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Abstract

Understanding the response of nuclear spins subjected to oscillating fields has remained an
active pursuit in methodology development in NMR spectroscopy. While methods to study
the dynamics of spin-1/2 nuclei exist, such studies involving quadrupolar spins (spins with
I>1/2) have always been fraught with difficulty. In particular, the evolution of nuclear
spins subjected to radio-frequency (RF) pulses in periodically driven multi-level systems
has remained a challenging problem owing to the domineering presence of the quadrupolar
interactions. Although, development of analytic methods in static solids have enhanced
our basic understanding of the experiments, straightforward extensions to rotating solids
remain less trivial. In particular, a uniform analytic framework that explicates the interplay
between the sample spinning frequency, amplitude of the RF pulse and the quadrupolar
coupling constant remains an open problem in rotating solids. Consequently, optimizations
based on numerical methods have gained prominence in the development of NMR methods in
quadrupolar nuclei. While investigations based on numerical methods are easier to implement
and provide results, they do not necessarily afford insights into the physical phenomena
under study. As an alternative, analytic methods based on Floquet theory are explored in
the thesis for studying the excitation process in multilevel systems. Specifically, effective
time-propagators derived from analytic methods are proposed to describe the effects of RF
pulses in rotating solids in three-level (S=1) systems. Through comparisons with simulations
emerging from exact numerical methods, the suitability and exactness of the analytic methods
is examined over wide-range of experimental parameters. Additionally, the interference effects
observed in spin-1/2 nuclei coupled to quadrupolar spins (say S=1) are also discussed.





Chapter 1

Introduction

1.1 Background

Determination of molecular structure at atomic resolution through spectroscopic methods
has remained an active pursuit for understanding both the functioning of materials (of both
chemical and biological relevance) as well as their role in the dynamics of chemical/biological
reactions. While characterization techniques such as X-ray diffraction, neutron scattering
and vibrational spectroscopy etc. have been quite successful in addressing several important
problems, the emergence of solid-state NMR (ssNMR) as a structural tool has been quite
promising in the last two to three decades. In contrast to analytic techniques that are limited
by molecular weights, nature of the sample etc., ssNMR has emerged as a unique, reliable tool
for characterizing variety of systems, ranging from membrane proteins and amyloid fibrils
in biochemistry to polymers, battery materials, photovoltaic pervoskites, semiconductors,
glasses and catalysts 1–7 . In contrast to other spectroscopic methods, the manipulation of the
nuclear spin interactions at the atomic level enhances the repertoire of NMR spectroscopy as a
versatile tool for providing variety of structural constraints such as torsion angles, interatomic
distances etc. both in the solution as well as in the solid-state. While studying the effects
of magnetic fields and radio-frequency pulses (RF) on nuclear spins (spin interactions) have
remained central in NMR spectroscopy, the orientation dependence of the spin interactions
in the solid-state makes it unique and important in contrast to similar studies in the solution
state.

From an operational aspect, the genesis of solid-state NMR spectroscopy began only in
1958 through the discovery of Magic Angle Spinning (MAS) experiment 8,9 . In contrast to
solution NMR spectroscopy, the spin interactions in the solid state remain anisotropic due to
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restricted mobility, resulting in broadened spectra. To overcome the undesirable broadening
effects, Andrew et al. and Lowe, independently demonstrated the idea of physical rotation
of the sample along an axis inclined at an angle θm=54.7◦ with respect to the static mag-
netic field. Such an approach resulted in spectra comprising a centre band (often determined
by the isotropic part of the spin interactions) and series of spinning sidebands (due to the
anisotropic part of the spin interaction) distributed symmetrically about the center-band at
integer multiples of the spinning frequency 2,10 . With increase in the spinning frequency,
the anisotropic part of the interactions get partially/completely averaged out resulting in
isotropic liquid like spectrum. In particular, spin interactions in spin-1/2 nuclei such as
chemical shift anisotropy (CSA), dipole-dipole interaction and indirect spin-spin interaction
(J-coupling) have magnitudes ranging from Hz to few kHz and are mostly or partially aver-
aged out under MAS resulting in well-resolved spectra in the solid state. In combination with
MAS, development of techniques such as cross-polarization 11,12 , homonuclear and heteronu-
clear decoupling methods 13–15 , homonuclear recoupling 16–20 and heteronuclear recoupling
methods 21–23 have facilitated structure determination of materials containing spin-1/2 nuclei
in the solid state.

While these advancements have largely benefited the study of spin I=1/2 nuclei (e.g.
1H, 13C, 31P etc.), the improvements seem only marginal in the experimental studies of
quadrupolar nuclei (nuclei with I>1/2). Since more than 70% of nuclei in the periodic ta-
ble are quadrupolar (I>1/2), the NMR study of such nuclei become essential. According to
nuclear shell model, nuclear spins with I>1/2 (quadrupolar nuclei) have non-spherical distri-
bution of charge around the nucleus. This charge distribution interacts with the surrounding
electric field gradient resulting in the “Quadrupolar interaction” 5,24,25 and is characterized
in terms of the quadrupolar coupling constant (CQ). In contrast to other internal interac-
tions, the quadrupolar interaction is magnitude wise very strong (CQ is of the order of several
MHz) and is primarily responsible for the line broadening observed in the NMR spectra of
quadrupolar nuclei. Consequently, the effects of spinning have only been marginal in the
experimental studies of quadrupolar nuclei (I>1/2) 26,27 .

To this end, alternative strategies such as Variable Angle Spinning (VAS) 28,29 , Dynamic
angle spinning (DAS) 30 and Double rotation (DOR) 31,32 techniques were introduced to
improve the resolution of the NMR spectra of quadrupolar nuclei in the solid state. Due to
technical limitations and the degree of sophistication required, such techniques could never be
integrated with routinely available NMR hardware. In 1995, Frydman and co-workers 33,34
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proposed the Multi-Quantum MAS experiment (MQMAS) for acquiring isotropic spectra
of quadrupolar nuclei with the use of traditional NMR hardware without special modifica-
tions. The MQMAS technique is a two-dimensional experiment that provides correlation
between second-order quadrupolar shifted isotropic chemical shifts in the indirect dimension
and has been used to measure chemical and second-order isotropic shifts in a wide range
of quadrupolar nuclei 35–40 . The local structural information contained in the electric field
gradients (EFG’s) of the individual sites is deduced from the resolution obtained in MQ di-
mension. Although, such an approach seems very viable, the poor excitation efficiency of MQ
coherences and its reconversion to detectable SQ coherence seems to be the major limiting
factor. To this end, several variants of MQMAS 41–45 and sensitivity enhancement techniques
such as fast amplitude-modulated pulses 46–50 , double-frequency sweeps 51–53 , rotational reso-
nance effects 54–59 , CPMG pulse train 60–62 etc. have been developed in the past two decades.
Since structural parameters such as electronic arrangement, distance between nuclei, torsion
angle are manifested in the anisotropic internal interactions such as chemical shift anisotropy,
dipolar interactions, quadrupolar interactions etc., suites of recoupling experiments analogous
to those in spin I=1/2 systems have also been developed in systems comprising quadrupolar
spins. To this end, several heteronuclear dipolar recoupling experiments 63–68 have emerged
to re-introduce dipolar interaction in systems containing quadrupolar nuclei. In particular,
MQMAS experiments have been integrated with cross-polarization techniques to enhance
polarization on quadrupolar nuclei 69–75 . Additionally, CSA tensors of spin-1/2 system (such
as 1H) coupled with quadrupolar nuclei have been extracted through multidimensional ex-
periments 76–83 .

Although, the availability of sophisticated hardware such as high magnetic field strengths,
ultrafast MAS probes have benefited studies involving quadrupolar spins, quantifying exper-
iments involving quadrupolar nuclei have always been fraught with difficulty owing to the
domineering presence of the quadrupolar interactions. Consequently, simulations of NMR
experiments based on numerical methods 84,85 have become indispensable in the solid state.
Employing numerical simulations, optimal parameters for a given experiment are deduced
by trial and error, resulting in the development of sophisticated experiments both in the
solution and solid state. Nevertheless, understanding the nuances of the underlying spin
physics is quintessential to the design of new pulse sequences besides extending the range of
applications of NMR spectroscopy. Since extraction of molecular constraints in NMR experi-
ments involves iterative fitting of the experimental data, simple analytic expressions that are
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computationally efficient are essential.

1.2 Objectives and scope of the thesis

From an operational point of view, the main complexity in analytic treatments arises dur-
ing the description of the evolution of spins under an RF pulse. In the description of spin
I=1/2 systems, the amplitude of the RF pulse often exceeds the magnitude of the internal
spin interactions. Hence, the time-evolution of the spin system during an RF pulse is ap-
proximately governed by the RF interaction and is conveniently described through rotation
operators. By contrast, in the case of quadrupolar spins, the magnitude of the quadrupolar
interaction (described in terms of the quadrupolar coupling constant) often exceeds both (i)
the available RF amplitude (ii) internal spin interactions. Consequently, during an RF pulse,
the quadrupolar nucleus evolves under both the RF and the quadrupolar interaction Hamil-
tonians. Although, theoretical formulations employing descriptions in the state space built
on “adiabatic approximations” have emerged in the past for describing the underlying spin
dynamics, their utility has always remained limited to static samples with minor extensions
in rotating samples 65,86–89 . In particular, their utility in describing the spin dynamics in
powder spinning samples is limited due to the orientational dependence of the quadrupolar
interactions. In such systems, the magnitude of the quadrupolar coupling constant varies with
individual crystallite orientations and the state-space descriptions become less insightful.

Although, analytic methods based on Average Hamiltonian Theory (AHT) and Floquet
theory have been used extensively in the literature 10,90–98 to describe the underlying spin
dynamics in spin I=1/2 systems, the exactness and utility of these methods in the description
of MAS experiments involving quadrupolar spins remains less explored. This forms the main
motivation behind this thesis. Employing the density operator formalism 99 and the time-
propagators derived from the analytic methods, the spin dynamics involving quadrupolar
spins is studied. Below, we outline the problems addressed in this thesis:
1. To begin with, analytic theory of finite pulse effects in rotating solids is described in spin
I=1/2 systems employing the density operator formalism. Employing this model system,
the role of interaction frames is discussed. Employing time-propagators derived from AHT
and Floquet methods, the excitation of double-quantum (DQ) transitions in spin-1 system
is discussed employing the density operator formalism. The interplay between the RF am-
plitude, quadrupolar coupling constant and the spinning frequency in the convergence of the
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expansion coefficients in the time-propagators is discussed through analytic expressions.
2. In the second part of the thesis, the interference effects in coupled systems emanating from
RF irradiation on the quadrupolar spin is discussed. For demonstrative purposes, examples
from experiments that involve simultaneous recoupling and decoupling of spin interactions is
examined in coupled systems comprising spin-1 system.

In what follows, the basic theory and methodology required for describing the underlying
spin dynamics in NMR experiments is summarised for the sake of continuity.

1.3 Theory and Methodology

1.3.1 Spin interactions in NMR

Unlike other spectroscopic methods, NMR spectroscopy provides a unique platform for ma-
nipulating the nuclear spin interactions at the atomic level without destroying the information
content inherent in them. To explicate the role of various spin interactions in NMR exper-
iments, the spin Hamiltonian is expressed as a sum comprising the external and internal
interactions. The external Hamiltonian comprises the interaction between the nuclear spin
magnetic moment and the magnetic fields (inclusive of both static and oscillating magnetic
fields). The internal interactions comprise the nuclear spin interactions with the chemical
shift interaction, scalar interaction, dipolar and quadrupolar interactions being the prominent
ones.

(A) External interactions

The Zeeman interaction represents the interaction between the nuclear spin magnetic moment
and the static magnetic field and is represented through the Zeeman Hamiltonian, HZ .

HZ = −µzB0 = −γB0Iz = ω0Iz ; ~ = 1 (1.1)

where µ is the magnetic moment, γ is the gyromagnetic ratio (in units of rad/sec/T), B0 is the
strength of the static magnetic field (in units of Tesla, T) and ω0

2π is the Larmor frequency
(of MHz order). In a similar vein, the interaction of the nuclear spin with the oscillating
magnetic field (applied along the x-direction) is represented through the RF Hamiltonian
given below,

HRF (t) = −2γB1 cos (ωref t+ φ) Ix = 2ω1 cos (ωref t+ φ) Ix (1.2)

where ω1 = −γB1 is the nutation frequency of the RF field and φ is the phase. In comparison
to the internal interactions (barring the quadrupolar interaction in some cases) present in
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the system, the Zeeman interaction is dominant. Since the evolution of the system under the
internal spin interactions in the presence of oscillating fields (usually employed to probe the
spin system) is desired, theoretical description of NMR experiments is often carried out in
the rotating frame, wherein the dominant contributions from Zeeman interactions is absent.
Accordingly, the time-dependent contributions of the spin interactions in the rotating frame
are ignored under “Secular Approximation”, 1–3 while, the RF Hamiltonian (Eq. 1.2) reduces
to a much simpler form given below.

H̃RF = ω1Ix (1.3)

(B) Internal interactions

In contrast to liquids, the spin interactions in the solid state are represented through ‘ten-
sors’, a mathematical quantity that transforms in certain prescribed ways. The anisotropic
nature of the spin interactions in the solid-state (such as chemical shift, dipolar, scalar in-
teractions and quadrupolar interactions) are represented through second rank tensors. A
detailed description of these interactions is well-documented in the literature 25,100–103 and is
consciously omitted to avoid repetition. Below, we present a brief summary of the important
equations that would be required to follow the thesis.

Due to physical rotation of the sample, the internal spin interactions become time-
dependent in MAS experiments 8,9,100,101 . Here in this thesis, we restrict ourselves to three
internal interactions namely chemical shift interaction, quadrupolar interaction (present in
I>1/2 system) and dipolar interactions.

(i) Chemical shift interaction

The chemical shift interaction depicts the interaction between the nuclear spin magnetic
moment with static magnetic field mediated through surrounding electronic cloud. In case
of solids, the chemical shift interaction is characterized by both the isotropic as well as
the anisotropic part chemical shift anisotropy (CSA). The isotropic chemical shifts provide
the electronic and co-ordination environment of nuclei, while the chemical shift anisotropy
provides insights into orientation and conformation. In the rotating frame, the chemical shift
interaction under MAS is represented by the following equation,

HCS (t) = ∆ωIz︸ ︷︷ ︸
Hiso

+
2∑

m=−2,6=0
ω

(m)
I eimωrtIz︸ ︷︷ ︸

HCSA(t)

(1.4)

where ∆ω = ω0 − ω represents the offset or isotropic chemical shift.
In MAS experiments, the anisotropic components of the internal interactions (CSA, dipolar
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and quadrupolar interaction) are represented through the following standard expression.

ω
(m)
λ =

2∑
m1=−2

R
(2)m1
P,λ

2∑
m2=−2

Dm1m2 (ΩPM)Dm2m (ΩMR) dm0 (βRL) (1.5)

Here, R(2)m1
P,λ represents the component of the spatial tensor (λ=CSA, dipolar or quadrupo-

lar interaction) defined in the principal axis system (PAS), while Dm1m2 (ΩAB) denotes the
Wigner Rotation matrix with rank 2 and ΩAB = {α, β, γ}, the set of Euler angles used in the
transformation from PAS to Lab frame 102,103 . In the PAS, the spatial components (R(2)m1

P,λ )
associated with the CSA interactions are represented below.

R
(2)0
P,CSA = δaniso , R

(2)±2
P,CSA = − 1√

6
δanisoη , R

(2)±1
P,CSA = 0 (1.6)

with δaniso representing the magnitude of the CSA and η, the asymmetry parameter.
(ii) Quadrupolar interaction

Nuclei with I>1/2 possess a non-zero quadrupole moment due to non-spherical charge distri-
bution in the nucleus (according to nuclear shell model). This quadrupole moment interacts
with electric field gradient generated by their surroundings resulting in quadrupolar interac-
tion (HQ)

5,25 . The magnitude of the quadrupolar interaction often exceeds the amplitude
of the RF excitation pulse. Often the quadrupolar Hamiltonian is expressed as a product of
irreducible tensor operators (comprising spatial tensor, R(2)q and spin tensor, T (2)q operators)
25,102,103 .

HQ (t) =
2∑

q=−2
R

(2)−q
Q,L (t)T (2)q (1.7)

where,

R
(2)0
P,Quad = ωQ , R

(2)±1
P,Quad = 0 , R(2)±2

P,Quad = −ωQη√
6

(
ωQ = 2π 3CQ

2I (2I − 1) , CQ = e2qQ

)

T (2)0 = 1√
6
[
3I2
Z − I2

]
, T (2)±1 = ∓1

2 [IZI± + I±IZ ] , T (2)±2 = 1
2I

2
±

In the rotating frame, the quadrupolar interaction acquires additional time-dependence
due to ‘ω’ and is expressed in the compact form as given below.

HQ(t) = 1√
6

2∑
q=−2

2∑
m=−2,6=0

ω
(2)−q
Q,m T (2)qeiqωteimωrt (1.8)

where
ω

(2)q
Q,m =

∑
m1

R
(2)m1
Q,PAS

∑
m2

Dm1m2 (ΩPM)Dm2m (ΩMR) dm,q (βRL)
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To first-order, the quadrupolar Hamiltonian in the rotating frame is represented by ignor-
ing the time-dependent terms (retaining terms that commute with Zeeman interaction only,[
Iz, T

(2)0
]

= 0).

H
(1)
Q (t) = 1√

6

2∑
m=−2, 6=0

ω
(2)0
Q,mT

(2)0eimωrt (1.9)

Employing averaging methods, the second-order contributions (from time-dependent terms)
to the quadrupolar interaction is derived and summarized by the following equation.

H
(2)
Q = − 1

12
∑

q=±1,±2

∑
m=±1,±2

ω
(2)q
Q,mω

(2)−q
Q,−m

qω −mωr

[
T (2)q, T (2)−q

]
(1.10)

Retaining contributions to second-order, the quadrupolar Hamiltonian is represented by
the following equation.

HQ(t) = H
(1)
Q (t) +H

(2)
Q (t) (1.11)

(ii) Dipolar interaction

The interaction between two nuclei take place either through bond (J-coupling) or through
space (dipolar coupling). Owing to the smaller magnitude of the scalar interaction (or J-
coupling), it is often ignored in solid state NMR. By contrast, due to restricted mobility, the
through space interactions (or dipolar interactions) remain unaveraged and are anisotropic in
nature. Accordingly, the Hamiltonian depicting the dipolar interaction between a heteronu-
clear spin pair is represented by the following equation.

HIS (t) =
2∑

m=−2,6=0
2ω(m)

IS e
imωrtIzSz (1.12)

The spatial components of the dipolar interactions in the PAS are represented by the
following equation.

R
(2)0
P,dipolar =

√
6b
(
b = −µ0γIγS

4πr3
IS

)
, R

(2)±2
P,dipolar = R

(2)±1
P,dipolar = 0 (1.13)

1.3.2 Time evolution of spins in NMR experiments

As measurements in NMR spectroscopy are made on bulk samples, the density matrix for-
malism 99 has remained the preferred approach for studying the dynamics of such systems.
Accordingly, the state of system is described in terms of the density operator, ρ(t) and the
time-evolution of the system is studied using Quantum-Liouville equation.

i
dρ (t)
dt

= [H (t) , ρ (t)] , ~ = 1 (1.14)
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When the Hamiltonian is time-independent, the formal solution to the above equation is
straightforward and reduces to the following form.

ρ (t) = U (t, 0) ρ (0)U−1 (t, 0) = e−iHtρ (0) eiHt (1.15)

In the above equation, ‘ρ(0)’ represents the initial state of the system at time t=0 and
ρ(t) is the state of the system at time ‘t’. Interestingly, in NMR experiments, the spin
Hamiltonians are time-dependent. In such cases, the formal solution to the above equation
has a complicated form.

ρ (t) = U (t, 0) ρ (0)U−1 (t, 0) = e
−i

t∫
0
H(t′)dt′

ρ (0) e
i
t∫

0
H(t′)dt′

(1.16)

From an experimental perspective, analytic expressions are desirable for deducing optimal
conditions and for quantifying the NMR experimental data. To address this issue, Waugh
and Haeberlen in 1968 proposed the Average Hamiltonian Theory (AHT) 10,90 for describing
MAS experiments in the solid state. In the average Hamiltonian framework, a time-averaged
effective Hamiltonian is derived from the Magnus Expansion formula 104 . While descriptions
based on Average Hamiltonian Theory (AHT) have been the preferred approach, methods
based on Floquet theory 91–95,105,106 have also emerged to describe MAS experiments. Nev-
ertheless, the utility and exactness of such methods requires a careful comparison between
simulations emerging from analytical and numerical methods. A brief summary of the ana-
lytic methods is discussed in the Appendices.

1.4 Organization of the thesis

In chapter 2, the exactness of analytic methods for describing finite pulse effects in MAS
experiments is discussed. Specifically, the finite pulse effects for three-level system is dis-
cussed and compared with those obtained from two-level systems. Depending on the relative
magnitudes of the internal spin interactions with respect to the amplitude of the excitation
pulse, the role of interaction frames in the derivation of time-propagators is discussed. For
illustrative purposes, the exactness of time-propagators derived from analytic methods such
as (a) AHT (b) Floquet theory (c) Floquet Magnus Expansion (FME) are also explored
and discussed in detail through comparisons with simulations emerging from exact numerical
methods.

In chapter 3, analytic theory of interference effects under MAS conditions is discussed
within the density matrix formalism. Employing the time-propagators obtained from chapter-
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2, analytic models are built for quantifying the interference effects between a spin-1/2 nucleus
coupled to a quadrupolar spin (S=1). The exactness of the analytic models are verified
rigorously through comparisons with simulations emerging from numerical methods.

In chapter 4, the results obtained in this thesis are summarized along with future per-
spectives.
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Appendix A

Average Hamiltonian Theory (AHT)

The evolution of system in quantum mechanics is studied using the Quantum-Liouville equa-
tion given below.

i
dρ (t)
dt

= [H (t) , ρ (t)] (A.1)

In the above equation, ρ(t) represents the state of the system at time ‘t’ and is evaluated
using the standard solution.

ρ (t) = U (t, 0) ρ (0)U−1 (t, 0) (A.2)

where ρ(0) represents the initial state of the system at time t=0. The term U(t,0) denotes
the evolution operator and has a complicated form.

U (t, 0) = T̂ exp
−i t∫

0

(Hint (t′) +Hext (t′)) dt′
 (A.3)

where T̂ represents the time ordering operator. The term Hint(t) and Hext(t) denotes the
internal and external Hamiltonian of the system respectively.

To reduce the complexities involved for describing the time-evolution of systems, Waugh
and co-workers proposed an interaction frame 10,90 wherein, the evolution operator, U (t, 0),
is expressed as a product of two exponential operators, representative of the internal and
external Hamiltonians.

U (t, 0) = T̂ exp
−i t∫

0

(Hint (t′) +Hext (t′)) dt′


= URF (t, 0)Uint (t, 0) (A.4)

where,

URF (t, 0) = T̂ exp
−i t∫

0

Hext (t′) dt′
 (A.5)

12
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Uint (t, 0) = T̂ exp
−i t∫

0

H̃int (t′) dt′
 (A.6)

The internal Hamiltonian in the RF interaction frame (H̃int (t)) is derived through the
following relation.

H̃int (t) = U−1
RF (t, 0)Hint (t)URF (t, 0) (A.7)

Utilizing the periodic properties of the Hamiltonians (both internal and external) and
imposing the ‘cyclic condition’ (i.e. URF (τc, 0)=1), the evolution of spins in the interac-
tion frame is described by an evolution operator comprising only the transformed internal
Hamiltonian.

U (Nτc, 0) = [U (τc, 0)]N = [Uint (τc, 0)]N =
T̂ exp

−i t∫
0

H̃int (t′) dt′
N (A.8)

When the modulation frequencies of sample rotation
(
ωr = 2π

τr

)
and pulse sequence(

ωc = 2π
τc

)
are commensurate (ωc = Nωr), the Magnus formula 104 presents an attrac-

tive option for deriving a time averaged Hamiltonian (internal) over a cycle (τc) in the RF
interaction frame.

U (τc, 0) = Uint (τc, 0) = exp
(
−iH int (τc) τc

)
(A.9)

The time averaged Hamiltonian (H int) is valid only over the cycle time (τc) and is ex-
pressed through a series of corrections derived from Magnus expansion.

