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Abstract

The aim of this study is to quantify and characterize the dynamic heterogeneity (transient
and incoherent patterns) in spatially-extended systems. Coupled map lattices of the logis-
tic, exponential and the host parasite map are used as model systems and the variation of
transient and incoherent phenomena with respect to different nonlinear map functions and
the model parameters is studied. A few quantities based on statistical measures and image
analysis of the transient states in the CML is developed to characterize their occurrence for
each map. We have formulated a new quantitative measure to characterize the long term
spatiotemporal incoherent states, that can differentiate between the Chimeric states and the
other types of heterogeneity. We show that the transient and long term spatiotemporal dy-
namics in a coupled system depends on the intrinsic nonlinear function, coupling strength,
the number of neighbors, and initial conditions. We also observed that the spatial extent of
the transient states follow a power law and incoherent states like Chimera patterns are much
more frequent in the lattice of exponential maps than that of the logistic maps.



Chapter 1

Introduction

1.1 Dynamical Systems in Biology

Tools from dynamical systems are increasingly being used in modeling and analyzing bi-
ological phenomenon, e.g. population dynamics, pattern formation in tissues and activity
of single neurons or their network. Stability and coherence in the long term behavior is
generally expected to be functionally useful in spatially-extended dynamical systems. The
long-term behavior of such systems has been the focus of several studies [1]. These models
often exhibit a vast range of dynamical behavior spanning from regular spatial and/or tem-
poral patterns to irregular/chaotic ones. An example of a periodic pattern in space and time
is the propagation of spiral waves in cardiac tissues during ventricular fibrillation [2]. How-
ever, in recent times, the evolution, persistence and characterization of dynamic heterogene-
ity (transient or incoherent patterns) are finding importance both in physical and biological
systems. These have been implicated to underlie many events in Biology, and involved in
several normal and pathological phenomena. For example, several mammals exhibit uni-
hemispheric slow wave sleep, that can be linked to spatial incoherence [3]. Sharp waves
and ripples, sleep spindles and K-complexes are transient phenomenon that are identifiable
through electroencephalography [4]. Dynamic heterogeneity is also possible in social sys-
tems [5]. In this study I intend to explore the transient states and the formation of long term
coexistence of spatially coherent and incoherent domains (chimera-like states) in coupled
systems, The aim of this study is to quantify and characterize these patterns and study their
correlation with varying local and non-local coupling. Coupled Map Lattices of logistic,
exponential or host-parasite maps have been used as model systems for this study.

1.2 Definitions

Various definitions of synchronization have been proposed in the literature. Total syn-
chronization of two dynamical variables implies having identical time-series. Phase syn-
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chronization means overlapping crests and troughs in the time series, although their ampli-
tudes may differ. Phase lagging means having a constant phase difference between the two
systems. Frequency locking is defined as having a time-invariant functional relationship
between the frequencies of the two systems. Absence of any form of relationship between
the frequency spectrum of the variables is called asynchronization. The Venn diagram,
shown in Figure 1.1 describes various forms of synchronization [6].

Transience is a brief change in the state of a system. For a state variable of a dynam-
ical system, (temporal) transient state is a brief interval (compact subset) in its time-series
during which it exhibits a qualitatively different dynamical behavior from that before and
after the interval, e.g. ripples in still water, sleep spindles in EEG rhythms (shown in Figure
1.2), solitary Ca2+ wave during fertilization of an egg, new gene expression due to transient
increase in morphogen [7] etc. Long term incoherence, for a spatially-extended dynamical
system, indicates states of sustained non-uniform synchronization. Example are the Chimera
states [8] in which a system of identical non-locally coupled oscillators is split into coex-
isting regions of phase/frequency locked and drifting oscillation. These patterns have also
been shown to exist in experiments [9]. These states are shown to be extremely sensitive to
initial conditions.

Figure 1.1: Various forms of synchronization. The box representing synchronization implies
total synchronization [6].

Figure 1.2: Transient states in an EEG pattern during slow wave sleep [10].
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1.3 Coupled Map Lattice as Model System

Spatially extended systems can be broadly classified into the following four categories [11]
depending upon whether the underlying spatial organization, temporal evolution or state
variable is discrete or continuous.

1. A cellular automaton (CA) consists of an n-dimensional grid/lattice of cells, each
in one of the possible countable number of states (e.g. binary). Given appropriate
initial conditions, the system is evolved at discrete time-steps according to some time-
invariant mathematical rule.

2. A coupled map lattice (CMLs), like CAs possess discrete underlying spatial structure
and temporal dynamics. However, unlike the former, the state variables in a CML are
continuous. Each of the lattice sites in an uncoupled CML is governed by a system of
difference equations or maps.

3. System of ODEs consists of an array of ordinary differential equations, thus useful for
modeling systems with discrete spatial organization but continuous system variables
and temporal dynamics.

4. Partial differential Equations are used for modeling phenomenon with continuous
space, time and state variables.

In this study, the dynamic heterogeneity exhibited in the coupled map lattice models of
three biologically relevant dynamical systems (logistic, exponential and host-parasite maps)
is characterized.

1.4 Organization of the Thesis

To characterize the different forms of dynamic heterogeneity, as mentioned above, and their
dependence on nonlinear functions, parameters and initial conditions, I have studied three
different discrete models systems, namely, the Logistic and Exponential (Ricker) 1-dimensional
maps, and the Host-Parasite 2-dimensional map, in the Coupled Map Lattice systems with
local and non-local coupling.

In Chapter 2, the single maps (1-d: Logistic and Exponential, and 2-d: Host-Parasite)
are stated and the corresponding spatiotemporal dynamical systems (coupled map lattices)
are described. The new measures developed for the characterization of the transient and
long term dynamic heterogeneity are stated here.

In Chapter 3, all results for analyzing the transient and long term heterogeneous states
are discussed.

In Chapter 4, the major conclusions and future directions are discussed, and the literature
quoted are given in the References chapter.



Chapter 2

Models and Methods

2.1 Maps

Consider the difference equation xn+1 = f (xn) where n ∈ N, and xn ∈ Rm and f is
suitably well behaved function. Such an equation/function is called a map or a difference
equation. Maps appear naturally in various ways [12]:

1. As tools for analyzing differential equations.

2. As models of natural phenomena.

3. As simple examples of chaos.

The Logistic and Exponential Maps are used to model single-species discrete population
dynamics in ecology in the presence of limited resources. The host-parasite model is used
for modeling the growth of two interacting populations in which one of the populations
grows at the expense of the other.

