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Chapter 1 Dynamical Molecular Elec-

tron Densities in LASER Fields

1Graphical abstract shows the atoms-in-molecule picture for the electron densities of
water molecule in a linear polarized laser at different time steps of a laser pulse in the second
row panel. The blue and red regions depict the electron density isosurfaces of the molecular
subspace occupied by Oxygen and Hydrogen atomic basins respectively.The third-row panel
depicts the time-varying zero-flux surfaces. The concepts to understand and evaluate these
quantities would be explained in this introductory chapter.
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Abstract

Current technologies in optics have grown to an extent where experiments

are conducted on molecules in high intensity (∼ 1014 − 1016 W/cm2) and

high-frequency LASER pulses in the timescales of femtoseconds (10−15 s)

to attoseconds (10−18 s). These are the timescales where electronic motion

happens, and the electric field intensities are much more significant than an

atom’s internal field strength (∼ 103 W/cm2). Thus, specific frequency-tuned

LASERs were used to gauge and control the dynamics of atoms and elec-

trons in molecules. In the same context, time-resolved X-ray diffraction laser

pulses have been studied for time-evolving electronic charge distributions.

Using theoretical methods, obtaining the time-dependent wave function of

atoms and molecules in external LASER fields became possible through the

parallel development of theoretical methodologies. Therefore, this has en-

abled researchers to evaluate molecular densities and retrieve the electronic

properties of atoms and molecules in the presence of external time-evolving

fields. This thesis attempts to study the dynamics of molecular electron densi-

ties through their time-varying topographies, bond paths, zero-flux surfaces,

and Atoms-In-a-Molecule properties in a LASER. Thus, Chapter 1 introduces

the basics of the electronic structure of atoms and molecules, the standard

solutions of time-independent and time-dependent Schrödinger equations to

obtain the wave functions essential to evaluate electron densities and proper-

ties. The topological tools, such as gradient paths, critical points, bond paths,

zero-flux surfaces, and Bader’s quantum theory of Atoms-In-Molecules, are

briefly explained, which will help understand features in the time-evolving

electron density distributions. The final section of this chapter describes the

plan for the thesis.
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1.1 Preamble

Electron densities (ED) of molecular systems are routinely measured us-

ing X-ray scattering experiments to determine their equilibrium geometri-

cal structure.[1] Using theoretical methods, it is also possible to compute

ED using the electronic wavefunctions obtained from the solutions of the

Schrödinger equation. The proof of the first Hohenberg-Kohn Theorem[2]

in Density Functional Theory shows that the electron density of a system

uniquely defines the Hamiltonian operator and all its properties. In turn, its

unique potential is a functional of electron density. So, conceptually, any

changes in the external potential of a system would result in the deformations

in the newly formed electron densities and their properties. With the recent

surge in state-of-the-art optics, it is now possible to alter the potentials of

molecules and their properties using external electric fields, especially high-

intensity, high-frequency light sources such as a LASER (Light Amplification

by Stimulated Emission Radiation, working principle shown in Fig. [1.1]).

Nowadays, pulsed LASER fields can attain timescales ranging from a few

femtoseconds (10−15 s) to attoseconds (10−18 s) in experiments. With X-rays,

technological advancements in optics were able to achieve intense ultrashort

laser pulses from X-ray sources called as X-ray free-electron lasers (XFELs).[3–

5] Using XFEL sources, experiments with femtosecond time resolutions have

been routinely performed. However, in recent past years, X-ray laser pulses

with attosecond resolutions have also been generated, and experiments have

been performed on molecules.[6, 7] Exceptional temporal resolution has been

achieved using these ultrashort X-ray pulses.[8] An emerging method called

time-resolved X-ray diffraction (TRXD) within a pump-probe configuration

enables experimentalists to take snapshots of time-evolving electronic charge

distribution in matter with spatiotemporal resolution on molecular and
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Figure 1.1: The picture shows the two princliples that are used to make LASERs.
1. Stimulated emission and 2. Amplification. The stimulate emission
is achieved by the incident photons on the excited state which emits
another photon while relaxing to the groud state. This processes is
repeated to gain amplification of the emitted radiation.

electronic timescales.[9] Theoretical and computational work carried out

by Santra and coworkers [10, 11] showed an electronic movie of ultrafast

charge migration by putting the timed snapshots as a function of pump-probe

delay time. All these have led to the development of a new kind of chemistry

field called femtosecond,[12, 13] and attosecond chemistry[14, 15] which

allowed gauging the timescales at which nuclear and electronic motions

occur. Experiments at these timescales give insights into and gains control

over nuclear and electronic dynamics in atoms, molecules, and reactions.[16–

19] The different molecular processes occuring at various timescales are

represented in Fig. [1.2].

Along with the experiments, the development of relevant theoretical models

for solving time-dependent Schrödinger equation to study electronic dy-

namics have also been carried out. With the knowledge of LASER-dressed

time-evolving electronic wavefunctions, the question we pose here is, "How

do dynamical electron densities behave in LASER fields?" This thesis is

an attempt to answer this questions.
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Figure 1.2: The timescales of various molecular processes are given. The single
molecule detection at room temperature has a time resolution of few
100 ns. Femtosecond and attosecond timescales are the regimes of
ultrafast timescales in molecular processes.[12–15]

The pioneering investigations from Bader and coworkers[20] studied the

topology of electron densities obtained from theoretical calculations and

X-ray scattering experiments on crystals for various simple and complex

molecules. Different properties related to the chemistry of molecules, such as

bond order,[20] bond polarity,[2] and bond ellipticity,[21] were formulated

using the analysis from the topology of electron densities for small molecules.

Employing the topological analysis of electron densities, they investigated

the C2v dissociative pathway for the ground state of water molecule.[22]

Popelier and coworkers have used bond critical points analysis to study

DNA and drug molecules, an extensively researched field by them.[129–

131] They introduced a concept called Quantum Molecular Similarity using

the value of electron density at bond critical point and bond lengths.[23–

25] Using the gradients of electron densities, Eberhart and coworkers[29]

conceptualized gradient bundle analysis. The gradient bundle analysis was

applied to study the influence of interatomic boundary surfaces of electron

density on chemical reactivity. Therefore, these examples reveal a wealth of

information on structural parameters and reactivity patterns of atoms and

molecules obtained from ED, its gradients, and topology.
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Applying the concepts of topological analysis and information from the gra-

dients of ED in molecules, Bader and coworkers’ research led to the birth

and development of Quantum Theory of Atoms-In-Molecules (QTAIM).[20]

The theory states that atoms occupy mutually exhaustive subspaces in the

whole molecular space. These subspaces are separated from one another

by virtual surface boundaries. QTAIM’s consequence was that the entire

property of molecules would be a sum of all the individual atomic properties.

For example, the total charge of a free-field ground state water molecule

would be the sum of charges (called Bader charges) contained in each of the

subspaces/basins (called Bader atoms/volumes). Identifying these atomic sub-

regions in molecular space of electron density is a non-trivial problem. Hence,

Bader,[20] Popelier,[26] Hennkelman,[27] Rodriguez,[28] and groups at-

tempted to develop fast and robust algorithms to compute these properties

in a computationally cost-efficient fashion. The foremost algorithm proposed

by Bader and group[20] was based on identifying the interatomic surfaces

(IAS) making it computationally expensive, while Popelier proposed serveral

methods to integrate atoms-in-molecules without explicit representation of

IAS.[26] Henkelman and coworkers[27] developed an fast and robust algo-

rithm based on steepest ascent search in the electron density data. Rodriguez

et al.[28] proposed an efficient grid-based scheme to evalute the QTAIM

properties.

Using these concepts, Bader et al.[30] studied the transferability and additiv-

ity of methyl and methylene groups in various hydrocarbons. The concepts

of QTAIM have been applied to reveal atom-atom interactions in covalent

and non-covalent interactions in molecules, molecular clusters,[31, 32] small

molecular crystals,[33] proteins,[34] DNA base pairing and stacking.[35]

The primary goal of implementing QTAIM in literature has therefore been to

explore molecular electron densities (MED) to study the nature of bonding

in molecular systems.
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In principle, the atomic and molecular electron densities (MED), their topol-

ogy, and concepts of QTAIM could be applied and computed from electron

densities obtained from either X-ray scattering experiments or theoretical

methods like Hartree-Fock method, Møller-Plesset perturbation theory, (wave-

function based) or density functional theory (density based). The accuracy

of calculated ED properties depends on the level of theory employed. Re-

searchers have used these theoretical methods in literature to evaluate MED

and properties mostly in free-field scenarios. However, In 1992, Mezey

et al.[36] carried out studies of electron densities in static external elec-

tric fields (EEF) for homonuclear, heteronuclear, and triatomic molecules.

Two directions of static EEF, one parallel and the other perpendicular to

the molecular axis, were chosen. The results showed that low and high

electron density regions have opposite behaviors with increasing electric

field strengths. The electron density isocontours near the regions of nuclei

contract by the applied field, while in the regions far from nuclei, the electron

density contours spread out away.

The study of chemistry in EEF has emerged as a topic of relevance in the

current century since it has enabled researchers to gauge and gain control of

the electronic/nuclear dynamics of atoms and molecules in reactions, materi-

als, or biological systems. It has involved an interplay between theoretical

and experimental aspects. The proof-of-concept of this was shown by Shaik

and coworkers,[37] who also extensively have studied atoms, molecules

and reactions in intense EEF. They studied the Diels-Alder reaction, which

involves simultaneous C-C bond breaking and formation, got it catalyzed in

oriented external electric fields, thus achieving selectivity.[37] Another exam-

ple where Shaik et al.[38] showed control in selectivity of Enzymatic-Like

Bond Activations. EEF has been applied to investigate response of electron

momentum densities (EMD) of small molecules.[39] The study revealed

the EMD maxima rotating with a increasing electric field strengths. The
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intensity of the EEF can lead to changes in several fundamental physical and

physicochemical phenomena, which are also experimentally detected. Stark

effect in atoms and molecules, where splitting of energy levels is observed in

the presence of intense EEF.[40] Atoms and molecules in EEF may experience

ionization and activation of electrons,[41] proton transfers,[42] changes in

geometrical parameters,[43] affecting the interatomic bonds and making

chemical interactions feasible.[44]

In strong field chemistry and physics, the high-frequency and high-intensity

LASER fields and their interaction with matter have led to several phenom-

ena, such as metastable states, slow ionization rates, and quasi-bound states,

which have been theoretically predicted and experimentally realized.[64]

The works of Gavrila, Moiseyev and coworkers[46–49] showed that the

atoms and anions could achieve stable states in high frequency regimes of

LASERs. Here, the electron overcomes the binding potential and follows the

to and fro motion about the classical turning points of the LASER. The results

revealed the dichotomous states of electron in atoms and the electron density

of atoms shows resemblance to that of a homonuclear diatomic molecule.

Initially by Kramers in 1956,[50] and later Henneberger in 1968,[51] theo-

rectically predicted the phenomenon in the case of high intensity and high

frequency LASER fields. This concept got experimentally realized for gases

of noble atoms such as neon, helium and argon.[52–55]

The investigations concerning the time evolution of electron densities are

not rich in the literature. However, few reports have studied the QTAIM

and topological analysis using the electron densities in quantum molecular

dynamics. Rodrigo et al. [56] studied charge transfer using the topology of

electron density in two types of systems: (1) reactive collision of H+ + H2

under different initial conditions and (2) photodissociation of LiF for either

diabatic or adiabatic processes. Using the simple model systems proposed by
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Shin and Meitu,[57] coupled nuclear-electron dynamics was performed with

time-dependence of electron densities.[58–60] Using the geometries obtained

from the trajectories of molecular dynamics, the time-dependent topological

and atoms-in-molecule analysis of electron densities was performed to study

allyl radicals and relocalization process in benzene by Chevreau.[61, 62] An-

other report by Chevreau and coworkers[63] studied electron relocalization

process in S2H2 and S2H−2 using time-dependent topological analysis of elec-

tron density and showed a possible hydrogen bonding motion in biological

systems.

The present thesis attempts to study dynamics of molecular electron densi-

ties in LASER-dressed fields, their dynamical topographies, and Atoms-

in-A-Molecule-In-A-LASER. For this study, a code-named Ab-initio Electronic

Dynamics Properties (ABELDYNPROP) is developed to evaluate time-evolving

MED and their properties. The ABELDYNPROP code is discussed in Chapter

2. The following chapters discusses application of ABELDYNPROP code on

small molecules in linearly polarized lasers and their respective property anal-

ysis. Here, In Chapter 1, we shall discuss all the basics, concepts, equations,

termonologies, and prerequisites required to understand the subsequent

chapters better.

We start the next section 1.2 explaining the TDSE equations, and the role of

potential in the Hamiltonain. The general solutions of TDSE are different

for time independent and time-varying potentials. This is further elaborated

in subsequent subsection using the Schrödinger, Heisenberg and Interaction

Pictures. The perturbation in the potential of Hamiltonian of TDSE is solved

showing the first and second order corrections to the wavefunctions. However,

since, our problem deals with strong laser fields, therefore, this perturbative

approach is not valid. Hence, a short description of strong field approximation

is provided. Thereafter, the TDSE solutions for light-matter interactions, and
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its gauge transformations are discussed in related subsections are discussed.

The numerical solutions to solve TDSE are also provided along with the

RT-TDHF algorithm developed used to generate the wavefunctions.

The information on electronic wavefunctions or the molecular orbitals of a

quantum system is the first and foremost fundamental quantity required to

obtain any information and to evaluate molecular electron densities (our

interest in this thesis). So, section 1.4 provides details of the methods used

to solve the time-independent and time-dependent Schrödinger equations

(TISE/TDSE). Section 1.4 starts with giving the definition and need to un-

derstand the Ab-Initio Electronic Structure of Atoms and Molecules. It

briefs the history and the approximations used in solutions of the theoretical

methods used in this section. An introduction to the molecular problem is in

the following subsection 1.4.1. This subsection describes the basic construct

of the molecular Hamiltonian for a system of N electrons and M nuclei. The

following subsection 1.4.2 explains the Born-Oppenheimer Approximation,

which is fundamental to the solutions obtained in later subsections. The ap-

proximation describes the separation of molecular Hamiltonian into nuclear

and electronic parts, as the electronic motion is much faster than the nuclear

motion. Therefore, the wave functions obtained from solving the TISE or

TDSE would directly depend on the electronic coordinates and parametric

dependence on the nuclear coordinates. This subsection is followed by sub-

section 1.4.3, giving details regarding the electronic wavefunctions, their

forms, and their dependence on coordinates. The following subsection, 1.4.4,

outlines the formalism of the time-independent Hartree-Fock (HF) Method.

It describes the forms in constructing the Fock matrix and the solutions ob-

tained afterward. The time-evolving wavefunctions would be obtained from

the solutions of TDSE. Since, the work uses external electric fields specifically

LASERs, the subsection 1.2.4, describes the form of TDSE for atoms and
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molecules in LASER-dressed fields and their approximations used in them.

The basic definition of LASERs, are described in section 1.3.1.

