of Zv in Zv-metric. Let x ∈ Zv and y ∈ Zw such that dZ(x,y) = 1, and x′ be a nearest
point projection of x on Av in Zv-metric and y′ be that of y on Av in Z-metric. Then
dZ(x′,y′)≤ R2.3.6.

Proof. From the first paragraph of the proof of Lemma 2.3.5, Av is K-quasiconvex
in Z where K = K2.2.22(δ

′
0,L

′
0,k). If x1 is a nearest point projection of x on Av

in Z-metric, then by Lemma 2.2.21 (1), dZ(x1,y′) ≤ 2C2.2.21(δ
′
0,K). Again by

Lemma 2.2.24, dZ(x′,x1) ≤ D2.2.24(δ
′
0,L

′
0,K). Therefore, we can take R2.3.6 :=

D2.2.24(δ
′
0,L

′
0,K)+C2.2.21(δ

′
0,K).

Now we define Mitra’s projection map on a subset of X in the following remark
for later use.

Remark 2.3.7. Mitra’s projection map: Suppose S is a subtree of T and A =⋃
u∈V (S)Au where Au ⊆ Xu is any subset. Let Xvsp =

⋃
u∈V (T )Xu. Now we define

a map ρ : Xvsp → A as follows. Suppose x ∈ Xvsp and π(x) = u. If u ∈ V (S)
then we take ρ(x) to be a nearest point projection of x on Au in Xu. Now suppose
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u /∈V (S). Let v be the nearest point projection of u on S in T and w ∈ [v,u] such that
dT (v,w) = 1. First we take a nearest point projection, say, x′ of x on Xw in X and
then ρ(x) is defined to be a nearest point projection of x′ on Aw in Xvw.

The following result gives us sufficient conditions for which the above map turns
out to be a coarsely Lipschitz retraction.

Proposition 2.3.8. Suppose A and ρ are as in Remark 2.3.7. We also assume the
following for some constants k,K,C,ε ≥ 0.

(1) For all v ∈V (S), Av’s are k-quasiconvex in Xv.
Let [v,w] be an edge in S such that dT (u,v)< dT (u,w). Then:
(2) For v ∈V (S) and w /∈V (S), the pair (Av,Xw) is C-cobounded in Xvw.
(3) For v,w ∈V (S), Aw ⊆ NK(Av) in Xvw.
(4) For v,w ∈V (S), HdXvw(PXvwXw(Av),Aw)≤ ε .
There is a uniform constant L2.3.8 depending on various constants above such

that ρ can be extended to a L2.3.8-coarsely Lipschitz retraction X → A .

Proof. Since Xvsp is 1-dense in X , by Lemma 2.1.2, it is enough to show dX(ρ(x),ρ(y))
is uniformly bounded where x,y ∈ Xvsp and dX(x,y)≤ 1.

Let π(x) = v and π(y) = w. We consider the following cases depending on the
position of v,w.

Case 1: Suppose v,w ∈ V (S). If v = w then dX(ρ(x),ρ(y)) ≤ C2.2.21(δ0,k)
(see Lemma 2.2.21 (1)). Now let v ̸= w and dT (u,v)< dT (u,w). Then dT (v,w)≤
dX(x,y)≤ 1 implies dT (v,w) = 1, dX(x,y) = 1, x ∈ Xv, y ∈ Xw. Then by (3), (4) and
Lemma 2.3.5 (1), dX(ρ(x),ρ(y))≤ dXvw(ρ(x),ρ(y))≤ R2.3.5(k,K,ε).

Case 2: Without loss of generality, let v∈V (S) and w /∈V (S).Note that dX(x,y)=
1 and x ∈ Xv, y ∈ Xw. Then by Lemma 2.3.6, dX(ρ(x),ρ(y))≤ dXvw(ρ(x),ρ(y))≤
R2.3.6(k).

Case 3: Suppose v,w /∈V (S). Since dT (v,w)≤ 1, the nearest point projections
of v and w on S are same; suppose that is v′. Let w′ ∈ [v′,v] such that dT (v′,w′) = 1.
By (2), the pair (Av′,Xw′) is C-cobounded in Xv′w′ . Thus by the definition of ρ ,
dX(ρ(x),ρ(y))≤ dXvw(ρ(x),ρ(y))≤C.

Therefore, we are through.

2.4 Trees of metric bundles and their properties

The notion of metric bundles (see Definition 2.4.1) was introduced by Mj and Sardar
([10]). Subsuming both metric bundles and trees of metric spaces, we define trees of
metric bundles (Definition 2.4.2).
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Definition 2.4.1. [10, Definition 1.2] Suppose (X ,d) and (B,dB) are geodesic metric
spaces; let c0 ≥ 1 and φ : R≥0 →R≥0 be a proper map. We say X is a (φ ,c0)-metric
bundle over B if there is a 1-Lipschitz and surjective map p : X → B such that the
following holds.

1. Let z ∈ B. Then Fz := p−1(z), called fiber, is a geodesic metric space with the
induced path metric from X and the inclusion Fz ↪→ X is φ -proper embedding.

2. Let z1,z2 ∈ B such that dB(z1,z2)≤ 1 and α be a geodesic joining z1 and z2.
Then for all z ∈ α and x ∈ Fz, there are paths in p−1(α) of length at most c0

joining x to points in Fz1 and Fz2 .

Definition 2.4.2 (Trees of metric bundles). Let (X ,d) be a geodesic metric space.
Suppose πB : (B,dB)→ T is a tree of spaces over a tree T such that edge spaces are
points. Let φ : R≥0 →R≥0 be a proper map and c0 ≥ 1. A tree of metric bundles is a
1-Lipschitz surjective map πX : X → B such that the following hold (see Figure 2.1).

1. For all u ∈ V (T ) let Bu := π
−1
B (u) and Xu := π

−1
X (Bu). Then Xu is geodesic

metric space with the induced path metric and the restriction of πX to Xu gives
a (φ ,c0)-metric bundle Xu → Bu (see Definition 2.4.1).

2. Let e = [v,w] be an edge in T , and e = [v,w] be the lift of e joining v ∈ Bv

and w ∈ Bw. Then πX restricted to π
−1
X (e) is a tree metric spaces over e with

parameter φ (see Definition 2.3.1)

3. For u ∈V (T ) and a ∈ Bu, we denote the fiber corresponding to a by Fa,u(:=
π
−1
X (a)). Then the inclusion Fa,u ↪→ X is φ -proper embedding.

Abusing terminology, we say (X ,B,T ) is a tree of metric bundles keeping the
structural maps πX , πB and parameters φ , c0 and other things implicit. We denote
the composition of πX : X → B and πB : B → T by π : X → T .

Disclaimer: The term ‘trees of metric bundles’ may be misleading for the map
πX : X → B since B is not a tree in general; but it is not misleading for π = πB ◦πX :
X → T . To maintain consistency with existing literature, we will adhere to our
chosen nomenclature.

We will see some properties of a tree of metric bundles (X ,B,T ) that are used in
the main proof. In our statements, we make the structural parameters φ ,c0 implicit.

For u ∈V (T ), since fibers are φ -properly embedded in X , we can show (along the
same line of arguments given in the proof of [9, Proposition 2.17]) that Xu := π−1(u)
is uniformly properly embedded in X . Then considering (X ,B,T ) as a tree of metric
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Figure 2.1: Trees of Metric Bundles

spaces π := πB ◦πX : X → T , we get the following as corollary of [9, Proposition
2.17].

Proposition 2.4.3. Suppose (X ,B,T ) is a tree of metric bundles. Let S be a subtree
of T and XS := π−1(S). We consider XS with the path metric induced from X. Then
there exists a proper function η2.4.3 : R≥0 → R≥0 depending only on the structural
parameters of (X ,B,T ) such that the inclusion i : XS ↪→ X is η2.4.3-proper embedding.

Definition 2.4.4 (Quasi-isometric (qi) section). Let K ≥ 1. Suppose (X ,B,T ) is
a tree of metric bundles. Let B1 be an isometrically embedded subspace in B and
X1 ⊆ X . We say X1 is K-qi section in X over B1 if there is a K-qi embedding
s : B1 → X such that πX ◦ s = id on B1 and X1 = Im(s). Further, we say that it is
compatible if the following hold.

1. For all w ∈ πB(B1), X1 ∩Xw is K-qi section over B1 ∩Bw in the path metric of
Xw and X1 ∩X = Im(s|B1∩Bw).

2. Suppose [v,w]⊆ πB(B1) is an edge, and [v,w] is the edge joining v ∈ Bv and
w ∈ Bw. Then s(v) and s(w) are K-apart in the path metric on π

−1
X ([v,w])

induced from X .

Definition 2.4.5. If B1, in Definition 2.4.4, is a geodesic segment, say, α : [0,r]⊆
R → B, then we call the section a K-qi lift of the geodesic α . According to our
definition, a K-qi lift of a geodesic α : [0,r]⊆ R→ B is Im(α̃) where α̃ : Im(α)⊆
B → X is a K-qi embedding. We will simultaneously use Im(α) and [0,r] as the
domain of α̃ .
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Existence of uniform qi section in metric bundle was one of the difficult jobs
in [10]. We are going to use it frequently in our paper (see Lemma 2.4.12 (1)).
For a short exact sequence, in a different way, it was proved earlier by Mosher
[34]. In a hyperbolic geodesic metric space, geodesics (and hence quasi-geodesics)
diverge exponentially. In a tree of metric bundles X , qi lifts are quasi-geodesics. So,
they diverge exponentially provided X is hyperbolic. This property is captured in
the following definition for special types of quasi-geodesics, namely, qi lifts (see
also necessity of flaring in Introduction 1 to get more on this). This definition is a
generalization of Bestvina-Feighn’s hallway flaring condition ([6]) in a natural way
as defined in [10, Definition 1.12] for metric bundles.

Definition 2.4.6. Suppose k ≥ 1. A tree of metric bundles (X ,B,T ) is said to satisfy
k-flaring condition (see Figure 2.2) if ∃ Mk > 0, nk ∈ N and λk > 1 depending on k
such that the following holds.

For every pair (γ0,γ1) of k-qi lifts of a geodesic γ : [−nk,nk]→ [a,b]⊆ B joining
a,b with d f (γ0(0),γ1(0))> Mk, we have,

λkd f (γ0(0),γ1(0))< max{d f (γ0(−nk),γ1(−nk)),d f (γ0(nk),γ1(nk))}

where d f denotes the fiber distance in the corresponding fiber. Abusing terminology,
we sometimes simply say that (X ,B,T ) satisfies k-flaring condition suppressing the
constants Mk,nk,λk. We say that (X ,B,T ) satisfies a flaring condition if it satisfies
k-flaring condition for all k ≥ 1.

Figure 2.2: Flaring Condition

Now we will state the following Lemma 2.4.7 without a proof. These results
correspond to [10, Lemma 2.17, Lemma 2.18] in metric bundles situation. One
has a similar proofs in trees of metric bundles. The results (1) of Lemma 2.4.7 is
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defined as uniform flaring condition in the book [9], and (2) says that the neck are
quasiconvex subset of the base in the sense of [10].

Lemma 2.4.7. Let k ≥ 1. Suppose (X ,B,T ) is a tree of metric bundles satisfying
k-flaring condition with constants Mk,nk,λk. Then for all D ≥ 0 there is τ2.4.7 =

τ2.4.7(k,D) and R2.4.7 = R2.4.7(k,D) satisfying the following.
Let γ0,γ1 be two k-qi lifts of a geodesic γ : [0,r]→ [a,b]⊆B joining a,b∈B (resp.

a,b ∈V (B)). Let 0 = r0 < r1 < · · ·< rn = r such that ri+1 − ri = 1 for 0 ≤ i ≤ n−2
and rn − rn−1 ≤ 1. Then:

1. d f (γ0(ri),γ1(ri))> Mk for all 1 ≤ i ≤ n−1 and

max{d f (γ0(0),γ1(0)),d f (γ0(r),γ1(r))} ≤ D

implies r = dB(a,b)≤ τ2.4.7.

2. max{d f (γ0(0),γ1(0)),d f (γ0(r),γ1(r))} ≤ D implies for all 0 ≤ i ≤ n

d f (γ0(ri),γ1(ri))≤ R2.4.7.

Throughout the thesis, we directly will not use flaring condition in proving results
instead Lemma 2.4.7. We make the following remark for later use, and it follows
from the Definition 2.4.6.

Remark 2.4.8. Let k ≥ 1. Suppose (X ,B,T ) is a tree of metric bundles satisfying
k-flaring condition with constants Mk,nk,λk. Let S be a subtree of T . Then (a)
it satisfies k′-flaring condition for all k′ ≤ k with the same constants, and (b) the
restriction πX |XS : XS → BS also satisfies k-flaring condition with the same constants.

Motivated by the main theorems of [6] and [10], we define the following.

Definition 2.4.9. We say that a tree of metric bundles (X ,B,T ) satisfies the hyper-
bolic axioms, in short, axiom H with parameters δ0 ≥ 0,N ≥ 0 and L0 ≥ 1 if the
following hold.

1. Let u ∈V (T ) and a ∈ Bu. Then Fa,u is δ0-hyperbolic and the barycenter map
(see Subsection 2.2.2) ∂ 3Fa,u → Fa,u is N-coarsely surjective.

2. Let e = [v,w] be an edge in T . Let e= [v,w] be the edge joining v ∈ Bv and
w∈ Bw, and me be the mid point of e. Then the incident maps ϑev : π

−1
X (me)→

Fv,v, ϑew : π
−1
X (me)→ Fw,w are L0-qi embeddings.

3. Lastly, let B be δ0-hyperbolic. This assumption is the same as Bv is δ0-
hyperbolic for all v ∈V (T ).
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2.4.1 Conventions and notations

1. Unless otherwise specified, our tree of metric bundles (X ,B,T ) always satisfies
the axiom H with constants δ0,N,L0 as in Definition 2.4.9.

2. Suppose B′ is connected subspace of B and S is subtree of T . Unless otherwise
specified, by b ∈ B′ and u ∈ S, we always mean b ∈ B′∩BπB(b) and u ∈V (S)
respectively.

3. If X1 is a K-qi section over B1, then it is a compatible η2.4.3(2K)-qi section
over B1. Thus, now onward, by a K-qi section, we always mean a compatible
K-qi section.

Notation 2.4.10. We use these notations throughout the Chapter 5. We denote
the composition map πππBBB ◦◦◦ πππXXX by πππ . For a subtree S ⊆ T , XXXSSS :::=== πππ−1(((SSS))) and
BBBSSS :::=== πππ

−1
BBB (((SSS))). In particular, for v ∈ V (T ), XXXvvv :::=== πππ−1(((vvv))) and BBBvvv :::=== πππ

−1
BBB (((vvv))). Let

v,w ∈ T , dT (v,w) = 1 and [v,w] is the edge joining v ∈ Bv and w ∈ Bw. We denote
FFFvw :::=== πππ

−1
XXX ((([[[v,,,w]]]))). The induced path metric on Fvw is denoted by dddvw, and we

use NNNvw to mean neighborhood of subsets of Fvw in the dvw-metric. For a fiber
Fa,u, where u ∈ V (T ) and a ∈ Bu, we simply use ddd fff , dddiiiaaammm fff , NNN fff and [[[xxx,,,yyy]]] fff (or
[[[xxx,,,yyy]]]Fa,u

) to denote respectively the induced path metric on Fa,u, the diameter of a
subset of Fa,u in d f -metric, the neighborhood of a subset of Fa,u in d f -metric and a
geodesic inside Fa,u joining x,y ∈ Fa,u. Since it will be clear from the context which
fiber we are working with, we are not being more specific on d f , N f etc. Lastly,
PPPw :::=== PPPFvw,Fw,w .

We want to put metric bundle (Definition 2.4.1) structure on subspace of X .
Suppose X1 ⊆ X and S is a subtree of T such that the restriction map πX |X1 : X1 → BS

is surjective.

Definition 2.4.11 (K-metric bundle and special K-ladder). With the above, we say
that X1 forms a K-metric bundle over BS if there is a K-qi section through each
point of X1 over BS such that the image lies inside X1. Further, we say that X1 forms a
special K-ladder if X1 forms a K-metric bundle along with two K-qi sections Σ1,Σ2

over BS such that X1 =
⋃

v∈S, b∈Bv

[Fb,v ∩Σ1,Fb,v ∩Σ2]Fb,v . In this case, sometimes we

denote X1 by LK(Σ1,Σ2) or simply by L (Σ1,Σ2) when K is understood.

Lemma 2.4.12 (2) is proved for metric graph bundles (see [10, Definition 1.5]) in
[10, Lemma 3.1], although it holds for metric bundles. Since the same proof works,
we omit it.
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Lemma 2.4.12. ([10, Proposition 2.10, Proposition 2.12, Lemma 3.1, Lemma 3.3])
Suppose (X ,B,T ) is a tree of metric bundles satisfying axiom H. (For (3), axiom
H is not required.) Then given K ≥ 1 and R ≥ 2K there is C2.4.12 =C2.4.12(K)> K
such that the following holds.

(1) There exists a constant K2.4.12 ≥ 1 depending only on δ0,N (constants of
axiom H) such that through each point x ∈ Xv there is a K2.4.12-qi section over Bv in
the path metric of Xv, where v ∈V (T ).

(2) Let v ∈V (T ) and Σ1,Σ2 be two K-qi sections over Bv. Then L (Σ1,Σ2) is a
special C2.4.12(K)-ladder over Bv.

(3) Let Σ be a K-qi section over an isometrically embedded subspace B1 ⊆ B. Let
s : [a,b]→ X be a qi lift of a geodesic segment [a,b]⊆ B1 such that Im(s)⊆ Σ. Then
NR(Σ) is path connected and if the induced path metric is d′ then d′(s(a),s(b))≤
2KdB(a,b). Moreover, N2K(Σ) is K(2K +1)-qi embedded inside any geodesic sub-
space containing NR(Σ) (with respect to their induced path metric).

Remark 2.4.13. In the view of Lemma 2.4.12 (2), for i ∈ N, we denote the ith

iteration by C(i)
2.4.12(K) =C2.4.12(C

(i−1)
2.4.12(K)), where C(0)

2.4.12(K) = K. In other words,
if L (Σ1,Σ2) is bounded by two C(i−1)

2.4.12(K)-qi sections Σ1,Σ2 over Bv, then L (Σ1,Σ2)

is a special C(i)
2.4.12(K)-ladder over Bv.

As an application of Lemma 2.4.12 (2) along with the fact that quadrilaterals are
slim in hyperbolic spaces, we have the following. We omit the proof.

Lemma 2.4.14. Given K ≥ 1 there is K2.4.14 = K2.4.14(K) such that the following
holds.

Suppose (X ,B,T ) is a tree of metric bundles satisfying axiom H. Let S be a
subtree of T . Let GK,S = {γ : γ is a K-qi section over BS} ≠ /0. For w ∈ S, b ∈ Bw,
let Hb,w = hull{γ(b) : γ ∈ GK,S}⊆ Fb,w and H =

⋃
w∈S, b∈Bw

Hb,w. (Here quasiconvex
hull is considered in the corresponding fiber.) Then H is K2.4.14-metric bundle over
BS. In particular, if GK,S = {γ1,γ2} then

⋃
w∈S, b∈Bw

[γ1(b),γ2(b)] f forms a special
K2.4.14-ladder over BS.

Lemma 2.4.15. Given k ≥ 1 there exists k2.4.15 = k2.4.15(k) such that the following
holds.

Suppose (X ,B,T ) is a tree of metric bundles satisfying axiom H. Let v ∈ T and
Σi be k-qi section over Bv for i = 1,2,3. Suppose {x(i)b,v} = Σi ∩Fb,v, i = 1,2,3 and

zb,v is a δ0-center of geodesic triangle △(x(1)b,v ,x
(2)
b,v ,x

(3)
b,v) ⊆ Fb,v, b ∈ Bv. Then the

map s : Bv → X defined by b 7→ zb,v is a k2.4.15-qi section over Bv.
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Proof. Let b1,b2 ∈ Bv such that dB(b1,b2) ≤ 1. Since πX : X → B is 1-Lipschitz,
we only have to prove that dXv(zb1,v,zb2,v) is uniformly bounded. Define a map
ψ : Fb1,v → Fb2,v by ψ(x(i)b1,v

) = x(i)b2,v
for i = 1,2,3 and ∀ z ∈ Fb1,v \{x(i)b1,v

: i = 1,2,3},
we take ψ(z) ∈ Fb2,v such that d(z,ψ(z)) ≤ c0 (as in Definition 2.4.2). Note that
dXv(x,ψ(x)) ≤ 2k+ c0 for all x ∈ Fb1,v. Then by [10, Lemma 1.15], ψ extends to
a g(2k+ c0)-quasi-isometry from Fb1,v to Fb2,v for some function g : R≥0 → R≥0.
Therefore, by [10, Lemma 1.29 (2)], d f (ψ(zb1,v),zb2,v) is bounded by a constant D,
depending only on δ0 (hyperbolicity constant of Fbi,v) and g(2k+ c0). Hence, we
can take k2.4.15 := D+2k.

Lemma 2.4.16. Given K ≥ 1 there exists K2.4.16 = K2.4.16(K) such that the following
holds.

Suppose (X ,B,T ) is a tree of metric bundles satisfying axiom H. Let v ∈ T and Σi

be K-qi section over Bv for i = 1,2,3,4. Let L1 = L (Σ1,Σ2) and L2 = L (Σ3,Σ4)

be special ladders over Bv formed by these sections. Let a ∈ Bv and P̄a : L1∩Fa,v →
L2 ∩Fa,v be modified projection in the metric Fa,v (see Definition 2.2.25). Further,
suppose P̄a(L1 ∩Fa,v) = [pa,qa]Fa,v such that pa is closest to Σ3 ∩Fa,v and qa is that
to Σ4 ∩Fa,v in the metric Fa,v. Moreover, we define s1 : Bv → L2 and s2 : Bv → L2

by a 7→ pa and a 7→ qa respectively, where a ∈ Bv.

Then s1 and s2 are K2.4.16-qi sections over Bv lying inside L2.

Proof. Suppose b,c ∈ Bv such that dB(b,c) ≤ 1. Let Li ∩Fb,v = [xi,yi] and Li ∩
Fc,v = [si, ti] for i = 1,2, where Σ1(b) = x1, Σ1(c) = s1, Σ2(b) = y1, Σ2(c) = t1 and
Σ3(b) = x2, Σ3(c) = s2, Σ4(b) = y2, Σ4(c) = t2. Suppose P̄b([x1,y1]) = [p1,q1] and
P̄c([s1, t1]) = [p2,q2] such that p1, p2 are closest to x2, s2 respectively in the metric
Fb,v and q1, q2 are closest to y2, t2 respectively in the metric Fc,v. Since πX : X → B
is 1-Lipschitz, we only need to show that dXv(p1, p2) and dXv(q1,q2) are uniformly
bounded. We will show only the former one as a similar proof works for the later
case.

Let P̄b(x1) = x′1, P̄b(y1) = y′1, P̄c(s1) = s′1, P̄c(t1) = t ′1. Note that x′1 ∈ [p1,y′1] ⊆
[x2,y2] or x′1 ∈ [y′1,q1] ⊆ [x2,y2] and s′1 ∈ [p2, t ′1] ⊆ [s2, t2] or s′1 ∈ [t ′1,q2] ⊆ [s2, t2].
Depending on the position on x′1 and s′1, we consider the following four cases.

Like in Lemma 2.4.15, we define a map ψ : Fb,v → Fc,v such that ψ(xi) =

si, ψ(yi) = ti, i = 1,2 and for all other points x ∈ Fb,v, we take ψ(x) ∈ Fc,v such that
dXv(x,ψ(x))≤ c0 (as in Definition 2.4.2). Then dXv(x,ψ(x))≤ 2K + c0,∀ x ∈ Fb,v,
and so by [10, Lemma 1.15], ψ extends to a g(2K + c0)-quasi-isometry from Fb,v

to Fc,v for some function g : R≥0 → R≥0. Thus by Lemma 2.2.22 (2), there is
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k = 2K +D2.2.22(δ0,g(2K + c0),δ0) such that

dX(x′1,s
′
1)≤ k and dX(y′1, t

′
1)≤ k (2.4. 1)

Case 1: Suppose x′1 ∈ [p1,y′1] and s′1 ∈ [p2, t ′1]. Then by [9, Corollary 1.116],
there is constant C1 depending on δ0 such that d f (p1,x′1)≤C1 and d f (p2,s′1)≤C1.
Combining with inequation 2.4. 1, we have dXv(p1, p2)≤ k+2C1.

Figure 2.3

Case 2: Suppose x′1 ∈ [y′1,q1] and s′1 ∈ [t ′1,q2]. In this case, y′1 ∈ [p1,x′1] and
t ′1 ∈ [p2,s′1]. Again by [9, Corollary 1.116], d f (p1,y′1) ≤ C1 and d f (p2, t ′1) ≤ C1.
Combining with inequation 2.4. 1, we get, dXv(p1, p2)≤ k+2C1.

Case 3: Suppose x′1 ∈ [p1,y′1] and s′1 ∈ [t ′1,q2]. In this case, t ′1 ∈ [p2,s′1]. Applying
[9, Corollary 1.116], we get, dXv(p1,x′1)≤C1 and dXv(p2, t ′1)≤C1. We define a map
(like above) ψ : Fb,v → Fc,v such that ψ(x′1) = s′1, ψ(y2) = t2 and for all other
points x ∈ Fb,v, we take ψ(x) ∈ Fc,v such that dXv(x,ψ(x)) ≤ c0 (as in Definition
2.4.2). Then ∀ x ∈ Fb,v, dXv(ψ(x),x) ≤ k + c0 (see inequation 2.4. 1). Thus by
[10, Lemma 1.15], ψ extends to a g(k+ c0)-quasi-isometry from Fb,v to Fc,v for
some function g : R≥0 → R≥0. Applying Morse Lemma 2.2.2, ∃ ζ ∈ [s′1, t2] ⊆
[s2, t2] such that dXv(y

′
1,ζ ) ≤ c0 +D2.2.2(δ0,g(k+ c0),g(k+ c0)) = k′ (say). Then

dXv(ζ , t
′
1)≤ dXv(ζ ,y

′
1)+dXv(y

′
1, t

′
1)≤ k+k′. Since fibers are φ -properly embedded in

X , so d f (ζ , t ′1)≤ φ(k+ k′). In particular, d f (s′1, t
′
1)≤ φ(k+ k′). Thus dXv(p1, p2)≤

dXv(p1,x′1)+dXv(x
′
1,s

′
1)+dXv(s

′
1, t

′
1)+dXv(t

′
1, p2)≤ 2C1 + k+φ(k+ k′).

Case 4: Lastly, we assume that x′1 ∈ [y′1,q1] and s′1 ∈ [p2, t ′1]. But this is same as
Case 3.

Therefore, we can take K2.4.16 := 2C1 + k+φ(k+ k′) (maximum of all constants
we get in the above four cases).
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2.5 Complexes of groups

Bass and Serre in [35] introduced graphs of groups to study infinite groups by their
action on simplicial trees. Given a finite graph of groups there is a simplicial tree,
called Bass-Serre tree, on which the fundamental group of the given graph of groups
acts without inversion such that the quotient is the given graph. This theory also says
the converse that if a group acts by cocompact on a simplicial tree without inversion
then it corresponds to a graph of groups whose fundamental group is isomorphic to
the given group and there is an equivariant isomorphism from the Bass-Serre tree
to the given simplicial tree. With this one wants to know whether this theory can
be generalized to the higher dimension. In other words, suppose a group G acts on
a simply connected simplicial complex X̃ without inversion such that the quotient
G\ X̃ = X is a finite simplicial complex. Can we get back X̃ and the action from the
information on X?

This motivates us to study complexes of groups. Gersten and Stallings studied
triangle of groups, i.e., when X is 2-dimensional ([20]). Later, Haefliger [21] studied
higher dimensional case in a more general setting, called small category without loops
(abbreviated scwol) and Corson [22] studied the 2-dimensional case independently.
Now we will briefly recall some definitions and results for complexes of groups. For
a more comprehensive understanding of the concepts presented here and the overall
theory of complexes of groups over scwol, we refer the reader to [23].

Definition 2.5.1 (Small category without loops (scwol)). A small category without
loop is a set X which is the disjoint union of a set V (X ) called the vertex set of X

and a set E(X ) called the edge set of X along with two maps

i : E(X )→V (X ) and t : E(X )→V (X ).

For a ∈ E(X ), i(a) and t(a) are called initial vertex and terminal vertex of a
respectively.

Let E(2)(X ) denote the set of pairs (a,b)∈E(X )×E(X ) such that i(a) = t(b).
A third map

E(2)(X )→ E(X )

is given that associates to each pair (a,b) an edge ab called their composition (and
we say that a, b are composable). These maps are required to satisfy the following
conditions:

1. For all (a,b) ∈ E(2)(X ), we have i(ab) = i(b) and t(ab) = t(a).
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2. For all a,b,c∈ E(X ), if i(a) = t(b) and i(b) = t(c), then (ab)c= a(bc). Thus
we can denote it simply abc and this is called associativity.

3. No loops condition: for each a ∈ E(X ), we have i(a) ̸= t(a).

Example 2.5.2. Suppose Q is a poset. Then we can associate a scwol as follows. The
set of vertices is Q and the edges are pairs (τ,σ) ∈ Q×Q such that τ < σ . Define
i((τ,σ)) := σ , t((τ,σ)) := τ and the composition of (τ,σ)(σ ,ρ) = (τ,ρ).

Suppose k ∈ N and E(k)(X ) is the set of sequences (a1,a2, · · · ,ak) such that
(ai,ai+1) ∈ E(2)(X ) for all i = 1,2, · · · ,k− 1. By convention E(0)(X ) = V (X ).
The dimension of X is defined to be the supremum of k ≥ 0 for which E(k)(X ) is
non-empty. To each scwol X , one can associate a polyhedral complex, denoted by
|X |, called geometric realization of X . Roughly speaking it is disjoint union of
standard k-simplices for each (a1,a2, · · · ,ak)∈ E(k)(X ) with a natural relation. One
is referred to [23, Chapter III.C, 1.3] for details. Note that in general, the intersection
of two simplices in |X | is not a common face, rather union faces. So |X | might not
be a simplicial complex in general. A scwol X is connected if |X | is connected
with respect to quotient topology.

Example 2.5.3. Suppose K is a Mk-polyhedral complex (see [23, Definition 7.37,
I.7]). Now we construct a scwol X from K as follows. The set of vertices of X is
the simplices of K (equivalently, the set of barycentres of the cells of K). The edges
of X are the 1-simplices of the barycentric subdivision K′ of K: each 1-simplex of
K′ corresponds to a pair of cells T ⊆ S; we define i(a) to be the barycentre of S and
t(a) to be that of T .

Definition 2.5.4 (Morphisms of scwols). Suppose X and Y are two scwols. A
non-degenerate morphism f : X → Y is a map that sends V (X ) to V (Y ) and
E(X ) to E(Y ) such that the following hold.

1. For all a ∈ E(X ), i( f (a)) = f (i(a)) and t( f (a)) = f (t(a)).

2. For each (a,b) ∈ E(2)(X ), f (ab) = f (a) f (b).

3. For each vertex σ ∈V (X ), the restriction of f to the set of edges with initial
vertex σ is a bijection onto the set of edges of Y with initial vertex f (σ).

An automorphism of a scwol X is a morphism f : X → X that has an inverse,
i.e., there is f−1 : X → X such that f f−1 = f−1 f is the identity on X .
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Definition 2.5.5 (Group actions on scwols). An action of a group G on a scwol
X is a homomorphism from G to the automorphism of X such that the following
conditions hold.

1. For all a ∈ E(X ) and g ∈ G, g.i(a) ̸= t(a).

2. For all a ∈ E(X ) and g ∈ G, if g.i(a) = i(a) then g.a = a.

Example 2.5.6. Suppose K is a Mk-simplicial complex. A simplicial action of a
group G on K is said to be without inversion if an element g ∈ G sends a simplex of
K to itself then g fixes that simplex pointwise. Let X be the corresponding scwol
of K as in Example 2.5.3. Then G-action on K induces a natural action on X . The
action of G on K is without inversion if and only if G acts on X as in Definition
2.5.5.

Now we define complexes of groups.

Definition 2.5.7 (Complex of groups). Suppose Y is a scwol. A complex of groups
G (Y ) = (Gσ ,ψa,ga,b) over Y is given by the following data:

1. for each σ ∈V (Y ), a group Gσ called the local group at σ ,

2. for each a ∈ E(Y ), an injective homomorphism ψa : Gi(a) → Gt(a),

3. for each pair of composable edges (a,b) ∈ E(2)(Y ), a twisting element ga,b ∈
Gt(a),

with the following compatibility conditions:

(a) Ad(ga,b)ψab = ψaψb, where Ad(ga,b) is the conjugation by the element
ga,b in Gt(a) and

(b) for each triple (a,b,c) ∈ E(3)(Y ) of composable edges we have the
cocycle condition,

ψa(gb,c)ga,bc = ga,bgab,c.

Suppose Y is a (Euclidean) simplicial complex and Y is the associated scwol (see
Example 2.5.3). Then by a complex of groups over Y , we mean a complex of groups
over Y .

Remark 2.5.8. 1. A simple complex of groups over Y is a complex of groups
over Y such that all the twisting elements ga,b are trivial.
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2. The condition (3),(a) is empty if Y is 1-dimensional and the condition (3),(b)
is empty if Y is 2-dimensional.

3. Let Y be 1-dimensional (equivalently, E(2)(Y ) is empty). In this case, the
notion of complex of groups over Y restrict to the notion of graph of groups
introduced by Bass-Serre ([35]).

For our reference, we define the graph of groups below.

Definition 2.5.9 (Graph of groups ([35])). Let Y be an oriented, connected graph
with vertex set V (Y ) and edge set E(Y ) ([35]). So we have maps i : E(Y )→V (Y )
sending an edge to its initial vertex and t : E(Y ) → V (Y ) sending an edge to its
terminal vertex. A graph of groups (G ,Y ) over Y consists of following data:

1. For each vertex u ∈V (Y ) there is a group Gu and for each edge e ∈ E(Y ) there
is a group Ge.

2. Let e ∈ E(Y ). Then there are monomorphisms ie : Ge → Gi(e) and te : Ge →
Gt(e).

The groups Gu in (1) are referred to as the vertex groups, and groups Ge are called
the edge groups of the graph of groups and the homomorphisms in (2) are called the
incidence homomorphisms.

Definition 2.5.10 (Morphisms of complexes of groups). Let G (Y ) = (Gσ ,ψa,ga,b)

and G (Y ′) = (Gσ ′,ψa′,ga′,b′) be two complexes of groups over scwols Y and Y ′

respectively. Suppose f : Y →Y ′ is a (possibly degenerate) morphism of scwols. A
morphism φ = (φσ ,φ(a)) from G (Y ) to G (Y ′) over f consists of following data:

1. There is a homomorphism φσ : Gσ → G f (σ) of groups for each σ ∈V (Y ).

2. There is an element φ(a) ∈ Gt( f (a)) for each a ∈ E(Y ) such that

(a) Ad(φ(a))ψ f (a)φi(a) = φt(a)ψa,

and for all (a,b) ∈ E(2)(Y ),

(b) φt(a)(ga,b)φ(ab) = φ(a)ψ f (a)(φ(b))g f (a), f (b)

If f is an isomorphism of scwols and φσ is an isomorphism for every σ ∈V (Y ),
then φ is called an isomorphism.

Let us restate the above Definition 2.5.10 for an important case when Y ′ is a
single vertex.
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Definition 2.5.11. A morphism φ = (φσ ,φ(a)) from a complex of groups G (Y ) =

(Gσ ,ψa,ga,b) to a group G consists of a homomorphism φσ : Gσ → G for each
σ ∈V (Y ) and an element φ(a) ∈ G for each a ∈ E(Y ) such that the following hold.

φt(a)ψa = Ad(φ(a))φi(a) and φt(a)(ga,b)φ(ab) = φ(a)φ(b)

We say φ is injective on local groups if φσ ’s are injective for all σ ∈V (Y ).

2.5.1 The complex of groups associated to an action

Suppose a group G acts on a scwol X (see Definition 2.5.5) such that quotient
G\X = Y is a scwol. Let p : X → Y be the natural projection.

For each σ ∈ V (Y ), we choose σ̃ ∈ V (X ) such that p(σ̃) = σ . For each
a ∈ E(Y ) with i(a) = σ , by condition (2) of Definition 2.5.5, there is an unique
ã∈E(X ) such that i(ã) = σ̃ and p(ã) = a. Note that if τ = t(a), in general, τ̃ ̸= t(ã).
Then there is ha ∈G such that ha.t(ã)= τ̃ . For each σ ∈V (Y ), let Gσ be the isotropy
subgroup of σ̃ . Then for all a ∈ E(Y ), we define a map ψa : Gi(a) → Gt(a) by

ψa(g) = hagh−1
a .

Again condition (2) of Definition 2.5.5 tells that ψa is a well-defined homomorphism.
For composable edges (a,b) ∈ E(2)(Y ), we define

ga,b = hahbh−1
ab .

It is not hard to check that ga,b ∈ Gt(a).

The complex of groups over Y associated to the action of G on X (along with
the above choices) is

G (Y ) = (Gσ ,ψa,ga,b).

One can easily check that conditions (3) (a) and (3) (b) of Definition 2.5.7 are
satisfied.

We also note that there is a natural homomorphism associated to this action

φ : G (Y )→ G,

φ = (φσ ,φ(a)), where φσ : Gσ → G is the natural inclusion and φ(a) = ha. This is
a morphism which is injective on local groups.
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Again another choices of vertices σ̃ of σ ∈V (Y ) will give a complex of groups
which is isomorphic to the previous one (see [23], [21] for details).

Definition 2.5.12 (Developability). A complex of groups G (Y ) is said to be devel-
opable if it is isomorphic to a complex of groups associated to an action (in the sense
above) of a group G on a scwol X with G\X = Y .

Theorem 2.5.13. ([23, Theorem 2.13, III.C (The Basic Construction)]) Suppose
G (Y ) = (Gσ ,ψa,ga,b) is a complex of groups over a scwol Y .

1. Suppose G is a group. Canonically associated to each morphism φ : G (Y )→
G there is an action of G on a scwol D(Y ,φ) with quotient Y . (D(Y ,φ)

is called the development of Y with respect to φ .) If φ is injective on local
groups then G (Y ) is the complex of groups associated to the action of G on
D(Y ,φ) (with respect to canonical choices) and G (Y )→ G is the associated
morphism.

2. If G (Y ) is a complex of groups associated to an action of G on a scwol
X (with respect to some choices) and if φ : G (Y ) → G is the associated
morphism, then there is a G-equivariant isomorphism D(Y ,φ)→ X which
projects to the identity on Y .

We get an immediate corollary of the basic construction as follows. This is an
algebraic condition for a complex of groups to be developable. One notes that not all
complex of groups is developable (see [23, Chapter II.12, Examples 12.17, (5) and
(6)]).

Corollary 2.5.14. ([23, Corollary 2.15]) A complex of groups G (Y ) is developable
if and only if there exists a morphism φ from G (Y ) to some group G that is injective
on local groups.

2.5.2 The fundamental group of a complex of groups

Suppose G (Y ) = (Gσ ,ψa,ga,b) is a complex of groups over a connected scwol Y .
Let |Y | be the geometric realization of Y and T be a maximal tree in the 1-skeleton
|Y |(1) of |Y |. Then ‘the’ fundamental group of G (Y ) is a group, denoted by
π1(G (Y ),T ) and is generated by

⊔
σ∈V (Y )

Gσ

⊔
E±(Y )
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subject to the relations

the relations in the groups Gσ

(a+)− = a− and (a−)− = a+

(ab)+ = b+a+ga,b, ∀ (a,b) ∈ E(2)(Y )

ψa(g) = a−ga+, ∀ g ∈ Gi(a)

a+ = 1, ∀ a ∈ T

Theorem 2.5.15. ([23, Proposition 3.9, III.C]) A complex of groups G (Y ) over a
connected scwol Y is developable if and only if each of the natural homomorphisms
Gσ → π1(G (Y ),T ) is injective.

Now we will talk about the universal covering of a developable complex of
groups over a simplicial complex Y (see Definition 2.5.7).

Definition 2.5.16 (The Universal covering of a developable complex of groups).
Suppose G (Y ) is a developable complex of groups over a connected simplicial
complex Y , where Y is the corresponding scwol of Y . Suppose T is a maximal tree in
|Y |(1) (equivalently, in the first barycentric subdivision of Y ) and G = π1(G (Y ),T )
is the fundamental group of G (Y ). Let τ ⊆ σ ⊆ Y correspond to an edge a. Then
we assume that iT : G (Y )→ G is the natural morphism mapping each element of the
local group Gσ to the corresponding generator of G and each edge a to the generator
a− = iT (a) (see Proposition 2.5.15). Let

B :=
⊔

σ⊆Y

(G×σ)/∼ .

where for g ∈ G, g′ ∈ Gσ , x ∈ σ and σ ⊆ Y , we have (g,x) ∼ (giT (g′),x); also if
τ ⊆ σ correspond to the edge a and iτ,σ : τ → σ is the natural inclusion then for
g ∈ G, y ∈ τ , we have (g, iτ,σ (y))∼ (giT (a),y).

There is a natural left multiplication action of G on the first factor of B. Here B
is the universal cover of G (Y ).

We are interested mostly in combination theorem for complexes of groups. More
precisely, we prove in Chapter 5 (see Section 5.6) that under certain restrictions the
fundamental group of a complex of groups is hyperbolic. So our main object of
study the fundamental group π1(G (Y ),T ) and the natural morphism iT : G (Y )→
π1(G (Y ),T ) rather than the arbitrary morphism which is injective on local groups
(see Theorem 2.5.13). We will end this subsection by stating the following two
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theorems and we will recap some of the significant points regarding complexes of
groups via algebraic topology in the application in Section 5.6.

Theorem 2.5.17. ([23, Theorem 3.13, III.C]) The development B = D(Y , iT ) above
is connected and simply connected simplicial complex.

Theorem 2.5.18. ([23, Corollary 3.15, III.C]) Suppose G is a group acting on a
simply connected scwol X with quotient Y = G\X . Also, we assume that G (Y )

is the complex of groups associated to this action (with respect to some choices). Let
T be a maximal tree in the 1-skeleton of the geometric realization of Y . Then G is
isomorphic to π1(G (Y ),T ) and X is equivariantly isomorphic to D(Y , iT ).





Chapter 3

Cannon-Thurston maps for
morphisms of trees of hyperbolic
spaces

This paper makes substantial use of the results and proof techniques of the book [9].
In this books three general constructions are used repeatedly, namely ‘flow spaces’,
‘ladders’ and ‘boundary flow’. Therefore, we shall briefly recall them here for our
reference.

3.1 Flow spaces and their properties

Definition 3.1.1. (Flow spaces) Suppose u ∈V (T ) and A ⊂ Xu is a k-quasiconvex
subset for some k ≥ 1. Then by Lemma 2.3.4 and Lemma 2.2.22, A is k′-quasiconvex
in Xuv := π−1([u,v]) where k′ = K2.2.22(δ

′
0,L

′
0,k). Suppose R ≥ R′

2.2.13(δ
′
0,k

′)(≥
R2.2.13(δ

′
0,λ

′
0)) is fixed. Then the flow space determined by A, with constants k,R,

is denoted by F lX(A) and is defined inductively as follows: F lX(A) consists of a
collection {Av : v ∈V (S)} where

• S is a subtree of T containing u,

• Au = A and

• each Av, v ∈V (S), v ̸= u, is a 2δ0-quasiconvex subset of Xv.

The induction is on distance from u in T , and S and the sets Av’s are simultane-
ously constructed in the process.

Base of induction: For each v ∈V (T ) which is connected by an edge e to u we
check if A′

v := NR(A)∩Xv ̸= /0 (neighborhood is considered in Xuv) then we include
the segment [u,v] in S and we let Av = hull(A′

v) where hull is considered in Xv;

51
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otherwise, we do not include [u,v] in S. Thus by the first step of induction we get a
subtree of T contained in N1(u).

Induction step: Suppose v ∈ V (S) with d(u,v) = n. Then for each w ∈ V (T )
which is connected to v by an edge e′, say, such that dT (u,w) = n+ 1 we check
if A′

w := NR(A)∩Xw ̸= /0 (neighborhood is considered in Xvw), then we include
the segment [v,w] in S and define Aw = hull(A′

w) where hull is considered in Xw;
otherwise, we do not include [v,w] in S.

Let us see three fundamental properties of F lX(A) as follows. Suppose [v,w] is
an edge in T such that dT (u,v)< dT (u,w).

Property 1: Suppose v ∈ S and w /∈ S. Then by construction NR(Av)∩Xw = /0 (in
Xvw-metric). In particular, Av and Xw are R2.2.13(δ

′
0,λ

′
0)-separated in Xvw. Again Av

and Xw are λ ′
0-quasiconvex in Xvw (see Lemma 2.3.4 (2)). Then by Lemma 2.2.13,

the pair (Av,Xw) is C := D2.2.13(δ
′
0,λ

′
0)-cobounded in Xvw.

Property 2: Suppose v,w ∈ S. Then Aw ⊆ NK(Av) for some uniform constant K
depending on k,R, where the neighborhood is considered in Xvw.

Proof Let x ∈ Aw. Then ∃ x1,x2 ∈ A′
w and x ∈ [x1,x2]Xw . Let y1,y2 ∈ Av such

that dXvw(xi,yi)≤ R, i = 1,2. Note that if v = u, then by Lemma 2.3.4 and Lemma
2.2.22, Au = A is K2.2.22(δ

′
0,L

′
0,k)-quasiconvex in Xvw, and if v ̸= u then Av is

K2.2.22(δ
′
0,L

′
0,2δ0)-quasiconvex in Xvw. Let

K′ = max{K2.2.22(δ
′
0,L

′
0,k),K2.2.22(δ

′
0,L

′
0,2δ0)}.

Note that Aw is also K′-quasiconvex in Xvw. Then by slimness of quadrilateral in Xvw

with vertices x1,x2,y1 and y2, there is x′ ∈Av such that dXvw(x,x
′)≤D2.2.2(δ

′
0,L

′
0,L

′
0)+

K′+R+2δ ′
0 =: K (say).

Property 3: Suppose v,w ∈ S. Then HdXvw(PXvwXw(Av),Aw) ≤ ε for some uni-
form constant ε depending on k,R.

Proof : Property (2) says that Aw ⊆ N2K′(PXvwXw(Av)) (in Xvw-metric). Again by
construction PXvwXw(Av)⊆ Aw. So HdXvw(PXvwXw(Av),Aw)≤ 2K′ =: ε .

As a consequence of Proposition 2.3.8 we have the following

Proposition 3.1.2. Consider the map ρ as in Remark 2.3.7 for the subset F lX(A).
Then there is a constant L3.1.2(k) depending on k such that ρ can be extended to a
L3.1.2(k)-coarsely Lipschitz retraction X → F lX(A).
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3.1.1 Ladders

Ladder is a special type of flow space whose fibers are geodesic segments in the
respective fibers. Construction of a ladder given any geodesic segment is similar to
that of flow space. For a geodesic segment α , let us denote the end points of α by
α− and α+.

Definition 3.1.3 (Ladder). Suppose u ∈V (T ) and α is a geodesic segment in Xu.
Since α is δ0-quasiconvex, we fix R = R2.2.13(δ

′
0,δ0). Now the ladder determined

by α is denoted by LX(α) and is defined inductively as follows: LX(α) consists of
a collection {αv : v ∈V (S)} where

• S is a subtree of T containing u,
• αu = α ,
• each αv, v ∈V (S), v ̸= u is a geodesic segment of Xv.
The induction is on distance from u in T , and S and αv’s are simultaneously

constructed in the process.
Base of induction: For each v ∈ V (T ) which is connected by an edge to u we

check if NR(α)∩Xv ̸= /0 (neighborhood is considered in Xuv) then we let αv :=
[PXuvXv(α

−),PXuvXv(α
+)]Xv and we include the segment [u,v] in S; otherwise, we do

not include [u,v] in S. Thus by the first step of induction we get a subtree of T
contained in N1(u).