2.1.1 1D Maps

The logistic map was popularized in 1976 by Robert May [13] and is of the following form:

xn+1 = f (xn) = rxn(1 − xn) (2.1)

The map is bounded between 0 and 1, while 0 < r < 4. It is a unimodular map that
undergoes pitchfork bifurcations as r increases and follows a period doubling route to chaos
at r = 3.57. Beyond this, the map shows chaos interspersed with patterns with periodicity
of ...7, 5, 3, that ultimately cumulates the unstable cycles of all periods through an “inter-
mittency route to chaos” at r = 4.

The exponential or the Ricker model [14] has the form:

xn+1 = f (xn) = xner(1−xn) (2.2)
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Like the logistic map, the exponential map is also unimodal and follows a period-doubling
route to chaos with periodic windows. Unlike the logistic map, the exponential map is asym-
metric around the maxima, has a point of inflection between 0.5 and 1, and has a domain
that is not bounded above. Their bifurcation diagrams are shown below.

Figure 2.1: (a) Bifurcation diagram of logistic map; (b) Bifurcation diagram of exponential
map. The insets show the nonlinear functions (Return Maps).

2.1.2 2D Map

Host-Parasite map [15] can be used to understand the dynamics of two interacting species in
which an adult female parasite searches for a host on which to oviposit (deposit its eggs). In
some cases eggs are attached to the outer surface of the host during its larval or pupal stage.
In other cases the eggs are injected into the host’s flesh. The larval parasites develop and
grow at the expense of their host, consuming it and eventually killing it before they pupate.

Assumptions:

1. Hosts that have been parasitized will give rise to the next generation of parasites.

2. Hosts that have not been parasitized will give rise to their own progeny.

3. The fraction of hosts that are parasitized depends on the rate of encounter of the two
species.

4. Encounters occur randomly. The number of encounters of hosts by parasites is there-
fore proportional to the product of their densities.

5. Only the first encounter between a host and a parasite is significant. (Thus the in-
teraction between the host and parasite can be modeled as a homogeneous Poisson
process)

6. In the absence of parasites, the host population grows to some limited density (deter-
mined by the carrying capacity of its environment).
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Depending upon the growth function of the host population used, the HP system can take
up one of the following two forms:

Logistic Host-Parasite Model

Hn+1 = f (Hn, P ) = rHn(1 − Hn)e−bPn

Pn+1 = g (Hn, Pn) = Hn(1 − e−bPn)
(2.3)

Where Pn is the size of the parasite population, Hn is the size of the host population,
r is the growth rate of the host population and b is the searching efficiency of the parasite
population.

Exponential Host-Parasite Model

Hn+1 = h (Hn, P ) = Hner(1−Hn)−bPn

Pn+1 = p (Hn, Pn) = Hn(1 − e−bPn)
(2.4)

All the variables are same as in (3). Despite the fact that the logistic and exponential map
belong to the same universality class, the dynamics of the two systems can be quite different
as shown in the figure below (the choice of the growth rate is explained in the next section).

Figure 2.2: (a) Bifurcation diagram of logistic HP map for r = 3.9; (b) Bifurcation diagram
of exponential HP map for r = 3.42.

2.2 Coupled Map Lattice

A Coupled Map Lattices (CML) is a dynamical system that has discrete time dynamics,
discrete underlying spaces (lattice/networks) and real, continuous and local state variables.
Here, in each lattice site the real and continuous state variable x associated with each map
function evolves at discrete time steps. A CML of logistic/exponential maps can be used to
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model meta-population dynamics of different segregated sub-populations coupled through
migration. Evolution of population (x) at each lattice site (s) coupled to each other through
inter-site migration happens in two steps as follows: First, each of the lattice sites evolves as
per recursive map: xn,s → f (xn,s) = xn+1,s (growth phase). Second, a constant fraction ϵ

of this state migrate/ diffuse into the adjacent sites with zero delay (Migration phase). For
a 1D lattice, the quantity d = K/N is called the range of the coupling, where N is the
total number of sites and K is the number of neighbors on one side. When K = 1, the
coupling is “local” or to the nearest neighbors. For, K > 1, the coupling is known as “non-
local”. The underlying lattice can be of any dimension m in which case the range may be
an m − dimensional vector. In all work given here, periodic boundary condition is used for
the 1-dimensional CML of size (N) 50 and 100 nodes. Thus, the evolution of the CML can
be described as [16]:

xn+1,s = (1 − ϵ)f (xn,s) + ϵ

2K

K∑
k

(f(xn,s−k) + f(xn,s+k)) (2.5)

For a 2D map, xn,s = (Hn,s, Pn,s)
f(xn,s) = F (Hn,s, Pn,s) = (h(Hn,s, Pn,s), p(Hn,s, Pn,s)).
Several sets of random initial conditions were chosen to study the dynamic heterogeneity

in CMLs.
In this study, a coupled lattice of logistic/exponential maps is called LCML/ECML

and that of the logistic/exponential HP maps is called LHP-CML and EHP-CML re-
spectively.

Figure 2.3: Overlapping plots of 25 random initial conditions as a function of lattice site for
the lattice of exponential maps.

These coupled systems are capable of exhibiting a vast range of heterogeneous spatiotem-
poral patterns. The following space-time amplitudes show transient and incoherent states in
the ECML.
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Figure 2.4: Transient behavior in the ECML

Figure 2.5: Incoherent behavior in the ECML (left) Non-Chimera; (right) Chimera

2.3 Characterization of Dynamic Heterogeneity

In order to completely characterize and quantify these heterogeneous states in space and
time, the following measures were used.

2.3.1 Synchronization order parameter (R)

The synchronization order parameter [17] is a real number bounded between 0 and 1 that
quantifies the degree of synchronization across the lattice sites during a time window. Math-
ematically,

R = ⟨M2
n⟩ − ⟨Mn⟩2

[⟨x2
n,s⟩ − ⟨xn,s⟩2]

where Mn is the spatial average at every time n, [ ] denotes the average across the space
while ⟨ ⟩ denotes the average across time. The idea behind this is that during total synchro-
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nization, all the time series {xn,s} approach the average behavior [xn,s] of the ensemble. The
variance in the time series of a single lattice site will therefore be equal to that of the time
series of the average (across space). Therefore, R = 1 for total synchronization. During
complete desynchronization, it is likely that for every possible value of the lattice sites x,

there is a site s and some small distance δ such that |x − xn,s| < δ. In other words, roughly
every possible value is taken by some lattice site or the other. In this case, the average value
[xn,s] will be roughly constant and R = 0.