H int (τc) = H(0) (τc) +H(1) (τc) +H(2) (τc) +H(3) (τc) + ..... (A.10)

H(0) (τc) = 1
τc

τc∫
0

H̃int (t′) dt′ (A.11)

H(1) (τc) = − i

2τc

τc∫
0

dt′
t′∫

0

[
H̃int (t′) , H̃int (t′′)

]
dt′′ (A.12)

.......................................................
This forms the basis of stroboscopic detection (i.e. detection only at cycle times) in magnetic
resonance. Employing the AHT framework, suites of multiple-pulse experiments have been
designed in solids under both static and spinning conditions.
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Appendix B

Effective Hamiltonians in Floquet

theory

B.1 Floquet theory

In this section, a brief description of Floquet theory is presented. A more detailed discus-
sion on Floquet theory along with its various formulations could be found in the literature
91–95,105,106 . We begin with the time-dependent Schrondinger equation with periodically time
dependent Hamiltonians as given below.

i~
∂ |ψ (t)〉
∂t

= H (t) |ψ (t)〉 (B.1)

Following the procedure outlined by Shirley, both the wave function ψ(t) and the Hamil-
tonian H(t) are expanded via Fourier series expansion.

H (t) =
∞∑

n=−∞
H(n)einωt ; |ψ (t)〉 =

∞∑
n=−∞

∑
α

c(n)
α (t)einωt |φα〉 (B.2)

On substitution in Eq. B.2, the following equation is obtained.
∑
γ

∞∑
m=−∞

[
i~
∂c(m)

γ (t)
∂t

−m~ωc(m)
γ (t)

]
einωt |φγ〉 =

∑
α,β

∞∑
n,n1=−∞

H
(n1)
αβ c

(n)
β (t) ei(n+n1)ωt |φα〉

(B.3)
In the above equation, the greek indices (α, β, γ) depict the spin state of the system,

while, the indices (n, m, n1) denotes the Fourier index. Left multiplying Eq. B.3 by 〈φγ| and
equating the like powers of exponentials on each side, the above equation reduces to a form
originally obtained by Shirley.

i~
∂c(m)

γ (t)
∂t

=
∑
β

∞∑
n=−∞

(
H

(m−n)
γβ +m~ωδγ,βδm,n

)
︸ ︷︷ ︸

HF

c
(n)
β (t) (B.4)

14
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In the above equation, ‘HF ’ depicts the Floquet Hamiltonian defined in an infinite dimen-
sional vector space. To describe the Floquet Hamiltonian in the infinite dimensional vector
space, both the spin states and spin operators are dressed with Fourier indices.

∣∣∣φ(n)
α

〉
= |n〉 ⊗ |φα〉 (B.5)

〈
φ(m)
α

∣∣∣HF

∣∣∣φ(n)
β

〉
= H

(m−n)
αβ +m~ωδα,βδm,n (B.6)

To conveniently describe the spin dynamics in the Floquet space, a set of Fourier operators
are defined.

Fm =
∞∑

n=−∞
|n〉 〈n+m| , IF = n

∞∑
n=−∞

|n〉 〈n| (B.7)

Here, IF is defined as the Fourier number operator and Fm is the Fourier ladder operator.
Consequently, the spin operators in the Floquet space are constructed by direct product of
Fourier operators (Fm) and spin operators (Ôp).

[
Ôp

]
m

= Fm ⊗ Ôp (B.8)

with the following commutator relations between them.

[
IF ,

[
Ôp

]
m

]
= m

[
Ôp

]
m
,
[[
Ôp

]
m
,
[
Ôq

]
n

]
=
[
Ôp, Ôq

]
m+n

(B.9)

B.2 Effective Floquet Hamiltonians- Floquet Contact

Transformation

The contact transformation method is an operator equivalent of the Rayleigh Schrodinger
perturbation theory 107–109 and has been extensively employed to derive effective Hamiltoni-
ans in magnetic resonance spectroscopy 95–98 . In this method, the Hamiltonian is rewritten
as a sum of two terms comprising a zero order and perturbing Hamiltonian as depicted below.

H = H0 + λH1 (B.10)

In accord with the tenets of perturbation theory, the magnitude of perturbing Hamilto-
nian is less than that of the zero order Hamiltonian (i.e. ‖H1‖ � ‖H0‖). Employing the
perturbation parameter λ, the Hamiltonian in equation B.10 is transformed by a unitary
transformation function, U = exp (iλS1). The transformed Hamiltonian thus obtained is

15



Basics

expanded as a sum of various orders of corrections (ordered according to various powers of
λ) as depicted below.

H̃ = UHU−1 = eiλS1 (H0 + λH1) e−iλS1

= H
(1)
0 + λH

(1)
1 + λ2H

(1)
2 + ......+ λnH(1)

n (B.11)

Employing Baker-Campbell-Hausdorff (BCH) formula 110 , equation B.11 is expanded.
Subsequently, various correction terms are derived by equating the powers of λ on both sides
in the above equation.

H
(1)
0 = H0 (B.12)

H
(1)
1 = H1 + i [S1, H0] (B.13)

H
(1)
2 = i [S1, H1]− 1

2 [S1, [S1, H0]] (B.14)

.........................................

H(1)
n = in

n!

S1, .......................[S1,︸ ︷︷ ︸
n−1

H0]

+ in−1

n− 1!

S1, .......................[S1,︸ ︷︷ ︸
n−2

H1]

 (B.15)

The generator of the unitary transformation (S1) is chosen to compensate the off-diagonality
in H1 and is obtained by solving the equation given below.

H
(1)
1 = H1 + i [S1, H0] = 0 (B.16)

Subsequently, employing the transformation function (from Eq. B.16), the various orders
of corrections in the Hamiltonian (Eq. B.13-B.15) are derived.
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Appendix C

Floqet Magnus Expansion

The time-dependent Schrodinger equation in terms of the evolution operator is represented
by the following equation.

i
dU (t)
dt

= H (t)U (t) (C.1)

with U(0) = I as initial condition and H(t), the periodic Hamiltonian (with period, T) i.e.
H(t)=H(t+T). Employing Floquet theorem 91,92 , the evolution operator is expressed as a
product of terms given below.

U (t) = P (t) e−iHt , P (t) = P (t+ τ) (C.2)

Inserting the form of U(t) from Eq. C.2 into Eq. C.1.

i
dP (t)
dt

= H (t)P (t)− P (t)H (C.3)

where P(0)=I can be assumed but this is non-mandatory. Using the exponential ansatz
from Magnus expansion 104 , P (t) = e−iΛ(t) with Λ(t + T ) = Λ(t), the following form of the
differential equation is obtained from Eq. C.3.

i
d

dt

{
e−iΛ(t)

}
= H (t) e−iΛ(t) − e−iΛ(t)H (C.4)

It may be noted that Eq. C.4 is independent of Λ(0). The advantage of FME 111–113

approach lies in its ability to make a choice for Λ(0). This allows further simplification of
the perturbative calculations of Λ(t) and H. A choice of Λ(0) 6= 0 is equivalent to the use of
more general representation of the evolution operator.

U (t) = P (t) e−iHtP † (0) (C.5)
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Substituting the perturbation expansions for Λ(t) and H in Eq. C.4 provides the solution
for Λn(t) and H.

Λ(t) =
∞∑
n=1

λnΛn (t) , H =
∞∑
n=1

λnH
(n) (C.6)

Λn (t) = Λn (0) +
t∫

0

Gn (t′) dt′ − tH(n) (C.7)

H
(n) = 1

T

T∫
0

Gn (t) dt (C.8)

The terms Gn(t) have the following forms at various orders:-

n = 1 ; G1 (t) = H (t) (C.9)

n = 2 ; G2 (t) = − i2

[
H (t) +H

(1)
,Λ1 (t)

]
(C.10)

n = 3 ; G3 (t) = − i2

[
H (t) +H

(1)
,Λ2 (t)

]
− i

2

[
H

(2)
,Λ1 (t)

]
− 1

12

[
Λ1 (t) ,

[
Λ1 (t) , H (t)−H(1)

]]
(C.11)

Employing the time-dependent periodic Hamiltonian, H(t) (H (t) = ∑
m
Hme

imωt) with

period T
(
ω = 2π

T

)
in Eq. C.8-C.11, the expansion coefficients in Λ(t) and H̄ are derived

and summarized below.

Λ1 (t) =
∑
m6=0

Hm

imω

{
eimωt − 1

}
+ Λ1 (0) (C.12)

H
(1) = H0 (C.13)

Λ2 (t) = −1
2
∑
m6=0

[Hm,Λ1 (0)]
mω

{
eimωt − 1

}
+ i

∑
m6=0

[H0, Hm]
m2ω2

{
eimωt − 1

}

+ i

2
∑

m6=0,n6=0
(1− δm+n) [Hm, Hn]

m (m+ n)ω2

{
ei(m+n)ωt − 1

}

− i

2
∑

m 6=0,n 6=0

[Hm, Hn]
mnω2

{
eimωt − 1

}
+ Λ2 (0) (C.14)

H
(2) = −i [H0,Λ1 (0)] + 1

2
∑
m6=0

[Hm, H−m]
mω

+
∑
m6=0

[H0, Hm]
mω

(C.15)

The exact expressions for Λ(t) and H depends on the choice of initial boundary condition
(whether Λ(0) is zero or non-zero) and is discussed below.
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C.1 Normal Boundary Condition, Λ(0) = 0

In the normal boundary condition, Λ(0) is set as zero and the expressions for Λ(t) and H

further simplified to form given below.

Λ1 (t) =
∑
m6=0

Hm

imω

{
eimωt − 1

}
(C.16)

H
(1) = H0 (C.17)

Λ2 (t) = i
∑
m6=0

[H0, Hm]
m2ω2

{
eimωt − 1

}
+ i

2
∑

m 6=0,n 6=0
(1− δm+n) [Hm, Hn]

m (m+ n)ω2

{
ei(m+n)ωt − 1

}

− i

2
∑

m6=0,n6=0

[Hm, Hn]
mnω2

{
eimωt − 1

}
(C.18)

H
(2) = 1

2
∑
m6=0

[Hm, H−m]
mω

+
∑
m6=0

[H0, Hm]
mω

(C.19)

C.2 Alternate Boundary Condition, Λ(0) 6= 0

In the alternate boundary condition, Λ(0) is set as non-zero. As Λn+1(t) depends on Λn(t),
a suitable choice for Λ1(0) is made to avoid any increase in the number of terms.

Λ1 (0) =
∑
m 6=0

Hm

imω
(C.20)

Λ1 (t) =
∑
m 6=0

Hm

imω
eimωt (C.21)

H
(1) = H0 (C.22)

Λ2 (t) = i
∑
m 6=0

[H0, Hm]
m2ω2 eimωt + i

2
∑

m 6=0,n 6=0
(1− δm+n) [Hm, Hn]

n (m+ n)ω2 e
i(m+n)ωt (C.23)

H
(2) = 1

2
∑
m6=0

[Hm, H−m]
mω

(C.24)
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Chapter 2

Analytic theory of finite pulse effects

in rotating solids

2.1 Background

The versatility of nuclear magnetic resonance (NMR) spectroscopy as a preferred analytic
tool results from its inherent ability to manipulate spin interactions at the atomic level
1–3 . From an operational perspective, the development of sophisticated theoretical methods
(both numerical and analytical) for quantifying the response of nuclear spins subjected to RF
pulses 4–9 has been instrumental in enhancing the repertoire of NMR spectroscopy as a reli-
able tool for probing molecular structure in systems of varying complexities 10,11 . Through
controlled manipulation of the spin interactions 2,5,12,13 , the molecular constraints desired
for structure determination are estimated systematically through multi-dimensional experi-
ments 14–19 . Here in this chapter, we focus on the form of the spin Hamiltonians 2,5,20,21

governing the evolution of spins during a pulse. From an experimental perspective, the
anisotropic nature of the spin interactions (such as chemical shift anisotropy (CSA), dipolar
interactions, quadrupolar interactions etc.) results in a distribution of resonance frequencies.
Consequently, the overall excitation efficiency depends on both the internal (magnitude of
anisotropic interactions) and external parameters (such as the amplitude and duration of the
pulse) in addition to the sample rotation frequency employed in magic angle spinning (MAS)
experiments 22,23 .

When the amplitude of the radio frequency (RF) pulse largely exceeds the magnitude of
the internal spin interactions, it is customary to ignore the effects of the internal Hamiltoni-
ans during the pulse (commonly referred to as the strong pulse/ ideal pulse limit). The more
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challenging case arises when the magnitude of the internal interaction exceeds (or is on par
with) both the RF amplitude of the pulse and the sample rotation frequency. Such condi-
tions are often encountered in the description of transitions in multi-level systems 2,8,24 (e.g.
quadrupolar spins, I>1/2). In particular, analytic description of excitation in quadrupo-
lar nuclei under spinning conditions is less straightforward 25–29 owing to the domineering
presence of the quadrupolar interaction and has remained a challenging problem.

From an operational standpoint, the complexities encountered in theoretical studies in-
volving quadrupolar nuclei could be attributed to (i) the larger magnitude of the quadrupolar
interaction with respect to the amplitude of the excitation pulse (ii) the presence of multi-
ple spin states (iii) the time-dependence of the spin interactions due to physical rotation of
the sample. Although, development of analytical methods in static solids 8,25–34 have en-
hanced our basic understanding of the experiments, straightforward extensions to rotating
solids remain less trivial 29,35–38 . In particular, a uniform analytical framework that analyses
the role of the sample spinning frequency, amplitude of the RF pulse and the quadrupo-
lar coupling constant in MAS experiments remains an open problem 39,40 . Consequently,
optimizations based on numerical methods 6,7 have gained prominence in the development
of NMR methods in quadrupolar nuclei. While investigations based on numerical methods
are easier to implement and provide results, they do not necessarily afford insights into the
physical phenomena under study.

Although, excitation in both static and spinning samples (predominantly in spin I=1/2
systems) is understood within certain approximations, a careful review of the available ana-
lytic methods is desirable to address the challenges encountered in the description of transi-
tions in multi-level systems. With this objective, the validity of the approximations employed
in the analytic methods are verified over wide range of parameters through comparisons with
simulations emerging from analytic and exact numerical methods. To pedagogically describe
the relevance of the methods, the excitation in static and spinning samples is discussed sep-
arately using theoretical methods based on perturbation theory 41–43 .

2.2 Statement of Problem

To illustrate the relevance of analytic methods, we begin with numerical simulations depicting
the excitation of double-quantum (DQ) transitions in spin I=1 system (as¯illustrated in
Figure 2.1).
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Figure 2.1: In the MAS simulations depicted, excitation of DQ transition in spin I=1 system is

presented. (A) The black line represent numerical simulations 7 at even multiples of τr4 while the

red line represent numerical simulations at odd multiples of τr4 . The following parameters were

employed in the simulations: CQ = 1 MHz, νr = 40 kHz (τr = 25µs) and RF amplitude, ν1 = 10

kHz (B) Variation of RF amplitude (Black line- ν1 = 10 kHz, Red line- ν1 = 20 kHz, Blue line-

ν1 = 40 kHz) (C) Variation of spinning frequency (Black line- νr = 40 kHz, Red line- νr = 60 kHz,

Blue line- νr = 80 kHz).

In the simulations depicted in panel A (Fig. 2.1), the excitation of DQ transitions at
integral multiples of τr4 (where τr denotes the rotor period, τr=

2π
ωr

with ωr depicting the
sample rotation frequency) is illustrated. As depicted (panel A, Fig. 2.1), the excitation
efficiency tends to zero at odd multiples of τr4 (indicated in red color) while it remains

oscillatory at even multiples of τr4 (indicated in black color). In a similar vein, the DQ
excitation efficiency increases with an increase in the RF amplitude (refer to panel B, Fig.
2.1) and decreases with an increase in the spinning frequency (refer to panel C, Fig. 2.1).
Such observations are intriguing and have remained unexplained (using both numerical as
well as analytical methods). This forms the motivation behind this chapter.

To address the above issues, the suitability of analytical methods routinely employed for
describing the time-evolution of quantum mechanical systems governed by time-dependent
Hamiltonians is examined. Specifically, the suitability of analytical methods based on Average
Hamiltonian theory (AHT) 5,44 and Floquet theory 45–51 for studying the excitation of double-
quantum (DQ) transitions in spin-1 system under MAS conditions is investigated. While
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the applicability of these methods is well established in time-evolution studies involving
spin I=1/2 systems, their suitability in the description of periodically driven multi-level
systems remains less explored. For pedagogical reasons, the approximations employed in the
description of excitation in two-level systems (both static and spinning samples) is reviewed
briefly to explicate the nuances of excitation in multi-level systems.

2.3 Results and Discussion

2.3.1 Finite pulse effects in spin I=1/2 system

To describe the interplay between the internal and external interactions, we begin with the
Hamiltonian of an isolated spin-1/2 system in a rotating solid.

H(t) = ω0Iz︸ ︷︷ ︸
HZ

+ 2ω1 cos (ωt) Ix︸ ︷︷ ︸
HRF

+
2∑

m=−2,6=0
ω(m)eimωrtIz︸ ︷︷ ︸
HCSA

; ~ = 1 (2.1)

In the above equation, HZ depicts the interaction between the nuclear spin magnetic
moment and the static magnetic field, while, the interaction between the magnetic moment
with the oscillating magnetic field is represented by, HRF . The angular frequency ‘ω0’ denotes
the precessional frequency (that includes chemical shielding effects) of the nucleus, while, ‘ω1’
and ‘ω’ represent the amplitude and frequency of the oscillating field, respectively. To study
the time-evolution under the internal Hamiltonians, the above Hamiltonian is transformed
into the rotating frame (U = eiωtIz) such that the RF Hamiltonian is reduced to a simpler
form (under secular approximation) as given below.

HR(t) = UH(t)U−1 = ∆ωIz + ω1Ix +
2∑

m=−2,6=0
ω(m)eimωrtIz (2.2)

The term ∆ω = ω0 − ω represents the offset in the rotating frame.

2.3.1.1 Time-Evolution in static case

To begin with, let us consider the simplest case of on-resonance irradiation (∆ω=0) in static
samples (ωr=0). To facilitate analytic description, the Hamiltonian in the rotating frame is
transformed through the rotation operator (U1 = eiπ/2Iy) such that the RF field is quantized
along the z-direction.

HT = ω1Iz + ω′Ix (2.3)
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where
ω′ =

∑
m=±2,0

R
(2)m
PASDm,0 (ΩPL)

When the amplitude of the driving field (ω1) largely exceeds the off-diagonal terms (com-
prising offset and CSA terms), the effective Hamiltonian reduces to a simpler form.

Heff = ω1Iz (2.4)

Subsequently, the evolution of the system during a pulse is evaluated using the standard
procedure given below.

〈Iy(t)〉 = Tr [ρ(t)Iy] = Tr
[
e−iHeff tρ̃(0)eiHeff t.Ĩy

]
= − sin (ω1t) (2.5)

In the above eq., ρ̃(0) represents the initial density operator in the tilted-rotating frame
(ρ̃(0) = U1ρ(0) U−1

1 = −Ix ; ρ(0) = Iz) while, the detection operator, Iy remains invariant
in the tilted rotating frame (Ĩy = Iy).

When the amplitude of the pulse is greater than the off-diagonal terms, the ideal pulse
approximation commonly employed in magnetic resonance remains valid (ω1 > 8ω′, ∆ω = 0).
As depicted in Figure 2.2, the ideal pulse approximation (indicated in red broken line) breaks
down with increase in the magnitude of the off-diagonal terms. To improve the exactness
of the analytic simulations, operator based perturbation theory 41–43 is employed in the
present study. In contrast to the traditional Rayleigh-Schrödinger perturbation theory, the
perturbation corrections are described in terms of effective Hamiltonians leading to better
insights into the excitation process. Accordingly, depending on the relative magnitudes of
the internal and external parameters, we outline the strategies employed in the derivation of
effective Hamiltonians.

For operational purpose, the Hamiltonian in perturbative methods is split and re-expressed
in terms of a zero-order and perturbing Hamiltonian. Depending on the relative magnitudes
of ω1 and ω′, the following two regimes are identified and discussed.

Case-I: ω1 > ω′ (Regime-I)

When the amplitude of the excitation pulse exceeds the magnitude of the internal interactions
(denoted by ω′), the dominant term is identified with H0 as given below.

H = ω1Iz︸ ︷︷ ︸
H0

+λω′Ix︸ ︷︷ ︸
H1

(2.6)
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Employing the method of contact transformation, the Hamiltonian ‘H ’ is transformed
into an effective Hamiltonian.

Heff = eiλS1He−iλS1 (2.7)

In the above equation, ‘λ’ denotes the perturbation parameter and is employed for or-
dering purposes only. Employing the BCH formula 52 and equating like powers of ‘λ’, the
perturbation corrections (to different orders) are derived in terms of operators.

H
(1)
0 = H0

H
(1)
1 = H1 + i [S1, H0]

H
(1)
2 = − 1

2! [S1, [S1, H0]] + i [S1, H1]

H(1)
n = Hn +

n−1∑
m=0

in−m

(n−m)!

S1, [S1.....︸ ︷︷ ︸
n−m

[S1, Hm] ....]

 (2.8)

In the above representation of the corrections (H(k)
n ), the subscript ‘n’ denotes the order

of correction, while, ‘k’ denotes the number of transformations employed in the derivation
of the effective Hamiltonian. The transformation function ‘S1’ is chosen to compensate the
off-diagonal contributions to order λ (i.e. S1=iCyIy) and is derived employing the equation
given below.

H
(1)
1 = H1 + i [S1, H0] = 0⇒ Cy = ω′

iω1
(2.9)

Subsequently, employing the above form of S1, the second order correction to the effective
Hamiltonian is derived as given below.

H
(1)
2 = i

2 [S1, H1] = (ω′)2

2ω1
Iz (2.10)

To second order, the effective Hamiltonian reduces to the following form.

Heff = ω1

1 + 1
2

(
ω′

ω1

)2
 Iz = ωeffIz (2.11)

To have a consistent description, both the initial density operator (ρ̃(0) = eiπ/2IyIze
−iπ/2Iy =

−Ix) and detection operator (Iy) is transformed using the transformation function, S1.

ρeff (0) = eiλS1 ρ̃(0)e−iλS1 ; Iy,eff = Iy (2.12)

Subsequently, employing the effective Hamiltonian, the state of the system during a pulse
is determined.

ρeff (t) = e−iHeff tρeff (0)eiHeff t = − cos
(
ω′

ω1

)
[Ix cos (ωeff t) + Iy sin (ωeff t)]− sin

(
ω′

ω1

)
Iz

(2.13)
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Accordingly, the observable during excitation is evaluated by calculating the expectation
value associated with the ‘Iy’ operator.

〈Iy(t)〉 = Tr [ρeff (t)Iy,eff ] = − cos
(
ω′

ω1

)
sin (ωeff t) (2.14)

Case-II: ω′ > ω1 (Regime-II)

When the magnitude of the internal interaction, ω′ exceeds the RF amplitude, ω1, the defi-
nition of the zero-order and perturbing Hamiltonian is altered accordingly.

H = ω′Ix︸ ︷︷ ︸
H0

+λω1Iz︸ ︷︷ ︸
H1

(2.15)

Employing the transformation function, S1 (S1 = i(iω1

ω′
)Iy) and following the procedure

described in the previous section, the effective Hamiltonian to second order is derived.

Heff = ω′
(

1 + 1
2

(
ω1

ω′

)2
)
Ix = ωeffIx (2.16)

Subsequently, the final form of the signal is calculated and given by the following expres-
sion.

〈Iy(t)〉 = − sin
(
ω1

ω′

)
sin (ωeff t) (2.17)

As depicted in Figure 2.2, the analytic simulations are valid only in their respective domains
(Regime-I, blue dots for ω1 > ω′ and Regime-II, green dots for ω1 < ω′). In the following
subsection, a more general framework suited for describing the excitation in all regimes is
explored.

33



Analytic theory of finite pulse effects in rotating solids

Figure 2.2: In the simulations (static case) depicted, the validity of the ideal pulse limit is probed

by varying the amplitude of the RF pulse. The analytic simulations based on the ideal pulse approx-

imation (indicated by red broken lines) and perturbative methods (Regime-I, blue dots ; Regime-II,

green dots are compared with those obtained from exact numerical methods based on SPINEVO-

LUTION 7 (indicated by black lines). The following parameters were used in the simulations: (A1)

ω1 = (1/4)ω′ (A2) ω1 = (1/2)ω′ (A3) ω1 = (3/4)ω′ (B1) ω1 = ω′ (B2) ω1 = 2ω′ (B3) ω1 = 4ω′

Case-III: Effective Field approach

To extend the perturbative approach across all regimes, an alternate method based on the
concept of effective fields is explored in this section. Since the Hamiltonian for a two-level
system (Eq. 2.3) has components along orthogonal axis (say z and x), the Hamiltonian is
rotated through an angle ‘θ’ such that the effective field is quantized along one of the axis (say
z or x). Depending on the choice of the quantization axis, the form of the rotation operator
differs. When the quantization axis is along z-direction, the rotation operator, U2 = eiθIy

is employed (for quantization along x-axis, U2 = ei(π/2−θ)Iy is employed). Employing the
above rotation operator, the Hamiltonian in the tilted rotating frame (HT = ω1Iz + ω′Ix) is
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transformed such that the effective field is quantized along the z-axis.