Induction step: Suppose v ∈ V (S) with dT (u,v) = n. Then for each w ∈ V (T )
which is connected to v by an edge such that dT (u,w) = n+1, we check if NR(αv)∩
Xw ̸= /0 (neighborhood is considered in Xvw), then we include the edge [v,w] in S and
define αw := [PXvwXw(α

−
v ),PXvwXw(α

+
v )]Xw; otherwise, we do not include [v,w] in S.

We have the following three fundamental properties for ladder as we had for flow
space. The proof is similar to that of flow space. Suppose [v,w] is an edge in T such
that dT (u,v)< dT (u,w).

Property 1: Suppose v ∈ V (S) and w /∈ V (S). Then the pair (αv,Xw) is C-
cobounded in Xvw where C = D2.2.13(δ

′
0,δ0).

Property 2: Let v,w ∈V (S). Then αw ⊆ NK(αv) for some uniform constant K.
Property 3: Suppose v,w ∈ V (S). Then HdXvw(PXvwXw(αv),αw) ≤ ε for some

uniform constant ε .
Hence as a consequence of Proposition 2.3.8 we have the following.

Proposition 3.1.4. Consider the map ρ as in Remark 2.3.7 for the subset LX(α).
Then there is a uniform constant L3.1.4 such that ρ can be extended to a L3.1.4-
coarsely Lipschitz retraction X → LX(α).
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In a similar way one can define ladder determined by a geodesic ray or line.
Since we will not directly use ladder determined by a geodesic line in this thesis, so
we will define the same only for geodesic ray as follows.

Definition 3.1.5 (Semi-infinite ladder). Suppose α is a geodesic ray in Xu for some
u ∈V (T ). Construction is same as ladder with following changes.

Suppose v ∈ V (T ) such that dT (u,v) = 1. If NR(α)∩Xv ̸= /0 and is of finite
diameter in Xuv, then take a point, say, α+

v ∈ NR(α)∩Xv which is farthest from
PXuvXv(α(0)). Now we set αv := [PXuvXv(α(0)),α+

v ]Xv . If NR(α)∩Xv ̸= /0 and is of
infinite diameter in Xuv, then it is not hard to see that α(∞) ∈ Λ(Xeu). Then we set
αv to be a geodesic ray in Xv joining PXuvXv(α(0)) and ∂ϑev(∂ϑ−1

eu (α(∞))). Let us
denote the semi-infinite ladder determined by α by LX(α,α(∞)). We put α(∞) to
emphasize that α is a geodesic ray.

Remark 3.1.6. Conditions (1)− (4) of Proposition 2.3.8 are satisfied by the subset
LX(α,α(∞)) for some uniform constants.

3.2 Boundary of X

In general it is difficult to describe the geodesic rays in X . However, one of the main
result of this subsection is the following theorem that gives a rough understanding of
the points of ∂X .

Theorem 3.2.1. Suppose ξ ∈ ∂X. Then there is a sequence {xn} in X such that
limX

n→∞ xn = ξ along with one of the following additional properties:
(1) {π(xn)} is a constant sequence or
(2) there is a geodesic ray α in T such that π(xn)∈α for all n∈N and limT

n→∞ π(xn)=

α(∞).

We postpone the proof of the theorem to collect a couple of facts needed for the
proof.

Lemma 3.2.2. Suppose {xn} is an unbounded sequence in X such that limX
n→∞ xn ∈

∂X. Suppose S is the convex hull in T of the set {π(xn) : n ∈ N} and that there
is a vertex of infinite degree in S. Suppose u is any such vertex and {xnk} is any
subsequence of {xn} such that [u,π(xnk)]T ∩ [u,π(xnl)]T = {u} for k ̸= l. Let ek be
the edge on [u,π(xnk)]T incident on u. Then for all k ∈N, there is x′k ∈ Xeku such that
limX

n→∞ xn = limX
n→∞ x′n.
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Moreover, suppose that the subsequence {xnk} is chosen (see Remark 3.2.3) in
such a way that the sets Xeku converges to a point of ∂Xu, and suppose x′′k is an
arbitrary point of Xeku for all k ∈ N. Then limX

n→∞ xn = limX
n→∞ x′′n .

Remark 3.2.3. We note that in the case (2) of Lemma 3.2.2, {Xeku : k ∈ N} is an
infinite, locally finite collection (see Lemma 2.3.3) of uniformly quasiconvex subsets
of Xu. Hence, by Lemma 2.2.37 we can always extract a subsequence of {Xeku}
satisfying the cobdition of the second part of the lemma.

Proof of Lemma 3.2.2. Fix x ∈ Xu. Then for all k ∈N, [x,xnk ]X ∩Xeku ̸= /0. Let x′k
be any point of [x,xnk ]X ∩Xeku. Since {Xeku} is a locally finite collection of subsets
in Xu, by Lemma 2.2.36, dXu(x,Xeku)→ ∞ as k → ∞. It follows that dXu(x,x

′
k)→ ∞

as k → ∞. Then by Lemma 2.2.33, we have limX
n→∞ x′n = limX

n→∞ xn.
Moreover if Xeku → ξ ∈ ∂Xu as k → ∞ then for any choices of x′′k ∈ Xeku, k ∈ N,

we have limXu
n→∞ x′n = limXu

n→∞ x′′n . Since the inclusion Xu → X admits the CT map we
have limX

n→∞ x′′n = limX
n→∞ x′n = limX

n→∞ xn.
Proof of Theorem 3.2.1: Let {x′n} be any sequence in X such that limX

n→∞ x′n = ξ .
Let S be the convex hull in T of the set {π(x′n) : n ∈ N}. There are two cases to
consider.

Case 1: Suppose S is a locally finite tree, i.e. all its vertices are of finite degree.
Note that if S is bounded then there is a subsequence {x′nk

} of {x′n} such that x′nk
∈ Xu

for some u ∈ T . Now suppose S is unbounded. Then, by Lemma 2.2.29, there is
a geodesic ray α : [0,∞)→ S. Let u = α(0) and let {x′nk

} be subsequence of {x′n}
such that limk→∞ π(x′nk

) = α(∞). Fix x ∈ Xu. Let vk be the nearest point projection
of π(x′nk

) on α . We note that [x,x′nk
]X ∩Xvk ̸= /0 for all k ∈ N. Let xk ∈ [x,x′nk

]X ∩Xvk

for all k ∈ N. Then by Lemma 2.2.33 limX
n→∞ x′n = limk→∞ x′nk

= limk→∞ xk.
Case 2: Suppose S has a vertex of infinite degree. Then we are done by Lemma

3.2.2.
In the rest of the subsection we prove a few other related results which come to

use in the later part of the paper.

Lemma 3.2.4. Suppose {xn} is an unbounded sequence in X such that limX
n→∞ xn

exists. Let un = π(xn) for all n ∈ N and suppose dT (u,un)→ ∞ as n → ∞. Let en be
the edge on [u,un] incident on un for all n ∈N and let x′n be a nearest point projection
of xn on Xenun in Xun . Then limX

n→∞ x′n = limX
n→∞ xn.

Proof. We will show that there are uniformly quasiconvex subsets, say, Zn of X
containing both xn and x′n such that for a fixed x ∈ X , dX(x,Zn) → ∞ as n → ∞.
Then by Lemma 2.2.23 (1), there is uniform D such that ND(Zn) is uniformly qi
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embedded in X . So geodesics in ND(Zn) are uniform quasigeodesic in X . Note that
dX(x,ND(Zn))→ ∞ as n → ∞. Hence by stability of quasigeodesic (Lemma 2.2.2),
dX(x, [xn,x′n]X)→∞ as n→∞. Therefore, by Lemma 2.2.32, limX

n→∞ xn = limX
n→∞ x′n.

Finding Zn: Let vn ∈ [u,un] such that dT (vn,un) = 1. Since Xenun is uniformly
quasiconvex in Xun , by Lemma 2.2.19 (1), diam{PXunXenun

([xn,x′n]Xun
)} is uniformly

bounded. Then it follows that the pair (Xvn, [xn,x′n]Xun
) is uniformly cobounded in

Xvnun . Let Tn be the connected component of T \ {vn} containing un. Let Zn =

LX(α)∩XTn . Consider the map ρ as in Remark 2.3.7 for the subset Zn. Note that Zn

satisfies Property (1), (2), (3) (as in Definition 3.1.3) for uniform constants. Then it
follows from Proposition 2.3.8 (and in addition Lemma 2.1.2) that ρ can be extended
to a uniformly coarsely Lipschitz retraction X → Zn. Since X is hyperbolic, Zn is
uniformly quasiconvex in X (see Lemma 2.2.12).

Given ξ ∈ ∂X , by Theorem 3.2.1 there is a sequence {xn} such that either
{π(xn)} is constant or limn→∞ π(xn) ∈ ∂T and limX

n→∞ xn = ξ . However, these two
possibilities are not mutually exclusive, i.e. we may have two different sequences
{xn} and {x′n} such that limX

n→∞ xn = limX
n→∞ x′n = ξ where {π(xn)} is constant but

{π(x′n)} converges to a point of ∂T . The following lemma records the implication
of such an instance.

Lemma 3.2.5. Suppose {xn}, {x′n} are two unbounded sequences in X such that
limX

n→∞ xn = limX
n→∞ x′n ∈ ∂X, and limT

n→∞ π(xn) = ξ ∈ ∂T . Suppose that the nearest
point projection of each π(x′n) on the geodesic ray [u,ξ ) is u for some u ∈ V (T ).
Then F lX(Xu) and F lX(Xv) are not cobounded for any vertex v ∈ (u,ξ ).

Proof. Suppose v ∈ [u,ξ ) is such that F lX(Xu)) and F lX(Xv) are cobounded. Since
X is hyperbolic metric space, by Lemma 3.1.2 and Lemma 2.2.12, F lX(Xu) and
F lX(Xv) are uniformly quasiconvex in X . Let vn be the nearest point projection of
π(xn) on [u,ξ ). Since limT

n→∞ π(xn) = ξ , there is N ∈ N such that for vn ∈ [v,ξ ) for
all n ≥ N, n ∈ N. Therefore, any geodesic segment [x′n,xn]X has a subsegment, say,
αn joining a point in Xu to a point in Xv. Since F lX(Xu), F lX(Xv) are cobounded,
by Lemma 2.2.16 there is a point of F lX(Xu) uniformly close to αn, for all n ≥ N.
In particular, for any x ∈ X , dX(x, [x′n,xn]X) is bounded. This is a contradiction, by
Lemma 2.2.32 (2), as limX

n→∞ xn = limX
n→∞ x′n ∈ ∂X . Hence we are done.
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3.2.1 Boundary flow

Definition 3.2.6. [36, Definition 4.3] (1) Suppose u,v ∈V (T ) are connected by an
edge e. If ξu ∈ ∂Xu is in the iamge of ∂ϑeu : ∂Xe → ∂Xu, then ∂ϑev((∂ϑeu)

−1(ξu)) =

ξv, say, is called the boundary flow of ξu to Xv (or more precisely ∂Xv).
(2) Suppose u,v ∈V (T ) are any two vertices and u0 = u,u1, · · · ,un = v are the

consecutive vertices on [u,v]. Suppose ξ0 ∈ ∂Xu and ξn ∈ ∂Xv. We say that ξn is the
boundary flow of ξ0 if there are ξi ∈ ∂Xui , 1 ≤ i ≤ n−1 such that ξi is the boundary
flow of ξi−1 for all 1 ≤ i ≤ n.

In this case we say that ξ0 can be flowed to Xv. Clearly boundary flow of a point
of ∂Xu to ∂Xv is unique if it exists.

Lemma 3.2.7. [36, Lemma 4.4] Suppose u,v ∈V (T ) are any two vertices. Suppose
ξu ∈ ∂Xu and ξv ∈ ∂Xv. Suppose αu ⊂ Xu and αv ⊂ Xv are geodesic rays in these
vertex spaces such that αu(∞) = ξu and αv(∞) = ξv. If ξv is the boundary flow of ξu

then HdX(αu,αv)< ∞.

Proposition 3.2.8. [37, Proposition 2.3] Suppose ξu ∈ ∂Xu and ξv ∈ ∂Xv are mapped
to the same point of ∂X under the CT maps ∂ iXuX : ∂Xu → ∂X and ∂ iXvX : ∂Xv → ∂X.
Then there is a vertex w ∈ [u,v] such that both ξu,ξv can be boundary flowed to Xw.

Definition 3.2.9 (Conical limit). Suppose Z is a subset of a hyperbolic geodesic
metric space W . A point p ∈ ∂W is said to be a conical limit point of Z if some (any)
(quasi) geodesic ray, say, α : [0,∞)→ Z such that α(∞) = p, there is R ≥ 0 and a
sequence {zn} ⊆ NR(α)∩Z such that limW

n→∞ zn = p ∈ ∂W .

Remark 3.2.10. Suppose π : X → T is the tree of hyperbolic spaces under considera-
tion. For any ξ ∈ ∂X , either it is a conical limit point of some vertex space or it is
not a conical limit point of any vertex space.

Lemma 3.2.11. Suppose α : [0,∞)→ X is a geodesic ray such that α(∞) is not a
conical limit point of any vertex space of X. Then π(α[0,∞)) is a infinite locally
finite subtree in T and hence contains a geodesic ray in T . Moreover, this ray is
unique.

Proof. As we will see in the proof that this is a result for trees of hyperbolic metric
spaces under consideration. So we proof only for π : X → T . On contrary, suppose
∃ u ∈ π(α[0,∞)) such that u is a vertex of infinite degree in π(α[0,∞)). Then there
is a subsequence {rn} ⊆N such that α(rn) ∈ Xu for all n ∈N. Since X is hyperbolic,
α(∞) is a conical limit point of Xu − which contradicts to our assumption. Hence
π(α[0,∞)) is a locally finite subtree in T .
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Again if π(α[0,∞)) is of finite diameter then we have a vertex u ∈V (T ) with the
same conclusion above.

By Lemma 2.2.29, we have ∂π(α[0,∞)) ̸= /0. Now we show that the geodesic
ray in π(α([0,∞)) is unique. If it is not and since α is a geodesic ray, then we have
a vertex u ∈V (T ) with the same conclusion as in first paragraph of the proof.

Therefore, we are done.

Lemma 3.2.12. Suppose β is a geodesic ray in Xu and α is that in X such that
α(∞) is not a conical limit point of any vertex space. Further, we assume that
limX

n→∞ α(n) = limX
n→∞ β (n). Then β (∞) has boundary flow in Xv for all vertex

v ∈ [u,ξ ) where ξ ∈ ∂π(α).

Proof. Note that by Lemma 3.2.11, π(α) contains an unique ray, say, [u,ξ ) for
some ξ ∈ ∂T . For the sake of contradiction, let v,w ∈ [u,ξ ) be a vertices such
that dT (v,w) = 1 and β (∞) flows in Xv but does not flow in Xw. We will find a
k-quasiconvex subset, say, Z in X containing β such that π(Z)∩ [u,ξ ) = [u,w] for
some w ∈ V (T ). Then we will be done as follows. Since α(∞) is not a conical
limit point of any vertex space, we take r ∈ R such that π(α|[r,∞))∩ [u,ξ ) = [w,ξ )
and dT (w,π(α(r))) > R2.2.13(δ ,k) = R where X is δ -hyperbolic. In particular,
dX(Z,α|[r,∞)) > R, and so by Lemma 2.2.13, the pair (Z,α|[r,∞)) is D2.2.13(δ ,k)-
cobounded in X . Then by Lemma 2.2.16, for all large n ∈ N, every geodesic
joining β (n) and α(n) passes through a fixed point in X . This is a contradiction to
limX

n→∞ α(n) = limX
n→∞ β (n) (see Lemma 2.2.32 (2)).

Finding Z: Note that LX(β ,β (∞))∩Xv is a geodesic ray in Xv but LX(β ,β (∞))∩
Xw is a finite geodesic segment in Xw. Let w′ ∈ [w,ξ ) such that dT (w,w′) = 1.
Suppose T1 is the connected component of T \{w} containing w′. Set Z = LX(β )∩
XT1 . Consider the map ρ as in Remark 2.3.7 for the subset Z. Since LX(β ,β (∞))∩Xw

is a finite geodesic segments, conditions (1)− (4) of Proposition 2.3.8 are satisfied
by the subset Z (see also Remark 3.1.6) for some uniform constants. Hence by
Proposition 2.3.8 that ρ can be extended to uniformly coarsely Lipschitz retraction
X → Z. Since X is hyperbolic, Z is a uniformly quasiconvex in X (see Lemma
2.2.12).

3.3 Morphisms of trees of spaces

Definition 3.3.1. (I) Suppose π1 : X1 → T1 and π2 : X2 → T2 are two trees of metric
spaces. A morphism of trees of spaces from X1 to X2, for us, consists of the following
data:
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1. An isometric embedding ι : T1 → T2.

2. A coarsely Lipschitz map f : X1 → X2 such that diagram below commutes.

X1 X2

T1 T2

f

π1 ↷ π2

ι

(II) A morphism ( f , ι) : (X1,T1)→ (X2,T2) between trees of metric spaces will
be called an isomorphism if the following hold:

1. ι is an isometry,

2. f is a quasiisometry,

3. there is a morphism (g, ι−1) : (X2,T2)→ (X1,T1) where g is a quasiisometry,

4. f ,g are coarse invereses to each other.

A trivial way to construct examples of morphisms is to take restrictions as defined
below.

Example 3.3.2. Suppose π : X → T is a tree of space and S ⊂ T is a subtree. Let
XS := π−1(S). Let π|XS : XS → S be the restriction of π : X → T to XS. We note that
(1) in this case XS is given the induced length metric from X whence the inclusion
XS → X is Lipschitz; and (2) the inclusions S → T , XS → X give a morphism of trees
of spaces.

Although the results sought after this section can be formulated and proved for
more general morphisms of trees of spaces, we will deal with only a very special
type of morphisms as described below. This will include all the examples coming
from graphs of groups.

3.3.1 Induced trees of spaces

Suppose π : X → T is a tree of metric spaces, S is a subtree of T and Y ⊂ XS such
that the restriction of π to Y gives a tree of metric spaces; or equivalently suppose
that there is a tree of metric space π1 : Y → S and a morphism ( f , ι) : (Y,S)→ (X ,T )
where f and ι are inclusion maps. Then we will say that Y has an induced tree
of metric space structure from X or simply that Y is an induced tree metric space
(obtained from X).
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For the rest of this section and the next section we fix the following notation and
convention.

Convention 3.3.3. 1. π : X → T is a tree of hyperbolic metric spaces with pa-
rameters φ ,δ0,L0 as defined in Definition 2.3.1.

2. S ⊂ T is a subtree and πY : Y → S is a tree of hyperbolic metric spaces with
parameters φ ,δ0,L0.

3. Y ⊂ X , πY is the restriction of π on Y , and the inclusion Y → X is φ -proper
embedding.

4. The inclusions Yv → Xv, v ∈V (S) admit the CT-map.

5. The inclusions Ye → Xe, e ∈ E(S), are L-qi embeddings for a constant L ≥ 1.

6. Both X and Y are proper hyperbolic geodesic metric spaces.

We shall refer to πY : Y → S where Y ⊂ X as above as an induced (sub)tree of
spaces satisfying property H C .

Remark 3.3.4. (1) Under the above hypotheses in Convention 3.3.3 hyperbolicity of
Y is ensured. Indeed, since X is hyperbolic, π : X → T satisfies Bestvina-Feighn’s
flaring condition (see [6]) which implies the same for Y as Y → X is proper embed-
ding. Basically the proof of [10, Proposition 5.8] works in this case too. Hence, by
[6], Y is hyperbolic.

(2) Since Y → X is proper embedding, then by Lemma 2.3.2, for all v ∈V (S),
the inclusions Yv → Xv are uniformly properly embedded.

Lemma 3.3.5. Suppose {yn},{y′n} are two unbounded sequences of points in Yu such
that limYu

n→∞ yn, limYu
n→∞ y′n ∈ ∂Yu. If limY

n→∞ yn = limY
n→∞ y′n ∈ ∂Y then limX

n→∞ yn =

limX
n→∞ y′n ∈ ∂X.

Proof. Since the CT maps for the inclusions Yu → Xu and Xu → X exist, by the
functoriality of CT-maps (see Lemma 2.2.39), we see that limX

n→∞ yn and limX
n→∞ y′n

exist; and they are equal if limYu
n→∞ yn = limYu

n→∞ y′n. Suppose limYu
n→∞ yn ̸= limYu

n→∞ y′n.
Let α be a geodesic line in Yu such that α(−∞) = limYu

n→∞ yn and α(∞) = limYu
n→∞ y′n.

Then by [9, Proposition 8.54 (1)], there is a geodesic ray [u,ξ ) in T such that both
α(−∞) and α(∞) flow in Yv for all vertex v ∈ [u,ξ ). Since edge spaces are uniformly
qi embedded in corresponding edge spaces of X , so both α(−∞) and α(∞) have
boundary flow in Xv for all vertex v ∈ [u,ξ ) and they are not equal in ∂Xv. Therefore,
α is a uniform quasi-geodesic in both Xu and Yu. Fix y ∈ Yu. Then by the description
of uniform quasi-geodesic given in [9, Proposition 8.49] joining α(n) and α(−n),
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we can conclude the following. If γn’s are uniform quasi-geodesic joining α(−n)
and α(n) in Y and γ ′n’s are that in X , then HdX(γn,γ

′
n) is uniformly bounded for

all n ∈ N. Since limY
n→∞ α(n) = limY

n→∞ α(−n), then by stability of quasi-geodesic,
dY (y,γn)→ ∞ as n → ∞ (see Lemma 2.2.32 (2)). Since Y is properly embedded in X ,
dX(y,γ ′n)→ ∞ as n → ∞. Thus, by the same lemma, limX

n→∞ α(n) = limX
n→∞ α ′(n).

Since Yu → Xu and Xu → X admit the CT-maps (see [8] for later one) and by the
functoriality property of CT-map (see Lemma 2.2.39), we are through.

A generalization of Lemma 3.3.5 is the following.

Lemma 3.3.6. Suppose {yn} is an unbounded sequence in Y such that both limX
n→∞ yn,

and limY
n→∞ yn exist. Let T1 be the convex hull of {π(yn) : n ∈ N} in T . Suppose,

moreover, one of the following holds:
(1) {π(yn)} is bounded.
(2) There is a vertex of infinite degree in T1.
Then there is a point u ∈V (T1) and a sequence {y′n} in Yu such that limY

n→∞ y′n =
limY

n→∞ yn and limX
n→∞ yn = limX

n→∞ y′n.

Proof. We note that in case {π(yn)} is bounded, either there is constant subsequence
of {π(xn} or T1 has a vertex of infinite degree. Hence we may divide the proof into
the following two cases:

Case 1. Suppose there is a constant subsequence {π(ynk)} of {π(yn)}. Let
u = π(ynk) for all k ∈ N. Then ynk ∈ Yu for all k ∈ N. Let y′k = ynk , k ∈ N. We note
that limX

n→∞ y′n = limX
n→∞ yn and limY

n→∞ y′n = limY
n→∞ yn.

Case 2. Suppose T1 has a vertex u of infinite degree. Suppose {ynk} is a
subsequence of {yn} such that [u,ynk ]T ∩ [u,ynl ]T = {u} for all k ̸= l. For all k ∈ N,
let ek be the edge on [u,ynk ]T which is incident on u. By passing to a further
subsequence we may assume that the sequence of quasiconvex sets Yeku converges
to a point of ∂Yu and the sequence of quasiconvex sets {Xeku} converges to a point
of ∂Xu as k → ∞ (see Remark 3.2.3). Therefore, if we take y′k ∈ Yeku ⊂ Xeku for
all k ∈ N then, by the last part of Lemma 3.2.2, we get limX

n→∞ y′n = limX
n→∞ yn and

limY
n→∞ y′n = limY

n→∞ yn.

Proposition 3.3.7. Suppose {yn},{zn} are two unbounded sequences in Y converging
to the same point of ∂Y which satisfy the property (1) or (2) of Lemma 3.3.6. If
limX

n→∞ yn, limX
n→∞ zn exist then they are equal.

Proof. Consider the sequence {yn}. By Lemma 3.3.6 we can find a vertex u ∈
V (T ) and a sequence {y′n} in Yu such that limY

n→∞ yn = limY
n→∞ y′n and limX

n→∞ yn =

limX
n→∞ y′n. Similarly, we can find a vertex v ∈ V (T ) and a sequence {z′n} in Yv
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such that limY
n→∞ zn = limY

n→∞ z′n and limX
n→∞ zn = limX

n→∞ z′n. Passing to further
subsequences, if necessary, we may assume that limYu

n→∞ y′n and limYv
n→∞ z′n exist.

Now, it is enough to show that limX
n→∞ y′n = limX

n→∞ z′n. Let αu and αv be
two geodesic rays in Yu and Yv respectively such that limYu

n→∞ y′n = αu(∞) and
limYv

n→∞ z′n = αv(∞). Since the inclusion map Yu → Y admits the CT map we have
limY

n→∞ y′n = limY
n→∞ αu(n) and limY

n→∞ z′n = limY
n→∞ αv(n). Similarly, since the

inclusion maps Yu → Xu and Xu → X admit the CT maps we have limX
n→∞ y′n =

limX
n→∞ αu(n) and limX

n→∞ z′n = limX
n→∞ αv(n). Hence, we are reduced to show-

ing that limX
n→∞ αu(n) = limX

n→∞ αv(n). Note that limY
n→∞ αu(n) = limY

n→∞ αv(n)
as limY

n→∞ y′n = limY
n→∞ z′n. This means that ∂ iYuY (αu(∞)) = ∂ iYvY (αv(∞)). So by

Proposition 3.2.8 there is a vertex w ∈ [u,v] such that both αu(∞) and αv(∞) bound-
ary flow to ∂Yw. Let β and β ′ be geodesic rays in Yw such that the boundary flows
of αu(∞) and αv(∞) in ∂Yw are respectively β (∞) and β ′(∞). Then by Lemma
3.2.7 we have HdY (αu,β ) < ∞, HdY (αv,β

′) < ∞. This implies HdX(αu,β ) < ∞,
and HdX(αv,β

′) < ∞ respectively since the inclusion Y → X is Lipschitz. How-
ever, HdY (αu,β ) < ∞ implies limY

n→∞ αu(n) = limY
n→∞ β (n). Similarly we have

limY
n→∞ αv(n) = limY

n→∞ β ′(n), limX
n→∞ αu(n) = limX

n→∞ β (n) and limX
n→∞ αv(n) =

limX
n→∞ β ′(n). Thus it is enough to show that limX

n→∞ β (n) = limX
n→∞ β ′(n). Note

that limY
n→∞ β (n) = limY

n→∞ β ′(n) as we had limY
n→∞ αu(n) = limY

n→∞ αv(n). There-
fore, we can apply Lemma 3.3.5 to the sequences {β (n)} and {β ′(n)} to finish the
proof.

3.3.2 Induced trees of spaces with projection hypothesis

Projection hypothesis: There is a constant R0 ≥ 0 such that for all v ∈ V (S) and
e ∈ E(S) where e is incident on v, and for all x ∈ Yv we have

dXv(PXvXev(x),PYvYev(x))≤ R0.

Remark 3.3.8. (1) For results proved in Section 3.4 we shall explicitly mention where
the projection hypothesis is needed. mention it all the time.

(2) Although the projection hypothesis may seem unnatural it holds in the fol-
lowing situations:

• If for all v ∈ V (S), Yv is uniformly qi embedded (or equivalently uniformly
quasiconvex) in Xv then the projection hypothesis holds See Lemma 2.2.24.

• Suppose for all e ∈ E(S), the qi embeddings Ye → Xe are all uniform quasi-
isometries and there is a proper map φ : R≥0 →R≥0 such that for all v ∈V (S),
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the inclusions Yv → Xv satisfy uniform Mitra’s criterion with the function
φ (see Definition 2.2.41). Then the projection hypothesis holds. Indeed, by
Lemma 2.2.44, it is enough to show that for all v ∈V (S) the inclusions Yv → Xv

are uniformly properly embedded. This fact is actually Remark 3.3.4 (2).

3.4 Proof of Theorem 1.1.6

Note that XS is hyperbolic by [6] where XS := π−1(S). By [9, Theorem 8.11], the
CT map exists for the inclusion i : XS ↪→ X . Therefore, it is enough to show that the
CT map exists for the inclusion i : Y → X where both X and Y have same base T .
We are going to assume this for the rest of the proof.

Convention 3.4.1. For the rest of the section we shall assume that the trees of spaces
X and Y satisfy the following:
(1) Properties mentioned in Convention 3.3.3.
(2) The projection hypothesis (see Subsection 3.3.2).
(3) S = T .

Lemma 3.4.2. Let u ∈ V (T ) and e′ ∈ E(T ) be an edge incident on u. Suppose
A ⊆ Ye′u is a k-quasiconvex in Yu for some k ≥ 0. Let F lY (A) be the flow space of A
inside Y with constants k,R ≥ R′

2.2.13(δ
′
0,k

′) as in Definition 3.1.1. Let e = [v,w] be
an edge in T such that dT (u,v)< dT (u,w). Then we have the following.

(1) Suppose v ∈ π(F lY (A)) and w /∈ π(F lY (A)). Then the pair (Av,Xw) is
C1-cobounded for some uniform constant C1.

Suppose v,w ∈ π(F lY (A)).
(2) Then Aw ⊆ NK1(Av) (in Xvw-metric) for some uniform constant K1, and
(3) HdXvw(PXvwXw(Av),Aw)≤ ε1 for some uniform constant ε1.

Proof. First of all, we note that PYvwYw(Av)=ϑew(ϑ
−1
ev (PYvYev(Av))) and PXvwXw(Av)=

ϑew(ϑ
−1
ev (PXvXev(Av))). By Projection hypothesis HdXv(PXvXev(Av),PYvYev(Av)) is uni-

formly bounded.
(1) Property (1) of F lY (A) (as in Definition 3.1.1) says that the pair (Av,Yw) is

C-cobounded in Yvw where C = D2.2.13(δ
′
0,k

′), i.e., diam{PYvwYw(Aw)} ≤ C. Since
ϑev and ϑew are uniformly qi embeddings, then by the first paragraph of the proof,
we have a uniform bound on PYvYev(Av). It then follows that diam{PXvXev(Av)} is
uniformly bounded, and so PXvwXw(Av) is uniformly bounded. Therefore, by Lemma
2.2.18 we are done.

(2) Since Yvw ⊆ Xvw, we can take K = K1 as in Property (2) of Definition 3.1.1.
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(3) Note that HdYvw(PYvwYw(Av),Aw)≤ ε (Property (3) of F lY (A)). Then by first
paragraph of the proof and the fact that ϑev and ϑew are uniformly qi embeddings,
we are through.

Lemma 3.4.3. Suppose F lY (A) is the flow space as in Lemma 3.4.2. Consider the
map ρ as in Remark 2.3.7 for the subset F lY (A). Then:

(1) ρ can be extended to a uniformly coarsely Lipschitz retraction X → F lY (A).
(2) F lY (A) is uniformly quasiconvex in Y as well as in X.

Proof. Since X and Y are hyperbolic metric spaces, (2) follows from (1) and Propo-
sition 3.1.2 in addition to Lemma 2.2.12.

We first observe that Yw ∩F lY (A) is a uniformly quasiconvex subset of Xw for
all w ∈ π(F lY (A)). This is clear for u = w since Yeu is uniformly qi embedded in
Xu. Let v ∈ [u,w] such that dT (v,w) = 1. Note that Aw is 2δ0-quasiconvex in Yw and
HdYvw(PYvwYw(Av),Aw)≤ ε . So PYvwYw(Av) is uniformly quasiconvex in Yw. Since the
edge spaces of Y are uniformly qi embedded in the corresponding vertex spaces
of X and PYvwYw(Av) ⊆ Yew, so PYvwYw(Av) is uniformly quasiconvex in Xw. Hence,
HdXvw(PYvwYw(Av),Aw) ≤ HdYvw(PYvwYw(Av),Aw) ≤ ε implies that Aw is uniformly
quasiconvex in Xw. Let the uniform quasiconvexity constant be k1.

Therefore, by Lemma 3.4.2, conditions (1)−(4) of Proposition 2.3.8 are satisfied
by ρ : ∪v∈v(T )Xv → F lY (A) for some uniform constants where ρ is as in Remark
2.3.7; whence (1) follows.

The following theorem gives a comparison between X-geodesics and Y -geodesics
joining the same pair of end points.

Theorem 3.4.4. There are constants D,D′ such that the following hold:
Suppose u,v ∈ T and w ∈ [u,v]. Let e be the edge on [w,v] (or [u,w]) incident on w.

(1) If y ∈ Yu and y′ ∈ Yv belong to some edge spaces in the respective vertex
spaces then ND(Yew)∩ [y,y′]X ̸= /0

(2) If z ∈ Yv belong to some edge space of Yv and z′ ∈ Yew then d(u,π([z,z′]X))≥
d(u,π(F lY (Yew)))−D′.

Proof. We first construct a subspace which is the union of flow spaces in Y in
the directions away from [u,v]. This then will be a uniformly quasiconvex set
in X containing the various points given in the theorem. The very nature of the
quasiconvex set will help us to prove the theorem. We shall assume that e is on [w,v]
since the proof for the other case is absolutely analogous.

For any edge e incident on u, we assume that Yeu is k-quasiconvex in both Xu and
Yu. We also fix R′ = R2.2.13(δ0,k) = 2k+5δ0.
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Suppose u = u1,u2, · · · ,un = v is the sequence of vertices on the geodesic
[u1,un] ⊂ T with d(u1,ui) = i− 1, 1 ≤ i ≤ n. Suppose ei is the edge joining ui

and ui+1. Then for all 1 ≤ i ≤ n we first define a uniformly quasiconvex subset
Ai ⊂ Xui as follows:

Construction of Ai’s:
Let us fix two edges e0 incident on u1 and en incident on un such that y ∈ Ye0u1

and y′ ∈ Yenun .

Type 1. For 1 ≤ i ≤ n if Yeiui and Yei−1ui are R′-separated in Xui then we let
zi−1 ∈ PXuiYeiui

(Yei−1ui) and zi ∈ PXuiYei−1ui
(Yeiui). (Note that projection hypothesis says

that the pair (Yei−1ui,Yeiui) is uniformly cobounded in Xui if and only if it is so in Yui .)
In this case we define Ai = Yeiuu ∪Yei−1ui ∪ [yi,zi]Xui

.

Type 2. On the other hand if dXui
(Yei,ui,Yei−1ui)≤ R′ then we define Ai = Yei,ui ∪

Yei−1ui .

Properties of Ai’s:

Property 1. First of all, clearly Ai is K1-quasiconvex in Xui for some uniform
constant K1 depending on k, δ0. This follows from the fact that the edge spaces of Y
are k-quasiconvex in the corresponding vertex spaces of X and Lemma 2.2.17.

Property 2. HdXui
(PXui Xeiui

(Ai),Yeiui) and HdXui
(PXuiXei−1ui

(Ai),Yei−1ui) are uni-
formly small. This is clear if Ai is of type 2 using the projection hypothesis. When
Ai is of type 1 one has to use Lemma 2.2.19 (1) in addition.

Property 3. Suppose e′ is an edge incident on ui which is not on [u,v]. Let
PXui Xe′ui

(Ai) = BX
i,e′ and PYuiYe′ui

(Yeiui ∪Yei−1ui) = BY
i,e′ . Then by Lemma 2.2.19 (2), BX

i,e′

is K2-quasiconvex in Xui for some K2 depending on k, δ0. By projection hypothesis
and (1) of Lemma 2.2.19, HdXui

(BX
i,e′,B

Y
i,e′) ≤ R1 for some R1 depending on R0, k,

δ0 where R0 is coming from projection hypothesis. Hence BY
i,e′ is K3-quasiconvex in

both Yui and Xui for some K3 depending on K2, R1, δ0.

Let K be maximum of all quasiconvexity constants we have above and R =

R2.2.13(δ
′
0,K) = 2K + 5δ ′

0 > 2k+ 5δ0 = R′. Given an edge e incident on u and a
K-quasiconvex subset A ⊆Yeu, we fix F lY (A) is flow space determined by A in Y as
in Definition 3.1.1 with constant k, R.

Construction of the flow spaces
Now we construct (some modified) flow spaces of the various Ai’s in the direction
away from [u,v]. Let Ti be the maximal subtree of T such that Ti ∩ [u,v] = ui. The
modified flow space Ai of Ai is defined as follows.

Case 1. i = 1 and e0 = e1 or i = n and en = en−1: In this case Ai =Yei−1ui and we
let Ai = F lY (Ai)∩YTi where YTi = π

−1
Y (Ti).
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Case 2: In all other situation we proceed as follows. Suppose e′ is an edge
connecting ui to u′i, say, such that e′ is not on [u,v]. Let Ti,e′ be the maximal
subtree of T containing u′i and not containing ui. Now if the pair (Ai,Xe,ui) is R-
separated in Xui , we define the ‘flow of Ai’ in the direction of u′i to be Ai,e′ = /0.
Otherwise, we let Ai,e′ = ϑe′u′i

(ϑ−1
e′ui

(BY
i,e′)) and Ai,e′ = F lY (Ai,e′)∩YTi,e′ . (Note that

HdYuiu
′
i
(BY

i,e′,Ai,e′) ≤ 1, BY
i,e′ is K3-quasiconvex in Yui . Then by Lemma 2.3.4, one

can conclude that Ai,e′ ⊆ Ye′u′i
is uniformly quasiconvex in Yu′i

. Without introducing
another constant, we assume that it is K-quasiconvex as above.) We let Ai = ∪Ai,e′’s
where the union is taken over all the edges e′ incident on ui, other than ei,ei−1.

We claim that Q[u,v] = (∪iAi)∪(∪iAi) is quasiconvex in X . Since X is hyperbolic,
by Lemma 2.2.12, it is enough to provide a coarsely Lipschitz retraction X →Q[u,v].

Let Xvsp = ∪s∈V (T )Xs. We consider the map ρ : Xvsp →Q[u,v] as in Remark 2.3.7.
Since Xvsp is 1-dense in X , by Lemma 2.1.2, we need to show a uniform bound on
dX(ρ(x),ρ(y)) where x,y ∈ Xvsp such that dX(x,y)≤ 1. Let π(x) = v′ and π(y) = w′.
We consider the following cases depending on position of v′,w′.

Case 1: Suppose both v′,w′ /∈ [u,v]. Since dT (v′,w′) ≤ 1, let ui be the near-
est point projection of v′ and w′ on [u,v]. If Ai,e′ ̸= /0 then by Lemma 3.4.3 (1),
dX(ρ(x),ρ(y)) is uniformly bounded. If Ai,e′ = /0 then by construction of Ai,e′ , the
pair (Ai,Xe′ui) is R-separated in Xui . Then by Lemma 2.2.13, the pair (Ai,Xe′ui) is
D-cobounded in Xui for D = 2K +7δ0 whence the pair (Ai,Xe′u′i

) is so in Xuiu′i
. Then

by definition of ρ , dX(ρ(x),ρ(y))≤ D.

Case 2: Suppose both v′,w′ ∈ [u,v]. If v′ = w′, then by Lemma 2.2.21 (1),
dX(ρ(x),ρ(y)) ≤ C2.2.21(δ0,K). If v′ ̸= w′. then dT (v′,w′) ≤ dX(x,y) ≤ 1 implies
dT (v′,w′) = 1 and x ∈ Xv′,y ∈ Xw′ . It follows from property (2) and Lemma 2.3.5 (2)
that dX(ρ(x),ρ(y)) is uniformly bounded.

Case 3: Lastly, without loss of generality, we assume that v′ ∈ [u,v] and w′ /∈ [u,v].
If v′ = u or v′ = v, then by Lemma 3.4.3 (1), dX(ρ(x),ρ(y)) is uniformly bounded.
Now let v′ = ui and w′ = u′i for some i and e′ = [ui,u′i] to make the notation consistent
above. If Ai,e′ = /0 then we are through as explained in Case 1. Now suppose Ai,e′ ̸= /0.
By construction dXui

(Ai,Xe′ui) ≤ R. Then by Lemma 2.2.13 (2), BX
i,e′ ⊆ NR2(Ai) in

Xui for some R2 = 2K +3δ0 +R whence by Property (3), BY
i,e′ ⊆ NR1+R2(Ai) in Xui .

Thus it follows that Ai,e′ ⊆ NR1+R2+1(Ai) in Xuiu′i
. Also from Property (3), it follows

that HdXuiu
′
i
(PXuiu

′
i
Xu′i

(Ai),Ai,e′) is uniformly bonded. Hence by Lemma 2.3.5 (1), we
are through.

By abusing notation, we assume that ρ : X → Q[u,v] is L-coarsely Lipschitz
retraction for some uniform constant L. Therefore, Q[u,v] is K′-quasiconvex in X
where K′ depends on L and the hyperbolicity constant of X .
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Now we are ready to prove the two statements of the theorem.

For (1) we note that [y,y′]X ∩Xew ̸= /0. Let y1 ∈ [y,y′]X ∩Xew. By the quasiconvex-
ity of Q[u,v] there is a point y2 ∈Q[u,v] such that dX(y1,y2)≤ K′. Let w = ui. Since
ρ : X →Q[u,v] is L-coarsely Lipschitz retraction then dX(ρ(y1),ρ(y2)) ≤ LK′+K
where ρ(y2) = y2. It follows that dX(y1,ρ(y1)) ≤ K′+LK′+L = L′ (say). This
means dXw(y1,ρ(y1))≤ φ(L′). We note that in this case ρ(y1) ∈ Ai and Yew = Yeiui .
Now, if ρ(y1) ∈ Yew then we are done. However, otherwise, by Lemma 2.2.15,
[y1,ρ(y1)]Xui

goes through a uniformly small neighborhood of Yew in Xui whence (1)
follows.

For (2) we appeal to the set Q[w,v] instead of the whole collection. Note
that [z,z′]X ⊆ NK′(Q[w,v]). Therefore, π([z,z′]X) ⊆ NK′(π(Q[w,v])) in T . Hence,
d(u,π([z,z′]X)) ≥ d(u,π(Q[w,v]))− K′. However, it is clear from the construc-
tion of Q[w,v] that d(u,π(Q[w,v])) ≥ d(u,π(F lY (Aew))) whence (2) follows with
D′ = K′.

Let e ∈ E(T ) be an edge incident on u ∈ V (T ) and Yeu is k-quasiconvex in Yu.
For the rest of the proof we assume F lY (Yeu) is the flow space as in Definition 3.1.1
with constant k and R = R2.2.13(δ

′
0,k) = 2k+5δ ′

0.

Proposition 3.4.5. Suppose u ∈ T is a vertex and y ∈ Yu. Suppose {yn} is an
unbounded sequence in Y such that limY

n→∞ yn and limX
n→∞ yn both exist. Let un =

π(yn) and suppose that limT
n→∞ un = ξ . Let cn be the nearest point projection of un

on [u,ξ ) and let en be the edge on [u,cn] incident on cn. Suppose zn ∈ Yencn ∩ [y,yn]Y .
Then limY

n→∞ yn = limY
n→∞ zn and limX

n→∞ yn = limX
n→∞ zn.

Proof. We note that dY (y,zn) ≥ dT (u,cn) = dT (u, [un,ξ )). Since un → ξ we have
dT (u, [un,ξ )) → ∞, whence dY (y,zn) → ∞ as n → ∞. Then by Lemma 2.2.33
limY

n→∞ zn = limY
n→∞ yn as zn ∈ [y,yn]Y . Hence, it remains to prove the second limit.

For all n∈N, let e′n be the edge on [u,un] incident on un, and let en,1,en,2, · · · ,en,t(n)=

e′n be all the successive edges on the geodesic from cn to un when cn ̸= un, i.e.
un ̸∈ [u,ξ ). First we do the following reduction.

Reduction step: Let y′n be a nearest point projection of yn on Ye′nun in Yun . Then by
Lemma 3.2.4 limY

n→∞ yn = limY
n→∞ y′n, and also by the same lemma and the projection

hypothesis we have limX
n→∞ yn = limX

n→∞ y′n. Therefore, we are reduced to proving
limX

n→∞ y′n = limX
n→∞ zn and so far we have limY

n→∞ y′n = limY
n→∞ zn.

The following recurring argument in the proof.

Claim: Suppose for all n ∈ N there is a set Zn ⊂ Y which is uniformly quasicon-
vex in both X and Y such that y′n,zn ∈ Zn. Then limX

n→∞ y′n = limX
n→∞ zn.
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Proof of claim: Suppose Zn is k1-quasiconvex in Y for all n ∈ N. By Lemma
2.2.23 (1), NY

D(Zn) is uniformly qi embedded in Y for D = k1 + 1. Since Y is
properly embedded in X and NY

D(Zn) is uniformly qi embedded in Y , it follows that
NY

D(Zn) is uniformly properly embedded in X . Thus by Lemma 2.2.23 (2), NY
D(Zn)

is uniformly qi embedded in X . Thus a geodesic, say αn, joining y′n,zn in NY
D(Zn)

is a uniform quasigeodesic in both X and Y . Now, dY (y, [y′n,zn]Y )→ ∞ as n → ∞

since limY
n→∞ y′n = limY

n→∞ zn (see Lemma 2.2.32 (2)). Therefore, by the stability
of quasigeodesics (Lemma 2.2.2) dY (y,αn) → ∞ as n → ∞. Since Y is properly
embedded in X , it follows that dX(y,αn)→ ∞ as n → ∞ whence dX(y, [y′n,zn]X)→ ∞

as n → ∞ again by the stability of quasigeodesics. Thus limX
n→∞ yn = limX

n→∞ y′n =
limX

n→∞ zn.

The proof is divided into several cases. First we discuss three special cases and
then finally we prove the general case using them. Let e ∈ E(T ) incident to w and
Yew is k-quasiconvex in Yw. Then we consider below the flow space of Yew as in
Definition 3.1.1 with constant k and R = R2.2.13(δ0,k).

Case 1. Suppose un ∈ [u,ξ ) for all n ∈ N. In this case en = e′n and the reduction
step yields y′n ∈ Yencn . Now note that y′n,zn ∈ Yencn and F lY (Yencn) is uniformly
quasiconvex in both Y and X by Lemma 3.4.3 (2). Hence, by the above claim we
have limX

n→∞ y′n = limX
n→∞ zn.

Case 2. Suppose un ̸∈ [u,ξ ) but F lY (Yen,t(n)un)∩Yencn ̸= /0 for all n ∈ N. In this
case F lY (Yen,t(n)un)∪F lY (Yencn) = Zn, say, is uniformly quasiconvex in Y as well
in X by Lemma 3.4.3 (2) and the fact that union of two intersecting quasiconvex
subsets is quasiconvex in a hyperbolic metric space. Therefore, we are done by the
above claim.

Case 3. Suppose un ̸∈ [u,ξ ) and F lY (Yen,t(n)un)∩Yencn = /0 for all n ∈ N. Sup-
pose cn = vn,1,vn,2, · · · are the consecutive vertices on geodesic joining cn to un so
that each edge en, j joins vn, j and vn, j+1. Suppose en,i is the closest edge from cn

for which Yencn ∩F lY (Yen,ivn,i+1) = /0. Let y′′n ∈ Yen,ivn,i+1 be any point. Now, by the
second part of Theorem 3.4.4 (2) there is a uniform constant D′ depending only on
the parameter of the tree of spaces under consideration such that d(u,π([y′n,y

′′
n]X)≥

d(u,F lY (Yen,ivn,i+1))−D′. However, since Yencn ∩F lY (Yen,ivn,i+1) = /0, so we have
d(u,F lY (Yen,ivn,i+1))≥ d(u,cn). Thus limn→∞ dX(y, [y′n,y

′′
n]X)=∞. Hence, by Lemma

2.2.32 (2) limX
n→∞ y′n = limX

n→∞ y′′n . Applying Theorem 3.4.4 (2) to the case Y = X we
similarly get limY

n→∞ y′n = limY
n→∞ y′′n . Let ImY (y′′n) denote the image of y′′n in Yen,ivn,i .

Since d(y′′n, Im(y′′n)) = 1, it follows that limX
n→∞ y′n = limX

n→∞ y′′n = limX
n→∞ Im(y′′n)

and limY
n→∞ y′n = limY

n→∞ y′′n = limY
n→∞ Im(y′′n).
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Next, we may apply the reduction step to Im(y′′n) to find y′′′n ∈ Yen,i−1vn,i for
each n ∈ N so that limX

n→∞ Im(y′′n) = limX
n→∞ y′′′n and limY

n→∞ Im(y′′n) = limY
n→∞ y′′′n =

limY
n→∞ zn. Finally, since F lY (Yen,i−1vn,i)∩Yencn ̸= /0 (by our choice of i) for all n ∈N

we have limX
n→∞ zn = limX

n→∞ y′′′n by Case 2.