The time-dependent topological properties are used to analyze the dynamics

of molecular electron densities in LASER-dressed fields. The tools used to

understand topology are provided in the section 1.5. The section starts with

the formal definition of electron densitites and followed by the explanation

of density distribution in atomic and molecular electron densities in the

subsection 1.5.2. The next subsection 1.5.1 explains the conditions of critical

points in a real-valued 3D scalar function for requied for its identification,

their types, and terminology w.r.t MED. The subsection 1.5.3, discusses the

gradient vector fields, bond paths and zero-flux surfaces with respect to

electron densities. The theory of quantum theory of atoms in molecule is

explained in the subsection 1.5.5. The last section 1.6 describes the plan of

the thesis.

1.2 Time-Dependent Schrödinder

Equation (TDSE)

In quantum mechanics, one needs the time-dependent wavefunction Ψ(~r, t),

which are the solutions obtained from time-dependent Schrödinder Equation

(TDSE). Analogous to classical wave equation that involves second-order

time derivate related to energy, while in TDSE, the energy is related to its

first time-derivative. The general form of TDSE is provided in Eq. [1.1].

i~
∂

∂t
Ψ(~r, t) = ĤΨ(~r, t) (1.1)
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where ~ is the Planck’s constant and, Ψ(~r, t) represents the wave function

solutions of TDSE, Ĥ is the Hamiltonian operator whose form is as follows,

Ĥ = − ~2

2m∇
2 + V (1.2)

The first part of Hamiltonian in Eq. [1.2], ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the

kinetic energy term for a 3D form of TDSE. The second term V, represent the

potential energy function. In general, the potential function depends on both

coordinates and time variables V=V(~r,t).

Case1: When potential energy function is time-independent and purely

depends on coordinate V(~r), therefore the resultant Hamiltonian is

time-independent Ĥ(~r): Then the general solutions of the TDSE with a

time-independent Hamiltonian is solved using separation of variables in

position and time, that is Ψ(~r, t) = ψ(~r)χ(t). It is expressed in the terms of

particular solutions as given in the following Eq. [1.3] and [1.4]

Ψ(~r, t) =
∞∑
n=1

anψn(~r)e− i
~Ent (1.3)

Ψ(~r, t) =
∫ ∞

0
a(E)ψE(~r)e− i

~Et (1.4)

The Eq. [1.3] and [1.4] represents the discrete and continous solutions of

the TDSE refered in Eq. [1.1].

Case 2: Potential energy function depends on both coordinates and

time V (~r, t). In TDSE, not only the wavefunction solutions are time-

dependent, but the Hamiltonian can also be time-dependent Ĥ (~r, t).

Therefore, the time-dependence in TDSE can also be induced through

time-varying potentials V (~r, t). The general solutions of TDSE, even valid
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with time-dependent Hamiltonian, involves an unitary operator called the

evolution or propagator operator having the following form,

Û(t) = e−iHt/~ (1.5)

It is given the name evolution since it generates the evolution of the wave-

function from Ψ(x, t = 0) to Ψ(x, t). Therefore, e−iHt/~ maps Ψ(x, t = 0) to

Ψ(x, t). Alternative representations of TDSE is presented in the next section.

These may not be the approximations, but the interaction picture discussed

will provide an alternative starting point that is helpful in perturbation series

expansion.

1.2.1 Schrödinger, Heisenberg and Interaction

Pictures

Three kinds of pictures representing the of TDSE are possible,

1. Schrödinder picture: When the state operators are stationary (Case 1:

time-independent Hamiltonian) but the state vectors Ψ evolves in time,

and thus expectation values may also evolve in time. The solution of

TDSE in this picture is

ΨS(t) = e−
i
~HtΨS(0) (1.6)

2. Heisenberg Picture: When the state operators are time-dependent (Case

2: time-dependent Hamiltonian) and the state vectors Ψ are constant in

time.

ΨH(t) = e
i
~HtΨS(t) (1.7)
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The time-independence of state vectors can be verified using Eq. [1.6]

in [1.7]. Operators in Heisenberg picture, ÂH , are related to their

Schrödinder picture by the relation

ÂH(t) = e
i
~HtÂe−

i
~Ht (1.8)

This results in getting the same expectation values of any operator in

both Heisenberg and Schrödinder pictures.

3. Interaction Picture: When the total time-dependent Hamiltonian Ĥ(t)

can be partitioned into Ĥ(t) = Ĥ0 + V̂ . Here the time evolution

generated by ~H0 is known. The interaction picture wavefunction ΨI

is defined in Eq. [1.9] and the interaction picture Hamiltonian, ĤI is

defined in Eq. [1.10],

ΨI(t) = e
i
~H0tΨs(t) = e

i
~H0te−

i
~HtΨS(0) (1.9)

ĤI = e
i
~H0tV e−

i
~ Ĥ0t (1.10)

Here, in the interaction picture, both the state vector and state operator

contains the part of time evolution. The interaction picture appears as

an intermediate between the Schrödinger picture and the Heisenberg

picture.

In the practical cases, the term V in the total time-dependent Hamiltonian

are mostly unknown. Therefore, to obtain at least the approximate solutions

of TDSE, time-dependent perturbation theory can be applied when V is small

compared to H0.
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1.2.2 Time-Dependent Perturbation Theory

The interaction picture described in the previous subsection is exact. Also,

the time-dependent perturbation theory (TDPT) would use the similar parti-

tioning of the total Hamiltonian Ĥ(t) = Ĥ0 + V̂ , where V̂ is the perturbation

term and is very small in comparison to H0, that is V� H0(t). The dynamics

from TDPT are only useful if the dynamics under Ĥ0(t) is known. If V is too

large, the TDPT solutions do not converge.

Derivation from the interaction Picture:

Consider a time-dependent Hamiltonian, H = H0 + H1, where H0 is time-

independent and H1 is time-dependent. The corrections to the evolution

operator is found out using the interaction picture, which will be applied to

zeroth order wavefunction Ψ0(t0) to obtain corrections to the wavefunctions.

The unperturbed Hamiltonian H0 associated with the evolution operator

U0(t, t0), satisfying the TDSE,

i~
∂

∂t
U0(t, t0) = H0U

0(t, t0) (1.11)

The interaction picture wavefunction from Eq. [1.9],

ΨI(t) = e
i
~H0(t)ΨS(t) = e

i
~H0te−

i
~HtΨS(0) (1.12)

The interaction picture evolution operator can also be defined as,

U1(t, t0) = e
i
~H0(t−t0)e−

i
~H(t−t0) = U (0)†(t, t0)U(t, t0) (1.13)

This evolution operator in Eq. [1.13] also satisfies a TDSE of the following

form,

i~
∂

∂t
U1(t, t0) = H1U1(t, t0) (1.14)
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where,

H1(t) = e
i
~H0tH1(t)e− i

~H0t (1.15)

The iterative solutions of the interaction picture Hamiltonian in Eq. [1.14]

yields the following form,

U1(t, t0) = 1 +
∞∑
n=1

U
(n)
1 (t, t0) (1.16)

where the form of U (n)(t, t0) is described by the Eq. [1.17]

U (n)(t, t0) = 1
(i~)n

∫ t

t0
dτn

∫ τn

t0
dτn−1 · · ·

∫ τ2

t0
dτ1H1(τn)H1(τn−1) · · ·

H1(τ1)U1(τ1, t0) (1.17)

The integral is performed with the constraint that t > τn > τn−1 > · · · > τ1 >

t0. The U1(τ1, t0) is replaced with 1 in the construction of a perturbation series

from Eqs. [1.16] and [1.17]. There it can be said that H = H0. Substituting

and using Eq. [1.13], the perturbation series for the Schrödinger picture

propagator U(t, t0) can be written down as in Eq. [1.18],

U(t, t0) = U (0)(t, t0) +
∞∑
n=1

U (n)(t, t0) (1.18)

where the U (n)(t, t0) is given by Eq. [1.19],

U (n)(t, t0) = 1
(i~)n

∫ t

t0
dτn

∫ τn

t0
dτn−1 · · ·

∫ τ2

t0
dτ1U

0(t, τn)H1(τn)U (0)(τn, τn−1)

×H1(τn−1) · · ·U (0)(τ2, τ1)H1(τ1)U (0)(τ1, t0)

(1.19)
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these integrals are also subjected to the constraint that t > τn > τn−1 > · · · >

τ1 > t0. substituting the following evolution operator of Eq. [1.20],

U (0)(t, t′) = e−
i
~H0(t−t′) (1.20)

into Eq. [1.18] and [1.19] and applying this result to Ψ(0)(t0), one can obtain

the first and second order time-dependent perturbative corrections to the

wavefunctions described in Eq. [1.21] and [1.22].

Ψ(1)(t) = 1
i~

∫ t

t0
dt′e−

i
~H0(t−t′)Ĥ1(t′)e− i

~H0(t−t′)Ψ0(t0) (1.21)

Ψ(2)(t) = 1
(i~)2

∫ t

t0
dt′
∫ t′

t0
dt′′e−

i
~H0(t−t′)Ĥ1(t′)e− i

~H0(t′−t′′)

Ĥ1(t′′)e− i
~H0(t′′−t0)Ψ0(t0) (1.22)

Several spectroscopic techniques, such as infrared-spectroscopy and UV-

spectroscopy, induce transitions between vibrational and electronic levels

using a specific range of frequencies at intensities which are less than 1013

W/cm2. Perturbation theory applies to the intensities which are less than 1013

W/cm2. However, The work presented in the thesis uses high intensities

of laser pulses (I > 1014 W/cm2). Since such high intensities become

comparable or sometimes greater than the internal electric fields, this results

in competition in the electronic dynamics between the coulomb binding

potential and the external electric field. Therefore, TDPT formalism will not

be valid in this case. Therefore, a strong field approximations is used to solve

the TDSE.
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1.2.3 Strong Field Approximation

Strong field approximations (SFA) are considered for non-perturbative ex-

ternal field interactions. These interactions are described by including the

continuum-continuum interaction using perturbation. It is assumed that the

high intensity fields moves the electrons very fast away from the vicinity of

atomic potential such that the interaction with the binding potential becomes

negligible. In 1964, Keldysh came up with an analytical form to calculate tun-

nel ionization for atoms in the presence of strong oscillating fields.[66] The

time-evolution operator for the time-dependent Hamiltonian (Ĥ = Ĥ0 + Ĥ1)

in TDSE can be written as follows,

Û(tf , ti) = Û0(tf , ti)−
i

~

∫ tf

ti
dτÛ(tf , τ)Ĥ1(~r, t)Û0(τ, ti) (1.23)

In Eq. [1.23], Û(tf , ti) is the time-evolution operator for time-independent

Hamiltonian. The transition amplitude MP is calculated using the ini-

tial bound state, |Ψ0(t)〉 to a final continuum state, |ΨP (t)〉, shown in Eq.

[1.24]

MP = lim
tf→∞,ti→−∞

〈ΨP (tf ) | Û(tf , ti) | Ψ0(ti)〉 (1.24)

Here in this Eq. [1.24], tf and ti corresponds to the initial and final end of

the pulse. In order to describe SFA, use Eq. [1.23] in [1.24] to calculate

the transition probability. The ionization probability equation is given as

follows,

MP = lim
tf→∞,ti→−∞

〈ΨP (tf ) | [Û0(tf , ti)−
i

~

∫ ti

tf

dτÛ(tf , τ)Ĥ1(~r, t)Û(τ, ti)] | Ψ0(ti)〉

(1.25)

18 Chapter 1 Dynamical Molecular Electron Densities in LASER Fields



The first term in the time-evolution represents the free-field Hamiltonian,

and the bound and continuum states are orthogonal. Therefore, the first

term vanishes and transition amplitude is written as,

MP = − i
~

lim
tf→∞,ti→−∞

∫ tf

ti
dτ〈ΨP (tf ) | Û(tf , τ)Ĥ1(~r, t)Û0(τ, ti) | Ψ0(ti)〉

= − i
~

lim
tf→∞,ti→−∞

∫ tf

ti
dτ〈ΨP (tf ) | Û(tf , τ)Ĥ1(~r, t) | Ψ0(ti)〉

(1.26)

It is assumed that after ionization, the electrons will not feel the binding

potential. So, the the above Eq. [1.26], 〈ΨP (tf ) | Û(tf , τ) is replaced by

Wolkow states 〈Ψ(V )
P (τ) [67] The SFA amplitude evaluated by Keldysh is

shown in the following Eq. [1.27]

MP = − i
h

lim
tf→∞,ti→−∞

∫ tf

ti
dτ〈Ψ(V )

P (τ) | Ĥ1(~r, t) | Ψ0(tτ )〉 (1.27)

This can be used to properly describe external field related phenomenons such

as high harmonic generation spectra, above threshold ionization occurring in

the high intensity fields. However, The work presented in the thesis would

only use the wavefunctions obtained from the solutions of TDSE in these

high intensity fields. Since, the perturbation does not apply in the presence

of high field, therefore, there is a need to get a better understanding of the

TDSE for atoms and molecules in the presence of light to be described in the

next section.
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1.2.4 TDSE for Light-matter interaction: A

Semi-Classical view

TDSE in the case of an atom interacting with light, for an electron of charge

e, mass m and position ~r for an attractive potential V (~r) is given by the Eq.

[1.28],

−i~ ∂
∂t
ψ(~r, t) =

[ 1
2m(−i~~∇− e ~A)2 + eφ+ ~V (~r)

]
ψ(~r, t) (1.28)

In this Eq. [1.28], ~A and φ are the vector and scalar potential, respectively.

In quantum mechanics, the Eq. [1.28] is often specified in atomic units or

Hartree units , where ~=1, mass of electron m, charge of electron e, time t =

0.0241 fs, length a0 = 0.5292 Å, the dipole moment ea0 is 1. The expansion

of Eq. [1.28] in atomic units, is shown here as,

i
∂

∂t
ψ =

[
−1

2∇̂
2 + V̂ (~r) + 1

2(Â2 − i~∇ · ~A− i ~A · ~∇+ φ)
]
ψ (1.29)

The first two terms in the Eq. [1.29] defines the unperturbed Hamiltonian

Ĥ0, which contains the kinetic energy of the electron and the attractive

Coulombic potential energy operator V̂ (~r). The next four terms in Eq. [1.29]

defines the Hamiltonian part, Ĥint as the interaction between atom and

light.

The physical quantities which can be measured, for example, electric field ~ε

and magnetic field ~B can be evaluate using the vector potential ~A and scalar

potential φ given by the following relations [1.30] and [1.31],

~B = ~∇× ~A (1.30)
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~ε = ~∇ · ~A− ∂ ~A

∂t
(1.31)

If a gradient of a scalar function, for example χ(~r, t) is added to the vector

potential ~A and − ∂
∂t
χ(~r, t) to the scalar potential φ, then the electric field

and magnetic fields remain invariant. This is expressed in the following

relations,

~A −→ ~A′ = ~A+ ~∇χ (1.32)

~B = ~∇× ~A′ = ~∇× ~A+ ~∇× ~∇ · χ = ~∇× ~A (1.33)

In the same way when,

φ −→ φ′ = φ− ∂χ

∂t
(1.34)

and hence,

~ε = −~∇ · φ′ − ∂ ~A′

∂t
(1.35)

~ε = −~∇ · φ′ + ~∇ · ∂χ
∂t
− ∂ ~A

∂t
− ~∇ · ∂χ

∂t
(1.36)

~ε = −~∇ · φ′ − ∂ ~A

∂t
(1.37)

From the above equations, it shows that the vector potential ~A and scalar

potential φ, does not uniquely determine electric and magnetic fields. It is
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also known as the choice of gauge.[68]. This could be shown through unitary

transformation. Therefore, the unitary transformation of a wavefunction of

the one shown in Eq. [1.36]

ψ̃(~r, t) = exp(−iχ)ψ(~r, t) (1.38)

It preserves the invariance of the Schrödinder equation under different

gauges, and the different physical quantities do not change. To study the light-

matter interaction under the dipole approximation, due to the interaction

term (in Eq. [1.29]), the TDSE can be represented in different types of

gauges, for example, velocity and length.