2.3.2 Lyapunov exponent (LE)

The Lyapunov Exponent [18] characterizes the rate of separation of infinitesimally close tra-
jectories. Quantitatively, two trajectories in phase space with initial separation δZ0 diverge
(provided that the divergence can be treated within the linearized approximation) at a rate
given by eλtδZ0. Here λ is called the Lyapunov exponent. For a 1D map f(x), LE can be
calculated as:

λ(x0) = lim
N→∞

1
N

N∑
n=0

log|f ′(xn)| (2.6)

For an n-dimensional map, there are n lyapunov exponents, and a system can exhibit
chaos if and only if at least one of the lyapunov exponents is positive. Analytically, the
vector of the lyapunov exponents Λ = {λi} is calculated from the following matrix V :

V = lim
N→∞

(JN · (J†)N) 1
2N (2.7)

Where JN is the jacobian matrix of the N th iterate of the map. λi are the log of eigen-
values of this matrix. The actual computation of LE even for 2D is not straightforward. I
have used pull-back [19] algorithm for the computation of LE in 2D. In this study, LE is
used to compare the equivalent rate of divergence in LCML vs ECML as well as LHP-CML
vs EHP-CML.

2.3.3 Sparsity/Coefficient of Variation (S/CV)

Coefficient of Variation (CV) or Sparsity (S) of the histogram of the moving window across
the time-series of each lattice site is computed to characterize these transient states. The
basic idea behind this measure is that for a chaotic time-series the histogram of the trace of
values is almost constant. These plots can be used to estimate:

1. Number of transient states in a given time window.

2. Spatial extent of transient state (width of the smallest rectangle that circumscribe the
transient patch).



2.3 Characterization of Dynamic Heterogeneity 10

3. Duration of the transient state (Area of the Sparsity patch/length).

These quantities are called transience estimates. There are several advantages of using spar-
sity/CV plots to characterize the transients states: CV plots do not involve averaging over the
spatial variables and hence it is more accurate for making coherence estimates. For example,
these plots can easily distinguish between the chimera and non-chimera patterns. It is also
easy to estimate the periodicity of the lattice sites using these plots. However, one drawback
of these plots is that they do not take the temporal order into account and therefore, fail to
distinguish chaos from a time-series with very high periodicity.

Figure 2.6: Transient-Incoherent state in a LCML (a) Space-Time-Amplitude Map (b) Cor-
responding CV plot

Figure 2.7: Quantifying length, area and the number of transient patches from fig2.6(b)
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2.3.4 Local Coherence (L)

Local Coherence [20] is calculated as the absolute value of the moving average of the unit
vectors with phases (arcsine of the normalized values φs) of the lattice sites. This depends
upon the averaging window N · d, and is hence computed in the thermodynamic limit.

Ls = lim
N→∞

1
2dN

|
∑

|j−k|<dN

eiφs| (2.8)

Figure 2.8: (Top) Overlapping snapshots of the system for 50 times steps in the steady state.
(Middle) Space time amplitude for those time-steps. (Bottom) Local Coherence for weak,
non local coupling in the LCML (with r = 3.9).

2.4 Statistical Analysis

All statistical analyses (Wilcoxon rank sum test, Regression analysis and Box plots)
were performed in MATLAB [21]. In order to compare the median of the sample of
the transience estimates from different initial conditions across different coupling strengths,
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Wilcoxon rank sum test was used. Wilcoxon rank sum test is defined as [21]: “... a rank
sum test of the null hypothesis that data in two vectors x and y are independent samples
from identical continuous distributions with equal medians, against the alternative that they
do not have equal medians.” For each initial condition, least square linear regression of the
transience estimates was performed with coupling strengths as the abscissae and the R2 fit
and the best fit slope was calculated. High number of initial conditions with positive slopes
and high values of R2 fit implied an increasing trend.

All the simulations were done on MATLAB R2012b [21] . The image processing
was done using ImageJ [22].



Chapter 3

Results

The results are organized to highlight the comparative spatiotemporal collective dynamics
of the transient and long term incoherent states in LCML and ECML with 25 different initial
conditions. First, the general dependence of the locally coupled (K=1) LCML dynamics on
different system parameters are studied to show their role in synchronisation of the collective
dynamics. ECML behaviour is similar. Then the propensity and properties of the two locally
coupled systems (LCML and ECML) to develop transient states are compared for different
initial conditions. The long term incoherence is studied in the non-locally coupled ECML
and LCML for a large number of initial conditions. Finally preliminary results of the CMLs
with 2-d maps are stated.

3.1 Synchronization

1. The LCML desynchronizes as the growth rate of the logistic map is increased.

Figure 3.1: (a)-(e) Space-time amplitude of a lattice of logistic maps with N = 50, ϵ =
0.5, k = 1. (f) Synchronization order parameter as a function of coupling strength.
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2. The lattice synchronizes as the coupling strength increases at low growth rate
(regular dynamics), but chaotic lattices show low synchrony even at higher coupling
strengths. Periodic lattices show higher synchrony at low growth rates for different
system sizes, but remain asynchronous for higher r at all N, for low coupling strength.

Figure 3.2: (a) R shows no variation with N for low growth rate (r = 3.2, ϵ = 0.3). (b) R
increases with coupling for r = 3.2, N=50. (c) R decreases with N, for r = 3.9 ϵ = 0.3 (d) R
weakly increases with coupling for r = 3.9, N = 50. Notice the small dip at the end of plots
(b): Higher coupling may not imply high synchronization.

3.2 Transient Dynamics

For comparing transient dynamics in the Logistic and Exponential CMLs, local chaotic dy-
namics with the same Lyapunov Exponents are considered (Figure 3.3). As mentioned in
section 2.3; three quantities are computed from the CV/Sparsity plots to characterize the
transient states that are collectively called transience estimates.