Case 4. The general case: Let S1 = {n ∈ N : un ∈ [u,ξ )}, S2 = {n ∈ N \ S1 :
F lY (Yen,t(n)un)∩Yencn ̸= /0}, and let S3 = N\ (S1 ∪S2). Now, if any Si, 1 ≤ i ≤ 3, is
infinite then we have have a subsequence {nik}k∈N of the sequence of natural numbers
such that Si = {nik : k ∈ N}. Then Case i applies to the subsequence {y′nik

} of {y′n}
to give limX

k→∞
y′nik

= limX
k→∞

znik . Thus it follows that limX
n→∞ y′n = limX

n→∞ zn.

Continuation of the proof of Theorem 1.1.6: Suppose {yn},{y′n} are two arbi-
trary unbounded sequences in Y .

Compatible sequences: We will say that {yn},{y′n} are compatible if limY
n→∞ yn =

limY
n→∞ y′n ∈ ∂Y , and limX

n→∞ yn, limX
n→∞ y′n both exist.

Therefore, to prove the theorem one has to show that for any compatible se-
quences {yn},{y′n} one has limX

n→∞ yn = limX
n→∞ y′n ∈ ∂X (see Lemma 2.2.43). The

idea of the proof is that given two compatible sequences {yn},{y′n} we find a new
pair of compatible sequences, say {wn}, {w′

n}, with additional properties so that
checking if limX

n→∞ wn = limX
n→∞ w′

n is easier whereas by construction we have
limX

n→∞ wn = limX
n→∞ yn and limX

n→∞ w′
n = limX

n→∞ y′n. Sometimes we may need to
do this a number of times.

Now, to start the proof suppose {yn} and {y′n} are two compatible sequences. Let
bn = π(yn) and b′n = π(y′n) for all n ∈ N. Fix u ∈ T . Let S1 = Hull({bn : n ∈ N})
and S2 = Hull({b′n : n ∈ N}). Now, we have the following three possibilities:

Case 1: Both {bn} and {b′n} satisfy the property (1) or (2) of Lemma 3.3.6. In
this case the proof follows from Proposition 3.3.7.

Case 2: Exactly one of the sequences {bn} or {b′n} satisfies the property (1) or
(2) of Lemma 3.3.6. Without loss of generality, suppose {b′n} satisfies the property
(1) or (2) of Lemma 3.3.6 but {bn} does not.

Now, first of all, using Lemma 3.3.6 we can find a vertex u and sequence of points
{z′n} in Yu such that limY

n→∞ z′n = limY
n→∞ y′n and limX

n→∞ z′n = limX
n→∞ y′n. Therefore,

we shall replace the sequence {y′n} by {z′n} for the purpose of the proof.

Secondly, we note that the subtree S is locally finite and unbounded. Hence,
∂S1 ̸= /0 by Lemma 2.2.29. Up to passing to a subsequence, if necessary, we may
assume that bn converges to ξ ∈ ∂S1 where cn is the nearest point projection of
bn on [u,ξ ). Let en be the edge on [u,cn] incident on cn. Then by Proposition
3.4.5, there is a point pn ∈ Yen for all n ∈ N such that limY

n→∞ pn = limY
n→∞ yn and
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limX
n→∞ pn = limX

n→∞ yn. Thus we may replace {yn} by {pn} for the sake of the proof.
Note that {z′n}, {pn} is a pair of compatible sequences and it is enough to show that
limX

n→∞ z′n = limX
n→∞ pn.

A part of the remaining arguments is summarized as a lemma below.

Lemma 3.4.6. Suppose {yn}, {y′n} are unbounded sequences of points in Y such
that the following hold:

1. limY
n→∞ yn = limY

n→∞ y′n.

2. The point vn = π(yn) is on a geodesic ray [v,ξ ) in T such that limT
n→∞ vn = ξ .

3. Nearest point projection of the set {π(y′n)} on [v,ξ ) is bounded.

Then there is a sequence of points {qn} in Y such that

1. limY
n→∞ yn = limY

n→∞ qn,

2. {π(qn)} is bounded and

3. dX(y1, [qn,yn]X)→ ∞ as n → ∞.

In particular if limX
n→∞ yn exists then limX

n→∞ yn = limX
n→∞ qn.

Proof. Fix u ∈ [v,ξ ) such that [π(y′n),vn]T passes through u for all n ∈ N. Let e
be the edge on [u,ξ ) incident on u. Let qn be a point on Yeu ∩ [yn,y′n]Y . Since
limY

n→∞ yn = limY
n→∞ y′n, we have limY

n→∞ yn = limY
n→∞ qn by Lemma 2.2.32 (2), and

again by the same lemma we have dY (y1, [qn,yn]Y )→ ∞ as n → ∞. Now, applying
Lemma 3.2.5 to the sequences {yn},{y′n} in Y and Lemma 2.2.13, we see that
F lY (Yeu)∪F lY (Yencn) is uniformly quasiconvex in Y and X . Then by Lemma 2.2.23
NY

D0
(F lY (Yeu)∪F lY (Yencn))=Zn, say, is uniformly qi embedded in both Y and X for

some uniform D0. Thus [qn,yn]Zn is a uniform quasigeodesic in both Y and X . Since
dY (y1, [qn,yn]Y )→ ∞ as n → ∞, it follows, by stability of quasigeodesics (Lemma
2.2.2), that dX(y1, [qn,yn]X)→ ∞ as n → ∞. Thus limX

n→∞ yn = limX
n→∞ qn.

Applying Lemma 3.4.6 to the sequences {z′n},{pn}, we find a new sequence
{qn} and the proof boils down to deal with the compatible sequences {z′n} and {qn}.
However, {z′n} and {qn} satisfy the conditions in Case 1. Hence we are done in this
case too.

Case 3: Suppose neither {b′n} nor {bn} satisfies the property (1) or (2) of
Lemma 3.3.6. In this case both S1 and S2 are unbounded and locally finite whence
∂S1 and ∂S2 are both nonempty (see Lemma 2.2.29). After passing to subsequences,
if necessary, we can assume that π(yn) = bn → ξ ∈ ∂S1, and π(y′n) = b′n → ξ ′ ∈ ∂S2
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and that the hypotheses of Proposition 3.4.5 are satisfied by both {yn} and {y′n}.
Then applying Proposition 3.4.5 and passing to further subsequences if necessary, we
may also assume that (1) bn’s are on the geodesic [u,ξ ), (2) b′n’s are on the geodesic
[u,ξ ′), (3) the sequences limT

n→∞ bn = ξ and limT
n→∞ b′n = ξ ′ and the following: Let

en be the edge on [u,bn] which is incident on bn and let e′n be the edge on [u,b′n]
which is incident on b′n. Then (4) we may assume that yn ∈Yenbn and y′n ∈Ye′nb′n . This
last statement will be used for dealing with Subcase 3B below.

We note that we have natual inclusions ∂S1 → ∂T and ∂S2 → ∂T . In particular,
ξ ,ξ ′ ∈ ∂T . The rest of the proof is divided into two subcases.

Subcase 3A: Suppose ξ ̸= ξ ′. In this case the nearest point projection of [u,ξ )
on [u,ξ ′) is a finite diameter set. Thus by applying Lemma 3.4.6 we can find a new
sequence {pn} in Y such that {π(pn)} is bounded, and {pn} and {y′n} for which we
need to show that limX

n→∞ y′n = limX
n→∞ pn. However, this now follows from Case 2.

Subcase 3B: Suppose ξ = ξ ′. After passing through a subsequence, we assume
that dT (u,bn)≤ dT (u,b′n)≤ dT (u,bn+1).

Let tn = dT (u,π(F lY (Yenbn))). Let y ∈ Yu. Suppose limX
n→∞ yn ̸= limX

n→∞ y′n.
Then there is a R ∈ N such that dX(y, [yn,y′n]X) ≤ R for all n ∈ N. This implies
dT (u,π([yn,y′n]X)≤ R since π is 1-Lipschitz. Now it follows from Theorem 3.4.4
(2) that tn ≤ R+D′ where D′ as in Theorem 3.4.4.

It then follows that for all large n ∈ N, F lY (Yenbn)∩F lY (Ye′nb′n) ̸= /0. Hence
by Lemma 2.2.23, there is a uniform constant D0 such that NY

D0
(F lY (Yenbn)∪

F lY (Ye′nb′n)) =Wn, say, is uniformly qi embedded in both X and Y . Thus [yn,y′n]Zn

is a uniform quasi-geodesic in both Y and X . Since dY (y, [yn,y′n]Y )→ ∞ as n → ∞,
it follows, by stability of quasi-geodesics (Lemma 2.2.2), that dX(y, [yn,y′n]X)→ ∞

as n → ∞ − which is a contradiction by Lemma 2.2.32 (2). Therefore, limX
n→∞ yn =

limX
n→∞ y′n.

3.5 Proof of Theorem 1.1.7

Let us restate the theorem for readers’ references.

Theorem 3.5.1 (Theorem 1.1.7). Additionally, suppose in Convention 3.3.3, we
have the following. (Here we do not require the spaces X and Y to be proper.) For
all v ∈ V (S), the inclusions Yv → Xv are uniformly qi embedded. If moreover the
projection hypothesis holds then we have the following:

1. The inclusion Y → XS := π−1(S) is (uniformly) qi embedded.
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2. The inclusion Y → X admits the CT map.

Proof. Note that XS is hyperbolic by [6]. Then (2) follows from (1), Theorem [9,
Theorem 8.11] and the functoriality property of CT-maps (see Lemma 2.2.39). So
we proof only (1). For that we prove the existence of a coarse Lipschitz retraction
XS → Y where Z = XS is with its induced path metric from X . If that is done then
the inclusion Y ↪→ X is φ -proper embedding implies that the inclusion Y ↪→ Z is
also φ -proper embedding. Therefore, Y ↪→ Z is uniformly qi embedded (see Lemma
2.1.3).

By given condition, for all e ∈ E(S) incident on u ∈ V (S), Yu’s and Yeu’s are
uniformly qi embedded in Xu. Hence they are uniformly quasiconvex in Xu (see
Lemma 2.2.22 (1)).

Let Zvsp = ∪u∈V (S)Xu and ρ : Zvsp → Y be the map as defined in Remark 2.3.7.
since Zvsp is 1-dense in Z, by Lemma 2.1.2, we need to show dZ(ρ(x),ρ(y)) is
uniformly bounded where x,y ∈ Zvsp and dZ(x,y)≤ 1.

Suppose π(x) = u,π(y) = v. If u = v then by Lemma 2.2.21 (1), dXu(ρ(x),ρ(y))
is uniformly bounded and so is dZ(ρ(x),ρ(y)). Now suppose u ̸= v. Note that
dT (u,v) ≤ dZ(x,y) ≤ 1 implies dT (u,v) = 1 and so x ∈ Xeu,y ∈ Xev, where e =

[u,v] ∈ E(S).
Note that Yu and Yv are uniformly quasiconvex in Xu and Xv respectively. Since

PYuYeu(Yu) = Yeu, by projection hypothesis, HdXu(PXuXeu(Yu),Yeu) ≤ R0 where R0 is
coming from projection hypothesis. Similarly, we have HdXv(PXvXev(Yv),Yev)≤ R0.
Since Yeu is uniformly quasiconvex in Xu, so is PXuXeu(Yu). Similarly PXuXeu(Yu) is also
quasiconvex in Xv. Again HdXuv(Yeu,Yev)= 1 implies HdXuv(PXuXeu(Yu),PXvXev(Yv))≤
2R0 +1. Then, by Lemma 2.3.5 (2), dXuv(ρ(x),ρ(y)) is uniformly bounded and so is
dZ(ρ(x),ρ(y)).

Therefore, we are through.

3.6 Applications and related results

In this section, we will see two main applications of Theorem 1.1.6 (see Theorem
1.1.2 and Theorem 1.1.11).

Proof of Theorem 1.1.2:
It is standard that for a graph of groups (G ′,Y ′), there is tree of metric spaces

π : X → T where T is the Bass-Serre tree of (G ′,Y ′) such that π1(G
′,Y ′) acts on X

properly and cocompactly; and so the orbit map π1(G
′,Y ′)→ X is quasi-isometry
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for any finite generating set for π1(G
′,Y ′) (see Section 5.6 for detailed explanation).

By hypotheses of Theorem 1.1.2, it turns out that π : X → T is a tree of hyperbolic
metric spaces with the qi embedded condition.

Suppose πY : Y → S is the tree of hyperbolic metric spaces with the qi embedded
condition corresponding to a subgraph of subgroups (G ,Y ) as in Theorem 1.1.2. We
consider the orbit map π1(G ,Y )→ Y which is a quasi-isometry.

By condition 2 (a) of Theorem 1.1.2, it follows from [7, Proposition 2.7, Corollary
1.14, see also 2.15] that the natural inclusion π1(G ,Y )→ π1(G

′,Y ′) is an injective
homomorphism and S → T is an embedding of trees. We also can think of πY : Y → S
as induced subtree of spaces in π : X → T over S ⊆ T (via the embedding above).
(See Subsection 3.3.1 for induced subtree of spaces.)

Moreover, the inclusion Y → X is π1(G ,Y )-equivariant. Therefore, proving the
CT-map for π1(G ,Y )→ π1(G

′,Y ′), it is enough to show the same for the inclusion
Y → X .

By condition 2 (c) in Theorem 1.1.2, the induced subtree of spaces under con-
sideration satisfies the projection hypothesis whence satisfies all the hypothesis of
Theorem 1.1.6.

Therefore, we are through.

Proof of Theorem 1.1.4:

We will to apply Theorem 1.1.6. For that we only need to prove the projection
hypothesis (see Remark 1.1.3 (2)). Since Gu → G′

u admits the CT map, so it satisfies
uniform Mitra’s criterion whence the theorem follows from Remark 3.3.8 (2).

3.6.1 Lamination

Definition 3.6.1. If a map between hyperbolic spaces f : Y → X admits the CT map
then the Cannon-Thurston (CT) lamination ΛCT ([38]) for f is defined to be

ΛCT = {ξ1,ξ2) ∈ ∂Y ×∂Y : ξ1 ̸= ξ2,∂ f (ξ1) = ∂ f (ξ2)}

where ∂ f : ∂Y → ∂X is the CT map.

In this thesis, we also investigate the properties of the CT lamination in the
situation where Theorem 1.1.6 holds. We will now prove a couple of result related
to this; which will be used to prove Theorem 1.1.11.

Notation and convention: Suppose the inclusion i : Z ↪→W of hyperbolic metric
spaces admits the CT-map. We denote the CT-map by ∂ iZ,W : ∂Z → ∂W . In this
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subsection, we assume that base for both Y and X are same, i.e., S = T in Theorem
1.1.6.

In the following lemma we prove converse of Lemma 3.3.5. Proof goes along
the same line as Lemma 3.3.5.

Lemma 3.6.2. Let e,e′ be edges in T incident on u. Suppose γ and γ ′ two quasi-
geodesic rays in Yu such that γ ⊆Ye′u,γ

′ ⊆Yeu. Then limX
n→∞ γ(n), limX

n→∞ γ ′(n) exist
and if limX

n→∞ γ(n) = limX
n→∞ γ ′(n) then limY

n→∞ γ(n) = limY
n→∞ γ ′(n).

Proof. Since the inclusions Yu → Xu and Xu → X admit the CT-maps (see [8] for
later one), and so by functoriality property of CT-maps (see Lmma 2.2.39), so
limX

n→∞ γ(n), limX
n→∞ γ ′(n) exist. For the second part, if limYu

n→∞ γ(n) = limYu
n→∞ γ ′(n),

then we are done. Now Suppose limYu
n→∞ γ(n) ̸= limYu

n→∞ γ ′(n). Note that γ and γ ′

are also qausi-geodesic in Xu since edge spaces of Y are uniformly qi embedded in
the corresponding vertex spaces of X . So limXu

n→∞ γ(n) ̸= limXu
n→∞ γ ′(n), otherwise,

limYu
n→∞ γ(n) = limYu

n→∞ γ ′(n).
Suppose α is a geodesic line Xu such that α(−∞) = limXu

n→∞ γ(n) and α(∞) =

limXu
n→∞ γ ′(n). Hence by given condition, we have limX

n→∞ α(−n) = limX
n→∞ α(n).

Then by [9, Proposition 8.54 (1)], there is ray geodesic ray [u,ξ ) in T such that both
α(−∞) and α(∞) flow in Xv for all vertex v ∈ [u,ξ ). Let β is geodesic line in Yu

such that HdXu(β ,α) is uniformly bounded. Fix y ∈ Yu. Then by the description
of uniform quasi-geodesic given in [9, Proposition 8.49] joining β (n) and β (−n),
we can conclude the following. If βn’s are uniform quasi-geodesic joining β (−n)
and β (n) in Y and β ′

n’s are that in X , then HdX(βn,β
′
n) is uniformly bounded. Since

Hdx(α,β )<∞ and limX
n→∞ β (n)= limX

n→∞ β (−n) then dX(y,β ′
n)→∞ as n→∞ (see

Lemma 2.2.32 (2)). Hence, dY (y,βn)→ ∞ as n → ∞ since Y is properly embedded
in X . This shows that limY

n→∞ β (n) = limY
n→∞ β ′(n). Note that limYu

n→∞ β (n) =
limYu

n→∞ yn and limYu
n→∞ β (−n) = limYu

n→∞ y′n. Since Yu → Y admits the CT-map, we
are through.

A generalization of Lemma 3.6.2 is the following.

Lemma 3.6.3. Suppose α and α ′ are geodesic rays in Yu and Yv respectively. Let
u ̸= v. Then limY

n→∞ α(n) ̸= limY
n→∞ α ′(n) implies limX

n→∞ α(n) ̸= limX
n→∞ α ′(n).

Proof. On contrary, suppose limX
n→∞ α(n)= limX

n→∞ α ′(n). Let β and β ′ be geodesic
rays in Xu and Xv respectively such that ∂ iYu,Xu(α(∞)) = β (∞) and ∂ iYv,Xv(α

′(∞)) =

β ′(∞). Then by Proposition 3.2.8, there is a vertex w ∈ [u,v] such that both β (∞)

and β ′(∞) have boundary flow in Xw. Now we consider two cases depending on the
position of w.
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Case 1: Suppose w∈ [u,v]\{u,v}. Let e⊆ [u,w] and e′ ⊆ [w,v] be edges adjacent
to w. Let β1 and β ′

1 be geodesic rays in Xew and Xe′w representing the boundary
flow of β (∞) and β ′(∞) respectively. Since we have projection hypothesis, then
by repeated application of Lemma 2.2.45, we conclude that α(∞) flows in Yew,
α ′(∞) flows in Ye′w and HdX(α,β )< ∞, HdX(α

′,β ′)< ∞. Now by Lemma 3.2.7,
HdX(β ,β1) < ∞ and HdX(β

′,β ′
1) < ∞. So HdX(α,β1) < ∞ and HdX(α

′,β ′
1) < ∞.

By replacing β1 and β ′
1 by some quasi-geodesic rays, say, γ and γ ′ respectively

such that γ ⊆ Yew and γ ′ ⊆ Ye′w, and HdX(β1,γ) < ∞ and HdX(β
′
1,γ

′) < ∞. Then
HdX(α,γ) < ∞ and HdX(α

′,γ ′) < ∞, and since Y is properly embedded in X , so
HdY (α,γ)< ∞ and HdY (α

′,γ ′)< ∞.

Now limX
n→∞ α(n) = limX

n→∞ α ′(n) implies limX
n→∞ γ(n) = limX

n→∞ γ ′(n). Then
by Lemma 3.6.2, limY

n→∞ γ(n) = limY
n→∞ γ ′(n). Hence limY

n→∞ α(n) = limY
n→∞ α ′(n)

- which is a contradiction.

Case 2: Without loss of generality, we assume that w = u. Since β ′(∞) flows
in Xu, with the same notation as in Case 1, we have the following facts. (1) α is
a geodesic ray in Yu, (2) γ ′ is a quasi-geodesic ray in Yu such that γ ′ ⊆ Ye′u, and so
is a quasi-geodesic ray in Xu, (3) limX

n→∞ γ ′(n) = limX
n→∞ α ′(n) and limY

n→∞ γ ′(n) =
limY

n→∞ α ′(n).

Now if limXu
n→∞ γ ′(n) = limXu

n→∞ α(n), then (since we have projection hypothesis)
by Lemma 2.2.45, α is a quasi-geodesic ray in Xu. Hence HdXu(α,γ ′)< ∞, and so
HdYu(α,γ ′)< ∞. This contradicts to limY

n→∞ α(n) ̸= limY
n→∞ α ′(n).

So we assume that limXu
n→∞ γ ′(n) ̸= limXu

n→∞ α(n). Let γ0 be a geodesic line in
Xu such that limXu

n→∞ γ0(−n) = limXu
n→∞ γ(n) and limXu

n→∞ γ0(n) = limXu
n→∞ α(n). Now,

since limX
n→∞ γ0(−n)= limX

n→∞ γ0(n), by [9, Proposition 8.54 (1)], there is a geodesic
ray [u,ξ ) in T such that both γ0(−∞) and γ0(∞) have flow in Xv for all vertex v ∈
[u,ξ ). Then by Lemma 2.2.45, α is a quasi-geodesic ray in Xu. Then we can replace
γ0 by a quasi-geodesic line γ1 such that γ1 ⊆Ye′u and limX

n→∞ γ1(−n) = limX
n→∞ γ1(n)

and limY
n→∞ γ1(−n) = limY

n→∞ α ′(n) and limY
n→∞ γ1(n) = limY

n→∞ α(n). Therefore,
by Lemma 3.6.2, limY

n→∞ γ1(−n) = limY
n→∞ γ1(n) - which leads to a contradiction

that limY
n→∞ α(n) ̸= limY

n→∞ α ′(n).

One can easily verify the following lemma from definition of conical limit point
(see Definition 3.2.9) and the existence of CT-maps.

Lemma 3.6.4. Suppose α is a geodesic ray in Y such that α(∞) is a conical limit
point of a vertex space Yu for some vertex u ∈ π(α). Then there is a subsequence
{ri}⊆N such that α(ri)∈Yu, limYu

n→∞ α(ri)∈ ∂Yu and limX
n→∞ α(ri) = ∂ iY,X(α(∞)).
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In particular, there is a geodesic ray α ′ in Yu such that limY
n→∞ α(n) = limY

n→∞ α ′(n)
and limX

n→∞ α(n) = limX
n→∞ α ′(n).

Lemma 3.6.5. Suppose α is a geodesic ray in Yu and α ′ is that in Y . Further, we
assume that α ′(∞) is a conical limit point of the vertex space Yv for some vertex
v ∈ π(α). Let u ̸= v. Then limY

n→∞ α(n) ̸= limY
n→∞ α ′(n) implies limX

n→∞ α(n) ̸=
limX

n→∞ α ′(n).

Proof. It follows from Lemma 3.6.4 and Lemma 3.6.3.

Lemma 3.6.6. Suppose α and α ′ are geodesic rays in Y . Further, we assume that
α(∞) and α ′(∞) are conical limit points of vertex spaces Yu and Yv respectively
for some u ∈ π(α) and v ∈ π(α ′). Let u ̸= v. Then limY

n→∞ α(n) ̸= limY
n→∞ α ′(n)

implies limX
n→∞ α(n) ̸= limX

n→∞ α ′(n).

Proof. By Lemma 3.6.4 and Lemma 3.6.3, we are done.

Lemma 3.6.7. Suppose α is a geodesic ray in Yu and α ′ is that in Y such that α ′(∞)

is not a conical limit point of any vertex space. Then limY
n→∞ α(n) = limY

n→∞ α ′(n)
if and only if limX

n→∞ α(n) = limX
n→∞ α ′(n).

Proof. Note that ‘only if’ part follows from CT-map ∂ iY,X : ∂Y → ∂X . Now we
proof ‘if’ part, i.e., we have limX

n→∞ α(n) = limX
n→∞ α ′(n). We will find uniformly

quasiconvex subset, say, Zn in both X and Y containing α(n) and α ′(n) for all large
n ∈N. Then by Lemma 2.2.23, there is a uniform constant D ≥ 0 such that NY

D(Zn) is,
with the induced path metric from Y , uniformly qi embedded in both X and Y . Then
by stability of quasi-geodesic and Lemma 2.2.32 (2), limn→∞ dX(x,γn) = ∞ where γn

is a geodesic in NY
D(Zn). Therefore, by same lemmas, limn→∞ dY (y, [α(n),α ′(n)]Y ) =

∞ and limY
n→∞ α(n) = limY

n→∞ α ′(n).
Finding Zn: By Lemma 3.2.11, there is a geodesic ray [u,ξ )⊆ S∩π(α ′). Let

{e1,e2, · · ·} be successive edges directed away from u on the ray [u,ξ ), and u1 = u
and ei joins ui and ui+1 for all i ∈ N. Suppose {ri} ⊆ N is a subsequence such that
α ′(ri) ∈ Yei . Suppose β is a geodesic ray in Xu such that ∂ iYu,Xu(α(∞)) = β (∞). So
limX

n→∞ β (n) = limX
n→∞ α ′(n) = limX

n→∞ α ′(rn). Suppose Yeiui’s are k-quasiconvex in
Yui . Let F lY (Yeiui) be the flow space for a fixed R = R2.2.13(δ

′
0,k) as in Definition

3.1.1. Now by Lemma 3.2.12, β (∞) has a boundary flow in Xv for all vertex v∈ [u,ξ ).
Hence by Lemma 2.2.45, we can conclude that α(∞) has a boundary flow in Yv for
all vertex v ∈ [u,ξ ). In particular, we have F l(Ye1u)∩Yeiui ̸= /0. By Lemma 3.4.3,
Zn = F lY (Ye1u)∪F lY (Yenun) is uniformly quasiconvex in both X and Y containing
both α(n) and α ′(rn).
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Lemma 3.6.8. Suppose α and α ′ are geodesic rays in Y such that α(∞) is a conical
limit of a vertex space Yu for some u ∈ π(α) and α ′(∞) is not a conical limit
point of any vertex space of Y . Then limY

n→∞ α(n) = limY
n→∞ α ′(n) if and only if

limX
n→∞ α(n) = limX

n→∞ α ′(n).

Proof. It follows from Lemma 3.6.4 and Lemma 3.6.7.

Lemma 3.6.9. Suppose α and α ′ are geodesic rays in Y such that both α(∞) and
α ′(∞) are not conical limit points of any vertex space of Y . Then limY

n→∞ α(n) ̸=
limY

n→∞ α ′(n) implies limX
n→∞ α(n) ̸= limX

n→∞ α ′(n).

Proof. Let [u,ξ ) and [u,ξ ′) be geodesic rays in π(α) and π(α ′) (see Lemma 3.2.11).
On contrary, suppose limX

n→∞ α(n) = limX
n→∞ α ′(n). Let {e1,e2, · · ·} be successive

edges on [u,ξ ) directed away from u and {e′1,e
′
2, · · ·} be that on [u,ξ ′). For ∈ N, let

ui,u′i ∈ V (T ) such that ei joins ui and ui+1, and e′i joins u′i and u′i+1. Suppose {ri}
and {ti} are subsequences of N such that α(ri) ∈ Yeiui and α ′(ti) ∈ Ye′iu

′
i
. Now we

consider two cases depending on ξ ̸= ξ ′ and ξ = ξ ′.
Case 1: Suppose ξ ̸= ξ ′. Let j be the smallest for which e j ̸= e′j. Then by

Theorem 3.4.4 (1), for all large i, a uniform quasi-geodesic in X joining α(ri) and
α ′(ti) passes through Ye ju j . We take a point xi ∈ Ye ju j on that quasi-geodesic for all
large i. If necessary, after passing through a subsequence, we assume that limY

n→∞ xn

exists. Since limX
n→∞ α(n) = limX

n→∞ α ′(n), we have limX
n→∞ α(n) = limX

n→∞ xn and
limX

n→∞ α ′(n) = limX
n→∞ xn. Then by Lemma 3.6.7, limY

n→∞ α(n) = limY
n→∞ xn and

limY
n→∞ α ′(n) = limY

n→∞ xn. This implies that limY
n→∞ α(n) = limY

n→∞ α ′(n)− which
is a contradiction.

Case 2: Suppose ξ = ξ ′. Note that ei = e′i for all i ∈ N. Then by Lemma 3.4.3
(2), we have a quasiconvex subset, namely, F lY (Yeiui) in both X and Y containing
α(ri) and α ′(ti). Then by Lemma 2.2.23 (2), there is a uniform constant D ≥ 0 such
that NY

D(F lY (Yeiui)) is uniformly qi embedded in both X and Y . Now by stability
of quasi-geodesic, Lemma 2.2.32 (2) and limX

n→∞ α(rn) = limX
n→∞ α ′(tn), we have

limY
n→∞ α(rn) = limY

n→∞ α ′(tn). Thus limY
n→∞ α(n) ̸= limY

n→∞ α ′(n) − which is a
contradiction.

Proof of Theorem 1.1.11:
By Remark 3.2.10, each of α(−∞) and α(∞) have two possibilities. So we have

the following cases.
Case 1: Both α(−∞) and α(∞) are conical limit points of some vertex spaces.

Then by Lemma 3.6.6 we are done.
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Case 2: Both α(−∞) and α(∞) are not conical of any vertex spaces. This is
Lemma 3.6.9.

Case 3: Without loss of generality, we assume that α(−∞) is a conical limit
point of some vertex space and α(∞) is not conical limit point of any vertex spaces.
Then we through by Lemma 3.6.8.

3.7 Nonexistence of Cannon-Thurston maps

In this section we prove Theorem 1.1.9 and verify the conditions of this theorem for
Example 1.1.10. We will not rewrite the statement again.

Proof of Theorem 1.1.9: Let A = {tn : n ∈ Z} and let hn = PG′Q(yn). It is a
standart fact A is a quasigeodesic line in G. Let ta(n) be a nearest point projection of
hn on A where a(n) ∈ Z. Since limG

n→∞ hn = limG
n→∞ tn, we have limn→∞ a(n) = ∞.

Now, this means limG
n→∞ t−a(n) = limG

n→∞ t−n. On the other hand, a nearest point
projection of t−a(n)hn = xn, say, on t−a(n)A = A is 1 ∈ G. Since tnG′, n ∈ Z form a
geodesic line in the Bass-Serre tree for the HNN extension G′∗Q (see Figure 3.1)
and t−a(n)hn ∈ t−a(n)G′, so {dG(1,xn) : n ∈ N} is unbounded. Suppose {nk} is a
subsequence of the sequence of N such that limG

n→∞ xnk = ξ ∈ ∂G. Then clearly
nearest point projection of the geodesic ray [1,ξ ) on A is a bounded set. In particular,
ξ ̸= limG

n→∞ t−n. Thus

limG
k→∞

t−a(nk)hnk ̸= limG
n→∞t−n. (3.7. 1)

Figure 3.1

Claim: limG
k→∞

t−a(nk)hnk = limG
k→∞

t−a(nk)ynk .
Proof of claim: We consider the geodesic line tnG′, n ∈ Z in the Bass-Serre tree for
the HNN extension under consideration. The vertex space over tnG′ is the coset tnG′
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of G and the edge space of tnG′ which is gluing to tn−1G′ and tn+1G′ is tnQ. Since hn

is the nearest point projection of yn in G′, tmhn is the nearest point projection of tmyn

in the vertex space tmG′ for any n ∈N, m ∈Z. This verifies the conditions of Lemma
3.2.4 for X = G, u = G′, uk = t−a(nk)G′, ek = [tnk−1G′, t−a(nk)+1G′] and Xekuk is the
image of t−a(nk)Q in t−a(nk)G′, and of course, xk = t−a(nk)hnk and x′k = t−a(nk)ynk for
all k ∈ N. Hence we are done.

It follows from Inequality 3.7. 1 and the claim that

limG
k→∞

t−a(nk)ynk ̸= limG
n→∞t−n. (3.7. 2)

However, we note that limK
n→∞ t−a(nk)ynk = limK

n→∞ t−a(nk). This can be seen as
follows. Since Q∩N = (1), we have K =N∗< t ><G and K obtains an induced tree
of spaces structure from G. Again t−a(nk)ynk , t

−a(nk) ∈ t−a(nk)N ⊆ t−a(nk)G′ which
is a vertex space for K for all k ∈ N. Since the edge spaces are points in this case
we have an acylindrical tree of spaces. Thus as t−nG′ are successive vertices on a
geodesic ray in the corresponding Bass-Serre tree we are through.

Hence we get two sequences, namely, {t−a(nk)ynk}, {t−k} ⊆ K such that they
limit to the same point in ∂K but not in ∂G. Thus the inclusion K → G does
not satisfy Mitra’s criterion. Therefore, we are done with the theorem by Lemma
2.2.42.

Now we will show that Example 1.1.10 (see Introduction 1.1) satisfy the condition
of Theorem 1.1.9.

Proof of Example 1.1.10: Note that Q is malnormal and quasiconvex subgroup
of G′, and N is non-quasiconvex hyperbolic subgroups of G′ such that Q∩N = {1}.
Since N is infinite index normal subgroup, we have ΛG′(N) = ∂G′ where ∂G′ is
the Gromov boundary of G′ and ΛG′(N) denotes the accumulation points of N in
G′. Now Q is quasiconvex in G′ and ΛG′(N) = ∂G′ imply that PG′Q(N) and Q are
Hausdorff close in G. It then follows that

ΛG(PG′Q(N)) = ΛG(Q) (3.7. 3)

Let φ be a hyperbolic automorphism of Q and G = G′∗Q = G′⋊φ < t > be the
HNN extension of G′ over Q along φ where t is the stable letter; let H = Q∗Q =

Q⋊φ < t > be the restriction of that to Q. Note that Q is a normal subgroup of
infinite index in H. Hence, ΛH(Q) = ∂H. In particular, limH

n→∞ t±n ∈ ΛH(Q). Since
the inclusions Q → G′ → G (by [8]) and H → G (by Theorem 1.1.2) admit the CT
maps, we see that

limG
n→∞t±n ∈ ΛG(Q) (3.7. 4)
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It is clear from Inequalities 3.7. 3 and 3.7. 4 that the hypotheses of Theorem 1.1.9
are satisfied. Let K be the subgroup of G generated by N ∪{t} = N∗ < t > (free
product). Therefore, the inclusion K → G does not admit the CT map.



Chapter 4

A combination theorem for trees of
metric spaces revisited

Suppose π : X → T is a tree of metric spaces (see Definition 2.3.1). In this chapter
we prove the hyperbolicity of X within an axiomatic framework. As a consequence,
we get a proof of Theorem 1.2.4 in Section 5.5. Now we will explain the hypotheses.
Unless otherwise specified, by u ∈ S (or v ∈ S or w ∈ S) where S is a subtree of T ,
we always mean u (or v or w) to be a vertex of T . We use the notation XS := π−1(S).

For each vertex u ∈ T there is a subspace, say, M (Xu) containing Xu and satisfy-
ing the following properties (P0)− (P4).

(P0) Suppose u,v ∈ T and e is the edge on [u,v] incident on v. Let T ′ be the
maximal subtree of T containing v but not containing e. Then M (Xu)∩XT ′ ⊆
M (Xv)∩XT ′ .

(P1) Let L′ ≥ 0. For each u ∈ T , there is a L′-coarsely Lipschitz retraction ρu :
X → M (Xu). We also have an extra property of ρu as follows. Let Tu = π(M (Xu))

and e be an edge in T intersecting Tu at a vertex. Suppose v is the vertex adjacent to
e not in Tu and S is the maximal subtree of T containing v but not containing e. Then
diam{ρu(XS)} ≤C for some uniform constant C ≥ 0.

(P2) There is a threshold constant L0 ≥ 0 such that for L ≥ L0, NL(M (Xu)) is
path connected with the induced path metric from X and the inclusion NL(M (Xu)) ↪→
X is η(L)-proper embedding.

For u,v ∈ T , we say [u,v]⊆ T is a special interval if either M (Xu)∩Xv ̸= /0 or
Xu ∩M (Xv) ̸= /0. If [u,v] is a special interval then for L ≥ L0,

(P3) the inclusion NL(M (Xu))∪NL(M (Xv)) ↪→ X is η ′(L)-proper embedding,
and

(P4) NL(M (Xu))∪NL(M (Xv)) is δ (L)-hyperbolic metric space.

81
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Theorem 4.0.1. Suppose π : X → T is a tree of metric spaces satisfying properties
(P0)− (P4). Then X is hyperbolic metric space.

Some remarks on Theorem 4.0.1: (1) Lemma 4.0.5 below, says that ML(Xu) is
hyperbolic (by Theorem 4.0.1 or one can use property P4).

(2) Suppose π : X → T is a trees of hyperbolic metric spaces with the qi embedded
condition and Bestvina-Feighn’s flaring condition ([6]). Now we think of π : X → T
as trees of metric bundles. We set M (Xu) = F lK(Xu) (flow space of Xu with certain
fixed parameters) (see Subsection 5.1.1). In Section 5.5, it is shown, in this case, that
M (Xu) satisfies all the conditions P0−P4. This shows that Theorem 4.0.1 covers
the combination theorem for trees of metric spaces considered in [6] and particularly,
acylindrical trees of metric spaces ([39]).

Definition 4.0.2. For a subtree S of T , we define M (XS) := ∪w∈SM (Xw). Also
for finitely many vertices u1,u2, · · · ,un, we define M (X{u1,u2,··· ,un}) := M (Xu1)∪
M (Xu2)∪·· ·∪M (Xun).

Notation: For a given subtree S ⊆ T , we denote ML(XS) to mean NL(M (XS)).
The proof of Theorem 4.0.1 is divided into two parts as follows.
(1) Hyperbolictiy of ML(XI) where I is a special interval in T .
(2) Hyperbolicity of ML(XI) where I is any interval in T .
Finally, using (2), we conclude the proof. Before going into the proof of (1), let

us first prove some lemmata which are required in (1) and (2).

Lemma 4.0.3. Let S be a subtree of T . There is a uniform constant L4.0.3 for which
we have a L4.0.3-coarsely Lipschitz retraction ρS : X → M (XS).

Proof. Let us first define ρS : X → M (XS). Let x ∈ X and u be the nearest point
projection of π(x) onto S. Then ρS(x) is defined to be ρu(x). Note that if x ∈M (XS),
then by (P0), ρS(x) = x.

Let Xvsp = ∪u∈T Xu and x,y ∈ Xvsp such that dX(x,y)≤ 1. Then by Lemma 2.1.2,
we need to show a uniform bound on dX(ρS(x),ρS(y)). Let u,v be the nearest point
projections of π(x),π(y) on S respectively. If u = v, then by definition of ρS, ρS(x) =
ρu(x) and ρS(y) = ρu(y). So by (P1), dX(ρS(x),ρS(y)) = dX(ρu(x),ρu(y)) ≤ 2L′.
Now let u ̸= v. Since dT (π(x),π(y))≤ 1, we have x,y ∈ XS. So by definition of ρS,
dX(ρS(x),ρS(y))≤ 1. Therefore, we can take L4.0.3 :=C2.1.2(max{2L′,1}).

Lemma 4.0.4. Let S be a subtree of T . Then for all L ≥ L0, there is a proper function
η4.0.4 = η4.0.4(L) : R≥0 →R≥0 such that the inclusion ML(XS)→ X is η4.0.4-proper
embedding.
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Proof. We denote the metric on ML(XS) by d′. Suppose x1,y1 ∈ ML(XS) such that
dX(x1,y1)≤ r for some r ∈R≥0. Then there are x,y∈M (XS) such that d′(x1,x)≤ L,
d′(y1,y)≤ L, and so dX(x,y)≤ r+2L. Let π(x) = u and π(y) = v, and so dT (u,v)≤
r. Let u′ be the nearest point projection of u on S and v′ be that of v on S. We consider
the following two cases depending on whether u′ = v′ or u′ ̸= v′.

Case 1: Suppose u′ ̸= v′. Let x′ ∈ Xu′∩ [x,y] and y′ ∈ Xv′∩ [x,y]. Then dX(x,x′)≤
r+2L, dX(y,y′)≤ r+2L, and also dX(x′,y′)≤ r+2L. Now x,x′ ∈ ML(Xu′) implies
d′(x,x′)≤ η(r+2L) (by (P2)). Similarly, d′(y,y′)≤ η(r+2L). Again x′,y′ ∈ XS

implies d′(x′,y′)≤ dXS(x
′,y′)≤ η2.3.2(r+2L) (see Lemma 2.3.2). Hence by triangle

inequality, d′(x,y)≤ 2η(r+2L)+η2.3.2(r+2L).
Case 2: Suppose u′ = v′. Then by (P0), x,y ∈ M (Xu′). Hence d′(x,y) ≤

η(r+2L).
Therefore, by triangle inequality, in both the cases, d′(x1,y1) ≤ 2L+ 2η(r +

2L)+η2.3.2(r+2L) =: η4.0.4(L)(r).

Hence by Lemma 2.1.3, we have the following.

Lemma 4.0.5. Let S be a subtree of T . Then for all L ≥ L0, there is L4.0.5 = L4.0.5(L)
such that the inclusion ML(XS)→ X is L4.0.5-qi embedding.

Proposition 4.0.6 (Horizontal Subdivision). Let J = [u,v]⊆ T be an interval and
n0 ∈ N. Then we can subdivide J into subintervals J = J0 ∪ J1 ∪ ...∪ Jn−1 such that
Ji = [wi,wi+1], w0 = u, wn = v and each Ji is further subdivided into subintervals,
Ji = [wi,wi,1]∪ [wi,1,wi,2]∪ [wi,2,wi,3]∪ [wi,3,wi+1] such that the following hold.

1. π(M (Xwi))∩ Ji = [wi,wi,1], ∀ 0 ≤ i ≤ n−1.

2. For all i except possibly i= n−1, dT (wi,1,wi,2)≤ 2n0. Also, [wi,wi,1], [wi,2,wi,3]

and [wi,3,wi+1] are special intervals. Moreover, dT (wi,3,wi+1) = 1.

3. dT (π(M (Xwi)),π(M (Xwi+1)))> 2n0, ∀ 1 ≤ i ≤ n−2.

Proof. The proof is by induction. Suppose we have constructed Ji−1 and we want to
construct Ji.

Case 1: Suppose M (Xwi)∩Xv ̸= /0. Then we stop the process and set n−1 =

i, Jn−1 = [wn−1,v] and wn−1,s = v = wn for s = 1,2,3.
Case 2: Suppose M (Xwi)∩Xv = /0. Consider the vertex wi,1 ∈ (wi,v] in T , which

is the farthest from wi such that π(M (Xwi))∩ [wi,v] = [wi,wi,1]. Now we consider
the following two subcases.
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Subcase (2A): Suppose dT (wi,1,π(M (Xv))) ≤ 2n0. Then we consider wi,2 ∈
[wi,1,v] such that Xwi,2 ∩M (Xv) ̸= /0 and dT (wi,1,wi,2) ≤ 2n0. Then we stop the
process and set n−1 = i and wn−1,3 = v = wn.

Subcase (2B): Suppose dT (wi,1,π(M (Xv))) > 2n0. We take wi+1 ∈ [wi,1,v] is
the farthest from v such that dT (wi,1,π(M (Xwi+1))) > 2n0. Let wi,3 ∈ [wi,1,wi+1]

such that dT (wi,3,wi+1) = 1. Then by our choices, dT (wi,1,π(M (Xwi,3))) ≤ 2n0.
Now we fix wi,2 ∈ [wi,1,wi,3] such that dT (wi,1,wi,2)≤ 2n0 and Xwi,2 ∩M (Xwi,3) ̸= /0.
We also note that dT (π(M (Xwi)),π(M (Xwi+1)))> 2n0, otherwise,

dT (wi,1,π(M (Xwi+1)))≤ 2n0.

Therefore, we get Ji = [wi,wi,1]∪ [wi,1,wi,2]∪ [wi,2,wi,3]∪ [wi,3,wi+1] with the
required properties.

The induction stops at (n−1)th step if wn = v. Therefore, we are through.

Lemma 4.0.7. Suppose Si, i = 1,2 are two subtrees in T such that S1 ∩ S2 = {u}.
Then ∀ L ≥ 0, ML(XS1)∩ML(XS2) = ML(Xu).

Proof. It is clear that ML(Xu) ⊆ ML(XS1)∩ML(XS2). For the reverse inclusion,
let x ∈ ML(XS1)∩ML(XS2). Then there exists xi ∈ M (XSi) such that dX(x,xi)≤ L
for i = 1,2. Let π(xi) = ti for i = 1,2. Now by (P0), if dT (t2,S1) ≤ dT (t2,S2)

then x2 ∈ M (Xu) or if dT (t1,S2) ≤ dT (t1,S1) then x1 ∈ M (Xu). In either case,
x ∈ ML(Xu). Now suppose dT (t2,S1)> dT (t2,S2) and dT (t1,S2)> dT (t1,S1). Then
since T is a tree, at least one of the geodesics [x,x1]X or [x,x2]X has to pass through
Xu. Hence dX(x,Xu)≤ L and so x ∈ ML(Xu). Therefore, we are done.

The proof of the upcoming lemma follows from a similar line of reasoning as
Lemma 4.0.7. So we omit the proof.

Lemma 4.0.8. Suppose u,v and w lie on an interval in T such that dT (u,v) ≤
dT (u,w). Then ∀ L ≥ 0, ML(X{u,v})∩ML(X{v,w}) = ML(Xv).

Lemma 4.0.9. For all L ≥ L0 there are constants δ4.0.9 = δ4.0.9(L) and K4.0.9 =

K4.0.9(L) satisfying the following. Suppose u,v and w lie on an interval in T such that
dT (u,v) ≤ dT (u,w) and M (Xu)∩Xv ̸= /0, M (Xv)∩Xw ̸= /0. Then ML(X{u,v,w}) is
δ4.0.9-hyperbolic metric space with the induced path metric. Further, the union of any
two intersecting spaces among {ML(Xu),ML(Xv),ML(Xw)} is K4.0.9-quasiconvex
in ML(X{u,v,w}).

Proof. For the first part, we will apply Proposition 2.2.7 for n= 2 (see Remark 2.2.8).
Since M (Xu)∩Xv ̸= /0 and M (Xv)∩Xw ̸= /0, by (P4), ML(X{u,v}) and ML(X{v,w})
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are δ (L)-hyperbolic. Now by Lemma 4.0.8, ML(X{u,v})∩ML(X{v,w}) = ML(Xv).
Again, by Lemma 4.0.5, ML(Xv) is L4.0.5(L)-qi embedded in X and so is in both
ML(X{u,v}) and ML(X{v,w}) with respect to their corresponding path metric. Thus by
Remark 2.2.8, ML(X{u,v})∪ML(X{v,w}) = ML(X{u,v,w}) is δ4.0.9-hyperbolic, where
δ4.0.9 := δ2.2.8(δ (L),L4.0.5(L)).

For the second part, we prove that ML(X{u,w}) is a quasiconvex in ML(X{u,v,w})

provided ML(Xu)∩ML(Xw) ̸= /0, and the proof is similar for other intersections.
By Lemma 4.0.5, ML(Xu) and ML(Xw) are L4.0.5(L)-qi embedded in X and so
are in ML(X{u,v,w}). Then by Lemma 2.2.22 (1), ML(Xu) and ML(Xw) are K1–
quasiconvex in ML(X{u,v,w}), where K1 = K2.2.22(δ4.0.9(L),L4.0.5(L),0). Therefore,
ML(Xu)∪ML(Xw) is K4.0.9-quasiconvex subset of ML(X{u,v,w}), where K4.0.9 :=
K1 +δ4.0.9.

Hyperbolicity of ML(XI) where I is a special interval:
Proposition 4.0.10. Let I be a special interval in T . Then for all L ≥ L0 there is
δ4.0.10 = δ4.0.10(L) such that ML(XI) is a δ4.0.10-hyperbolic metric space with the
induced path metric from X.

Proof. We will apply Proposition 2.2.6. Let I = [u′,v′]. Without loss of generality,
we assume that M (Xu′)∩Xv′ ̸= /0.