Heff = eiθIyHT e
−iθIy =

√
ω2

1 + ω′2︸ ︷︷ ︸
ωeff

Iz ; θ = tan−1
(
ω′

ω1

)
(2.18)

In accord with the procedure described in the previous section, both the operators (initial
density operator and detection operator) are transformed.

ρeff (0) = eiθIy (−Ix) e−iθIy = −Ix cos θ − Iz sin θ (2.19)

Iy,eff = Iy

Accordingly, in the effective field formulation, the state of the system during a pulse is
evaluated and the excitation is described using the following equations.

ρeff (t) = − cos θ [Ix cos (ωeff t) + Iy sin (ωeff t)]− Iz sin θ (2.20)

〈Iy(t)〉 = − cos θ sin (ωeff t) (2.21)

Alternatively, when the effective field is quantized along x-axis, the final form of the signal
expression reduces to the following form.

〈Iy(t)〉 = − cos θ sin (ωeff t) ; θ = tan−1
(
−ω

′

ω1

)
(2.22)

From an operational perspective, the effective Hamiltonian derived from the effective
field approach (Eq. 2.18) is more general and could be employed to derive the effective
Hamiltonians derived in previous examples (case-I and case-II).

ωeff =
√

(ω1)2 + (ω′)2 = ω1

1 + 1
2

(
ω′

ω1

)2
 or ωeff =

√
(ω1)2 + (ω′)2 = ω′

(
1 + 1

2

(
ω1

ω′

)2
)

As depicted in Figure 2.3 (violet dots), the analytic simulations based on the effective field
approach are in excellent agreement in all the regimes, irrespective of the relative magnitudes
of ω′ and ω1.
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Figure 2.3: In the simulations (static case) depicted, the validity of the effective field approach

is verified through a comparison between analytic simulations (indicated by violet dots) and those

based on SPINEVOLUTION 7 (indicated by black solid lines). The following parameters were used

in the simulations: (A1) ω1 = (1/4)ω′ (A2) ω1 = (1/2)ω′ (A3) ω1 = (3/4)ω′ (B1) ω1 = ω′ (B2)

ω1 = 2ω′ (B3) ω1 = 4ω′

2.3.1.2 Time-Evolution in MAS case

To explain the nuances of the excitation in rotating solids, we begin with parameters that
correspond to single crystal with specific orientations (ΩPM = (0, 90, 0), η=1.0). Under on-
resonance irradiation, based on the above choice of orientations, the Hamiltonian (Eq. 2.2)
reduces to the following form (ω(2) = ω(−2) = ω′ and ω(±1)=0).

HR(t) = 2ω′ cos (2ωrt) Iz + ω1Ix (2.23)

It is important to note that the above choice of orientations is purely for demonstrative
purposes and the discussion that follows is equally valid for any arbitrary orientation.

Depending on the relative magnitudes of the internal interactions (CSA interaction in
this case) with respect to the external parameters (spinning frequency and rf amplitude), two

36



Analytic theory of finite pulse effects in rotating solids

regimes (namely weak coupling regime and strong coupling regime) are identified. A detailed
description of the excitation in the two regimes is presented in the following subsections.

1. Weak Coupling Regime

When the magnitude of the external parameters (spinning frequency or RF amplitude or
both) exceeds the magnitude of the internal spin interactions (CSA interaction), the internal
interaction acts as a perturbation, and is identified with the weak coupling regime. To
facilitate analytic description in the weak coupling regime, the Hamiltonian in the rotating
frame is tilted (through the rotation operator (U1 = ei

π
2 Iy)) such that the RF field is quantized

along the z-direction.

HTR = U1HR(t)U−1
1 = ω1Iz − 2ω′ cos (2ωrt) Ix (2.24)

1.1 Description based on Effective Floquet Hamiltonians

In the Floquet framework, the time-dependent Hamiltonian defined in a finite dimensional
vector space is transformed into a time-independent Hamiltonian via Fourier expansion 45–51 .
Employing an operator basis defined in an infinite dimensional vector space (extended Hilbert
space or Floquet space), the Hamiltonian in the tilted rotating frame (for on-resonance case)
is re-expressed as follows-

HF = ωrIF + ω1[Iz]0 −
∑
m=±2

ω(m)[Ix]m (2.25)

A schematic description of the Floquet Hamiltonian for a single spin system is defined in
an extended (infinite dimensional) Hilbert space is given below.

Figure 2.4: Matrix representation of the Floquet Hamiltonian for a spin-1/2 system defined in the

Floquet space.

37



Analytic theory of finite pulse effects in rotating solids

In the extended Hilbert space (or Floquet space), the spin states |α〉 and |β〉 are dressed
with Fourier index n (‘n’ ranges from −∞ to ∞). In the present context, the off-diagonal
terms ω(2), ω(−2) are real and equal to ω′ (ω(2) = ω(−2) = ω′). As depicted in Figure 2.4, in
the Floquet description, the states |α0〉 and |β2〉 (likewise the states |α− 2〉 and |β0〉) are
connected by the element ω′ (ω(2) = ω(−2) = ω′). From an operational aspect, the relevance
of the off-diagonal elements in perturbative methods depends on the difference between the
energy eigenvalues of the two states involved in the description. In the present context, the
energy difference corresponding to the pair of states (|α0〉 → |β2〉, |α− 2〉 → |β0〉) is given
by ∆E = |2ωr − ω1|. When the energy difference ∆E is greater than or equal to 8ω′, the
ideal pulse approximation (strong pulse limit) becomes operational in MAS experiments. In
all other cases (∆E < 8ω′), the contribution from the off-diagonal term becomes relevant
in the time evolution of the system. To account for the off-diagonal contributions in the
Floquet Hamiltonian, we employ operator based perturbation methods 41–43 . The derivation
of effective Floquet Hamiltonians for variety of problems is well-documented 49,53–56 and
would only be discussed briefly in the present context.

In the effective Floquet Hamiltonian approach, the Floquet Hamiltonian (Eq. 2.25) is
split into a zero-order (H0) and perturbing Hamiltonian (H1).

H0 = ωrIF + ω1[Iz]0 (2.26)

H1 =
∑
m

G(m)
x [Ix]m ; G(m)

x = −ω(m) (2.27)

From an operational perspective, the choice of the zero-order Hamiltonian plays an impor-
tant role in the convergence of the effective Hamiltonian and has been discussed extensively in
the literature 49,53–56 . Employing the transformation function, S1, the Floquet Hamiltonian
is transformed as given below.

Heff
F = eiλS1HF e

−iλS1 ; S1 = i

(∑
m

C(m)
x [Ix]m +

∑
m

C(m)
y [Iy]m

)
(2.28)

The coefficients C(m)
x and C(m)

y employed in ‘S1’ are chosen to compensate the off-diagonal
terms in H1 and are derived through the relation,

−H1 = i [S1, H0] (2.29)

To second order, the effective Hamiltonian describing the excitation is given by the following
equation.

HF,eff = H0 +H
(1)
2 = ωrIF + ωe[Iz]0 = ωrIF + ω1

(
1− 1

2
∑
m

G(m)
x G(−m)

x

(mωr)2 − ω2
1

)
[Iz]0 (2.30)
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operators Initial Density Operator, Detection Operator, Density Operator,
A(m)
α D(m)

α R(m)
α (t)

[Ix]0 cosx 0 − cosx cos(ωet)

[Iy]0 0 cos y − cosx sin(ωet)

[Iz]0 0 0 0

[Iz]2 −iC(2)
y −iC(2)

x −iC(2)
y e−2iωrt

[Iz]−2 −iC(−2)
y −iC(−2)

x −iC(−2)
y e2iωrt

x

√√√√∑
p

ω2
1ω

(p)ω(−p)

(p2ω2
r − ω2

1)2 y

√√√√∑
p

p2ω2
rω

(p)ω(−p)

(p2ω2
r − ω2

1)2

C(m)
x

−mωrG(m)
x

(mωr)2 − ω2
1

C(m)
y

iω1G
(m)
x

(mωr)2 − ω2
1

Table 2.1: Definition of constants employed in the description of the density operator and detection

operator (Eq. 2.31-2.33) based on the contact transformation method.

To have a consistent description, the operators (initial density operator (ρF (0)) and de-
tection operator (DF )) are transformed by the same unitary transformation (i.e. eiλS1). In
the present calculation, the initial density operator, ρF (0) = [Iz]0 and detection operator,
DF = [Iy]0 is employed.

ρ′F (0) = eiλS1U1ρF (0)U−1
1 e−iλS1 =

∑
m

A(m)
α [Iα]m ; α ∈ (x, y, z) (2.31)

D′F = eiλS1U1DFU
−1
1 e−iλS1 =

∑
m

D(m)
α [Iα]m ; α ∈ (x, y, z) (2.32)

Subsequently, employing the effective Floquet Hamiltonian (Eq. 2.30), the density oper-
ator at time ‘t’ is evaluated as given below.

ρ′F (t) = e−iHeff tρ′F (0)eiHeff t =
∑
m

R(m)
α (t)[Iα]m (2.33)
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Accordingly, the excitation during a RF pulse in the Floquet space is calculated by the
following equation.

S(t) = Tr [ρ′F (t)D′F ] =
∑
m

R(m)
α (t)D(−m)

α (2.34)

A detailed description of the coefficients employed in the derivation of ρ′F (0), D′F and
ρ′F (t) are tabulated in Table 2.1.

Figure 2.5: In the simulations depicted, the validity of the effective Floquet Hamiltonians is probed

for a given pulse amplitude by varying the sample spinning frequency. The analytic simulations

based on effective Floquet Hamiltonians (Eq. 2.34) are indicated by red dotted lines, while, those

based on SPINEVOLUTION 7 are indicated by black solid lines. The following parameters were

used in the simulations: (A1) ωr = (1/8)ω′ [0.266] (A2) ωr = (1/4)ω′ [0.286] (A3) ωr = (1/2)ω′

[0.333] (B1) ωr = ω′ [0.5] (B2) ωr = (3/2)ω′ [1.0] (B3) ωr = 2ω′ [∞]. In the simulations depicted,

the RF amplitude is greater than the magnitude of the internal interaction (i.e. ω1 = 4ω′). Due to

the resonance condition (ω1 − 2ωr = 0), the analytic simulations corresponding to the parameters

depicted in the panel B3 could not be performed (ω1 = 4ω′, ωr = 2ω′). The numbers given in the

square brackets in the panels correspond to the ratio [ω′/(|2ωr − ω1|)].

To verify the validity of the above analytic framework, the analytic simulations depicted
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in Figures 2.5 and 2.6 are examined with numerical simulations. As depicted in Figure 2.5,
the analytic simulations match well with numerical simulations except for the simulations in
panels B2 and B3. From an operational perspective, this discrepancy results from the larger
magnitude of the off-diagonal term with respect to the energy difference, ∆E (2ωr − ω1 is
approximately equal to ω(2)). Under such conditions (the concept of perturbation remains
invalid), the corrections derived from perturbation theory are insufficient to describe the spin
dynamics. Interestingly, the discrepancies get magnified near the resonance conditions (i.e.
when ω1 = 2ωr (refer to Figure 2.5, panel B3) the corrections tend to infinity), necessitating
descriptions based on degenerate perturbation theory. Such resonance conditions are also
observed in the simulations depicted in Figure 2.6 (Panel A1).

Based on the simulations depicted in Figures 2.5 and 2.6, the perturbation corrections
converge only in cases where the ratio | ω′

2ωr − ω1
| is less than or equal to 0.5. Additionally,

as illustrated in Figure 2.5 (Panel B3) and Figure 2.6 (Panel A1), the present method is of
lesser utility near resonance conditions (as the C-coefficients employed in the transformation
function tend to infinity). To improve the exactness of the method beyond the predicted
perturbation limit and near resonance conditions as well, an alternate method is proposed in
the following subsection.
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Figure 2.6: In the simulations depicted, the validity of the effective Floquet Hamiltonians is probed

for a given pulse amplitude by varying the sample spinning frequency. The analytic simulations

based on effective Floquet Hamiltonians (Eq. 2.34) are indicated by red dotted lines, while, those

based on SPINEVOLUTION 7 are indicated by black solid lines. The following parameters were

used in the simulations: (A1) ωr = (1/8)ω′ [∞] (A2) ωr = (1/4)ω′ [4.0] (A3) ωr = (1/2)ω′ [1.3]

(B1) ωr = ω′ [0.57] (B2) ωr = (3/2)ω′ [0.36] (B3) ωr = 2ω′ [0.266]. In the simulations depicted, the

RF amplitude is lower than the magnitude of the internal interaction (i.e. ω1 = (1/4)ω′). Due to

the resonance condition (ω1 − 2ωr = 0), the analytic simulations corresponding to the parameters

depicted in the panel A1 could not be performed (ω1 = (1/4)ω′, ωr = (1/8)ω′). The numbers given

in the square brackets in the panels correspond to the ratio [ω′/(|2ωr − ω1|)].

2. Description of finite pulse effects in Fictitious frame

To tackle the convergence problem discussed in the previous section (encountered in the
intermediate regimes), the Hamiltonian in the tilted rotating frame is further transformed into
a frame defined by the modulation frequency (2ωr in this case). Employing the transformation
function, U2 (U2 = e2iωrtIz), the Hamiltonian in the tilted rotating frame (Eq. 2.24) is
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transformed as given below.

H̃TR(t) = U2HTR(t)U−1
2 = (ω1 − 2ωr) Iz −

∑
m

ω(m)eimωrt (Ix cos (2ωrt)− Iy sin (2ωrt))
(2.35)

To simplify the description, the static part of the Hamiltonian in the fictitious frame
is quantized along the z-direction through the rotation operator, U3 (U3 = eiθIy , θ =

tan−1( −ω
(2)

ω1 − 2ωr
)). Accordingly, the final form of the Hamiltonian in the fictitious frame

is derived and represented below.

˜̃
HTR(t) = ωeffIz + ω(2) sin (4ωrt) Iy − ω(2) cos θ cos (4ωrt) Ix − ω(2) sin θ cos (4ωrt) Iz (2.36)

In the above equation, ωeff (ωeff = (ω1 − 2ωr) cos θ − ω(2) sin θ) represents the effective
field along the z-direction.

From an operational standpoint, the dominant contributions from the time-dependent
part get minimized in the fictitious frame and are essential to facilitate faster convergence of
the perturbations corrections. Subsequently, the above time-dependent Hamiltonian is trans-
formed into a time-independent Floquet Hamiltonian as described in the previous subsection.

HF = ωrIF + ωeff [Iz]0 +
∑
p=±4

G(p)
α [Iα]p ; α ∈ (x, y, z) (2.37)

In contrast to the description in the preceding subsection, the Floquet Hamiltonian (in
the fictitious frame) has terms (off-diagonal) along all the three-directions. Following the
procedure described in the previous subsection, the Floquet Hamiltonian is transformed
using the contact transformation procedure.

Heff
F = eiλS1HF e

−iλS1

where,
H0 = ωrIF + ωeff [Iz]0 ; H1 =

∑
p=±4

G(p)
α [Iα]p

To compensate the off-diagonal contributions, the transformation function, S1 = i
∑
C(p)
α [Iα]p;

α ∈ (x, y, z) is expressed as a linear combination of the three operators (along x, y and z)
whose coefficients are obtained by solving linear equations derived from H

(1)
1 (i.e. H

(1)
1 =

H1 + i[S1, H0] = 0).
To second order, the effective Hamiltonian in the present case is derived and represented

as given below.
HF,eff = H0 +H

(1)
2,diagonal = ωrIF + ωe[Iz]0 (2.38)
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where
ωe = ωeff + i

2

 4∑
p=−4,p 6=0

C(p)
y G(−p)

x − C(p)
x G(−p)

y


To maintain consistency, both the initial density operator (ρF (0) = [Iz]0) and the detec-

tion operator (DF = [Iy]2 + [Iy]−2 (this is due to the fictitious frame)) are transformed.

ρ′F (0) = eiλS1U1ρF (0)U−1
1 e−iλS1 =

∑
m

A(m)
α [Iα]m ; α ∈ (x, y, z) (2.39)

D′F = eiλS1U−1
1 IyU

−1
1 e−iλS1 =

∑
m

D(m)
α [Iα]m ; α ∈ (x, y, z) (2.40)

The density operator during the pulse is calculated using the effective Hamiltonian given
in Eq. 2.38.

ρ′F (t) = e−iHeff tρ′F (0)eiHeff t =
∑
m

R(m)
α (t)[Iα]m (2.41)

A detailed description of the coefficients is given in Table 2.2. Following the procedure
given in the previous section, the excitation during the pulse is evaluated.

S(t) = Tr [ρ′F (t)D′F ] =
∑
m

R(m)
α (t)D(−m)

α (2.42)

To test the validity of the proposed framework, the discrepancies observed in the simu-
lations based on the contact transformation method are re-examined using the description
in the fictitious frame. In the simulations depicted in Figure 2.7, the perturbation limit is
explored over wide range of parameters, 0 < | ω′

2ωr − ω1
| < 1. In the first row (panels A1-

A4), analytic simulations based on the fictitious frame (Eq. 2.42) is depicted, while, the
simulations in the second row correspond to those based on the contact transformation (Eq.
2.34).
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Figure 2.7: In the simulations depicted, the validity of the calculations based on the fictitious frame

is probed for a given pulse amplitude by varying the sample spinning frequency. For illustrative

purposes, the analytic simulations based on the fictitious frame (first row, panels A1-A4, indicated

by red dots based on Eq. 2.42) and effective Floquet Hamiltonians (second row, panels B1-B4,

indicated by blue dots based on Eq. 2.34) are compared with those based on SPINEVOLUTION
7 (indicated by black solid lines). The following parameters were used in the simulations: (A1,B1)

ωr = (4/3)ω′ [0.6] (A2,B2) ωr = (9/8)ω′ [0.8] (A3,B3) ωr = ω′ [1.0] (A4,B4) ωr = (1/6)ω′ [1.5]. In

the simulations depicted, the RF amplitude is equal to the magnitude of the internal interaction

(i.e. ω1 = ω′). The numbers given in the square brackets in the panels correspond to the ratio

[ω′/(|2ωr − ω1|)].

As depicted, the analytic simulations based on the fictitious frame approach (indicated
in red) are in better agreement (for cases where, 0 < | ω′

2ωr − ω1
| < 1) to those obtained

from the contact transformation approach (indicated in blue). In cases where the ratio
(| ω′

2ωr − ω1
|) exceeds 1, significant deviations are observed in the analytic simulations based

on the fictitious frame approach. To improve the exactness of the analytic simulations, an
alternate approach is explored in the following subsection.
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2. Strong Coupling Regime

When the magnitude of the CSA interactions exceeds both the amplitude of the pulse and the
spinning frequency employed, the Hamiltonian in the rotating frame (Eq. 2.23) is transformed
into a time-dependent interaction frame defined by the CSA interaction (or CSA interaction
frame). In the initial treatment proposed by Ernst and co-workers, this time-dependent
transformation was referred to as the jolting frame transformation 36,37,57,58 .

H̃ = eiΦ(t)IzHR (t) e−iΦ(t)Iz

= ω1
[
eiΦ(t)IzIxe

−iΦ(t)Iz
]
, Φ (t) = 2ω′

t∫
0

cos (2ωrt′)dt′ (2.43)

In the interaction frame, the RF Hamiltonian is time-dependent and has a complicated form.

H̃ = ω1

2
[
eiΦ(t)I+ + e−iΦ(t)I−

]
(2.44)

Employing Bessel functions (of first kind) 59 , the coefficients in the above Hamiltonian is
evaluated and expressed in a compact form.

H̃(t) = ω1J0

(
ω′

ωr

)
Ix + ω1

∑
k=±4,±8,..

Jk/2

(
ω′

ωr

)
eikωrtIx + iω1

∑
m=±2,±6,..

Jm/2

(
ω′

ωr

)
eimωrtIy

(2.45)
Ignoring the time-dependent terms, the effective Hamiltonian is approximated by the follow-
ing equation.

Heff = ω1J0

(
ω′

ωr

)
Ix (2.46)

To maintain consistency, both the initial density operator and detection operator are trans-
formed as given below.

ρ̃(0) = ρ(0) = Iz (2.47)

Ĩy = eiΦ(t)IzIye
−iΦ(t)Iz

=
[
J0
(
ω′

ωr

)
+ ∑

n=2p
2Jn

(
ω′

ωr

)
cos (2nωrt)

]
Iy +

[ ∑
n=2p−1

2Jn
(
ω′

ωr

)
sin (2nωrt)

]
Ix

(2.48)

Subsequently, the excitation during the pulse is described by the following equation.

〈Iy(t)〉 = Tr
[
ρ̃(t)Ĩy

]
= Tr

[
e−iHeff tρ̃(0)eiHeff tĨy

]
= −

[
J0
(
ω′

ωr

)
+ ∑

n=2p
2Jn

(
ω′

ωr

)
cos (2nωrt)

]
sin

(
ω1tJ0

(
ω′

ωr

)) (2.49)

where p ∈ N (Natural numbers, e.g. 1,2,3,....).
To verify the exactness of the above calculations, analytic simulations based on the Bessel

functions are compared with those obtained from SPINEVOLUTION 7 . In the simulations
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depicted in Figure 2.8, the role of the order (indicated by ‘n’) employed in the Bessel functions
(Jn(x)) is investigated for a given set of parameters (ω′ = 6ωr, ω1 = ωr).

Figure 2.8: In the simulations depicted, the relevance of the order ‘n’ employed in Bessel functions

(Jn(x)) is examined for a given set of parameters (i.e. ω′/ωr = 6, ω1 = ωr). The order ‘n’ is varied

in the panels: (A1) n=2 (A2) n=4 (A3) n=6 (A4) n=8. The numerical simulations based on

SPINEVOLUTION 7 are indicated by solid black lines.

As depicted in the simulations, the choice of the order ‘n’ employed in the Bessel functions
plays an important role in the analytic simulations and is dependent on the ratio of the
magnitude of the CSA interaction to the spinning frequency (i.e. ω′/ωr = n). The exactness
of the analytic simulations improves when the order ‘n’ is chosen according to the above ratio
(in the present context, n=6). To explicate the role (if any) of the amplitude of the pulse
in the above calculations, analytic simulations with differing amplitudes were compared for
a given ω′ and ωr (i.e. ω′/ωr = 6). As illustrated in the simulations depicted in Figure
2.9, when the amplitude of the pulse exceeds the modulation frequency (i.e. ωmod/ω1 < 1.0,
where ωmod = 2ωr) employed, significant deviations are observed (refer to panels A3, A4 in
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Figure 2.9) in the analytic simulations. While the above scenario is less prevalent in the
study of spin I=1/2 systems (as the RF amplitude often exceeds the magnitude of the CSA
interactions, ω1 > ω′), such cases are frequently encountered in the description of finite pulse
effects in the study of quadrupolar spins.

Figure 2.9: In the simulations depicted, the role of RF amplitude in the analytic simulations is

examined for a given set of parameters (ω′ = 6ωr). The ratio of ωmod/ω1 is varied as- (A1) 4.0 (A2)

2.0 (A3) 0.5 (A4) 0.25. The numerical simulations based on SPINEVOLUTION 7 are indicated by

solid black lines.

To understand the combined role of the various parameters in the excitation process,
additional simulations were carried out in the present study. In the simulations illustrated
in Figure 2.10, the variation of the RF amplitude with respect to the magnitude of the CSA
interaction is depicted along the rows (first row, ω1 = (1/4)ω′, second row, ω1 = ω′, third
row, ω1 = 4ω′), while, the effect of the sample spinning frequency (ωr) with respect to the
magnitude of the CSA interactions (ω′) is depicted along the columns.
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Figure 2.10: In the simulations depicted, the validity of Bessel function calculations is verified.

The following parameters were used in the simulations: (A1) ωr = (13/8)ω′ [0.33] (A2) ωr = (6/8)ω′

[0.8] (A3) ωr = (3/8)ω′ [2.0] (A4) ωr = (1/4)ω′ [4.0] (B1) ωr = 2ω′ [0.33] (B2) ωr = (9/8)ω′ [0.8]

(B3) ωr = (1/4)ω′ [2.0] (B4) ωr = (3/8)ω′ [4.0] (C1) ωr = (7/2)ω′ [0.33] (C2) ωr = (21/8)ω′ [0.8]

(C3) ωr = (18/8)ω′ [2.0] (C4) ωr = (17/8)ω′ [4.0]. In the simulations depicted, the RF amplitude

is varied as ω1 = (1/4)ω′ for panels A1-A4, ω1 = ω′ for panels B1-B4 and ω1 = 4ω′ for panels

C1-C4. The numbers given in the square brackets in the panels correspond to [ω′/(|2ωr−ω1|)]. The

numerical simulations based on SPINEVOLUTION 7 are indicated by solid black lines.