1.2.5 Gauge Transformation of TDSE

TDSE in dipole approximation: The wavelengths of the electromagnetic

(EM) fields for IR, Visible, and UV radiations fall from micrometers to a

few nanometers. For most cases, the atomic or molecular sizes are smaller

when compared to the wave length of EM fields. The dipole approximation

can be used[68, 69] for the variation in vector field ~A which is purely time-

dependent and space-independent for atoms and molecules, that is, ~∇· ~A = 0.

The TDSE assuming the dipole approximation in atomic units is

i
∂ψ

∂t
=
[
−1

2∇̂
2 + V̂ (~r) + 1

2(Â2 − i ~A · ~∇) + φ
]
ψ (1.39)

TDSE in velocity gauge: The Eq. [1.39] can also be written in the velocity

gauge when ~A, and ~∇ couple with each other.[69, 70] The chosen unitary

transformation follows as shown in Eq. [1.40],

Û = exp
(
− i2Â

2)
)

(1.40)

22 Chapter 1 Dynamical Molecular Electron Densities in LASER Fields



Here, Â2 is a purely time-dependent term. Using the Û from Eq. [1.40] to

the Eq. [1.39] with the dipole approximation, Then, in the velocity gauge

the TDSE equation becomes,

i
∂

∂t
ψV (~r, t) =

[
−1

2∇̂
2 + V̂ (~r + ~A · ~∇)

]
ψV (~r, t) (1.41)

TDSE in length gauge: This is the mostly used gauge to study the light-

matter interaction.[68, 69] The unitary operator Û is defined as,

Û = exp(−i ~A · ~r) (1.42)

Applying this unitary transformation (Eq. [1.42]) along with the dipole

approximation and ∂ ~A
∂t

= ~ε(t), then the length gauge TDSE becomes,

i
∂

∂t
ψL(~r, t) =

[
−1

2∇̂
2 + V̂ (~r) + ~ε(t) · ~r

]
ψL(~r, t) (1.43)

The term ~ε · ~r describes the interaction between light and matter, which

depicts the same classical dipole in the classical oscillating electric field.

TDSE in the absence of the oscillating field: When the ~ε ·~r terms is omitted

from the Eq. [1.43], the resultant TDSE is,

i
∂

∂t
ψ(~r, t) =

[
−1

2∇̂
2 + V̂ (~r)

]
ψ(~r, t) (1.44)

Because the potential energy function V̂ (~r) is time-independent, therefore

the eigenstates would be stationary waves. Thus, for a given eigenstate

χ(~r) of energy E, the time evolution of the probability density is defined

as ρ =
[
χ(~rexp(−iEt~ ))

]∗
χ(~r)exp(−iEt~ ) =| χ(~r) |2. This probability density

does not change in time.[71, 72] The future time-step wave packet could
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be calculated for the time-independent potential. The case is not the same

for time-dependent potentials. So, how do we determine the wave function

ψ(~r, t) at time t, given the information at time t0, where t>t0. To solve this,

an operator called time-displacement operator is required. This operator Û

operates on the wave packet at previous timestep t0 and provides the wave

packet at time t, given by the following Eq. [1.45],[70–74]

ψ(~r, t) = Û(t, t0)ψ(~r, t0) (1.45)

The following properties are obeyed by time-evolution operator Û(t, t0) [71,

72]

1. Time evolution operator is an unitary operator: Û †Û = 1

2. For the time t2 > t1 > t0, the evolution operator for time t0 −→ t2 is:

Û(t2, t0) = Û(t2, t1)Û(t1, t0) (1.46)

3. If the final and initial time are same, then Û(t, t) = 1.

The goal is to find the expression for Û operator. Using the Eq. [1.45] in Eq.

[1.43], we get:

i~
d

dt

[
Ûψ(~r, t0)

]
= Ĥ

[
Ûψ(~r, t0)

]
(1.47)

In Eq. [1.47], Ĥ is the Hamiltonian operator. In the next subsection, we

provide the details of the time-evolution operator Û for the time-dependent

Hamiltonian.
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1.2.6 Numerical Methods to solve TDSE

The time-evolution operator for the time-independent potential energy is

Û = exp(iEt~ ).[71, 72] Whereas, for the time-dependent potential energy, the

solution of TDSE in length gauge from Eq. [1.43] is given by the following

form[81–83]

|ψ(x)〉 = |ψ(t0)〉 − i
∫ t

t0
Ĥ(t′)|ψ(t′)〉dt′ (1.48)

The main problem with the formultion of Eq. [1.48] is that the Hamiltonian

does not commute at different time steps. In order to evaluate the right-

hand side in Eq. [1.48], one needs to slice the time, t1 < t2 < t3 · · · tn
such that limn←→∞ ( tn−t1

n
= 0). The first iteration of Eq. [1.48] will be as

follows[81–83]

|ψ(t1) = |ψ(t0)〉 − i
∫ t1

t0
H(t′)|ψ(t′)〉dt′ (1.49)

For the next set of time steps t2, t3, · · · , t∞,

|ψ(t)〉 = |ψ(t0)〉+
∞∑
n=1

(−i)n
∫ t1

t0
dtn · · ·

∫ t2

t0
dt1

∫ t1

t0
H(tn)|ψ(tn)〉 · · ·

H(t2)|ψ(t2)〉H(t1)|ψ(t1)〉dt. (1.50)

Hence, the time-evolution operator Û is,

|ψ(t)〉 = Î +
∞∑
n=1

(−i)n
∫ t1

t0
dtn · · ·

∫ t2

t0
dt1

∫ t1

t0
H(tn)|ψ(tn)〉 · · ·

H(t2)|ψ(t2)〉H(t1)|ψ(t1)〉dt (1.51)
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The Eq. [1.51] can be further compacted into the following form,

Û(t, t0) = τ̂

[ ∞∑
n=0

(−i)n
n!

(∫ t

t0
dt′Ĥ(t′)

)]
(1.52)

In this Eq. [1.52], the τ̂ is the time-ordering operator. The above expression

can also be written as an exponential operator,

Û(t, t0) = τ̂
[
exp

(
−i
∫ tn

t0
H(t′)dt′

)]
(1.53)

For a small increment in time δt, the Hamiltonian remains constant, the Û is

approximated as,

Û(t0 + δt, t0) = exp

[
−i
∫ t0+δt

t0
H(t′)dt′

]
≈ exp[−iH(t)∆t] (1.54)

The evolution operator can be described as a sequence of successive opera-

tions of the previous evolution operators, written in the following fashion,

Û(tn, t0) = Û(tn, tn−1) · · · Û(t2, t1)Û(t1, t0) (1.55)

There are different methods available to approximate the time-evolutions op-

erators Û given in Eq. [1.53], for studying nuclear and electronic dynamics.

The numerical receipes available in literature are: Trotter-factorization,[72]

(t,t′) method,[75–78] time-dependent configuration interaction singles (TD-

CIS) method.[79, 80]

Since, the work presented deals with properties to be calculated in the

presence of strong external fields, such as LASERs. We here briefly describe

the light, formal definition of LASER and its polarization forms.
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1.3 Light: The External Field

In modern physics, light has two nature descriptions. In the first description,

light is said to contain or is made up of tiny particles called photons and trav-

els linearly. In another definition, light is said to have a transverse wave-like

nature, where it can bend and superimpose while traveling in any medium

or space. Compton effect and photoelectric effect experiments confirm the

particle nature of light while processes such as diffraction, interference and

polarization confirm the wave nature of light.

Since, wave nature is fundamental to the description of quantum systems

in quantum mechanics, we in the present thesis, on studying dynamical

electron densities, focus our attention only to time-varying wave functions in

the presence of light, specially LASERs. In the next subsection, we provide

basic descriptions regarding the LASERs working principles, its mathematical

form in polarization.

1.3.1 LASERs

Laser is a device to produce a coherent and monochromatic source of electro-

magnetic radiation. Laser is the acronym for Light Amplification by Stimulated

Emission of Radiations.

The Working Principle:

Lasers are based on the principle of amplification of radiations generated by

stimulated emissions.

To explain this, let us consider a two level system, one a ground state E0, and

other excited state E1. There are three ways in which a resonant photon can

interact with the system. The first one is a process, where a resonant photon
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excites electrons from ground state to the excited state. This processes is

called absorption. The second process is called spontaneous emission, where

electrons in excited state E1 decays to the ground state E0 with the emission

of a photon in random direction with a random phase. Stimulate emission, is

the thrid process and involved in the working of lasers. In stimulted emission,

for a large population n1 in the excited state E1, gets to the ground state via

relaxation achieved by the application of resonant electromagnetic radiation.

This process can happen if there is an population inversion, that is, n1 > n0.

To generate radiations from stimulated emission, the collision of one photon

with the atom in excited state E1 relaxes to the ground state. This generates

a second photon of the same energy and phase in the same directions as

that of the first photon. The second photon is made to collide with another

excited state atom to generate a thrid photon. This processes is continued to

amplify the intensity of the incident resonant radiation.[64, 65]

Fig. [1.1] depicts the working of a laser. The experimental step contains

mainly three components, a pump, an optical cavity and a laser medium.

The process of population inversion is achieved through the pump, which are

devices such as electric discharges or flash lamps. The laser medium which

amplifies the light can be solid, liquid or gas.

Theoretical Definitions:

Light is an electromagnetic radiations which can be defined using electric

~E and magnetic field ~B vectors. The set of Maxwell’s equations for charge

density ρ and a vector current density ~J as sources in a medium whose

permittivity ε0, is given by Eq. [1.56], [1.57], [1.58], and [1.59].

~∇ · ~E(~r, t) = ρ

ε0
(1.56)
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~∇× ~E(~r, t) = − ∂

∂t
~B(~r, t) (1.57)

~∇ · ~B(~r, t) = 0 (1.58)

~∇× ~B(~r, t)− 1
c2
∂

∂t
~E(~r, t) = µ0 ~J (1.59)

The quantities ρ and ~J contains all the information regarding the material

and source of charge. To derive an analytical form of the laser, one needs to

use Maxwell equations without any sources. Therefore, in an space with no

charges or currents with unbounded homogeneous vacuum, the Eq. [1.56],

[1.57], [1.58], and [1.59] gets reduced to,

~∇ · ~E(~r, t) = 0 (1.60)

~∇× ~E(~r, t) = − ∂

∂t
~B(~r, t) (1.61)

~∇ · ~B(~r, t) = 0 (1.62)

~∇× ~B(~r, t)− 1
c2
∂

∂t
~E(~r, t) = 0 (1.63)

Using the Eq. [1.60], [1.61], [1.62] and [1.63], we arrive at the following

differential equations,

−~∇2 ~B(~r, t) + 1
c2
∂2

∂t2
~B(~r, t) = 0 (1.64)
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−~∇2 ~E(~r, t) + 1
c2

∂

∂t2
~E(~r, t) = 0 (1.65)

The solutions to the above equations is complex and represent the plane

waves,

~E(~r, t) = E0ε̂e exp[i(~k · ~r − ωt)] (1.66)

~B(~r, t) = B0ε̂b exp[i(~k · ~r − ωt)] (1.67)

In these equations, E0 and B0 are the field amplitudes, ~k is the propagation

vector. The polarization vector for the electric field εe and polarization vector

for the magnetic field εb are orthogonal and perpendicular to each other.

Both the waves are linearly polarized in orthogonal planes. The frequency of

other wave is represented by ω.

Laser polarization:

In general, the oscillations of the electric and magnetic field vectors are

oriented randomly about the direction of propagation and, therefore, are

considered unpolarized. However, suppose the direction of electric or mag-

netic field vector oscillations is made to orient along the particular choice of

transverse plane, handedness, or shape. In that case, it is referred to as a

polarized laser field.

Different types of polarized laser fields can be derived from the following Eq.

[1.68], [1.69]. Considering two plane waves with phase constants φ1 and

φ2

~E1(~r, t) = E1ε̂e1 exp[i(~k · ~r − ωt+ φ1)] (1.68)
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~E2(~r, t) = E2ε̂e2 exp[i(~k · ~r − ωt+ φ2)] (1.69)

The total wavefunctions can be constructed using the forms of Eq. [1.68],

and [1.69] which is as follows,

~E(~r, t) = [E1ε̂e1 exp(φ1) + E2ε̂e2 exp(φ2)] exp[i(~k · ~r − ωt)] (1.70)

The different types of polarization are,

1. A linearly polarized laser is constructed using the relation as φ1 = φ2

between the phases. The effective laser field is,

~E(~r, t) = (E2
1 + E2

2) 1
2 ˆεe12

θ exp[i(~k · ~r − ωt+ φ)] (1.71)

where θ = tan−1E1
E2

2. If φ1 6= φ2 and E1 = E2 = E0, then the total field is elliptically polarized.

Now, if the phase difference for the elliptically polarized wave is ±π
2

then it is this case is referred as a circularly polarized laser. The forms

of these polarization are shown in Eq. [1.72], and [1.73].

~Eepl(~r, t) = E0[ε̂e1 exp(φ1) + ε̂e2 exp(φ2)] exp[i(~k · ~r − ωt)] (1.72)

~Ecpl(~r, t) = E0[ε̂e1 + ε̂e2 exp(±π2 )] exp[i(~k · ~r − ωt)] (1.73)

3. If the frequency of the two waves is in a certain ratio such that it is

a whole number, with a phase difference of ±π
2 , then the polarized
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field takes shapes like-fan lobes, often called foils. The number of lobes

formed confirms the number of foils, called n-foils.

~EnPL(~r, t) = (E1ε̂e1 exp[i(φ1 − ω1)]

+E2ε̂e2 exp[i(φ2 − ω2)]) exp(i~k · ~r) (1.74)

Different polarization fields change the wave functions such that the scalar

field properties get deformed, and electron densities seem to orient along

the polarization direction. The effect on molecular properties, specifically

electron densities, will be discussed in later chapters of the thesis.

1.4 Ab-Initio Electronic Structure of Atoms

and Molecules

The study of applying quantum mechanical principles to the system of atoms

and molecules was termed quantum chemistry. In quantum chemistry, ab-

initio electronic structure theory of atoms and molecules refers to the methods

of solving Schrödinger equation using first principles in Born-Oppenheimer

approximation. Robert Parr and coworkers, David Craig and the group

were the first to introduce the term ab-initio in the context of quantum

chemistry while carrying out semiempirical studies on the excited states of

benzene.[86] The word ab-initio meant quantities derived from first principle

or from the beginning, which implies only physical constants go as inputs in

the calculation and no empirically or experimentally derived information.

For the system of atoms and molecules, their charges, nuclear positions, and

information on the number of electrons and nuclei are taken as inputs in the

calculation to yield helpful information, such as energies, charges, electron

densities, and many other system properties.
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The ab-initio electronic structure methods use approximations to obtain

many-electron functions from the solutions of electronic Schrödinger equa-

tion. The evaluated many-electron functions are often referred to as molec-

ular wavefunctions in quantum chemistry. Furthermore, these molecular

wavefunctions are fundamental quantities to evaluate electronic properties

using their analytical or numerical forms.