Choices: For a given x ∈ M (XI), we fix once and for all ux ∈ I corresponding
to x such that x ∈ M (Xux). For a pair (x,y) of distinct points M (XI), without loss
of generality, we assume that dT (u′,ux) ≤ dT (u′,uy). Since M (Xu′)∩Xv′ ̸= /0, so
by (P0), M (Xux)∩Xuy ̸= /0. We take c(x,y) a fixed geodesic path in ML(X{ux,uy}).
These paths serve as family of paths for Proposition 2.2.6.

Note that M (XI) is L-dense subset in ML(XI). Let x,y,z ∈M (XI). Without loss
of generality, we assume that x∈M (Xu), y∈M (Xv), z∈M (Xw) for u,v,w∈ [u′,v′]
and dT (u′,u)≤ dT (u′,v)≤ dT (u′,w). So by (P0), M (Xu)∩Xv ̸= /0, M (Xv)∩Xw ̸=
/0 and M (Xu)∩Xw ̸= /0.

Condition (1): Let s, t ∈ {u,v,w} and s ̸= t. By (P3), ML(X{s,t}) is η ′(L)-
properly embedded in X and so is in ML(XI). Hence the family of paths are
η ′(L)-properly embedded in ML(XI).

Condition (2): We want to prove that the triangle formed by paths c(x,y), c(y,z)
and c(x,z) is uniformly slim. Then by Lemma 4.0.9, ML(X{u,v,w}) ⊆ ML(XI) is
δ4.0.9(L)-hyperbolic with the induced path metric and for all distinct s, t ∈ {u,v,w},
ML(X{s,t}) is K1-quasiconvex in ML(X{u,v,w}), where K1 = K4.0.9(L). Now we will
show that ML(X{s,t}) is uniformly qi embedded in ML(X{u,v,w}) where s ̸= t and s, t ∈
{u,v,w}. Let N′

K1+1(ML(X{s,t}))⊆ ML(X{u,v,w}) denote (K1 +1)-neighborhood of
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ML(X{s,t}) in metric of ML(X{u,v,w}). Hence by Lemma 2.2.23 (1), N′
(K1+1)(ML(X{s,t}))

is L1-qi embedded in ML(X{u,v,w}) for some L1 depending on δ4.0.9(L) and K1.
Hence by Lemma 2.1.4, the inclusion ML(X{s,t}) ↪→ ML(X{u,v,w}) is L2-qi embed-
ding, where L2 = L2.1.4(δ4.0.9(L),K1 +1).

So by the stability of quasi-geodesic (see Lemma 2.2.2), there is constant D =

2D2.2.2(δ4.0.9,L2,L2)+δ4.0.9(L) such that the triangle formed by paths c(x,y), c(y,z),
c(x,z) is D-slim in the metric of ML(X{u,v,w}) and so is in the metric of ML(XI).

Therefore, by Proposition 2.2.6, ML(XI) is δ4.0.10-hyperbolic, where δ4.0.10 =

δ2.2.6(η
′(L),D,L).

As an iterated application of Proposition 4.0.10 along with Proposition 2.2.7 for
n = 2 (see Remark 2.2.8), we obtain the following. The proof is omitted.

Lemma 4.0.11. Given L ≥ L0 and l ∈ N there is a constant δ4.0.11 = δ4.0.11(L, l)
satisfying the following. Let I = [u,v] for u,v ∈ T such that dT (u,v) ≤ l. Then
ML(XI) is a δ4.0.11-hyperbolic metric space with the induced path metric from X.

Hyperbolicity of ML(XI) where I is any interval: Before going into the proof,
we first prove the following two lemmata which will be used in the proof.

Let l ∈ N. Suppose J = ∪4
i=1Ji ⊆ T is an interval in T such that length of J2 ≤ l.

Further J1,J3,J4 are special intervals, and Ji ∩ Ji+1 is a single vertex for 1 ≤ i ≤ 3.

Lemma 4.0.12. Suppose J is as described above. For all l ∈ N and L ≥ L0 there
exists δ4.0.12 = δ4.0.12(L, l) such that ML(XJ) is δ4.0.12-hyperbolic metric space with
the induced path metric from X.

Proof. We will apply Proposition 2.2.7 for n = 2 three times, successively on
pairs (ML(XJ1),ML(XJ2)), (ML(XJ1∪J2),ML(XJ3)) and (ML(XJ1∪J2∪J3),ML(XJ4)).
Since J1,J3,J4 are special interval, by Proposition 4.0.10, ML(XJi) is δ4.0.10(L)-
hyperbolic for i = 1,3,4; and by Lemma 4.0.11, ML(XJ2) is δ4.0.11(L, l)-hyperbolic.
Suppose δ1 = max{δ4.0.10(L),δ4.0.11(L, l)}. Let {u} = J1 ∩ J2. Then by Lemma
4.0.7, ML(Xu) = ML(XJ1)∩ML(XJ2). Again by Lemma 4.0.5, ML(Xu) is L4.0.5(L)-
qi embedded in X and so is in both ML(XJ1) and ML(XJ2) in their respective path
metric. Therefore, by Remark 2.2.8, ML(XJ1)∪ML(XJ2) is δ2.2.8(δ1,L4.0.5(L))-
hyperbolic.

Applying the similar argument as above on the remaining pairs we have men-
tioned, we conclude that ML(XJ1∪J2∪J3)∪ML(XJ4) = ML(XJ) is uniformly hyper-
bolic metric space with the induced path metric from X . Let the uniform constant be
δ4.0.12 = δ4.0.12(L, l).



87

Lemma 4.0.13. Given δ ≥ 0, L ≥ L0 and a proper function g : R≥0 → R≥0, there
is a constant D4.0.13 = D4.0.13(δ ,L,g) such that the following holds.

Let Y ⊆ X be a δ -hyperbolic subspace of X such that ML(Xu)∪ML(Xv) ⊆ Y
and π(M (Xu))∩π(M (Xv)) = /0. Suppose Y is g-properly embedded in X. Then the
pair (ML(Xu),ML(Xv)) is D4.0.13-cobounded in Y .

Proof. We first note that by Lemma 4.0.5, ML(Xu) is L4.0.5(L)-qi embedded in
X and so is in Y . Then by Lemma 2.2.22 (1), ML(Xu) is K1-quasiconvex in Y ,
where K1 = K2.2.22(δ1,L4.0.5(L),0). Hence M (Xu) is K2-quasiconvex in Y , where
K2 = K1 +L. Similarly, M (Xv) is K2-quasiconvex in Y .

Let p : Y →M (Xu) be a nearest point projection map on M (Xu) in the metric of
Y . Let x,y ∈ M (Xv) such that p(x) = x1, p(y) = y1. By Lemma 2.2.21 (3) and the
symmetry of the proof, it is enough to show that dY (x1,y1) is uniformly bounded.

Now by [10, Lemma 1.31 (2)], the arc-length parametrizations of [x,x1]Y ∪
[x1,y1]Y and [y,y1]Y ∪ [y1,x1]Y are (3+ 2K2)-quasi-geodesic in Y . If dY (x1,y1) ≤
L2.2.5(δ ,3+ 2K2,3+ 2K2), then we are done. Suppose dY (x1,y1) > L2.2.5(δ ,3+
2K2,3+2K2). So by Lemma 2.2.5, [x,x1]Y ∪ [x1,y1]Y ∪ [y1,y]Y is λ1-quasi-geodesic
in Y , where λ1 = λ2.2.5(δ ,3 + 2K2,3 + 2K2). Therefore, by stability of quasi-
geodesic (see Lemma 2.2.2) and K2-quasiconvexity of M (Xv) in Y , there ex-
ist x2,y2 ∈ M (Xv) such that dY (x1,x2) ≤ D2.2.2(δ ,λ1,λ1) + K2 = L1 (say) and
dY (y1,y2)≤L1. Since π(M (Xu))∩π(M (Xv))= /0, by (P1), diam{ρu(M (Xv))}≤
C in X . Therefore, x2,y2 ∈ M (Xv) implies dX(ρu(x2),ρu(y2))≤C. Again ρu is L′-
coarsely Lipschitz retraction of X on M (Xu) (see (P1)). Since x1,y1 ∈ M (Xu),
so ρu(x1) = x1, ρu(y1) = y1. So dX(x1,ρu(x2)) = dX(ρu(x1),ρu(x2))≤ L′L1 +L′ =

L2 (say). Similarly, dX(y1,ρu(y2)) ≤ L2. Therefore, dX(x1,y1) ≤ dX(x1,ρ(x2))+

dX(ρu(x2),ρu(y2))+ dX(ρu(y2),y1) ≤ 2L2 +C ⇒ dY (x1,y1) ≤ g(2L2 +C) since Y
is g-properly embedded in X .

Hence, diam{p(M (Xv))} ≤ L3 in Y , where L3 = max{g(2L2 +C), L2.2.5(δ ,3+
2K2,3+2K2)}. Therefore, (by the symmetry of the proof) the pair (M (Xu),M (Xv))

is L3-cobounded in Y . Then by Lemma 2.2.21 (3), the pair (ML(Xu),ML(Xv)) is
D4.0.13-cobounded in Y , where D4.0.13 = D2.2.21(δ1,K2,L3,L).

Now we are ready to proof the main result.

Proposition 4.0.14. Let I be an interval in T . Then for all L ≥ L0 there is δ4.0.14 =

δ4.0.14(L) such that ML(XI) is δ4.0.14-hyperbolic metric space with the induced path
metric from X.
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Proof. Let I = J0 ∪ J1 ∪ ·· · ∪ Jn−1 be a subdivision of the interval I coming from
horizontal subdivision, Proposition 4.0.6, with n0 = [L]+2, where [L] is the greatest
integer not greater than L. We refer to Proposition 4.0.6 for the description of
Ji = [wi,wi+1]. Then by Lemma 4.0.12, ML(XJi) is δ4.0.12(L,2n0)-hyperbolic metric
space for all i ∈ {0,1, · · · ,n−1}.

Now we will verify all the conditions of Proposition 2.2.7. Let Xi = ML(XJi)

for 0 ≤ i ≤ n−1 and Yi+1 = Xi ∩Xi+1 = ML(Xwi+1) for 0 ≤ i ≤ n−2 (see Lemma
4.0.7).

(1) For 0≤ i≤ n−1, Xi is δ1-hyperbolic metric space, where δ1 = δ4.0.12(L,2n0).
(2) By Lemma 4.0.5, Yi+1 = ML(Xwi+1) is L4.0.5(L)-qi embedded in X so is in

both Xi and Xi+1 for 0 ≤ i ≤ n−2.
(3) Note that by (P0), if x∈Xi\Yi+1 and y∈Xi+1\Yi+1 then wi+1 ∈ [π(x),π(y)]\

{π(x),π(y)}. Hence every path in ML(XI) joining points Xi and Xi+1 passes through
Yi+1.

(4) Suppose i ∈ {1,2, · · · ,n−2}. Note that π(M (Xwi))∩π(M (Xwi+1)) = /0 (by
Proposition 4.0.6 (3)). Again Xi is η4.0.4(L)-properly embedded in X and so is in
ML(Xi). Also, ML(Xwi)∪ML(Xwi+1) ⊆ Xi. Then by Lemma 4.0.13, there is D
depending on δ1, L and η4.0.4(L) such that the pair (Yi,Yi+1) is D-cobounded in Xi.

(5) Let 1 ≤ i ≤ n− 2 and dXi(Yi,Yi+1) ≤ 1. Then dX(M (Xwi),M (Xwi+1)) ≤
2L+1, and so dT (π(M (Xwi)),π(M (Xwi+1)))≤ 2L+1 ≤ 2n0 (by our choice of n0).
This contradicts to (3) of Proposition 4.0.6.

Therefore, by Proposition 2.2.7, ML(XI) is δ4.0.14-hyperbolic, where δ4.0.14 =

δ2.2.7(δ1,L4.0.5(L),D).

As a consequence of Proposition 4.0.14 along with Proposition 2.2.7, we obtain
following. We omit the proof.

Lemma 4.0.15. Given L ≥ L0 there is δ4.0.15 = δ4.0.15(L) satisfying the following.
Let u,v,w ∈ T and Tuvw be the tripod in T with vertices u,v,w. Then ML(XTuvw) is
δ4.0.15-hyperbolic metric space with the induced path metric from X.

Proof of Theorem 4.0.1: We fix L = L0. We show that X satisfies all the
conditions of Proposition 2.2.6. Let Xvsp = ∪u∈T Xu. Note that Xvsp is a 1-dense
subspace of X . So given any two points x,y ∈ Xvsp, we define path joining them as
follows:

Let x ∈ Xu and y ∈ Xv for some u,v ∈ T . Note that X[u,v] = π−1([u,v]). We fix
once and for all, a geodesic path c(x,y) in ML(X[u,v]) joining x and y. These paths
serve as family of paths for Proposition 2.2.6.

Let x,y,z ∈V (X) such that π(x) = u, π(y) = v and π(z) = w.
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Condition (1): For all distinct s, t ∈ {u,v,w}, by Proposition 4.0.4, ML(X[s,t]) is
η4.0.4(L)-properly embedded in X and so are the paths.

Condition (2): Let Tuvw be the tripod in T with vertices {u,v,w}. By Lemma
4.0.15, ML(XTuvw) is δ4.0.15(L)-hyperbolic metric space. Again by Lemma 4.0.5,
ML(X[u,v]), ML(X[v,w]) and ML(X[u,w]) are L4.0.5(L)-qi embedded subspaces of X
and so are of ML(XTuvw). Then the hyperbolicity of ML(XTuvw) and the stability of
quasi-geodesic in ML(XTuvw) (see Lemma 2.2.2) imply that the triangle formed by
paths c(x,y), c(y,z) and c(x,z) is D-slim in ML(XTuvw) and so is in X , where

D = 2D2.2.2(δ4.0.15(L),L4.0.5(L),L4.0.5(L))+δ4.0.15(L).

Therefore, by Proposition 2.2.6, X is δ2.2.6(η4.0.4(L),D,1)-hyperbolic. This
completes the proof.





Chapter 5

A Combination Theorem for Trees of
Metric Bundles

In this chapter we will prove Theorem 1.2.4. Our standard assumptions for this
chapter are that the tree of metric bundles (X ,B,T ) must satisfy axiom H and a
flaring condition. However, by Remark 2.4.8 (a) one can observe that k-flaring
condition for a large k is enough (see introduction of Section 5.2, Section 5.3 and
Section 5.4).

5.1 Semicontinuous families: flow space and ladder

Motivated by the construction of semicontinuous families of spaces in [9, Chapter
3], we build subspaces analogous to that in trees of metric bundles. We follow the
same terminology used in [9]. Also, following [9], we will see two special kinds of
subspaces: flow spaces and ladders. These are the building blocks, which will be
shown to be hyperbolic, towards proving Theorem 1.2.4.

Suppose (X ,B,T ) is a tree of metric bundles as in Definition 2.4.2. Suppose
Y=

⋃
v∈TY,b∈Bv

Qb,v where Qb,v ⊆ Fb,v and TY := hull(π(Y)). With this we define
the following.

Definition 5.1.1 (Semicontinuous subspace). Let K ≥ 1,C ≥ 0 and ε ≥ 0. We say
that Y⊆X is a (K,C,ε)-semicontinuous family in X with a central base B= π

−1
B (T)

for some central subtree T in TY if the following hold.

1. Let v ∈ TY and b ∈ Bv. Then Qb,v is a 2δ0-quasiconvex subset of Fb,v and⋃
b∈Bv

Qb,v ⊆ Xv forms a K-metric bundle (see Definition 2.4.11) over Bv.
Moreover,

⋃
v∈TY, b∈Bv

Qb,v forms a K-metric bundle over B in X .

91
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2. Let v,w ∈ TY such that w /∈ T,dT (v,w) = 1,dT (T,w) > dT (T,v). Let [v,w]

be the edge joining v ∈ Bv and w ∈ Bw. Then Hdvw(Pw(Qv,v),Qw,w)≤ ε (see
Notation 2.4.10 for Pw) and dvw(x,Qv,v)≤ K,∀ x ∈ Qw,w. Moreover, if both
v,w ∈ T then Hdvw(Qv,v,Qw,w)≤ K.

3. Suppose w /∈ TY,v ∈ TY such that dT (v,w) = 1. Let [v,w] be the edge joining
v ∈ Bv and w ∈ Bw. Then the pair (Qv,v,Fw.w) is C-cobounded in the metric
Fvw.

4. Additionally, let B′ ⊆ π
−1
B (TY) be (1,6δ0)-qi embedded subspace in B. Sup-

pose v∈ TY and B′
v :=Bv∩B′. Then ∀ v∈ TY and ∀ b∈Bv\B′

v, diam f (Qb,v)≤
C. Let Y′ := π

−1
X (B′)∩Y.

Remark 5.1.2. (a) The condition (4) is used in Section 5.3 (more precisely, in Lemma
5.3.14), otherwise, all the time B′ = π

−1
B (TY) and so Y′ =Y.

(b) If T is a single vertex, say, {u} then Y is K-metric bundle over Bu.
(c) If πB : B → T is a graph isomorphism, then Y is the same as the semicontin-

uous family defined in the book [9, Chapter 3].
(d) (Maximality) ‘Moreover part’ in conditions (1) and (2) are equivalent

provided first parts of (1) and (2) hold. Let z ∈ Y and tz be the nearest point
projection of π(z) on T. Suppose Bz = π

−1
B ([tz,π(z)])∪B. Then it follows from

the conditions (1) and (2) that there is a compatible K-qi section (see Definition
2.4.4), say, Σz over Bz lying inside Y. Sometimes (more precisely, in Subsection
5.2.2), we work with maximal qi sections through points in Y as follows. Let
S be a subtree of TY containing T∪ [tz,π(z)]. Note that Bz ⊆ BS. Let G = {η :
η is a compatible K-qi section over BS through z lying inside Y}. We put an order
‘≤’ (inclusion) on G as follows. For η ,η ′ ∈ G , we say η ≤ η ′ if and only if η ⊆ η ′.
This order ‘≤’ makes G a poset. It is easy to see every chain has an upper bound in
G . Therefore, by Zorn’s lemma, we get a maximal compatible K-qi section through
z over a base, say, BS containing Bz and contained in π

−1
B (TY). By abusing notation,

we still denote the base for this maximal section by Bz.
(e) One also can introduce other (uniform) constants for quasiconvexity of

sets Qb,v in Fb,v and qi embedding of B′ in π
−1
B (TY) instead of 2δ0 and (1,6δ0)

respectively. However, for simplicity, we will exclusively work with these constants.
( f ) Later on, in our statements, we suppress the dependence on the constants

C,ε and the other structural constants of the tree of metric bundles when dealing
with semicontinuous family.

Now we will see nice properties (see Theorem 5.1.3, Proposition 5.1.4 and
Corollary 5.1.5) enjoyed by semicontinuous families. In the proof, we use the same
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notations as in the Definition 5.1.1. First, we prove that there is uniformly coarsely
Lipschitz retraction of X on semicontinuous families. This is motivated by Mitra’s
retraction in [1] (see also [10, Theorem 3.2] and [9, Theorem 3.3]). In this thesis,
we refer this retraction as Mitra’s retraction.

Theorem 5.1.3. Given K ≥ 1,ε ≥ 0 and C ≥ 0 there is a constant L5.1.3 = L5.1.3(K)

such that the following holds.
If Y is a (K,C,ε)-semicontinuous family (as in Definition 5.1.1) in X, then there

is L5.1.3-coarsely Lipschitz retraction ρ5.1.3 = ρY′ : X →Y′ of X on Y′.

Proof. Let Xvsp = ∪u∈T Xu and x,y ∈ Xvsp such that dX(x,y)≤ 1. Then by Lemma
2.1.2, it is enough to define a map ρ : Xvsp →Y′ for which dX(ρ(x),ρ(y)) is uni-
formly bounded.

Let us define ρ : Xvsp →Y′ as follows. Suppose x∈Xvsp and b= πX(x),u= π(x).
If b ∈ B′, then ρ(x) is defined to be a nearest point projection on Qb,u in metric Fb,u.
Now suppose b /∈ B′. Let a be a nearest point projection of b on B′ and πB(a) = v.
Since B′ is (1,6δ0)-qi embedded in π

−1
B (TY), so is in B. Then B′ is K′-quasiconvex in

B, where K′ = K2.2.22(δ0,max{1,6δ0},0). Note that a is coarsely well defined. We
also assume that a− ∈ [a,b]B such that a ̸= a− and dB(a,a−)≤ 1, and let πB(a−) =w.
Let x′ be a nearest point projection of x on Fa−,w in the metric X . Then we define ρ(x)
as nearest point projection of x′ on Qa,v in the path metric Faa− := π

−1
X ([a,a−]B).

Now we prove dX(ρ(x),ρ(y)) is uniformly bounded where x,y ∈ Xvsp and
dX(x,y) ≤ 1. Let πX(x) = a, πX(y) = b and π(x) = v, π(y) = w. We consider
the following cases, depending on the position of a,b,v and w.

Case 1: Suppose a,b ∈ B′. We consider two subcases, depending on whether
v = w or v ̸= w.

Subcase (1A): Suppose v = w. We proof it by dividing into two parts, when
a = b and a ̸= b.

Subsubcase (1AA): Suppose a = b. Since Qa,v is 2δ0-quasiconvex in Fa,v, by
Lemma 2.2.21 (1), d f (ρ(x),ρ(y))≤ 2C2.2.21(δ0,2δ0) = L1 (say).

Subsubcase (1AB): Suppose a ̸= b. Note that dB(a,b) ≤ dX(x,y) ≤ 1. Now
through each point in Y∩Xv there is K-qi section over Bv lying inside Y∩Xv.
Define a map ψ : Fa,v → Fb,v as follows. For z ∈ Qa,v take ψ(z) ∈ Qb,v such that
dXv(ψ(z),z) ≤ 2K. For z /∈ Qa,v take ψ(z) ∈ Fb,v such that d(ψ(z),z) ≤ c0 (as in
Definition 2.4.2). In either case, dXv(ψ(z),z)≤ 2K,∀ z ∈ Fa,v. Then by [10, Lemma
1.15], ψ is g(2K + c0)-quasi-isometry for some function g : R≥0 → R≥0. Again
∀ ξ ∈ Qb,v,∃ η ∈ Qa,v such that dXv(ξ ,η)≤ 2K and η is further 2K-close to a point
in ψ(Qa,v), i.e. Qb,v ⊆ N4K(ψ(Qa,v)) in the metric of Xv. Since fibers are φ -properly
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embedded, Qb,v ⊆ N f
φ(4K)

(Qa,v) (see 2.4.10 for notation). Then ψ(Qa,v) ⊆ Qb,v

implies Hd f (ψ(Qa,v),Qb,v)≤ φ(4K) in the metric of Fb,v.

Let y1 be a nearest point projection of y on ψ(Qa,v) in the metric of Fb,v.
Now by Lemma 2.2.22 (1), there is a constant K1 = K2.2.22(δ0,g(2K + c0),2δ0)≥
2δ0 such that ψ(Qa,v) is K1-quasiconvex in Fa,v, and so by Lemma 2.2.21 (2),
d f (y1,ρ(y)) ≤ E2.2.21(δ0,K1,φ(4K)). Again Lemma 2.2.22 (2) says that there is
D = D2.2.22(δ0,g(2K + c0),2δ0) for which dXv(ψ(ρ(x)),y1)≤ D. By the definition
of ψ , we also have dXv(ρ(x),ψ(ρ(x)))≤ 2K. Hence combining these four inequal-
ities, we have L2 = 2K +D2.2.22(δ0,g(2K + c0),2δ0)+E2.2.21(δ0,K1,φ(4K)) such
that dXv(ρ(x),ρ(y))≤ L2.

Subcase (1B): Suppose v ̸= w. Then it follows that dX(x,y) = 1, dB(a,b) = 1, x ∈
Fv,v, y ∈ Fw,w and a ∈ Bv, b ∈ Bw. To make things notationally consistent, we assume
that a = v,b = w. Note that [v,w] ⊆ B′ ⊆ π

−1
B (TY). Now irrespective of whether

[v,w] is an edge in B or not, we have Hdvw(Pw(Qv,v),Qw,w)≤max{2K,ε}. Then by
Lemma 2.3.5 (1), dX(ρ(x),ρ(y))≤ dvw(ρ(x),ρ(y))≤R2.3.5(2δ0,K,max{2K,ε}) =
L3 (say).

Case 2: Suppose one of a,b belongs to B′. Without loss of generality, we assume
that a ∈ B′ and b /∈ B′. Here we also consider the following subcases, depending on
whether v = w or v ̸= w.

Subcase (2A): Suppose v = w. Let πX(ρ(y)) = a′. Then dB(a,a′) ≤ 2, and so
HdXv(Qa,v,Qa′,v)≤ 2K+K = 3K. Again, since diam f (Qb,v)≤C then diam(Qa,v)≤
4K+C. Thus diam f (Qa,v)≤ φ(4K+C), and so dX(ρ(x),ρ(y))≤ 3K+φ(4K+C)=

L4 (say).

Subcase (2B): Suppose v ̸= w. For the consistency of notation, we assume that
a = v,b = w. Without loss of generality, we let dT (πB(B∩B′),v) < dT (πB(B∩
B′),w). Note that in this case, ρ(y) is nearest point projection of y on Qv,v in
the metric of Fvw. Then by Lemma 2.3.6, dX(ρ(x),ρ(y)) ≤ dvw(ρ(x),ρ(y)) ≤
R2.3.6(2δ0) = L5 (say).

Case 3: Suppose a,b /∈ B′. Let a′ = πX(ρ(x)),b′ = πX(ρ(y)) and a′− ∈ [a′,a]B,
b′− ∈ [b′,b]B such that a′− ̸= a′, b′− ̸= b′ and dB(a′,a′−) ≤ 1,dB(b′,b′−) ≤ 1. Since
dX(x,y)≤ 1, then πB(a′) = πB(b′) and πB(a′−) = πB(b′−). Let us rename πB(a′) as
v and πB(a′−) as w not to make notation-heavy. We consider the following subcases
depending on whether v = w or v ̸= w.

Subcase (3A): Suppose v = w. Since B′ is K′-quasiconvex in B (where K′ =

K2.2.22(δ0,max{1,6δ0},0)) and dB(a,b) ≤ dX(x,y) ≤ 1, so by Lemma 2.2.21 (1),
dB(a′,b′) ≤ 2C2.2.21(δ0,K′). Note that Y∩ Xv forms a K-metric bundle and so
HdXv(Qa′,v,Qb′,v)≤ 2KC2.2.21(δ0,K′)+K. Since a′−,b

′
− ∈ Bv then diam f (Qa′,v)≤
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φ(4K +C) and diam f (Qb′,v)≤ φ(4K +C) (see Subcase (2A) for instance). Hence
dX(ρ(x),ρ(y))≤ 2KC2.2.21(δ0,K′)+K +φ(4K +C) = L6 (say).

Subcase (3B): Suppose v ̸= w. For the consistency of notation, we assume that
a′ = b′ = v and a′− = b′− = w. In the same way, we consider the following two
subcases.

Subsubcase (3BA): Let [v,w] be an edge in π
−1
B (TY). Without loss of gener-

ality, we assume that dB(πB(B∩B′),v) < dB(πB(B∩B′),w). By the assumption
diam f (Qw,w) ≤C and so diam(Pw(Qv,v)) ≤ 2ε +C in the metric of Fvw. Then by
Lemma 2.2.18, there is a constant C1 depending on λ ′

0,δ
′
0 and 2ε +C such that the

pair (Qv,v,Fw,w) is C1-cobounded in the metric of Fvw. Therefore, dX(ρ(x),ρ(y))≤
C1 = L7 (say).

Subsubcase (3BB): Suppose [v,w] is not an edge in π
−1
B (TY). Then by definition

of semicontinuous family Y, the pair (Qv,v,Fw,w) is C-cobounded in the path metric
of Fvw. So dX(ρ(x),ρ(y))≤C.

Suppose L=max{Li,C : 1≤ i≤ 7}=max{Li : 1≤ i≤ 7}. Therefore, by Lemma
2.1.2, one can take L5.1.3 =C2.1.2(L).

Next we show that a uniform neighborhood of semicontinuous families are path
connected in X and uniformly properly embedded in X with the induced path metric
from X . As a consequence, we will see that it is also (uniformly) qi embedded in X
(see Corollary 5.1.5).

Proposition 5.1.4. Suppose K ≥ 1,C ≥ 0 and ε ≥ 0. Then for all L ≥ max{2δ0 +

1,2K} there exists η5.1.4 = η5.1.4(K,L) : R≥0 → R≥0 such that the following holds.
If Y is a (K,C,ε)-semicontinuous family (as in Definition 5.1.1) in X, then

NL(Y
′) is path connected and with the path metric on NL(Y) induced from X, the

inclusion i : NL(Y
′) ↪→ X is η5.1.4-proper embedding.

Proof. It is clear that NL(Y
′) is path connected. We denote the path metric on

NL(Y
′) induced from X by d′.

For second part, we first show that for r ∈R≥0, x,y∈Y′ and dX(x,y)≤ r we have
bound on d′(x,y) in terms of r; in the end, we show the same for points in NL(Y).
Fix u ∈ πB(B∩B′). We take t, the center of the tripod in T with vertices π(x),
π(y), u if [π(x),π(y)]T ∩πB(B∩B′) = /0; otherwise, t ∈ [π(x),π(y)]T ∩πB(B∩B′)

arbitrary. Let a= πX(x),b= πX(y). Then dB(a,b)≤ dX(x,y)≤ r. Since the inclusion
B′ ↪→ π

−1
B (TY) is (1,6δ0)-qi embedding, dB′(a,b)≤ r+6δ0. Let c ∈ Bt ∩ [a,b]B′ be

arbitrary. Then dB′(a,c) ≤ r+6δ0 and dB′(c,b) ≤ r+6δ0. By taking K-qi lifts of
geodesics [a,c]B′ and [c,b]B′ in Y (more precisely, in Y′), we get, x1,y1 ∈ Qc,t such
that d′(x,x1) ≤ 2K(r + 6δ0) and d′(y,y1) ≤ 2K(r + 6δ0) (see Lemma 2.4.12 (3)).
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Now dX(x1,y1)≤ dX(x1,x)+dX(x,y)+dX(y,y1)≤ d′(x1,x)+dX(x,y)+d′(y,y1)≤
4K(r+6δ0)+ r ⇒ d f (x1,y1)≤ φ(4K(r+6δ0)+ r).

Note that N f
2δ0+1(Qc,t)⊆ NL(Y

′)∩Fc,t as L ≥ 2δ0+1, and x1,y1 ∈ Qc,t . Then by
Lemma 2.2.23 (1), there is D(r) depending on r such that d′(x1,y1)≤ D(r). Hence
d′(x,y)≤ d′(x,x1)+d′(x1,y1)+d′(y1,y)≤ 4K(r+6δ0)+D(r).

Now suppose x,y ∈ NL(Y
′) such that dX(x,y)≤ r. Then ∃ x1,y1 ∈Y′ such that

d′(x,x1)≤ L and d′(y,y1)≤ L. So dX(x1,y1)≤ 2L+ r. Thus by above, d′(x1,y1)≤
4K(2L+r+6δ0)+D(2L+nr). Hence combining these inequalities, we get, d′(x,y)≤
4K(2L+ r+6δ0)+D(2L+ r)+2L.

Therefore, we can take η5.1.4 : R≥0 → R≥0 sending r 7→ 4K(2L+ r + 6δ0)+

D(2L+ r)+2L.

As a consequence we have the following corollary (see Lemma 2.1.3).

Corollary 5.1.5. Suppose K ≥ 1,C ≥ 0 and ε ≥ 0. Then for all L ≥ max{2δ0 +

1,2K} there exists L5.1.5 = L5.1.5(K,L) := L2.1.3(η5.1.4(K,L),L5.1.3(K),L) such that
the following holds.

If Y is a (K,C,ε)-semicontinuous family (as in Definition 5.1.1) in X, then the
inclusion i : NL(Y

′) ↪→ X is L5.1.5-qi embedding in X.

Remark 5.1.6. Conclusion of Theorem 5.1.3, Proposition 5.1.4 and Corollary 5.1.5
hold for Y as well.

5.1.1 Flow space

Suppose (X ,B,T ) is a tree of metric bundles as in Definition 2.4.2. Let u ∈ T,a ∈ Bu.
Given a subset Aa,u of Fa,u, we define (rather, construct) the flow space of Aa,u, which
is a semicontinuous family in X with central base (possibly bigger than) Bu. The
construction of this flow space is by induction as follows. Let k ≥ K2.4.12 be fixed.

Step 1: Ga,u = {γ : γ is a k-qi section over Bu through a point in Aa,u}. Let b ∈
Bu and Qb,u = hull{γ(b) : γ ∈ Ga,u} ⊆ Fb,u; where quasiconvex hull is considered in
the corresponding fiber. Note that Qb,u is 2δ0-quasiconvex in Fb,u and by Lemma
2.4.12 (2),

⋃
b∈Bu

Qb,u forms a C2.4.12(k)-metric bundle over Bu.

Step 2: We extend this to other Xv by induction on dT (u,v). Suppose we have
extended it till Xv, where dT (u,v) = n. Let w ∈ T such that dT (u,w) = n+ 1 and
dT (v,w) = 1. Let [v,w] be the edge joining v ∈ Bv and w ∈ Bw. We denote Qa,t as
the intersection of the flow space we are constructing with Fa,t for t ∈ T,a ∈ Bt . We
first flow Qv,v in Fw,w and then by Step 1 above in the entire Xw, provided Qw,w ̸= /0.
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Let us fix R ≥ R2.2.13(δ
′
0,λ

′
0) and let R′ = R′

2.2.13(δ
′
0,λ

′
0,R). Note that Qv,v is 2δ0-

quasiconvex in Fv,v and so is λ ′
0-quasiconvex in Fvw (see Lemma 2.3.4 (2)). Suppose

Nvw
R (Qv,v)∩Fw,w ̸= /0. Then by Lemma 2.2.13 (2), Pw(Qv,v)⊆ Nvw

R′ (Qv,v)∩Fw,w =:
Q′
w,w (say). Let Qw,w := hull(Q′

w,w)⊆ Fw,w, where quasiconvex hull is considered
in Fw,w. Note that Qw,w is 2δ0-quasiconvex in Fw,w. Now we apply Step 1 to Qw,w

by considering all k-qi section over Bw through points in Qw,w.

If Nvw
R (Qv,v)∩Fw,w = /0, then we will not ‘flow’ Qv,v in that direction. In other

words, let S be the component of T \{v} containing w. Then ∀ t ∈ S and ∀ b ∈ Bt ,
we have, Qb,t = /0.

Now we prove the following properties which verify that the subspace we are
constructing is a semicontinuous family. Let v,w ∈ T such that dT (u,v)< dT (u,w).

Property 1: Suppose Qv,v ̸= /0 and Nvw
R (Qv,v)∩Fw,w = /0. Then the pair (Qv,v,Fw,w)

is C := D2.2.13(δ
′
0,λ

′
0)-cobounded in Fvw. Indeed, Qv,v and Fw,w are λ ′

0-quasiconvex
in Fvw (see Lemma 2.3.4 (2)). So by Lemma 2.2.13 we are done.

Property 2: Suppose Qv,v and Qw,w are nonempty. Then Qw,w ⊆ Nvw
K′ (Qv,v) for

some uniform constant K′.

Proof. Let x ∈ Qw,w. Then ∃ x1,x2 ∈ Q′
w,w and x′ ∈ [x1,x2]Fw,w such that

d f (x,x′) ≤ δ0. Let y1,y2 ∈ Qv,v such that dvw(xi,yi) ≤ R′, i = 1,2. Note that
Qv,v is L′

0-qi embedded in Fvw (Lemma 2.3.4). Then by slimness of quadrilat-
eral in Fvw with vertices x1,x2,y1 and y2, there is x′′ ∈ Qv,v such that dvw(x′,x′′)≤
2D2.2.2(δ

′
0,L

′
0,L

′
0)+R′+2δ ′

0+2δ0. Thus d(x,x′′)≤ 2D2.2.2(δ
′
0,L

′
0,L

′
0)+R′+2δ ′

0+

2δ0 +δ0 =: K′ .

Property 3: Suppose both Qv,v and Qw,w are nonempty. Then Hdvw(Pw(Qv,v),Qw,w)≤
ε for some uniform constant ε .

Proof. Property (2) tells that Qw,w ⊆ Nvw
2K′(Pw(Qv,v)). Again by construction

Pw(Qv,v)⊆ Qw,w. So Hdvw(Pw(Qv,v),Qw,w)≤ 2K′ =: ε .

We denote F lK(Aa,u) :=
⋃

v∈T,b∈Bv

Qb,v; where K = max{K′,C2.4.12(k)}.

Definition 5.1.7 (Flow space). We say F lK(Aa,u) =
⋃

v∈T,b∈Bv
Qb,v is the flow

space of Aa,u with parameters k ≥ K2.4.12 and R ≥ R2.2.13(δ
′
0,λ

′
0). It is clear from

the construction that F lK(Aa,u) is a (K,C,ε)-semicontinuous family, where K =

K5.1.7(k,R) = max{K′,C2.4.12(k)},C = D2.2.13(δ
′
0,λ

′
0) and ε = ε5.1.7(R) are as in

above properties.

In particular, for any u ∈ T and a ∈ Bu, suppose F lK(Fa,u) is the flow space of
Fa,u with parameters k ≥ K2.4.12, R ≥ R2.2.13(δ

′
0,λ

′
0), where K = K5.1.7(k,R). Then

by Lemma 2.4.12 (1), Xu ⊆ F lK(Fa,u). In this case, we denote the flow space by
F lK(Xu) and we say F lK(Xu) is the flow space of Xu with parameters k,R.
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Although F lK(Aa,u) depends on the constants C,ε and the other structural
constants of (X ,B,T ), we make them implicit in our notation.

We have defined the flow space of a subset of a fiber and of Xu for u ∈ T in
Definition 5.1.7. Below we make it a bit general and will use this in Section 5.4.

Definition 5.1.8 (Flow space of metric bundles). Fix k ≥ K2.4.12. Let S be a subtree
of T and R ≥ max{R2.2.13(δ

′
0,λ

′
0),k}. Suppose H is a k-metric bundle over BS (see

Definition 2.4.11). Let Hb,u := H ∩Fb,u for u ∈ S,b ∈ Bu. We also assume that
Hb,u is 2δ0-quasiconvex in Fb,u. Suppose S (S,1) = {w ∈ T : dT (S,w) = 1}. Let
w ∈ S (S,1) and v ∈ S such that dT (v,w) = 1. Let Twv be the connected component
of T \{v} containing w along with the edge [v,w]. Suppose [v,w] is the edge joining
v ∈ Bv and w ∈ Bw. Let F lTwv

K (Hv,v) is the flow space of Hv,v only inside XTwv (with
the parameters k,R) such that F lTwv

K (Hv,v)∩Xv = H ∩Xv, where K = K5.1.7(k,R).
We define F lK(H) :=

⋃
w∈S (S,1)F lTwv

K (Hv,v) as flow space of H.

It is clear that F lK(H) is a (K,C,ε)-semicontinuous family with a central base
BS, where K = K5.1.7(k,R), C = D2.2.13(δ

′
0,λ

′
0), ε = ε5.1.7(R).

Let us record some constants from the above discussion in the following lemma.

Lemma 5.1.9. Given k ≥ K2.4.12 and R ≥ max{R2.2.13(δ
′
0,λ

′
0),k} there are con-

stants K5.1.9 = K5.1.9(k,R) = K5.1.7(k,R),ε5.1.9 = ε5.1.9(R) = ε5.1.7(R) and C5.1.9 =

D2.2.13(δ
′
0,λ

′
0) such that the following hold.

1. Let u ∈ T . Then F lK5.1.9(Xu) is a (K5.1.9,C5.1.9,ε5.1.9)-semicontinuous family
with a central base Bu.

2. Let S be a subtree of T and H be a k-metric bundle over BS. Then F lK5.1.9(H)

is a (K5.1.9,C5.1.9,ε5.1.9)-semicontinuous family with a central base BS.

Note that in Lemma 5.1.9, (2) needs the condition R ≥ max{R2.2.13(δ
′
0,λ

′
0),k},

whereas (1) holds for R ≥ R2.2.13(δ
′
0,λ

′
0).

Consider the flow spaces with parameters k,R as taken in Lemma 5.1.9. Let
KKK = K5.1.9(k,R), CCC =C5.1.9 and εεε = ε5.1.9(R). Flow spaces being semicontinuous
families, we have and restate the following three results for flow spaces (see Proposi-
tion 5.1.3, Proposition 5.1.4, Corollary 5.1.5 and also Remark 5.1.6), as they will be
utilized extensively in Section 5.3 and Section 5.4.

Proposition 5.1.10. There exists L5.1.10 = L5.1.10(K)-coarsely Lipschitz retraction
ρ5.1.10 : X → F lK(Z) where Z ∈ {Xu,H}.
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Proposition 5.1.11. Given L ≥ max{2K,2δ0 + 1} there is η5.1.11 = η5.1.11(K,L) :
N→ N such that the inclusion i : NL(F lK(Z)) ↪→ X is η5.1.11-proper embedding in
X, where Z ∈ {Xu,H}.

Corollary 5.1.12. Given L ≥ max{2K,2δ0+1}, there is L5.1.12 = L5.1.12(K,L) such
that the inclusion i : NL(F lK(Z)) ↪→ X is L5.1.12-qi embedding, where Z ∈ {Xu,H}.

Flow space being semicontinuous family, the fundamental and crucial property
is the existence of qi sections through each point over the respective domain. If one
carefully analyses the construction, one will realize the following. Given a qi section,
one can construct, by taking larger neighborhood at the junction (more precisely,
in Fvw), a flow space containing the qi section. The following lemma captures this
property. Since it is straightforward, we omit the proof.

Lemma 5.1.13. Given K ≥K5.1.9(K2.4.12,R2.2.13(δ
′
0,λ

′
0)) there are constants K5.1.13 =

K5.1.13(K)=K5.1.9(K,K),C5.1.13 =C5.1.9(δ
′
0,λ

′
0) and ε5.1.13 = ε5.1.13(K)= ε5.1.9(K)

such that the following holds.
Suppose S ⊆ T is a subtree and u ∈ S. Let γ be a K-qi section over BS. Suppose

F lK5.1.13(Xu) is the flow space of Xu with parameters K and K. Then γ ⊆F lK5.1.13(Xu)

and F lK5.1.13(Xu) is a (K5.1.13,C5.1.13,ε5.1.13)-semicontinuous family.

Notation 5.1.14. We define a function κ(i) 7−→ κ(i+1) to measure the iteration in the
above Lemma 5.1.13. In other words, suppose κ ≥ K5.1.9(K2.4.12,R2.2.13(δ

′
0,λ

′
0)).

Define κ(0) = κ,κ(i+1) = K5.1.13(κ
(i),κ(i)). Then for the flow space F l

κ(i)(Xu) of
Xu with parameters k = κ(i−1) and R = κ(i−1), we have, F l

κ(i)(Xu)⊆ F l
κ(i+1)(Xu).

5.1.2 Ladder

Suppose (X ,B,T ) is a tree of metric bundles. Let K ≥ 1,C ≥ 0, ε ≥ 0. A ladder
L ⊆ X is a (K,C,ε)-semicontinuous family with a central base, say, B such that
fibers are geodesic segments. However, in addition, we also have the following extra
properties.

(L1): For all v ∈ TL (where TL = hull(π(L ))), L ∩Xv is a special K-ladder
(see Definition 2.4.11) over Bv. Moreover, L ∩XB forms a special K-ladder over B.

We also have the following orientation on fiber geodesic.

Notation 5.1.15. T := πB(B), La,v := L ∩Fa,v ∀ a ∈ Bv,∀ v ∈ TL .

We fix u∈T once and for all. As L ∩Xu is bounded by two K-qi sections over B,
we set one of them as top and the other one as bot to give an orientation on L ∩Xu;
where the abbreviation top and bot is coming from ‘top’ and ‘bottom’ respectively.
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So we have an orientation for each fiber geodesics of L ∩Xu as ‘bot to top’. We put
orientation on L by induction on dT (u,v) as follows, where v ∈ TL . Let v,w ∈ TL

such that dT (u,v) < dT (u,w) and dT (v,w) = 1. We also assume that w /∈ T; and
it is mentioned in the end for the case w ∈ T. The orientation to fiber geodesics
of L ∩Xw depend on that of L ∩Xv. Let [v,w] be the edge joining v ∈ Bv and
w ∈ Bw. Let Lv,v := [xv,v,yv,v] f and Lw,w := [xw,w,yw,w]

f such that top(Lv,v) =

xv,v and bot(Lv,v) = yv,v. Let x̄v,v, ȳv,v ∈ Lv,v such that dvw(x̄v,v,xw,w) ≤ K and
dvw(ȳv,v,yw,w)≤ K. Let hwv : Lw,w → Lv,v be a monotonic map (see Lemma 2.2.4)
sending xw,w to x̄v,v and yw,w to ȳv,v such that dvw(hwv(x),x)≤ k2.2.4(δ

′
0,L

′
0,K) for

all x ∈ Lw,w. We fix this hwv once and for all for such v,w. The orientation in
L ∩Xw depends on the order of how x̄v,v and ȳv,v appear in Lv,v. Let the K-qi
sections γ1 and γ2 bound L ∩Xw such that γ1(w) = xw,w and γ2(w) = yw,w. If
yv,v ≤ ȳv,v < x̄v,v ≤ xv,v, then we set γ1 to be top and γ2 to be bot for L ∩Xw. In
other words, top(La,w) = γ1(a) and bot(La,w) = γ2(a), a ∈ Bw. If yv,v ≤ x̄v,v <
ȳv,v ≤ xv,v, then we set γ2 to be top and γ1 to be bot for L ∩Xw. In other words,
top(La,w) = γ2(a) and bot(La,w) = γ1(a), a ∈ Bw. However, by renaming, we
always denote x̄v,v ∈ Im(hwv) for the closest point (in the induced metric on Lv,v)
to xv,v and ȳv,v ∈ Im(hwv) for the closest point to yv,v. Otherwise, i.e., if x̄v,v = ȳv,v,
then we set any one of γ1,γ2 as top and the other one as bot. If w ∈ T then v ∈ T.
Then the monotonic map hwv : Lw,w → Lv,v sends xw,w to xv,v and yw,w to yv,v. We
let top(L ) := ∪a∈Bv,v∈TL top(La,v) and bot(L ) := ∪a∈Bv,v∈TL top(La,v).

(L2) Quasi-isometric (qi) section in L : Let x∈L such that t = π(x). Suppose
s is the nearest point projection of t on T. Then there is a K-qi section through x lying
inside L over Bx :=B∪B[s,t]. By a qi section in L , we always mean that it obeys
the order at the junction between two metric bundles given by the family {hwv}. In
other words, suppose u ∈ T is fixed (as mentioned above) and Σ is a qi section in L

over, say, B1. Let [v,w] be an edge in B1 joining v ∈ Bv and w ∈ Bw corresponding
to the edge [v,w] in T such that dT (u,v)< dT (u,w). Then Σ(v) = hwv(Σ(w)). Thus
dvw(Σ(v),Σ(w))≤ k2.2.4(δ

′
0,L

′
0,K). As max{K,k2.2.4(δ

′
0,L

′
0,K)}= k2.2.4(δ

′
0,L

′
0,K),

Σ would be a k2.2.4(δ
′
0,L

′
0,K)-qi section. By abusing notation, we still say Σ is K-qi

section.

Definition 5.1.16 (Ladder). A ladder L ⊆ X with parameters K ≥ 1,C ≥ 0,ε ≥ 0
is a (K,C,ε)-semicontinuous family with a central base, say, B along with a family
of monotonic maps {hwv} (as described above) and (L1), (L2).

We refer L as (K,C,ε)-ladder with a central base B. Sometimes we denote L

by LK to emphasise K.
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One can think of xw,w and yw,w as uniformly close to nearest point projections (in
dvw-metric) on Fw,w of the points xv,v and yv,v respectively. (This uniform bound is
measured in terms of ε .) Again it follows from the definition of ladder that the pairs
([xv,v, x̄v,v] f ,Fw,w) and ([yv,v, ȳv,v] f ,Fw,w) are uniformly cobounded in Fvw. This is
proved in the lemma below.

Lemma 5.1.17. Given K ≥ 1,C ≥ 0,ε ≥ 0 there exist C5.1.17 =C5.1.17(K,C,ε) and
ε5.1.17 = ε5.1.17(K,C,ε) such that the following holds.