As illustrated, the Bessel function approach works well only when the amplitude of the
pulse is lower than both the magnitude of the CSA interactions as well as the modulation
frequency (2ωr) (first row). When the RF amplitude exceeds the magnitude of the CSA
interaction (ω1 > ω′, third row), the transformation into the CSA interaction frame yields
inexact results. Hence, the suitability of analytic methods depends on the magnitudes of
both the internal and external parameters in addition to the transformations employed in
the derivation of effective Hamiltonians.
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3. Description of finite pulse effects near resonance conditions

As described in the weak coupling regime, the analytic simulations based on the concept
of effective Hamiltonians become invalid near the resonance conditions (ω1 = 2ωr). This is

primarily due to the divergence of the ‘C’ coefficients (C(2)
x = −2ωrG(2)

x

(2ωr)2 − ω2
1
, C(2)

y = iω1G
(2)
x

(2ωr)2 − ω2
1
)

employed in the transformation function, S1. Below, we present a comparative study of the
simulations emerging from the two methods (fictitious frame and Bessel frame calculations in
strong coupling regime) near the resonance conditions. In the simulations depicted in Figure
2.11, the exactness of the derived effective Hamiltonians based on the transformation into
the fictitious frame and the CSA interaction frame is examined near the resonance conditions
(ω1 = 2ωr).

Figure 2.11: In the simulations depicted, the excitation is described at the resonance condition (i.e.

ω1 = 2ωr) using analytic methods based on Fictitious frame (first row, panels A1-A4, indicated in

red dots based on Eq. 2.42) and the Bessel function approach (second row, panels B1-B4, indicated

in blue dots based on Eq. 2.49). The following parameters were used in the simulations: (A1,B1)

ω1 = (1/8)ω′ (A2,B2) ω1 = (1/4)ω′ (A3,B3) ω1 = 4ω′ (A4,B4) ω1 = 8ω′. The numerical simulations

based on SPINEVOLUTION 7 are indicated in solid black lines.
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When the amplitude of the pulse is greater than the magnitude of the CSA interaction,
analytic simulations based on the transformation into the fictitious frame (refer to first row
in Figure 2.11) still yield results in better agreement. However, with increasing magnitude
of the CSA interactions, the transformation into the fictitious frame is of lesser utility when
compared to the transformation into the CSA interaction frame (refer to second row in Figure
2.11). Hence, the transformations into the time-dependent CSA interaction frame seems to
be an attractive option for describing the excitation near the resonance conditions. In the
following section, the utility of the analytic methods in the description of excitation in three-
level systems is explored.

2.3.2 Finite pulse effects in spin I=1 system

To describe the excitation in a spin-1 system, we consider the Hamiltonian of an isolated
system in a rotating solid.

H(t) = ω0IZ︸ ︷︷ ︸
HZ

+ 2ω1 cos (ωt) IX︸ ︷︷ ︸
HRF

+
2∑

q=−2
R

(2)−q
Q,L (t)T (2)q

︸ ︷︷ ︸
HQ

; ~ = 1 (2.50)

In addition to the interactions described in Eq. 2.1, nuclei with I>1/2 possess a non-zero
quadrupolar moment that results in the quadrupolar interaction (represented by, HQ). For
the sake of simplicity, the CSA interactions are ignored in the present study. To study the
effects of the internal interactions, the Hamiltonian (in Eq. 2.50) is transformed into the
rotating frame (U = eiωtIZ ) such that the RF Hamiltonian reduces to a simpler form as given
below.

H̃(t) = UH(t)U−1 = ∆ωIZ + ω1IX +
2∑

q=−2
R

(2)−q
Q,L (t)T (2)qeiqωt (2.51)

The term ∆ω = ω0 − ω represents the offset in the rotating frame.
In the rotating frame, the quadrupolar interaction has additional time-dependence due to ‘ω’
(frequency of the oscillating field) and is re-expressed in a compact form as given below.

HQ(t) = 1√
6

2∑
q=−2

2∑
m=−2,6=0

ω
(2)−q
Q,m T (2)qeiqωteimωrt (2.52)

where
ω

(2)q
Q,m =

∑
m1

R
(2)m1
Q,PAS

∑
m2

Dm1m2 (ΩPM)Dm2m (ΩMR) dm,q (βRL)
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To first-order, the quadrupolar Hamiltonian in the rotating frame is represented by ig-
noring the time-dependent terms.

H
(1)
Q = 1√

6

2∑
m=−2,6=0

ω
(2)0
Q,mT

(2)0eimωrt (2.53)

Employing averaging methods, the second-order contributions (resulting from time-dependent
terms) to the quadrupolar interaction is derived and summarized by the following equation.

H
(2)
Q = − 1

12
∑

q=±1,±2

∑
m=±1,±2

ω
(2)q
Q,mω

(2)−q
Q,−m

qω −mωr

[
T (2)q, T (2)−q

]
(2.54)

In the present context (case of spin I=1), the second-order contributions reduce to a
simpler form given below.

H
(2)
Q = ω′IZ ;

ω′ = 1
24

 ∑
m=±1,±2

ω
(2)1
Q,mω

(2)−1
Q,−m

ω −mωr
+
ω

(2)−1
Q,m ω

(2)1
Q,−m

ω +mωr


− 1

12

 ∑
m=±1,±2

ω
(2)2
Q,mω

(2)−2
Q,−m

2ω −mωr
+
ω

(2)−2
Q,m ω

(2)2
Q,−m

2ω +mωr

 (2.55)

Subsequently, incorporating the above contributions, the Hamiltonian of the system in
the rotating frame is represented by the following equation.

H̃(t) = (∆ω + ω′) IZ + ω1IX +
2∑

m=−2,6=0

ω
(2)0
Q,m

6
[
3I2
Z − I2

]
eimωrt (2.56)

For operational convenience, the above Hamiltonian is represented in terms of fictitious
spin-operators 30,8 . Although, methods based on spherical tensor formalism 60–65 are more
general and have been used to describe quadrupolar spins, the fictitious spin-operator formal-
ism affords a simpler (a) description of operators (b) framework for deriving the commutator
relations between operators.

H̃(t) =
2∑

m=−2, 6=0

ω
(2)0
Q,m

3
[
I12
Z − I23

Z

]
eimωrt +

√
2ω1

[
I12
X + I23

X

]
+ 2 (∆ω + ω′) I13

Z (2.57)

In the above representation, the spin states are represented by |1〉, |2〉 and |3〉 (|1〉 refers
to state with m=+1, |2〉 refers to state with m=0 and |3〉 refers to state with m=-1). The
operators connecting the states |i〉 and |j〉 have the usual definitions (I ijX = 1

2 [|i〉 〈j|+ |j〉 〈i|],

I ijY = 1
2i [|i〉 〈j| − |j〉 〈i|], I ijZ = 1

2 [|i〉 〈i| − |j〉 〈j|]).
While the (faster) time dependent contributions from the RF interaction are often ne-

glected in the rotating frame, the presence of the dominant (slow varying) quadrupolar in-
teraction often complicates the description of the excitation process in analytic methods.
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To this end, in line with the convergence criterion prescribed in perturbative treatments, the
Hamiltonian in the rotating frame is further transformed into an interaction frame defined by
the quadrupolar interaction (commonly referred to as quadrupolar interaction frame 60–62).
Such an approach is analogous to the jolting frame transformation employed in the study
of spin I=1/2 nuclei in the presence of larger chemical shift anisotropic interactions 36,37,57 .
Accordingly, employing the transformation function, U1 = eiΦ(t)[I12

Z −I
23
Z ], the Hamiltonian in

the rotating frame (Eq. 2.57) is transformed as given below.

˜̃
H(t) = U1H̃(t)U−1

1 = ω1√
2

{[
I12

+ + I32
−

]
ei

3Φ(t)
2 +

[
I21
− + I23

+

]
e−i

3Φ(t)
2

}
+ 2 (∆ω + ω′) I13

Z

(2.58)
To facilitate analytic description, the ladder operators are re-expressed in terms of the

corresponding X and Y operators.

˜̃
H(t) =

√
2ω1 cos

(
3Φ(t)

2

) [
I12
X + I23

X

]
−
√

2ω1 sin
(

3Φ(t)
2

) [
I12
Y − I23

Y

]
+ 2 (∆ω + ω′) I13

Z

(2.59)
where,

Φ(t) =
2∑

m=−2, 6=0

ω
(2)0
Q,m

3

[
eimωrt − 1
imωr

]

To outline the methodology and explicate analytic insights, the simplest case of on-
resonance irradiation is considered ignoring the contributions from second-order quadrupolar
interaction. Further, parameters that correspond to single crystal with specific orientations
(ΩPM = (0◦, 90◦, 0◦), η=1.0) is employed in the present study. Based on the above choice
of parameters (ω(2)0

Q,+2 = ω
(2)0
Q,−2 and ω(2)0

Q,±1 = 0), the form of Φ(t) reduces to a simple expres-

sion
Φ(t) =

ω
(2)0
Q,2

3ωr
sin (2ωrt)

. Such approximations are employed solely for demonstrative

purposes and the description that follows is equally valid for any arbitrary orientation. Em-
ploying the properties of the Bessel functions 59 (of first kind), the Hamiltonian (Eq. 2.59)
is re-expressed in a compact form as given below.

˜̃
H(t) =

√
2ω1J0 (A)

[
I12
X + I23

X

]
+
√

2ω1

 ∑
k=±4,±8,..

Jk/2 (A) eikωrt
[
I12
X + I23

X

]
+ i

∑
m=±2,±6,..

Jm/2 (A) eimωrt
[
I12
Y − I23

Y

]
(2.60)
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where A =
ω

(2)0
Q,2

2ωr
represents the argument of the Bessel function.

Although, the Hamiltonian in the quadrupolar interaction frame still has time-dependent
terms, from an operational perspective, the dominant contributions (from quadrupolar in-
teractions) have completely been removed to facilitate analytic descriptions based on pertur-
bation theory. To this end, methods based on Average Hamiltonian theory (AHT) 5,44 and
Floquet theory 45–51 have been used extensively to study the spin dynamics of MAS exper-
iments involving spin I=1/2 nuclei. Nevertheless, the operational aspects and exactness of
the analytic methods in studying quadrupolar spins remains less explored. In what follows,
the excitation of double-quantum (DQ) transitions in spin-1 system is examined through
time-propagators derived from the above analytic methods.

2.3.2.1 Time evolution based on AHT

In the Average Hamiltonian framework proposed by Waugh and co-workers 5,44 , the evolution
operator is described in terms of a time-averaged Hamiltonian derived through an infinite
series expansion involving time-integrals based on the Magnus formula 66 , U (t, 0) = e−iH̄t.
When the time-integral in the Magnus formula is evaluated at the cycle time, τc, the correction
terms to the time-averaged Hamiltonian reduce to a much simpler form given below.

H̄(1) = 1
τc

τc∫
0

H (t) dt =
√

2ω1J0 (A)
[
I12
X + I23

X

]
(2.61)

H̄(2) = −i2τc

τc∫
0

dt2

t2∫
0

[H (t2) , H (t1)] dt1 = −2ω2
1

ωr
J0 (A)

 ∑
n=2p−1

Jn (A)
n

 [I12
Z − I23

Z + I13
X

]
(2.62)

H̄ = H̄(1) + H̄(2) =
√

2ω1J0 (A)
[
I12
X + I23

X

]
− 2ω2

1
ωr

J0 (A)
 ∑
n=2p−1

Jn (A)
n

 [I12
Z − I23

Z + I13
X

]
(2.63)

where p ∈ N (Natural numbers, e.g. 1,2,3,....).

As represented above, the time-averaged Hamiltonian, H̄, consists of non-commuting set
of operators and in its present form is of lesser utility in further calculations. To simplify
the description of the excitation process, the time-averaged Hamiltonian is transformed (us-

55



Analytic theory of finite pulse effects in rotating solids

ing U2 = e

iθ[I12
Y − I23

Y ]√
2 , tan θ = ω1J0(A)

−2ω2
1J0(A)
ωr

[ ∑
n=2p−1

Jn(A)
n

]), such that the transformed

Hamiltonian comprises set of commuting operators as given below.

Heff = U2H̄U
−1
2 =

ω1J0 (A) sin θ − 2ω2
1

ωr
J0 (A)

 ∑
n=2p−1

Jn (A)
n

 cos θ
[I12

Z − I23
Z + I13

X

]
= ωe

[
I12
Z − I23

Z + I13
X

]
(2.64)

Following the standard procedure, both the operators (initial density operator ρ̃(0) = 2I13
Z

and detection operator D = I13
+ ) are transformed by the same set of unitary transformations

given below.

ρ̃(0) = U2U1ρ(0)U−1
1 U−1

2

=
{

2 cos
(
θ

2

)} [
I13
Z

]
+
{
−
√

2 sin
(
θ

2

)} [
I12
X − I23

X

]
(2.65)

D̃ = U2U1DU
−1
1 U−1

2

= cos
(
θ

2

) [
I13

+

]
− 1√

2
sin

(
θ

2

) [
I12

+ + I23
+

]
+ (cos θ − 1)

4
[
I12
Z − I23

Z

]
+ 3

{
cos

(
θ

2

)
− 1

} [
I13
X

]
+ 3√

2
sin

(
θ

2

) [
I12
X + I23

X

]
(2.66)

Subsequently, the density operator during the excitation pulse is evaluated at stroboscopic
time-intervals using the time-propagator derived from the AHT framework.

ρ̃(t = nτr) = U (nτr, 0) ρ̃(0)U−1 (nτr, 0) = e−iHeffnτr ρ̃(0)eiHeffnτr

= 2 cos
(
θ

2

)
cos (ωet)

[
I13
Z

]
− 2 cos

(
θ

2

)
sin (ωet)

[
I13
Y

]
− 1√

2
sin

(
θ

2

){[
I12

+

]
e−iωet +

[
I21
−

]
eiωet −

[
I23

+

]
eiωet −

[
I32
−

]
e−iωet

}
(2.67)

Employing the transformed detection operator, the final signal (corresponding to the
excitation of DQ transition) is derived by evaluating the expectation value of the DQ operator,
I13

+ as given below,

〈
I13

+ (t = nτr)
〉

= Tr
[
ρ̃(t = nτr).D̃

]
= −i cos (θ) sin (ωet) (2.68)
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Figure 2.12: In the MAS simulations depicted, excitation of DQ transition in spin I=1 system is

presented. The validity of AHT framework (indicated by red dots (based on Eq. 2.68) at strobo-

scopic time intervals, τr = 25 µs) is compared with numerical simulations based on SPINEVOLU-

TION 7 (solid black line). The following parameters were employed in the simulations: CQ = 1

MHz, η=1.0, νr = 40 kHz and RF amplitude, ν1 = 10 kHz.

To verify the exactness of the above results, simulations emerging from the above ex-
pression are compared with exact numerical simulations based on SPINEVOLUTION 7 . As
depicted in Figure 2.12, the analytic simulations from AHT (indicated in red) are in excel-
lent agreement with numerical solutions (indicated through black solid lines) at stroboscopic
time-intervals. Nevertheless, the loss of signal intensity at integral multiples of n ∗ τr4 (where
n=1,3,5,..) remains unexplained in the AHT framework. From an experimental perspective,
the finer oscillations (within the rotor period) at non-stroboscopic time-intervals do play
an important role (when the time-domain signal is Fourier transformed) and could be de-
rived using methods based on Floquet theory. In what follows, we employ two formulations
of Floquet theory for describing the excitation in spin-1 system. In the first formulation,
the time-evolution is described in the extended Hilbert space (or Floquet space) through
time-propagators based on effective Floquet Hamiltonians. In the second approach, the
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time-propagators are defined in the standard Hilbert space through product of exponential
operators. Although,the application of these methods in studying spin-1/2 systems is well-
known, the suitability of these methods in studying quadrupolar spins remains less explored
in rotating solids.

2.3.2.2 Time evolution based on Effective Floquet Hamiltonian

In the effective Floquet Hamiltonian framework, the time-dependent Hamiltonian in the
quadrupolar interaction frame (Eq. 2.60) is transformed into a time-independent Floquet
Hamiltonian via Fourier series expansion. Employing operator based perturbation meth-
ods, an effective Floquet Hamiltonian (valid at all time-intervals) is derived to describe the
time-evolution at non-stroboscopic time-intervals and is well documented in the literature
49–51,53,54,67 .

HF = ωrIF +
√

2ω1J0 (A)
[
I12
X + I23

X

]
0

+
√

2ω1

 ∑
k=±4,±8,..

Jk/2 (A)
[
I12
X + I23

X

]
k

+ i
∑

m=±2,±6,..
Jm/2 (A)

[
I12
Y − I23

Y

]
m

 (2.69)

To facilitate descriptions based on operator based perturbation methods (such as contact
transformation 41,42 or van vleck transformation 43), the Hamiltonian is split and expressed
as a sum comprising zero order (H0) and perturbing Hamiltonian (H1).

H0 = ωrIF (2.70)

The perturbing Hamiltonian is further split into a diagonal (denoted by H1,d) and an
off-diagonal part (H1,od).

H1 = H1,d +H1,od (2.71)

H1,d =
√

2ω1J0 (A)
[
I12
X + I23

X

]
0

(2.72)

H1,od =
∑

p=±4n

√
2ω1Jp/2︸ ︷︷ ︸
G

(p)
X

[
I12
X + I23

X

]
p

+ i
∑

p=±(4n−2)

√
2ω1Jp/2︸ ︷︷ ︸
G

(p)
Y

[
I12
Y − I23

Y

]
p

=
∑

p=±4n
G

(p)
X

[
I12
X + I23

X

]
p

+ i
∑

p=±(4n−2)
G

(p)
Y

[
I12
Y − I23

Y

]
p

(2.73)

where n ∈ N (natural numbers, e.g. 1,2,3,....).
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Employing the transformation function, S1 = i

(∑
p
C

(p)
X [I12

X + I23
X ]p + i

∑
p
C

(p)
Y [I12

Y − I23
Y ]p

)
,

the off-diagonal contributions due to H1,od are folded to give an effective Hamiltonian as given
below.

Heff
F = ωrIF + H̃1,d + i

2 [S1, H1,od] ; H̃1,d = eiλS1H1,de
−iλS1 (2.74)

To second order, the effective Hamiltonian is represented by the following equation.

Heff
F = H0 +H

(1)
2 = ωrIF +

√
2ω1J0 (A)

{[
I12
X + I23

X

]
0
−
∑
p

C
(p)
Y

[
I12
Z − I23

Z + I13
X

]
p

}

+ 1
2
∑
p

∑
m

{
C

(p)
X G

(m)
Y − C(p)

Y G
(m)
X

}[
I12
Z − I23

Z + I13
X

]
p+m

(2.75)

To maintain consistency, both the initial density operator ρ(0) = 2I13
Z and detection

operator D = I13
+ is transformed by S1.

ρ̃(0) = eiλS1U1ρ(0)U−1
1 e−iλS1 =

∑
p

Cij(p)
α

[
I ijα
]
p

; ρ(0) =
[
2I13
Z

]
0

(2.76)

D̃F = eiλS1U1DFU
−1
1 e−iλS1 =

∑
p

Dij(p)
α

[
I ijα
]
p

; DF =
[
I13

+

]
0

(2.77)

Employing the effective Hamiltonian (Eq. 2.75), the density operator during the pulse in
the Floquet framework is evaluated using the standard equation given below.

ρ̃(t) = e−iH
eff
F tρ̃(0)eiH

eff
F t =

∑
p

Rij(p)
α (t)

[
I ijα
]
p

(2.78)

Subsequently, utilizing the properties of the Floquet operators, the final signal (corre-
sponding to DQ excitation) is evaluated. Based on the operators involved in the density
operator and detection operator (refer to Table 2.3), the final signal expression reduces to
zero.

S(t) = Tr
[
ρ̃(t)D̃

]
=
∑
p

Rij(p)
α (t)Dji(−p)

β = 0 (2.79)

From an operational perspective, the above result is bit intriguing considering the fact
that the calculations in the quadrupolar interaction frame (in static samples) do give results
in excellent agreement with numerical simulations in both the strong and weak coupling
regimes 29 . To explicate the discrepancies observed between the methods, we examine the
higher order corrections from AHT to those obtained from the effective Hamiltonians. As
illustrated, the first-order correction (H1,d) in the effective Floquet Hamiltonian framework,
comprises diagonal ([I12

X ]0 and [I23
X ]0) operators that are identical to those obtained from H̄(1)
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operators Initial Density Operator, Detection Operator, Density Operator,
Cij(p)
α Dij(p)

α Rij(p)
α (t)

[I13
Z ]0 2

(
1 + x

4

)
0 2

(
1 + x

4

)
cos (ωet)

[I13
+ ]0 0 1 + x

4 0

[I12
Y + I23

Y ]0 0 0 −
√

2
(

1 + x

4

)
sin (ω1tJ0(A))

[I12
+ ]p

1
2
[
C

(p)
X + C

(p)
Y

] 1
2
[
C

(p)
X + C

(p)
Y

] 1
2
[
C

(p)
X + C

(p)
Y

]
e−ipωrt cos (ωet)

[I21
− ]p

1
2
[
−C(p)

X + C
(p)
Y

]
0 1

2
[
−C(p)

X + C
(p)
Y

]
e−ipωrt cos (ωet)

[I23
+ ]p

1
2
[
C

(p)
X − C

(p)
Y

] 1
2
[
−C(p)

X + C
(p)
Y

] 1
2
[
C

(p)
X − C

(p)
Y

]
e−ipωrt cos (ωet)

[I32
− ]p −1

2
[
C

(p)
X + C

(p)
Y

]
0 −1

2
[
C

(p)
X + C

(p)
Y

]
e−ipωrt cos (ωet)

[I13
Z ]p 0 0 i

√
2C(p)

X e−ipωrt sin (ω1tJ0(A))

[I13
Y ]p 0 0 −

√
2C(p)

Y e−ipωrt sin (ω1tJ0(A))

x = ∑
p

[
C

(p)
X C

(−p)
X − C(p)

Y C
(−p)
Y

]
ωe = ω1J0(A)

√
1 + 2∑

p
C

(p)
Y C

(−p)
Y

C
(p)
X = −G

(p)
X

pωr
C

(p)
Y = −G

(p)
Y

pωr

Table 2.3: The definition of constants employed in the description of the density operator and

detection operator (refer to Eqns. (2.76-2.78)) based on the Effective Floquet Hamiltonians (MAS

case)
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in the AHT framework. In a similar vein, the second-order contributions in the AHT frame-
work (associated with H̄(2)) could be related to the term [S1, H1,d] in the effective Floquet
Hamiltonian framework. While the form of the second-order coefficients remain identical in
both the methods, the spin operators in the Floquet framework are off-diagonal in the Fourier
dimension. Consequently, the derivation of an “effective rotation operator" in the Floquet
framework is hindered by the simultaneous presence of both (a) non-commuting (b) and off-
diagonal operators (off-diagonal with respect to both spin and Fourier space). By contrast,
the unitary transformation, U2 (refer to Eq. 2.64) employed in the standard Hilbert space
facilitates in the derivation of an effective rotation operator (Eq. 2.64) comprising commut-
ing set of operators. Such an approach facilitates in obtaining a closed form solution during
the excitation pulse. Hence, the discrepancy observed in the effective Floquet Hamiltonian
framework could be solely attributed to the presence of off-diagonal operators in the Fourier
space (resulting from [S1, H1,d]). In the following subsection, an alternate Floquet method,
Floquet Magnus expansion (FME) scheme is explored to describe the spin dynamics.

2.3.2.3 Time evolution based on Floquet Magnus Expansion (FME)

In the Floquet-Magnus expansion scheme 68–70 , the evolution operator is expressed as a
product of operators based on the Floquet theorem. In its most general formulation, the
evolution operator is expressed by the following equation.

U(t, 0) = e−iΛ(t)e−iH̄teiΛ(0) (2.80)

The operators H̄ and Λ(t) are derived in terms of a perturbation expansion as given
below.

H̄ =
∑
n

λnH̄(n) ; Λ(t) =
∑
n

λnΛn(t) (2.81)

Depending upon the boundary condition (whether Λ(0) = 0 or Λ(0) 6= 0), the form of
the expansion terms in H̄ and Λ(t) differ and would be discussed below. The spin dynamics
using the normal boundary condition (Λ(0) = 0) is described in Appendix-E.

1. Alternate Boundary Condition (Λ(0) 6= 0)

In the alternate boundary condition, the time-propagator is expressed as a product of three
exponential operators and has the following form,

U(t, 0) = e−iΛ(t)e−iH̄teiΛ(0) (2.82)
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General Expression Coefficients and Operators

H̄(1) = H0 H̄(1) =
√

2ω1J0 (A) [I12
X + I23

X ]

H̄(2) = ∑
k 6=0

{
[Hk, H−k]

2kω

}
H̄(2) = 0

Λ1(t) = ∑
k 6=0

eikωt

ikω
Hk Λ1(t) = a(t) [I12

Y − I23
Y ] + b(t) [I12

X + I23
X ]

Λ1(0) = ∑
k 6=0

1
ikω

Hk Λ1(0) = a(0) [I12
Y − I23

Y ]

a(t)=
√

2ω1

ωr

[ ∑
n=2p−1

Jn (A)
n

[cos (2nωrt)]
]

b(t)=
√

2ω1

ωr

∑
n=2p

Jn (A)
n

sin (2nωrt)

Table 2.4: Generalized expressions for H̄ and Λ(t) in the FME scheme (MAS case) corresponding

to alternate boundary condition (Λ(0) 6= 0)

Based on the expressions given in Table 2.4, the expansion terms in H̄ and Λ(t) are
evaluated. In contrast to the normal boundary condition (refer to Appendix-E), the second-
order term (H̄(2)) is zero in the alternate boundary condition.