1. Number of transient states in a given time window.

2. Spatial extent of transient state (width of the smallest rectangle that circumscribe the
transient patch).

3. Duration of the transient state (Area of the Sparsity patch/length).

3. Transient patterns are more commonly present in LCML in contrast to ECML.
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Figure 3.3: Red dots at 3.42 (exponential map) and 3.9 (logistic map) imply strong chaos.

Figure 3.4: Space-time amplitudes and CV plots of transient states in – LCML (a) & (c)
(r = 3.9, k = 1, ϵ = 0.4): ECML; (b) & (d) : (r = 3.42, k = 1, ϵ = 0.4) .
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4. The number of transient states, spatial extent and the area of the transient
patches increase with the coupling strength in LCML.

The number of transient states and area and spatial extent (length) of the largest patch
during 2000-5000 time steps of the locally coupled LCML is studied as a function of cou-
pling strength ϵ for 25 different initial conditions. The standard deviation of these quantities
stabilizes after 25 samples (Figure 3.5). For each quantity (area of the largest patch, num-
ber of transient states and spatial extent) the analysis is done for 25 initial conditions with
increasing coupling strengths. The variation is statistically fitted using linear correlation
analysis and the goodness of fit R2 is calculated. Of the 25 best fit lines, the ones showing
positive slopes with R2 > 0.6 indicate increasing trends in the transient state parameters
with coupling strength (results shown in Figure 3.6).

Figure 3.5: Standard deviation in transience estimates as a function of number of initial
conditions.
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Figure 3.6: Increase of the area of the largest patch, the number of transient states and the
spatial extent with coupling strength.

5. The spatial width of largest transient patch follows a power law distribution with
a scaling of 2.67.

Figure 3.7: (left) Histogram of spatial width of the largest patch for 75 random initial
conditions for coupling strength (ε = 0.4); (right) Log-log plot with R2 fit of 0.98 (Red-line).
Scaling coeff. is 2.67.
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3.3 Long-Term Incoherence

Long term incoherence is formed in both LCML and ECML.
6. Chimera-like states are far more frequent in ECML than in the LCML. Studies

[20] have shown the existence of different chimera-like patterns (as in fig 3.8 (left) and
3.9 (left)), but since the incoherent regions in such patterns are phase locked, they are not
considered as chimera states here. Here a chimera state is the one which involves both
incoherence and phase drift (chaos), have a sparsity value > 0.8, and local coherence < 0.95.
As examples of different types of long term incoherent patterns, Figures 3.8 and 3.9 show
Chimera and non-Chimera states for the ECML and LCML dynamics for non-local coupling
k=15. For each sub-figure with four panels, the top shows the overlapping plots of the lattice
for 50 consecutive time steps, the second shows the space-time and amplitude map, the third
is the sparsity plot at the 500K time-step while the bottom corresponds to the local coherence
at 500K time-step.

Figure 3.8: (left) Chimera state: ECML (r = 3.42, ε = 0.32). 15/20 initial conditions
exhibited chimera states for 0.23 <ε < 0.33; (right) Stable incoherent (non-chimera) pattern
in the ECML (r = 3.42, ε = 0.28) for a different initial condition.
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Figure 3.9: (left) Chimera state: Logistic CML (r = 3.9, ε = 0.29). 3/20 initial conditions
exhibited chimera states for 0.23 < ε< 0.33 ; (right) Stable incoherent (non-chimera) pattern
in the logistic CML (r = 3.9, ε = 0.28).

7. Chimera states are stationery in space.

Figure 3.10: Robustness of the chimera patterns is tested by plotting the site of minimum
sparsity in (3.8 a) as a function of time
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8. Chimera states are highly sensitive to initial conditions, coupling strength and
coupling range.

Figure 3.11: Coefficient of variation (CV) in ECML (N=100) shown for 10 initial conditions
for ε = 0.26, K = 15. Chimera patterns exist only for 4 Initial conditions as is clearly
delineated from the CV value.

3.4 Host-Parasite CMLs

In order to compare the two types of the HP systems [23], the 2D lyapunov spectrum was
computed and the maximum lyapunov exponent was plotted as a function of the searching
efficiency and the growth rate. For the same values of the lyapunov exponent, both the
lattices show similar dynamics (Fig 3.12). The computed spectrum is not dependent on
initial conditions.
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Figure 3.12: Maximal lyapunov exponent as a function of searching efficiency and growth
rate. Red values imply strong chaos.

Figure 3.13: (Top) Host population in the LHP-CML with LE -0.08 (r = 3.9, b = 3, ϵ =
0.3). (Bottom) Host population in the EHP-CML with the same LE (r = 3.3, b = 3, ϵ = 0.3).
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9. However, only the EHP-CML is able to give rise to heterogeneous patterns for
b > 2 as shown in the figure below.

Figure 3.14: (Top) Host population in the LHP-CML with (r = 3.9, b = 5, ϵ = 0.3).
(Bottom) Coefficient of variation plot showing no transience.
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Figure 3.15: (Top) Host population in the EHP-CML with (r = 3.42, b = 5, ϵ = 0.3).
(Bottom) Coefficient of variation showing three transient patches.

10. For a 2D lattice of LHP-CML, if a single parasite is introduced at a location,
the speed of infection increases with the coupling strength and range.

Figure 3.16: Time taken to cover the 50X50 lattice as a function of k and ϵ (periodic bound-
ary conditions).

The work on HP-CMLs is currently in progress.



Chapter 4

Conclusions and Future directions

This study is an attempt to quantify and characterize the dynamic heterogeneity that arise in
spatially-extended systems at short and long time scales (transient and long term incoherent
patterns) after coupling is introduced amongst the dynamical systems in a Coupled Map Lat-
tice system. Both one-dimensional (Logistic and Exponential models) and two-dimensional
(Host-Parasite model) maps are used as dynamical systems and their collective spatiotem-
poral dynamics studied for a large range of system size, coupling strength, coupling range,
and initial conditions.

4.1 Conclusions

1. Transient and long term spatiotemporal dynamics in a coupled system depends on the
intrinsic nonlinear function, coupling strength, and the number of neighbors.

2. Similar maps (Logistic & Exponential in chaotic regime with same LE) show different
dynamical trends in properties of transients and chimera-like dynamical states.

3. The synchronization increases with decreasing chaos (growth rate) and lattice size and
increasing coupling strength.

4. The width, area and number of transient patches increase with coupling strength in
the locally coupled logistic CML, and the spatial width of transient states follows a
power law.