The most famous theoretical methods are the semi-empirical methods, Hartree-

Fock (HF), post-Hartree-Fock and density functional theory (DFT) methods.

Since, the Hamiltonian constructed in these methods do not contain any time-

dependent terms, therefore the solutions obtained from these methods only

provide time-independent wavefunctions. On the other hand, the dynamics

in wavefunctions through time-evolving wavefunctions are obtained from the

solutions of methods solving time-dependent Schrödinger equation. Some of

the popular methods which solve TDSE are Time-Dependent Hartree-Fock

(TDHF), configuration interaction (CI) and DFT methods.

This thesis present results and discussions on the electronic properties, spe-

cially electron densities, using the time-evolving wavefunctions in laser-

dressed fields. Therefore, in the following section we would discuss the

general concepts of quantum chemistry, the Hartree-Fock formalism, and

the method used to solve TDSE for atoms and molecules in the presence of

polarized LASERs (specifically RT-TDHF).

1.4.1 The Molecular Problem

The central goal of quantum chemistry is to find solutions of the non-

relativistic Schrödinger equation. This section provides a brief description of

the methods used to obtain approximate results of the electronic properties of

molecular system. Consider a molecular system with M nuclei and N electrons
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Figure 1.3: Representation of the molecular coordinate system for a collection of
four particles: two nuclei A, B and two electrons i, j. The RA, RB, ri,
and rj depict the position vectors of nuclei and electrons w.r.t the origin.

that can be represented in the coordinate system. The Time-Independent

Schrödinger equation (TISE) for molecular wavefunctions Ψ(~ri, ~RA), is given

by Eq. [1.75].

ĤΨ
(
{~ri}, {~RA}

)
= EΨ

(
{~ri}, {~RA}

)
(1.75)

where Ĥ is the Hamiltonian operator for a system of M nuclei and N electrons,

which is described by position vectors ~RA and ~ri, respectively. A represen-

tative molecular coordinates system for two nuclei A and B, two electrons

i and j is shown in Fig. [1.3]. rAi=|~rAi|=|~RA − ~ri|, represents the distance

between the ith electron and Ath nucleus ; rij=|~rij|=|~ri − ~rj| represents the

distance between the ith and jth electron, and RAB=|~RAB|=|~RA − ~RB| is the
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distance between the Ath and Bth nucleus. The Hamiltonian in atomic units

(~=me=e=k=1) for N electrons and M nuclei is shown in Eq. [1.76].

Ĥ =
[
−

N∑
i=1

1
2∇

2
i −

M∑
A=1

1
2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1
rij

+
M∑
A=1

M∑
B>A

ZAZB
RAB

 (1.76)

In Eq. [1.75], MA represents the ratio of mass of the nucleus A to the

mass of an electron, and ZA depicts the atomic number of nucleus A. ∇2
i

and ∇2
A are the Laplacian operators which depict the differentiation with

respect to the coordinates of the ith electron and the Ath nucleus. The

first term and second term of Eq. [1.76] is the operator for the kinetic

energy of the electrons and nuclei respectively; the third term represents the

coulomb attraction term formed between electrons and nuclei; the fourth

and fifth terms represents the repulsion between electrons and between

nuclei, respectively. The Eq. [1.76] can be written in a more generic fashion

in this form, Ĥ = T̂e(~r) + T̂N(~R) + V̂eN(~r, ~R) + V̂NN(~R) + V̂ee(~r). The 2nd

and 4th terms represent the kinetic and potential energy operators purely

dependent on Nuclei coordinates, while other terms rely on the electronic or

electronic-nuclear coordinates. Therefore, in a fixed nuclear approximation,

the Hamiltonian Ĥ can be represented as the sum of electronic and nuclear

hamiltonian. This approximation is discussed in the next section.

1.4.2 Born Oppenheimer Approximation

The Born-Oppenheimer approximation (BOA) is important and relevant

concept w.r.t. quantum chemistry. The discussion in this section will provide

qualitative description of BOA. Since, mass of nuclei is much more than

electrons, and this is the reason nuclei are considered to move very much
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slower than the electrons. Therefore, one can consider electrons moving in

the fields of nuclei to be a fairly good approximation.[87, 88]

Ĥele = −
N∑
i=1

1
2∇

2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1
rij

(1.77)

Within this approximation, the second term of Eq. [1.76], the kinetic energy

of nuclei will be a small number close to zero and therefore, it can be

neglected. The last term of Eq. 1.76 is the repulsion between fixed nuclei

which can be considered to be a constant. If a constant is added to an

operator, it adds only to operator eigenvalues and no effect on the operator

eigenfunction. The first, third and fourth terms of Eq. [1.76] makeup the

electronic hamiltonian Eq. [1.77], describing the motion of N electrons in the

field of M fixed nuclei or point charges. The solution from the Schrödinger

equation using electronic hamiltonian Ĥele given in Eq. [1.78] is,

Ĥeleφele = Eeleφele (1.78)

The φele is called the electronic wave function

φele = φele({~ri}; {~RA}) (1.79)

which represents the function describing the motion of electrons in atom

and molecules. The electronic wave function φele explicitly depends on the

electronic coordinates and depends parametrically on the nuclear coordinates

(refer Eq. [1.79]). Also, the electronic energy depends parametrically on

nuclear coordinates (refer Eq. [1.80]).

Eele = Eele({~RA}) (1.80)
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By the parametric dependence in φele, it is meant that, for different ori-

entations of the nuclei in system, φele is a different function of electronic

coordinates. Hence, explicit dependence of nuclear coordinates does not

appear in φele. The total energy for a fixed nuclei system should include the

constant nuclear repulsion term.

Etot = Eele +
M∑
A=1

M∑
B>A

ZAZB
RAB

(1.81)

Since, the motion of electrons much faster than the nuclei, in the Eq. [1.76]

one can replace electronic coordinates by their average values, averaged over

the electronic wave function. This defines the motion of nuclei experienced

in the average field of electrons as nuclear Hamiltonian.

Ĥnuc = −
M∑
A=1

1
2MA

∇2
A + Eele({~RA}) +

M∑
A=1

M∑
B>A

ZAZB
RAB

(1.82)

Ĥnuc = −
M∑
A=1

1
2MA

∇2
A + Etot({~RA}) (1.83)

The total energy Etot({ ~RA) is a function for nuclear motion. The nuclei

move on the potential energy surface obtained by solving the molecular

electronic problem in Born-Oppenheimer approximation.Thus, the solutions,

φnuc, obtained from nuclear Schrödinger Eq. [4.3],

Ĥnucφnuc = Eφnuc (1.84)

describe the vibration, rotation, and translation of a molecule. E describes,

the sum of electronic, vibrational, rotational and translational energy. The
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Born-Oppenheimer approximation to the total wave function of Eq. [1.75] is

by the following form in Eq. [1.85],

φ({~ri}; {~RA}) = φele({~ri}; {~RA})φnuc({~RA}) (1.85)

The electronic properties code and related work in the thesis is done by using

the electronic wave functions.

1.4.3 The Molecular Electronic Wave function

In quantum mechanics, wavefunctions are mathematical construct that

describe a particle’s quantum state in a quantum system. For the time-

independent wavefunctions such as many-electron molecular systems Ψ(~RA, ~ri),

would be described by a function dependent on the variables of nuclear {~RA}

and electronic {~ri} coordinates. According to the BO approximation, as in Eq.

[1.85], the molecular wavefunctions can be approximated. It can be sepa-

rated into two components, one nuclear part Ψnuc({~RA}) - purely dependent

on the nuclear coordinates, while the other electronic part Ψele({~ri}; {~RA})

- depending on electronic coordinates along with parametric dependence

of nuclear positions. The nuclear wave functions in the total Hamiltonian

provide constants to the whole property of the system. At the same time,

the coefficients of electronic wave functions are found using the standard

electronic structure methods and contribute to the total energy such that

error in the exact property values is minimized.

The Eq. [1.77] depicts the electronic Hamiltonian and shows its dependence

only on the spatial coordinates of the electrons. However, including the spin

coordinates {α(ω),β(ω)} along with the spatial {~ri}, completely describes the

four-dimensional electronic coordinates collectively by x as,
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x = {~ri, ω} (1.86)

For a N-electron system, the wavefunction is a function of x1, x2, x3, · · · , xN
coordinates, that is, Φele(x1, x2, x3, · · · , xN). Since, the electronic Hamilto-

nian does not include any sort of spin operations, making the wavefunction

include spin actually does not make any difference. However, if we make the

electronic wave function antisymmetric w.r.t the interchange of the coordi-

nate x (both space and spin) of any two electrons, that is,

Φele(x1, · · · , xi, · · · , xj, · · · , xN) = −Φele(x1, · · · , xj, · · · , xi, · · · , xN)(1.87)

This condition, also called the antisymmetry principle and is the mathemat-

ical form of statements from the Pauli exclusion principle. Therefore, the

exact wavefunction solutions should also be antisymmetric, apart from satis-

fying the Schrödinger equations. Imposing antisymmetry in wavefunctions

is constructed using the form of Slater determinants. Thus, the wavefunc-

tions for many-electron systems are either a single determinant or a linear

combination of many Slater determinants.

The molecular orbital is a wavefunction for a single electron particle in a

many-electron molecular system. The spatial molecular orbital ψi(~r) shows

the spatial distribution of the ith electron as a function of position vector ~r.

|ψi|2 d3r. It is the probability of finding the electron in the volume element

d3r around ~r. The set of {ψi(~r)} for a many-electron system are found such

that they should be an orthonormal set which is
∫
ψi(~r)ψ∗j (~r) = δij. These

molecular orbitals can be thought of as a set of basis functions which could

be span the whole molecular space.
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In most cases, molecular orbitals are evaluated as the summation, which are

the linear combination the set of atomic orbitals, shown here in through Eq.

[1.88] as

ψi(~r) =
Nbas∑
k=1

Ck,iφk(~r) (1.88)

where Nbas represents the total number of atomic basis functions used, Ck,i

are the real valued coefficients obtained from the solutions of TISE and

Φk are the atomic orbitals. These atomic orbitals are usually constructed using

Gaussian-type functions. For the case of time-dependence in molecular

orbitals is introduced in the Eq. [1.88] via a variable of time t, as shown in

Eq. [1.89]

ψi(~r, t) =
Nbas∑
k=1

Ck,i(t)φk(~r) (1.89)

Note that, in this equation, the time dependence in the molecular orbital is

because of the complex-valued and time-varying coefficients Ck,i(t). These

time-dependent coefficients are obtained at each time step from the solutions

of TDSE. Therefore, the time-dependent molecular orbital could be complex-

valued.

The Gaussian-type function are used in the calculation of molecular properties

because of their ease in providing analytical forms in molecular integrals and

therefore minimizing the efforts of computational cost. The atomic orbitals

φk(~r) are evaluated from a summation of primitive Gaussian-type functions

(GTFs). The form of atomic orbital in Eq. [1.90]
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φk(~r) =
∑
j

ajG(α,RA,~l) (1.90)

In this Eq. [1.90], aj ’s represent the contraction coefficients of the prim-

itive GTFs, G(α,RA,~l). The primitive GTFs in the cartesian form[72] is

represented by the following Eq. [1.91],

G(α,RA,~l) = (x− xA)l(y − yA)m(z − zA)nexp(−α|~RA|2) (1.91)

The symbols, α, depict the exponent of GFT,RA the center of GFT,~l represents

the angular quantum number/index l, m, n. For example, an S-type gaussian

will have values of l=0, m=0, n=0, while the l, m, n values for Px/Py/PZ-

type gaussian are 1, 0, 0, 0, 1, 0 and 0, 0, 1. The distance between the point

~r and center ~A is represented by the RA = |~r − ~A|.

1.4.4 The Hartree-Fock Formalism

The antisymmetric principle, which follows the relation discussed in Eq.

[1.86], is imposed on the spin orbitals of the electronic coordinates by

making them using either a Slater determinant or a combination of Slater

determinants has been discussed in the earlier section. considering an atom

of two electrons, in the 1s2 state, then this electronic state can be described

by two wave functions

ψ1,2 = 1s(1)α(1)1s(2)β(2) (1.92)
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ψ2,1 = 1s(2)α(2)1s(1)β(1) (1.93)

where the number in bracket indicates electron 1 and electron 2. The two

possible combinations are,

ψA = 1√
2

[1s(1)α(1)1s(2)β(2) + 1s(2)α(2)1s(1)β(1)] (1.94)

ψB = 1√
2

[1s(1)α(1)1s(2)β(2)− 1s(2)α(2)1s(1)β(1)] (1.95)

Here, ψA is the symmetric wave function, while ψB is the antisymmetric

wave function. The factor 1/
√

2 from the normalization of the total wave

function. The antisymmetric wave function can also be written in terms of

matrix determinant,

ψB(1, 2) = 1√
2

∣∣∣∣∣∣∣
1s(1)α(1) 1s(2)α(2)

1s(1)β(1) 1s(2)β(2)

∣∣∣∣∣∣∣ (1.96)

It becomes much more convenient when determinant are used to describe

the electronic wave functions, since both the Pauli’s exclusion principle

(the determinant becomes null or zero, if two electrons occupy the same

spin-orbital) and antisymmetry principle (the determinant will change sign
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when any two electrons switch its the position for a set of spin orbitals) are

satisfied.

The Eq. [1.96], can be generalized for a N-electron systems occupying N spin

orbitals χ1, χ2, · · · , χN as

ψ(x1, x2, · · · , xN) = 1
(N !)1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χ2(x2)

. . .

. . .

χN(xN) χN(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.97)

Thus, writing the wavefunction in the form described by Eq. 1.97 is called

Slater’s determinant. The short hand notation for writing the Eq. [1.97] is

ψ(x) = |χ1χ2 · · ·χN〉 (1.98)

In order to solve Schrödinger equation exactly (Eq. [1.78]) for any molecular

system is still mathematically not possible, due to the electron-electron

repulsive term between in the electronic Hamiltonian (Eq. [1.77]). An

alternative is to find the approximate wave function solutions for the multi-

electron molecular systems. D. R. Hartree and V. Fock proposed a method

for calculating the electron structure of atoms and molecules. In the Hartree-

Fock formalism, the interaction potential of the electrons is represented by a

mean-field potential, while the electronic wave function is approximated by

the Slater determinant.
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The working of Hartree-Fock formalism is based on variational principle,

which specifies that the best electronic wavefunction is the one corresponding

to the lowest possible energy nearer to the exact energy, when the spin

orbitals of the system are varied. This means to find the set of wave functions

which minimizes the expectation value of 〈ψ|Ĥele|ψ〉.