H̄ = H̄(1) + H̄(2) =
√

2ω1J0 (A)
[
I12
X + I23

X

]
(2.83)

For the sake of simplicity, the correction terms in Λ(t) are confined to first order only.

Λ1(t) =
∑
k 6=0

eikωrt

ikωr
Hk = a(t)

[
I12
Y − I23

Y

]
+ b(t)

[
I12
X + I23

X

]
(2.84)

At time t=0, the above expression reduces to a simpler form given below.

Λ1(0) =
∑
k 6=0

1
ikωr

Hk =
√

2ω1

ωr

 ∑
n=2p−1

Jn (A)
n

 [I12
Y − I23

Y

]
(2.85)

where, p ∈ N (natural numbers, e.g. 1,2,3,....).
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Employing the transformed operators and the time-propagator given in Eq. (2.82), the
DQ signal during the excitation pulse is evaluated through the equations given below.

S(t) = Tr

e−iH̄teiΛ(0)U1ρ(0)U−1
1 e−iΛ(0)eiH̄t︸ ︷︷ ︸

ρ̃(t)

.

D̃(t)︷ ︸︸ ︷
eiΛ(t)U1DU

−1
1 e−iΛ(t)

 = Tr
[
ρ̃(t)D̃(t)

]
(2.86)

ρ̃(0) = eiΛ(0)U1ρ(0)U−1
1 e−iΛ(0) =

∑
Cij
α I

ij
α

=
{

2 cos
(
a(0)√

2

)} [
I13
Z

]
+
{
−
√

2 sin
(
a(0)√

2

)} [
I12
X − I23

X

]
(2.87)

D̃(t) = eiΛ(t)U1DU
−1
1 e−iΛ(t) =

∑
Dij
α (t)I ijα (2.88)

ρ̃(t) = e−iH̄tρ̃(0)eiH̄t =
∑

Rij
α (t)I ijα

=
{

2 cos
(
a(0)√

2

)
cos (ωet)

} [
I13
Z

]
+
{
−
√

2 cos
(
a(0)√

2

)
sin (ωet)

} [
I12
Y + I23

Y

]
+
{
−
√

2 sin
(
a(0)√

2

)
cos (ωet)

} [
I12
X − I23

X

]
+
{

2 sin
(
a(0)√

2

)
sin (ωet)

} [
I13
Y

]
(2.89)

The final form of the signal during the excitation is represented by the following equation.

S(t) =
∑

Rij
α (t)Dji

β (t) = i

2 sin
(
a(0)√

2

)
sin (ωet)

(
1− a2(t) + b2(t)

4

)

+ i

2
√

2

(
a(t) cos

(
a(0)√

2

)
sin (ωet) + b(t) sin

(
a(0)√

2

)
cos (ωet)

)

= F0e
±iωet +

∑
p∈N

Fpe
±i(ωe±2pωr)t (2.90)

where ωe = ω1J0(A). The terms F0

(
∝ sin

(
a(0)√

2

))
and Fp, represent the amplitudes of

centerband and pth sideband, respectively. A detailed description of the coefficients employed
in the calculations is listed in Table 2.5. As depicted in Figure 2.13, the analytic simulations
from the FME scheme are in excellent agreement to those obtained from exact numerical
methods.

To explain the observed loss of the signal at (odd) integral multiples of n∗ τr4 (n=1,3,5..),
the signal expression given in Eq. (2.90) is re-expressed in the following form.

S(t) = iA(t) sin (ωet) + iB(t) cos (ωet) (2.91)
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Figure 2.13: In the MAS simulations depicted, excitation of DQ transitions in spin I=1 system

is presented. The validity of the FME scheme (Λ(0) 6= 0, indicated by red dots based on Eq. 2.90)

is compared with numerical simulations based on SPINEVOLUTION 7 (solid black line). The

following parameters were employed in the simualtions: CQ = 1 MHz, η=1.0, νr = 40 kHz and RF

amplitude, ν1 = 10 kHz.

where,
A(t) = 1

2 sin
(
a(0)√

2

)(
1− a2(t) + b2(t)

4

)
+ 1

2
√

2
a(t) cos

(
a(0)√

2

)
(2.92)

B(t) = 1
2
√

2
b(t) sin

(
a(0)√

2

)
(2.93)

As depicted in Figure 2.14, both the coefficients A(t) (first row) and B(t) (second row)
tend to zero at (odd) integral multiples of n ∗ τr4 (n=1,3,5..) and are directly responsible for
the signal loss in the excitation profile observed in the simulations. Subsequently, the signal
expression at integral multiples of τr4 reduces to the form given below.

S(t) = i

2 sin (ωet)
{

sin
(
a(0)√

2

)(
1− a2(t) + b2(t)

4

)
+ 1√

2
a(t) cos

(
a(0)√

2

)}
(2.94)

From an operational perspective, the analytic calculations/expressions (refer to Table 2.4
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Figure 2.14: In the MAS simulations depicted, (a) the coefficient A(t) (refer to Eq. 2.92) (b)

the coefficient B(t) (refer to Eq. 2.93) is plotted. The following parameters were employed in the

simualtions: CQ = 1 MHz, η = 1.0, νr = 40 kHz and RF amplitude, ν1 = 10 kHz.

and 2.5) based on the alternate boundary condition are more insightful and less cumbersome
to evaluate when compared to those obtained from the normal boundary condition (refer to
Appendix-E). In the following subsections, the role of the RF amplitude and the spinning
frequency on the DQ excitation efficiency is discussed along with the convergence criterion
in the analytic simulations.

(a) The role of RF amplitude and spinning frequency

To explicate the role of the RF amplitude and spinning frequency on the DQ excitation
efficiency, additional simulations were performed. In the simulations depicted in Figure 2.15,
the DQ excitation efficiency is monitored as a function of spinning frequency at constant RF
amplitude and quadrupolar coupling constant. In a similar vein, in the simulations depicted
in Figure 2.16, the DQ excitation efficiency is monitored as a function of the RF amplitude
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at a given spinning frequency and quadrupolar coupling constant.

Figure 2.15: In the simulations depicted, the validity of the FME Scheme (alternate boundary

condition) is checked by varying the spinning frequency, νr while keeping ν1 = 40 kHz and CQ = 2

MHz constant (η = 1.0). The analytic simulations based on the calculations (dotted red line) are

compared with those obtained from exact numerical methods based on SPINEVOLUTION 7 (solid

black line). The spinning frequency, νr is varied as - (A1) 20 kHz (A2) 25 kHz (A3) 40 kHz (A4)

50 kHz.

As depicted in the simulations, the DQ excitation efficiency decreases with increase in
spinning frequency (refer to Figure 2.15) and increases with increase in the RF amplitude
(refer to Figure 2.16). While these observations are in accord with known experimental
results 71 , a formal explanation of the above trend has remained unexplained. Below, we
present an explanation based on the density operator formalism proposed in the previous
subsection.

In the FME approach based on the alternate boundary condition (Λ(0) 6= 0), the opti-
mal conditions for DQ excitation could be inferred from the coefficients associated with the
transverse operators (I12

X and I23
X ) present in the initial density operator, ρ̃(0). As illustrated

in Eq. (2.87), the coefficients associated with the transverse operators are proportional to
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Figure 2.16: In the simulations depicted (MAS case), the validity of the FME Scheme (alternate

boundary condition) is checked by varying the RF amplitude, ν1 while keeping νr = 20 kHz and

CQ = 2 MHz constant (η = 1.0). The analytic simulations based on the calculations (dotted red

line) are compared with those obtained from exact numerical methods based on SPINEVOLUTION
7 (solid black line). The RF amplitude, ν1 is varied as - (A1) 5 kHz (A2) 10 kHz (A3) 20 kHz (A4)

40 kHz.

sin
(
a(0)√

2

)
(where, a(0) ∝ ω1

ωr
). During the excitation pulse, the transverse operators in

ρ̃(0) are transformed into double-quantum operators/coherence through the single quantum
operators (I12

X and I23
X ) present in the evolution operator, e−iH̄t. Consequently, the DQ coher-

ence present in ρ̃(t) is proportional to the factor, sin
(
a(0)√

2

)
(refer to coefficients associated

with I13
Y operator in Eq. 2.89). Hence, the DQ excitation efficiency maximizes at higher RF

amplitudes and decreases with increasing spinning frequencies.
In contrast to the description based on the normal boundary condition (refer to Appendix-

E), the description employing time-propagators derived from the alternate boundary condi-
tion presents an attractive framework for explicating the nuances of excitation in multi-level
systems. To further verify the exactness of the FME approach, the DQ excitation at rotary
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Figure 2.17: In the simulations depicted, the validity of the FME Scheme is checked for rotary

resonance conditions (ν1 = νr), keeping CQ = 2 MHz constant (η = 1.0). The analytic simulations

based on the calculations (dotted red line) are compared with those obtained from exact numerical

methods based on SPINEVOLUTION 7 (solid black line). The RF amplitude in the simulations is

varied as- (A1) 10 kHz (A2) 20 kHz (A3) 40 kHz (A4) 80 kHz.

resonance conditions (ω1 = ωr) was also explored. As depicted in Figure 2.17, the analytic
simulations are in good agreement with the numerical simulations at lower RF amplitudes.
The deviations observed at higher RF amplitudes could be explained based on the rela-
tive magnitudes of the RF amplitude, sample spinning frequency and effective quadrupolar
frequency and is addressed in the following subsection.

(b) Convergence criterion in analytic simulations.

To account for the deviations observed in the analytic simulations (refer to Figures 2.15-
2.17), additional set of simulations at and far from rotary resonance conditions were studied.
In cases where the simulation parameters are far from rotary resonance conditions (refer to
Figures 2.15-2.16), the convergence criterion is solely based on the ratio of the RF amplitude
to the spinning frequency, irrespective of the magnitude of the quadrupolar coupling constant.
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When the ratio
(
ω1

ωr

)
exceeds 1, significant deviations are observed in the analytic simulations

(refer to Figure 2.15). The observed deviations in the analytic simulations (refer to Figure
2.18, panels B1, B2 and B3) could be attributed to the divergence of the expansion terms
involved in Λ(t).

Figure 2.18: In the simulations depicted, the validity of the FME Scheme (alternate boundary

condition) is checked by varying the RF amplitude, ν1 and spinning frequency, νr while keeping CQ =

1 MHz (ν(2)0
Q,2 = 250 kHz) constant. The analytic simulations based on the calculations (dotted red

line) are compared with those obtained from exact numerical methods based on SPINEVOLUTION
7 (solid black line). The ratio ν1

νr
is varied as (A1) 0.25 (A2) 0.5 (A3) 1.0 (B1) 2.0 (B2) 4.0 (B3)

6.0 .

As illustrated in Table 2.4, the expansion coefficients (a(t) and b(t)) in Λ(t) are propor-
tional to ω1

ωr
and diverge with increasing RF amplitudes leading to deviations in the analytic

simulations. This aspect is further substantiated in the simulations depicted in Figure 2.19,
wherein, the convergence criterion is examined at different quadrupolar coupling constants.
As depicted, the convergence criterion (governed by the ratio of ω1

ωr
) in the analytic simula-

tions is independent of the quadrupolar coupling constant.
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Figure 2.19: In the simulations depicted, the validity of the FME scheme (alternate boundary

condition) is checked by varying quadrupolar coupling constant, CQ. The analytic simulations (dots)

are compared with those obtained from exact numerical methods based on SPINEVOLUTION 7

(solid line). Here, the ratio ν1
νr

is 0.25 (red dots and lines) and is 0.5 (blue dots and lines) while CQ
is varied as- (A1) 100 kHz (A2) 250 kHz (A3) 500 kHz (A4) 1 MHz.

Interestingly, the above criterion is not adhered to in the analytic simulations at rotary
resonance conditions. As depicted in Figure 2.17 (refer to panel A4), significant deviations
are observed in the analytic simulations at higher RF amplitudes. To explain the devia-
tions, additional simulations at different RF amplitudes were performed (at rotary resonance
conditions) by varying the quadrupolar coupling constants.

As depicted in Figure 2.20, the convergence criterion seems to depend on the ratio of the
effective quadrupolar frequency to the RF amplitude. The exact factor could be deduced
from the ratio of the coefficients associated with the quadrupolar interaction (corresponding
to I12

Z and I23
Z operators) and RF amplitude (operators I12

X and I23
X in the rotating frame

Hamiltonian (refer to Eq. 2.57). Similar conditions and criterion were also deduced 55,56 for

describing the effects of finite pulse effects in two-level systems. When the ratio
√2ω(2)0

Q,2

3ω1


exceeds 4, the analytic simulations (refer to Figure 2.20) are in excellent agreement with
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numerical simulations. From a theoretical perspective, this observation could be explained
based on the additional transformations employed in the rotating frame. When the ratio√2ω(2)0

Q,2

3ω1

 exceeds 4, the transformation into the quadrupolar interaction frame seems jus-

tifiable and the FME approach presents an attractive framework for describing the excitation
near rotary resonance condition. On the contrary, when the ratio is lower than 4, the trans-
formation into the RF interaction frame seems a natural choice (refer to Appendix-F). As
discussed in Appendix-F, the transformation into the RF interaction frame still yields results
in disagreement to those obtained from exact numerical methods. The exact reasons behind
the deviations remain under investigation and are certainly beyond the scope of this thesis.

Figure 2.20: In the simulations depicted, the validity of the FME scheme (alternate boundary

condition) is checked by varying quadrupolar coupling constant, CQ for rotary resonance condition

(ν1 = νr). The analytic simulations (dotted line) are compared with those obtained from exact

numerical methods based on SPINEVOLUTION 7 (solid line). The RF amplitude in the upper

row (panels A1-A4) is 20 kHz and in the bottom row (panels B1-B4) is 40 kHz, while CQ (ν(2)0
Q,2 ) is

varied as- (A1, B1) 100 kHz (25 kHz) (A2, B2) 250 kHz (62.5 kHz) (A3, B3) 500 kHz (125 kHz)

(A4, B4) 1 MHz (250 kHz).
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2.4 Summary

In summary, the present chapter highlights the strengths and limitations of the existing
analytic methods employed for studying finite pulse effects in spin I=1/2 and quadrupolar
spin-1 system under MAS. In Section 2.3.1, a detailed description of finite pulse effects
in spin I=1/2 system under static and MAS conditions is presented. While the approach
based on the concept of “effective fields” presents comprehensive description of the excitation
in static samples across all conditions, the validity of the analytical methods in spinning
samples depends on the choice of internal (magnitude of CSA interaction) and external
parameters (amplitude of the pulse and spinning frequency). Depending on the relative
magnitudes of internal and external parameters, two regimes (weak coupling regime and
strong coupling regime) are identified. The analytic expressions for both the regimes are
derived and substantiated through comparison with numerical simulations.

In Section 2.3.2, Time-propagators for Double-quantum excitation in spin I=1 system
is derived using various analytic methods (such as AHT, Effective Floquet Hamiltonian,
FME scheme). While the AHT approach offers a simpler framework for deriving the time-
propagators, the detection at stroboscopic time-intervals limits its utility in providing a
comprehensive description of the spin dynamics. Although, Floquet descriptions based on
effective Floquet Hamiltonians have extensively been employed for describing the dynamics in
spin-1/2 systems, the present thesis highlights the serious limitations of the effective Floquet
Hamiltonian approach in the description of excitation in quadrupolar spins in rotating solids.
By contrast, the FME scheme (especially FME with alternate boundary condition) offers
an attractive framework for describing the spin dynamics in MQMAS experiments at non-
stroboscopic time intervals and offers better insights into the excitation process in comparison
to other analytic methods based on Floquet theory.
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Appendix D

BCH relations for I=1 system

The operators for spin I=1 system in terms of fictitious spin-operators can be written as-

I ijx = 1
2 [|i〉 〈j|+ |j〉 〈i|]

I ijy = 1
2i [|i〉 〈j| − |j〉 〈i|]

I ijz = 1
2 [|i〉 〈i| − |j〉 〈j|]

The various useful BCH relations 52 among these operators are derived using the following
relation and summarized in the following tables.

eiθÂB̂e−iθÂ = B̂ + iθ[Â, B̂] + (iθ)2

2! [Â, [Â, B̂]] + (iθ)3

3! [Â, [Â, [Â, B̂]]] + · · · (D.1)
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Operators (Â) I12
x − I23

x (B̂)

I12
x + I23

x cos
(
θ√
2

)
[I12
x − I23

x ] +
√

2sin
(
θ√
2

)
[I13
y ]

I12
y − I23

y cos
(
θ√
2

)
[I12
x − I23

x ] +
√

2sin
(
θ√
2

)
[I13
z ]

I12
y + I23

y cos(
√

2θ) [I12
x − I23

x ] + 1√
2sin(

√
2θ) [I12

z − I23
z − I13

x ]

I12
z − I23

z cos
(

3θ
2

)
[I12
x − I23

x ]− sin
(

3θ
2

)
[I12
y + I23

y ]

I12
z + I23

z cos
(
θ
2

)
[I12
x − I23

x ]− sin
(
θ
2

)
[I12
y − I23

y ]

I13
x cos

(
θ
2

)
[I12
x − I23

x ] + sin
(
θ
2

)
[I12
y + I23

y ]

I13
y cos

(
θ
2

)
[I12
x − I23

x ]− sin
(
θ
2

)
[I12
x + I23

x ]

I12
z − I23

z + I13
x cos(θ) [I12

x − I23
x ]− sin(θ) [I12

y + I23
y ]
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Operator (Â) I12
x + I23

x (B̂)

I12
x − I23

x cos
(
θ√
2

)
[I12
x + I23

x ]−
√

2sin
(
θ√
2

)
[I13
y ]

I12
y − I23

y cos(
√

2θ) [I12
x + I23

x ] + 1√
2sin(

√
2θ) [I12

z − I23
z + I13

x ]

I12
y + I23

y cos
(
θ√
2

)
[I12
x + I23

x ] +
√

2sin
(
θ√
2

)
[I13
z ]

I12
z − I23

z cos
(

3θ
2

)
[I12
x + I23

x ]− sin
(

3θ
2

)
[I12
y − I23

y ]

I12
z + I23

z cos
(
θ
2

)
[I12
x + I23

x ]− sin
(
θ
2

)
[I12
y + I23

y ]

I13
x cos

(
θ
2

)
[I12
x + I23

x ]− sin
(
θ
2

)
[I12
y − I23

y ]

I13
y cos

(
θ
2

)
[I12
x + I23

x ] + sin
(
θ
2

)
[I12
x − I23

x ]

I12
z − I23

z + I13
x cos(2θ) [I12

x + I23
x ]− sin(2θ) [I12

y − I23
y ]
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Operator (Â) I12
y − I23

y (B̂)

I12
x − I23

x cos
(
θ√
2

)
[I12
y − I23

y ]−
√

2sin
(
θ√
2

)
[I13
z ]

I12
x + I23

x cos(
√

2θ) [I12
y − I23

y ]− 1√
2sin(

√
2θ) [I12

z − I23
z + I13

x ]

I12
y + I23

y cos
(
θ√
2

)
[I12
y − I23

y ]−
√

2sin
(
θ√
2

)
[I13
y ]

I12
z − I23

z cos
(

3θ
2

)
[I12
y − I23

y ] + sin
(

3θ
2

)
[I12
x + I23

x ]

I12
z + I23

z cos
(
θ
2

)
[I12
y − I23

y ] + sin
(
θ
2

)
[I12
x − I23

x ]

I13
x cos

(
θ
2

)
[I12
y − I23

y ] + sin
(
θ
2

)
[I12
x + I23

x ]

I13
y cos

(
θ
2

)
[I12
y − I23

y ] + sin
(
θ
2

)
[I12
y + I23

y ]

I12
z − I23

z + I13
x cos(2θ) [I12

y − I23
y ] + sin(2θ) [I12

x + I23
x ]
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Operator (Â) I12
y + I23

y (B̂)

I12
x − I23

x cos(
√

2θ) [I12
y + I23

y ]− 1√
2sin(

√
2θ) [I12

z − I23
z − I13

x ]

I12
x + I23

x cos
(
θ√
2

)
[I12
y + I23

y ]−
√

2sin
(
θ√
2

)
[I13
z ]

I12
y − I23

y cos
(
θ√
2

)
[I12
y + I23

y ] +
√

2sin
(
θ√
2

)
[I13
y ]

I12
z − I23

z cos
(

3θ
2

)
[I12
y + I23

y ] + sin
(

3θ
2

)
[I12
x − I23

x ]

I12
z + I23

z cos
(
θ
2

)
[I12
y + I23

y ] + sin
(
θ
2

)
[I12
x + I23

x ]

I13
x cos

(
θ
2

)
[I12
y + I23

y ]− sin
(
θ
2

)
[I12
x − I23

x ]

I13
y cos

(
θ
2

)
[I12
y + I23

y ]− sin
(
θ
2

)
[I12
y − I23

y ]

I12
z − I23

z + I13
x cos(θ) [I12

y + I23
y ] + sin(θ) [I12

x − I23
x ]
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Operator (Â) I12
z − I23

z (B̂)

I12
x − I23

x
1+3cos(

√
2θ)

4 [I12
z − I23

z ] + 3
2
√

2sin(
√

2θ) [I12
y + I23

y ]
+3

4(1− cos(
√

2θ)) [I13
x ]

I12
x + I23

x
1+3cos(

√
2θ)

4 [I12
z − I23

z ] + 3
2
√

2sin(
√

2θ) [I12
y − I23

y ]
+3

4(cos(
√

2θ)− 1) [I13
x ]

I12
y − I23

y
1+3cos(

√
2θ)

4 [I12
z − I23

z ]− 3
2
√

2sin(
√

2θ) [I12
x + I23

x ]
+3

4(cos(
√

2θ)− 1) [I13
x ]

I12
y + I23

y
1+3cos(

√
2θ)

4 [I12
z − I23

z ]− 3
2
√

2sin(
√

2θ) [I12
x − I23

x ]
+3

4(1− cos(
√

2θ)) [I13
x ]

I13
z [I12

z − I23
z ]

I13
x [I12

z − I23
z ]

I13
y [I12

z − I23
z ]

I12
z − I23

z + I13
x [I12

z − I23
z ]
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Operator (Â) I13
z (B̂)

I12
x − I23

x cos
(
θ√
2

)
[I13
z ] + 1√

2sin
(
θ√
2

)
[I12
y − I23

y ]

I12
x + I23

x cos
(
θ√
2

)
[I13
z ] + 1√

2sin
(
θ√
2

)
[I12
y + I23

y ]

I12
y − I23

y cos
(
θ√
2

)
[I13
z ]− 1√

2sin
(
θ√
2

)
[I12
x − I23

x ]

I12
y + I23

y cos
(
θ√
2

)
[I13
z ]− 1√

2sin
(
θ√
2

)
[I12
x + I23

x ]

I12
z − I23

z I13
z

I13
x cos(θ) I13

z + sin(θ) I13
y

I13
y cos(θ) I13

z − sin(θ) I13
x

I12
z − I23

z + I13
x cos(θ) I13

z + sin(θ) I13
y
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Operator (Â) I13
x (B̂)

I12
x − I23

x
3+cos(

√
2θ)

4 [I13
x ]− 1

2
√

2sin(
√

2θ) [I12
y + I23

y ]
+1

4(1− cos(
√

2θ)) [I12
z − I23

z ]

I12
x + I23

x
3+cos(

√
2θ)

4 [I13
x ] + 1

2
√

2sin(
√

2θ) [I12
y − I23

y ]
−1

4(1− cos(
√

2θ)) [I12
z − I23

z ]

I12
y − I23

y
3+cos(

√
2θ)

4 [I13
x ]− 1

2
√

2sin(
√

2θ) [I12
x + I23

x ]
−1

4(1− cos(
√

2θ)) [I12
z − I23

z ]

I12
y + I23

y
3+cos(

√
2θ)

4 [I13
x ] + 1

2
√

2sin(
√

2θ) [I12
x − I23

x ]
+1

4(1− cos(
√

2θ)) [I12
z − I23

z ]

I12
z − I23

z I13
x

I13
z cos(θ) I13

x − sin(θ) I13
y

I13
y cos(θ) I13

x + sin(θ) I13
z

I12
z − I23

z + I13
x I13

x
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Operator (Â) I13
y (B̂)

I12
x − I23

x cos
(
θ√
2

)
[I13
y ] + 1√

2sin
(
θ√
2

)
[I12
x + I23

x ]

I12
x + I23

x cos
(
θ√
2

)
[I13
y ]− 1√

2sin
(
θ√
2

)
[I12
x − I23

x ]

I12
y − I23

y cos
(
θ√
2

)
[I13
y ]− 1√

2sin
(
θ√
2

)
[I12
y + I23

y ]

I12
y + I23

y cos
(
θ√
2

)
[I13
y ] + 1√

2sin
(
θ√
2

)
[I12
y − I23

y ]

I12
z − I23

z I13
y

I13
z cos(θ) I13

y + sin(θ) I13
x

I13
x cos(θ) I13

y − sin(θ) I13
z

I12
z − I23

z + I13
x cos(θ) I13

y − sin(θ) I13
z
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Operator (Â) I12
z − I23

z + I13
x (B̂)

I12
x − I23

x
1+cos(

√
2θ)

2 [I12
z − I23

z ] + 1√
2sin(

√
2θ) [I12

y + I23
y ]

+1
2(3− cos(

√
2θ)) [I13

x ]

I12
x + I23

x cos(
√

2θ) [I12
z − I23

z + I13
x ] +

√
2sin(

√
2θ) [I12

y − I23
y ]

I12
y − I23

y cos(
√

2θ) [I12
z − I23

z + I13
x ]−

√
2sin(

√
2θ) [I12

x + I23
x ]

I12
y + I23

y
1+cos(

√
2θ)

2 [I12
z − I23

z ]− 1√
2sin(

√
2θ) [I12

x − I23
x ]

+1
2(3− cos(

√
2θ)) [I13

x ]

I12
z − I23

z I12
z − I23

z + I13
x

I12
z + I23

z [I12
z − I23

z ]− sin(θ) I13
y + cos(θ) I13

x

I13
x I12

z − I23
z + I13

x

I13
y [I12

z − I23
z ] + sin(θ) I13

z + cos(θ) I13
x
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Appendix E

Description of Double-quantum (DQ)

excitation using FME - Normal

Boundary Condition (Λ(0) = 0)

In the normal boundary condition, Λ(0) is set to zero and the time-propagator reduces to a
simpler form given below.