5. Chimera states are more commonly found in the exponential CMLs than in the logistic
CML.

6. Chimera states in this CML are stationary in space and are highly sensitive to coupling
strength, range and initial conditions.
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7. The lattice of logistic and exponential map based HP systems exhibit qualitatively dif-
ferent dynamics even though the constituent 1D maps belong to the same universality
class.

4.2 Future directions

1. The physical interpretation of power law distribution in the spatial extent of the tran-
sient states in the locally coupled logistic lattice needs further elaboration for other
coupling strengths.

2. The distribution of the transient states in non-locally coupled maps needs to be inves-
tigated.

3. It is not clear why the chimera states are more probable in the exponential lattice as
compared to the logistic ones - even for the same values of the LE.

4. Some more work is required to investigate the differences in the behavior of Logistic
and exponential based HP systems.

5. The stability and dependence of these states under heterogeneous/dynamic coupling
and in lattices in higher dimensions need to be investigated.
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APPENDIX: PROGRAMS 
 

1. Bifurcation diagram of logistic and exponential maps 
 

kk = 1; 
r2 =  2:0.01:4; 
for r = r2; 
    x = rand; 
    for t=1:5000 
        x2(t) = x.*(exp(r.*(1-x))); 
%         x2(t) = (r)*x*(1-x); 
        x = x2(t); 
    end 
    y(:,kk)=x2(1:end); 
    kk = kk+1; 
end  
y(1:500,:)=[];  
figure('units','normalized','Position',[0.5 0.5 0.19 0.23]) 
hold on 
plot(r2,y, 'k.', 'MarkerSize', 1) 
xlabel('Growth Rate') 
ylabel('Value')  
axes('Position',[.2 .2 .15 .17]) 
box on 
x1  = 0:0.01:1; 
% y1 = 4.*x1.*(1-x1); 
y1 = x1.*(exp((4).*(1-x1))); 
plot(x1,y1) 
ylim([0 7]) 

 
2. Bifurcation diagram of HP system 

kk = 1; 
r = 3.42; 
b = 0:0.02:6; 
time_steps = 2000; 
for b = b 
    h = 0.5; 
    p = 0.5; 
    for t=1:time_steps; 
%         h2(t) = (r)*h*(1-h)*exp(-b*p); 
        h2(t) = h*(exp(r*(1-h)))*exp(-b*p); 
        p2(t) = h*(1-exp(-b*p)); 
        h = h2(t); 
        p = p2(t); 
    end 
    yh(:,kk)=h2(500:end); 
    yp(:,kk)=p2(500:end);  
    kk = kk+1; 
end 
figure('units','normalized','Position',[0.5 0.5 0.19 0.23])  
% subplot(2,1,1) 
hold on 
for ii = 1:length(yh); 



    plot(b,yh(ii,:), 'k.', 'MarkerSize', 4) 
end  
hold on 
for ii = 1:length(yp); 
    plot(b,yp(ii,:), 'r.', 'MarkerSize', 4) 
end 
xlabel('Searching efficiency') 
ylabel('Population') 
xlim([0 6]) 
ylim([0 3.4]) 

 

3. 2D Lyapunov Exponent using pull-back algorithm 

function[v1 v2] =  LogMap(r,b,x,y) 
    v1 = x*r*(1-x)*exp(-b*y);  
    v2 = x*(1-exp(-b*y)); 
end 

 
function[dv1 dv2] = LogMapTangent(r,b,x,y,dx,dy) 
    dv1 = r*(1-x)*exp(-b*y)*dx-r*x*exp(-b*y)*dx-b*x*r*(1-x)*exp(-b*y)*dy; 
    dv2 = (1-exp(-b*y))*dx+x*dy*b*exp(-b*y); 
end    

 
function[maxLCE minLCE] = Log_lyapunov(b,r) 
nTransients = 200; 
nIterates = 10000; 
% Initial condition 
xState = 0.5; 
yState = 0.3; 
% Initial tangent vectors 
e1x = 1.0; 
e1y = 0.0; 
e2x = 0.0; 
e2y = 1.0;  
for n = 1:nTransients; 
    [xState yState] = LogMap(r,b,xState,yState); 
    %     Evolve tangent vector for maxLCE 
    [e1x e1y] = LogMapTangent(r,b,xState,yState,e1x,e1y); 
    %     Normalize the tangent vector's length 
    d = sqrt(e1x*e1x + e1y*e1y); 
    e1x = e1x / d; 
    e1y = e1y / d; 
    %     Evolve tangent vector for minLCE 
    [e2x e2y] = LogMapTangent(r,b,xState,yState,e2x,e2y); 
    %     Pull-back: Remove any e1 component from e2 
    dote1e2 = e1x * e2x + e1y * e2y; 
    e2x = e2x - dote1e2 * e1x; 
    e2y = e2y - dote1e2 * e1y; 
    %     Normalize second tangent vector 
    d = sqrt(e2x*e2x + e2y*e2y); 
    e2x = e2x / d; 
    e2y = e2y / d; 
end  
maxLCE = 0.0; 
minLCE = 0.0;  
for n = 1:nIterates; 



    [xState yState] = LogMap(r,b,xState,yState); 
    %     Evolve tangent vector for maxLCE 
    [e1x e1y] = LogMapTangent(r,b,xState,yState,e1x,e1y); 
    %     Normalize the tangent vector's length 
    d = sqrt(e1x*e1x + e1y*e1y); 
    e1x = e1x / d; 
    e1y = e1y / d; 
    %     Accumulate the stretching factor (tangent vector's length) 
    maxLCE = maxLCE + log(d); 
    %     Evolve tangent vector for minLCE 
    [e2x e2y] = LogMapTangent(r,b,xState,yState,e2x,e2y); 
    %     Pull-back: Remove any e1 component from e2 
    dote1e2 = e1x * e2x + e1y * e2y; 
    e2x = e2x - dote1e2 * e1x; 
    e2y = e2y - dote1e2 * e1y; 
    %     Normalize second tangent vector 
    d = sqrt(e2x*e2x + e2y*e2y); 
    e2x = e2x / d; 
    e2y = e2y / d; 
    %     Accumulate the shrinking factor (tangent vector's length) 
    minLCE = minLCE + log(d); 
end  
maxLCE = maxLCE / nIterates; 
minLCE = minLCE / nIterates; 
end 