According to the variational principle, the expectation value of the energy is

always an greater than or equal to the exact state energy. The mathematical

form of which is,

〈ψ|Ĥele|ψ〉 ≥ Eexact (1.99)

The electronic Hamiltonian can be separated into one and two electron

integral contributions

Ĥele =
N∑
i=1

ĥ(i) +
N∑
i=j

N∑
j>i

ĝ(i, j) (1.100)

where, ĥ(i) and ĝ(i, j) are

ĥ(i) = −1
2

N∑
i=1
∇2
i −

M∑
A=1

ZA
rAi

(1.101)

ĝ(i, j) = 1
rij

(1.102)
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When we define the energy functional E0[χi] for the ground state, we get,

E0[χi] = 〈ψ|Ĥele|ψ〉 (1.103)

To find the best wavefunction for the systems, the functional E0[χi] should

be minimized so that the molecular spin orbitals must also be kept orthonor-

malized,

〈χi|χj〉 = δij (1.104)

The expectation value of the energy in the ground state E0 is given by,

E0[χi] =
N∑
i=1
〈χi|ĥ|χi〉+ 1

2

N∑
i=1

N∑
j=1

(〈χiχj|χiχj〉 − 〈χiχj|χjχi〉) (1.105)

In order to minimize this functional, we will use Lagrange’s indetermi-

nate multipliers method. A functional L[χi] is minimized which minimizes

the functional E0, subjected to the constraint of orthonormalization (Eq.

[1.104]). This is given by,

L[χi] = E0[χi]−
N∑
i=1

N∑
j=1

λij(〈χi|χj〉 − δij) (1.106)

where the coefficients λij are the Lagrange’s indeterminate multipliers.
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By infinitesimally varying the spin-orbitals functions, we get,

δL[χi] = δE0[χi]−
N∑
i=1

N∑
j=1

λijδ(〈χi|χj〉 − δij) (1.107)

Using Eq. [1.105] in Eq. [1.107] explicitly in the new functional for the

ground state, we obtain,

δL[χi] =
N∑
i=1

N∑
j=1
〈δχi|ĥ|χj〉+

N∑
i=1

N∑
j=1
〈δχiχj|χiχj〉

+
N∑
i=1

N∑
j=1
〈δχiχj|χjχi〉

+
N∑
i=1

N∑
j=1

λij〈δχi|χj〉+ complexconjugate (1.108)

We introduce, the Coulomb (Ĵj) and Exchange (K̂j) operators,

Ĵj(x1)χi(x1) = [
∫
χj(x2) 1

r12
χj(x2)dx2]χi(x1) (1.109)

K̂j(x1)χi(x1) = [
∫
χj(x2) 1

r12
χi(x2)dx2]χj(x1) (1.110)

Using the Eq. [1.109] and [1.110] in [1.108] can be re-written as,

δL[χi] =
N∑
i=1

∫
δχ∗i (x1){ĥ(x1)χi(x1) +

N∑
i=1

[Ĵj(x1)− K̂j(x1)]χi(x1)

−
N∑
j=1

λijχi(x1)}dx1 + complexconjugate (1.111)
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The Coulomb repulsion arising from all other N − 1 electrons, distributed

as probability density, which is represented by Coulomb operator. The spin

correlation is accounted by exchange operator, that is, the same spin electrons

tends to be avoided, therefore reduces the global coulomb potential between

them.

In order for the functional L[χi] to be a minimum, a condition imposed such

that δL[χi] = 0 on Eq. [1.111], and considering that the variation δχ∗i , we

have,

{Ĥ(x1) +
N∑
j=1

[Ĵj(x1)− K̂j(x1)]}χi(x1) =
N∑
j=1

λijχi(x1) (1.112)

There will be a similar expression for the complex conjugate. The term in

brackets in Eq. [1.112] is called the Fock operator.

f̂(x1) = ĥ(x1) +
N∑
j=1

[Ĵj(x1)− K̂j(x1)] (1.113)

Therefore, the Hartree-Fock equations can be written as,

f̂(x1)χi(x1) =
N∑
j=1

λijχi(x1) (1.114)

The Eq. [1.114] can be converted into a canonical eigenvalue equation

through a unitary transformation, since the Fock operator is invariant under

any unitary transformation. Therefore, it can be written as,

f̂(x1)χi(x1) =∈i χi(x1) (1.115)
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In the Eq. [1.115], the Lagrange multipliers were replaced by ∈i to indicate

that it represents the energy. The Eq. [1.115] represents the canonical

Hartree-Fock equations.

To obtain the spin-orbital functions χi(x1), the Eq. [1.114] must be solved.

The Coulomb operator [1.109] shows that it is necessary to know all the

other occupied spin-orbital functions to gather the operators Ĵj and K̂j, and

therefore obtain χi(x1).

To overcome the problem, an initial form of all the spin-orbital wave functions

of an electron is defined. These are used to define the Coulomb and exchange

operators, and solve the canonical Hartree-Fock equations. The calculations

is repeated until the energies and the new spin-orbitals functions remain

unaltered i.e gets converged.

This method of solving is known as the Hartree-Fock Self-Consistent Field

Method (HF-SCF). The numerical solutions of Hartree-Fock equations, have

an operation count of N4/8, where N is the number of basis functions of the

system. Therefore, as the number of atoms and molecules increases, the HF

method becomes computationally expensive. Another problem encountered

with the Hartree-Fock method is that it uses only a single Slater determinant

and treats the electron-electron interaction in an average way. So, this does

not taken into account the correlated movements of the electrons, which

does not include the small fraction of the total energy of the system. The

difference between the exact energy and the Hartree-Fock energy is called

the correlation energy.

Ecorr = Eexact − EHF (1.116)
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Thus, the correlation energy is an important aspect, and several methods

methods have been developed over the years and implemented in the calcu-

lations, are called post-Hartree-Fock methods.

The present Thesis Work, we use the time evolving electronic wave functions

from an in-house code Ab-Initio Electron Dynamics (ABELDYN), solving Real

Time Hartree-Fock (RTHF) using (t,t′) method.[78, 84, 85] The molecular

orbital coefficients of this electronic wavefunction are used as an input at each

time step for the calculation of electronic properties. In the next subsections,

we provide the description and working of in-house ABELDYN code, which

we have used to obtain time-dependent molecular orbital coefficients.

1.4.5 The Real Time Hartree-Fock (RTHF) method

The work presented in the next chapters uses the wave functions obtained

from the in-house code ABELDYN. This code incorporates the effects of

external oscillating electric fields in the electronic Hamiltonian. This code is

made to measure the ionization effects, with a complex absorbing potential

applied outside the interaction region.

The RTHF procedure provides solutions for a fixed-nuclear geometry. The

algorithm of ABELDYN code involves block diagonalization procedure of a

time-dependent Floquet-Fock Matrix. The time-dependent Fourier compo-

nents of the TD charge density matrix are calculated at each time-step of the

propagation. This is done using a numerical integration of all the previous

density matrices propagated in time. Thus, the Fourier components of this

density matrix is used to construct a new Floquet Fock matrix. To obtain new

set of molecular orbitals from the previous MOs, the exponential of the new

formed Floquet Fock matrix is evaluated.
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One of the advantages of using RTHF method implement in ABELDYN is that

it incorporates electron correlation effects by using an extra time-dependent

coordinate t′ in the extended Hilbert space. The TD density matrices carries

the information of previous matrices and therefore, it is also referred to as

memory of previous matrices. The wave function evolution performed is

done using the (t,t′) method.

In the numerical formalism for the RTHF using (t,t′) method, we form the

time dependent Eq. [1.117] for the molecular orbitals in Floquet Fourier

basis, where the hamiltonain is Floquet Fock type Fock operator,

i
∂Φi

F (t)
∂t

= F̂FΦi
F (t) (1.117)

Where, the form of Fock operator F̂ (t′) is defined in Eq. [1.118],

F̂ (t′) = F̂ (t′)− i ∂̂
∂t′

(1.118)

and the Floquet molecular orbitals Φi
F (t) are written in terms of spatial basis

functions χµ. In the Eq. [1.119], χµ are the set of atomic orbitals, usually

constructed from cartesian Gaussian basis sets,

Φi
F (t) =

∑
µ

cµ,i(t)χµ (1.119)

The Floquet molecular orbitals Φi
F (t), can also be expanded in terms of

time-dependent Fourier basis functions einωt′ shown in [1.120]

Φi
F (t) =

∑
µ

∑
ν

cµ,i(t)einωt
′
χµ (1.120)
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The time-dependent Fock-matrix in the presence of linearly-polarized laser

along Z is constructed as given in Eq. [1.121],

F(t′) = Hcore + G− ~E(t′) · ~r (1.121)

In Eq. [1.121], Hcore is related to the free-field one-electron matrix and G is

the two-particle operator. The term ~E(t′) ·~r = E0Zcos(ωt′) depicts the energy

due to dipole interaction for a linearly polarized laser along Z-direction. The

Fourier components of G in atomic basis is defined in Eq. [1.122].

Gn =
∑
kl

P kl
n [(ij|kl)− 1

2(il|kj)] (1.122)

The memory effect or the history of time-dependent molecular orbitals are

included through the splitting of density matrix (P) into time-dependent and

time-independent matrices: P(t′) = P(t0) + ∆P(t′). The expansion of ∆P(t′

in terms of Fourier basis is given in Eq. [1.123]

∆P(t) = P0 +
∞∑
n=1

Pncos(nωt) (1.123)

The matrix form of Floquet-Fock operator is given by Eq. [1.124]

〈χeinωt′ | F̂F (t′) | χein′ωt′〉〉 = [F0 + nωI]δnn′ +Gnδnn±m + EZ
2 δnn±1

(1.124)

In Eq. [1.124], I denotes identity matrix, Z denotes the dipole matrix along Z

axis and E = E0cos(ωt′). The solution of Eq. [1.124] involves evaluating the

exponential of the Floquet-Fock matrix via a unitary block-diagonalization
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routine. This is followed by the calculation of coefficient matrix given by Eq.

[1.125],

CF (t, t′) = e−
i
~GnF ∆t/2 · · · e−

i
~G1

F∆t/2e−
i
~FT∆te−

i
~G1

F∆t/2

· · · e−
i
~GnF ∆t/2CF(t′, t−∆t) (1.125)

In Eq. [1.125], ∆t denotes the time-step for propagation.

1.5 Electron Densities

For a many particle normalized wavefunction Ψ(~r1, ~r2, · · ·~rN), the quantum

mechanical electron density at the position vector ~r is a physical quantity

defined as,

ρ(~r) = N
∑
σ

∫
Ψ∗(~x, ~x2, ~x3, · · · , ~xN)Ψ(~x, ~x2, ~x3, · · · , ~rN)d3r2d

3r3 · · · d3rN

(1.126)

The summation in Eq. [1.126] runs over all the spin coordinates σ, and

integrates over all but one spatial coordinates. N represents the total number

of electrons in the system. This implies the integration of ρ(~r) over the total

space would be equal to the N, represented by the following Eq. [1.127],

∫
ρ(~r)d3r = N (1.127)

It is observed from Eq. [1.126] that the electron densities are scalar field,

non-negative quantities for all points in molecular space, ρ(~r) ≥ 0. The

electron densities ρ(~r) depicts the probability of finding an electron in a

infinitesimally small volume element d3r which is directly proportional to

ρ(~r)d3r.
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The practical and analytical forms for the evaluation of electron densities for

molecular orbitals or molecular wavefunctions is given the following form,

ρ(~r) =
occ∑
i

niΨ∗i (~r)Ψi(~r) (1.128)

Here, the index i, represent the total number of occupied orbitals, ni rep-

resents the occupancy of the ith orbital. For example, for a system with N

occupied orbitals with each having an occupancy of 2 will have the following

form,

ρ(~r) = 2
N∑
i

Ψ∗i (~r)Ψi(~r) (1.129)

The Eq. [1.128] represent the electron densities using the natural spin

orbitals. The molecular wavefunctions ψ obtained from the solutions of

Hartree-Fock method, can be expressed in the form of Slater determinants

constructed from the molecular orbitals. These molecular orbitals can be

expressed as linear combination of atomic orbitals {φi}. The form of electron

density using this can be represented as,

ρ(~r) =
∑
µν

Pµνφµ(~r)φν(~r) (1.130)

Where µ, ν are the summation indexes running over all the orbitals (occupied

+ virtual), and Pµν is called the charge density bond order matrix and is

given by,

Pµν = 2
N/2∑
a

C∗µaCνa (1.131)

where Cµa are the coefficients of the molecular orbitals.
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The forms of Eq. [1.131] discussed above represent the electron densities in

time-independent scenarios, since the wavefunctions are time-independent.

However, for the time-dependent wavefunction, for a fixed nuclear geometry,

the forms for the evaluation of electron densities would remain the same.

The electron densities are also physical observable through scattering experi-

ments and hence used in structure determination via X-ray experiments. In

the next section, we discuss the critical points, its topology and its chemical

applications.

1.5.1 Critical Points of electron densities

The electron densities ρ(~r) for multi electron atoms and molecules are real,

continuous 3D scalar functions whose first derivative exists at every point ~r

in the molecular space. At the position vectors, ~rc, where the first derivative

of MED vanishes, that is, ∇ρ(~r) = ~0, are termed as the critical points of MED.

The ∇ρ(~r) is denoted by Eq. [1.132],

~∇ρ = î
∂ρ

∂x
+ ĵ

∂ρ

∂y
+ k̂

∂ρ

∂z
(1.132)

At ~rc, whether the MED function ρ(~r) is a maximum, minimum or a saddle,

is determined by the sign of its second derivative or curvature. The second

derivative matrix of a 3D function is called Hessian matrix. The nature of

CPs is completely defined by the real, and symmetric Hessian matrix, which

is defined as referred in Eq. [1.133],

H =


∂2ρ
∂x2

∂2ρ
∂x∂y

∂2ρ
∂x∂z

∂2ρ
∂y∂x

∂2ρ
∂y2

∂2ρ
∂y∂z

∂2ρ
∂z∂x

∂2ρ
∂z∂y

∂2ρ
∂z2

 (1.133)
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The characterization or classification to identify the type of CPs is done

by diagonalization and thereafter obtaining the eigenvalues of the Hessian

matrix. In general, diagonalization of the N-dimensional matrix gives N

eigenvalues. In our case, for MEDs, we are concerned only with a three-

dimensional Hessian matrix. The number of non-zero eigenvalues of the

Hessian matrix is called its Rank, R. The Rank of a matrix is also equal

to the number of linearly independent eigenvectors. Therefore, Rank is

the largest square sub matrix whose determinant is non-zero. When all

the Hessian eigenvalues are non-zero, those CPs are called non-degenerate

CPs. These non-degenerate critical points are said to be stable, that is,

Small displacements in the nuclei do not change the nature of critical points.

If at least one of the eigenvalues of the Hessian becomes equal to zero,

which implies there will be linearly dependent eigenvectors of all. In this

case, the determinant of the Hessian is equal to zero, and the Rank of the

Hessian matrix decreases from 3 to a lower dimension. The CPs found in

such a case are said to be degenerate CPs. Degenerate CPs should not be

confused with CPs located at different positions with the same function value.

Graphically, A critical point in a 3D function is said to be a degenerate CPs if

∇ρ(~r) = 0, |H| = 0, and there is at least one direction where it behaves as

a point of inflection, i.e., it cannot be defined as a maximum or a minimum.

The degenerate critical points are considered unstable, which means that

even a tiny change in the electron density caused by the displacement of

nuclei would either vanish or bifurcate two non-degenerate stable critical

points. Therefore, the Rank of the Hessian matrix is an important parameter

representing the dimensionality of the found critical points, irrespective of

its function dimensionality.