U(t, 0) = e−iΛ(t)e−iH̄t (E.1)

Accordingly, the expansion terms in H̄ and Λ(t) are derived (refer to Table E.1). In the
present calculations, we confine ourselves to second order in H̄.

H̄ = H̄(1) + H̄(2)

=
√

2ω1J0 (A)
[
I12
X + I23

X

]
− 2ω2

1
ωr

J0 (A)
 ∑
n=2p−1

Jn (A)
n

 [I12
Z − I23

Z + I13
X

]
(E.2)

where p ∈ N (natural numbers, e.g. 1,2,3,....).

To maintain consistency, both the initial density operator (ρ(0) = 2I13
Z ) and detection

operator (D = I13
+ ) are transformed by U1.

ρ̃(0) = U1ρ(0)U−1
1 = 2I13

Z ; D̃ = U1DU
−1
1 = I13

+ (E.3)

Subsequently, employing the time-propagator (U (t, 0)), the double-quantum signal is
evaluated as given below.

S(t) = Tr
[
e−iΛ(t)e−iH̄tρ̃(0)eiH̄teiΛ(t).D̃

]
= Tr

[
e−iH̄tρ̃(0)eiH̄t.eiΛ(t)D̃e−iΛ(t)

]
(E.4)
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General Expression Coefficients and Operators

H̄(1) = H0
√

2ω1J0 (A) [I12
X + I23

X ]

H̄(2) = ∑
k 6=0

{
[Hk, H−k]

2kω

}
+ ∑

k 6=0

{
[H0, Hk]
kω

}
−2ω2

1
ωr

J0 (A)
[ ∑
n=2p−1

Jn (A)
n

]
[I12
Z − I23

Z + I13
X ]

Λ1(t) = ∑
k 6=0

eikωt − 1
ikω

Hk a(t) [I12
Y − I23

Y ] + b(t) [I12
X + I23

X ]

a(t)=
√

2ω1

ωr

[ ∑
n=2p−1

Jn (A)
n

[cos (2nωrt)− 1]
]

b(t)=
√

2ω1

ωr

∑
n=2p

Jn (A)
n

sin (2nωrt)

Table E.1: Generalized expressions for H̄ and Λ(t) in the FME scheme (MAS case) corresponding

to the normal boundary condition (Λ(0) = 0)

Analogous to the transformation employed in the AHT calculations (refer to Eq. 2.64), the

Hamiltonian H̄ is transformed (using U2 = e

iθ[I12
Y − I23

Y ]√
2 , tan θ = ω1J0(A)

−2ω2
1J0(A)
ωr

[ ∑
n=2p−1

Jn(A)
n

])
such that the Hamiltonian reduces to a simpler form comprising commuting set of operators.

Heff = U2H̄U
−1
2 =

ω1J0 (A) sin θ − 2ω2
1

ωr
J0 (A)

 ∑
n=2p−1

Jn (A)
n

 cos θ
[I12

Z − I23
Z + I13

X

]
= ωe

[
I12
Z − I23

Z + I13
X

]
(E.5)

Accordingly, the final signal expression reduces to the following form.

S(t) = Tr

U2e
−iH̄tU−1

2︸ ︷︷ ︸
e
−iHeff t

ρ̃eff (0)︷ ︸︸ ︷
U2ρ̃(0)U−1

2 U2e
iH̄tU−1

2︸ ︷︷ ︸
e
iHeff t

.

D̃eff (t)︷ ︸︸ ︷
U2e

iΛ(t)D̃e−iΛ(t)U−1
2



= Tr

e−iHeff tρ̃eff (0)eiHeff t︸ ︷︷ ︸
ρ̃eff (t)

.D̃eff (t)

 = Tr
[
ρ̃eff (t)D̃eff (t)

]
(E.6)

Employing Baker Campbell Hausdorff (BCH) formula 52 , analytic expressions for the
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operators ρ̃eff (0), ρ̃eff (t) and D̃eff (t) are derived and described in detail in Table E.2.

ρ̃eff (0) = U2ρ̃(0)U−1
2 =

∑
Cij
α I

ij
α =

{
2 cos

(
θ

2

)} [
I13
Z

]
+
{
−
√

2 sin
(
θ

2

)} [
I12
X − I23

X

]
(E.7)

ρ̃eff (t) = e−iHeff tρ̃eff (0)eiHeff t =
∑

Rij
α (t)I ijα

=
{

2 cos
(
θ

2

)
cos (ωet)

} [
I13
Z

]
+
{
−2 cos

(
θ

2

)
sin (ωet)

} [
I13
Y

]
+
{
−
√

2 sin
(
θ

2

)
cos (ωet)

} [
I12
X − I23

X

]
+
{
−
√

2 sin
(
θ

2

)
sin (ωet)

} [
I12
Y + I23

Y

]
(E.8)

D̃eff (t) = U2e
iΛ(t)D̃e−iΛ(t)U−1

2 =
∑

Dij
α (t)I ijα (E.9)

Subsequently, the final signal (corresponding to DQ excitation) reduces to a form, com-
prising centre-band and sidebands.

S(t) =
∑

Rij
α (t)Dji

β (t) = F0e
±iωet +

∑
p∈N

Fpe
±i(ωe±2pωr)t (E.10)

where F0 and Fp represent the amplitudes of centreband and pth sideband respectively.
To verify the exactness of the above framework, analytic simulations (based on Eq. E.10)

were compared with simulation results emerging from SPINEVOLUTION. As depicted in
Figure E.1, the analytic simulations from the FME approach are in excellent agreement to
those obtained from numerical methods.
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D
ij α
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)

R
ij α

(t
)

I
13 Z

2c
os
( θ 2)

−
i √
2b

(t
)s

in
( θ 2)
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os
( θ 2) co

s(
ω
e
t)

I
12 +

−
1 √
2

sin
( θ 2)

1 2√
2
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( θ 2) [1

−
c(
t)

]+
3 4√
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(t

)s
in

(θ
)−

1 2a
(t
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os
( θ 2) −

i 2b
(t
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os
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−

1 √
2
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e
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I
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2
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i 2b
(t

)c
os
( θ 2√
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1 √
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1 √
2

sin
( θ 2)

3 2√
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1 √
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Figure E.1: In the MAS simulations depicted, excitation of DQ transition in spin I=1 system

is presented. The validity of FME scheme (Λ(0) = 0, indicated by red dots) is compared with

numerical simulations based on SPINEVOLUTION 7 (solid black line). The following parameters

were employed in the simulations: CQ = 1 MHz, η = 1.0, νr = 40 kHz and RF amplitude, ν1 = 10

kHz.

In the FME approach based on the normal boundary condition, the transformed initial
density operator, ρ̃eff (0) (refer to Eq. E.7 in Appendix-E) comprises both the longitudinal
(I13
Z operator) and transverse operators (I12

X , I23
X ). The longitudinal components are propor-

tional to cos
(
θ

2

)
, while, the transverse components are proportional to sin

(
θ

2

)
. In contrast

to the alternate boundary condition (Λ(0) 6= 0), the longitudinal component (associated with
I13
Z operator) in ρ̃eff (0) is transformed into DQ coherence (refer to Eq. E.8 in Appendix-E)
through the DQ operator (I13

X ) present in the evolution operator, e−iH̄t. As illustrated in
Eq. E.8, the DQ coherence (I13

Y ) is proportional to cos
(
θ

2

)
leading to improved excitation

efficiency at higher RF amplitudes. While the analytic simulations depicted in Figure E.1
are in good agreement with numerical simulations, the analytic expressions in the proposed
framework are less insightful in explaining the loss of signal intensity at odd integral multiples
of τr4 . Hence, the analytic expressions obtained from FME (alternate boundary condition,
Λ 6= 0) present an attractive option for studying the excitation process in spin-1 system.
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Appendix F

Description of spin dynamics in the

RF interaction frame

1. Static simulations

Following the description in the chapter, the Hamiltonian of an isolated spin-1 system (static
case) in the rotating frame is represented by the following equation.

H = ωQ
3
[
I12
Z − I23

Z

]
+
√

2ω1
[
I12
X + I23

X

]
(F.1)

When the magnitude of the RF field exceeds the quadrupole frequency, the Hamilto-
nian in the rotating frame is transformed (employing the unitary transformation, U1 =

e
i
π
√

2
2 [I12

Y +I23
Y ]
) such that the RF part is quantized along Z-direction.

H̃ = U1HU
−1
1 = −ωQ6

[
I12
Z − I23

Z

]
+ ωQ

2 I13
X + 2ω1I

13
Z (F.2)

Subsequently, the Hamiltonian is additionally transformed into the dominant interaction
frame (defined by the RF interaction), U2 = e2iω1tI13

Z . In the RF interaction frame, the
Hamiltonian is time-dependent (modulated by RF amplitude, ω1).

˜̃
H(t) = U2H̃U

−1
2 = −ωQ6

[
I12
Z − I23

Z

]
+ ωQ

4
[
I13

+ e
2iω1t + I31

− e
−2iω1t

]
(F.3)

Below, we present a brief description of the derivation of time-propagators based on
effective Floquet Hamiltonians and Floquet Magnus expansion.
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(i) Derivation of time-propagators based on effective Floquet Hamiltonians

Employing Floquet theory, the time-dependent Hamiltonian in the RF interaction frame is
transformed into a time-independent Floquet Hamiltonian.

HF = ω1IF −
ωQ
6
[
I12
Z − I23

Z

]
0

+ ωQ
4

{[
I13

+

]
2

+
[
I31
−

]
−2

}
(F.4)

To simplify the description in the extended space, the contact transformation procedure is
employed. Accordingly, the Floquet Hamiltonian is split and expressed as a sum of zero-order
and perturbing Hamiltonian.

H0 = ω1IF −
ωQ
6
[
I12
Z − I23

Z

]
0

(F.5)

H1 = ωQ
4

{[
I13

+

]
2

+
[
I31
−

]
−2

}
(F.6)

Employing the transformation function, S1, the Floquet Hamiltonian is transformed as
given below.

Heff
F = eiλS1HF e

−iλS1 ; S1 = i
(
C

(2)
13

[
I13

+

]
2

+ C
(−2)
31

[
I31
−

]
−2

)
(F.7)

To second order, the diagonal corrections to the effective Hamiltonian is derived and
represented by the following equation.

Heff
F = H0 +H

(1)
2 = ω1IF −

ωQ
6
[
I12
Z − I23

Z

]
0

+
ω2
Q

16ω1

[
I13
Z

]
0

(F.8)

Following the standard procedure, both the initial density operator and density operators
are transformed and the final time-domain signal is summarized by the following equations.

ρ̃(0) = eiλS1U2U1ρ(0)U−1
1 U−1

2 e−iλS1 =
∑
p

Cij(p)
α

[
I ijα
]
p

(F.9)

ρ̃(t) = e−iH
eff
F tρ̃(0)eiH

eff
F t =

∑
p

Rij(p)
α (t)

[
I ijα
]
p

(F.10)

D̃ = eiλS1U2U1DU
−1
1 U−1

2 e−iλS1 =
∑
p

Dij(p)
α

[
I ijα
]
p

(F.11)

S(t) = Tr
[
ρ̃(t)D̃

]
=
∑
p

Rij(p)
α (t)Dji(−p)

β

= C
12(1)
+ D

21(−1)
− e−iω1te

−
iω2
Q
t

32ω1 e
iωQt

4 + C
21(−1)
− D

12(1)
+ eiω1te

iω2
Q
t

32ω1 e−
iωQt

4

+ C
23(1)
+ D

32(−1)
− e−iω1te

−
iω2
Q
t

32ω1 e−
iωQt

4 + C
32(−1)
− D

23(1)
+ eiω1te

iω2
Q
t

32ω1 e
iωQt

4 (F.12)
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Figure F.1: In the simulations depicted (static case), the validity of the Floquet Contact Scheme

and Floquet Magnus expansion scheme is checked by varying the Quadrupolar coupling constant,

CQ. The analytic simulations based on Floquet Contact transformation (dotted red line based

on Eq. F.12) and Floquet Magnus expansion scheme (dotted blue line based on Eq. F.17) are

compared with those obtained from exact numerical methods based on SPINEVOLUTION 7 (solid

black line). The RF amplitude is kept fixed at ν1 = 40 kHz while the CQ is varied as- (A1, B1) 25

kHz (A2, B2) 50 kHz (A3, B3) 100 kHz (A4, B4) 200 kHz.

A detailed description of the coefficients employed in the operators is summarised in
Table F.1. As depicted in Figure F.1 (first row), the analytic simulations (based on Eq.
F.12) are in excellent agreement with those obtained from numerical simulations and justify
the framework outlined above.
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(ii) Derivation of time-propagators based on Floquet Magnus Expansion (Alter-

nate boundary condition)

Based on the discussion in the chapter, the time-propagator in the RF interaction frame is
derived and described by the following equations.

U(t) = e−iΛ(t)e−iH̄teiΛ(0) (F.13)

Subsequently, based on the general expressions given in Table 2.2 (Chapter-2), the ex-
pansion coefficients in H̄ and Λ(t) are derived and given below.

H̄ = H̄(1) + H̄(2) = −ωQ6
[
I12
Z − I23

Z

]
+

ω2
Q

16ω1
I13
Z (F.14)

Λ1(t) = ωQ
4ω1

cos (2ω1t) I13
Y + ωQ

4ω1
sin (2ω1t) I13

X = a(t)I13
Y + b(t)I13

X (F.15)

In accord with the description in the chapter, the final signal expression is derived and
represented by the following equations.

S(t) = Tr
[
e−iΛ(t)e−iH̄teiΛ(0)ρ(0)e−iΛ(0)eiH̄teiΛ(t).D

]
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(F.16)
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A detailed description of the coefficients is summarised in Table F.2. In Figure F.1
(second row), a comparison of the analytic simulations (based on FME, Eq. F.17) with
numerical simulations is illustrated. As depicted, the FME based simulations are in complete
disagreement to those obtained from SPINEVOLUTION. This is bit intriguing considering
the fact that the analytic simulations based on the effective Floquet Hamiltonians (first row)
are in excellent agreement with numerical simulations. Hence, the suitability of any analytic
method could only be established through comparisons with exact numerical simulations.

2. MAS simulations

Based on the discussion in the chapter, the Hamiltonian for spin I=1 under MAS conditions
is represented by the following equation.

H(t) =
2ω(2)0

Q,2

3 cos (2ωrt)
[
I12
Z − I23

Z

]
+
√

2ω1
[
I12
X + I23

X

]
(F.18)
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The Hamiltonian in the rotating frame is transformed using the transformations given
below.

˜̃
H(t) = U2U1H(t)U−1

1 U−1
2 ; U1 = ei

π
√

2
2 [I12

Y +I23
Y ] , U2 = e2iω1tI13

Z

= −
ω
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[
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Z − I23

Z

]
+
ω

(2)0
Q,2
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[
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+ e
2iω1t + I31

− e
−2iω1t

]
(F.19)

Subsequently, the Hamiltonian is further transformed by U3 = eiΦ(t)[I12
Z −I

23
Z ].˜̃̃
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Under rotary resonance condition i.e. ω1 = ωr, the above Hamiltonian has contributions
from both time-independent and time-dependent terms.

˜̃̃
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4
[
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(F.21)

Following the procedure outlined in the chapter, the corrections to H̄ and Λ(t) (in alter-
nate boundary condition (Λ 6= 0)) are evaluated.

H̄(1) = H0 =
ω
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Λ1(0) =
ω
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I13
Y = a(0)I13

Y (F.24)

When the RF amplitudes are higher than the quadrupolar frequency
√2ω(2)0

Q,2

3ω1
< 4

, the
second-order corrections (H̄(2)) are of lesser significance. To maintain consistency, both the
initial density operator (ρ(0) = 2I13

Z ) and detection operator (D = I13
+ ) are transformed by

these unitary transformations.
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Subsequently, the final signal expression is calculated using the standard relation.

S(t) = Tr
[
e−iHtρ′(0)eiHt.D′(t)

]
; H = H0 =

ω
(2)0
Q,2

2 I13
X (F.27)

To test the validity of the above analytic framework, comparison of the analytic simula-
tions (based on Eq. F.27) with SPINEVOLUTION is illustrated in Figure F.2. As depicted
in Figure F.2, the analytic simulations are in complete disagreement to the simulations from
SPINEVOLUTION. The exact reasons behind the discrepancies is unknown and is certainly
beyond the scope of the thesis.
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Figure F.2: In the simulations depicted (MAS case), the validity of the rf interaction frame

calculations (Eq. F.27) is checked at rotary resonance condition for CQ variation. The analytic

simulations based on the calculations (dotted red line) are compared with those obtained from

exact numerical methods based on SPINEVOLUTION 7 (solid black line). The parameters of

simulations are- ν1 = νr = 20 kHz for upper row (panels A1, A2) and ν1 = νr = 40 kHz for bottom

row (panels B1, B2) while CQ (ν(2)0
Q,2 ) is varied along columns- (A1, B1) 100 kHz (25 kHz) (A2, B2)

250 kHz (62.5 kHz).
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Chapter 3

Description of recoupling effects in

MAS experiments involving spin-1/2

system coupled to spin S=1

3.1 Introduction

The availability of sophisticated NMR hardware has immensely enhanced the ability of solid-
state NMR (ssNMR) spectroscopy in addressing wide-range of problems of chemical and
biology relevance involving quadrupolar spins 1–9 . In particular, the availability of ultra-
fast MAS probes has ushered in the development of cost effective methods in the form of
proton-based ssNMR experiments for studying biological systems 10–12 . Consequently, stud-
ies involving spin I=1/2 nuclei coupled to quadrupolar spins are now routinely possible in
the solid-state. While the implementation of these experiments have became easier with the
availability of higher magnetic field strengths and ultrafast MAS probes, optimal design of
experiments that involve spin I=1/2 nuclei coupled with quadrupolar spin has remained a
challenging task. In particular, implementation of experiments on spin-1/2 nuclei have always
been impeded by the interference effects arising from RF fields employed on the quadrupolar
spin. Since extraction of molecular constraints in NMR experiments involves iterative fitting
of the experimental data, analytic models/expressions that are computationally efficient are
essential.

Here, in this chapter, we focus on the interference effects that arise in experiments in-
volving spin I=1/2 nuclei coupled to S=1. Specifically, we focus on the interference effects
introduced by the RF field on the quadrupolar spin in experiments that involve (i) mea-
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surement of CSA tensors on spin¯I=1/2 (ii) polarisation transfer from spin I=1/2 to S=1.
A schematic depiction of the pulse sequence employed to study the interference effects is
illustrated in Figure 3.1.

Figure 3.1: Schematic representation of the pulse sequence

3.2 Measurement of CSA interactions in spin I=1/2

nucleus coupled to S=1

In its simplest implementation, the CSA interaction on spin I=1/2 is reintroduced under
MAS conditions by employing a constant RF field on the I-channel. When the amplitude
of the RF field on the I-channel is adjusted to an integer multiple of the spinning frequency
(ωRF,I = nωr, n=1 or 2), a part of the CSA interactions is reintroduced under MAS. However,
estimation of chemical shift tensors in such experiments have always remained challenging
13–17 , owing to the simultaneous reintroduction of heteronuclear dipolar interactions. Conse-
quently, to minimize the undesirable effects of the heteronuclear dipolar interactions on the
line-shape (of spin I=1/2 nucleus), a strong (CW) decoupling field is additionally employed
on the quadrupolar spin 18–21 . Although, numerical methods 22,23 have facilitated in the op-
timisation (through trial and error) of such experiments, a formal understanding entails an
analytic approach. To illustrate this point, we begin with numerical simulations illustrated
in Figure 3.2.
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Figure 3.2: In the simulations illustrated, the FT spectrum of spin I=1/2 nucleus coupled to a

quadrupolar spin (S=1) is illustrated for different RF field strength employed on the quadrupolar

spin. A constant RF field strength of 40 kHz on I=1/2 (νRF,I = 40 kHz) and spinning frequency of

40 kHz (νr = 40 kHz) was employed in the simulations. The following parameters were employed

in the simulations. CSA parameters on spin I=1/2 (δ = 10.0 kHz, η= 1.0,ΩPM = (10◦, 30◦, 40◦)

). Quadrupolar parameters (CQ = 1 MHz, η= 1.0,ΩPM = (30◦, 40◦, 60◦)) and dipolar parameters

(ωIS = 8.6 kHz). The amplitude of the RF field strength (decoupling field on quadrupolar spin) is

varied along the column, νRF,S = 10 kHz (panels A1 and B1), 40 kHz (panels A2 and B2), 100 kHz

(panels A3 and B3). The simulations along the first row corresponds to a single crystal, while, the

powder simulations are depicted along the second row.

In the simulations depicted, the interference effect due to RF field (on the quadrupolar
spin) on the line-shape of spin I=1/2 nucleus (based on pulse scheme depicted in Figure
3.1) in both single crystal (first row) and powder sample (second row) is illustrated. Em-
ploying a constant RF field on spin ‘I’ (I=1/2), the CSA interaction of the spin ‘I’ nucleus is
reintroduced along with the heteronuclear dipolar interactions (I=1/2, S=1) under MAS con-
ditions. To minimize the undesirable effects of the heteronuclear dipolar interactions on the
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line-shape of spin ‘I=1/2’ nucleus, a strong (CW) decoupling field is additionally employed
on the quadrupolar spin. As depicted in Figure 3.2, the resolution of the spectrum in the
powder sample (second row) improves with increase in the decoupling field strength, while
such a trend is unobserved in the case of a single crystal (first row). In particular, the exact
reasons behind the loss in resolution depicted in panel A3 (Figure 3.2) remains intriguing and
less obvious from numerical simulations. Henceforth, to explicate the observations mentioned
above, a formal description of the underlying spin dynamics outlining the interplay between
spinning frequency, RF field strength and quadrupolar coupling constant remains essential.
Although, several theoretical formulations have emerged 13,14,24–27 for describing the effects
of the quadrupolar spin on the NMR spectrum of spin-1/2 nuclei, a formal description of the
interference effects in terms of analytic expressions in MAS experiments has always remained
elusive.

To this end, we employ an isolated spin pair (I=1/2, S=1) as a model system to describe
the interference effects in I=1/2 system coupled to a quadrupolar spin, S=1. The notations
employed to describe the spin states, operators and possible transitions of spin I=1/2 (|1〉 →
|4〉, |2〉 → |5〉 and |3〉 → |6〉) are summarized through the energy level diagram depicted in
Figure 3.3.

Figure 3.3: Energy level diagram for a spin I=1/2 system coupled to a quadrupolar spin, S=1

(red arrows correspond to transitions of spin I=1/2 system)

Accordingly, the Hamiltonian of an isolated spin pair (spin I=1/2 coupled to spin S=1)
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in the rotating frame is represented by the following equation.