 

 

4. LCML/ECML 

For non-local coupling 

function [run_sum] = runningsum(vector, window)  
% Moving sum of a column vector (periodic conditions) with a given window >1.  
if nargin <2 
    window = 3; % Local-coupling 
end  
half_length = 1/2*(window-1); % Choose the window as an odd number 
vec = ones(1, window);  
long_vector = [vector(end-half_length+1:end); vector; vector(1:half_length)]; 
run_sum = conv(long_vector, vec); 
run_sum = run_sum(window:window+length(vector)-1);  
run_sum = run_sum-vector; 
end 

 

Sparsity/Coeff. of Variation 

function [rstdv] = coeff_var(Theta, t_plot, win_spar)  
if nargin < 3 
    win_spar = 50; 
end 
% Theta = vec; 
% win_spar = 50; 
% t_plot = 1000;  
Theta(:, 1:end-t_plot)=[]; 
spar_y = size(Theta,2)-win_spar+1;  
rstdv = zeros(size(Theta,1),spar_y);  



for ii=1:size(Theta,1) 
%     edge = (0:0.01:max(Theta(ii,:)))'; 
    edge = linspace(0,max(Theta(ii,:)),100); 
    for jj = 1:spar_y 
        M1 = Theta(ii,jj:jj-1+win_spar); 
        M2 = hist(M1, edge); 
        rstdv(ii,jj) = var(M2).^0.5/(mean(M2));  
    end 
    clear edge 
end 
end 
  

Local Coherence 

function [loc_coh] = local_coherence(Theta) 
window = 3; 
min_t = min(Theta,[], 2); 
min_t = repmat(min_t,1,size(Theta,2)); 
max_t = max(Theta, [], 2); 
max_t = repmat(max_t,1,size(Theta,2));  
Sin_theta = (2*Theta-max_t-min_t)./(max_t-min_t); 
Theta_rad = asin(Sin_theta);  
exp_Theta = exp(1j*Theta_rad); 
loc_coh = zeros(size(exp_Theta)); 
for jj = 1:size(Theta,2) 
    loc_coh(:,jj) = abs(runningsum_total(exp_Theta(:,jj),window))./(window); 
end 
end 
  

LCML/ECML Script 

tic 
for d =1:1 % Initial conditions 

     
    %% Parameters 
    num_osc = 200; % Number of oscillators. 
    time_transient = 50000; 
    t_plot = 10; % keep it a multiple of win_spar 
    time_steps = time_transient+t_plot; 
    type = 0; % Type of initial condition  
    win_spar = 50;     
    row_osc = (1:1:num_osc)';     
        IC = initiate_logistic(num_osc, type);             
    %     load('IC_mat.mat') 
    %     IC = IC_mat(:,d); 
    sync_par = 0; 
    for growth_rate = 3.2:0.1:3.2 
    for neighbors = 1:7:1 
        for eps = 0.3:0.02:0.3 
            %         eps = 0.2; % Coupling strength. 
            %         neighbors = 1;             
            window = 2*neighbors+1;             
            %% Time Evolution 
            Theta_i = IC; % Initial phases 
            logistic = zeros(size(Theta_i)); % Logistic 
            Theta_c = logistic; % Size of coupling contribution 



            Theta_f = logistic; % Size of final coupling 

             
            Theta = zeros(num_osc, time_steps+1); 
            Theta(:,1) = Theta_i; 

             
            for jj=1:time_steps 
                logistic = growth_rate.*Theta_i.*(ones(num_osc,1)-Theta_i); 
                Theta_c = runningsum(logistic, window); 
                Theta_f = (1-eps).*logistic+(eps/(2*neighbors)).*Theta_c; 
                Theta_i = Theta_f; 
                Theta(:,jj+1)=Theta_i; 
            end 
            Theta_plot = Theta(:,time_transient+2:end); 

             
            %% Synchronization parameter 

 
            sync_par = sync_par+1; 
            Sync_R(sync_par) = (1/mean(var(Theta,0,2)))*var(mean(Theta,1)); 
            eps_x(sync_par) = growth_rate; 
            sparsity = coeff_var(Theta, t_plot, win_spar);             
            loc_coherence  = local_coherence(Theta_plot); 
            loc_coherence2 = mean(loc_coherence,2); 
            loc_min(sync_par) = min(loc_coherence(:));             
            clear loc_coherence 
            Spar{sync_par} = sparsity; 

             

             
            %% Plotting 
            figure('units','normalized','Position',[0.5 0.5 0.18 0.20]) 
            edgex_spar = 1:1:num_osc; 
            edgey_spar = time_transient+2:1:time_transient+t_plot+2-win_spar; 
            sparsity_blur = smooth_gaussian_2d(edgey_spar, edgex_spar, 

sparsity, 0.5, 0.5); 
            sparsity_blur(1,1)=1; 
            sparsity_blur(1,end) = 6; 
            surf(edgex_spar, edgey_spar, 

sparsity_blur','FaceLighting','phong','EdgeColor','none') 
            %             surf(edgex_spar, edgey_spar, 

sparsity','FaceLighting','phong','EdgeColor','none') 
                        load('mycmap') 
                        ylabel('Lattice Points') 
                        xlabel('Time Series') 
                        str_title = sprintf('Sparsity'); 
                        title(str_title) 
                        view(2) 
                        axis tight 
                        colormap(mycmap) 
                        colorbar 
                        str = sprintf('sparsity_%d_%d', floor(100*eps), d); 
            %% DotPlot 
                            figure 
                            subplot(4,1,1) 
                            hold on 
                            for ii=1:t_plot+1 
                                plot(Theta(:,ii+time_transient), '.'); 



                                str = sprintf('Times %d-%d, eps = %f, nbr = 

%d, r = %d',time_transient, time_transient+t_plot, eps, neighbors, 

growth_rate); 
                                ylabel('Value') 
                                ylim([0 inf]) 
                                title(str) 
                            end 
                            subplot(1,2,2) 
                            hold on 
                            for jj = 1:num_osc 
                                xaxis = 

time_transient+2:1:time_transient+t_plot+1; 
                                plot(xaxis, Theta(jj,time_transient+2:end), 