Suppose L is a (K,C,ε)-ladder with a central base B. Let [v,w] be an edge
in T . Suppose [v,w] is the edge joining v ∈ Bv and w ∈ Bw such that w /∈ T and
dT (T,v)< dT (T,w). Let z ∈ [x̄v,v, ȳv,v] f ⊆ Lv,v and hwv(z′) = z for z′ ∈ Lw,w (with
the notation used in the Definition 5.1.16). Then:

(1) The pairs ([xv,v, x̄v,v] f ,Fw,w) and ([yv,v, ȳv,v] f ,Fw,w) are C5.1.17-cobounded in
Fvw.

(2) Hdvw(Pw([xv,v,z] f ), [xw,w,z′] f ) ≤ ε5.1.17, Hdvw(Pw([yv,v,z] f ), [yw,w,z′] f ) ≤
ε5.1.17.

Proof. (1) We prove only for the pair ([xv,v, x̄v,v] f ,Fw,w) as the other one has a
similar proof. For ease of notation, let x1 = xv,v,x2 = xw,w,x3 = x̄v,v. Let x′1 =

Pw(x1) and x′′1 ∈ Lw,w such that dvw(x′1,x
′′
1) ≤ ε . Suppose x4 = hwv(x′′1) and x′4 =

Pw(x4). Note that x3 ∈ [x4,x1]
f . Now dvw(x′′1,x4)≤ K implies dvw(x′′1,x

′
4)≤ 2K. So

dvw(x′1,x
′
4) ≤ ε + 2K. Again, [x1,x4]

f is a L′
0-quasi-geodesic in Fvw (see Lemma

2.3.4). Then by [9, Corollary 1.116], there is a constant C1 depending on δ ′
0,λ

′
0,L

′
0

such that Hdvw(Pw([x1,x4]
f ), [x′1,x

′
4]Fvw)≤C1. Let x′3 =Pw(x3). Then dvw(x′3,x

′
1)≤

dvw(x′3, [x
′
1,x

′
4]Fvw)+dvw(x′1,x

′
4)≤C1+ε+2K. Again applying [9, Corollary 1.116]

to [x1,x3]
f , the diameter of Pw([x1,x3]

f ) in the metric Fvw is bounded by ≤ 2C1 +

(C1 +ε +2K) = 3C1 +ε +2K. Therefore, by Lemma 2.2.18, we can take a constant
depending on λ ′

0,δ
′
0 and 3C1 + ε +2K as our required constant C5.1.17. So, we are

done.
(2) We only prove that Hdvw(Pw([xv,v,z] f ), [xw,w,z′] f ) is uniformly bounded

as the other one has a similar proof. We continue with the notations used in (1).
From the above proof, we note that dvw(x′1,x

′
3) ≤ C1 + ε + 2K. So dvw(x′1,x2) ≤

dvw(x′1,x
′
3)+dvw(x′3,x3)+dvw(x3,x2) ≤C1 + ε +2K +K +K =C1 + ε +4K. Let

x′ = Pw(x) for x ∈ [x1,z] f ⊆Lv,v. If x ∈ [x3,z] f , then ∃ y ∈ [x2,z′] f ⊆Lw,w such that
hwv(y) = x and dvw(y,x)≤ K. So dvw(y,x′)≤ 2K. If x ∈ [x1,x3], then dvw(x′,x2)≤
dvw(x′,x′1)+dvw(x′1,x2)≤C5.1.17+C1+ε+4K = 2(2C1+ε+3K). So Pw([xv,v,z] f )

is contained in 2(2C1 + ε + 3K)-neighborhood of [x2,z′] f ⊆ Lw,w in the metric
of Fvw. For the other inclusion, let ξ ′ ∈ [x2,z′] f ⊆ Lw,w. Then there is ξ ∈
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[x3,z] f ⊆ Lv,v such that hwv(ξ
′) = ξ and dvw(ξ ,ξ ′) ≤ K. Then ξ ′ is contained

in 2K-neighborhood of Pw([x1,z] f ) in the path metric of Fvw. As ξ ′ is arbitrary in
[x2,z′] f ⊆ Lw,w. So, we take ε5.1.17 = 2(2C1 + ε +3K).

Definition 5.1.18 (Subladder). Suppose L is (K,C,ε)-ladder. A subladder L ′ in
L is a (K′,C′,ε ′)-ladder whose fiber geodesics are subsegments of the corresponding
fiber geodesics of the ladder L and the family of monotonic maps are restrictions of
the given family {hwv}. The constants K′, C′ and ε ′ depend on the given ones.

Definition 5.1.19 (Girth and Neck). Suppose L is a (K,C,ε)-ladder with a central
base B. Let B1 ⊆B and let ℓ(α) denote the length of a fiber geodesic α . Girth of the
ladder L over B1 is denoted by L g|B1 and defined as inf{ℓ(Lb,v) : v ∈ πB(B1),b ∈
Bv ∩B1}. For a A ≥ 0, A-neck of the ladder L inside B1 is denoted by L n(A)|B1

and defined as {b ∈ B1 : ℓ(Lb,v)≤ A, πB(b) = v}.

Let L be a (K,C,ε)-ladder. Let x,y ∈ L and Σx,Σy be K-qi sections through
x,y over Bx,By respectively. Suppose Bxy = Bx ∩By. Then the restriction of Σx and
Σy over Bxy form a special K2.4.14(K)-ladder over Bxy. We denote the restriction by
Lxy. With these notations, we have the following lemma.

Lemma 5.1.20. Given K ≥ 1, C ≥ 0,ε ≥ 0 and A ≥ MK (coming from K-flaring
condition) there exists K5.1.20 = K5.1.20(K,A) such that the following holds.

Let L be a (K,C,ε)-ladder with a central base B. Then for x,y∈L ,L n
xy(A)|Bxy

is K5.1.20-quasiconvex in Bxy, and consequently, in B as well.

Proof. If L n
xy(A)|Bxy = /0, then there is nothing to prove. Suppose L n

xy(A)|Bxy ̸= /0
and a,b ∈ L n

xy(A)|Bxy . Without loss of generality, we assume that d f (Σx(s),Σy(s))>
A ≥ MK, ∀ s ∈ [a,b]\{a,b}. So by Lemma 2.4.7 (1), dB(a,b)≤ τ2.4.7(K,A). Hence
one can take K5.1.20 := τ2.4.7(K,A).

We finish this subsection by noting an interesting fact; which gives a criterion for
a family of geodesic segments in the fibers to form a ladder.

Lemma 5.1.21. Given K′ ≥ 1,C′ ≥ 0,ε ′ ≥ 0, we have constants k5.1.21 = k5.1.21(K′),
c5.1.21 = c5.1.21(C′) and ε5.1.21 = ε5.1.21(ε

′) such that the following holds.
Suppose L is a collection of geodesic segments in the fibers such that:
(1) TL := hull(π(L )). For all v ∈ TL , L ∩Xv form a special K′-ladder in

Xv over Bv bounded by two K′-qi sections. We also have a subtree T in TL with
the following. Suppose v,w ∈ TL with dT (v,w) = 1. Let [v,w] be the edge joining
v ∈ Bv and w ∈ Bw. Let Lv,v := L ∩Fv,v = [xv,v,yv,v] f and Lw,w := L ∩Fw,w =



5.2. HYPERBOLICITY OF LADDER 103

[xw,w,yw,w]
f . If v,w ∈ T, then dvw(xv,v,xw,w) ≤ K′ and dvw(yv,v,yw,w)≤ K′. Other-

wise, if dT (v,T)< dT (w,T), then xw,w,yw,w ∈ Nvw
K′ (Lv,v).

(2) In the second part of (1), where dT (v,T)< dT (w,T), we have,

Hdvw(Pw(Lv,v),Lw,w)≤ ε
′.

(3) Let v ∈ TL ,w /∈ TL such that dT (v,w) = 1. Let [v,w] be the edge joining
v ∈ Bv and w ∈ Bw. Then the pair (Lv,v,Fw,w) is C′-cobounded in the path metric
of Fvw.

Then L is a (k5.1.21,c5.1.21,ε5.1.21)-ladder with a central base B := π
−1
B (T).

Proof. We only need to find k5.1.21 and set an orientation on the fiber geodesics along
with the family {hwv} of monotonic maps. Fix u ∈ T. Suppose [v,w] is an edge in
TL with dT (u,v) < dT (u,w). Let us fix once and for all x̄v,v, ȳv,v ∈ Lv,v such that
dvw(xw,w, x̄v,v)≤ K′, dvw(yw,w, ȳw,w)≤ K′ with x̄v,v ∈ Lv,v ∩ [xv,v, ȳv,v] f ; and in the
case if v,w ∈ T, then x̄v,v = xv,v, ȳv,v = yv,v. We inductively fix an orientation as
discussed in Subsection 5.1.2.

Now we apply Lemma 2.2.4 on Fvw and L′
0-quasi-geodesics Lv,v and Lw,w. So

we get a monotonic map, say, hwv : Lw,w → Lv,v such that hwv is L2.2.4(δ
′
0,L

′
0,K

′)-
quasi-isometry. Also, we have dvw(x,hwv(x)) ≤ k2.2.4(δ

′
0,L

′
0,K

′) for all x ∈ Lw,w,
and hwv(xw,w) = x̄v,v, hwv(yw,w) = ȳv,v. We fix once and for all such maps hwv.

Therefore, one can take k5.1.21 = max{k2.2.4(δ
′
0,L

′
0,K

′),K′} and c5.1.21 = C′,
ε5.1.21 = ε ′.

5.2 Hyperbolicity of ladder

In this section, we show that a uniform neighborhood of a ladder (see Definition
5.1.16) is uniformly hyperbolic with the induced path metric. We divide the proof
into two cases. (1) Ladder with small girth (see Definition 5.1.19); here we construct
paths for any pair of points in the ladder and prove that they satisfy the conditions
of Proposition 2.2.6 (see Proposition 5.2.1). (2) For general ladder, we subdivide it
into (uniformly) small (but not too small) girth ladders and show that they satisfy
all conditions of Proposition 2.2.7 (see Theorem 5.2.11). Let K ≥ 1,C ≥ 0,ε ≥ 0
and let LK be a (K,C,ε)-ladder with a central base B. In this section, we fix
notation LLLKKKrrr := NNNrrr(L KKK) for r ≥ 0. Additionally, we will use the same notations
as introduced in Definition 5.1.16 and in Notation 5.1.15 for ladders. In view of
Remark 2.4.8, in this section, we require the tree of metric bundles (X ,B,T ) to
satisfy C(9)

2.4.12(K)-flaring condition (see below).
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5.2.1 Hyperbolicity of ladders (small girth)

We refer to Remark 2.4.13 for the notation of C(i)
2.4.12(K), i ∈ N∪{0}. Fix κ =

C(3)
2.4.12(K) for this Subsection 5.2.1. Given A0 ≥ 0, we let A = max{M

C(i)
2.4.12(K)

,A0 :

i = 0,1,2,3}, where M
C(i)

2.4.12(K)
is coming from the C(i)

2.4.12(K)-flaring condition. Note

that C(i+1)
2.4.12(K)≥C(i)

2.4.12(K).

Proposition 5.2.1. Suppose R ≥ 2κ and A as above. Then there exists δ5.2.1 =

δ5.2.1(K,A0,R) such that the following holds.

Suppose L g|B ≤ A0 (see Definition 5.1.19). Then LKR := NR(LK) is δ5.2.1-
hyperbolic with respect to the path metric induced from X.

Proof. Idea of the proof: The proof of this proposition is long, so we break it up
into several cases. We first define a path, say, c(x,y) for a pair of distinct points
x,y ∈ L ; and we fix it once and for all. Then we show that this family of paths
satisfies Proposition 2.2.6. Hence the hyperbolicity of LKR follows.

Notation 5.2.2. Let x,y,z ∈L . We use the following notations for Proposition 5.2.1.
For a fixed u ∈ T, Bs = B∪ π

−1
B ([u,π(s)]), s ∈ {x,y,z}; Bxy = Bx ∩By, Bxyz =

Bx ∩ By ∩ Bz. We use x̄ to denote πX(x) (projection under πX ), and same way,
ȳ = πX(y), z̄ = πX(z). We will denote the path metric on LKR induced from X by d′.

Definition of family of paths: Let x,y ∈ L . Suppose Σx,Σy are K-qi sections
in L over Bx,By through x,y respectively. If [π(x),π(y)]∩T= /0 then we take uxy

as the center of the triangle △(u,π(x),π(y)) for some u ∈ T. Otherwise, uxy is the
nearest point projection of π(x) on T. Let Uxy = L n

xy(A)|Bxy be the A-neck of the
special ladder Lxy bounded by Σx,Σy (see Definition 5.1.19) over the common base
Bxy. Then Uxy is K5.1.20(K,A)-quasiconvex (see Lemma 5.1.20). Let tttxxxyyy be a nearest
point projection of x̄ on Uxy and let vvvxxxyyy := πB(txy). We take K-qi lifts α̃xy and γ̃xy

of geodesics αααxxxyyy := [x̄, txy]B and γγγxxxyyy := [ȳ, txy]B in Σx and Σy respectively. Denote
µxy = [Σx(txy),Σy(txy)]

f ⊆ Ltxy,vxy .

In general, α̃xy and γ̃xy are not continuous. To make them continuous, we
consider the following. Fix points x̄ = a1,a2, · · · ,an = txy on [x̄, txy]B such that
dB(ai,ai+1) = 1 for 1 ≤ i ≤ n−2 and dB(an−1,an) ≤ 1. So we get a discrete path
joining Σx(a1) and Σy(an) with an order Σx(a1)< Σx(a2)< · · ·< Σx(an). Consider
the path [α̃xy] = [Σx(a1),Σx(a2)]∪ [Σx(a2),Σx(a3)]∪ ·· · ∪ [Σx(an−1),Σx(an)] based
on this discrete path. Now [α̃xy] is a continuous path. Similarly, we have the
continuous path [γ̃xy] path corresponding to γ̃xy.
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We define c(x,y) := α̃xy ∪ µxy ∪ γ̃xy and [c(x,y)] = [α̃xy]∪ µxy ∪ [γ̃xy]
−, where

[γ̃xy]
− denotes the path corresponding to [γ̃xy] with opposite orientation. We see that

there is an asymmetry in the definition of [c(x,y)] and the number of choices are
involved. However, for each unordered pair {x,y}, we fix once and for all a choices
and choose either [c(x,y)] or [c(y,x)] as the path joining x and y.

Note that HdLKR(c(x,y), [c(x,y)]) is uniformly bounded. To prove condition (1)
of Proposition 2.2.6 for our family of paths, we show that arc-length parametrization
of [c(x,y)] is properly embedded. For condition (2), we show the slimness of paths
c(x,y)’s; and that is enough. Later on, we will use c(x,y) for the notation of paths
instead [c(x,y)].

Different choices of geodesics, [x̄, txy] and [ȳ, txy] give rise to path joining x,y,
that are 2Kδ0 (uniformly) Hausdorff close to c(x,y). However, we will have to think
about other two natural questions as follows.

1. Are c(x,y) and c(y,x) uniformly Hausdorff close?

2. Suppose Σ′
x and Σ′

y are two different K-qi sections through x and y respectively
lying inside L . Let c′(x,y) be a path joining x and y coming from the con-
struction above for the qi sections Σ′

x, Σ′
y. Are c(x,y) and c′(x,y) uniformly

Hausdorff close?

These two questions are proven in [10, Section 3] for the case, metric graph
bundles (see [10, Definition 1.5]). However, we will establish that these are also true
in our case (see Lemma 5.2.3 and Corollary 5.2.5). The proof idea involves playing
with quasiconvex subsets Uxy and lifts in qi sections.

Lemma 5.2.3. With the hypothesis as in Proposition 5.2.1, there exists D5.2.3 =

D5.2.3(κ,A) such that Hd′(c(x,y),c(y,x))≤ D5.2.3.

Proof. We can think of Σx,Σy as κ-qi sections in L through x,y respectively. By
our notation, tyx is a nearest point projection of ȳ on Uyx(=Uxy). Let α = [txy, tyx].
Also, αyx = [ȳ, tyx],γyx = [tyx, x̄]; and α̃yx, γ̃yx are lifts of αyx,γyx in Σy,Σx respectively.
Further, vyx := πB(tyx) and µyx := [Σy(tyx),Σx(tyx)]

f ⊆Ltyx,vyx . Finally, c(y,x)= α̃yx∪
µyx ∪ γ̃yx. Since Uxy is K5.1.20(κ,A)-quasiconvex, the arc-length parametrizations of
αxy ∪α and αyx ∪α are (3+2K5.1.20(κ,A))-quasi-geodesics (by [10, Lemma 1.31
(2)]). So by Lemma 2.2.2, there is D depending on δ0, 3+2K5.1.20(κ,A) such that
HdB(γyx,αxy∪α)≤ D and HdB(γxy,αyx∪α)≤ D. Again, α ⊆ Bxy and txy, tyx ∈Uxy.
So by Lemma 2.4.7 (2), ∀ s ∈ α, d f (Σx(s),Σy(s))≤ R2.4.7(κ,A). Below, we prove
that c(x,y) lies inside uniform neighborhood of c(y,x). Then by the symmetry of
proof we will be done.
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Let ξ ∈ c(x,y)∩ α̃xy and η = πX(ξ ). Then ∃ η ′ ∈ γyx such that dB(η ,η ′) =

dBxy(η ,η ′)≤ D. So by taking κ-qi lift of [η ,η ′] in Σx (see Lemma 2.4.12 (3)), we
get, d′(ξ ,c(y,x))≤ d′(ξ , γ̃yx)≤ 2κD.

Let ξ ∈ c(x,y)∩µxy. Then from above, d′(ξ ,c(y,x))≤ 2κD+A.
Finally, let ξ ∈ c(x,y)∩ γ̃xy and η = πX(ξ ). Then ∃ η ′ ∈ αyx ∪α such that

dB(η ,η ′) ≤ δ0. If η ′ ∈ αyx, then by taking κ-qi lift of [η ,η ′] in Σy, we get,
d′(ξ ,c(y,x))≤ d′(ξ , α̃yx)≤ 2κδ0. Again if η ′ ∈ α , then η ′ is further D-close to γyx,
i.e. ∃ η ′′ ∈ γyx such that dB(η

′,η ′′) ≤ D. Therefore, by taking lifts of geodesics
[η ,η ′] and [η ′,η ′′] in Σy and Σx respectively, we get,

d′(ξ , γ̃yx) ≤ d′(Σy(η),Σx(η
′′))

≤ d′(Σy(η),Σy(η
′))+d′(Σy(η

′),Σx(η
′))+d′(Σx(η

′),Σx(η
′′))

≤ 2κδ0 +R2.4.7(κ,A)+2κD (since η
′ ∈ α)

= 2κ(δ0 +D)+R2.4.7(κ,A)

Therefore, we can take D5.2.3 := 2κ(δ0+D)+R2.4.7(κ,A) so that Hd′(c(x,y),c(y,x))
≤ D5.2.3.

To prove (1), we first show that if we change one of the qi sections, then the path
we get is uniformly Hausdorff close to the other one. In other words, suppose Σ′

x is
another qi section through x. Let c(x,y) and c1(x,y) be paths coming from the pairs
(Σx,Σy) and (Σ′

x,Σy) respectively. Then Hd′(c(x,y),c1(x,y)) is uniformly small,
say, bounded by D. Hence we complete (1) by applying twice this process. Indeed,
Hd′(c(x,y),c′(x,y))≤ Hd′(c(x,y),c1(x,y))+Hd′(c1(x,y),c′(x,y))≤ 2D, where Σ′

y

is another qi section through y and the path c′(x,y) is coming from the pair (Σ′
x,Σ

′
y).

Lemma 5.2.4. With the hypothesis of Proposition 5.2.1, there is D5.2.4 = D5.2.4(κ,A)
such that Hd′(c(x,y),c1(x,y))≤ D5.2.4.

Proof. Here also we consider Σx,Σ
′
x and Σy as κ-qi sections. Let the special ladder

formed by pair (Σ′
x,Σy) restricted over Bxy be L ′

xy (see Lemma 5.1.20). Let V be
the A-neck of the ladder L ∩XB (restriction of L on B, see also Notation 5.1.15)
and U ′

xy be that of L ′
xy. Notice that V ⊆Uxy ∩U ′

xy. We assume that t ′xy is a nearest
point projection of x̄ on U ′

xy. Let α ′
xy = [x̄, t ′xy] and γ ′xy = [ȳ, t ′xy]. First, we prove that

dB(txy, t ′xy) is uniformly small.
dB(txy, t ′xy) is uniformly small: We fix a point t ∈ V and a geodesic α = [x̄, t].

Now for s ∈ {t, x̄}, d f (Σx(s),Σ′
x(s)) ≤ A. So by Lemma 2.4.7 (2), for all s ∈ α ,

d f (Σx(s),Σ′
x(s)) ≤ R2.4.7(κ,A). Again Uxy,U ′

xy are K5.1.20(κ,A)-quasiconvex and
so by [10, Lemma 1.31 (2)], the arc-length parametrizations of αxy ∪ [txy, t] and



5.2. HYPERBOLICITY OF LADDER 107

α ′
xy ∪ [t ′xy, t] are (3+2K5.1.20(κ,A))-quasi-geodesics. Thus by Lemma 2.2.2, there

is D depending on δ0, 3+ 2K5.1.20(κ,A) such that HdB(α,αxy ∪ [txy, t]) ≤ D and
HdB(α,α ′

xy ∪ [t ′xy, t]) ≤ D. Then Hd(αxy ∪ [txy, t],α ′
xy ∪ [t ′xy, t]) ≤ 2D. Hence ∃ t0 ∈

αxy such that dB(t ′xy, t0) ≤ 3D+ δ0 or ∃ t0 ∈ α ′
xy such that dB(txy, t0) ≤ 3D+ δ0.

Without loss of generality, we assume that dB(txy, t0)≤ 3D+δ0 for t0 ∈ α ′
xy. Since

T is tree and Bv’s are isometrically embedded in B, we can take t0 ∈ By. In particular,
[txy, t0]⊆ Bxy.

Again for s ∈ α ′
xy, ∃ s′ ∈ α such that dB(s,s′)≤ D. By taking lifts of geodesic

[s,s′] in Σx and Σ′
x (see Lemma 2.4.12 (3)), dX(Σx(s),Σ′

x(s)) ≤ dX(Σx(s),Σx(s′))+
dX(Σx(s′),Σ′

x(s
′))+dX(Σ

′
x(s

′),Σ′
x(s))≤ 2Dδ0 +R2.4.7(κ,A)+2Dδ0 = D1 (say). As

fibers are φ -properly embedded, d f (Σx(s),Σ′
x(s)) ≤ φ(D1). In particular,

dX(Σx(t0),Σ′
x(t0))≤ D1 and d f (Σx(t0),Σ′

x(t0))≤ φ(D1).

Note that [txy, t0] ⊆ Bxy. Now by taking lifts of [t0, txy] in Σx and Σy, we have,
dX(Σx(t0),Σx(txy)) ≤ 2κ(3D+ δ0) and dX(Σy(txy),Σy(t0)) ≤ 2κ(3D+ δ0). Again,
d f (Σy(txy),Σx(txy)) ≤ A. Therefore, combining all these inequalities, we have,
dX(Σ

′
x(t0),Σy(t0)) ≤ D1 + 4κ(3D + δ0) + A = D2 (say). So d f (Σ′

x(t0),Σy(t0)) ≤
φ(D2). Then by Lemma 2.4.7 (1), dB(t0, t ′xy)≤ τ2.4.7(κ,φ(D2)). Hence dB(txy, t ′xy)≤
dB(txy, t0)+dB(t0, t ′xy)≤ D3 where D3 = 3D+δ0 + τ2.4.7(κ,φ(D2)).

Let us come back to the proof of Hausdorff closeness of c(x,y) and c1(x,y). We
only prove that c(x,y) lies inside uniform neighborhood of c1(x,y). Then by the
symmetry of the proof we will be done.

Let ξ ∈ c(x,y) ∩ α̃xy and η = πX(ξ ). Then dB(η ,η ′) ≤ D3 + δ0 for some
η ′ ∈ α ′

xy. Since η ′ ∈ α ′
xy, from the above paragraph, d f (Σx(η

′),Σ′
x(η

′)) ≤ φ(D1).
Therefore, by taking lift of geodesic [η ,η ′] in Σx (see Lemma 2.4.12 (3)), we
get, d′(ξ ,c1(x,y))≤ d′(Σx(η),Σ′

x(η
′))≤ d′(Σx(η),Σx(η

′))+d f (Σx(η
′),Σ′

x(η
′))≤

2κ(D3 +δ0)+φ(D1).

Now let ξ ∈ c(x,y)∩ γ̃xy and η = πX(ξ ). Then ∃ η ′ ∈ γ ′xy such that dB(η ,η ′)≤
D3 + δ0. Taking lift of [η ,η ′] in Σy, we get, d′(ξ ,c1(x,y)) ≤ d′(Σy(η),Σy(η

′)) ≤
2κ(D3 +δ0).

Finally, we assume that ξ ∈ c(x,y)∩µxy. Then d′(ξ ,c1(x,y))≤ 2κ(D3+δ0)+A.

We note that φ(D1)> A. Therefore, c(x,y)⊆ N2κ(D3+δ0)+φ(D1)(c1(x,y)). Hence,
we can take D5.2.4 := 2κ(D2 +δ0)+φ(D1).

Corollary 5.2.5. With the hypothesis of Proposition 5.2.1, there exists D5.2.5 =

D5.2.5(κ,A) such that Hausdorff distance between any two paths joining x,y ∈ L
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coming from the path-construction with κ-qi sections through x,y is bounded by
D5.2.5 in the path metric of LKR.

Proof. We can take D5.2.5 = D5.2.3(κ,A)+2D5.2.4(κ,A).

Now we show that this family of paths are fellow-travel ([9, Definition 1.60]). In
other words, any two such paths whose starting points are same and ending points
are at uniform distance are uniformly Hausdorff close.

Proposition 5.2.6 (Fellow-travelling property). For all r ≥ 0 there exists D5.2.6 =

D5.2.6(κ,A,r) such that the following holds.
With the hypothesis of Proposition 5.2.1, if x,y,z ∈L such that dX(x,y)≤ r, then

Hd′(c(x,z),c(y,z))≤ D5.2.6.

Proof. We will be working with Σx,Σy,Σz as κ-qi sections respectively through x,y,z
over Bx,By,Bz inside the ladder L (explained in Case 1 below). We consider the
following three cases depending on the position of x̄ = πX(x) and ȳ = πX(y).

Case 1: Let x̄ = ȳ. Since the fibers are φ -properly embedded, without loss
of generality, we assume that d f (x,y) ≤ r. Applying Lemma 2.4.12 (2), we may
assume that these sections satisfy the following inclusion property when we restrict
them to Bxyz. We have three possibilities Σy|Bxyz ⊆ Lxz|Bxyz , Σx|Bxyz ⊆ Lyz|Bxyz or

Σz|Bxyz ⊆ Lxy|Bxyz . (To get this one has to consider Σx,Σy,Σz as κ = C(3)
2.4.12(K)-qi

sections instead K-qi sections.) In the Subcase (1A) below, we will see that the
proof for the inclusions Σy|Bxyz ⊆ Lxz|Bxyz and Σx|Bxyz ⊆ Lyz|Bxyz are similar. So we
proof this proposition when Σy|Bxyz ⊆ Lxz|Bxyz and Σz|Bxyz ⊆ Lxy|Bxyz in the following
subcases.

Subcase (1A): Suppose Σy|Bxyz ⊆ Lxz|Bxyz . Recall that Uxy = L n
xy(A)|Bxy, Uxz =

L n
xz(A)|Bxz and Uyz = L n

yz(A)|Byz are K5.1.20(κ,A)-quasiconvex (Lemma 5.1.20).
Since Σy|Bxyz ⊆ Lxz|Bxyz , so we have Uxz ⊆ Uxy ∩Uyz. By our notation, txz and
tyz are nearest point projections of x̄ and ȳ on Uxz and Uyz respectively. Hence for
M = max{r,A}, ∀ s ∈ αxz, d f (Σx(s),Σy(s))≤ R2.4.7(κ,M) (Lemma 2.4.7 (2)).

Claim: dB(txz, tyz) is uniformly bounded.
Proof of the claim: Since αyz ∪ [tyz, txz] is (3+2K5.1.20(κ,A))-quasi-geodesic, ∃

t ∈ αxz such that dB(tyz, t)≤ D for some D depending on δ0 and 3+2K5.1.20(κ,A)
(Lemma 2.2.2). Since T is a tree and Bv’s are isometrically embedded in B, we
can take t ∈ αxz ∩Byz. Then by taking lifts of geodesic [tyz, t] in Σy and Σz, we
get, d′(Σy(t),Σz(t)) ≤ d′(Σy(t),Σy(tyz))+ d f (Σy(tyz),Σz(tyz))+ d′(Σz(tyz),Σz(t)) ≤
2κD+A+2κD= 4κD+A ⇒ d f (Σy(t),Σz(t))≤ φ(4κD+A). So, d f (Σx(t),Σz(t))≤
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d f (Σx(t),Σy(t))+ d f (Σy(t),Σz(t)) ≤ R2.4.7(κ,M)+φ(4κD+A) = R1 (say). Then
by Lemma 2.4.7 (1), dB(t, txz)≤ τ2.4.7(κ,R1). Hence by triangle inequality, dB(tyz, txz)

≤ dB(tyz, t)+dB(t, txz)≤ D1, where D1 = D+ τ2.4.7(κ,R1).

Now we show the Hausdorff closeness of paths. We only prove that c(x,z) lies
in uniform neighborhood of c(y,z). Then by the symmetry of the proof we will be
done.

Let ξ ∈ c(x,z)∩ α̃xz and η = πX(ξ ). Then ∃ η ′ ∈ αyz such that dB(η ,η ′) ≤
D1 + δ0. Note that [η ,η ′] ⊆ By. Then by taking lift of geodesic [η ,η ′] in Σy,
we get, d′(ξ ,c(y,z))≤ d′(Σx(η),Σy(η

′))≤ d′(Σx(η),Σy(η))+d′(Σy(η),Σy(η
′))≤

R2.4.7(κ,M)+2κ(D1 +δ0).

Now let ξ ∈ c(x,z)∩ γ̃xz and η = πX(ξ ). Then ∃ η ′ ∈ γyz such that dB(η ,η ′)≤
D1 + δ0. Note that [η ,η ′] ⊆ Bz. So, by taking lift of [η ,η ′] in Σz, d′(ξ ,c(y,z)) ≤
d′(Σz(η),Σz(η

′))≤ 2κ(D1 +δ0) (Lemma 2.4.12 (3)).

Finally, let ξ ∈ c(x,z)∩µxz. Then d′(ξ ,c(y,z))≤ 2κ(D1 +δ0)+A.

Let R2 := max{R2.4.7(κ,M)+2κ(D1 +δ0),2κ(D1 +δ0)+A}= R2.4.7(κ,M)+

2κ(D1 +δ0). Hence c(x,z)⊆ NR2(c(y,z)). Therefore, Hd′(c(x,z),c(y,z))≤ R2.

Subcase (1B): Suppose Σz|Bxyz ⊆ Lxy|Bxyz . Here also we will do the same as in
Subcase (1A). Let a be the nearest point projection of x̄ = ȳ on Bxyz. Since L ∩XB

has girth ≤ A0 ≤ A, by Lemma 2.4.7 (2), d f (Σx(s),Σy(s))≤ R2.4.7(κ,M),∀ s ∈ [a, x̄].
(Note that [a, x̄] could be {x̄} = {a} if x̄ ∈ Bxyz.) In particular, d f (Σx(a),Σy(a)) ≤
R2.4.7(κ,M). Again, since Σz ⊆ Lxy|Bxyz , we have, d f (Σx(a),Σz(a))≤ R2.4.7(κ,M)

and d f (Σy(a),Σz(a)) ≤ R2.4.7(κ,M). Note that tyz and txz are also nearest point
projections of a on Uyz and Uxz respectively. So by Lemma 2.4.7 (1), we have
D2 = τ2.4.7(κ,R2.4.7(κ,M)) such that dB(a, txz) ≤ D2 and dB(a, tyz) ≤ D2. Thus
dB(txz, tyz)≤ 2D2. Now we only show that c(x,z) lies in uniform neighborhood of
c(y,z). Then by symmetry of the proof we will be done.

Let ξ ∈ c(x,z)∩ α̃xz and η = πX(ξ ). Note that η ∈ [txz,a]∪ [a, x̄]. If η ∈
[a, x̄], then d′(ξ ,c(y,z)) ≤ d f (Σx(η),Σy(η)) ≤ R2.4.7(κ,M). If η ∈ [txz,a], then
d′(ξ ,c(y,z))≤ d′(Σx(η),Σx(a))+d f (Σx(a),Σy(a))≤ 2κD2 +R2.4.7(κ,M).

Now let ξ ∈ c(x,z)∩ γ̃xz and η = πX(ξ ). Then ∃ η ′ ∈ γyz such that dB(η ,η ′)≤
2D2 +δ0. So taking lift of [η ,η ′] in Σz, we get, d′(ξ ,c(y,z))≤ d′(Σz(η),Σz(η

′))≤
2κ(2D2 +δ0).

Finally, if ξ ∈ c(x,z)∩µxz, then d′(ξ ,c(y,z))≤ 2κ(2D2 +δ0)+A.

Therefore, Hd′(c(x,z),c(y,z))≤ max{2κ(2D2 +δ0)+A,2κD2 +R2.4.7(κ,M)}
= R3 (say).

Let RRR444(((κκκ,,,AAA,,,rrr))) := max{R2,R3}.
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Now for the rest of the proof for this proposition, we assume that all the paths
c(ζ ,ζ ′) are constructed using the qi sections Σx,Σy and Σz, where ζ ,ζ ′ ∈ Σx∪Σy∪Σz.

Case 2: Let π(x) = π(y). Suppose Σy(x̄) = y1. We also assume that Σy1 = Σy.
Since dX(x,y)≤ r, so dB(x̄, ȳ)≤ r. Now by taking lift of geodesic [x̄, ȳ] in Σy, we get,
d′(y,y1)≤ 2κr. Thus dX(y1,x)≤ 2κr+ r and so d f (y1,x)≤ φ(2κr+ r). Therefore,
by Case 1, Hd′(c(y1,z),c(x,z))≤ R4(κ,A,φ(2κr+ r)).

Now we investigate on Hd′(c(y1,z),c(y,z)). For the consistency of notation,
we let ȳ1 = πX(y1). Let ty1z be a nearest point projection of ȳ1 on Uy1z = Uyz

(since Σy = Σy1). Again Uy1z is K5.1.20(κ,A)-quasiconvex and dB(ȳ1, ȳ)≤ 2κr, so by
lemma 2.2.21 (1), we have, dB(ty1z, tyz) ≤ (2κr+ 1)C2.2.21(δ0,K5.1.20(κ,A)) = D3

(say). Note that z̄ = πX(z) and αy1z = [ȳ1, ty1z], γy1z = [z̄, ty1z]. Then HdB(γy1z,γyz)≤
D3+δ0 and HdB(αy1z,αyz)≤ D3+2δ0 (note that D3 > 2κr). Thus Hd′(α̃yz, α̃y1z)≤
2κ(D3 + 2δ0) and Hd′(γ̃yz, γ̃y1z) ≤ 2κ(D3 + δ0). Hence, Hd′(c(y,z),c(y1,z)) ≤
2κ(D3 +2δ0)+A.

Therefore, Hd′(c(x,z),c(y,z)) ≤ R4(κ,A,φ(2κr + r)) + 2κ(D3 + 2δ0) + A =:
RRR555(((κκκ,,,AAA,,,rrr))) (say).

Case 3: Now we consider the general case. Let x̄1 and ȳ1 be the nearest
point projections of x̄ and ȳ on Buxy respectively (see Definition of family of paths
for uxy). Let Σx(x̄1) = x1 and Σy(ȳ1) = y1. Since dB(x̄, ȳ) ≤ r, so dB(x̄, x̄1) ≤
r and dB(ȳ1, ȳ) ≤ r. Thus by taking lifts of geodesics [x̄, x̄1] and [ȳ, ȳ1] in Σx

and Σy respectively, we get, d′(x,x1) ≤ 2κr and d′(y,y1) ≤ 2κr. So by triangle
inequality, dX(x1,y1) ≤ 4κr + r. Note that π(x1) = π(y1). Hence by Case 2,
Hd′(c(x1,z),c(y1,z))≤ R5(κ,A,4κr+r). Since d′(x,x1)≤ 2κr and d′(y,y1)≤ 2κr,
we have, Hd′(c(x,z),c(y,z))≤ R5(κ,A,4κr+ r)+2κr =: RRR666(((κκκ,,,AAA,,,rrr))) (say).

Therefore, we can take D5.2.6 = max{Ri(κ,A,r) : i = 4,5,6}= R6(κ,A,r).

The proof for slimness of triangle formed by three paths (as in path construction)
inside special K-ladder (see Definition 2.4.11) was done in [10, Lemma 3.11 for
small girth ladder] in case of metric graph bundles (see [10, Definition 1.5]). In their
proof, without changing much, one can proof the same in case of metric bundles
(Lemma 5.2.7); which we will see in Condition (2) below. So we omit the proof and
state below for small girth ladder.

Lemma 5.2.7. ([10, Lemma 3.11]) Given k≥ 1,A ≥ 0, there is D5.2.7 =D5.2.7(k,A )

such that the following holds.
Suppose L (Σ,Σ′) is a special k-ladder (in a tree of metric bundles (X ,B,T ))

bounded by two k-qi sections Σ,Σ′ over an isometrically embedded subspace B1 ⊆ B
such that inf{d f (Σ(a),Σ′(a)) : a∈B1}≤A . Let x,y,z∈L (Σ,Σ′). Then the triangle
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formed by paths c(x,y),c(x,z) and c(y,z), coming from the path construction, are
D5.2.7-slim in the induced path metric on N

2C(3)
2.4.12(k)

(L (Σ,Σ′))⊆ X.

Proof of Proposition 5.2.1: We verify the condition (1) and (2) of Proposition
2.2.6 for our family of paths. Here L is R-dense in LKR. We will be working with
Σx,Σy,Σz as κ-qi sections (explained in Condition (2), Case 1 below).

Condition (1): Let x,y ∈ L such that dX(x,y) = r for r ∈ R≥0. We want
to show that the length of c(x,y) in the path metric of (LKR,d′) is bounded in
terms of r. Let c ∈ [x̄, ȳ]∩Buxy and c1 ∈ [x̄, txy]∩Buxy,c2 ∈ [ȳ, txy]∩Buxy such that
dB(c,ci) ≤ δ0, i = 1,2. (We refer to the ’definition of family of paths’ for uxy.)
Since dB(x̄, ȳ) ≤ dX(x,y) ≤ r, so dB(x̄,c) ≤ r and dB(ȳ,c) ≤ r. Let Σx(c) = {x1}
and Σy(c) = {y1}. Now taking lifts of [x̄,c] and [ȳ,c] in Σx and Σy respectively, we
have, d′(x,x1) ≤ 2nκ and d′(y,y1) ≤ 2rκ (see Lemma 2.4.12 (3)). Then by trian-
gle inequality, dX(x1,y1)≤ r(4κ +1). So dX(Σx(c1),Σy(c1))≤ d′(Σx(c1),Σx(c))+
dX(Σx(c),Σy(c))+d′(Σy(c),Σy(c1))≤ 2κδ0+r(4κ+1)+2κδ0 = 4κδ0+r(4κ+1).
Thus d f (Σx(c1),Σy(c1))≤ φ(4κδ0 + r(4κ +1)). Since txy is a nearest point projec-
tion of x̄ on Uxy, by Lemma 2.4.7 (1), dB(c1, txy)≤ D, where D = τ2.4.7(κ,φ(4κδ0 +

n(4κ +1))). So dB(c2, txy)≤ dB(c2,c1)+dB(c1, txy)≤ 2δ0 +D. Again dB(x̄,c1)≤
r+δ0 and dB(ȳ,c2)≤ r+δ0. Hence dB(x̄, txy)≤ dB(x̄,c1)+dB(c1, txy)≤ r+δ0 +D
and dB(ȳ, txy) ≤ dB(ȳ,c2)+ dB(c2, txy) ≤ r + 3δ0 +D. Note that αxy = [x̄, txy] and
γxy = [ȳ, txy]. Therefore, by taking lifts of αxy and γxy in Σx and Σy respectively, we
see that the length of c(x,y) is bounded by 2κ(r+δ0 +D)+A+2κ(r+3δ0 +D) =

4κ(r+D+2δ0)+A. So the paths c(x,y) are ψ-properly embedded, where ψ :N→N
is a function such that

ψ(r) = 4κ(r+D+2δ0)+A (5.2. 1)

Condition (2): Recall Uxy =L n
xy(A)|Bxy, Uxz =L n

xz(A)|Bxz and Uyz =L n
yz(A)|Byz

are K5.1.20(κ,A)-quasiconvex and so is in B. We show that paths c(x,y),c(x,z),c(y,z),
coming from the above qi sections, are uniformly slim in the path metric of (LKR,d′).
Depending on the position of txy, txz, tyz with respect to Bxyz, we consider the follow-
ing two cases. Note that by the definition of Bxyz, either all of txy, txz, tyz are in Bxyz or
at most one of them is outside of Bxyz.

Case 1: All of txy, txz, tyz are in Bxyz.
In this case, without loss of generality, we assume that Σy|Bxyz ⊆ Lxz|Bxyz , i.e. in

the ladder L , we have the order, bot(La,v)≤ Σx(a)≤ Σy(a)≤ Σz(a)≤ top(La,v),
where a ∈ Bxyz and v = πB(a). (To get this one has to consider Σx,Σy,Σz as κ =

C(3)
2.4.12(K)-qi sections instead K-qi sections, see Lemma 2.4.12 (2)). Let x̄1, ȳ1, z̄1 be

(the) nearest point projections of x̄, ȳ, z̄ on Bxyz respectively. Let Σx(x̄1)= x1,Σy(ȳ1)=
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y1 and Σz(z̄1) = z1. Further, we assume that the restriction of c(x,y) from x1 to y1

is c(x1,y1). Likewise, we have c(x1,z1) and c(y1,z1). Note that restriction of Σx

and Σz over Bxyz form a special C2.4.12(κ) = C(4)
2.4.12(K)-ladder over Bxyz bounded

by two qi sections Σx|Bxyz and Σz|Bxyz such that in f{d f (Σx(s),Σz(s)) : s ∈ Bxyz} ≤ A.

Since (X ,B,T ) satisfies C(7)
2.4.12(K) = C(3)

2.4.12(C
(4)
2.4.12(K))-flaring condition, so by

Lemma 5.2.7, the triangle formed by the paths c(x1,y1),c(x1,z1) and c(y1,z1) are
D5.2.7(C

(4)
2.4.12(K),A)-slim in the path metric of LKR. Let D1 = D5.2.7(C

(4)
2.4.12(K),A).

For the point ξ ∈ c(x,y) such that ξ /∈ c(x1,y1), ξ is 2κδ0-close to c(x,z)∪c(y,z)
in the path metric of LKR. Same for others.

Note that 2κδ0 ≤ D1. Therefore, the triangle formed by the paths c(x,y), c(x,z)
and c(y,z) are D1-slim in the path metric of LKR.

Case 2: One of txy, txz, tyz is not in Bxyz (see Figure 5.1). Without loss of generality,
we assume that txy /∈ Bxyz. In this case, we do not need to consider what exactly is
happening to Σx,Σy and Σz over Bxyz.

Note that πB(txy) = vxy. Let t ∈ Bvxy such that dB(Bxyz,Bvxy) = dB(Bxyz, t). Let
us fix s ∈B∩Uxy such that t ∈ [s, txy]. (We can get such s as L g|B ≤ A0 ≤ A, see
Definition 5.1.19 for notation.) Since s, txy ∈Uxy, by Lemma 2.4.7 (2), for all ζ ∈
[s, txy], d f (Σx(ζ ),Σy(ζ ))≤R2.4.7(κ,A). In particular, d f (Σx(t),Σy(t))≤R2.4.7(κ,A).
Then by the fellow-travelling property (see Proposition 5.2.6), we have,

Hd′(c(x,z)|[t,txz]∪[txz,z̄],c(y,z)|[t,tyz]∪[tyz,z̄])≤ D5.2.6(κ,A,R2.4.7(κ,A)) = D2 (say).

Again let tx, ty be the nearest point projections of x̄ and ȳ respectively on Bvxy .
Then Hd′(c(x,y)|[tx,x̄],c(x,z)|[tx,x̄])≤ 2κδ0 and Hd′(c(x,y)|[ty,ȳ],c(y,z)|[ty,ȳ])≤ 2κδ0.

Now we only need to analyse what is happening to the paths c(x,y),c(x,z) and
c(y,z) over Bvxy to conclude the slimness, and here we go.

Figure 5.1: Case 2

A. The portion of the path ccc(((xxx,,,yyy))) over BBBvxy is uniformly close to ccc(((xxx,,,zzz)))∪∪∪
ccc(((yyy,,,zzz))):
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Let ξ ∈ c(x,y)∩ (α̃xy ∪ γ̃xy) such that η = πX(ξ ). Then η ∈ [txy, tx]∪ [txy, ty].
First, we consider η ∈ [txy, tx]. Since Uxy is K5.1.20(κ,A)-quasiconvex, txy near-
est point projection of x̄ and s ∈ Uxy, so by [10, Lemma 1.31(2)], the arc-length
parametrization of [tx, txy]∪ [txy,s] is a (3+ 2K5.1.20(κ,A))-quasi-geodesic. In par-
ticular, [tx, txy]∪ [txy, t] is (3+2K5.1.20(κ,A))-quasi-geodesic. Therefore, by Lemma
2.2.2, there is D3 depending on δ0 and 3+2K5.1.20(κ,A) such that dB(η ,η ′)≤ D3

for some ∃ η ′ ∈ [tx, t]. So by taking lift of [η ,η ′] in Σx (see Lemma 2.4.12 (3)), we
get, d′(ξ ,c(x,z))≤ d′(Σx(η),Σx(η

′))≤ 2κD3.

Now suppose η ∈ [txy, ty]. Then the slimness of △(txy, t, ty) says that η ∈
Nδ0([txy, t]∪ [t, ty]). Let ∃ η ′ ∈ [t, ty] such that dB(η ,η ′)≤ δ0. Then by taking lift of
[η ,η ′] in Σy (see Lemma 2.4.12 (3)), we get, d′(ξ ,c(y,z)) ≤ d′(Σy(η),Σy(η

′)) ≤
2κδ0. Now let η ′ ∈ [t, txy] such that dB(η ,η ′)≤ δ0. Again, since [tx, txy]∪ [txy, t] is
(3+ 2K5.1.20(κ))-quasi-geodesic, ∃ η ′′ ∈ [t, tx] such that dB(η

′,η ′′) ≤ D3. Taking
lift of the geodesic [η ,η ′] in Σy and that of the geodesic [η ′,η ′′] in Σx, we get,
d′(Σy(η),Σy(η

′))≤ 2κδ0 and d′(Σx(η
′),Σx(η

′′))≤ 2κD3. Recall that ∀ ζ ∈ [s, txy],
d f (Σx(ζ ),Σy(ζ ))≤R2.4.7(κ,A); in particular, d f (Σx(η

′),Σy(η
′))≤R2.4.7(κ,A). So,

by triangle inequality, d′(ξ ,c(x,z)) ≤ d′(Σy(η),Σx(η
′′)) ≤ 2κδ0 + R2.4.7(κ,A) +

2κD3 = D4 (say).

Again, if ξ ∈ µxy, then d′(ξ ,c(x,z))≤ 2κD3 +A ≤ 2κD3 +R2.4.7(κ,A)≤ D4.