H(t) = HI,CSA(t) +HI,RF (t) +HS,Q(t) +HS,RF (t) +HIS(t) (3.1)

The CSA interactions corresponding to spin ‘I’ are represented by, HI,CSA(t).

HI,CSA(t) =
2∑

m=−2, 6=0
ω

(m)
I eimωrtIZ =

2∑
m=−2,6=0

ω
(m)
I eimωrt

[
I14
Z + I25

Z + I36
Z

]
(3.2)

The quadrupolar interactions on spin ‘S’ is represented by, HS,Q(t).

HS,Q(t) =
2∑

m=−2, 6=0

ω
(m)
Q

6 eimωrt
[
3S2

Z − S2
]

=
2∑

m=−2,6=0

ω
(m)
Q

3 eimωrt
[
I12
Z − I23

Z + I45
Z − I56

Z

]
(3.3)

The interaction between spins (I and S) is mediated through the heteronuclear dipolar
interaction, HIS(t).

HIS(t) =
2∑

m=−2, 6=0
2ω(m)

IS e
imωrtIZSZ =

2∑
m=−2,6=0

2ω(m)
IS e

imωrt
[
I13
Z − I46

Z

]
(3.4)

In MAS experiments, the anisotropic components of the internal interactions (CSA, dipo-
lar and quadrupolar interaction) are represented through the following standard expression.

ω
(m)
λ =

2∑
m1=−2

R
(2)m1
P,λ

2∑
m2=−2

Dm1m2 (ΩPM)Dm2m (ΩMR) dm0 (βRL) (3.5)

Here, R(2)m1
P,λ represents the component of the spatial tensor (λ=CSA, dipolar or quadrupo-

lar interaction) defined in the principal axis system (PAS), while, Dm1m2 (ΩAB) denotes the
Wigner Rotation matrix. The detailed description of these coefficients is provided in Chapter-
1.
The Hamiltonian depicting the continuous wave field (CW) applied on both the channels is
represented by-

HI,RF (t) = ωRF,IIX = ωRF,I
[
I14
X + I25

X + I36
X

]
(3.6)

HS,RF (t) = ωRF,SSX =
√

2ωRF,S
[
I12
X + I23

X + I45
X + I56

X

]
(3.7)

Due to larger magnitude of the quadrupolar interactions, the Hamiltonian (Eq. 3.1) is
transformed into the quadrupolar interaction frame 28–34 (defined by U1 = eiΦ(t)[I12

Z −I
23
Z +I45

Z −I
56
Z ]).

In the quadrupolar interaction frame, both the CSA interactions of spin ‘I’ (HI,CSA(t)) and
the dipolar interactions (HIS(t)) are invariant, while, the RF Hamiltonian (that was constant
in the rotating frame) on spin ‘S’ becomes time-dependent.

H̃(t) = U1H(t)U−1
1 = HI,CSA(t) +HI,RF (t) + H̃S,RF (t) +HIS(t) (3.8)
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H̃S,RF (t) = U1HS,RF (t)U−1
1 =

√
2ωRF,SA

[
I12
X + I23

X + I45
X + I56

X

]
+
√

2ωRF,S
∑
n

AX,ne
inωrt

[
I12
X + I23

X + I45
X + I56

X

]
+
√

2ωRF,S
∑
n

BY,ne
inωrt

[
I12
Y − I23

Y + I45
Y − I56

Y

]
(3.9)

where

A =
∑
n1

Jn1 (A1)
∑
n2

Jn2 (A2)
∑
n3

Jn3 (A3)
∑
n4

Jn4 (A4) ; n1 + n2 + n3 + n4 = 0

The coefficients (AX,p and BY,p) in the time-dependent RF part are expressed in terms of
Bessel functions 35 as given below.

AX,p ∝
∑
n1

Jn1 (A1)
∑
n2

Jn2 (A2)
∑
n3

Jn3 (A3)
∑
n4

Jn4 (A4) ; n1 + n2 + n3 + n4 = p (3.10)

BY,p ∝
∑
n1

Jn1 (A1)
∑
n2

Jn2 (A2)
∑
n3

Jn3 (A3)
∑
n4

Jn4 (A4) ; n1 + n2 + n3 + n4 = p (3.11)

where

A1 =
ω

(1)
Q − ω

(−1)
Q

2iωr
, A2 =

ω
(1)
Q + ω

(−1)
Q

2ωr
, A3 =

ω
(2)
Q − ω

(−2)
Q

4iωr
, A4 =

ω
(2)
Q + ω

(−2)
Q

4ωr

Case-I: Single Crystal with ΩPM = (0, 90, 0)

To describe the spin dynamics, we begin with the special case of a single crystal, wherein
all the internal interactions (i.e. CSA on I-spin, Quadrupolar interaction on S-spin and
dipolar coupling between I and S spin) have the special orientation, ΩPM = (0, 90, 0) and
η=1.0. Under this condition, only one of the components of the internal interaction is present
(ω(±1)=0

λ where λ= CSA, dipolar or quadrupolar interaction). Consequently, the Hamiltonian
in the quadrupolar interaction frame (Eq. 3.8) reduces to a simpler form given below.

H̃(t) = U1H(t)U−1
1 = 2ω(2)

I cos (2ωrt)
[
I14
Z + I25

Z + I36
Z

]
+ ωRF,I

[
I14
X + I25

X + I36
X

]
+ 4ω(2)

IS cos (2ωrt)
[
I13
Z − I46

Z

]
+
√

2ωRF,SJ0(A)
[
I12
X + I23

X + I45
X + I56

X

]
+
√

2ωRF,S
∑

k=±4,±8,..
Jk/2 (A) eikωrt

[
I12
X + I23

X + I45
X + I56

X

]
+ i
√

2ωRF,S
∑

m=±2,±6,..
Jm/2 (A) eimωrt

[
I12
Y − I23

Y + I45
Y − I56

Y

]
(3.12)
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where A =
ω

(2)
Q

2ωr
represents the argument of the Bessel function 35 .

It is important to note that the above choice of parameters have been employed solely for
demonstrative purposes and the framework presented in this chapter is equally valid for any
arbitrary orientation of the spin interactions.

Employing the Magnus formula 36 , corrections to second order are derived for describing
the Hamiltonian on the S-channel.

H̄ = H̄(1) + H̄(2) =
√

2ωRF,SJ0(A)
[
I12
X + I23

X + I45
X + I56

X

]
−

2ω2
RF,S

ωr
J0(A)

 ∑
n=2p−1

Jn(A)
n

[I12
Z − I23

Z + I45
Z − I56

Z + I13
X + I46

X

]
(3.13)

To facilitate analytic description, the Hamiltonian, H̄ is transformed (using unitary trans-

formation, U2 = e

iθ[I12
Y − I23

Y ]√
2 , tan θ =

2ω2
RF,SJ0(A)
ωr

[ ∑
n=2p−1

Jn(A)
n

]
ωRF,SJ0(A) )) such that the Hamil-

tonian reduces to a form comprising commuting set of operators.

Heff = U2H̄U
−1
2

=
ωRF,SJ0(A)√

2
cos θ +

√
2ω2

RF,S

ωr
J0(A)

 ∑
n=2p−1

Jn(A)
n

 sin θ
[I12

X + I23
X + I45

X + I56
X

]
=
√

2ωRF,eff
[
I12
X + I23

X + I45
X + I56

X

]
(3.14)

Employing the above form of the effective RF Hamiltonian on S-channel (Eq. 3.14), the
total Hamiltonian of the system (Eq. 3.12) reduces to a simpler form given below.

H̃(t) = 2ω(2)
I cos (2ωrt)

[
I14
Z + I25

Z + I36
Z

]
+ ωRF,I

[
I14
X + I25

X + I36
X

]
+ 4ω(2)

IS cos (2ωrt)
[
I13
Z − I46

Z

]
+
√

2ωRF,eff
[
I12
X + I23

X + I45
X + I56

X

]
(3.15)

To describe the interference effects, the above Hamiltonian is further transformed using

a series of transformations, U3 = e
i
π

2 [I14
Y +I25

Y +I36
Y ]

and U4 = e2iωrt[I14
Z +I25

Z +I36
Z ].

˜̃
H(t) = U4U3H̃(t)U−1

3 U−1
4 = (ωRF,I − 2ωr)

[
I14
Z + I25

Z + I36
Z

]
+
√

2ωRF,eff
[
I12
X + I23

X + I45
X + I56

X

]
− 2ω(2)

I cos (2ωrt)
{[
I14
X + I25

X + I36
X

]
cos (2ωrt)−

[
I14
Y + I25

Y + I36
Y

]
sin (2ωrt)

}
− 4ω(2)

IS cos (2ωrt)
{[
I14
X − I36

X

]
cos (2ωrt)−

[
I14
Y − I36

Y

]
sin (2ωrt)

}
(3.16)

To zeroth order, the Hamiltonian (Eq. 3.16) in the interaction frame is approximately
described by the time-independent terms (ignoring the time-dependent terms) comprising
the reintroduced internal interactions such as CSA and dipolar interactions. For operational
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reasons, the effective (recoupled) Hamiltonian is expressed as a sum of two terms as given
below.

Hrecoupled = HA +HB (3.17)

HA = (ωRF,I − 2ωr)
[
I14
Z + I25

Z + I36
Z

]
− kω(2)

I

[
I14
X + I25

X + I36
X

]
(3.18)

HB = −2kω(2)
IS

[
I14
X − I36

X

]
+
√

2ωRF,eff
[
I12
X + I23

X + I45
X + I56

X

]
(3.19)

The constant ‘k’ denotes the scaling factor that results from the multiple-pulse scheme
18,21,37 employed on spin ‘I’ to reintroduce the CSA interaction (in the present context, k=1).
When the RF amplitude on I-channel is adjusted to the matching condition (ωRF,I = 2ωr), the
longitudinal component (I ijZ operator in HA) becomes zero and the Hamiltonian comprises
only the CSA interactions (of spin ‘I’). Since evolution under ‘HA’ is of relevance in the
present study, the recoupled Hamiltonian (Eq. 3.19) is transformed using the transformation
function, U5 = e−i

√
2θ1[I15

Y −I
24
Y +I26

Y −I
35
Y ], such that the final form of the effective Hamiltonian

resembles to the one described by HA.

Heff = U5HrecoupledU
−1
5 = −

(
kω

(2)
I + 2ωeff

)
I14
X − kω

(2)
I I25

X −
(
kω

(2)
I − 2ωeff

)
I36
X (3.20)

tan θ1 = ωRF,eff

kω
(2)
IS

, ωeff = kω
(2)
IS cos θ1 + ωRF,eff sin θ1 (3.21)

As illustrated in Eq. (3.20), the operators corresponding to the allowed transitions (|1〉
→ |4〉 and |3〉 → |6〉) are influenced by the heteronuclear dipolar interactions, while, the
transition corresponding to the states, |2〉 → |5〉 remains unaffected. To maintain consistency,
both the operators (initial density operator (ρ(0) = IX = I14

X + I25
X + I36

X ) and detection
operator (D = I+ = I14

+ + I25
+ + I36

+ )) are transformed by the same set of transformations.

ρ′(0) = U5U4U3U2U1ρ(0)U−1
1 U−1

2 U−1
3 U−1

4 U−1
5

=
(

1 + cos (2θ1)
2

) [
I14
Z + I36

Z

]
+ cos (2θ1)

[
I25
Z

]
+
(

1− cos (2θ1)
2

) [
I13
X − I46

X

]
+ 1√

2
sin (2θ1)

[
I15
X − I24

X + I26
X − I35

X

]
(3.22)
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D′ = U5U4U3U2U1DU
−1
1 U−1

2 U−1
3 U−1

4 U−1
5

=
(

1 + cos (2θ1)
2

) [
I14
Z + I36

Z

]
+ cos (2θ1)

[
I25
Z

]
+
(

1− cos (2θ1)
2

) [
I13
X − I46

X

]
+ 1√

2
sin (2θ1)

[
I15
X − I24

X + I26
X − I35

X

]
(3.23)

Subsequently, employing the density operator at time ‘t’, the final form of the normalized
signal (Tr

[
ρ(0)2 = 3

2

]
) is derived and summarised below.

ρ′(t) = e−iHeff tρ′(0)eiHeff t

=
(

1 + cos (2θ1)
2

)
cos (2ωeff t) cos

(
kω

(2)
I t

) [
I14
Z + I36

Z

]
+ cos (2θ1) cos

(
kω

(2)
I t

) [
I25
Z

]
+ 1√

2
sin (2θ1) cos (ωeff t) cos

(
kω

(2)
I t

) [
I15
X − I24

X + I26
X − I35

X

]
+
(

1− cos (2θ1)
2

)
cos

(
kω

(2)
I t

) [
I13
X − I46

X

]
(3.24)

S(t) = Tr [ρ′(t)D′]
Tr

[
ρ(0)2

]
= I1 cos

(
kω

(2)
I t

)
+ I2 cos (ωeff t) cos

(
kω

(2)
I t

)
+ I3 cos (2ωeff t) cos

(
kω

(2)
I t

)
(3.25)

where

I1 = 1
3cos2 (2θ1) + 2

3

(
1− cos (2θ1)

2

)2

, I2 = 2
3sin2 (2θ1) , I3 = 2

3

(
1 + cos (2θ1)

2

)2

As described above, the time-domain signal (Eq. 3.25) in the present context comprises
frequency terms symmetrically distributed around the magnitude of the CSA interactions on
spin ‘I’ (ω(2)

I , ω
(2)
I ± ωeff , ω

(2)
I ± 2ωeff ). Based on the present analytic framework, the final

signal expression (Eq. 3.25) could in principle be quantified in terms of the contributions from
the transitions present in the coupled system. Accordingly, the frequency term, cos

(
kω

(2)
I t

)
in Eq. (3.25) is associated with the contributions from the allowed |2〉 → |5〉 and forbidden
transitions (|1〉 → |3〉, |4〉 → |6〉) in the coupled system. The frequency term proportional
to ω(2)

I ±ωeff (second term in Eq. 3.25)) result from transitions that involve flipping of both
spins (i.e. |1〉 → |5〉, |2〉 → |6〉, |3〉 → |5〉 and |2〉 → |4〉). In a similar vein, the frequency term
proportional to ω(2)

I ± 2ωeff (third term in Eq. 3.25) results from the two allowed transitions
associated with spin ‘I’ (i.e. |1〉 → |4〉, |3〉 → |6〉).
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To verify the exactness of the above analytic framework, the time-domain signal obtained
from Eq. (3.25) is compared with those obtained from exact numerical methods 22 . In the
simulations illustrated in Figure 3.4, the time-domain signal (based on Eq. 3.25) is evaluated
at different decoupling field strengths (panels A1-A4). As illustrated, the analytic simulations
are in excellent agreement in all the panels validating the analytic framework. To further
substantiate the proposed analytical framework, we extend the above calculations to a single
crystal with arbitrary orientation in the following subsection.

Figure 3.4: In the simulations illustrated, the time domain signal of spin I=1/2 (coupled to spin,

S=1) nucleus in a single crystal is depicted for different decoupling field strengths (νRF,S = 5 kHz

(panel A1), νRF,S = 10 kHz (panel A2), νRF,S = 20 kHz (panel A3), and νRF,S = 40 kHz (panel

A4)). The quadrupolar coupling constant (on spin ‘S=1’) of 2 MHz (η = 1.0 and ΩPM = (0, 90, 0)),

chemical shift parameters on spin ‘I’, δ = 30.0 kHz (η = 1.0 and ΩPM = (0, 90, 0), ω(2) = 5.0

kHz) and dipolar coupling of 8.6 kHz (ΩPM = (0, 90, 0)) are employed. The RF field on spin ‘I’

(νRF,I = 80 kHz) was chosen to be twice of the spinning frequency, νr = 40 kHz. The solid lines

correspond to numerical simulations 22 , while dots (in red) denote analytic simulations based on

Eq. (3.25).
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Case-II: Single Crystal with general orientation (ΩPM = (α, β, γ))

Following the procedure outlined in the previous subsection, the Hamiltonian in the quadrupo-
lar interaction frame is represented by the following equation (analogous to Eq. 3.15).

H̃(t) =
2∑

m=−2, 6=0
ω

(m)
I eimωrt

[
I14
Z + I25

Z + I36
Z

]
+

2∑
m=−2, 6=0

2ω(m)
IS e

imωrt
[
I13
Z − I46

Z

]
+ ωRF,I

[
I14
X + I25

X + I36
X

]
+
√

2ωRF,eff
[
I12
X + I23

X + I45
X + I56

X

]
(3.26)

Accordingly, to facilitate analytic description of the underlying spin dynamics, the above

Hamiltonian is transformed using a series of transformations, U3 = e
i
π

2 [I14
Y +I25

Y +I36
Y ]

and U4 =
einωrt[I

14
Z +I25

Z +I36
Z ]. Depending upon the choice of the RF amplitude, the CSA and dipolar

interaction coefficients corresponding to m = ±1(ωRF,I = ωr) or m = ±2(ωRF,I = 2ωr)
are reintroduced under MAS conditions respectively. Analogous to Case-I, the form of the
recoupled Hamiltonian (to zeroth order) is expressed as given below.

Hrecoupled = HA +HB (3.27)

HA = (ωRF,I − nωr)
[
I14
Z + I25

Z + I36
Z

]
− k

∣∣∣ω(n)
I

∣∣∣ [I14
X + I25

X + I36
X

]
(3.28)

HB = −2k
∣∣∣ω(n)
IS

∣∣∣ [I14
X − I36

X

]
+
√

2ωRF,eff
[
I12
X + I23

X + I45
X + I56

X

]
(3.29)

The term ‘k’ denotes the scaling factor due to the multiple-pulse sequence 18,21,37 that is
employed on ‘I’ spin for recoupling the CSA interaction.
When the RF amplitude on I-channel is adjusted to one of the matching conditions (n=1
or 2), the longitudinal component in Eq. 3.28 (I ijZ operator in HA) becomes zero and the
Hamiltonian comprises only the CSA interactions (of spin ‘I’). Since evolution under ‘HA’
is of relevance in the present study, the recoupled Hamiltonian (Eq. 3.28) is transformed
using the transformation function, U5 = e−i

√
2θ1[I15

Y −I
24
Y +I26

Y −I
35
Y ], such that the final form of

the effective Hamiltonian resembles to the one described by HA.

Heff = U5HrecoupledU
−1
5 = −

(
k
∣∣∣ω(n)
I

∣∣∣+ 2ωeff
)
I14
X − k

∣∣∣ω(n)
I

∣∣∣ I25
X −

(
k
∣∣∣ω(n)
I

∣∣∣− 2ωeff
)
I36
X

(3.30)

tan θ1 = ωRF,eff

k
∣∣∣ω(n)
IS

∣∣∣ , ωeff = k
∣∣∣ω(n)
IS

∣∣∣ cos θ1 + ωRF,eff sin θ1 (3.31)
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Following the procedure outlined in the previous subsection, the signal expression at any
time ‘t’ is evaluated and given by the following expression.

S(t) = Tr [ρ′(t)D′]
Tr

[
ρ(0)2

]
= I1 cos

(
k
∣∣∣ω(n)
I

∣∣∣ t)+ I2 cos (ωeff t) cos
(
k
∣∣∣ω(n)
I

∣∣∣ t)+ I3 cos (2ωeff t) cos
(
k
∣∣∣ω(n)
I

∣∣∣ t)
(3.32)

where

I1 = 1
3cos2 (2θ1) + 2

3

(
1− cos (2θ1)

2

)2

, I2 = 2
3sin2 (2θ) , I3 = 2

3

(
1 + cos (2θ1)

2

)2

Figure 3.5: In the simulations illustrated, the intensity factors (I1, I2 and I3 in Eq. 3.32) are

depicted as a function of the decoupling field strength employed on the quadrupolar spin, S. The

other parameters employed in the simulations are given in Table 3.1. The solid lines correspond to

plots for spinning frequency, νr= 20 kHz while the broken lines correspond to spinning frequency,

νr= 40 kHz.

The intensity factor, ‘I1’ increases at higher RF field strengths with a pronounced decrease
in the intensities (I2 and I3) associated with the higher frequency terms. This trend is
also verified through the analytical expressions and is illustrated pictorially in Figure 3.5.
When the dipolar coupling is set to zero (or when perfect decoupling is realized), the signal
expression (Eq. 3.32) reduces to the desired form comprising contributions only from CSA
interactions.

S(t) = Tr [ρ′(t)D′] = cos
(
k
∣∣∣ω(n)
I

∣∣∣ t) (3.33)
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Table 3.1: Description of the parameters employed in the simulations

Parameter Value

CSA parameters δCSA=10 kHz, η=1.0, ΩPM=(10,30,40)
Quadrupolar parameters CQ=1 MHz, η=1.0, ΩPM=(30,40,60)

ωIS 8.6 kHz
ωr 40 kHz

To verify the exactness of the above analytic framework, the time-domain signal from Eq.
(3.32) is compared with those obtained from exact numerical methods. In the simulations
illustrated in Figure 3.6, the time-domain signal (based on Eq. 3.32) is evaluated at different
decoupling field strengths. As illustrated, the analytic simulations are in excellent agreement
but for the one depicted in panel A3. This is bit intriguing considering the better agreement
(refer to panels A1 and A2) obtained at lower decoupling field strengths.

Figure 3.6: In the simulations illustrated, the time domain signal of spin I=1/2 (coupled to spin,

S=1) nucleus in a single crystal is depicted for different decoupling field strengths (νRF,S = 40 kHz

(panel A1), νRF,S = 80 kHz (panel A2), νRF,S = 100 kHz (panel A3), and νRF,S = 150 kHz (panel

A4)). The other parameters employed in the simulations are given in Table 3.1. The RF field on

spin ‘I’ (νRF,I) was chosen to be equal to the spinning frequency, νr = 40 kHz. The solid lines

correspond to numerical simulations, while dots (in red) denote analytic simulations based on Eq.

(3.32).
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To explicate this discrepancy observed in the analytic simulations, the form of the Hamil-
tonians in the quadrupolar interaction frame were examined. In the quadrupolar interaction
frame, the magnitude of effective RF field (ωRF,eff ) experienced by spin ‘S’ depends on both
the spinning frequency as well as on the amplitude of the decoupling field (ωRF,S). In the
simulations depicted in Figure 3.7 (panel A), the dependence of the effective RF field is plot-
ted as a function of the decoupling field strength (employed on the S-channel) at different
spinning frequencies (νr=20 kHz (black line), νr=25 kHz (red line), νr=40 kHz (blue line)
and νr=50 kHz (green line)). As depicted in Figure 3.7 (panel A), the effective RF field
experienced by the S-spin in the quadrupolar interaction frame increases with both (i) the
RF amplitude and (ii) the spinning frequency. Consequently, the efficiency of decoupling
improves resulting in enhanced resolution. In the simulations depicted in Figure 3.7 (panels
B1-B4), the time-domain signal at a given RF amplitude is illustrated at different spinning
frequencies. As depicted, at a given RF amplitude, the time-domain signal decays slowly
(which is desirable in NMR experiments) at faster spinning frequencies and is in accord with
simulations presented in panel A. This improvement could be attributed to the scaling fac-
tor ‘A’ (ωRF,eff ∼ ωRF,SA). In the quadrupolar interaction frame, the scaling factor ‘A’ is
proportional to the ratio of the quadrupolar coupling constant to the spinning frequency. At
faster spinning frequencies, the Bessel functions represented by J0(x) tend to approach unity,
thereby resulting in improved scaling factors for the decoupling field strength. Consequently,
at a given decoupling field strength, the time-domain signal decays slowly at faster spinning
frequencies (owing to better scaling factor).
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Figure 3.7: In the simulations depicted, the variation of magnitude of effective RF field on

quadrupolar channel w.r.t. to RF field is shown in panel A for varying spinning frequencies of

20 kHz (Black line), 25 kHz (red line), 40 kHz (blue line) and 50 kHz (green line). In panel B, Fid

spectra corresponding to RF field of 40 kHz is shown at various spinning frequencies of (B1) 20 kHz

(B2) 25 kHz (B3) 40 kHz (B4) 50 kHz. The other parameters employed in the simulations are given

in Table 3.1. Damping of 500 Hz is used.
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In a similar vein, in the simulations depicted in Figure 3.8 (panel A), the dependence of
the magnitude of effective RF field is plotted as a function of the spinning frequency at three
different decoupling field strengths (νRF,S=20 kHz (Black line), νRF,S=40 kHz (red line) and
νRF,S=60 kHz (blue line)). Interestingly, the linear dependence that was observed in Figure
3.7 (panel A) is absent. Due to the oscillatory behaviour of the Bessel functions, at certain
spinning frequencies, the effective RF field experienced by the S-spin in the quadrupolar
interaction frame tends to zero, despite having a non-zero decoupling field. To verify the
exactness of the above analytic insight and explanation, the time-domain signal at four
spinning frequencies were calculated. In the simulations depicted in Figure 3.8 (panels B1-
B4), time-domain signal at different spinning frequencies (corresponding to the maxima and
minima observed in panel A) is illustrated. As depicted, the time-domain signal decays faster
at the minima, while it decays slowly at the maxima. Hence, the unitary transformations
employed (such as transformation into the quadrupolar interaction frame) in the present
analytic framework do have a bearing on the experimental design and optimisation.
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Figure 3.8: In the simulations depicted, the variation of magnitude of effective RF field on

quadrupolar channel w.r.t. to spinning frequency is shown in panel A for varying RF fields of

20 kHz (Black line), 40 kHz (red line) and 60 kHz (blue line). In panel B, Fid spectra corresponding

to minima and maxima (in panel A) is shown (at constant RF field of 40 kHz) at various spinning

frequencies of (B1) 55 kHz (B2) 65 kHz (B3) 75 kHz (B4) 90 kHz. The other parameters employed

in the simulations are given in Table 3.1. Damping of 500 Hz is used.
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Additional interference effects in single crystal

As depicted in Figure 3.9 (panel A), at higher decoupling field strengths, the magnitude of the
effective RF field (in the quadrupolar interaction frame) approaches to that of the spinning
frequency (as well as the RF amplitude on spin ‘I’). In the present context, when the ampli-
tude of the decoupling field is set to 100 kHz, the effective RF field in the quadrupolar inter-
action frame (refer panel (A) in Figure 3.9) becomes equal to the spinning frequency, νr (νr=
40 kHz). Consequently, additional interference effects arise between the decoupling field and
spinning frequency. In such cases, to explicate the underlying spin dynamics, the Hamiltonian
in the quadrupolar interaction frame is transformed by alternate set of unitary transforma-

tions, U2

U2 = e
i
π

2 [I14
Y +I25

Y +I36
Y ]
, U3

(
U3 = einωrt[I

14
Z +I25

Z +I36
Z ]
)
and U4 (U4 = eiω

′
RF,StSZei

π
2 Sy).