The eigenvectors of the Hessian matrix represent the local and orthogonal

vector directions along which the critical point is defined. Its eigenvalues

are also invariant to any coordinate transformations. For a N-dimensional
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Figure 1.4: Molecular graphs for some prototypical molecules: (a) Cubane, (b) Ben-
zene, (c) Tetrahedrane, (d) Cyclopropane, (e) Diborane, (f) Ammonia
molecules are shown. Representation: (3,-3) - Black dots, (3,-1) - Green
Dots, (3,+1) - Purple dots, (3,+3) - Red dots. The Maroon colored lines
connecting the black dots via green dots depict the bond paths.

function, there can be N+1 types of non-degenerate critical points. Once

a stationary point is identified (∇ρ(~r) = 0), to identify whether it is a

maximum, minimum or a saddle, a term called signature, σ is calculated.

The signature is defined as the sum of signs of the non-zero eigenvalues. So,

the nomenclature used to classify the CPs are based on its values of rank and

signature, depicted as (R, σ). For a 3D function, such as MED, there can be

four types of non-degenerate CPs. Following are their types:

1. (3,-3): A critical point which is maximum in all directions.

2. (3,-1): The Hessian at this CPs has two negative and one positive

eigenvalues. This represents a saddle CP, which is minimum in one

direction while maximum in the other two directions.
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3. (3,+1): A saddle critical point, which is maximum in one direction

while minimum in the other two directions. There would be two

positive and one negative eigenvalues of the Hessian at this CP.

4. (3,+3): Represents a critical point which is a local minimum in all

directions.

These critical points of MED reflects its the molecular structure. The Fig.

[1.4] present critical points of MED for some molecules. For all molecules,

the two sets of (3,-3) CPs (black dots) next to each other are accompanied

with (3,-1) CPs (green dots) lying in between. Also, the (3,+1) CPs are

found in an enclosure of few (3,-3) CPs located in a circular fashion or ring.

The (3,+3) CPs (red dots) are located only at the center of caged molecules

(Cubane and Tetrahedrane). This relation of molecular structure through the

critical points of MED is called molecular graph. For a fixed number of nuclei,

the non-negative MED function follows a mathematical relationship called

Poincaré-Hopf governs the number and type of critical points that can coexist

in a system.

n−3 + n−1 + n+1 − n+3 = 1 (1.134)

where n−3, n−1, n+1, and n+3 is the number of (3,−3), (3,−1), (3,+1) and

(3,+3) CPs. The collection of numbers (n−3, n−1, n+1, and n+3) is called the

characteristic set of the molecule.

1.5.2 Topology of Electron Densities

Topology of atomic electron densities:

The distribution of atomic electron densities (AED) is quite simple. The

distributions contain a maximum at the nuclear position, and the function
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monotonically decays off, going farther away from the atomic position’s

center. The 3D visual display would show the spherical symmetry ground

state AED distributions. At the nuclear position, the spherical average of

AED rigorously satisfies the Kato’s cusp condition[89–92] as shown in Eq.

[1.135]:

dρ̃

dr
|r=0 = −2Z ˜ρ(0) (1.135)

Where the spherically averaged charge density will be:

ρ̃(r) = 1
4π

∫ π

0

∫ 2π

0
ρ(~r)sinθdθdφ (1.136)

The asymtotic behaviour of charge density is described by the equation as

follows,[93–96]

∂ln[ρ̃(r)]
dr

|r−→∞ = −2
√

2ε (1.137)

In the Eq. [1.135], Z represents the charge of the atomic nucleus, and ε in

Eq. [1.137] represents the atomic ionization potential. At positions near

the nucleus, the AED resembles e−2Zr, and at far off nuclear regions AED

follows e−2r
√

2ε. The logarithmic derivative of the density shows a series of

shelves, one for each occupied orbital, between the cusp of electron density

at the nucleus and the asymptotic decay. Some interesting postulates are

proposed using the behaviour of ρ̃(r) in the intermediate regions.[97, 98]

The monotonic decay of ground state atomic density has been termed as

monotonic density postulate.[99] For 0 < a < r, the ground state atomic

density can be expressed through the following relation,

ρ̃(r − a) > ρ̃(r) > ρ̃(r + a) (1.138)
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The relation in Eq. [1.138] can also be expressed as dρ/dr < 0 for all r.

Therefore, the charge densities always rise to maximum towards the nucleus,

follow monotonic decay, and fall off exponentially. This is why AED does not

contain any CPs other than nuclear maxima.

Topology of molecular electron densities:

The topographical picture of MEDs does not show monotonic decay in all

directions, unlike AEDs. The sum of AEDs to form MEDs brings in drastic

changes in the topological features of MEDs. The binding of AEDs leads to

the redistribution of total electron densities in MEDs, as seen from its isocon-

tour plots. In MEDs, the maxima at nuclear positions are their dominating

topological features. The Kato’s cusp condition at the nuclear position is still

valid and similar to that of an isolated atom discussed earlier via Eq. [1.135].

However, MEDs do not follow for spherically averaged charge density relation

as in Eq. [1.136]. For the molecular case, the Kato’s cusp condition with

nuclear position ~RA as center follows Eq. [1.139]

dρ̃

dr
|r=0 = −2ZAρ̃(~RA) (1.139)

Similar to the AEDs, the asymptotic decay for MED is,

ρ̃(r)|r −→∞ = r[(Ztotal−N+1/
√
ε)−1]e−2r

√
2ε (1.140)

In Eq. [1.140], ε is the molecular ionization potential with effective screening

for the charge. Now, with the asymptotic and the nature of MEDs at nuclear

position understood, we analyze at the topology at the internuclear regions,

giving rise to new topological features.

Fig. [1.4] presents the MED isosurface plots for some small molecules.

The MED plots of these molecules depict the existence of maxima at the
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Figure 1.5: MED isosurface plots (Top: Blue colored plots) for some prototypical
molecules: (a) Benzene, (b) Tetrahedrane, (c) Dinitrogen, (d) dilithium,
(e) carbon monooxide, (f) ethylene molecules are shown. The top
blue colored plot shows the density isosurface at one of their (3,-1)
CPs (ρ−3). The bottom blue colored plots depict density isosurfaces at
decreasing MED values such that ρ < ρ−3.

nuclear positions. However, from topography, it is seen that between two

maximums, the MED function passes through at least a minimum. It is

presented as a (3,-1) CP, a minimum along the direction connecting the

two nuclei, and maxima along all other directions.[20, 100] Therefore, a

directional minimum between two maximums is a topological necessity. The

directional minimum would exist in several directions for a continuous 3D

MED function and form a minimum density surface, also known as a zero-

flux surface. For cyclic molecules, such as Benzene (See Fig. [1.4] (a)) or

cyclopropane, there exists a (3,+1) CP, which is minimum in two directions

(here, directions along the molecular plane), while maximum in one direction

(perpendicular to the molecular plane). Since the (3,+1) CP generally exists

only in molecules with nuclei arranged in an enclosed ring, they are called

ring critical points. They are usually located at the geometrical center of the

cyclic molecules. For caged molecules, for example, tetrahedrane (See Fig.
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[1.4] (b)) or cubane, a (3,+3) CP is found. These CPs are found at the center

of the caged molecule and depicts a local minimum of the electron density

distribution.

There have been exceptions in finding maximums being found only at the

nuclear positions of molecules. The MED of Molecules, such as Li2, Na2 have

been found containing (3,-3) CPs, local maxima, at postions other than nuclei.

These CPs are called non-nuclear maxima (NNMs) or non-nuclear attractors

(NNAs).[101] The MED values of NNMs are usually very low when compared

to MED values of nuclear maxima. The NNMs in MEDs are also termed as

psuedoatoms. Fig. [1.4] (d), depicts the MED plot of Li2 molecule, having

a NNM at its center with ρ = 0.012a.u. In diatomic molecules, its origin

has been attributed to the evolution of chemical bonding as internuclear

distances decrease.[102] NNMs have been experimentally detected in some

metals such as Si clusters.[103]

1.5.3 Gradient Vector Fields, Bond Paths, and

Zero-Flux Surfaces

Trajectories of the gradient vector field:

The gradient vector fields of electron densities are obtained by tracing out

trajectories from the vector ~∇ρ(~r). This trajectory of ~∇ρ(~r) is called gradient

paths of electron densities. The gradient paths could be traced out from a

point, say ~r0, by displacing a distance ∆~r away from this point along the

direction indicated by ∆ρ(~r0). The displacement process from the previous

points is repeated until the path generated terminates. This activity is similar

to approximating a function f(x) numerically. The function f(x) can be

written in terms of its tangent line at x0, f(x0 + ∆x) = f(x) + (df/dx)∆x.

This definition of derivative becomes exact in the limit ∆x −→ 0.

1.5 Electron Densities 61



Figure 1.6: Plots depict the gradient vector field lines for two molecules, (a) Carbon
Monoxide and (b) Water Molecules, on the molecular planes. The
gradient field lines in the different basins on the molecular plane are
plotted with different colors. The yellow colored line separates the two
regions in the molecular plane. It is the only gradient field line which
converges to a (3,-1) CP. The black dots and green dots represent (3,-3)
and (3,-3) CPs. The maroon colored line depict the bond paths.

Fig. [1.5] represents the gradient vector field lines on the molecular plane

for two molecules, CO, and H2O. The trajectories of gradient field lines, also

called gradient paths follows the following few properties,

1. At each ~r, the ∇ρ(~r) is a tangent to its trajectory.

2. The trajectories of ∇ρ(~r) never cross each other.

3. Every trajectory originates or terminates at those points in space where

∇ρ(~r) = 0, which implies critical points.

4. The gradient field lines at any point ~r always points towards the direc-

tion of greatest increase. Therefore, when followed always terminate

to one of the local maxima.
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The gradient paths depicted in Fig. [1.5], is an integral curve solving of the

following differential Eq. [1.141],

dr(s)
ds

= ∇ρ(r(s)) (1.141)

where the function r(s) implies that a point r on a given trajectory is depen-

dent on the parameters s. The Eq. [1.141] is a 3D first order differential

equation. Unique solutions are obtained for every initial values assigned

to the three constants of integration. For example, initial value s = s0, any

trajectory passing through the point r(s0) is obtained from the integrating

Eq. [1.141], given by the following Eq. [1.142],

r(s) = r(s0) +
∫ s

s0
∇ρ(r(t))dt (1.142)

Therefore, the trajectories of gradient paths of ρ(~r) are curves of parame-

terized integral solutions of the differential equation for ∇ρ(~r). For a given

point on a trajectory, the solutions of Eq. [1.142] can provide all the other

points which fall on the same trajectory.

All except few of the trajectories presented in Fig. [1.5] originate at infinity

and terminate at one of the (3,-3) CPs, the local maxima. Two trajectories

and four trajectories of the gradient field lines plots in Fig. [1.5] (Yellow

lines) terminate at the (3,-1) CP. All trajectories fall in one of the three types:

(i) those originating from infinity and terminating at maximum, they called

called attractors, (ii) those originating from a minimum and terminating at

maximum, they are called repellers, and (iii) those originating from infinity

and terminating at a saddles maximum direction.

Bond Paths:

Fig. [1.5] shows pairs of gradient lines (maroon colored) that originate at
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the (3,-1) CP and terminates at the neighboring (3,-1) CPs. The eigenvector

corresponding to the unique positive eigenvalue of the (3,-1) CPs defines

these trajectories. These gradient paths represent a line through the electron

density distribution connecting the neighboring (3,-3) CPs. The ρ(~r) is the

maximum w.r.t to any neighboring line for trajectories following along this

line. Such lines are found between such pairs of nuclei whose atomic basins

share a common interatomic surface. Generally, it is called atomic interaction

lines.[20, 104, 105]

The presence of the atomic interaction lines indicate the electron density

accumulation in between the pair of nuclei that are linked. The (3,-1)

CP which lies inbetween the atomic interaction lines. It has two positive

eigenvalues, which indicates the electron density being a maxima in the two

directions perpendicular to the atomic interaction line. This line intersects

the interatomic surface at the (3,-1) CP. From the theorectical observations,

it could be concluded that accumulations of electronic density is necessary

if two atoms are bonded to one another. Therefore, this interatomic line is

also refered to as bond paths since it is line of maximum electron density

connecting two bonded nuclei or (3,-3) CPs.[105]

For a given configuration X of nuclei, the union of closure of bond paths is

called molecular graph. Fig. [1.4] shows a picture of the molecular graph

presenting the network of bond paths linking pair of neighboring nuclei. It

is to be noted that the bond path is not same as a representation of a bond.

The existence of a bond path between a pair of nuclei indicates that the

corresponding atoms are bonnded to one another. This interactions can be

quantified in terms of the properties of electron density and its (3,-1) critical

points.

Zero-Flux Surfaces:

Fig. [1.5] shows a gradient vector line (yellow colored) converging into the
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Figure 1.7: The plots shows zero-flux surface of the following molecules: H2O, CO,
N2, Li2, CH4, C2H4, NH3. The black and green dots represent the
(3,-3) and (3,-1) CPs. The bond paths are depicted with the maroon
colored lines.

(3,-1) CP. It acts as the basin boundary line on the plane, which divides the

area on the molecular plane. A boundary on the whole molecular space is

imposed using a plane called zero-flux surface which could be constructed

using the two eigenvectors associated with negative eigenvalues of (3,-1) CPs.

Since they exist between atomic basins, zero-flux surfaces are also referred

to as interatomic surfaces. The zero-flux surface is defined as points ~r in the

molecular space where the direction of the first derivative vector of ~∇ρ(~r) is

perpendicular to the unit normal surface. Mathematical, it satisfies the dot

product between the two vectors to be zero, that is, ~∇ρ(~r) · n̂ = 0.

The response to perturbations in the electron densities could be pictured

from the changes in its respective gradients and zero-flux surfaces. Eberhart

and coworkers studied the influence of zero-flux surfaces on chemical reac-

tions. They introduced the concept called gradient bundle analysis[106, 107]

using the ideas from QTAIM and conceptual DFT. Using this concept they

showed how motion of zero-flux surfaces between and within atomic basins
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plays a role in determining the energetic changes in undergoing chemical

reactions.[29]

Fig. [1.7] The uniqueness regarding the zero-flux surfaces of MED is that

they are curved and open surfaces. It is observed the nature of curvature is

concave towards the less electronegative atom of the two bonded atoms. In

addition to this, the zero-flux surfaces are close to the less electronegative

atom. The presence of zero-flux surfaces in MED distributions has given the

idea of partitioning the molecular space into disjoint non-overlapping regions.

Hence, it led to the developing of a new theory called quantum theory of

atoms-in-molecules. The QTAIM will be discussed in the next section.

1.5.4 Laplacian of Molecular Electron Densities

The Laplacian of MED∇2ρ(~r) is a quantity derived from the double derivative

Hessian matrix of MED function as the sum of its diagonal elements. The

mathematical form of ∇2ρ(~r) is,

∇2ρ(~r) = ∂2ρ

∂x2 + ∂2ρ

∂y2 + ∂2ρ

∂z2 (1.143)

Laplacian of MED gives the local measurement of the charge concentration.

If the value of MED ρ(~r) is greater than the average of its values over an

infinitesimal sphere centered at ~r, then∇2ρ(~r) < 0. This example implies that

a negatively valued Laplacian depicts a local charge concentration of MED.

Similarly, when ∇2ρ(~r) < 0, the MED function value is less than the average

of its values over an infinitesimal sphere centered at ~r. The Laplacian at

this ~r shows a local charge depletion.[20] The Laplacian can also be directly

derived from the wave functions. The AED distribution is monotonically

decreasing away from its center, however, there exist a wealth of topological

features in the Laplacian of AED. The Laplacian of charge density is also
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related to the shell structure of atoms. The number of shells is found out

by identifying the number of nodes in Laplacian, that is, at points ~r where

∇2ρ(~r) = 0. This kind of definition of shell structure for atoms was valid only

for atoms with principle quantum number less than 20 (element - Calcium).