'.'); 
                                str = sprintf('Time series for lattice 

points, Coupling: %f', eps); 
                                xlabel('Time') 
                                ylabel('Value') 
                                ylim([0 1]) 
                                title(str) 
                            end 
                            str2 = sprintf('Trace and Time %d-

%d',round(100*eps), neighbors); 
                            print(str2, '-dpng', '-r0'); 
                            clearvars -except IC num_osc time_transient 

t_plot time_steps growth_rate row_osc sync_par neighbors eps Sync_R 

             
            %% Dynamics 

             
                            figure('units','normalized','Position',[0 0 1 1]) 
                            subplot(4,4,2) 
                            hold on 
                            edge_time = 

time_transient:1:time_transient+t_plot-1; % Dynamics 
            %                 Theta_plot2 = Theta_plot; 
            %                 Theta_plot = Theta_plot2(:,1:5:end); 
            %                 edge_time = edge_time(1:5:end); 
            %                 Theta_plot(1,1)=1; 
            %                 Theta_plot(1,end) = 0; 
                            surf(edge_time, row_osc,  

Theta_plot,'FaceLighting','phong','EdgeColor','none') 
                            colormap('jet') 
            %                 colorbar('location', 'west') 
                            colorbar 
                            view(2) 
                            ylabel('Lattice point') 
                            xlabel('Time') 
                            xlim([time_transient time_transient+t_plot-1]) 
                            str2 = sprintf('Initial Condition: %d, Growth 

Rate: %d', d, growth_rate); 
            %                 title(str2) 
                            axis tight 
                            fig = gcf; 
            %                 set(fig, 'PaperPositionMode', 'auto') 

             

             



                            subplot(4,1,3) 
                            plot(sparsity) 
                            ylabel('Sparsity (S)') 
                            ylim([0.6 1]) 
                            grid minor 

             
                            subplot(4,1,4) 
                            plot(loc_coherence2) 
                            ylabel('Local Coherence (L)') 
                            ylim([0.5 1]) 
                            grid minor 
            % 
                            str2 = sprintf('Dynamics %d-%d-%d',d, 

round(100*eps), neighbors); 
                            print(str2, '-dpng', '-r0'); 

             
        figure('units','normalized','outerposition',[0 0 1 1]) 
        subplot(4,4,1) 
        kk = 75; 
        h1 = plot(Theta(:,kk+time_transient)); 
        set(h1, 'Marker', '.', 'MarkerSize', 5) 
        str = sprintf('Timestep: %d', kk+time_transient-1); 
        xlabel('Lattice point') 
        ylabel('Value') 
        ylim([0 1]) 
        title(str) 

         
        figure('units','normalized','outerposition',[0 0 1 1]) 
        subplot(4,4,1) 
        xaxis = time_transient+2:1:time_transient+t_plot+1; 
        jj = 30; 
        h1 = plot(xaxis, Theta(jj,time_transient+2:end), '.'); 
        set(h1, 'Marker', '.', 'MarkerSize', 5) 
        str = sprintf('Time series for lattice points, Node: %d', jj); 
        xlabel('Time') 
        ylabel('Value') 
        ylim([0 1]) 
        title(str) 
        axis tight 

               

         
            nframe=t_plot+1; % Movie 
            mov(1:nframe)= struct('cdata',[],'colormap',[]); 
            set(gca,'nextplot','replacechildren') 
            for k=1:nframe 
                h1 = plot(Theta(:,k+time_transient)); 
                set(h1, 'Marker', '.', 'MarkerSize', 5) 
                str = sprintf('Timestep: %d', k+time_transient-1); 
                xlabel('Lattice point') 
                ylabel('Value') 
                ylim([0 1]) 
                title(str) 
                mov(k)=getframe(gcf); 
            end 
            str3 = sprintf('%d-%d.avi', 100*eps, neighbors); 
            movie2avi(mov, str3, 'compression', 'None'); 



            clear mov 

      
% 
            n_frame2 = num_osc; % Movie: Time-series 
            mov2(1:n_frame2)= struct('cdata',[],'colormap',[]); 
            set(gca,'nextplot','replacechildren') 
            xaxis = time_transient+2:1:time_transient+t_plot+1; 
            for jj = 1:num_osc 
                h1 = plot(xaxis, Theta(jj,time_transient+2:end)); 
                set(h1, 'Marker', '.', 'MarkerSize', 5) 
                str = sprintf('Time series for lattice points, Node: %d', 

jj); 
                xlabel('Time') 
                ylabel('Value') 
                ylim([0 1]) 
                title(str) 
                mov2(jj)=getframe(gcf); 
            end 
            str3 = sprintf('T%d-%d.avi', 100*eps, neighbors); 
            movie2avi(mov2, str3, 'compression', 'None'); 
            %} 
        end 
    end 
    end 
    end 

  
figure('units','normalized','outerposition',[0 0 1 1]) 
h1 = plot(eps_x,Sync_R); 
grid on 
xlabel('Coupling strength') 
ylabel('Synchronization parameter') 
set(h1,'Marker','.','MarkerSize',15) 
ylim([0 1]) 
xlim([2.8 3.45]) 

 

4. 1D HP 

tic 

  
for d = 9:9 % Initial conditions 
% d =1; 
ee = 1; 
nn = 1; 
    %% Parameters 
    num_osc = 100; % Number of oscillators. 
    time_transient = 5000; 
    t_plot = 2000; % keep it a multiple of win_spar 
    time_steps = time_transient+t_plot; 
    type = 0; % Type of initial condition 
    growth_rate = 3.9; 
    win_spar = 50; 
    beta = 5; 

     
    row_osc = (1:1:num_osc)'; 

         



    load('IC_mat.mat') 
    IC = H(:,1); 
    IC2 = P(:,d); 
% IC = IC_mat(:,d); 
% IC2 = IC_mat(:,d+1); 

     

    

        
    for neighbors = 1:7:1 
        for eps = 0.4:0.05:0.4 
            window = 2*neighbors+1; 

             
            Theta_i = IC; % Initial value of host 
            parasite_i = IC2; % Initial value of parasite 
            logistic = zeros(size(Theta_i)); % Logistic 
            Theta_c = logistic; % Size of coupling contribution 
            Theta_f = logistic; % Size of final coupling 
            parasite = zeros(size(Theta_i)); 
            parasite_c = parasite; 
            parasite_f = parasite; 
            Theta = zeros(num_osc, time_steps+1); 
            Para = zeros(num_osc, time_steps+1); 
            Theta(:,1) = Theta_i; 
            Para(:,1) = parasite_i; 