B. The portion of the path ccc(((yyy,,,zzz))) over BBBvxy is uniformly close to ccc(((xxx,,,yyy)))∪∪∪
ccc(((xxx,,,zzz))):

Note that the portion of c(y,z) over Bvxy is c(y,z)∩ α̃yz. Let ξ ∈ c(y,z)∩ α̃yz

such that η = πX(ξ ). Then η ∈ [ty, t], and the slimness of △(txy, ty, t) says that η ∈
Nδ0([ty, txy]∪ [txy, t]). First, we consider that ∃ η ′ ∈ [ty, txy] such that dB(η ,η ′)≤ δ0.
So by taking lift of [η ,η ′] in Σy (see Lemma 2.4.12 (3)), we get d′(ξ ,c(x,y)) ≤
d′(Σy(η),Σy(η

′)) ≤ 2κδ0. Now, suppose ∃ η ′ ∈ [txy, t] such that dB(η ,η ′) ≤ δ0.
Recall that [tx, txy]∪ [txy, t] is (3+ 2K5.1.20(κ))-quasi-geodesic and so ∃ η ′′ ∈ [tx, t]
such that dB(η

′,η ′′)≤ D3 (defined above in A). Taking lifts of the geodesic [η ,η ′]

in Σy and that of the geodesic [η ′,η ′′] in Σx, we get, d′(Σy(η),Σy(η
′))≤ 2κδ0 and

d′(Σx(η
′),Σx(η

′′)) ≤ 2κD3. Also, ∀ ζ ∈ [txy, t],d f (Σx(ζ ),Σy(ζ )) ≤ R2.4.7(κ,A);
in particular, d f (Σy(η

′),Σx(η
′)) ≤ R2.4.7(κ,A). Therefore, by triangle inequal-

ity, d′(ξ ,c(x,z))≤ d′(Σy(η),Σx(η
′′))≤ 2κδ0 +R2.4.7(κ,A)+2κD3 = D4 (defined

above in A).

C. The portion of the path ccc(((xxx,,,zzz))) over BBBvxy is uniformly close to ccc(((xxx,,,yyy)))∪∪∪
ccc(((yyy,,,zzz))):

Note that the portion of c(x,z) over Bvxy is c(x,z) ∩ α̃xz. Let ξ ∈ c(x,z) ∩
α̃xz such that η = πX(ξ ). Then η ∈ [tx, t], and so η ∈ Nδ0([tx, txy]∪ [txy, t]). If
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∃ η ′ ∈ [tx, txy] such that dB(η ,η ′) ≤ δ0, then by taking lift of the geodesic [η ,η ′]

in Σx, we get, d′(ξ ,c(x,y)) ≤ d′(Σx(η),Σx(η
′)) ≤ 2κδ0. Now, let ∃ η ′ ∈ [txy, t]

such that dB(η ,η ′)≤ δ0. Recall that ∀ ζ ∈ [t, txy], d f (Σx(ζ ),Σy(ζ ))≤ R2.4.7(κ,A).
Again, if we look at △(txy, t, ty),∃ η ′′ ∈ [txy, ty]∪ [ty, t] such that dB(η

′,η ′′) ≤ δ0.
If η ′′ ∈ [txy, ty], then by taking lifts of geodesics [η ,η ′] and [η ′,η ′′] in Σx and
Σy respectively, we get, d′(ξ ,c(x,y)) ≤ d′(Σx(η),Σy(η

′′)) ≤ d′(Σx(η),Σx(η
′)) +

d f (Σx(η
′),Σy(η

′))+ d′(Σy(η
′),Σy(η

′′)) ≤ 2κδ0 +R2.4.7(κ,A)+ 2κδ0 = D5 (say).
If η ′′ ∈ [ty, t], then the same inequality would imply that ξ is D5-close to c(y,z) in
the path metric of LKR.

Let D′ = max{D1,D2,D4,D5}+2D5.2.5(κ,A), representing the maximum of all
constants obtained in Case 1, Case 2; additionally, considering Corollary 5.2.5, we
add 2D5.2.5(κ,A). Therefore, the triangle formed by the paths c(x,y),c(x,z) and
c(y,z), which we started with to show the combing criterion, are D′-slim. Hence, by
Proposition 2.2.6, LKR is δ5.2.1 = δ2.2.6(ψ,D′,R)-hyperbolic, where ψ is defined in
Condition (1), equation 5.2. 1.

5.2.2 Hyperbolicity of ladders (general case)

Lemma 5.2.8 (Bisection of ladders). There are constants K5.2.8 = K5.2.8(K) =

C2.4.12(K), C5.2.8 = C5.2.8(K,C, ε) ≥ C,ε5.2.8 = ε5.2.8(K,C,ε) ≥ ε such that the
following holds.

Suppose z ∈ L ∩XB and Σz is a maximal K-qi section in L through z. Then
Σz divide the ladder L into two (K5.2.8,C5.2.8,ε5.2.8)-subladders, L + and L − with
central base B such that

top(L +) ⊆ top(L ), Σz ⊆ bot(L +) and

bot(L −) ⊆ bot(L ), Σz ⊆ top(L −)

Proof. Since the proofs are similar, we prove only for, say, L +. Note that Σz is a
maximal K-qi section over some base, say, Bz ⊆ π

−1
B (TL ). Let Tz = πB(Bz). There

are two kinds of segments in the fibers of L + as follows.
First kind: For all v ∈ Tz and for all b ∈ Bv, L +

b,v = [top(Lb,v),Σz(b)]⊆ Lb,v.
Second kind: Let w ∈ TL \Tz and v ∈ Tz such that dT (v,w) = 1. Let S be the con-

nected component of T \{v} containing {w}. If we have an order hwv(top(Lw,w))<

Σz(v) ≤ top(Lv,v) (see Figure 5.2 left one), then L +
b,t = /0 for t ∈ S and b ∈ Bt . If

the order is bot(Lv,v) < Σz(v) ≤ hwv(bot(Lw,w)) (see Figure 5.2 right one), then
L +

b,t = Lb,t for t ∈ TL ∩ S and b ∈ Bt with the same orientation as it was for L .
Also, the family of maps {hwv} for L + are the restriction of that of L .
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Figure 5.2

Now with the help of Lemma 5.1.21, we show that union of these fiber geodesics
form a ladder. In view of Lemma 5.1.21, we have to find K′,C′,ε ′. By Lemma 2.4.12
(2), one observes that K′ =C2.4.12(K), C′ =C5.1.17(K,C,ε) and ε ′ = ε5.1.17(K,C,ε)

serve our purpose.
Therefore, by Lemma 5.1.21, L + is a (K5.2.8,C5.2.8,ε5.2.8)-subladder in L ,

where K5.2.8 = k5.1.21(K′), C5.2.8 = c5.1.21(C′) and ε5.2.8 = ε5.1.21(ε
′) for the above

K′,C′,ε ′. Since the family of maps {hwv} for L + are restriction, so k5.1.21(K′) =

C2.4.12(K).

In the same line, we also have the following lemma. Since the proof is similar to
that of Lemma 5.2.8, we omit the proof.

Lemma 5.2.9 (Trisection of ladders). There are constants K5.2.9 = K5.2.9(K) =

C2.4.12(K),C5.2.9 = C5.2.9(K,C,ε),ε5.2.9 = ε5.2.9(K,C,ε) such that the following
holds.

Suppose x,y ∈ L ∩XB. Let Σx,Σy be maximal K-qi sections through x,y over
Bx,By respectively. We assume that ∀ v∈ πB(Bx∩By) and ∀ b∈Bv, we have an order
bot(Lb,v)≤ Σx(b)≤ Σy(b)≤ top(Lb,v) in Lb,v. Then we have (K5.2.9,C5.2.9,ε5.2.9)-
subladder in L bounded by Σx,Σy with central base Bx ∩By.

Lemma 5.2.10. For all R ≥ 2K5.2.8(K) there exists R5.2.10 = R5.2.10(K,R) such that
the following holds.

Let x ∈ L ∩XB and Σx be a maximal K-qi section in L . Then we have two
(K5.2.8,C5.2.8,ε5.2.8)-subladders, L + and L −, coming from Lemma 5.2.8. Then
NR(L +)∩NR(L −)⊆ NR5.2.10(Σx) in both the path metric of NR(L +) and NR(L −).

Proof. For ease of notation, let L (1) = L +, L (2) = L −. Let di be the induced
path metric on NR(L i), i = 1,2. Suppose y ∈ NR(L (1))∩ NR(L (2)) and yi ∈
L (i) such that di(y,yi) ≤ R, i = 1,2. Then dX(y1,y2) ≤ 2R and so dB(ȳ1, ȳ2) ≤
2R, where πX(yi) = ȳi, i = 1,2. If T∩ [π(y1),π(y2)] = /0, we let u ∈ T such that
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dT (T, [π(y1),π(y2)]) = dT (T,u); otherwise, we take u ∈ T∩ [π(y1),π(y2)] arbitrary.
Fix c ∈ Bu ∩ [ȳ1, ȳ2]B. Then dB(ȳi,c) ≤ 2R. Let ti be the nearest point projection
of π(yi) on T and Byi =B∪π

−1
B ([ti,π(yi)]) for i = 1,2. Then there is K5.2.8(K)-qi

sections, say, Σyi over Byi through yi in L (i), i = 1,2. Let K5.2.8(K) = K1 Taking
lifts of geodesic [ȳi,c]B in Σȳi , we get, di(yi,Σyi(c)) ≤ 2K1.2R = 4K1R, i = 1,2.
Then dX(Σy1(c),Σy2(c))≤ dX(Σy1(c),y1)+dX(y1,y2)+dX(y2,Σy2(c))≤ 2R(4K1 +

1). So d f (Σy1(c),Σy2(c))≤ φ(2R(4K1+1)). Since Σx(c)∈ [Σy1(c),Σy2(c)]
f ⊆Lc,u,

so d f (Σyi(c),Σx(c)) ≤ φ(2R(4K1 +1)). Hence di(y,Σx) ≤ di(y,Σx(c)) ≤ di(y,yi)+

di(yi,Σyi(c))+di(Σyi(c),Σx(c))≤ R+4K1R+φ(2R(4K1+1)), i = 1,2. So, we can
take R5.2.10 := R(4K1 +1)+φ(2R(4K1 +1)).

Now we are ready to state the main result of this Subsection 5.2.2.

Proposition 5.2.11. For all R ≥ 2C(9)
2.4.12(K), there exists δ5.2.11 = δ5.2.11(K,R) such

that LKR := NR(LK) is δ5.2.11-hyperbolic with respect to the path metric induced
from X.

Proof. Subdivision of ladder: We fix a fiber geodesic La,u for some u ∈ T and a ∈
Bu. Let K1 = K5.2.9(K). We also fix A0 > max{φ(2K+k2.2.4(δ

′
0,L

′
0,K)),φ(4K(2R+

1)+2R+1),φ(8KR+2R),φ(4KD2 +D2)} where D2 is defined below in the verifi-
cation of condition (4) of Proposition 2.2.7. For x ∈ La,u, Σx denote a maximal K-qi
section in L over, say, Bx. Let γ : [0, l]→ La,u be the arc length parametrization
such that γ(0) = bot(La,u) and γ(l) = top(La,u). Now we inductively subdivide L

into small girth ladders as follows. First, inductively we construct a finite sequence
of points on La,u and K-qi sections through that, which will help in subdivision.
Note that set map from B to bot(L )∩π

−1
X (B) is K-qi section in L . Set x0 = γ(0)

and Σx0 = bot(L )∩π
−1
X (B). Suppose xi = γ(ti) has been constructed. Let

Ωi+1 = {t ∈ (ti, l] : γ(t) = x and d f (Σxi(s),Σx(s))> A0,∀ s ∈ Bxi ∩Bx}.

If Ωi+1 = /0, then we define xi+1 = γ(l) and stop the process. Otherwise, we take
xi+1 = γ( min { inf Ωi+1+A0/2, l}), and x′i+1 = γ( inf Ωi+1−A0/2). The construc-
tion of these points and sections stop at n-th step if xn = γ(l).

Claim: Let i > j and d f (Σxi(t),Σx j(t)) > A0, ∀ t ∈ Bxi ∩ Bx j . Then for v ∈
πB(Bxi ∩Bx j) and b∈Bv, we have the order bot(Lb,v)≤Σxi(b)≤Σx j(b)≤ top(Lb,v)

in the fiber geodesic Lb,v.
Proof of the claim: Indeed, because we have the family of order preserving

monotonic maps {hwv}, if Bv is single vertex, then we are done. Otherwise, let
b,b′ ∈ Bv such that dB(b,b′) = 1 and bot(Lb′,v)≤ Σxi(b

′)≤ Σx j(b
′)≤ top(Lb′,v) but



5.2. HYPERBOLICITY OF LADDER 117

bot(Lb,v) ≤ Σx j(b) < Σxi(b) ≤ top(Lb,v). Let α = [bot(Lb′,u),Σx j(b
′)] f ⊆ Lb′,u

and β = [bot(Lb,u),Σx j(b)]
f ⊆ Lb,u. Consider the δ ′

0-hyperbolic space Fb′b :=
π
−1
X ([b′,b]) (see Lemma 2.3.4). Then we apply Lemma 2.2.4, to L′

0-quasi-geodesic
α, β in δ ′

0-hyperbolic space Fb′b. So there is a point z ∈ β such that dXu(Σxi(b
′),z)≤

dFb′b(Σxi(b
′),z)≤ k2.2.4(δ

′
0,L

′
0,K). Thus by triangle inequality, dXu(z,Σxi(b))≤ 2K+

k2.2.4(δ
′
0,L

′
0,K). Hence d f (z,Σxi(b)) ≤ φ(2K + k2.2.4(δ

′
0,L

′
0,K)). Since Σx j(b) ∈

[z,Σxi(b)]
f , so d f (Σx j(b),Σxi(b)) ≤ d f (Σxi(b),z) ≤ φ(2K + k2.2.4(δ

′
0,L

′
0,K)) < A0

− which contradicts to the fact that d f (Σxi(t),Σx j(t))> A0 ∀ t ∈ Bxi ∩Bx j .
Fact 1: Hence by Lemma 5.2.9, if d f (Σxi(t),Σx j(t)) > A0 ∀ t ∈ Bxi ∩Bx j , the

K-qi sections Σxi and Σx j bounds a (K1,C1,ε1)-subladder in LK over the central
base Bxi ∩Bx j , where K1 = K5.2.9(K),C1 =C5.2.9(K,C,ε) and ε1 = ε5.2.9(K,C,ε). If
j = i+1, we denote this subladder by L (i) = L (Σxi,Σxi+1).

Again, if d f (Σxi(t),Σxi+1(t))> A0, ∀ t ∈ Bxi ∩Bxi+1 , then Σx′i+1
is a maximal K-qi

section in LK through x′i+1 over Bx′i+1
. Also, from the construction, ∃ a ∈ Bxi ∩Bx′i+1

and ∃ b ∈ Bx′i+1
∩Bxi+1 such that

d f (Σxi(a),Σx′i+1
(a))≤ A0 and d f (Σx′i+1

(b),Σxi+1(b))≤ A0 (5.2. 2)

It is very well possible that Σx′i+1
does not lie fully in L (i). In that case, considering

Lemma 2.4.12 (2), we adjust Σx′i+1
to lie inside L (i), turning it into a C2.4.12(K)-qi

section over possibly a smaller base than Bx′i+1
. (We refer to the proof of Lemma

2.4.12 (2), i.e., [10, Lemma 3.1].) We still denote this modified qi section as Σx′i+1

and its base as Bx′i+1
. We note that this modification will not effect to the girth

condition 5.2. 2; and K1 = K5.2.9(K) =C2.4.12(K).
Therefore, by Lemma 5.2.8, the K1-qi section Σx′i+1

subdivides the ladder L (i)

into two (K2,C2,ε2)-subladders, where K2 = K5.2.8(K1),C2 =C5.2.8(K1,C1,ε1) and
ε2 = ε5.2.8(K1,C1,ε1). Let us denote these subladders of L (i) by L i1 =L (Σxi,Σx′i+1

)

and L i2 = L (Σx′i+1
,Σxi+1). Note that K2 =C(2)

2.4.12(K) and the ladders L i1 and L i2

satisfy the small girth condition 5.2. 2.
Therefore, the ladder L is subdivided into (K1,C1,ε1)-subladders L (i), 0 ≤ i ≤

n−1. Also, L (i)’s are further subdivided into two (K2,C2,ε2)-subladders L i1,L i2

in L (i) except possibly for i = n−1.

Lemma 5.2.12. Let x ∈ Σxi and y ∈ Σx j such that dX(x,y)≤ D and i ̸= j. Then there
is a point c ∈ Bxi ∩Bx j such that d f (ΣXi(c),Σx j(c))≤ φ(4KD+D).

Proof. Let πX(x) = a and πX(y) = b. Suppose c ∈ [a,b] such that a ∈ Bxi ∩Bx j .
Since Bxi’s are isometrically embedded in B, [a,c]B ⊆ Bxi and [c,b]B ⊆ Bx j . Now
dB(a,b)≤ dX(x,y)≤ D implies dB(a,c)≤ D and dB(c,b)≤ D. By taking K-qi lift
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of [a,c]B and [c,b]B in Σxi and Σx j respectively, we have dX(x,Σxi(c)) ≤ 2KD and
dX(y,Σx j(c)) ≤ 2KD. Again by triangle inequality, dX(Σxi(c),Σx j(c)) ≤ 4KD+D.
Hence d f (ΣXi(c),Σx j(c))≤ φ(4KD+D).

Proof of Theorem 5.2.11: We use the following notations for the proof.

Xi := NR(L
(i)), Li1 := NR(L

i1), Li2 := NR(L
i2), 0 ≤ i ≤ n−1

From the construction, it follows that LKR = ∪n−1
i=0 Xi. We will verify the condi-

tions of Proposition 2.2.7.
(1) Xi’s are uniformly hyperbolic, 0 ≤ i ≤ n−1.
Note that (L (i))g|Bxi∩Bxi+1

> A0 except possibly for i = n− 1 (see Definition
5.1.19 for notation). If (L (n−1))g|Bxn−1∩Bxn

≤ A0 then by Proposition 5.2.1, Xn−1

is δ5.2.1(K1,A0,R)-hyperbolic. Otherwise, the ladder L (i) is subdivided by a K1-qi
section Σx′i+1

into two (K2,C2,ε2)-subladders, L i1 and L i2 such that their girth
over central base ≤ A0 (see inequation 5.2. 2). Since (X ,B,T ) satisfies flar-
ing condition, by Proposition 5.2.1, Li1 and Li2 are δ5.2.1(K2,A0,R)-hyperbolic.
Note that N2K1(Σx′i+1

) is a connected subspace in Li1 ∩Li2, and by Lemma 5.2.10,
Li1 ∩Li2 ⊆ NR5.2.10(K1,R)(N2K1(Σx′i+1

)). Again the inclusions N2K1(Σx′i+1
) ↪→ Li1 and

N2K1(Σx′i+1
) ↪→ Li2 are K1(2K1 + 1)-qi embedding (see Lemma 2.4.12 (3)). So by

Lemma 2.1.4, Li1 ∩ Li2 is L1-qi embedded in both Li1 and Li2 for some L1 de-
pending on K1(2K1 + 1) and R5.2.10(K1,R). Therefore, by Remark 2.2.8, L(i) is
δ ′ = δ2.2.8(δ5.2.1(K2,A0,R),L1). Therefore, for 0 ≤ i ≤ n− 1, Xi is δ1-hyperbolic
metric space, where δ1 = max{δ ′,δ5.2.1(K1,A0,R)}.

(2) Let 0 ≤ i ≤ n− 2. By Lemma 2.4.12 (3), N2K(Σxi+1) is K(2K + 1)-qi em-
bedded in both Xi and Xi+1. By Fact 1, Σxi and Σxi+2 bounds (K1,C1,ε1)-ladder. So
by Lemma 5.2.10, Xi ∩Xi+1 ⊆ NR5.2.10(K1,R)(Σxi+1). So by Lemma 2.1.4, Xi ∩Xi+1

is L2-qi embedded in both Xi and Xi+1 for some L2 depending on K(2K + 1) and
R5.2.10(K1,R).

(3) Let x ∈ Xi, y ∈ Xi+1 and α be a path in LKR joining x and y.
Claim: There is a point in α which is R-close to L (i) and L (i+1).
Proof of the claim: Suppose this is not the case. Then there are points z ∈ α ,

zi ∈ L (i) and z j ∈ L ( j) such that dXi(z,zi) ≤ R, dX j(z,z j) ≤ R and j − i ≥ 2. So
dX(zi,z j)≤ 2R. Then by Lemma 5.2.12, ∃ c∈Bxi ∩Bx j such that d f (Σxi(c),Σx j(c))≤
φ(8KR+2R)< A0 − which contradicts to the construction of Σxi’s.

(4) Now we want to prove that the pair (Yi,Yi+1) is uniformly cobonded for
1 ≤ i ≤ n−2 where Yi = Xi−1∩Xi and Yi+1 = Xi∩Xi+1. Since Xi’s are δ1-hyperbolic
and the inclusion N2K(Σxi) ↪→ Xi is K(2K+1)-qi embedding (see Lemma 2.4.12 (3)),
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then Σxi’s are K′-quasiconvex in Xi, where K′ = K2.2.22(δ1,K(2K +1),0)+2K (see
Lemma 2.2.22 (1)). By similar argument, we have that Σxi+1 is also K′-quasiconvex
in Xi.

We prove that the set of nearest point projections of Σxi on Σxi+1 in the metric of
Xi is uniformly bounded; which will complete the proof. Indeed, let ρ : Σxi → Σxi+1

be a nearest point projection map in Xi such that the diameter of ρ(Σxi) is bonded by
D in the metric of Xi. Then by Lemma 2.2.18 there is D1 depending on δ1,K′ and
D such that the pair (Σxi,Σxi+1) is D1-cobounded in Xi. By Fact 1, Σxi−1 and Σxi+1

bounds a (K1,C1,ε1)-ladder. So by Lemma 5.2.10, Hd(Yi,Σxi) and Hd(Yi+1,Σxi+1)

are bounded by R5.2.10(K1,R). Hence by Lemma 2.2.21 (2), the pair (Yi,Yi+1) is
D′-cobounded where D′ = D1 +2E2.2.21(δ1,K′,R5.2.10(K1,R)).

Let ρ(y j) = p j for y j ∈ Σxi and p j ∈ Σxi+1, j = 1,2. We prove that dXi(p1, p2)

is bounded by D. By [10, Lemma 1.31(2)], the arc-length parametrizations of
[y1, p1]Xi ∪ [p1, p2]Xi and [y2, p2]Xi ∪ [p2, p1]Xi are (3+2K′)-quasi-geodesic in Xi.

Claim: dXi(p1, p2)≤ L2.2.5(δ1,3+2K′,3+2K′) =: D.
Proof of claim: On contrary, suppose dXi(p1, p2)> L2.2.5(δ1,3+2K′,3+2K′).

Then by Lemma 2.2.5, [y1, p1]Xi ∪ [p1, p2]Xi ∪ [p2,y2]Xi is λ -quasi-geodesic in Xi,
where λ = λ2.2.5(δ1,3+2K′,3+2K′). Now by stability of quasi-geodesic (Lemma
2.2.2) in Xi and K′-quasiconvexity of Σxi in Xi, ∃ z1,z2 ∈ Σxi such that dXi(p j,z j)≤
D2, where D2 = D2.2.2(δ1,λ ,λ )+K′, j = 1,2. In particular, dX(Σxi,Σxi+1) ≤ D2.
Then by Lemma 5.2.12, there is c ∈ Bxi ∩ Bxi+1 such that d f (Σxi(c),Σxi+1(c)) ≤
φ(4KD2 +D2)< A0 which contradicts to our construction of Σxi’s.

(5) On contrary, suppose dXi(Yi,Yi+1)< 1. Then dXi(Σxi,Σxi+1)≤ 2R+1. Then
by Lemma 5.2.12, ∃ c ∈ Bxi ∩Bxi+1 such that d f (Σxi(c),Σxi+1(c))≤ φ(4K(2R+1)+
2R+1)< A0 which contradicts to our construction of Σxi’s.

Therefore, we have shown that the collection {Xi : 0 ≤ i ≤ n− 1} satisfies all
conditions of Proposition 2.2.7. Hence, NR(LK) = LRK is δ5.2.11-hyperbolic, where
δ5.2.11 = δ2.2.7(δ1,K(2K +1),D′).

5.3 Hyperbolicity of flow spaces

Suppose R = 6δ0+θ2.2.26(δ
′
0,L

′
0,λ

′
0)+4λ ′

0+8δ ′
0 > R2.2.13(δ

′
0,λ

′
0) = 2λ ′

0+5δ ′
0 and

k = K2.4.12. Let u ∈ T and F lK(Xu) be the flow space of Xu obtained for the
parameters R and k (see Definition 5.1.7). More precisely, F lK(Xu) is (K,C,ε)-
semicontinuous family, where K = K5.1.9(k,R), C = C5.1.9, ε = ε5.1.9(R). This
section is devoted to proving the (uniform) neighborhood of F lK(Xu) is (uniformly)
hyperbolic with the induced path metric. In this section, we work with these flow
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spaces and these parameters. So we reserve KKK,,,CCC and εεε for the above values.
Sometimes we use the notations U KKK :::===F lllKKK(((XXXuuu))) and UUUKL :::=== FFFlllKL(((XXXuuu))). The idea
is to apply Bowditch’s criterion (see Proposition 2.2.6) to show that UKL is hyperbolic
(see Theorem 5.3.16). Given a pair of points, we first find a ladder inside UK

containing those points (see Corollary 5.3.8), and in which we take a fixed geodesic
path joining them for the family of paths to apply Proposition 2.2.6. Then we show
that this family of paths satisfies all conditions of Bowditch’s criterion. This strategy
is elaborated in [9, Chapter 5] when X is a tree of metric spaces. In the line of finding
ladder, we prove something more in the following proposition. This proposition is
kind of heart of this section. In view of Remark 2.4.8, for this section, we require the
tree of metric bundles (X ,B,T ) to satisfy max{C(9)

2.4.12(k5.3.1),R0(2k5.3.8+1)}=: kkk∗∗∗
-flaring condition, where R0 = L5.1.3(k5.3.8,c5.3.8,ε5.3.8) is defined in the proof of
Lemma 5.3.12, Case (1).

Proposition 5.3.1. There are constants k5.3.1 = k5.3.1(K),c5.3.1 = c5.3.1(K) and
ε5.3.1 = ε5.3.1(K) such that the following hold.

Suppose xi ∈ F lK(Xu) and Σi is a K-qi section through xi over Bxi := B[u,π(xi)]

lying inside F lK(Xu), i = 1,2,3. Let B=
3⋂

i=1
Bxi and T= πB(B). Then we have the

following.

1. There is (k5.3.1,c5.3.1,ε5.3.1)-ladder L i, i = 1,2,3 containing Σi with a central
base B (possibly bigger) such that:

(a) Let Si = hull(π(L i)) and Bi = π
−1
B (Si), i = 1,2,3, and B123 = ∩3

i=1Bi

and S123 = ∩3
i=1Si. Then Ξ = {

3⋂
i=1

L i
b,v : v ∈ S123, b ∈ Bv} is a k5.3.1-qi

section over B123 and Ξ ⊆ N f
5δ0

(UK).

(b) Σi ⊆ bot(L i)⊆ UK and Ξ ⊆ top(L i), i = 1,2,3.

(c) L i ⊆ N f
6δ0

(UK), i = 1,2,3.

2. There exist (k5.3.1,c5.3.1,ε5.3.1)-ladder L i j with central base B containing Σi

and Σ j such that bot(L i) ⊆ top(L i j), bot(L j) ⊆ bot(L i j). Also, L i j ⊆
N f

2δ0
(UK).

Although k5.3.1, c5.3.1 and ε5.3.1 depend on the constants C,ε and the other
structural constants, we keep those implicit.

Proof. The construction of L i, L i j and Ξ are by induction on dT (u,v), where
v ∈ T . As an initial step, first we explain how to get them in Xu. Note that Σi ∩Xu
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is a K-qi section over Bu in the metric of Xu, i = 1,2,3. Let Σi ∩Fb,u = {xi
b,u},

i = 1,2,3. Then by Lemma 2.4.15, ∀ b ∈ Bu, δ0-center, say, zb,u of geodesic triangle
△b,u =△(x1

b,u,x
2
b,u,x

3
b,u) in the fiber Fb,u, forms a k2.4.15(K)-qi section over Bu in

the metric of Xu. Let Yb,u := ∪3
i=1[zb,u,xi

b,u]Fb,u, b ∈ Bu. We call ∪b∈BuYb,u as tripod
of ladder over Bu and [zb,u,xi

b,u]Fb,u as legs of the tripod Yb,u with vertices {xi
b,u :

i = 1,2,3}. Recall that Qb,u = UK ∩Fb,u. Now Qb,u(= Fb,u) is 2δ0-quasiconvex in
Fb,u implies [xi

b,u,x
j
b,u]Fb,u ⊆ N f

2δ0
(UK) for all distinct i, j ∈ {1,2,3}. So δ0-centers,

zb,u of geodesic triangles △b,u belong to N f
5δ0

(UK) and Yb,u = ∪3
i=1[zb,u,xi

b,u]Fb,u ⊆
N f

6δ0
(Qb,u). Here L i

b,u = [zb,u,xi
b,u]Fb,u with top(L i

b,u) = zb,u, bot(L i
b,u) = xi

b,u for

i∈{1,2,3} and L i j
b,u = [xi

b,u,x
j
b,u]Fb,u with top(L i j

b,u)= bot(L i
b,u)= xi

b,u,bot(L i j
b,u)=

bot(L j
b,u) = x j

b,u for all distinct i, j ∈ {1,2,3}. We note that {zb,u : b ∈ Bu} ⊆ Ξ

(which we are constructing).

Now we assume the induction hypothesis. In other words, let v,w ∈ π(UK) such
that dT (u,v) = n, dT (u,w) = n+1 and dT (v,w) = 1. Suppose we have constructed
L i, Li j and Ξ over Bt for all the vertices t ∈ [u,v]. Now we will explain how and
when to extend L i, L i j and Ξ inside Xw. Let [v,w] be the edge joining v ∈ Bv and
w ∈ Bw.

We divide the construction into following cases and subcases. Before going into
fabrication, let us fix some notations and collect some facts.

Notations: We use the following notations L i
a,t := L i ∩Fa,t , L i j

a,t := L i j ∩Fa,t

for t ∈ T and a ∈ Bt . Consider the nearest point projection maps by Pw : Fvw →
Fw,w, PY : Fvw → Yv,v and the modified projection (see Definition 2.2.25) map by
P̄Y : Fw,w → Yv,v. In the construction, we will see that either Yv,v is a genuine tripod
or a degenerate tripod (i.e., a geodesic segment). We denote the tripod, in the
former case, by Yv,v := ∪3

i=1[x
i
v,v,zv,v]

f (in Case 1 and Case 2 below); and in the later
case, by Yv,v := [xi

v,v,y
i
v,v]

f (in Case 3 and Case 4 below) with top(L i
v,v) = yi

v,v and
bot(L i

v,v) = xi
v,v. Let Tvw be the connected component of T \{v} containing w and

BTvw = π
−1
B (Tvw), XTvw = π−1(Tvw).

Facts: Let x̄i
v,v ∈ Ȳv,v be the point closest to xi

v,v(= bot(L i
v,v)) in the induced

path metric of Yv,v, i = 1,2,3. Suppose x̃i
w,w := Pw(x̄i

v,v). Again if Ȳv,v ⊆ L i
v,v then

x̄i−1
v,v = x̄i+1

v,v (i±1 is considered in module 3). In this case, we set ȳi
v,v := x̄i−1

v,v . Note
that ȳi

v,v is the point closest to zv,v in the induced path metric of Yv,v. Suppose
ỹi
w,w := Pw(ȳi

v,v).

Fact (1): Suppose Ȳv,v ⊆ L i
v,v. Then by Lemma 2.2.26 (2) (b),

dvw(Pw(xi
v,v), x̃

i
w,w), dvw(Pw(zv,v), ỹi

w,w) and dvw(Pw(xi±1
v,v ), ỹ

i
w,w)
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are bounded by D2.2.26(δ
′
0,L

′
0,λ

′
0) = D (say).

Fact (2): Suppose Ȳv,v ⊈ L i
v,v for any i ∈ {1,2,3}, i.e., zv,v is in the interior of

Ȳv,v in the induced metric of Yv,v. By Lemma 2.2.26 (2) (a), dvw(Pw(xi
v,v), x̃

i
w,w)≤ D.

Now suppose the pair (Yv,v,Fw,w) is not C-cobounded in Fvw. Then Lemma
2.2.13, dvw(Yv,v,Fw,w)≤ 2λ ′

0 +5δ ′
0 and so Hdvw(PY (Fw,w),Pw(Yv,v))≤ 4λ ′

0 +8δ ′
0.

Fact (3): Note that x̄i
v,v ∈ PY (Fw,w). So, dvw(x̄i

v,v, x̃
i
w,w)≤ 4λ ′

0+8δ ′
0 ≤ K. Again

d f (x̄i
v,v,Qv,v)≤ 6δ0 and since R> 6δ0+4λ ′

0+8δ ′
0, so x̃i

w,w ∈Qw,w (see construction
of flow spaces 5.1.1).

Fact (4): Suppose Ȳv,v ⊆ L i
v,v for some i ∈ {1,2,3}. By the same argument as

in Fact (3), ỹi
w,w ∈ Qw,w and dvw(ȳi

v,v, ỹ
i
w,w) ≤ 4λ ′

0 + 8δ ′
0 ≤ K. Now suppose that

dvw(xi+1
v,v ,Qw,w)≤ K. Then dvw(PY ◦Pw(xi+1

v,v ),x
i+1
v,v )≤ 2K and PY ◦Pw(xi+1

v,v ) ∈ Ȳv,v.
So d f (PY ◦Pw(xi+1

v,v ),x
i+1
v,v )≤ φ(2K). Again zv,v is δ0-center of geodesic triangle with

vertices {xi
v,v : i = 1,2,3} in the fiber Fv,v so d f (zv,v, [PY ◦Pw(xi+1

v,v ),x
i+1
v,v ]

f ) ≤ 2δ0.
Thus d f (zv,v,xi+1

v,v )≤ φ(2K)+2δ0. Hence dvw(zv,v,Qw,w)≤ K +φ(2K)+2δ0

Fact (5): Fact (3) and Fact (4) also say that if Yv,v = L i
v,v = [xi

v,v,y
i
v,v] (i.e.,

Yv,v has one leg) then dvw(x̄i
v,v, x̃

i
v,v) ≤ K, dvw(ȳi

v,v, ỹ
i
v,v) ≤ K. Also by Fact (1),

dvw(Pw(xi
v,v), x̃

i
w,w)≤ D and dvw(Pw(yi

v,v), ỹ
i
w,w)≤ D.

Now we are ready to explain how and when to extend the tripod Yv,v, in particular,
L i,L i j and Ξ, first in Fw,w and then in the entire Xw. In the end of some cases and
subcases, we make some note which will be used in Lemma 5.3.6 and Lemma 5.3.7.
We recommend the reader first to read the construction and then look at those notes
while reading Lemma 5.3.6 and Lemma 5.3.7. Also, all the time we refer to the
Figure 5.3.

Case 1: Suppose Yv,v has three legs and the pair (Yv,v,Fw,w) is C-cobounded
in Fvw. Depending on Σi ∩Fw,w is empty or nonempty, we consider the following
subcases.

Subcase (1A): If Σi ∩Fw,w ̸= /0,∀ i ∈ {1,2,3}, then we have tripod of ladder
inside Xw formed by qi sections Σi ∩Xw, i = 1,2,3 as described in initial step of the
induction.

Subcase (1B): Suppose Σi±1 ∩Xw ̸= /0 and Σi ∩Xw = /0. Now we prove that
dvw(zv,v,Σi−1(w)) ≤ D1. Now the pair (Yv,v,Fw,w) is C-cobounded in Fvw and
dvw(Σi±1(w),Yv,v) ≤ K together imply dvw(Σi+1(v),Σi−1(v)) ≤ 4K +C. Then
d f (Σi+1(v),Σi−1(v)) ≤ φ(4K +C) and so d f (Σi−1(v),zv,v) ≤ φ(4K +C)+ δ0 (as
zv,v is δ0-center geodesic triangle with vertices {Σi(v) : i = 1,2,3} in the fiber Fv,v).
Therefore, by triangle inequality, dvw(Σi−1(w),zv,v)≤ K +φ(4K +C)+δ0 =: D1.

Let x̄i
v,v ∈ L i

v,v be the point closest to xi
v,v in the induced metric of L i

v,v such
that x̄i

v,v is D1 close (in dvw-metric) to a point x̃i
v,v ∈ Qw,w. Let γ be a K-qi section
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through x̃i
w,w lying inside UK ∩Xw over Bw. Then we have tripod of ladder inside Xw

(as described in the initial step of the induction) formed by qi sections Σi±1 ∩Xw and
γ .

Subcase (1C): Suppose Σi∩Fw,w ̸= /0 and Σi±1∩Fw,w = /0. We consider the point
ȳi
v,v ∈ L i

v,v closest to zv,v (in the fiber metric) which is K-close (in the metric of Fvw)
to a point in Qw,w. (Existence of such points are clear as Σi ∩Fw,w ̸= /0.) We take
ỹi
w,w ∈ Qw,w a nearest point projection of ȳi

w,w on Qw,w in dvw-metric. Here we have
a degenerate tripod of ladder (i.e., special ladder) inside Xw formed by the qi section
Σi ∩Xw and a K-qi section γ through ỹi

w,w lying inside UK ∩Xw over Bw. We set
this as part of the ladder L i with top(L i

a,w) = γ(a) and bot(L i
a,w) = Σi(a), a ∈ Bw.

Also, we set L ii+1 ∩Xw = L i ∩Xw with same orientation as L i has and the other
L i j’s are empty over BTvw .

Note (1C): Since the pair (Yv,v,Fw,w) is C-cobounded in dvw-metric, so by the
construction of ỹi

w,w, dvw(Pw(zv,v), ỹi
w,w)≤C and dvw(Pw(xi±1

v,v ), ỹi
w,w)≤C.

Subcase (1D): Suppose Σi ∩Xw = /0,∀ i = 1,2,3. Then L i,L i j are empty over
BTvw for all distinct i, j ∈ {1,2,3}.

Figure 5.3: For ease of notation, we only use i, x̄i to denote L i
v,v, x̄i

v,v respectively in
the figure and so on. We also omit some not to make it clumsy.
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Case 2: Suppose Yv,v has three legs and the pair (Yv,v,Fw,w) is not C-cobounded
in Fvw. We consider the following two subcases depending on Ȳv,v ⊆ L j

v,v for some
j ∈ {1,2,3} or Ȳv,v ⊈ L j

v,v for any j ∈ {1,2,3}.

Subcase (2A): Suppose Ȳv,v ⊆ L j
v,v for some j ∈ {1,2,3}. In this subcase, we

consider further division (2A-A), (2A-B), (2A-C), (2A-D) as follows.

(2A-A): Suppose Σi ∩Xw ̸= /0,∀ i = 1,2,3. Then we go back to Subcase (1A).

(2A-B): Suppose Σi±1 ∩Xw ̸= /0 and Σi ∩Xw = /0. Here in Subcase (2A), depend-
ing on j, we have further following division (2A-B-A) and (2A-B-B).

(2A-B-A): Let Ȳv,v ⊆ L i
v,v, i.e., j = i. Then by Fact (3), dvw(x̄i

v,v, x̃
i
w,w) ≤ K.

Here we will have a tripod of ladder inside Xw formed by K-qi sections Σi±1 ∩Xw

and a K-qi section γ lying inside UK ∩Xw through x̃i
w,w over Bw. To set L i and L i j

over Bw, we go back to the initial step of induction with qi sections Σi±1 ∩Xw and γ .

Note (2A-B-A): By Fact (1), dvw(Pw(xi
v,v), x̃

i
w,w)≤ D.

(2A-B-B): Suppose Ȳv,v ⊆ L j
v,v, j ∈ {i±1} (i.e. j ̸= i). By second part of Fact

(4), dvw(zv,v,Qw,w) ≤ K + φ(2K)+ 2δ0. Take a point x̄i
v,v ∈ L i

v,v closest to xi
v,v

(in the fiber metric) such that x̄i
v,v is (K +φ(2K)+2δ0)-close (in dvw-metric) to a

point x̃i
w,w ∈ Qw,w. Let γ be a K-qi section through x̃i

w,w lying inside UK ∩Xw over
Bw. Then we have a tripod of ladder inside Xw (as discussed in the initial step of
induction) formed by qi sections Σi±1 ∩Xw and γ .

(2A-C): Suppose Σi ∩Xw ̸= /0 and Σi±1 ∩Xw = /0. Here in Subcase (2A), depend-
ing on j, we have further following division (2A-C-A) and (2A-C-B).

(2A-C-A): Ȳv,v ⊆ L i
v,v, i.e., j = i. We set x̃i

w,w = Σi(w). Now by Fact (4),
dvw(ȳi

v,v, ỹ
i
w,w) ≤ K. Here we will have a degenerate tripod of ladder inside Xw

formed by the qi section Σi∩Xw and a K-qi section γ through ỹi
w,w lying inside UK ∩

Xw over Bw. We set this as part of the ladder L i with top(L i
a,w)= γ(a), bot(L i

a,w)=

Σi(a), a ∈ Bw. Also, we set L ii±1 ∩Xw = L i ∩Xw with the same orientation as
L i ∩Xw has and L i+1i−1 ∩Xw is empty over BTvw .

Note (2A-C-A): By Fact (1), dvw(Pw(xi±1
v,v ), ỹi

w,w)≤D and dvw(Pw(zv,v), ỹi
w,w)≤

D. Also, dvw(Pw(xi
v,v), x̃

i
w,w)≤ 2K.

(2A-C-B): Let Ȳv,v ⊆ L j
v,v, j ∈ {i±1}, i.e., j ̸= i. By second part of Fact (4),

dvw(zv,v,Qw,w)≤ K +φ(2K)+2δ0. We maintain the order of + and − depending
on j = i±1. Take a point x̄i∓1

v,v ∈ L i∓1
v,v closest to xi∓1

v,v (in the fiber metric) such that
x̄i∓1
v,v is (K +φ(2K)+2δ0)-close (in dvw-metric) to a point x̃i∓1

v,v ∈ Qw,w. Let γ and
γ ′ be K-qi sections through x̃i−1

w,w and x̃i+1
w,w lying inside Uk ∩Xw over Bw. Then we

will have a tripod of ladder inside Xw (as described in the initial step of induction)
formed by the qi sections Σi ∩Xw, γ and γ ′.
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(2A-D): Suppose Σi ∩Xw = /0,∀ i ∈ {1,2,3}. Note that Ȳv,v ⊆ L j
v,v (we are in

Subcase (2A)). By Fact (3) and Fact (4), dvw(x̄
j
v,v, x̃

j
w,w)≤ K and dvw(ȳ

j
v,v, ỹ

j
w,w)≤

K. Here we have a degenerate tripod of ladder inside Xw formed by K-qi sections γ

and γ ′ through x̃ j
w,w and ỹ j

w,w lying inside UK ∩Xw over Bw respectively. We consider
this as a part of L j with top(L j

a,w) = γ ′(a),bot(L j
a,w) = γ(a), a ∈ Bw. Also, we set

L j j±1∩Xw =L j∩Xw with the same orientation as L j∩Xw has and L j+1 j−1∩Xw

is empty over BTvw .

Note (2A-D): By Fact (1), dvw(Pw(x
j±1
v,v ), ỹ j

w,w) ≤ D, dvw(Pw(x
j
v,v), x̃

j
w,w) ≤ D

and dvw(zv,v, ỹ
j
w,w)≤ D.

Subcase (2B): Suppose Ȳv,v ⊈ L j
v,v for any j ∈ {1,2,3}, i.e., zv,v belong to the

interior of Ȳv,v in the induced metric of Yv,v. We set x̃i
w,w to be Σi ∩Fw,w provided

Σi ∩Xw ̸= /0. We consider K-qi section through x̃i
w,w lying inside UK ∩Xw over Bw

if Σi ∩Xw = /0; otherwise, the qi section to be Σi ∩Xw. Then we have a tripod of
ladder inside Xw as described in the initial step of the induction formed by these K-qi
sections through x̃i

w,w.

Note (2B): By Fact (2), dvw(Pw(x̄i
v,v), x̃

i
w,w)≤ max{2K,D} for i = 1,2,3.

Case 3: Suppose Yv,v has only one leg, i.e., Yv,v = L i
v,v for some i ∈ {1,2,3} and

the pair (Yv,v,Fw,w) is C-cobounded. So L i ∩Xv is a special ladder bounded by two
K-qi sections γ1 and γ2 lying inside UK ∩Xv over Bv. Then by our construction in
Case 1 and Case 2, either γ1 (say) is restriction of some Σi or both γ1 and γ2 are not
restriction of Σi’s. In the later case, L i is empty over BTvw . Now we assume that
γ1 = Σi ∩Xv. We consider the following subcases depending on whether Σi ∩Xw is
empty or non-empty.

Subcase (3A): Suppose Σi∩Xw ̸= /0. Note that top(L i
v,v) = yi

v,v and bot(L i
v,v) =

xi
v,v = Σi ∩Fv,v. We set x̃i

w,w = Σi(w). Then take ȳi
v,v ∈ L i

v,v is the closest to yi
v,v

(in the fiber metric) such that ȳi
v,v is K-close (in dvw-metric) to a point ỹi

w,w ∈ Qw,w.
(Existence of such points are clear as Σi ∩Fw,w ̸= /0.) Let γ be a K-qi section through
ỹi
w,w lying inside UK ∩Xw over Bw. Then we have a degenerate tripod of ladder

inside Xw bounded by qi sections Σi ∩Xw and γ . We set this as part of L i with
top(L i

a,w) = γ(a) and bot(L i
a,w) = Σi(a), a ∈ Bw. Also, note that this is the part of

the same L i j as it was over Bv with orientation same as L i ∩Xw.

Note (3A): Since the pair (Yv,v,Fw,w) is C cobounded in the metric of Fvw, so
dvw(Pw(xi

v,v), x̃
i
w,w)≤ 2K and dvw(Pw(yi

v,v), ỹ
i
w,w)≤ 2K +C.

Subcase (3B): Suppose Σi ∩Xw = /0. Then L i is empty over BTvw .

Case 4: Suppose Yv,v has only one leg, i.e., Yv,v = L i
v,v for some i ∈ {1,2,3}

and the pair (Yv,v,Fw,w) is not C-cobounded in Fvw. Then we have two extreme
points x̄v,v and ȳv,v of Ȳv,v ⊆L i

v,v, which are K-close to points x̃i
w,w and ỹi

w,w of Qw,w
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respectively in dvw-metric (see Fact (5)). If Σi ∩Xw ̸= /0, then we set x̃i
w,w = Σi(w).

Suppose γ is a K-qi section through x̃i
w,w lying inside UK ∩ Xw if Σi ∩ Xw = /0;

otherwise, γ = Σi ∩Xw. Let γ ′ be K-qi sections through ỹi
w,w lying inside UK ∩Xw

over Bw. Then we have a degenerate tripod of ladder inside Xw bounded by γ and γ ′

with orientation is same as described in Subcase (3A). Further, this is the part of the
same L i j as it was over Bv with the orientation same as L i ∩Xw.

Note for Case 4: dvw(Pw(xi
v,v), x̃

i
w,w)≤max{2K+D} and dvw(Pw(yi

v,v), ỹ
i
w,w)≤

D (see Fact (5)).

Lemma 5.3.2. Suppose Ȳv,v ⊆ L i
v,v for some i ∈ {1,2,3}. Then there is a constant

C5.3.2 satisfying the following.
(1) ([9, Corollary 5.4]) The pair (L t

v,v,Fw,w) is C5.3.2-cobounded in the path
metric of Fvw for t = i±1.

(2) The pair (L i+1i−1
v,v ,Fw,w) is C5.3.2 cobounded in the path metric of Fvw.

Proof. (1) Fix t ∈ {i± 1}. Then by Fact (1), dvw(Pw(xt
v,v),Pw(zv,v)) ≤ 2D (by

triangle inequality). Again dv,w(Pw(xi−1
v,v ),Pw(x

i+1
v,v ))≤ 2D. Then by Lemma 2.2.20,

we can take C5.3.2 :=C2.2.20(δ
′
0,L

′
0,λ

′
0,2D).

Lemma 5.3.3. There is a constant C5.3.3 satisfying the following.
If the pair (Yv,v,Fw,w) is C-cobounded in Fvw, then the pairs (L i j

v,v,Fw,w) and
(L i

v,v,Fw,w) are C5.3.3-cobounded in Fvw for all distinct i, j ∈ {1,2,3}.