The outer quantum shell of atom was divided into two regions, the first

one is the inner region where ∇2(~r) < 0, and the second one as the outer

region where ∇2(~r) > 0. The inner region is called valence shell charge

concentration (VSCC) region.

The negative Laplacian in the regions of molecular space corresponds to

covalently bonded regions. Therefore, this has been used as a sign of covalent

bonding in the literature. Lone pair in molecules cannot be observed from

the topological features of MED, but can be observed in terms its Laplacian’s

CPs. The works presented in the thesis only deals with the interpretation of

Laplacian evaluated on regular grids. We do not compute its topographical

features such as critical points.

1.5.5 Quantum Theory of Atoms-In-Molecule

Bader and coworkers proposed the quantum theory to define a bound atoms

in a molecule. Since atoms or groups of atoms exhibit a characteristic set of

properties, they postulated the existence of atoms in a molecule which led to

the development of quantum theory of atoms-in-molecule.[20] Therefore, the

theory of atoms in molecule is a result of observations made on the properties

of MED.

First observations of atoms-in-molecule came from the investigation of the

MED’s isocontour plots of the Lithium-based diatomic molecules, LiX (X =

H, F, O) by Bader and Beddall.[108] They introduced the consequences of a

quantum mechanical description of an atom in a molecule. Bader defined
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bounded atoms in a molecule as the regions occupying non-overlapping,

mutually exclusive subspaces of the total molecular space, each bounded

by the zero-flux interatomic surfaces. These surfaces satisfy the zero-flux

surfaces condition, that is given by the following Eq. [1.144],

~∇ρ(~r) · ~dS = 0 (1.144)

These regions are called Bader atoms. Each region must contain only a single

(3,-3) CP, a local maximum of MED. Therefore, the properties associated with

regions is assumed to be average property of the subspace/region or Bader

atoms.

The following conclusions were drawn by Bader and Beddall,[20, 108]

1. The total energy of the molecule can be expressed as the sum of all the

atomic energies of the Bader atoms.

2. The average potential energy of an atom is defined as the average of

the virial forces on it.

3. A relationship must exist between the distribution of charge and the

virial of the total force exerted on each element of the charge density,

the virial field.

The Laplacian of electron density integrated over these atomic regions Ω is

zero (See Eq. [1.145]), which is proved using the zero-flux condition[20,

109] and the divergence theorem.[111]

L(Ω) =
∫

Ω
∇2ρ(~r)d3r = 0 (1.145)
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The Kinetic energy densities, K(Ω) and G(Ω) could be defined using the Eq.

[1.145] as

K(Ω) = −N4

∫
Ω

∫
· · ·

∫
[Ψ∗(~r, ~r2, · · · , ~rN)∇2

~rΨ(~r, ~r2, · · · , ~rN)

+Ψ(~r, ~r2, · · · , ~rN)∇2
~rΨ∗(~r, ~r2, · · · , ~rN)]d3r2 · · · d3rNd

3r (1.146)

G(Ω) = N

2

∫
Ω

∫
· · ·

∫
∇~rΨ∗(~r, ~r2, · · · , ~rN) • ∇~rΨ(~r, ~r2, · · · , ~rN) (1.147)

are equal quantities, Therefore,

L(Ω) ≡ K(Ω) = G(Ω) = −1
4∇

2ρ(~r)d3r = 0 (1.148)

Ψ depicts the total wave function of ρ(~r). The Eq. [1.148] represents the

atomic virial theorem. In a numerical verification, small errors in the virial

relationship may occur due to error in finding the right boundary surface

or truncation errors in basis sets. For a perfect integration, the Laplacian

integrated over atomic basinL(Ω) should be a number very small number

close to zero in Eq. [1.148]. This is taken to be the fundamental boundary

condition for an atom in molecule. The conditions validates the atomic virial

theorem. Thus, the quantum mechanics of a Bader atom can be defined.[20]

Using the Schwinger variation principles, several verifications of the QTAIM

has also been provived.[112, 113]

Several atomic properties could be evaluated over the atomic regions ΩA

bounded by the zero-flux surfaces. Some of the commonly known properties

such as norm, charges, electrostatic moments, electronic energy Ee, dipole
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moments of atomic regions Ω in the molecular space of MED can be defined

as,

Norm⇒ N(Ω) =
∫

Ω
ρ(~r)d3r (1.149)

Charge⇒ q(Ω) = ZA −
∫

Ω
ρ(~r)d3r (1.150)

ElectrostaticMoments⇒Mn(Ω) =
∫

Ω
rnΩd

3r (1.151)

DipoleMoment⇒ µx(Ω) =
∑
Ω
ZΩxΩ −

∫
Ω
xρ(~r)d3r (1.152)

ElectronicEnergy ⇒ Ee(Ω) = 1
2

∫
Ω
d3r

∫ ∫ ∫
· · ·

∫
ψ∗∇2ψd~r2d~r3 · · · d~rN

(1.153)

The shapes and sizes of Bader’s atomic regions are not regular shapes and

are bounded by open zero-flux surfaces. Locating these regions in molecular

space is a challenging task. Therefore, In literature, the knowledge from

the critical points and gradient paths of MED has been employed to find the

zero-flux surfaces and identify the atomic regions in the molecular space. In

the forthcoming thesis chapter, we will discuss the methods employed to find

out Bader atomic regions and evaluate their average properties.

1.5.6 Chemical Applications of Electron Densities

Apart from being a descriptor for structure determination from the X-ray

diffraction experiment observations or theoretical calculations, the eigenval-
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ues of the Hessian matrix and electron density at the corresponding (3,-1)

CP of MED have been used to identify bonding interactions such as bond

ellipticity and bond orders in various molecular systems.[114–118]

Bader and co-workers have employed QTAIM which show that the charge

density of topological atoms and the functional groups they comprise is

transferrable.[119–121] That is, the charge densities of the same functional

groups in different molecules are virtually identical. In the recent past,

Eberbart and co-workers have developed QTAIM-based methods, called bond

bundle and gradient bundle models. This have been used to investigate

chemical reactivity, chemical bonds, and bond dissociation in molecules.[122–

128]

The bond ellipticity ε is the estimation of amount of π character present

in a bond. This is given in terms of the two negative curvatures (λ1, λ2,

where |λ1| > |λ2|) via the relation as ε=(λ1/λ2 −1). The value of bond

ellipticity ε > 0 for a π bond, while for a triple bond it is close to zero. The

empirical relation of bond order, n = exp[Aρ(r) − B] (where A and B are

constants) evaluates the values as 1.0, 2.0 and 3.0 for ethane, ethylene and

acetylene molecules respectively. Also, the position of the (3,-1) CP provides

the measure of bond polarity.[2] The π − π stacking interactions in benzene

dimers and in stacked DNA bases and base-pairs have been found to be

highly correlated to the (3,-1) CP and (3,+3) CP data between π-stacked

monomers.[129–131] The potential energy density at the (3,-1) CP has been

shown to be highly correlated with hydrogen bond energies.[132] The full

interaction potentials in hydrogen bonds were recovered from the potential

energy density at the (3,-1) CP. [133] The Bond CP properties has been used

to study of drug design, a field pioneered by popelier and coworkers. These

authors proposed the construction of a vector space from bond properties
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evaluated at the bond critical points, i.e. a point in this space is specified by

a set of bond properties.[134–137]

1.6 Plan of the Thesis

In this thesis, we attempt to study the dynamics of molecular electron den-

sities through its time-varying topographies, bond paths, zero-flux surfaces,

and atoms-in-molecule properties in a laser. So, to begin with, in Chapter 1 of

the thesis, we provide an introduction to the basic definitions, terminologies,

and concepts essential to understanding subsequent Chapters. It introduces

the electronic structure of atoms and molecules, the standard solutions of

time-independent and time-dependent Schrödinger equations to obtain the

wave functions essential to evaluate electron densities and properties. We

describe the definition of LASERs and their various phenomena. We define

gradients, critical points, and zero-flux surfaces in topology w.r.t 3D function.

Bader’s quantum theory of atoms-in-molecules is briefly explained. Addition-

ally, the chemical applications of electron densities are mentioned. The final

section of this chapter describes the plan for the thesis.

Chapter 2 describes the working of the code: Ab-Initio Electronic Dynam-

ics Properties. The information on wave functions at each time step in the

time-varying LASER field is used to evaluate the dynamics of electron densi-

ties and their properties. The code can compute time-dependent electronic

properties - Molecular Electron Densities (MEDs) with their gradients, Hes-

sians, Laplacians, vector-current densities, molecular orbitals, and electron

localization function (ELF) for a multi-electron molecular system in position

space over a three-dimensional cartesian grid. The code can compute the

dynamics of topographies in time-dependent MEDs (TDMED). It can search

for critical points, bond paths, and zero-flux surfaces in dynamical TDMED’s
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molecular space. The ABELDYNPROP code can be employed to compute

properties from atoms-in-molecules analysis in the presence of polarized

LASERs. In principle, the code can work for specifically electronic wave

functions obtained from any method solving the time-dependent Schrödin-

der equation. The work uses electronic wave functions from an in-house

code-solving time-dependent Hartree-Fock (TDHF). The molecular orbital

coefficients of the wave function are taken as input at each time step of the

time-dependent electronic structure calculation. The analytic expressions

of MED, their gradients, hessian, Laplacian, and ELF are evaluated primar-

ily at all time steps using cartesian Gaussian basis sets over a grid. Apart

from time-dependent properties, time-independent electronic properties in

position space have also been integrated into this package. The program is

written in FORTRAN 90 and is executed through a shell script. The code is

also tuned for multi-processor machines with distributed memory through a

message-passing interface (MPI). The package has been bench marked for

various Gaussian basis sets for different molecules, showing a linear speedup

on a parallel architecture.

In Chapter 3, using the ABELDYNPROP code on atoms in high intensity

and high frequency linearly polarized laser field is investigated. We take

Helium and Beryllium atoms in the presence of linearly polarized LASER

fields as the test cases for studying. The energy difference between the

atom’s highest occupied and lowest unoccupied orbitals is the frequency of

LASER used, while 0.10 a.u. is the LASER’s electric field strength employed.

In free-field cases, atomic electron density distribution shows a maximum

at/near the nuclear position. At the same time, the distribution decays off

in all the other directions of nuclear space. The isocontours of free-field

atomic densities would depict concentric circles on a 2D plot throughout

the position space. Since the free-field distribution remains the same along

all the directions, i.e., X, Y, and Z. Any direction of laser polarization taken
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would show the same results. However, we have chosen Z as the direction of

polarization. The investigation of dynamical atomic electron densities reveals

the distributions get oriented along the path of LASER polarisation, that is,

Z. The time-evolving atomic electron densities broaden in the ±Z directions.

On the other hand, the electron densities shrink in the X and Y, the direction

perpendicular to the laser polarization. The dynamical topographies show

new critical points in the electron density distribution. In particular, it was

observed that non-nuclear maxima (NNM) appear at peaks or valleys time

steps of the LASER pulse. The NNMs are located on the ±Z axis. The NNMs

are also accompanied by (3,-1) and (3,+3) critical points in some cases. The

dynamics of gradient paths show the bends in the direction perpendicular to

the direction of LASER polarization. The atoms-in-molecule analysis is done

for dynamical atomic densities, which reveal the distribution of charges and

norms. The nature of charge and norm follows in sync with the LASER pulse.

New regions containing the NNM are also identified, and their respective

charge and norms are evaluated.

Chapter 4 presents time-evolving molecular electron densities and their gra-

dient lines, Laplacian, and difference electron densities in a linearly polarized

laser field for the test case molecules, Hydrogen Fluoride, Water, Methane,

and Ethylene molecules. The polarization direction of the laser field creates

symmetric and cyclic deformations along the direction of polarization along

the laser pulse. The gradient lines bend perpendicular to the direction of

polarization, and the Laplacian shows plots depicting charge concentrations

at either terminal of molecular space along the path of polarization. The

contour plots’ difference electron densities demonstrate increments or decre-

ments in the molecular electron density in either direction of polarizations

over the regions in the molecular space. For example, the positive-valued

isocontours appear in one direction, while negative-valued isocontours would

appear in the opposite direction. It was also noticed that the plot of the
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MED-values of the bond critical points shows an oscillatory behavior along

the laser pulse. In cases of Hydrogen Fluoride and a water molecule, the

distance between the bond critical points and its nearest maximum critical

points came very close. The closeness was such that the two critical points

coalesced near that point. The novelty of the work lies in the newly found

critical points of TDMED, especially non-nuclear maxima, through the topo-

logical analysis of all the test cases. The electronic population analysis done

for the newly formed basins due to the creation of NNMs shows a significant

number of electrons residing in these regions.
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Chapter 2 ABELDYNPROP: A parallel

program for the evaluation of

time-dependent electronic prop-

erties in position space

1The graphical abstract depict molecular orbitals as solutions obtained from TISE and
TDSE. These solutions are further used to evaluate properties. These properties are evaluated
using the ABELDYNPROP codes.
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Abstract

The present work describes a code to evaluate time-dependent electronic

properties - Molecular Electron Density (MED) with its gradients, Hessian,

Laplacian for a multi-electron molecular system in position space over a

three-dimensional Cartesian grid. The integrated code also searches for criti-

cal points and zero-flux surfaces of electron densities. The code is also built

to compute gradient paths, bond paths and basin boundaries. A feature to

evaluate these quantities on a planar grid is also enabled in the code. In prin-

ciple, the code works specifically for electronic wave functions obtained from

the methods solving the time-dependent Schrödinder equation. The work

uses electronic wave functions from an in-house code-solving time-dependent

Hartree-Fock (TDHF). The code takes molecular orbital coefficients of the

wavefunction as input at each time step of the time-dependent electronic

structure calculation. The analytical expressions of MED, their gradients,

Hessian, Laplacian are calculated at all time steps using Cartesian Gaussian

basis sets over a grid. Apart from time-dependent properties, this package

has also integrated time-independent electronic properties in position space.

The program is written in FORTRAN 90 and executed through a shell script.

The code is also tuned for multi-processor machines with distributed memory

through a message-passing interface (MPI). The package has been bench

marked for various Gaussian basis sets for different molecules showing a

linear speedup on a parallel architecture.
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2.1 Introduction

According to the fundamental postulate of quantum theory, wavefunctions

contain all the information about the quantum system. Investigating the time

evolution in chemical/physical processes in a quantum system requires the

knowledge of time-dependent wavefunctions. With the advent of the current

century, research in light-matter interaction led to the development of laser

pulses in sub-femtosecond and attosecond timescales.[1] Such timescales,

comparable to the motion of electrons, allow one to gauge electronic dynam-

ics in atoms and molecules. Subsequently, the development of theoretical

methods provided the electronic wavefunctions obtained from the solutions

of the time-dependent Schrödinder equation (TDSE) in laser fields. In similar

works, Raj et al.[2–4] developed a fast and efficient algorithm to solve TDSE

for molecules interacting with short laser pulses. With the time-dependent

electronic wavefunction in a fixed nuclear geometry, a natural extension

would be calculating electronic properties. In literature, no such program

exists to compute time-evolving scalar field molecular electronic properties,

specifically time-dependent electron densities.