             
            for jj=1:time_steps 
               logistic = growth_rate.*Theta_i.*(ones(num_osc,1)-

Theta_i).*exp(-beta*parasite_i); 
                parasite = Theta_i.*(1-exp(-beta*parasite_i)); 
                Theta_c = runningsum(logistic, window); 
                parasite_c = runningsum(parasite, window); 
                Theta_f = (1-eps).*logistic+(eps/(2*neighbors)).*Theta_c; 
                parasite_f = (1-

eps).*parasite+(eps/(2*neighbors)).*parasite_c; 
                Theta_i = Theta_f; 
                parasite_i = parasite_f; 
                Theta(:,jj+1)=Theta_i; 
                Para(:,jj+1) = parasite_f; 
            end 

             
%          figure 
%             plot_phasespaceHP(Theta, Para, time_transient, eps, neighbors, 

d) %  Phase-space plot 
%             Loc = Theta(:,time_transient:end); 
%             loc_coherence  = local_coherence(Loc); 
%              
%             figure('units','normalized','outerposition',[0 0 1 1]) 
%             hold on 
%             subplot(3,1,3) 
%             edgex_spar = 1:1:num_osc; 
%             edgey_spar = time_transient:1:time_transient+t_plot+1; 
%             loc_coherence(1,1)=1; 
%             loc_coherence(1,end) = 0; 
%             surf(edgey_spar, edgex_spar, 

loc_coherence,'FaceLighting','phong','EdgeColor','none') 
%             xlabel('Lattice Points') 



%             ylabel('Time Series') 
%             str_title = sprintf('Local Order Parameter');  
%             title(str_title) 
%             view(2) 
%             axis tight 
%             colorbar 
%             str = sprintf('order_parameter_%d_%d', floor(100*eps), d); 
%             print(str, '-dpng', '-r0') 

            

             

  
%             %{ 
            CV =coeff_var(Theta, t_plot, win_spar);%  
%             CV2 = coeff_var(Para, t_plot, win_spar); 

  
            figure('units','normalized','outerposition',[0 0 1 1]) 
            hold on 
            subplot(2,1,2) 
            edgex_spar = 1:1:num_osc; 
            edgey_spar = time_transient+2:1:time_transient+t_plot+2-win_spar; 
            sparsity_blur = CV; 
            sparsity_blur(1,1)=0; 
            sparsity_blur(1,end) = 6; 
            surf(edgex_spar, edgey_spar, 

sparsity_blur','FaceLighting','phong','EdgeColor','none') 
            load('mycmap') 
            xlabel('Lattice Points') 
            ylabel('Time Series') 
            str_title = sprintf('CV Host, Coupling %d', eps); 
            title(str_title) 
            view(2) 
            axis tight 
            colormap(mycmap) 
            colorbar           

 
%             figure 
            subplot(2,1,1) 
            edge_time = time_transient:1:time_transient+t_plot-1; % Dynamics 
            Theta_plot = Theta(:,time_transient+2:end); 
%               Theta_plot2 = Theta_plot; 
%                 Theta_plot = Theta_plot2(:,1:100:end); 
%                 edge_time = edge_time(1:100:end); 
%                 Theta_plot(1,1)=1; 
%                 Theta_plot(1,end) = 0; 
            Theta_plot(1,1)=1; 
            Theta_plot(1,end) = 0; 
            surf(row_osc, edge_time, 

Theta_plot','FaceLighting','phong','EdgeColor','none') 
            colormap(jet) 
            colorbar       
            view(2) 
%             xlabel('Lattice point') 
            ylabel('Time') 
            xlim([time_transient time_transient+t_plot-1]) 
            str2 = sprintf('Host, Initial Condition: %d, Couping: %d, 

Neighbors: %d', d, eps, neighbors); 



            title(str2) 
            axis tight  
        end 
%         nn=nn+1; 
    end     
end 
  

 

6. 2D HP 

num_x = 50; 
num_y = 50; 
time_steps = 70; 
transience = 1; 
growth_rate = 4; 
beta = 4; 

  
load('IC.mat') 

  
for neighbors = 10:1:10 
    for eps = 0.2:0.1:0.2 
        window = 2*neighbors+1; 

         
        fH = zeros(size(H)); 
        fH_cpld = fH; 
        fH_final = fH; 
        gP = zeros(size(P)); 
        gP_cpld = gP; 
        gP_final = gP; 
        Host = zeros(num_x, num_y, time_steps); 
        Para = zeros(num_x, num_y, time_steps); 
        Host(:,:,1) = H; 
        Para(:,:, 1) = P; 

         
        for jj=1:time_steps 
            fH = growth_rate.*H.*(ones(num_x,num_y)-H).*exp(-beta*P); 
            gP = H.*(1-exp(-beta*P)); 
            fH_cpld = runningsum2D(fH, window); 
            gP_cpld = runningsum2D(gP, window); 
            fH_final = (1-eps).*fH+(eps/(4*neighbors)).*fH_cpld; 
            gP_final = (1-eps).*gP+(eps/(4*neighbors)).*gP_cpld; 
            H = fH_final; 
            P = gP_final; 
            Host(:,:,jj+1)=H; 
            Para(:,:,jj+1) = P; 
        end 

         
        figure 
        n_frame2 = time_steps-transience; 
        mov2(1:n_frame2)= struct('cdata',[],'colormap',[]); 
        set(gca,'nextplot','replacechildren') 
        xaxis = 1:1:num_x; 
        yaxis = 1:1:num_y; 
        for jj = 1:time_steps-transience 
            M = Host(:,:,jj+transience)'; 



            M(1,1) = 0; 
            M(1,end)=1; 
            h1 = surf(xaxis, yaxis, 

M,'FaceLighting','phong','EdgeColor','none'); 
            str = sprintf('Time: %d', jj); 
            colorbar 
            view(2) 
            axis tight 
            xlabel('X') 
            ylabel('Y') 
            title(str) 
            mov2(jj)=getframe(gcf); 
        end 
        str3 = sprintf('Movie_%d_%d', 100*eps, neighbors); 
        movie2avi(mov2, str3, 'compression', 'None'); 
        save(str3)         
    end 
end 
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