Proof. By Lemma 2.2.20, we can take C5.3.3 =C2.2.20(δ
′
0,L

′
0,λ

′
0,C).

The above construction yields L i and L i j for all distinct i, j ∈ {1,2,3} as a
collection of geodesic segments in fibers. We still need to show that they form
ladders (Lemma 5.3.6 and Lemma 5.3.7) using Lemma 5.1.21. Let Bi := πX(L i)

and Si := πB(Bi) for all i ∈ {1,2,3}. Let v ∈ S123. Recall for b ∈ Bv, zb,v is δ0-center
of geodesic triangle in the fiber Fb,v with vertices {bot(L i

b,v) : i = 1,2,3}. As we saw
in the initial step of induction that {zb,v : b ∈ Bv} form k2.4.15(K)-qi section in Xv over
Bv. Therefore, to show Ξ = {zb,v : v ∈ S123,b ∈ Bv} form a uniform qi section over
B123 (Corollary 5.3.5), we only need to prove dvw(zv,v,zw,w) is uniformly bounded,
where v,w ∈ S123, dT (v,w) = 1 and [v,w] is the edge joining v ∈ Bv and w ∈ Bw.

Lemma 5.3.4. ([9, Lemma 5.8]) There exists k5.3.4 such that dvw(zv,v,zw,w)≤ k5.3.4,
where v,w ∈ S123 such that dT (v,w) = 1 and [v,w] is the edge joining v ∈ Bv and
w ∈ Bw.

Proof. This situation happens in Subcase (1A), Subcase (1B), (2A-A), (2A-B-A),
(2A-B-B), (2A-C-B) and Subcase (2B). We denote △v and △̂v for geodesic triangle
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with vertices x̄i
v,v, i = 1,2,3 in Fv,v and Fvw respectively. We also denote △w and

△̂w for geodesic triangle with vertices x̃i
w,w, i = 1,2,3 in Fw,w and Fvw respectively.

In all these cases, dvw(x̄i
v,v, x̃

i
w,w) ≤ max{D1,K +φ(2K)+2δ0,K} = D2 (say), i ∈

{1,2,3}. Since zv,v is δ0-center of △(x1
v,v,x

2
v,v,x

3
v,v) in Fv,v, so zv,v is 3δ0-center of

△v in Fv,v. Thus zv,v is (3δ0 +D2.2.2(δ0,L′
0,L

′
0))-center △̂v in Fvw (as the inclusion

Fv,v ↪→ Fvw is L′
0-qi embedding, see Lemma 2.3.4). Since the corresponding end

points of the triangles △̂v and △̂w are D2-distance apart from each other in the
path metric of Fvw, then by slimness of quadrilateral in Fvw, we get, zv,v is (3δ0 +

D2.2.2(δ0,L′
0,L

′
0)+2δ ′

0 +D2)-center of △̂w. Again, as zw,w is δ0-center of △w and
so is (δ0 +D2.2.2(δ0,L′

0,L
′
0))-center of △̂w. Thus zv,v and zw,w are two D3-center

of △̂w in the path metric of Fvw, where D3 = 3δ0 +D2.2.2(δ0,L′
0,L

′
0)+ 2δ ′

0 +D2.
Hence, by [9, Lemma 1.76], we have, dvw(zv,v,zw,w)≤ 2D3 +9δ ′

0 =: k5.3.4.

Corollary 5.3.5. We have a constant k5.3.5 = max{k2.4.15(K),k5.3.4} such that Ξ =⋃
b∈Bv, v∈S123

{zb,v} forms a k5.3.5-qi section over B123 with Ξ ⊆ N f
6δ0

(UK).

Here we show that L i and L i j form ladders.

Lemma 5.3.6. There are constants k5.3.6,c5.3.6 and ε5.3.6 such that L i is a ladder
with a central base B containing Σi with constants k5.3.6,c5.3.6 and ε5.3.6, i = 1,2,3.

Proof. We check all conditions of Lemma 5.1.21.
Condition (1): Note that for all v ∈ Si, L i ∩Xv is a special C2.4.12(k2.4.15(K))-

ladder over Bv. Let v,w ∈ Si such that dT (v,w) = 1 and [v,w] is the edge joining
v∈ Bv and w∈ Bw. If v,w ∈T, then dvw(top(L i

v,v), top(L i
w,w)) = dvw(zv,v,zw,w)≤

k5.3.4 and dvw(bot(L i
v,v),bot(L i

w,w)) = dvw(Σi(v),Σi(w))≤ K. Otherwise, suppose
dT (v,T)< dT (w,T). Now let v,w ∈ S123, i.e. both Yv,v and Yw,w have three legs (this
happens in (1A), (1B), (2A-A), (2A-B-A), (2A-B-B), (2A-C-B) and (2B)). Note that
x̃i
w,w = bot(L i

w,w),zw,w = top(L i
w,w). Then x̃i

w,w and zw,w are max{k5.3.4,D2} =

k5.3.4-close to L i
v,v, where D2 is as in Lemma 5.3.4. Now let v ∈ S123 and w /∈ S123,

i.e. Yv,v has three legs but Yw,w has one (this happens in (1C), (2A-C-A), (2A-D)).
Then (by our construction) top(L i

w,w),bot(L i
w,w) are K-close to L i

v,v in dvw-metric.
Finally, v,w /∈ S123, i.e., both Yv,v = L i

v,v and Yw,w = L i
w,w have one leg, then

top(L i
w,w),bot(L i

w,w) are K-close to L i
v,v. Therefore, for the condition (1) of

Lemma 5.1.21, we can take K′ = max{C2.4.12(K2.4.15(K)),k5.3.4,K}.
Condition (2): Let v,w ∈ Si such that dT (v,w) = 1 and dT (v,T)< dT (w,T). To

show a uniform bound on Hdvw(Pw(L i
v,v),L

i
w,w), we first show that

dvw(Pw(bot(L i
v,v)),bot(L i

w,w)) and dvw(Pw(top(L i
v,v)), top(L i

w,w))
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are uniformly bounded, and then we apply [9, Corollary 1.116].
Suppose both Yv,v and Yw,w have three legs (this happens in (1A), (1B), (2A-A),

(2A-B-A), (2A-B-B), (2A-C-B) and (2B)). In all these cases, dvw(Pw(zv,v),zw,w)≤
2k5.3.4. So we need bound only for dvw(Pw(xi

v,v), x̃
i
w,w). In (1A) and (2A-A),

dvw(Pw(xi
v,v), x̃

i
w,w) ≤ 2K. In (1B), dvw(Pw(xi

v,v), x̃
i
w,w) ≤ max{2K,2D1 +C}. In

(2A-B-A) and (2B), dvw(Pw(xi
v,v), x̃

i
w,w)≤ max{2K,D}. In (2A-B-B) and (2A-C-B),

dvw(Pw(xi
v,v), x̃

i
w,w)≤ max{2K,2(K +φ(2K)+δ0)}.

Suppose Yv,v has three legs and Yw,w has one (this happens in (1C), (2A-C-
A), (2A-D)). Then dvw(Pw(xi

v,v), x̃
i
w,w) and dvw(Pw(zv,v), ỹi

w,w) are bounded by
max{2K +C,2K,D} (see the Note in the end of each case).

Finally, we assume that both Yv,v,Yw,w have one leg (Case 3 and Case 4). Then
dvw(Pw(xi

v,v), x̃
i
w,w) and dvw(Pw(yv,v), ỹi

w,w) are bounded by max{2K,2K +C,2K +

D} (see Note for Case 3 and Note for Case 4).
Let D4 be the maximum of all the above constants. Now by [9, Corollary 1.116],

we have C1 depending on δ ′
0,λ

′
0 and L′

0 such that

Hdvw(Pw(L i
v,v), [Pw(bot(L i

v,v)),Pw(top(L i
v,v))]

f )≤C1.

Since L i
w,w are L′

0-quasi-geodesic in Fvw, by slimness of quadrilateral in Fvw, there
is ε ′ depending on δ ′

0, D4, C1 and L′
0 such that Hdvw(Pw(L i

v,v),L
i
w,w)≤ ε ′

Condition (3): Suppose v ∈ Si and w /∈ Si such that dT (v,w) = 1 and [v,w] is the
edge joining v ∈ Bv and w ∈ Bw. That is L i

w,w = /0. Then the pair (L i
v,v,Fw,w) is

C′ = max{C5.3.2,C5.3.3}-cobounded in Fvw (see Lemma 5.3.2, Lemma 5.3.3).
Therefore, to conclude the lemma, we take, k5.3.6 = k5.1.21(K′), c5.3.6 = c5.1.21(C′)

and ε5.3.6 = ε5.1.21(ε
′) for the above K′,C′,ε ′.

Lemma 5.3.7. There are constants k5.3.7,c5.3.7 and ε5.3.7 such that L i j is a ladder
with a central base B containing Σi and Σ j with constants k5.3.7,c5.3.7 and ε5.3.7 for
all distinct i, j ∈ {1,2,3}.

Proof. Here also we verify all conditions of Lemma 5.1.21.
Condition (1): Note that for all v ∈ π(L i j), L i j ∩Xv is a special C2.4.12(K)-

ladder over Bv. Suppose v,w ∈ π(L i j) such that dT (v,w) = 1 and [v,w] is the edge
joining v ∈ Bv and w ∈ Bw. If v,w ∈ T, dvw(Σi(v),Σi(w)) ≤ K for all i ∈ {1,2,3}.
Otherwise, we assume that dT (v,T)< dT (w,T). In the construction, we have seen
that L i j

w,w matches with L i
w,w or L j

w,w unless both Yv,v and Yw,w have three legs.
Note that Hd f (L i

v,v ∪L j
v,v,L

i j
v,v)≤ 2δ0. Also, x̃i

w,w and ỹi
w,w are D4-close (in dvw-

metric) to L i
v,v∪L j

w,w, where D4 is as in Lemma 5.3.6. Hence, in all the cases, there
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are points, x1,y1 ∈ L i j
v,v such that dvw(x̃i

w,w,x1) ≤ D4 + 3δ0 and dvw(x̃
j
w,w,x1) ≤

D4 +3δ0 with an order bot(L j
v,v) = bot(L i j

v,v)≤ y1 ≤ x1 ≤ top(L i j
v,v) = bot(L i

v,v).
Therefore, for the condition (1) of Lemma 5.1.21, we can take K′ = max{D4 +

3δ0,C2.4.12(K)}.
Condition (2): Let v,w ∈ π(L i j) such that dT (v,w) = 1 and dT (v,T)< dT (w,T).

We prove that Hdvw(Pw(L
i j
v,v),L

i j
w,w) is uniformly bounded.

If both Yv,v and Yw,w have one leg, then Hdvw(Pw(L
i j
v,v),L

i j
w,w) ≤ ε5.3.6 (by

Lemma 5.3.6). If Yv,v has three legs but Yw,w has one, then L s
w,w = /0 for s is equal

to either i or j. So by Lemma 5.3.6, diam(Pw(L s
v,v))≤ c5.3.6 in dvw-metric. Again

if both Yv,v and Yw,w have three legs, Hdvw(Pw(L s
v,v),L

s
w,w)≤ ε5.3.6 for s ∈ {i, j}.

Now Hd f (L i
w,w ∪L j

w,w,L
i j
w,w)≤ 2δ0 implies that in either case, Hdvw(Pw(L i

v,v ∪
L j

v,v),L
i j
w,w)≤ ε5.3.6 +2δ0 + c5.3.6. Again Hd f (L i

v,v ∪L j
v,v,L

i j
v,v)≤ 2δ0 and so by

Lemma 2.2.21 (1), Hdvw(Pw(L i
v,v ∪L j

v,v),Pw(L
i j
v,v)) ≤ C2.2.21(δ

′
0,λ

′
0).(2δ0 + 1).

Therefore, combining these inequalities, we get, Hdvw(Pw(L
i j
v,v),L

i j
w,w)≤ ε , where

ε = ε5.3.6 +2δ0 + c5.3.6 +C2.2.21(δ
′
0,λ

′
0).(2δ0 +1).

Therefore, for condition (2) of Lemma 5.1.21, we take ε ′ = max{ε,ε5.3.6}= ε .
Condition (3): So for the condition (3) of Lemma 5.1.21, we can take C′ =

max{C5.3.2,C5.3.3} (see Lemma 5.3.2, Lemma 5.3.3).
Hence, to conclude the lemma, we take, k5.3.7 = k5.1.21(K′), c5.3.7 = c5.1.21(C′)

and ε5.3.7 = ε5.1.21(ε
′) for the above K′,C′,ε ′.

Therefore, to complete Proposition 5.3.1, we take k5.3.1 = max{k5.3.6,k5.3.7},
c5.3.1 = max{c5.3.6,c5.3.7} and ε5.3.1 = max{ε5.3.6,ε5.3.7}.

Therefore, Proposition 5.3.1 gives us the following Corollary 5.3.8. Below
in Lemma 5.3.9, we will investigate the (uniform) hyperbolicity of a (uniform)
neighborhood of ∪3

i=1L
i in a bit larger neighborhood of F lK(Xu), where L i’s are

the ladders obtained in Proposition 5.3.1.

Corollary 5.3.8. Let x,y ∈ F lK(Xu). Suppose Σx and Σy are K-qi sections through
x and y lying inside UK over B[u,π(x)] and B[u,π(y)] respectively. Then there is a
(k5.3.8,c5.3.8,ε5.3.8)-ladder, Lxy, with a central base (possibly bigger than) Bu con-
taining the sections Σx,Σy such that bot(Lxy) ⊆ UK , top(Lxy) ⊆ UK and Lxy ⊆
N f

2δ0
(UK), where k5.3.8 = k5.3.1, c5.3.8 = c5.3.1 and ε5.3.8 = ε5.3.1.

Lemma 5.3.9. Given R ≥ 2C(9)
2.4.12(k5.3.1), there exist δ5.3.9 = δ5.3.9(k5.3.1,R) and

L5.3.9 = L5.3.9(k5.3.1,R) such that the following hold.

1. Y := NR+2δ0(∪
3
i=1L

i) is a δ5.3.9-hyperbolic subspace (with the induced path
metric) in UK(R+8δ0) := N(R+8δ0)(F lK(Xu)).



130 CHAPTER 5. MAIN COMBINATION THEOREM

2. The inclusion Li j = NR(L i j) ↪→ Y is L5.3.9-qi embedding with their induced
path metric.

Proof. (1) Note that L i is a (k5.3.1,c5.3.1,ε5.3.1)-ladder such that L i ⊆N f
6δ0

(UK) for
i = 1,2,3, and so Y ⊆UK(R+8δ0). Let Li = NR+2δ0(L

i), i = 1,2,3. Since the tree of

metric bundles (X ,B,T ) satisfies C(9)
2.4.12(k5.3.1)-flaring condition, by Theorem 5.2.11,

Li is δ1-hyperbolic, where δ1 = δ5.2.11(k5.3.1,R+2δ0). Now we apply Proposition
2.2.7 twice on Li’s, i = 1,2,3; first on L1 ∪L2 and then on (L1 ∪L2)∪L3 to show Y
is hyperbolic.

LLL111 ∪∪∪LLL222 is Hyperbolic: We verify the conditions of Proposition 2.2.7 for n = 2
(see Remark 2.2.8).

(1) L1 and L2 are δ1-hyperbolic.

(2) Note that N2k5.3.1(Ξ) ⊆ L1 ∩ L2, and by Lemma 2.4.12 (3), N2k5.3.1(Ξ) is
k5.3.1(2k5.3.1 + 1)-qi embedded in both L1 and L2. Let Ni

D(N2k5.3.1(Ξ)) denote the
D-neighborhood of N2k5.3.1(Ξ) in Li-metric for i = 1,2. If L1 ∩L2 ⊆ Ni

D(N2k5.3.1(Ξ)),
then by Lemma 2.1.4, L1 ∩L2 is L1-qi embedded in both L1 and L2 for some L1

depending on D and k5.3.1(2k5.3.1 +1). Now we will find D.

Finding D: Let x∈ L1∩L2. Then ∃ xi ∈L i such that dLi(x,xi)≤R+2δ0, i= 1,2.
So dX(x1,x2)≤ 2(R+2δ0) and dB(a1,a2)≤ 2(R+2δ0), where πX(xi) = ai, i = 1,2.
Let v be the center of the tripod with vertices π(x1),π(x2),u in T . If any one of
π(x1), π(x2) is u then we set v to be u. Let c ∈ Bv ∩ [a1,a2]. Then dB(ai,c) ≤
2(R + 2δ0), i = 1,2. Suppose γi is k5.3.1-lift through xi of geodesic [ai,c] lying
inside L i. Let γi(ai) = ci, i = 1,2. So dLi(xi,ci) ≤ 4(R+2δ0)k5.3.1, i = 1,2. Thus
dX(c1,c2) ≤ dX(c1,x1)+ dX(x1,x2)+ dX(x2,c2) ≤ 2(R+ 2δ0)(4k5.3.1 + 1), and so
d f (c1,c2)≤ φ(2(R+2δ0)(4k5.3.1 +1)) = D1 (say). We also note that v ∈B where
B is a central base for all L i’s. Since zc,v ∈ Ξ is δ0-center of geodesic triangle
with vertices {bot(L j

c,v); j = 1,2,3} in Fc,v, so zc,v is 3δ0-close (in fiber distance)
to a point c3 ∈ [c1,c2]

f . Then, for i = 1,2, dLi(ci,zc,v) ≤ d f (ci,zc,v) ≤ d f (ci,c3)+

d f (c3,zc,v) ≤ D1 + 3δ0. Hence, for i = 1,2, dLi(x,zc,v) ≤ dLi(x,xi) + dLi(xi,ci) +

dLi(ci,zc,v) ≤ R+ 2δ0 + 4(R+ 2δ0)k5.3.1 +D1 + 3δ0 =: D. Therefore, L1 ∩ L2 ⊆
Ni

D(Ξ)⊆ Ni
D(N2k5.3.1(Ξ)), where Ni

D(ζ ) denotes D-neighborhood around ζ ∈ Li in
the path metric of Li, i = 1,2.

Therefore, by Remark 2.2.8, we conclude that L1 ∪L2 is δ2-hyperbolic, where
δ2 = δ2.2.8(δ1,L1).

The exact proof works mutatis mutandis for (L1 ∪L2)∪L3, and we conclude that
Y is uniformly hyperbolic with the induced path metric. We take that hyperbolic
constant to be δ5.3.9.
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(2) Note that Li j = NR(L i j) ⊆ Y ⊆UK(R+8δ0) as L i j ⊆ N f
δ0
(L i ∪L j). Since

L i j is a (k5.3.1,c5.3.1,ε5.3.1)-ladder (see Proposition 5.3.1), then by Corollary 5.1.5,
the inclusion Li j ↪→ X is L5.1.5(k5.3.1,R)-qi embedding and so is the inclusion Li j ↪→
Y . Therefore, we can take L5.3.9 = L5.1.5(k5.3.1,R).

Given a pair of points in F lK(Xu), we get a ladder according to Corollary 5.3.8.
But this ladder is far from being canonical. In the following proposition, we show
that different ladders for different choices of qi sections for the same pair of points
give rise to uniform Hausdorff-close geodesic paths joining those points in the
respective ladders. In fact, this is more generally true, but we prove it according to
our requirements. For the proposition below, r2 is defined in Lemma 5.3.14.

Proposition 5.3.10. There is a constant D5.3.10 = D5.3.10(k5.3.8,c5.3.8,ε5.3.8) such
that the following holds.

Let x,y ∈ F lK(Xu). Suppose Σx and Σy are K-qi sections through x and y
lying inside UK over B[u,π(x)] and B[u,π(y)] respectively. Let L 1

xy and L 2
xy be two

(k5.3.8,c5.3.8,ε5.3.8)-ladders containing Σx,Σy (see Corollary 5.3.8). Further we
assume that c1(x,y) and c2(x,y) are geodesics joining x,y inside L1

xy := Nr2(L
1

xy)

and L2
xy := Nr2(L

2xy) respectively. Then c1(x,y) and c2(x,y) are D5.3.10-Hausdorff-
close in X.

Proof. In this proposition, we omit the subscript xy when denoting the ladders
to avoid excessive notation. We denote L i := L i

xy, Li := Nr2(L
i) and the fibers

of L i by L i
b,v ⊆ Fb,v, i = 1,2. Let πX(L i) = Bi, π(L i) = Si, i = 1,2. Note that

both the ladders L 1, L 2 contain Σx and Σy, so for v ∈ π(Σx)∪π(Σy) and b ∈ Bv,
d f (L 1

b,v,L
2

b,v)≤ δ0; in particular, the pair (L 1
b,v,L

2
b,v) is 5δ0-close in Fb,v.

The proof is divided into two steps. In Step 1, we find a common base B̄ and
develop lemmas which are needed in Step 2. In Step 2, we show that there is a
common subspace containing x,y which is qi embedded in both L1,L2. Finally, we
conclude the proposition.

Step 1: Construction of common base B̄BB: Let B′ = {b ∈ Bv : d f (L 1
b,v,L

2
b,v)≤

5δ0,v ∈ S1 ∩S2}. Note that Bu ⊆ πX(Σx)∪πX(Σy)⊆ B′. Let B′
v = hull(B′)∩Bv and

B̄v = Nδ0(B
′
v)∩Bv, where v ∈ πB(B′). Suppose B̄1 = ∪v∈πB(B′)B̄v and so πB(B̄1) is a

subtree of S1 ∩S2. Then by [9, Lemma 1.93] and the fact that Bv’s are isometrically
embedded in B, we note that B̄1 is (1,6δ0)-qi embedded in B. Finally, we will add
a few more vertices and edges to B̄1 to complete the construction of B̄. Suppose
v ∈ πB(B̄1),w /∈ πB(B̄1) and w ∈ S1 ∩ S2 such that dT (v,w) = 1. Let [v,w] be the
edge joining v ∈ Bv and w ∈ Bw. Further, we assume that v ∈ B̄v and the pair
(L 1

v,v,L
2
v,v) is 5δ0-close in the fiber Fv,v. Then we include only the vertex w and



132 CHAPTER 5. MAIN COMBINATION THEOREM

the edge [v,w] to B̄1. And, we will use the same notation for these extra vertices,
i.e., here B̄w = B̄∩Bw = {w}. Notice that B̄ is still (1,6δ0)-qi embedded in B. Let
S̄ = πB(B̄).

Let v ∈ S1 ∩S2 and b ∈ Bv. Let Pi
b,v : Fb,v → L i

b,v be a nearest point projection
map in Fb,v (see Lemma 2.2.21 (1)) and P̄i

b,v : Fb,v →L i
b,v is modified projection (see

Definition 2.2.25) corresponding to Pi
b,v, i = 1,2. We denote L̄ 1

b,v := P̄1
b,v(L

2
b,v)⊆

L 1
b,v and L̄ 2

b,v := P̄2
b,v(L

1
b,v)⊆ L 2

b,v. We take L̄ i :=
⋃

b∈B̄v, v∈S̄
L̄ i

b,v, i = 1,2.

Note 5.3.11. (i) Let v ∈ πB(B′) and b ∈ B′ ∩ Bv. Then by Remark 2.2.14 (2),
Hd f (P1

b,v(L
2

b,v),P
2
b,v(L

1
b,v))≤ 2δ0 +5δ0 = 7δ0. So Hd f (L̄ 1

b,v,L̄
2

b,v)≤ 13δ0 by Re-
mark 2.2.27. However, we will prove below in Lemma 5.3.12 that ∀ v ∈ S̄ and ∀ b ∈
B̄v, Hd f (L̄ 1

b,v,L̄
2

b,v) is uniformly bounded.
(ii) If v ∈ S1 ∩ S2, then by Lemma 2.4.16, L̄ i ∩Xv :=

⋃
b∈Bv

L̄ i
b,v form a (uni-

formly) special C2.4.12(K2.4.16(K))-ladder bounded by K2.4.16(K)-qi sections, i =
1,2.

Lemma 5.3.12. With the above notations, we have R5.3.12 such that ∀ v∈ S̄ and ∀ b∈
B̄v,

Hd f (L̄ 1
b,v,L̄

2
b,v)≤ R5.3.12.

Proof. Let v ∈ S̄, c ∈ B̄v. We divide the proof into following cases. First three cases
deal with the vertices v ∈ πB(B̄1) = πB(B′) and Case (4) with the extra vertices.

Case 1: Suppose c ∈ hull(B′) such that c ∈ [a,b]B for some a,b ∈ B′ and a ∈ Bu.
Let w = πB(b),v = πB(c). We prove that d f (L 1

c,v,L
2

c,v) is uniformly bounded
and hence we are through by Remark 2.2.14 (2) and Remark 2.2.27. As the pair
(L 1

b,w,L
2

b,w) is 5δ0-close, we take x ∈ L 1
b,w such that d f (x,L 2

b,w)≤ 5δ0. Consider
k5.3.8-qi section, say, γx through x over B[u,w] in the ladder L 1 (since L i’s are
(k5.3.8,c5.3.8,ε5.3.8)-ladders). Now we apply Mitra’s retraction (see Theorem 5.1.3),
ρL 2 on γx and get a R0(2k5.3.8 + 1)-qi section, say, γ ′x over B[u,w] in L 2, where
R0 := L5.1.3(k5.3.8,c5.3.8,ε5.3.8). Then we have two R0(2k5.3.8+1)-qi sections γx,γ

′
x

over B[u,w] such that (as a ∈ Bu) d f (γx(s),γ ′x(s)) ≤ 5δ0, s ∈ {a,b}. Again the tree
of metric bundles (X ,B,T ) satisfies R0(2k5.3.8 + 1)-flaring condition. Thus the
restriction of γx,γ

′
x on geodesic [a,b] and Lemma 2.4.7 (2) imply d f (γx(c),γ ′x(c))≤

R1, where R1 = R2.4.7(L0(2k5.3.8 + 1),5δ0). Hence d f (L 1
c,v,L

2
c,v) ≤ R1 and so by

Remark 2.2.14 (2) and Remark 2.2.27, Hd f (L̄ 1
c,v,L̄

2
c,v)≤ 8δ0 +R1.

Case 2: Suppose c ∈ hull(B′) such that c ∈ [a,b]B for some a,b ∈ B′ and none
of a,b belong to Bu. Let v = πB(c). More precisely, we assume that v is the center
of the geodesic triangle △(πB(a),u,πB(b)), otherwise, it will land in Case 1. Let
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a′ ∈ Bu. Then by δ0-slimness of the geodesic triangle △(a,b,a′) and without loss
of generality, we may assume that dB(c,c′) ≤ δ0 for some c′ ∈ [a′,b]. So by Case
1, we have d f (L 1

c′,v,L
2

c′,v) ≤ R1. Let x ∈ L 1
c′,v,y ∈ L 2

c′,v such that d f (x,y) ≤ R1.
Now we take k5.3.8-qi lifts, say, γ1 and γ2 of geodesic [c,c′] in L 1 and L 2 through x
and y respectively. Then dX(γ1(c),γ2(c))≤ dX(γ1(c),x)+dX(x,y)+dX(y,γ2(c))≤
2k5.3.8δ0+R1+2k5.3.8δ0 = 4k5.3.8δ0+R1. Thus d f (L 1

c,v,L
2

c,v)≤ φ(4k5.3.8δ0+R1),
where fibers are φ -properly embedded in X . Therefore, by Remark 2.2.14 (2) and
Remark 2.2.27, Hd f (L̄ 1

c,v,L̄
2

c,v)≤ 8δ0 +φ(4k5.3.8δ0 +R1).

Case 3: Suppose c ∈ B̄1 and πB(c) = v. Then by construction of B̄1, there
exists c1 ∈ B′

v ⊆ hull(B′) such that dB(c,c1) = dBv(c,c1)≤ δ0. Since c1 ∈ hull(B′),
by Case 2, we know that d f (L 1

c1,v,L
2

c1,v) ≤ φ(4k5.3.8δ0 +R1). Now we use the
same argument used in the last part of Case 2. Let x ∈ L 1

c1,v,y ∈ L 2
c1,v such that

d f (x,y) ≤ φ(4k5.3.8δ0 + R1). By taking k5.3.8-qi lifts through points x and y of
the geodesic [c,c1] in the ladders L 1 and L 2 respectively, one can conclude that
d f (L 1

c,v,L
2

c,v)≤ φ(4k5.3.8δ0+φ(4k5.3.8δ0+R1)). Hence, by Remark 2.2.14 (2) and
Remark 2.2.27, Hd f (L̄ 1

c,v,L̄
2

c,v)≤ 8δ0 +φ(4k5.3.8 +φ(4k5.3.8δ0 +R1)).

Case 4: Here we will check for extra vertices if any. Suppose c ∈ B̄\ B̄1. Let
πB(c) = w and [v,w] be the edge such that dT (u,v) < dT (u,w). Let [v,w] be the
edge joining v ∈ Bv and w ∈ Bw. Note that c = w. Then by the construction of
w ∈ B̄, d f (L 1

v,v,L
2
v,v) ≤ 5δ0 and so Hd f (L̄ 1

v,v,L̄
2
v,v) ≤ 13δ0 (see Remark 2.2.14

(2)). Suppose x ∈ L̄ 1
v,v and y ∈ L̄ 2

v,v such that d f (x,y) ≤ 13δ0. We consider x′ ∈
L 1

w,w, y′ ∈ L 2
w,w such that dvw(Pw(x),x′)≤ ε5.3.8 and dvw(Pw(y),y′)≤ ε5.3.8 (since

L i’s are (k5.3.8,c5.3.8,ε5.3.8)-ladders). Again Pw is L′
1-coarsely Lipschitz retraction

in the metric Fvw (see Lemma 2.3.4 (2)) and so dvw(Pw(x),Pw(y))≤ L′
1dvw(x,y)+

L′
1 ≤ L′

1(13δ0 +1). Thus by triangle inequality, dvw(x′,y′)≤ 2ε5.3.8 +L′
1(13δ0 +1)

⇒ d f (x′,y′) ≤ φ(2ε5.3.8 + L′
1(13δ0 + 1)). Now x′ ∈ L 1

w,w, y′ ∈ L 2
w,w and so by

Remark 2.2.14 (2) and Remark 2.2.27, we have, d f (L̄ 1
w,w,L̄

2
w,w)≤ 8δ0+φ(2ε5.3.8+

L′
1(13δ0 +1)).

Therefore, we can take R5.3.12 to be the maximum of all four constants we get
in four cases, i.e., R5.3.12 = max{φ(2k5.3.8 + φ(2k5.3.8δ0 +R1)),8δ0 + φ(2ε5.3.1 +

L′
1(13δ0 +1))}.

Next we show that L̄ i’s are more general ladders. More precisely, they are
semicontinuous families and they need not satisfy the condition (5) of Definition
5.1.1 trivially (i.e., in the notation of Definition 5.1.1, B′ ⊊ π

−1
B (TY)), and they

behave like ladders.
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Lemma 5.3.13. There are constants k5.3.13, c5.3.13 and ε5.3.13 such that the following
hold.

Suppose [v,w] is an edge in T such that dT (u,v)< dT (u,w) and [v,w] is the edge
joining v ∈ Bv and w ∈ Bw. Let v,w ∈ B̄. Then:

1. L̄ i
w,w ⊆ Nvw

k5.3.13
(L̄ i

v,v).

2. Hdvw(Pw(L̄ i
v,v),L̄

i
w,w)≤ ε5.3.13.

3. Suppose a ∈ B̄, b /∈ B̄ with dB(a,b) = 1 and πB(a) = s, πB(b) = t. Then
diam f (L̄ i

a,s) ≤ c5.3.13 if s = t or the pair (L̄ i
a,s,Fb,t) is c5.3.13-cobounded in

the path metric of Fab := π
−1
X ([a,b]) if s ̸= t.

In particular, L̄ i is (k5.3.13,c5.3.13,ε5.3.13)-semicontinuous family, i = 1,2.

Proof. (1) We will only prove for i= 1 as the proof for i= 2 involves a simple change
of indices. Since L i’s are (k5.3.8,c5.3.8,ε5.3.8)-ladders, for x ∈ L̄ 1

w,w, ∃ x1 ∈ L 1
v,v

such that dvw(x,x1)≤ k5.3.8. Let y ∈ L̄ 2
w,w, y1 ∈L 2

v,v such that d f (x,y)≤ R5.3.12 (by
Lemma 5.3.12) and dvw(y,y1) ≤ k5.3.8. Then dvw(x1,y1) ≤ dvw(x1,x)+ d f (x,y)+
dvw(y,y1)≤ 2k5.3.8+R5.3.12. Hence d f (x1,y1)≤R2, where R2 = φ(2k5.3.8+R5.3.12).
Note that P1

v,v : Fv,v →L 1
v,v is a nearest point projection map in the metric of Fv,v. For

simplicity, let P=P1
v,v. Then d f (P(x1),P(y1))= d f (x1,P(y1))≤C2.2.21(δ0,δ0)(R2+

1) (see Lemma 2.2.21 (1)). So, d f (x1,L̄
1
v,v) ≤ C2.2.21(δ0,δ0)(R2 + 1). Hence

dvw(x,L̄ 1
v,v)≤ dvw(x,x1)+d f (x1,L̄

1
v,v)≤ k1, where k1 = k5.3.8+C2.2.21(δ0,δ0)(R2+

1). Therefore, L̄ i
w,w ⊆ Nvw

k1
(L̄ i

v,v). Thus k1 works for (1) but for the second part of
this lemma, we have defined k5.3.13 > k1 in the end.

(2) Here also we will only prove for i = 1. Let x ∈ L̄ 1
v,v and we take y ∈

L̄ 2
v,v such that d f (x,y) ≤ R5.3.12 (by Lemma 5.3.12). We take x′ ∈ L 1

w,w, y′ ∈
L 2

w,w such that dvw(Pw(x),x′) ≤ ε5.3.8 and dvw(Pw(y),y′) ≤ ε5.3.8 (since L i’s are
(k5.3.8,c5.3.8,ε5.3.8)-ladders). Again Pw is L′

1-coarsely Lipschitz in the metric of
Fvw, so dvw(Pw(x),Pw(y))≤ L′

1dvw(x,y)+L′
1 ≤ L′

1(R5.3.12 +1). Therefore, (by tri-
angle inequality) dvw(x′,y′) ≤ 2ε5.3.8 + L′

1(R5.3.12 + 1) ⇒ d f (x′,y′) ≤ φ(2ε5.3.8 +

L′
1(R5.3.12 +1)) = R3 (say). Note that P1

w,w : Fw,w → L 1
w,w is a nearest point projec-

tion map in the metric of Fw,w. For simplicity, let P = P1
w,w. Since d f (x′,y′)≤ R3,

then by Lemma 2.2.21 (1), d f (x′,P(y′)) = d f (P(x′),P(y′)) ≤ C2.2.21(δ0,δ0)(R3 +

1) = R4 (say). So d f (x′,L̄ 1
w,w) ≤ R4. Hence dvw(Pw(x),L̄ 1

w,w) ≤ dvw(Pw(x),x′)+
dvw(x′,L̄ 1

w,w)≤ ε5.3.8 +R4 = ε1 (say), i.e., Pw(L̄ 1
v,v)⊆ Nvw

ε1
(L̄ 1

w,w).
For the other inclusion, let x ∈ L̄ 1

w,w. Then by (1), ∃ x1 ∈ L̄ 1
v,v such that

dvw(x,x1)≤ k1. Then dvw(Pw(x1),x)≤ 2k1. Hence L̄ 1
w,w ⊆ Nvw

2k1
(L̄ 1

w,w).
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Therefore, we can take ε5.3.13 := max{ε1,2k1}.

(3) Suppose s = t. Then a,b ∈ Bs. Since b /∈ B̄, so d f (L 1
b,s,L

2
b,s)> 5δ0. Then

by Remark 2.2.14 (1), diam f (L̄ i
b,s) ≤ 8δ0 for i = 1,2. Let L̄ i

a,s = [η i
a,s,ζ

i
a,s] for

i = 1,2. Since dB(a,b) = 1, by Note 5.3.11 (ii), dX(η
i
a,s,L̄

i
b,s) ≤ 2K2.4.16(K) and

dX(ζ
i
a,s,L̄

i
b,s)≤ 2K2.4.16(K) for i = 1,2. Then by triangle inequality, dX(η

i
a,s,ζ

i
a,s)≤

4K2.4.16(K)+8δ0 for i = 1,2. Therefore, diam f (L̄ i
a,s) ≤ φ(4K2.4.16(K)+8δ0) for

i = 1,2.

Now suppose s ̸= t. Note that since a ∈ B̄, b /∈ B̄, then dT (u,s) < dT (u, t) and
[a,b] is the edge joining a ∈ Bs, b ∈ Bt . If t /∈ S1 ∪ S2, then the pair (L i

a,s,Fb,t) is
c5.3.8-cobounded in Fab. So by Lemma 2.2.18, there is a constant C1 depending on
δ ′

0,λ
′
0 and c5.3.8 such that the pair (L̄ i

a,s,Fb,t) is C1-cobounded in Fab.

Now let t ∈ S1∩S2. Since b /∈ B̄, then by the construction of B̄, d f (L 1
a,s,L

2
a,s)>

5δ0. Thus by Remark 2.2.14 (1), diam f (L̄ i
a,s) ≤ 8δ0 for i = 1,2. Therefore, by

Lemma 2.2.18, there is a constant C2 depending on δ ′
0,λ

′
0 and 8δ0 such that the pair

(L̄ i
a,s,Fb,t) is C2-cobounded in Fab for i = 1,2.

Finally, we assume that t belong to only one of the S1, S2. Without of loss
of generality, let t ∈ S1 but t /∈ S2. Note that s ∈ S2. Then the pair (L 2

a,s,Fb,t) is
c5.3.8-cobounded in Fab. So by Lemma 2.2.18, the pair (L̄ 2

a,s,Fb,t) is C1-cobounded
in Fab (where C1 is defined above). Again, Hd f (L̄ 1

a,s,L̄
2

a,s)≤ R5.3.12 and a nearest
point projection map P : Fab → Fb,t is L′

1-coarsely Lipschitz (see Lemma 2.3.4 (2))
together imply that the diameter (in the metric of Fab) of {P(L̄ 1

a,s)} is bounded
by 2L′

1(R5.3.12 +1)+C1 = D (say). Then by Lemma 2.2.18, there is a constant C3

depending on δ ′
0, λ ′

0 and D such that the pair (L̄ 1
a,s,Fb,t) is C3-cobounded in Fab.

Therefore, we can take c5.3.13 = max{φ(4K2.4.16(K)+8δ0),C1,C2,C3}.

For second part, we note that B̄ is (1,6δ0)-qi embedded in B. Now by Note 5.3.11
(ii), L̄ i ∩Xv is special C2.4.12(K2.4.16(K))-ladder in Xv,v ∈ S1 ∩ S2. Therefore, by
Lemma 5.1.21, L̄ i is (k5.3.13,c5.3.13,ε5.3.13)-ladder, where k5.3.13 = k5.1.21(k′)> k1

and k′ = max{k1,C2.4.12(K2.4.16(K))}, and i = 1,2.

Lemma 5.3.14. Let r1 = max{2k5.3.13,2δ0 +1},r2 = max{2C(9)
2.4.12(k5.3.8),R5.3.12 +

r1+δ0} and L̄i := Nr1(L̄
i), Li := Nr2(L

i), i = 1,2. Then there is a constant L5.3.14

such that the inclusion L̄i ↪→ Li is L5.3.14-qi embedding.

Proof. Note that L̄ i is (k5.3.13,c5.3.13,ε5.3.13)-semicontinuous family (see Lemma
5.3.13) and L̄i ⊆Li. Then by Corollary 5.1.5, the inclusion L̄i ↪→X is L5.1.5(k5.3.13,r1)-
qi embedding and so is the inclusion L̄i ↪→ Li, i = 1,2. Therefore, we can take
L5.3.14 = L5.1.5(k5.3.13,r1).
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Step 2: We fix rrr111 and rrr222 as in Lemma 5.3.14 for the rest of the proof. Here
we construct a common qi embedded subspace of L1 and L2 containing both x and y
and which will show that c1(x,y) and c2(x,y) are uniformly Hausdorff-close.

Construction of common qi embedded subspace of LLL111 and LLL222: Let v∈ S̄ and b∈
B̄v. Suppose Zb,v := hull(L̄ 1

b,v∪L̄ 2
b,v)⊆Fb,v, Z :=

⋃
Zb,v and Z :=Nr1(Z ), where

the quasiconvex hull and its neighborhood is taken in the corresponding fiber. We
also have Hd f (L̄ 1

b,v,L̄
2

b,v)≤ R5.3.12 (by Lemma 5.3.12). Suppose Li and L̄i are as in
Lemma 5.3.14. Then L̄i ⊆ Z ⊆ Nr1+R5.3.12+δ0(L̄

i) = NR5.3.12+δ0(L̄
i) in the metric Li

and so HdLi(L̄i,Z)≤R5.3.12+δ0 for i= 1,2. The subspace Z is our required common
subspace and in the below lemma we will see that it is uniformly qi embedded in Li

for i = 1,2.

Lemma 5.3.15. With the above notations, there is a (uniform) constant L5.3.15 such
that the inclusion Z ↪→ Li is L5.3.15-qi embedding in the path metric of Li, i = 1,2.

Proof. By Lemma 5.3.14, the inclusion L̄i ↪→ Li is L5.3.14-qi embedding. Since
HdLi(L̄i,Z)≤ R5.3.12+δ0, with the reference to [9, Lemma 1.19], our task is to show
that Z is uniformly properly embedded in Li.

Z is properly embedded in Li: Let x,y ∈ Z and n ∈ N such that dLi(x,y) ≤ n.
Then ∃ x1,y1 ∈ L̄i such that dZ(x,x1) ≤ R5.3.12 + δ0, dZ(y,y1) ≤ R5.3.12 + δ0. So,
dLi(x1,y1) ≤ 2(R5.3.12 + δ0)+ n and by Lemma 5.3.14, dZ(x1,y1) ≤ dL̄i(x1,y1) ≤
(2(R5.3.12 +δ0)+n)L5.3.14 +L2

5.3.14 = D(n) (say). Thus,

dZ(x,y) ≤ dZ(x,x1)+dZ(x1,y1)+dZ(y1,y)

≤ R5.3.12 +δ0 +D(n)+R5.3.12 +δ0

= 2(R5.3.12 +δ0)+D(n) =: g(n) (say)

So Z is g-properly embedded in Li for the function g : N→ N defined above. There-
fore, for i = 1,2, the inclusion Z ↪→ Li is L5.3.15-qi embedding, where L5.3.15 depends
on L5.3.14, R5.3.12 +δ0 and g (see [9, Lemma 1.19]).

Conclusion: Let c∗(x,y), c1(x,y) and c2(x,y) be geodesic paths in Z, L1 and
L2 respectively joining x,y. Since (X ,B,T ) satisfies C(9)

2.4.12(k5.3.8)-flaring condi-
tion. So by Theorem 5.2.11, Li is δ5.2.11(k5.3.8,r2)-hyperbolic, i = 1,2. Therefore,
by stability of quasi-geodesic (Lemma 2.2.2), HdX(c1(x,y),c2(x,y)) ≤ D5.3.10 :=
2D2.2.2(δ5.2.11(k5.3.8,r2),L5.3.15,L5.3.15).

Now, we are at a stage to show the uniform hyperbolicity of a uniform neighbor-
hood of F lK(Xu) with the induced path metric.
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Theorem 5.3.16. Suppose r2 as in Lemma 5.3.14. Then for any R ≥ r2 +8δ0 there
is δ5.3.16 = δ5.3.16(K,R) such that FlKR(Xu) := NR(F lK(Xu)) is δ5.3.16-hyperbolic
metric space.

Proof. We show that FlKR(Xu) satisfies all the conditions of Proposition 2.2.6. Note
that F lK(Xu) is R-dense in FlKR(Xu). For a point x ∈ F lK(Xu), we fix once and for
all a K-qi section Σx through x over Bx := B[u,Π(x)] lying inside UK . Now given a pair
(x1,x2) of distinct points in UK , by Corollary 5.3.8, there is a (k5.3.8,c5.3.8,ε5.3.8)-
ladder, say, L̃ 12 containing Σx1, Σx2 such that top(L̃ 12) ⊆ UK, bot(L̃ 12) ⊆ UK

and L̃ 12 ⊆ N f
2δ0

(UK).

We take c̃(x1,x2), a geodesic path joining x1,x2 in L̃12 := Nr2(L̃
12). For a given

pair of points, once and for all, we fix this ladder and the geodesic path. These paths
serve as family of paths for Proposition 2.2.6.

Let us start with three points xi ∈F lK(Xu), i= 1,2,3 and geodesic paths c̃(xi,x j)

in the respective ladders L̃i j := Nr2(L̃
i j) for all distinct i, j ∈ {1,2,3}. Note that

L̃i j ⊆UKR.

Condition (1): As L̃i j is L5.1.5(k5.3.8,r2)-qi embedded in X and so is in UKR.
Then the path c̃(xi,x j) is h-properly embedded in UKR, where h :R≥0 →R≥0 sending
r 7→ rL5.1.5(k5.3.8,r2)+(L5.1.5(k5.3.8,r2))

2.

Condition (2): By Proposition 5.3.1, given any three points xi, i = 1,2,3, we
have, (k5.3.1,c5.3.1,ε5.3.1)-ladders, L i j containing Σi, Σ j such that top(L i j) ⊆
UK, bot(L i j) ⊆ UK and L i j ⊆ N f

2δ0
(UK). Let c(xi,x j) be a geodesic path join-

ing xi,x j in Li j := Nr2(L
i j) ⊆ UKR. Note that k5.3.1 = k5.3.8, c5.3.1 = c5.3.8 and

ε5.3.1 = ε5.3.8 (Lemma 5.3.8). So by Proposition 5.3.10, HdX(c̃(xi,x j),c(xi,x j))≤ D,
where D = D5.3.10(k5.3.8,c5.3.8,ε5.3.8). Thus by Proposition 5.1.11, their Hausdorff
distance is bounded by η1(D) in the path metric of UKR, where η1 := η5.1.11(K,R).

Now by Lemma 5.3.9, there is a δ5.3.9(k5.3.1,r2)-hyperbolic subspace Y (:=
Nr2+2δ0(∪

3
i=1L

i)) such that the inclusion i : Li j ↪→ Y is L5.3.9(k5.3.1,r2)-qi em-
bedding. Also, note that Y ⊆ UK(r2+8δ0) ⊆ UKR. Let δ1 = δ5.3.9(k5.3.1,r2) and
L1 = L5.3.9(k5.3.1,r2). Then by Lemma 2.2.2, the triangle formed by the paths
c(xi,x j) for all distinct i, j ∈ {1,2,3}, are D1-slim in the path metric of Y and so is
in the path metric of UKR, where D1 := 2D2.2.2(δ1,L1,L1)+δ1.

Hence the triangle formed by the paths c̃(xi,x j) for all distinct i, j ∈ {1,2,3}, are
D2-slim in the path metric of UKR, where D2 := 2η1(D)+D1.

Therefore, by Proposition 2.2.6, FlKR(Xu) is δ5.3.16-hyperbolic metric space with
the induced path metric from X , where δ5.3.16 = δ2.2.6(h,D2,R), where h and D2 are
defined above.
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5.4 Hyperbolicity of ND(F lK(Xu)∪F lK(Xv))

Let u,v ∈ T , and F lK(Xu) and F lK(Xv) are the flow spaces as described in the
first paragraph of Section 5.3. We also assume that F lK(Xu)∩F lK(Xv) ̸= /0. In
this section, we will prove that ND(F lK(Xu)∪F lK(Xv)) is uniformly hyperbolic.
We use the notations FlKD := ND(F lK(Xu)), FlKD := ND(F lK(Xv)) for D ≥ 0.
Here, we require (X ,B,T ) to satisfy (2(L′)2(2K +1)+L′)-flaring condition where
L′ = L5.1.10(K).

So far we have the following (H 0)− (H 6). We will use these properties in this
section.

(H 0) Suppose w,w′ ∈ T and e is the edge on [w,w′] incident on w′. Let T ′ be
the maximal subtree of T containing w′ not containing e. Then F lK(Xw)∩XT ′ ⊆
F lK(Xw′)∩XT ′ .

(H 1) For all w ∈ T , we have L′ := L5.1.10(K)-coarsely Lipschitz retraction
ρw : X → F lK(Xw) such that ∀ x ∈ F lK(Xw), πX(ρw(x)) = πX(x) (see Proposition
5.1.10).