Accordingly, ignoring the high frequency time-dependent terms, the recoupled Hamiltonian
is represented by the following equation.

Heff = −
∣∣∣ω(1)
I

∣∣∣ IX +
∣∣∣ω(2)
IS

∣∣∣ IXSX (3.34)

It is important to note that in the present context, the m = ±1 component of CSA
interaction is reintroduced, while, only the m = ±2 component of the heteronuclear dipolar
interaction is reintroduced under similar conditions. Accordingly, both the initial density
operator (ρ(0) = IX = I14

X + I25
X + I36

X ) and detection operator (D = I+ = I14
+ + I25

+ + I36
+ ) are

transformed and the final signal is evaluated employing the standard procedure summarized
below.

ρ′(0) = U4U3U2U1ρ(0)U−1
1 U−1

2 U−1
3 U−1

4 = I14
Z + I25

Z + I36
Z (3.35)

D′ = U4U3U2U1DU
−1
1 U−1

2 U−1
3 U−1

4 = I14
Z + I25

Z + I36
Z (3.36)

ρ′(t) = e−iHeff tρ′(0)eiHeff t =
[
I16
Z + I25

Z

]
cos

(√∣∣∣ω(1)
I

∣∣∣2 + 2
∣∣∣ω(2)
IS

∣∣∣2t)+I34
Z cos

(∣∣∣ω(1)
I

∣∣∣ t) (3.37)

S(t) ≈ 2
3 cos

(√∣∣∣ω(1)
I

∣∣∣2 + 2
∣∣∣ω(2)
IS

∣∣∣2t)+ 1
3 cos

(∣∣∣ω(1)
I

∣∣∣ t) (3.38)
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Figure 3.9: In the simulations depicted in panel (A), the effective RF decoupling field on the

quadrupolar spin (in the quadrupolar interaction frame) is plotted as a function of the RF field

for spinning frequency, νr = 40 kHz (red color). In the simulations depicted in panel (B), the

time domain signal of spin I=1/2 (coupled to spin, S=1) is depicted for decoupling field strength,

νRF,S = 100 kHz. The analytic simulations indicated in red correspond to Eq. (3.32), while those

indicated in blue correspond to Eq. (3.38). The simulations in black correspond to numerical

simulations. The other parameters employed in the simulations are given in Table 3.1.

In contrast to the earlier description for single crystal, the allowed transition |2〉 → |5〉 has
significant contributions from the recoupled dipolar interactions and is primarily responsible
for compromising the spectral resolution. As depicted in Figure 3.9 (panel B), the analytic
simulations (blue dots) based on Eq. (3.38) are in excellent agreement to those obtained
from exact numerical methods and justify the proposed analytic description.

Case-III: Powder Sample

In a typical powder sample, due to orientation dependence of the quadrupolar coupling
constant, the scaling factor ‘A’ differs for different crystallite orientations. Accordingly, the
scaling factor ‘A’ gets modified in a powder sample.
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A (αβγ) =
∑
n1

Jn1 (A1 (αβγ))
∑
n2

Jn2 (A2 (αβγ))
∑
n3

Jn3 (A3 (αβγ))
∑
n4

Jn4 (A4 (αβγ))

n1 + n2 + n3 + n4 = 0 (3.39)

Consequently, the effective decoupling field strength on the quadrupolar spin ‘S’ varies and
the interference effects mentioned in the previous subsections remain unobserved. Hence, at
higher decoupling field strengths, increase in resolution is observed in powder sample (refer
to Figure 3.2).

3.3 Polarisation transfer from spin I=1/2 to S=1

To explicate the factors governing the polarisation transfer 38–41 in systems comprising
quadrupolar spins (say spin S=1), polarisation transfer from spin I=1/2 to spin S=1 is
examined in this section. In the numerical simulations illustrated in Figure 3.10, polarisation
transfer from spin I=1/2 to S=1 is monitored as a function of the mixing time in systems
with differing quadrupolar coupling constants.

Figure 3.10: In the numerical simulations illustrated, polarisation transfer from spin I=1/2 to

spin S=1 is depicted as a function of mixing time for spinning frequency, νr = 40 kHz. The RF

parameters on spins I and S are carefully adjusted to the DQ matching condition. The dipolar

coupling of 8.6 kHz (ΩPM = (0, 90, 0)) is employed while the quadrupolar coupling constant (on

spin ‘S’) is varied as- (A) 500 kHz (B) 1 MHz (C) 2 MHz with η = 1.0 and ΩPM = (0, 90, 0).
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In the simulations depicted, the spinning frequency is held constant (identical in all panels)
and the RF amplitudes employed on the spins (I and S) are carefully adjusted such that
the sum of the effective fields on the spins (I and S) is matched to an integer multiple
of the spinning frequency (i.e. νeff,I + νeff,S = 2νr). All other parameters (inclusive of
the dipolar coupling constant) are identical in the panels. Although, the dipolar coupling
constant and matching conditions are identical in the simulations, the exchange trajectories
(in particular the sign) are different in the panels. This is bit intriguing considering the
fact that the efficiency of polarisation transfer among spin-1/2 nuclei is primarily dependent
on the dipolar coupling constant and the matching conditions (either zero-quantum (ZQ)
or double-quantum (DQ)) employed in the experiment. Accordingly, in the case of spin-1/2
nuclei, the exchange trajectories corresponding to the DQ matching condition have a negative
sign, while, a positive sign is observed for ZQ matching condition. Interestingly, such clear
demarcations are absent in the exchange trajectories depicted in Figure 3.10. To explain this
interesting observation, we begin with a formal description of the spin dynamics as given
below.

For operational purposes, we begin with the Hamiltonian of an isolated spin pair (spin
I=1/2 coupled to spin S=1) in the rotating frame (CSA on I-spin is set to zero).

H(t) = HI,RF (t) +HS,Q(t) +HS,RF (t) +HIS(t) (3.40)

Following the procedure outlined in section 3.2, the above Hamiltonian is transformed
into the quadrupolar interaction frame 28–34 (defined by U1 = eiΦ(t)[I12

Z −I
23
Z +I45

Z −I
56
Z ]) resulting

in the following form of the transformed Hamiltonian.

H̃(t) = U1H(t)U−1
1 = HI,RF (t) + H̃S,RF (t) +HIS(t) (3.41)

H̃S,RF (t) = U1HS,RF (t)U−1
1 =

√
2ωRF,SA

[
I12
X + I23

X + I45
X + I56

X

]
+
√

2ωRF,S
∑
n

AX,ne
inωrt

[
I12
X + I23

X + I45
X + I56

X

]
+
√

2ωRF,S
∑
n

BY,ne
inωrt

[
I12
Y − I23

Y + I45
Y − I56

Y

]
(3.42)

where

A =
∑
n1

Jn1 (A1)
∑
n2

Jn2 (A2)
∑
n3

Jn3 (A3)
∑
n4

Jn4 (A4) ; n1 + n2 + n3 + n4 = 0

To describe the spin dynamics, we consider the special case of a single crystal wherein
the orientation dependence of all the internal interactions (i.e. Quadrupolar interaction on
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S-spin and dipolar coupling between I and S spin) are set to ΩPM = (0, 90, 0). Under such
conditions, only one of the components of the internal interactions is present (ω(±1)=0

λ where
λ= dipolar or quadrupolar interaction). Subsequently, the Hamiltonian in the quadrupolar
interaction frame (Eq. 3.41) reduces down to a simpler form given below.

H̃(t) = U1H(t)U−1
1 = ωRF,I

[
I14
X + I25

X + I36
X

]
+ 4ω(2)

IS cos (2ωrt)
[
I13
Z − I46

Z

]
+
√

2ωRF,SJ0(A)
[
I12
X + I23

X + I45
X + I56

X

]
+
√

2ωRF,S
∑

k=±4,±8,..
Jk/2 (A) eikωrt

[
I12
X + I23

X + I45
X + I56

X

]
+ i
√

2ωRF,S
∑

m=±2,±6,..
Jm/2 (A) eimωrt

[
I12
Y − I23

Y + I45
Y − I56

Y

]
(3.43)

where A =
ω

(2)
Q

2ωr
represents the argument of the Bessel function 35 .

Employing the Magnus formula 36 , time-dependent contributions to the Hamiltonian on
the S-channel is derived and summarized by the following equation.

H̄ = H̄(1) + H̄(2) =
√

2ωRF,SJ0(A)
[
I12
X + I23

X + I45
X + I56

X

]
−

2ω2
RF,S

ωr
J0(A)

 ∑
n=2p−1

Jn(A)
n

[I12
Z − I23

Z + I45
Z − I56

Z + I13
X + I46

X

]
(3.44)

Analogous to the description in the previous section, the Hamiltonian, H̄ is transformed

(using unitary transformation, U2 = e

iθ[I12
Y − I23

Y ]√
2 , tan θ =

2ω2
RF,SJ0(A)
ωr

[ ∑
n=2p−1

Jn(A)
n

]
ωRF,SJ0(A) ))

such that the Hamiltonian reduces to a form comprising commuting set of operators.

Heff = U2H̄U
−1
2

=
ωRF,SJ0(A)√

2
cos θ +

√
2ω2

RF,S

ωr
J0(A)

 ∑
n=2p−1

Jn(A)
n

 sin θ
[I12

X + I23
X + I45

X + I56
X

]
=
√

2ωRF,eff
[
I12
X + I23

X + I45
X + I56

X

]
(3.45)

Employing the above form of effective RF Hamiltonian on S-channel (Eq. 3.45), the total
Hamiltonian of the system (Eq. 3.43) reduces to a simpler form given below.

H̃(t) = ωRF,I
[
I14
X + I25

X + I36
X

]
+ 4ω(2)

IS cos (2ωrt)
[
I13
Z − I46

Z

]
+
√

2ωRF,eff
[
I12
X + I23

X + I45
X + I56

X

]
(3.46)

To quantize the RF fields (employed on both channels) along the Z-direction, the above
Hamiltonian (Eq. 3.46) is further transformed by the unitary transformation, U3 =
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e
i
π

2 [I14
Y +I25

Y +I36
Y ]
e
i
√

2
π

2 [I12
Y +I23

Y +I45
Y +I56

Y ]
.

H̃(t) = ωRF,I
[
I14
Z + I25

Z + I36
Z

]
+ωRF,eff

[
I13
Z + I46

Z

]
+2
√

2ω(2)
IS cos (2ωrt)

[
I15
X + I24

X + I26
X + I35

X

]
(3.47)

To deduce the matching conditions in polarisation transfer experiments, the above Hamil-
tonian is further transformed by the unitary transformation, U4 = eitωRF,I [I14

Z +I25
Z +I36

Z ]eitωRF,eff [I13
Z +I46

Z ].

˜̃
H(t) =

√
2ω(2)

IS cos (2ωrt)


{
I15

+ + I26
+

}
eiωRF,I teiωRF,eff t +

{
I51
− + I62

−

}
e−iωRF,I te−iωRF,eff t

+
{
I24

+ + I35
+

}
eiωRF,I te−iωRF,eff t +

{
I42
− + I53

−

}
e−iωRF,I teiωRF,eff t


(3.48)

As depicted above, depending on the matching conditions 42,43 (between the RF field
on I-channel, effective RF field on S-channel and spinning frequency), a part of the dipolar
Hamiltonian becomes time-independent and gets reintroduced under MAS conditions, re-
sulting in polarisation transfer. It is important to note that the effective RF field on the
quadrupolar spin (ωRF,eff ) depends on the ratio of the quadrupolar coupling constant to

spinning frequency of the system via the argument of the Bessel function i.e. A =
ω

(2)
Q

2ωr
.

Depending on the matching conditions, the form of the recoupled Hamiltonian differs and is
derived accordingly as given below.

(i) DQ matching condition- When the sum of the effective fields on the two channels (I and
S) is matched to twice the spinning frequency (i.e. ωRF,I + ωRF,eff = 2ωr), the Hamiltonian
reduces to a simple form given below.

Heff =
√

2ω(2)
IS

[
I15
X + I26

X

]
(3.49)

(ii) ZQ matching condition- When the difference of the effective fields on the two channels
(I and S) is matched to twice the spinning frequency (i.e. ωRF,I − ωRF,eff = 2ωr), the
Hamiltonian reduces to a simple form given below.

Heff =
√

2ω(2)
IS

[
I24
X + I35

X

]
(3.50)

To maintain consistency, both the initial density operator (ρ(0) = IX = I14
X + I25

X +
I36
X ) and detection operator, D = I+ = I14

+ + I25
+ + I36

+ (for I-spin) and D = SX =
√

2I12
X + I23

X + I45
X + I56

X (for S-spin) are transformed by the same set of transformations.

ρ′(0) = U4U3U2U1ρ(0)U−1
1 U−1

2 U−1
3 U−1

4 = I14
Z + I25

Z + I36
Z (3.51)

For I-spin,
D′ = U4U3U2U1DU

−1
1 U−1

2 U−1
3 U−1

4 = I14
Z + I25

Z + I36
Z (3.52)
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For S-spin,

D′ = U4U3U2U1DU
−1
1 U−1

2 U−1
3 U−1

4 = 2J0 (A)
[
I13
Z + I46

Z

]
(3.53)

Accordingly, depending on the matching conditions, the form of the density operator at
time ‘t’ is evaluated employing the appropriate effective Hamiltonians.

(a) DQ matching conditions

ρ′(t) = e−iHeff tρ′(0)eiHeff t = I34
Z + cos

(√
2ω(2)

IS t
) [
I15
Z + I26

Z

]
− sin

(√
2ω(2)

IS t
) [
I15
Y + I26

Y

]
(3.54)

(b) ZQ matching conditions

ρ′(t) = e−iHeff tρ′(0)eiHeff t = I16
Z + cos

(√
2ω(2)

IS t
) [
I24
Z + I35

Z

]
− sin

(√
2ω(2)

IS t
) [
I24
Y + I35

Y

]
(3.55)

Subsequently, employing the density operator at time ‘t’, the final form of the normal-
ized signal (Tr

[
ρ(0)2 = 3

2

]
) is derived and summarised below. The final form of the signal

expression (for ‘I’ spin) remains identical for both the matching conditions.

S(t) = 〈I+ (t)〉 = Tr [ρ′(t)D′]
Tr

[
ρ(0)2

] = 1
3 + 2

3 cos
(√

2ω(2)
IS t

)
(3.56)

However, the final form of the signal expression for ‘S-spin’ varies and is summarised by
the following equations.

For DQ matching condition,

S(t) = 〈SX (t)〉 = Tr [ρ′(t)D′]
Tr

[
ρ(0)2

] = −2
3J0 (A)

{
1− cos

(√
2ω(2)

IS t
)}

(3.57)

For ZQ matching condition,

S(t) = 〈SX (t)〉 = Tr [ρ′(t)D′]
Tr

[
ρ(0)2

] = 2
3J0 (A)

{
1− cos

(√
2ω(2)

IS t
)}

(3.58)

As depicted above, the signal expression (for the S spin) in the case of DQ matching
condition has a negative sign in comparison to the one obtained from the ZQ matching
condition. This trend is very similar to those obtained in heteronuclear cross-polarisation
(CP) experiments involving spin-1/2 nuclei (I=S=1/2) 44 .

To verify the exactness of the above analytic framework, the time-domain signal obtained
from Eq. (3.56-3.58) is compared with those obtained from exact numerical methods 22 .
As illustrated, the analytic simulations are in excellent agreement for DQ matching condi-
tion (Fig 3.11) and for ZQ matching condition (Fig 3.12) validating the proposed analytic
framework.
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Figure 3.11: In the simulations illustrated, the time domain signal of spin I=1/2 (coupled to spin,

S=1) nucleus in a single crystal is depicted for varying RF field strengths for DQ matching condition.

The quadrupolar coupling constant (on spin ‘S’) of 1 MHz (η = 1.0 and ΩPM = (0, 90, 0)), dipolar

coupling of 4.4 kHz (ΩPM = (0, 90, 0)) and spinning frequency, νr = 40 kHz are employed. The

upper row (panels A1 and A2) correspond to I-spin detection, while the bottom row (panels B1

and B2) correspond to S-spin detection. The parameters are- (A1, B1) νRF,I = 83 kHz, νRF,S = 10

kHz,(A2, B2) νRF,I = 86.5 kHz, νRF,S = 20 kHz. The solid lines correspond to numerical simulations
22 , while dots (in red) denote analytic simulations (based on Eq. 3.56 for upper row and Eq. 3.57

for bottom row).
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Figure 3.12: In the simulations illustrated, the time domain signal of spin I=1/2 (coupled to spin,

S=1) nucleus in a single crystal is depicted for varying RF field strengths for ZQ matching condition.

The quadrupolar coupling constant (on spin ‘S’) of 1 MHz (η = 1.0 and ΩPM = (0, 90, 0)), dipolar

coupling of 4.4 kHz (ΩPM = (0, 90, 0)) and spinning frequency, νr = 40 kHz are employed. The

upper row (panels A1 and A2) correspond to I-spin detection, while the bottom row (panels B1

and B2) correspond to S-spin detection. The parameters are- (A1, B1) νRF,I = 77 kHz, νRF,S = 10

kHz,(A2, B2) νRF,I = 73.5 kHz, νRF,S = 20 kHz. The solid lines correspond to numerical simulations
22 , while dots (in red) denote analytic simulations (based on Eq. 3.56 for upper row and Eq. 3.58

for bottom row).

Depending on the sign of the J0(A) coefficient, the overall sign of the effective field on the
quadrupolar spin varies resulting in different trajectories. This is illustrated below in Figure
3.13, wherein, the J0(A) coefficient for a given quadrupolar coupling constant is plotted as
a function of the spinning frequency. As depicted in Figure 3.13, depending on the spinning
frequency, the sign of the J0(A) coefficient alternates between +ve and -ve signs for a given
quadrupolar coupling constant. Accordingly, depending on the sign of the J0(A) coefficient
(It is +ve for Cq=500 kHz (panel A), Cq=2 MHz (panel C) and -ve for Cq=1 MHz (panel
B)), the sign of the exchange trajectories depicted in Figure 3.10 vary.
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Figure 3.13: In the simulations illustrated, the J0(A) coefficient is depicted as a function of the

spinning frequency for different quadrupolar coupling constants of (A) 500 kHz (B) 1 MHz (C) 2

MHz with η = 1.0 and ΩPM = (0, 90, 0) employed on S=1 spin.

Hence, in contrast to polarisation transfer among spin-1/2 nuclei, polarisation transfer
from spin I=1/2 nucleus to spin S=1 has an explicit dependence on the sign of bessel function
(J0(A)) which further depends on the quadrupolar coupling constant and spinning frequency.

3.4 Summary

In summary, the present chapter highlights the relevance of the transformations employed
in analytic methods for studying MAS experiments involving quadrupolar spins. Although,
the transformation into the quadrupolar interaction frame seems only a mathematical proce-
dure/necessity in theoretical descriptions, its role in explicating the experimental observations
seems interesting as well as puzzling. In addition to the dependence on the internal parame-
ters (such as quadrupolar coupling constant and dipolar coupling constant) and the external
parameters (such as RF amplitude, spinning frequency etc.), the properties of the Bessel
functions (inclusive of sign) employed in the analytic treatments do play an important role
in explicating the results observed in the simulations.
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Chapter 4

Conclusions and Perspectives

With the development of high field magnets and ultrafast MAS probes, significant advance-
ments have emerged on the experimental front using the state of the art instrumentation.
Nevertheless, quantifying experimental data through reliable analytic models has remained
challenging owing to the presence of non-commuting time-dependent Hamiltonians of dif-
fering magnitudes. While analytic description of finite pulse effects in spin-1/2 systems in
rotating solids is possible in majority of cases, such descriptions in the case of quadrupo-
lar spins (I>1/2) are less prevalent. Although, development of analytic methods in static
samples involving quadrupolar spins have enhanced our understanding of the experiments,
straightforward extension of these methods in rotating samples is less trivial. In the present
thesis, an attempt has been made to address this issue.

To present a pedagogical approach, a detailed description of the finite pulse effects in
isolated spins under MAS is outlined in Chapter-2. Employing the tenets of perturbation
theory, the role of interaction frames in the overall convergence of the corrections (to the
effective Hamiltonians) was derived initially in spin-1/2 systems and discussed within the
frameworks of Average Hamiltonian theory (AHT) and Floquet theory. Based on the insights
derived from the study of spin-1/2 systems, the utility of analytic methods in the description
of excitation in quadrupolar spins was explored. While AHT offers a simpler framework for
deriving the time-propagators, the detection at stroboscopic time-intervals limits its utility
in providing a comprehensive description of the spin dynamics during the excitation process.
To this end, alternate methods based on Floquet theory were also explored. In particular, the
exactness of time-evolution studies based on Floquet time-propagators derived from effective
Floquet Hamiltonians and Floquet Magnus Expansion (FME) were examined. Although,
Floquet descriptions based on effective Floquet Hamiltonians have been extensively employed
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for describing the dynamics in spin-1/2 systems, the present thesis highlights the serious
limitations of the effective Floquet Hamiltonian approach in the description of quadrupolar
spins in rotating solids. A detailed explanation for this observations is presented in Chapter-
2. By contrast, the time-propagators derived from the Floquet Magnus Expansion (FME)
scheme present an attractive framework for describing the excitation process in quadrupolar
spins at non-stroboscopic time-intervals. Specifically, the time-propagators based on the
alternate boundary condition facilitate in the derivation of analytic expressions for describing
the excitation process. Employing this approach, excitation of double-quantum transitions
under MAS conditions is¯discussed clearly outlining the role of the sample spinning frequency
and the RF amplitude employed during the excitation process. Along with the quadrupolar
coupling constant, the interplay between the spinning frequency and the RF amplitude on
the convergence of the perturbation corrections employed in the time-propagators is also
discussed.

Based on the insights obtained from the results discussed in Chapter-2, analytic models
have been proposed in Chapter-3 to describe MAS experiments involving spin I=1/2 nuclei
coupled to quadrupolar spin, S=1. Specifically, implementation of experiments on spin-1/2
nuclei impeded by the interference effects due to RF fields employed on the quadrupolar spin
is discussed. The interference effects introduced by the RF field on the quadrupolar spin
in experiments that involve (i) measurement of CSA tensors on spin I=1/2 (ii) polarisation
transfer from spin I=1/2 to S=1 is discussed through analytic expressions. Additionally,
the relevance of interaction frames and the important role of Bessel functions in the optimal
implementation of experiments is explicated and verified through rigorous comparisons with
simulations emerging from exact numerical methods.

Although, the methodology presented in this thesis has been demonstrated to describe
finite pulse effects in isolated and coupled spins involving spin-1 nucleus, we believe that
the analytic framework could well be extended to study half-integral quadrupolar spins (say
I=3/2, 5/2) and their effects on spin-1/2 nuclei. From an operational perspective, although,
the fictitious spin-operator formalism affords a simpler description in terms of transition op-
erators in two-level systems, the over completeness of the basis might become a concern, while
dealing with higher quadrupolar spins (such as I=3/2, 5/2 etc.). In such cases, descriptions
based on spherical tensor operator formalism could be handy and deserves to be explored
further.
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