(H 2) Let w∈ T . For all x∈F lK(Xw) there is a K-qi section lying in F lK(Xw)∩
π−1([w,π(x)]) through x over B[w,π(x)].

(H 3) Let w ∈ T . For L ≥ 2K, there is η(L) : R≥0 →R≥0 such that the inclusion
FlKL(Xw) ↪→ X is η(L)-proper embedding (see Proposition 5.1.11).

(H 4) Let G = {γ : γ is a (2KL′+L′)-qi section over B[u,v]}. Note that T ̸= /0
as F lK(Xu)∩Xv ̸= /0. For w ∈ [u,v], b ∈ Bw let Hb,w = hull{γ(b) : γ ∈ T} ⊆ Fb,w

and H =
⋃

w∈[u,v], b∈Bw
Hb,w. (Here quasiconvex hull is considered in the corre-

sponding fiber.) Then by Lemma 2.4.14, H is κ-metric bundle over B[u,v] where
κ = K2.4.14(2KL′ + L′) ≥ 2KL′ + L′. Now we consider flow of H with parame-
ters κ,κ (see Definition 5.1.8). According to our notation (see 5.1.14), we have
F l

κ(1)(H) and it also satisfies the following. Let w ∈ T and Tuvw be the tripod
with vertices u,v,w. Since κ ≥ 2KL′+L′, by Lemma 5.1.13, we have that for any
(2KL′+L′)-qi section γ over BTuvw , γ ⊆ F l

κ(1)(H).

By Notation 5.1.14, we also have flow spaces F l
κ(2)(Xu) containing F lK(Xu)∪

F l
κ(1)(H) and F l

κ(2)(Xv) containing F lK(Xv)∪F l
κ(1)(H).

(H 5) Let R0 be large enough so that Fl
κ(2)R0

(Xu) are δ -hyperbolic for some
δ ≥ 0 (see Theorem 5.3.16).

(H 6) Since flow spaces are semicontinuous family, for all L ≥ max{2κ(1),2δ0+

1} there is L̄(L) such that the inclusions FlKL(Xu)→X , FlKL(Xv)→X and Fl
κ(1)L(H)

→ X are L̄(L)-qi embedding (see Proposition 5.1.5).
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We know that uniform neighborhood of flow spaces are uniformly properly
embedded in the total space (see (H 3)). In the following proposition, we prove the
same for the union of two intersecting flow spaces.

Proposition 5.4.1. Let k5.4.1 = 2(L′)2(2K +1)+L′. For all L ≥ Mk5.4.1(≥ 2K) there
exists η5.4.1 = η5.4.1(K,L) : R≥0 → R≥0 such that the inclusion NL(F lK(Xu)∪
F lK(Xv))→ X is η5.4.1-proper embedding.

Proof. Our proof goes in the same methodology as in the book [9] for trees of
metric spaces (see [9, Subsection 6.1.1]). We denote the induced path metric on
FlKL(Xu)∪FKL(Xv) by d′. We divide the proof by reducing the tree T to intervals
and the general tree in the following three cases. We first prove in all the cases that
for r ∈ R≥0 and x,y ∈ F lK(Xu)∪F lK(Xv) with dX(x,y) = r, d′(x,y) is bounded in
terms of r. In the end, we prove for the points in FlKL(Xu)∪FKL(Xv).

Let x,y ∈F lK(Xu)∪F lK(Xv) such that dX(x,y) = r. Suppose π(x) = u′,π(y) =
v′,πX(x) = x̄, πX(y) = ȳ. As L ≥ 2K, we may assume that x ∈ F lK(Xu)\F lK(Xv)

and y ∈ F lK(Xv)\F lK(Xu), otherwise, by (H 3), d′(x,y)≤ η(L)(r).

Case 1: We first assume that T = [u,v]. Then u′ ̸= v, otherwise, x ∈ Xv ⊆
F lK(Xv). Also v′ ̸= u, otherwise, y ∈ Xu ⊆ F lK(Xu). Depending on positions of
u′,v′,x and y, we consider following subcases.

Subcase (1A): Suppose u′ = v′ and x = ρu(y) (see (H 1)). Consider a K-qi
section, γy over B[v′,v] through y in F lK(Xv) (see (H 2)). Since ρu is L′-coarsely
Lipschitz retraction (see (H 1)) and F lK(Xu)∩Xv ̸= /0, so applying ρu on γy, we get
a (2KL′+L′)-qi section, say, γ̄y in F lK(Xu) over B[v′,v] such that x = ρu(y) = γ̄y(ȳ).
Let b be the nearest point projection of x̄ on Bv (note that such b exists as v′ = u′ ̸=
v). Applying ρv (see (H 1)) on γ̄y and we get a 2.(2KL′+ L′)L′+ L′ = k5.4.1-qi
section, say, ¯̄γy in F lK(Xv) over B[v′,v]. Note that γ̄y(b) = ¯̄γy(b) (as γ̄y(b) ∈ Xv).
Let ¯̄γy(x̄) = y′. Then ρv(x) = y′ and since ρv(y) = y, dX(y′,y) = dX(ρv(x),ρv(y))≤
L′dX(x,y)+L′ ≤ L′(r+1). So dX(x,y′) ≤ dX(x,y)+dX(y,y′) ≤ r(L′+1)+L′ and
d f (x,y′)≤ φ(r(L′+1)+L′), where the fibers are φ -properly embedded in total space.
Here we have two k5.4.1-qi sections γ̄y and ¯̄γy over B[v′,v] such that γ̄y(b) = ¯̄γy(b) and
d f (γ̄y(x̄), ¯̄γy(x̄)) = d f (x,y′)≤ φ(r(L′+1)+L′). Let a be the point on [x̄,b]B closest
to x̄ such that d f (γ̄y(a), ¯̄γy(a))≤ Mk5.4.1 . Since L ≥ Mk5.4.1 , d′(γ̄y(a), ¯̄γy(a))≤ Mk5.4.1 .
Again, the tree of metric bundles (X ,B,T ) satisfies flaring condition, so by Lemma
2.4.7 (1), dB(x̄,a)≤ τ2.4.7(k5.4.1,C), where C = max{Mk5.4.1,φ(r(L

′+1)+L′)}. Let
C1 = τ2.4.7(k5.4.1,C). Then by taking lifts of geodesic [x̄,a]B in γ̄y and ¯̄γy (see Lemma
2.4.12 (3)), we get, d′(x, γ̄y(a)) ≤ 2k5.4.1C1 and d′(y, ¯̄γy(a)) ≤ 2k5.4.1C1. Hence
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d′(x,y)≤ d′(x, γ̄y(a))+d′(γ̄y(a), ¯̄γy(a))+d′( ¯̄γy(a),y)≤ 4k5.4.1C1 +Mk5.4.1 =: η1(r)
for some η1 : R≥0 → R≥0.

Subcase (1B): Let y′ = ρu(y). In this subcase, y′ need not be equal to x.
Since ρu(x) = x, dX(x,y′) = dX(ρu(x),ρu(y))≤ L′r+L′ = L′(r+1). So dX(y′,y)≤
dX(y′,x)+dX(x,y) ≤ L′(r+1)+ r. Since L ≥ 2K, FlKL(Xu) is η(L)-properly em-
bedded in X (see (H 3)). So d′(x,y′)≤ η(L)(L′(r+1)). Note that πX(y′) = πX(y)
(as F lK(Xu∩Xv ̸= /0) and y′ ∈F lK(Xu). Then by Subcase (1A), d′(y,y′)≤η1(L′(r+
1)+ r). Hence d′(x,y)≤ d′(x,y′)+d′(y′,y)≤ η(L)(L′(r+1))+η1(L′(r+1)+ r).

We assume ζζζ 111(((rrr))) := max{η1(r),η(L)(L′(r + 1)) +η1(L′(r + 1) + r)}, maxi-
mum distortion in this Case 1 for some ζ1 : R≥0 → R≥0.

Case 2: We now assume that T = [w,w′] ⊋ [u,v] such that u is closest to w.
Then v′ /∈ [w,u], otherwise, by (H 0), y ∈ F lK(Xu). Also, u′ /∈ [v,w′], otherwise, by
(H 0), x ∈ F lK(Xv). We consider the following subcases depending on the position
of u′ and v′.

Let S = [u,v] and XS := π−1(S). Let d′′ denote the induced path metric on L-
neighborhood (in XS-metric) of (F lK(Xu)∪F lK(Xv))∩XS inside XS. We note that
the restriction πX |XS : XS → BS also satisfies flaring condition (Remark 2.4.8 (b)).

Subcase (2A): Suppose u′ ∈ [w,u] and v′ ∈ [v,w′]. Let b′ be the nearest point
projection of x̄ on Bu and b′′ be that of ȳ on Bv. Then dB(x̄, ȳ)≤ dX(x,y)≤ r implies
dB(x̄,b′) ≤ r, dB(b′,b′′) ≤ r and dB(b′′, ȳ) ≤ r. Let γx be K-qi lift through x of
geodesic [x̄,b′]B in F lK(Xu) and γy be that through y of [b′′, ȳ]B in F lK(Xv) (see
(H 2)). Let γx(b′) = x′ and γy(b′′) = y′. Then d′(x,x′)≤ 2Kr and d′(y,y′)≤ 2Kr (see
Lemma 2.4.12 (3)). So by triangle inequality, dX(x′,y′)≤ 4Kr+ r, and that implies
dXS(x

′,y′) ≤ η2.4.3(4Kr+ r) (see Proposition 2.4.3). Then by Case 1, d′′(x′,y′) ≤
ζ1(η2.4.3(4Kr + r)). Therefore, d′(x,y) ≤ d′(x,x′)+ d′′(x′,y′)+ d′(y′,y) ≤ 4Kr +
ζ1(η2.4.3(4Kr+ r)).

Subcase (2B): Suppose u′ ∈ (u,v) and v′ ∈ [v,w′]. Let b′′ be the nearest point
projection of ȳ on Bv. Then dB(x̄, ȳ) ≤ dX(x,y) ≤ r implies dB(ȳ,b′′) ≤ r (as u′ ∈
(u,v)). Let γy be a K-qi lift of the geodesic [b′′, ȳ]B in F lK(Xv) through y (see (H 2))
and let γy(b′′) = y′. Then d′(y,y′)≤ 2Kr (see Lemma 2.4.12 (3)). Again, dX(y′,x)≤
dX(y′,y)+dX(y,x)≤ 2Kr+ r. So by Proposition 2.4.3, dXS(y

′,x)≤ η2.4.3(2Kr+ r).
Hence by Subcase (1A), d′′(x,y′) ≤ ζ1(η2.4.3(2Kr + r)). So d′(x,y) ≤ d′(x,y′)+
d′(y′,y)≤ d′′(x,y′)+d′(y′,y)≤ ζ1(η2.4.3(2Kr+ r))+2Kr.

Subcase (2C): Suppose u′ ∈ [w,u] and v′ ∈ (u,v). Then this is a symmetry of
Subcase (2B). So d′(x,y)≤ ζ1(η2.4.3(2Kr+ r))+2Kr.
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Subcase (2D): Finally, we assume that u′,v′ ∈ (u,v). Then by Proposition
2.4.3, dXS(x,y)≤ η2.4.3(r). So by Case 1, d′′(x,y)≤ ζ1(η2.4.3(r)). Hence d′(x,y)≤
d′′(x,y)≤ ζ1(η2.4.3(r)).

We assume ζζζ 222(((rrr))) :=max{4Kr+ζ1(η2.4.3(4Kr+r)),ζ1(η2.4.3(2Kr+r))+2Kr,
ζ1(η2.4.3(r))}, maximum distortion in this Case 2 for some ζ2 : R≥0 → R≥0.

Case 3: Here we consider the general case, where T is any tree. Depending on
the position of u,v,u′ and v′, we consider the following subcases.

Let S be an interval in T containing u,v and XS := π−1(XS). We denote the
induced path metric on L-neighborhood (in XS-metric) of (F lK(Xu)∪F lK(Xv))∩XS

inside XS by d′′. We will use this notation below. We note that the restriction
πX |XS : XS → BS also satisfies flaring condition (see Remark 2.4.8 (b)).

Subcase (3A): Suppose u,v,u′ and v′ lie on an interval in T . We fix one such
interval S in T containing u,v,u′,v′. So dXS(x,y)≤ η2.4.3(r) (by Proposition 2.4.3).
Now we restrict the flow spaces to XS. Then by Case 2, d′′(x,y)≤ ζ2(η2.4.3(r)). So
d′(x,y)≤ d′′(x,y)≤ ζ2(η2.4.3(r)).

Now we consider the subcases when all of u,v,u′ and v′ do not lie on an interval.

Subcase (3B): Suppose there is no interval containing u,v that contains both u′,v′;
but there is an interval containing u,v which contains one of u′,v′. We give a proof
when an interval containing u,v also contains u′, and leave the other case because its
involves only a change in indices. We fix one such interval S in T containing u,v and
u′. Let t be the nearest point projection of v′ on S in dT -metric and b′′ be that of ȳ on Bt

in dB-metric. Since dX(x,y)≤ r, then dB(ȳ,b′′)≤ dB(ȳ, x̄)≤ r. Let γy be a K-qi lift of
the geodesic [b′′, ȳ]B through y in F lK(Xv) (see (H 2)). Suppose γy(b′′) = y′. Then
d′(y,y′) ≤ 2Kr (see Lemma 2.4.12 (3)). Again dX(y′,x) ≤ dX(y′,y)+ dX(y,x) ≤
2Kr+ r, and so by Proposition 2.4.3, dXS(y

′,x)≤ η2.4.3(2Kr+ r). Now we restrict
the flow spaces to XS. Hence by Case 2, d′′(y′,x)≤ ζ2(η2.4.3(2Kr+ r)). Therefore,
d′(x,y)≤ d′(x,y′)+d′(y′,y)≤ d′′(x,y′)+d′(y′,y)≤ ζ2(η2.4.3(2Kr+ r))+2Kr.

Subcase (3C): Suppose there is no interval containing u,v that contains either of
u′,v′. We fix S = [u,v]. Let t1 and t2 be the nearest point projections of u′ and v′ on S
respectively. Then t1, t2 ∈ (u,v), otherwise, it will land in Subcase (3B). We divide
the proof into two cases depending on whether t1, t2 are same or not.

(a) Suppose t1 ̸= t2. Let b′ be the nearest point projection of x̄ on Bt1 and b′′ be that
of ȳ on Bt2 . Since dB(x̄, ȳ)≤ dX(x,y)≤ r, then dB(x̄,b′)≤ r and dB(ȳ,b′′)≤ r. Let γx

be a K-qi lift of the geodesic [x̄,b′]B through x in F lK(Xu) and γy be that of [ȳ,b′′]B
through y in F lK(Xv) (see (H 2)). Let x′ = γx(b′) and y′ = γy(b′′). Then d′(x,x′)≤
2Kr and d′(y,y′) ≤ 2Kr. So dX(x′,y′) ≤ dX(x′,x)+ dX(x,y)+ dX(y,y′) ≤ 4Kr+ r.
Then by Proposition 2.4.3, dXS(x

′,y′)≤ η2.4.3(4Kr+ r). Note that x′ ∈F lK(Xu) and
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y′ ∈ F lK(Xv). Now we restrict the flow spaces to XS = X[u,v]. Hence by Case 1,
d′′(x′,y′) ≤ ζ1(η2.4.3(4Kr+ r)), and so d′(x′,y′) ≤ ζ1(η2.4.3(4Kr+ r)). Therefore,
d′(x,y)≤ d′(x,x′)+d′(x′,y′)+d′(y′,y)≤ 4Kr+ζ1(η2.4.3(4Kr+ r)).

(b) Suppose t1 = t2 = t (say). Let s be the center of △(u′, t,v′) and c ∈ [x̄, ȳ]∩Bs.
Since dB(x̄, ȳ)≤ dX(x,y)≤ r, so dB(x̄,c)≤ r and dB(c, ȳ)≤ r. Let γ1 be a K-qi lift
through x of the geodesic [x̄,c]B in F lK(Xu) and γ2 be that through y of the geodesic
[ȳ,c]B in F lK(Xv) (see (H 2)). Let x1 = γ1(c) and y1 = γ2(c). Then d′(x,x1)≤ 2Kr
and d′(y,y1)≤ 2Kr.

Now we only need to show that d′(x1,y1) is bounded in terms of r. We will
apply the same trick as in Case 1. Let γy be a K-qi section over B[s,v] through y1 in
F lK(Xv) (see (H 2)). Now we apply ρu (see (H 1)) on γy and get a L′(2K + 1)-
qi section, say, γ̄y over B[s,v] in F lK(Xu) (see Figure 5.4). (This is possible as
[s,v] ⊆ π(F lK(Xu)).) By triangle inequality, dX(x1,y1) ≤ 4Kr+ r. Let ρu(y1) =

x2. Since ρu(x1) = x1, then dX(x1,x2) = dX(ρu(x1),ρu(y1)) ≤ L′dX(x1,y1)+L′ ≤
L′(4Kr + r + 1). Then dX(y1,x2) ≤ dX(y1,x1)+ dX(x1,x2) ≤ 4Kr + r + L′(4Kr +
r + 1) = (4Kr + r)(L′+ 1)+ L′. Again we apply ρv (see (H 1)) on γ̄y and get a
k5.4.1-qi section, say, ¯̄γy over B[s,v] in F lK(Xv) (see Figure 5.4). Let ρv(x2) = y2.
Since ρv(y1) = y1, dX(y1,y2)≤ dX(ρv(y1),ρv(x2))≤ L′dX(y1,x2)+L′ ≤ L1, where
L1 = L′((4Kr+r)(L′+1)+L′)+L′. Then dX(x2,y2)≤ dX(x2,y1)+dX(y1,y2)≤ L2,
where L2 = (4Kr+ r(L′+1)+L′+L1. So d f (x2,y2)≤ φ(L2).

Figure 5.4

Note that dX(x1,x2) ≤ L′(4Kr + r + 1) and dX(y1,y2) ≤ L1. Again x1,x2 ∈
F lK(Xu) and y1,y2 ∈ F lK(Xv), so by (H 3), d′(x1,x2) ≤ η(L)(L′(4Kr + r + 1))
and d′(y1,y2)≤ η(L)(L1). So to get a bound on d′(x1,y1), we need to get a bound
on d′(x2,y2); which we will show now.

Let b be the nearest point projection of c on Bv. Then γ̄y(b) ∈ Xv and so
γ̄y(b) = ¯̄γy(b). Note that γ̄y and ¯̄γy are two k5.4.1-qi sections over B[s,v] such that
d f (γ̄y(c), ¯̄γy(c)) = d f (x2,y2) ≤ φ(L2) and γ̄y(b) = ¯̄γy(b). Now we restrict the qi
sections γ̄y and ¯̄γy on the geodesic [c,b]B ⊆ B. Let a be the point on [c,b] closest
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to c such that d f (γ̄y(a), ¯̄γy(a)) ≤ Mk5.4.1 . Since the tree of metric bundles (X ,B,T )
satisfies flaring condition, by Lemma 2.4.7 (1), dB(c,a) ≤ τ2.4.7(k5.4.1,D), where
D = max{Mk5.4.1,φ(L2)}. Let D1 = τ2.4.7(k5.4.1,D). Then by taking k5.4.1-qi lifts of
the geodesic [c,a]B in γ̄y and ¯̄γy, we get, d′(x2, γ̄y(a))≤ 2k5.4.1D1 and d′( ¯̄γy(a),y2)≤
2k5.4.1D1 (note that γ̄y(c)= x2, ¯̄γy(c)= y2). Again L≥Mk5.4.1 implies d′(γ̄y(a), ¯̄γy(a))≤
Mk5.4.1 . Hence d′(x2,y2)≤ 4k5.4.1D1 +Mk5.4.1 (by triangle inequality).

Again by triangle inequality, d′(x1,y1)≤ d′(x1,x2)+d′(x2,y2)+d′(y2,y1)≤ L3,
where L3 = η(L)(L′(4Kr+ r+ 1))+ 4k5.4.1D1 +Mk5.4.1 +η(L)(L1). So d′(x,y) ≤
d′(x,x1)+d′(x1,y1)+d′(y1,y)≤ 4Kr+L3.

Let ζζζ 333(((rrr))) := max{ζ2(η2.4.3(r)), ζ2(η2.4.3(2Kr + r)) + 2Kr, ζ1(η2.4.3(4Kr +
r))+4Kr, 4Kr+L3}, maximum distortion in this Case 3 for some ζ3 : R≥0 → R≥0.

Let ζ : R≥0 → R≥0 such that ζ (r) := max{η(L)(r),ζ1(r),ζ2(r),ζ3(r)} for r ∈
R≥0. We have proved that if x,y ∈ F lK(Xu)∪F lK(Xv) are at most r-distance apart
in the metric of X , then they are at most ζ (r)-distance apart in the induced metric
on FlKL(Xu)∪FKL(Xv). Now we take points x,y ∈ FlKL(Xu)∪FKL(Xv) such that
dX(x,y) ≤ r for r ∈ R≥0. Let x1,y1 ∈ F lK(Xu)∪F lK(Xv) such that d′(x,x1) ≤ L
and d′(y,y1) ≤ L. Then dX(x,y) ≤ dX(x,x1)+ dX(x1,y1)+ dX(y1,y) ≤ r+ 2L. So
d′(x1,y1)≤ ζ (r+2L). Hence d′(x,y)≤ d′(x,x1)+d′(x1,y1)+d′(y1,y)≤ 2L+ζ (r+
2L).

Therefore, we can take η5.4.1 : R≥0 → R≥0 sending r 7→ ζ (r+2L)+2L.

To show the hyperbolicity of ND(F lK(Xu)∪F lK(Xv)), we construct a bigger
uniformly hyperbolic space Y = Y1 ∪Y2 containing both F lK(Xu) and F lK(Xv)

as uniformly quasiconvex subsets. As F lK(Xu)∩ Xv ̸= /0, so a uniform neigh-
borhood of F lK(Xu)∪F lK(Xv) in Y is uniformly hyperbolic. Let N′

D(y) denote
D-neighborhood at y ∈Y in the path metric of Y . Next, we show that N′

D(F lK(Xu)∪
F lK(Xv))⊆ Y and ND(F lK(Xu)∪F lK(Xv))⊆ X are (uniformly) quasi-isometric,
and that completes the proof.

Construction of the space Y : By (H 5), Fl
κ(2)R0

(Xu) is δ -hyperbolic metric
space. Also by (H 6), FlKR0(Xu) is L̄(R0)-qi embedded in X and so is in Fl

κ(2)R0
(Xu).

Then by Lemma 2.2.22 (1), there is K1 depending on δ and L̄(R0) such that
FlKR0(Xu) is K1-quasiconvex in Fl

κ(2)R0
(Xu). So F lK(Xu) is (K1+R0)-quasiconvex

in Fl
κ(2)R0

(Xu). Also by (H 6), Fl
κ(1)R0

(H) is L̄(R0)-qi embedded in X and so is
in Fl

κ(2)R0
(Xu). Then by Lemma 2.2.22 (1), there is K2 depending on δ and L̄(R0)

such that Fl
κ(1)R0

(H) is K2-quasiconvex in Fl
κ(2)R0

(Xu). So F l
κ(1)(H) is (K2 +R0)-

quasiconvex in Fl
κ(2)R0

(Xu). Let K3 = max{K1 + R0,K2 + R0}. As F lK(Xu)∩
F l

κ(1)(H) ̸= /0, so F lK(Xu)∪F l
κ(1)(H) is (K3 + δ )-quasiconvex in Fl

κ(2)R0
(Xu).

Let Y ′
1R :=N′

R(F lK(Xu)∪F l
κ(1)(H)) be R-neighborhood of F lK(Xu)∪F l

κ(1)(H)⊆
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Fl
κ(2)R0

(Xu) in the induced path metric on Fl
κ(2)R0

(Xu) where

RRR = max{K3 +δ +1, Mk5.4.1} (5.4. 1)

Hence, by Lemma 2.2.23 (1), there is L1 depending on δ , K3 and R such that the
inclusion Y ′

1R ↪→ Fl
κ(2)R0

(Xu) is L1-qi embedding.
We fix this R for the rest of this section. Thus there is δ1 depending on δ and

L1 such that Y ′
1R is δ1-hyperbolic with the induced path metric. Again, the inclusion

Fl
κ(2)R0

(Xu) ↪→ X is L̄(R0)-qi embedding (see (H 6)). Thus the inclusion Y ′
1R ↪→ X

is L2-qi embedding for some L2 depending on L1 and L̄(R0).
Let Y ′

2R :=N′
R(F lK(Xv)∪F l

κ(1)(H)) be R-neighborhood of F lK(Xv)∪F l
κ(1)(H)

⊆ Fl
κ(2)R0

(Xv) in the induced path metric on Fl
κ(2)R0

(Xv). Then by similar argument,
we can show that Y ′

2R is δ1-hyperbolic and the inclusion Y ′
2R ↪→ Fl

κ(2)R0
(Xv) is L2-qi

embedding.
We take Y :=Y1R∪Y2R where Y1R := NR(F lK(Xu)∪F l

κ(1)(H))⊆ X and Y2R :=
NR(F lK(Xv)∪F l

κ(1)(H))⊆ X . Note that these neighborhoods are considered in X .
Hyperbolicity of Y :

Lemma 5.4.2. There is a uniform constant δ5.4.2 such that YiR is δ5.4.2-hyperbolic
metric space with the induced path metric for i = 1,2.

Proof. Since Y ′
iR ↪→ X is L2-qi embedding, so is the inclusion Y ′

iR ↪→ YiR. Also
Y ′

iR ↪→YiR is R-coarsely surjective. Hence the inclusion Y ′
iR ↪→YiR is (L2,L2,R)-quasi-

isometry for i = 1,2 (see Subsection 2.1). Since the hyperbolicity is quasi-isometry
invariant and Y ′

iR is δ1-hyperbolic, YiR is δ5.4.2-hyperbolic for i = 1,2, where δ5.4.2

depends on δ1,L2,R.

Lemma 5.4.3. There exists a uniform function η5.4.3 : R≥0 → R≥0 such that the
inclusion YiR ↪→ X is η5.4.3-proper embedding for i = 1,2.

Proof. We prove it only for i = 1 as the proof for i = 2 is similar. We denote the
induced path metric on Y1R and Y ′

1R by d1 and d′
1 respectively. Let x,y ∈ Y1R such

that dX(x,y) = r for r ∈ R≥0. We take points x1,y1 ∈ F lK(Xu)∪F l
κ(1)(H) ⊆ Y ′

1R

such that d1(x,x1) ≤ R, d1(y,y1) ≤ R. So dX(x1,y1) ≤ r + 2R. Since Y ′
1R is L2-

qi embedded in X , then d′
1(x1,y1) ≤ (r + 2R)L2 + L2

2. Since Y ′
1R ⊆ Y1R and so

d1(x,y)≤ d1(x,x1)+d′
1(x1,y1)+d1(y1,y)≤ (r+2R)L2+L2

2+2R =: η5.4.3(r).

Lemma 5.4.4. Let di denote the induced path metric on YiR for i = 1,2. There is a
uniform constant D5.4.4 such that Y1R ∩Y2R ⊆ Ni

D5.4.4
(Y0), where Ni

D5.4.4
(Y0) denotes

the D5.4.4-neighborhood of Y0 in di-metric.
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Proof. Let x ∈ Y1R ∩Y2R. Then there exist x1 ∈ F lK(Xu)∪F l
κ(1)(H) and x2 ∈

F lK(Xv)∪F l
κ(1)(H) such that di(x,xi) ≤ R, i = 1,2. So dX(x1,x2) ≤ 2R. With-

out loss of generality, we assume that x1 ∈ F lK(Xu)\F l
κ(1)(H), x2 ∈ F lK(Xv)\

F l
κ(1)(H), otherwise, x ∈ Y0 := Fl

κ(1)R(H). Let πX(xi) = x̄i, π(xi) = ti for i = 1,2.
Let wi be the nearest point projection of ti on [u,v], i= 1,2. We consider the following
two cases, depending on whether w1 = w2 or w1 ̸= w2.

Case 111: Suppose w1 ̸= w2. Let ȳi be the nearest point projection of x̄i on Bwi

for i = 1,2. Then dB(x̄1, x̄2) ≤ dX(x1,x2) ≤ 2R implies dB(x̄i, ȳi) ≤ 2R for i = 1,2.
Let γx1 be a K-qi section through x1 inside F lK(Xu) over B[t1,u] and γx2 be that
through x2 inside F lK(Xv) over B[t2,v] (see (H 2)). Suppose γxi(ȳi) = yi, i = 1,2.
Then by taking lift of the geodesic [x̄i, ȳi]B in γxi , we get, di(xi,yi) ≤ 2K.2R =

4KR (see Lemma 2.4.12 (3)) for i = 1,2. Now we restrict the K-qi section γx2

over B[w2,v] and apply ρu (see (H 1)) on this restriction of γx2 over B[w2,v]. We set
this projection as γ̄2. Note that B[w2,v] ⊆ π(F lK(Xu)), then γ̄2 is a (2KL′+L′)-qi
section over B[w2,v] inside F lK(Xu). As F lK(Xu ∩Xv ̸= /0, then we can extend γ̄2

to a (2KL′+ L′)-qi section over B[u,v]. Then in particular, we have, γ̄2 ⊆ H (see
(H 4)). Again, dX(y1,y2)≤ dX(y1,x1)+dX(x1,x2)+dX(x2,y2)≤ 8KR+2R. Note
that ρu(y1) = y1 and ρu(y2) = γ̄2(ȳ2). Since ρu is L′-coaresly Lipschitz retraction (see
(H 1)), dX(y1, γ̄2(ȳ2))≤ L′dX(y1,y2)+L′ ≤ L′(8KR+2R)+L′. Since y1, γ̄2(ȳ2) ∈
F lK(Xu)⊆ Y1R, by Lemma 5.4.3, d1(y1, γ̄2(ȳ2))≤ η5.4.3(L′(8KR+2R)+L′). Now
γ̄2 ⊆ H implies d1(x,Y0) ≤ d1(x, γ̄2(ȳ2)) ≤ d1(x,x1)+ d1(x1,y1)+ d1(y1, γ̄2(ȳ2)) ≤
R+4KR+η5.4.3(L′(8KR+2R)+L′).

Again, dX(x2, γ̄2(ȳ2)) ≤ dX(x2,x1)+ dX(x1,y1)+ dX(y1, γ̄2(ȳ2)) ≤ 2R+ 4KR+

L′(8KR+ 2R)+ L′. Since x2 ∈ F lK(Xv) ⊆ Y2r and γ̄2 ⊆ H ⊆ Y2r, so by Lemma
5.4.3, d2(x2, γ̄2(ȳ2)) ≤ η5.4.3(2R + 4KR + L′(8KR + 2R) + L′). Thus d2(x,Y0) ≤
d2(x,x2)+d2(x2, γ̄2(ȳ2))≤ R+η5.4.3(2R+4KR+L′(8KR+2R)+L′).

Case 222: Suppose w1 = w2. Let w be the center of the tripod △(t1, t2,w1). Sup-
pose ȳi is the nearest point projection of x̄i on Bw for i= 1,2. Let γx1 be a K-qi section
through x1 inside F lK(Xu) over B[t1,u] and γx2 be that through x2 inside F lK(Xv)

over B[t2,v] (see (H 2)). Again dB(x̄1, x̄2) ≤ 2R implies dB(x̄i, ȳi) ≤ 2R for i = 1,2.
Let γxi(ȳi) = yi, i = 1,2. Then by taking lift of the geodesic [x̄i, ȳi]B in γxi , we have
di(xi,yi) ≤ 2K.2R = 4KR (see Lemma 2.4.12 (3)). Now let us restrict the K-qi
section, γx2 , over B[w,v] and apply ρu (see (H 1)) on this restriction of γx2 over B[w,v].
We denote the image under ρu by γ2. Since B[w,v] ⊆ π(F lK(Xu)), γ2 is a (2KL′+L′)-
qi section over B[w,v]. Let Tuvw is the tripod in T with vertices u,v,w and BTuvw :=
π
−1
B (Tuvw). As F lK(Xu)∩Xv ̸= /0, we can extend γ2 to a (2KL′+L′)-qi section over

BTuvw . Then in particular, we have γ2 ⊆ F l
κ(1)(H) (see (H 4)). Now we apply line
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by line argument as in Case 1. Note that dX(y1,y2) ≤ dX(y1,x1) + dX(x1,x2) +

dX(x2,y2) ≤ 8KR + 2R and ρu(y1) = y1, ρu(y2) = γ2(ȳ2). So dX(y1,γ2(ȳ2)) ≤
L′dX(y1,y2)+L′ ≤ L′(8KR+2R)+L′. Since y1,γ2(ȳ2)∈F lK(Xu ⊆Y1R, by Lemma
5.4.3, d1(y1,γ2(ȳ2))≤ η5.4.3(L′(8KR+2R)+L′). Again, we have, γ2 ⊆ F l

κ(1)(H),
so d1(x,Y0) ≤ d1(x,x1)+ d1(x1,y1)+ d1(y1,γ2(ȳ2)) ≤ R+ 4KR+η5.4.3(L′(8KR+

2R)+L′).
Again, dX(x2,γ2(ȳ2)) ≤ dX(x2,x1)+ dX(x1,y1)+ dX(y1,γ2(ȳ2)) ≤ 2R+ 4KR+

L′(8KR + 2R) + L′. Since x2 ∈ F lK(Xv) ⊆ Y2R and γ2 ⊆ F l
κ(1)(H) ⊆ Y2R, so

by Lemma 5.4.3, d2(x2,γ2(ȳ2)) ≤ η5.4.3(2R+ 4KR+ L′(8KR+ 2R) + L′). Thus
d2(x,Y0)≤ d2(x,x2)+d2(x2,γ2(ȳ2))≤ R+η5.4.3(2R+4KR+L′(8KR+2R)+L′).

Therefore, we can take D5.4.4 = max{R+4KR+η5.4.3(L′(8KR+2R)+L′),R+

η5.4.3(2R+4KR+L′(8KR+2R)+L′)}.

Lemma 5.4.5. There is δ5.4.5 = δ5.4.5(R) such that Y is δ5.4.5-hyperbolic metric
space.

Proof. We verify all the conditions of Proposition 2.2.7 for n = 2 (see Remark 2.2.8).
Note that Y = Y1R ∪Y2R.

(1) YiR, i = 1,2 are δ5.4.2-hyperbolic.
(2) Y0 is L̄(R)-qi embedded in X (see (H 6)), so is in both Y1R and Y1R. Again

Y1R ∩Y1R ⊆ ND5.4.4(Y0) (see Lemma 5.4.4), so by Lemma 2.1.4, the inclusion Y1R ∩
Y1R ↪→ YiR is L2.1.4(L̄(R),D5.4.4)-qi embedding for i = 1,2.

Therefore, Y is δ5.4.5 := δ2.2.8(δ5.4.2,L2.1.4(L̄(R),D5.4.4),1)-hyperbolic.

Lemma 5.4.6. The inclusion Y ↪→ X is η5.4.6 = η5.4.6(R)-proper embedding for
some uniform function η5.4.6 : R≥0 → R≥0.

Proof. Let r ∈ R≥0 and x,y ∈ Y such that dX(x,y)≤ r. Then ∃ x1,y1 ∈ F lK(Xu)∪
F l

κ(1)(H)∪F lK(Xv) such that dY (x,x1) ≤ R and dY (y,y1) ≤ R. So by triangle
inequality, dX(x1,y1)≤ r+2R. Without loss of generality, we may assume that x1 ∈
F lK(Xu) and y1 ∈ F lK(Xv). Otherwise, by Lemma 5.4.3, dY (x1,y1) ≤ η5.4.3(r+
2R). Again R ≥ Mk5.4.1 , and thus by Proposition 5.4.1, dY (x1,y1)≤ η5.4.1(K,R)(r+
2R). Therefore, in either case, dY (x,y)≤ 2R+max{η5.4.3(r+2R),η5.4.1(K,R)(r+
2R)}=: η5.4.6(r).

Proposition 5.4.7. There exists a constant D5.4.7 such that for all D ≥ D5.4.7 we have
δ5.4.7 = δ5.4.7(D) for which ND(F lK(Xu)∪F lK(Xv)) is δ5.4.7-hyperbolic metric
space with the induced path metric from X.
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Proof. In the proof, we define D5.4.7. For D ≥ D5.4.7, we denote the induced path
metric on ND(F lK(Xu)∪F lK(Xv)) by d̄. By (H 6), FlKR(Xu) is L̄(R)-qi em-
bedded in X and so is in Y . Hence FlKR(Xu) is K1-quasiconvex in Y for some
K1 depending on δ5.4.5(R) and L̄(R). So F lK(Xu is K2-quasiconvex in Y , where
K2 =K1+R. Also, by the similar argument F lK(Xv) is K2-quasiconvex in Y . Since Y
is δ5.4.5(R)-hyperbolic and F lK(Xu)∩F lK(Xv) ̸= /0, so F lK(Xu)∪F lK(Xv) is (K2+

δ5.4.5(R))-quasiconvex in Y . Let N′
D(F lK(Xu)∪F lK(Xv)) be the D-neighborhood

of F lK(Xu)∪F lK(Xv) (inside Y ) in the path metric on Y . We set D5.4.7 > K2 +

δ5.4.5(R)+1. Thus for D≥D5.4.7, (by Lemma 2.2.23 (1)) the inclusion N′
D(F lK(Xu)∪

F lK(Xv)) ↪→ Y is L1-qi embedding, where L1 = L2.2.23(δ5.4.5(R),K2 +δ5.4.5(R),D).
Therefore, N′

D(F lK(Xu)∪F lK(Xv)) is δ1-hyperbolic, where δ1 depends on δ5.4.5(R)
and L1. Now we show that the subset N′

D(F lK(Xu)∪F lK(Xv)) ⊆ ND(F lK(Xu)∪
F lK(Xv)) satisfies all the conditions of Proposition 2.2.6. Note that N′

D(F lK(Xu)∪
F lK(Xv)) is a D-dense in ND(F lK(Xu)∪F lK(Xv)) in the d̄-metric. For any pair
(x,y) of distinct points in N′

D(F lK(Xu)∪F lK(Xv)), we fix once and for all a geodesic
path, say, c(x,y) joining x and y in the δ1-hyperbolic space N′

D(F lK(Xu)∪F lK(Xv)).
These paths serve as family of paths for Proposition 2.2.6. Then any triangle formed
by these paths are δ1-slim in the induced path metric of N′

D(F lK(Xu)∪F lK(Xv))

and so is in ND(F lK(Xu) ∪F lK(Xv)). Hence we are left to show the proper
embedding of these paths in ND(F lK(Xu)∪F lK(Xv)). Indeed, suppose x,y ∈
N′

D(F lK(Xu)∪F lK(Xv)) such that d̄(x,y)≤ r for some r ∈R≥0. Then dX(x,y)≤ r
and by Lemma 5.4.6, dY (x,y)≤ η5.4.6(r). Since N′

D(F lK(Xu)∪F lK(Xv)) is L1-qi
embedded in Y , the path c(x,y) is η1-properly embedded, where η)1 : R≥0 → R≥0

sending r 7→ η5.4.6(r)L1 +L2
1.

Therefore, ND(F lK(Xu)∪F lK(Xv)) is δ5.4.7-hyperbolic metric space with the
induced path metric from X , where δ5.4.7 = δ2.2.6(η1,δ1,D).

5.5 Proof of Theorem 1.2.4

We think of the tree of metric bundles (X ,B,T ) as a tree of metric spaces π : X → T
as explained in Remark 1.2.5. For a vertex u ∈ T , we take M (Xu) = F lK(Xu) as
in Lemma 5.1.9. Now we show that it satisfies property (P0)− (P4) of Chapter
4. Note that (P0) follows from the definition of F lK(Xu). Again by Proposition
5.1.10, L′ = L5.1.10(K) and we have C = D2.2.13(δ

′
0,L

′
0) for (P1). Taking into

account of Proposition 5.4.7, we set L0 large enough so that for L ≥ L0, we can
take η ′(L) = η5.4.1(K,L) (by Proposition 5.4.1) for (P3) and δ (L) = δ5.4.7(L) (by
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Proposition 5.4.7) for (P4). Finally, by Proposition 5.1.11, for L ≥ L0, we can take
η(L) = η5.1.11(K,L) for (P2).

5.6 Applications to complexes of groups

We refer to [23, Chapter III.C], [21] and [22] or Section 2.5 for basic notions of
developable complexes of groups. All the groups we consider here are finitely
generated.

The construction of a tree of metric bundles for a given complex of groups in the
setup C explained in Introduction 1.2 follows from the idea of [22], [21]. We briefly
discuss the same below.

Suppose Y is a finite connected simplicial complex and G (Y ) is a developable
complex of groups over Y . Let G be the fundamental group of G (Y ). As in [22] and
more generally, [21, Theorem 3.4.1], we consider a cellular aspherical realization
(see [21, Definition 3.3.4]) X of the complex of groups G (Y ) with cellular map
p : X → Y . Note that X is constructed by gluing along the Eilenberg-Mac Lane
complexes of the local groups of the complex of groups G (Y ); where for each local
group Gσ corresponding to a face σ of Y , the 0-skeleton of K(Gσ ,1) is a point
xσ and the 1-skeletons form wedge of circles coming from a finite generating set
of Gσ . Now we consider the universal covering π : X̃ → X with the standard
CW-complex structure on X̃ coming from X . We identify G with the group of
deck transformation of the covering map p : X̃ → X . Let y ∈ Y and σ be the
face containing y in its interior, and a be the barycenter of σ . Now we collapse
each connected component of {(p◦π)−1(y)} to a point. Note that since G (Y ) is
developable, the inclusion p−1(a) ↪→ X is π1-injective and hence {(p◦π)−1(y)}
are copies of universal cover of Xa := p−1(a). We do this for all y ∈ Y . Let B

be the space we get after collapsing and q : X̃ → B be the quotient map. There is
a natural G-equivariant isomorphism between B and the universal cover of G (Y )

as in Definition 2.5.16. Thus we get the quotient map π̄ : B → B/G = Y and the
following commutative diagram.

X̃ B

X Y

q

π ↷ π̄

p

Figure 5.5
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Let X := X̃ (1) and B := B(1), where Z(1) denotes the 1-skeleton of a CW-
complex Z. Assume that each edge in X and B has length 1. Put the length metric on
X and B. Since the groups are finitely generated, by covering space argument, we
have the following facts.

1. The restriction of the map q on X , q|X : X → B is G-equivariant, surjective and
1-Lipschitz.

2. The action of G on X is proper and cocompact; and, G-action on B is cocompact
(but not necessarily proper unless local groups are all finite).

3. There is an isomorphism of graphs r : B/G →Y (1) such that for all σ0 ∈Y (0)

and a ∈ {r−1(σ0)}, Ga (the stabilizer subgroup of a ∈ B(0)) is conjugate to
Gσ0 in G.

4. Let a ∈ B(0) and Fa := (q|X)−1(a). Then the action of Ga (the stabilizer
subgroup of a) on F(0)

a is transitive and on F(1)
a is uniformly cofinite. In

particular, Ga is uniformly quasi-isometric to Fa (with the induced path metric
from X).

5. Since a finitely generated subgroup of a finitely generated group is properly
embedded (with respect to their finite generating sets), for all a ∈ B(0), the
inclusion Fa ↪→ X is uniformly properly embedding, where Fa := (q|X)−1(a).

Complexes of groups as explained in setup C : Now suppose G (Y ,Y ) is a com-
plex of groups over Y as explained in Introduction 1.2. Note that for this discussion,
we do not require the hypotheses of Problem 1.2.1 but those of Theorem 1.2.2.
Then we have a natural graph of groups, say, (G ,Y ) over Y such that the vertex
groups are Gs := π1(Gs(Ys)),∀ s ∈ Y (0) and the edge groups are Ge for e = [u,v]
joining two vertices u,v ∈ Y so that restriction of pY on e is injective. Note that
the monomorphisms from edge groups to the corresponding vertex groups are the
restriction of G (Y ,Y ).

As a corollary of [23, Proposition 3.9, III.C], we have the following lemma.

Lemma 5.6.1. The complex of groups G (Y ,Y ) is developable.

5.6.1 Trees of metric bundles coming from complexes of groups

Consider the above discussion on complexes of groups for G (Y ,Y ) (setup C ). For
now onward, we denote the restriction map q|X by πX . Let s ∈ Y (0) and Gs =
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π1(Gs(Ys)). Consider the corresponding graph of groups (G ,Y ) as explained above.
Then note that X is the corresponding tree of metric spaces over the Base-Serre tree
of the graph of groups (G ,Y ). Let T be the Base-Serre tree and π : X → T be the
projection map. Again vertex spaces of X are acted (properly and cocompactly)
upon by the conjugates of Gs in G, s ∈ Y (0). Now by condition (2) of setup C

(see Introduction 1.2), it follows from [33, Section 3.3] that the vertex spaces of
π : X → T are metric graph bundles with uniform parameters. For instance, if
s ∈ Y (0), g ∈ G, u = gGs ∈ T (0) and Bs is the 1-skeleton of the universal cover of
Gs(Ys), then Xu := π−1(u) is the metric graph bundle over Bu = gBs ⊆ B and the
subgroup gGsg−1 acts on Xu properly and cocompactly. Also, note that T is obtained
by collapsing the universal cover of Gs(Ys) (for s ∈Y (0)) in B and its G-translates to
points. Let πB : B → T be the projection map. The maps πX : X → B and πB : B → T
are G-equivariant. Therefore, we have the following proposition.

Proposition 5.6.2. Suppose G is the fundamental group of G (Y ). Then there is a
natural tree of metric bundles (X ,B,T ) and an action of G by isometries on both X
and B such that the following hold.

1. The map πX is G-equivariant.

2. The action of G on X is proper and cocompact; and, G-action on B is cocom-
pact (but not necessarily proper unless all local groups are finite).

3. There is an isomorphism of graphs r : B/G →Y (1) such that for all σ0 ∈Y (0)

and a ∈ {r−1(σ0)}, Ga (the stabilizer subgroup of a ∈ B(0)) is conjugate to
Gσ0 in G.

4. Let a ∈ B(0) and u = πB(a), Fa,u := π
−1
X (a) = q−1(a)(1). Then the action of

Ga on F(0)
a,u is transitive and on F(1)

a,u is uniformly cofinite. In particular, if
σ0 ∈Y (0) and Gσ0 is hyperbolic, then for all a ∈ {r−1(σ0)}, Fa,u is uniformly
hyperbolic, where u = πB(a).

Note that condition (2) of setup C (see Introduction 1.2) in Proposition 5.6.2 is
necessary to get trees of metric bundles.

Now we are ready to prove the main application of Theorem 1.2.4.

Proof of Theorem 1.2.2 : It follows from Proposition 5.6.2 and Theorem 1.2.4.

Proof of Corollary 1.2.7: It follows from Proposition 5.6.2 and Remark 1.2.6.
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Further Questions

6.1 On Cannon-Thurston maps

In [9, Chapter 9], Kapovich and Sardar generalize the theorem of Mj-Pal ([40]) to a
subtree of relatively hyperbolic spaces. This motivates to the following question.

Question 6.1.1. Prove a result analogous to Theorem 1.1.6 in relatively hyperbolic
setup.

Suppose π ′ : Y → B is a hyperbolic metric bundle and A is a qi embedded
subspace of B. In [33], Krishna and Sardar showed that the inclusion (π ′)−1(A) ↪→Y
admits the CT map. Keeping these in mind, we have Question 6.1.2 below. This
question put both the theorems of Kapvich-Sardar [9, Theorem 8.11] and Krishna-
Sardar in a single frame.

Question 6.1.2. Let πX : X → B be a tree of metric bundles as in Theorem 1.2.4.
Suppose A is a qi embedded subspace of B. Prove that the inclusion π

−1
X (A) ↪→ X

admits the CT map.

6.2 On combination theorems

Motivated by the combination theorem of Bestvina-Feighn ([6]), Mj and Reeves
proved an analogous combination theorem for trees of relatively hyperbolic spaces

151
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([41]). In [42], Krishna proved a combination theorem for relatively hyperbolic
metric bundle. Subsuming these two we have the following question.

Question 6.2.1. Prove a combination theorem analogous to Theorem 1.2.4 for
relatively hyperbolic spaces.
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