However, there have been reports where Rodgido and coworkers[5] ana-

lyzed the time evolution of the topology of the electron density to study

charge transfer in H3
+ and LIF as models, using quantum theory of atoms in

molecules (QTAIM). Close to this approach, another work, Gronager et al.[6],

studied the photodissociation of NaI molecule, which showed electron trans-

fer taking place by electron density contributions from two valence orbitals.

There are also reports on the coupled electronic-nuclear dynamics, including

the time dependence of electron density, which has been carried out for

simple model systems.[7] Gross and coworkers[8] have carried out a study

on time-dependent electron localization function, allowing the time-resolved
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observation of the formation and breaking of the chemical bond using two

examples: (i) the excitation of acetylene by a strong laser pulse, and (ii) the

scattering of a high-energy proton from ethene molecule.

Analytical forms have been derived using wavefunction to evaluate scalar

field electronic properties of atoms and molecules. The scalar field electronic

properties, such as molecular electron density (MED),[9–14] electronic mo-

mentum density (EMD),[15] electron localization function (ELF),[16] and

molecular electrostatic potentials (MESP),[17] are experimentally realized

via scattering experiments. These properties contain a wealth of information

and play a major role in understanding the electronic structure and chemical

reactivity. In this respect, the theoretical evaluation of these properties from

wavefunction provides us with tools to quantify and understand chemical

notions such as charge transfer and chemical bonding.[18–24]

Several software packages for the field-free case have been published that

can calculate electron density, gradient paths, Laplacian, critical points, and

Quantum theory of atoms-in-molecules(QTAIM) analysis in position space.

However, no such package exists that computes time-evolving electron den-

sity, its respective topological properties, and QTAIM analysis. The packages

that calculate Bader’s QTAIM are AIMALL by Keith,[25] AIM2000 by Biegler-

Konig,[26] BADER by Henkelman group,[27] MORPHY by popelier,[28, 29]

CRITIC,[30, 31] DGRID,[32] MULTIWFN.[33] Vega et. al[34] has developed

a C library for the topological study of electronic charge density on a grid.

Later, the same group developed an application, AIM-UC,[35] for drawing

gradient paths, Laplacian, and density isolines, which uses cube data files

as input. The package Octopus,[36–39] developed by Rubio and coworkers,

has made several efficient versions of code to perform excited state dynamics

using time-dependent density functional theory of atoms and molecules in
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the presence of ultrashort laser pulses. The codes mentioned perform QTAIM

analysis for the field-free case.

Hence, there is a need for a package that can calculate time-evolving elec-

tron densities, its topology, and QTAIM analysis from the time-dependent

wavefunctions obtained from the solutions of TDSE. In this work, we used

the coefficients of the position space wavefunction (complex-valued) as an

input received from the in-house code.[3, 4] However, these time-dependent

wavefunctions from any code-solving TDSE can also be used as input. The

program can evaluate molecular electron density, its gradient in X, Y, and

Z, and Laplacian for a 3D grid at all timesteps in the time-dependent field.

We use the analytical forms for Gaussian-type orbitals, their first and sec-

ond derivatives, to calculate them. The computation can be performed in

a parallel fashion over a distributed memory. Parallelization is achieved,

at all time steps, by dividing the total number of grid points by the total

number of nodes specified by the user through input file. The program can

also calculate the critical points (CPs) of the TDMED, gradient vector lines,

bond paths, basin boundaries, and zero-flux surfaces to perform topological

studies. Using the information of CPs and gradients, we also identify the

regions of atoms-in-molecules in the time-dependent fields and their respec-

tive properties (Populations, Bader Charge, Kinetic energies, electrostatic

moments, and dipole moments).

The rest of this manuscript is organized as follows: Section: Theoretical back-

ground briefs regarding the properties, their relevant equations, analytical

forms, and steps carried out via the codes, Section: Methodology, to outline

the construct, working, implementation of the several modules/subroutines

of the program, results through plots on some test molecules and then finally

summarizing the work with a conclusion section.
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2.2 Theoretical Description

2.2.1 Molecular Electron Densities

Electron density (ED), ρ(~r), is an observable quantity routinely obtained from

calculations and experiments for the structure determination of molecules.[9–

14] ED is a one-particle charge density of an N-electron system, extracted

from many-particle 4N dimensional wavefunction Ψ( ~x1, ~x2, ~x3 · · · , ~xN) as

ρ(~r) = N
∑
σ

∫
|Ψ(~x, ~x1, ~x2, ~x3, · · · , ~xN)|2d3r2d

3r3 · · · d3rN (2.1)

Here, the wavefunctions Ψ are the antisymmetric solutions obtained from

solving the time-independent Schrödinder equation (TISE), retrievable from

standard electronic structure packages.[40] The coordinates ~x represent the

position ~r and spin σ of the electron. The summation in Eq. [2.1] runs over

all the spin coordinates and integrates all but one spatial coordinate ~r. N

is the total number of electrons in the system. Apart from few exceptions,

the topology of molecular electron density (MED) reveals the presence of

local maxima only at atomic positions. Therefore, this information helps in

elucidating the structure of molecules.

At a given time instant, we use all the occupied time-dependent MOs to calcu-

late the time-evolving molecular electron density ρ(~r, t). The time-dependent

molecular orbitals or molecular wavefunctions (Ψa(~r, t)) are mathematical

constructs to describe electrons in atoms and molecules. The probability

of finding an electron at ~r at a time t, in ath MO Ψa(~r,t) is Ψa(~r, t)Ψ∗a(~r, t)

d3r. In the case closed shell molecule containing total Ne electron, where
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the time-dependent MOs contain two electrons each, then the total charge

density or molecular electron density of the molecule will be,

ρ(~r, t) = 2
Ne/2∑
i=1

Ψi(~r, t)Ψ∗i (~r, t) (2.2)

The summation index i runs over all the doubly occupied (Nocc = Ne/2)

time-dependent molecular orbitals. Time-dependent calculations from the

ABELDYN code[3, 4] also provides the information of norm i.e. the total

sum of electrons. If the norm is conserved in that calculation, then at that

time t, the integral of molecular electron density should be equal to number

of electrons, that is
∫
ρ(~r, t)dr3 = N . Alternative form of ρ(~r, t) is obtained

using MO in atomic basis expanded form as

Ψa(~r, t) =
Nbas∑
i=1

Ci,a(t)ψi(~r) (2.3)

Using the form of Eq. [2.3] in Eq. [2.2] will lead to another form of ρ(~r, t)

shown in follwing Eq.

ρ(~r, t) = 2
Ne/2∑
i=1

Nbas∑
ν=1

C∗νi(t)ψ∗ν(~r)
Nbas∑
µ=1

Cµi(t)ψµ(~r)


=
Nbas∑
µ,ν=1

2
Ne/2∑
i

Cµi(t)C∗νi(t)
ψµ(~r)ψ∗ν(~r)

=
Nbas∑
µ,ν=1

Pµν(t)ψµ(~r)ψ∗ν(~r) (2.4)

The term, Pµν is called the time-dependent density matrix or charge-density

bond-order matrix.[41] Thus, the time-dependent in molecular electron den-

sity is induced by the time-dependent coefficients of the MOs.

For an open shell system, containing Ne electrons, calculation of molecular

electron density would require the summation over all the occupied (Nocc)
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orbitals ψi(~r, t), the molecular electron density ρ(~r, t) would be calculated

as,

ρ(~r, t) =
Nocc∑
i=1

(ni)(Ψi(~r, t)Ψ∗i (~r, t)) (2.5)

where, ni is the fractional occupancy of the ith natural spin orbital in Eq.

[2.5].

To moniter the changes in time-dependent electron density, ABELDYN-PROP

code enables the calculation of difference electron density. The difference

electron density is calculated w.r.t to free-field molecular electron density

ρ0(~r) (at t=0),

∆ρ(~r, t) = ρ(~r, t)− ρ0(~r) (2.6)

The total number of operation counts for the calculation of molecular elec-

tronic density using the Eq. [2.1] and [2.3] are
(
Ne/2

)
and (Nbas × Nbas)

respectively. The
(
Ne/2

)
is the number of doubly occupied MOs, and the

relation Nocc ≤ (Nbas ×Nbas) holds true in all cases, therefore, calculation of

ρ(~r, t) is faster with Eq. [2.2] than Eq. [2.4].

2.2.2 Gradients of Molecular Electron Density

The gradients of a 3D scalar function is a 3D vector ~∇f = (∂f/∂x)x̂ +

(∂f/∂y)ŷ + (∂f/∂z)ẑ, at a position vector ~r, informs about the nature of

function around ~r, that is increasing, decreasing or flat. Starting from a point

~r in 3D, following the maximum function value, gradient vector traces out

paths called gradient paths, which could lead to maximum. Similarly, other

critical points of the 3D function could also be attained. For the dynamical

systems, such as in the time-dependent molecular electron density, the motion
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of gradient paths in the time evolving gradients, will talk about the nature

the molecular electron density in all directions, x, y, and z, as a function of

time. The time-dependent gradients of molecular electron density has the

following Eq. [2.7] by using Eq. [2.2],

~∇ρ(~r, t) = 2
Ne/2∑
i=1

Ψ∗i (~r, t)
∂Ψi(~r, t)
∂x

+ Ψi(~r, t)
∂Ψ∗i (~r, t)

∂x

x̂+
Ψ∗i (~r, t)

∂Ψi(~r, t)
∂y

+ Ψi(~r, t)
∂Ψ∗i (~r, t)

∂y

ŷ +
Ψ∗i (~r, t)

∂Ψi(~r, t)
∂z

+ Ψi(~r, t)
∂Ψ∗i (~r, t)

∂z

ẑ
 (2.7)

In the Eq. [2.7], using the Ψi in the terms of atomic orbitals and solving

for ith MO Ψi(~r, t) w.r.t x in Eq. [2.8]. The gradient w.r.t y, and z will have

similar forms.

∂Ψi(~r, t)
∂x

=
Nbas∑
µ=1

Cµi(t)
∂ψi(~r)

∂x

 (2.8)

∂Ψi(~r, t)
∂x

=
Nbas∑
µ=1

Cµi(t)
Npg∑
j=1

cj
∂χ(~r; {αj, ~RA})

∂x

 (2.9)

The expression in Eq. [2.9] gives the derivative of the MO w.r.t x in terms of

contracted Gaussian functions. Therefore, the gradients of time-dependent

molecular electron density w.r.t x, y and z depends solely the first order

derivatives of cartesian Gaussian functions.

The total number of operation counts for the calculation of time-dependent

gradients of molecular electron density required is 6 Nocc with reference to

Eq. [2.7].
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2.2.3 Hessian of Molecular Electron Density

The Hessian, represents 2nd-order partial derivative of time-dependent molec-

ular electron density w.r.t to coordinates which is symmetric matrix form as

shown in 2.10.

H(ρ(~r, t)) =


∂2ρ(~r,t)
∂x2

∂2ρ(~r,t)
∂x∂y

∂2ρ(~r,t)
∂x∂z

∂2ρ(~r,t)
∂y∂x

∂2ρ(~r,t)
∂y2

∂2ρ(~r,t)
∂y∂z

∂2ρ(~r,t)
∂z∂x

∂2ρ(~r,t)
∂z2

∂2ρ(~r,t)
∂z∂x

 (2.10)

The evaluation of Hessian is an essential quantity required to characterize

the probable critical points. The eigenvalues and eigenvectors of the Hessian

matrix, provide the information in deciding the rank (R) and signature (S)

of the critical point. Since, the calculation of Hessian is computationally

expensive step, it should only be used for characterizing the probable critical

points which may be identified in the form of gradient vectors with its norm

nearing zero (∼ 10−10 or less).

The evaluation time-dependent Hessian of molecular electron density w.r.t to

x and y will have the following form, given by Eq. [2.11]

∂2ρ(~r, t)
∂x∂y

= 2
Ne/2∑
i=1

∂Ψi(~r, t)
∂y

∂Ψ∗i (~r, t)
∂x

+ Ψ∗i (~r, t)
∂2Ψi(~r, t)
∂x∂y

+

∂Ψi(~r, t)
∂x

∂Ψ∗i (~r, t)
∂y

+ Ψi(~r, t)
∂2Ψ∗i (~r, t)
∂x∂y

 (2.11)

In the Eq. [2.11], the first partial derivatives will have the same form in terms

of primitive Gaussian functions as described in the previous subsection.

The operation count for the calculation of one double derivative element of

Hessian, would require 4Nocc multiplications. The total number of operations
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would lead to 24Nocc operations for the calcution of six lower diagonal

elements of symmetric Hessian matrix.

2.2.4 Laplacian of Molecular Electron Density

The Laplacian of time-dependent electron density, ∇2ρ(~r, t) = (∂2/∂x2 +

∂2/∂y2 + ∂2/∂z2) ρ(~r, t), is, the sum of diagonal elements of Hessian. The

free-field Laplacian gives a measure of the locally charge concentrated or

depleted regions. The MED in the presence of time-dependent fields show

the electron density accumulating in the direction of field. Therefore, the

∇2ρ(~r, t) is a quantity which can be used to gauge the time-evolving charge

concentrated or depleted regions of the molecule.

In the Eq. [2.11], the 2nd-order derivative w.r.t to x, would become the form

as shown in Eq. [2.12],

∂2ρ(~r, t)
∂2x

= 2
Ne/2∑
i=1

∂Ψi(~r, t)
∂x

∂Ψ∗i (~r, t)
∂x

+ 2Ψ∗i (~r, t)
∂2Ψi(~r, t)
∂x∂x

+Ψi(~r, t)
∂2Ψ∗i (~r, t)
∂x∂x


(2.12)

The total number of operations required to evaluate Laplacian of MED would

be 9Nocc multiplications.

2.2.5 Quantum Mechanical Vector Current Density

The QM vector current density ~J(~r, t), is the particle density flux and analyti-

cally computed over all the occupied molecular orbitals as

~J(~r, t) = i
~

2m

Ne/2∑
i=1

[Ψ∗i (~r, t)~∇Ψi(~r, t)−Ψi(~r, t)~∇Ψ∗i (~r, t)] (2.13)
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Analogous to charge conservation in electrodynamics, this quantity is in-

volved in the conservation of probability as shown in the following Eq.

∂ρ(~r, t)
∂t

+ ~∇ · ~J(~r, t) = 0 (2.14)

The computation of time-varying ~J(~r, t) w.r.t to x will have the following

form,

~Jx(~r, t) = i
~

2m

Ne/2∑
i=1

Ψ∗(~r, t)∂Ψi(~r, t)
∂x

+ Ψi(~r, t)
∂Ψ∗i (~r, t)

∂x

 (2.15)

~Jy(~r, t) and ~Jz(~r, t) will have the similar analytical forms. In the ABELDYN-

PROP package they are evaluated over regular equally spaced grids by using

the keyword VDEN.

2.2.6 Critical points of Molecular Electron Density

A point rc is a critical point for a 3D MED scalar function, the following

criteria should be satisfied,

1. The gradient vector of time independent or time-dependent MED is

zero,

∇(~r, t) = 0.

2. The norm of gradient should be zero, that is,

|∇ρ( ~r, t)| =
√

(∂ρ/∂x)2 + (∂ρ/∂y)2 + (∂ρ/∂z)2

Eigenvalues and Eigenvectors of the Hessian at points of non-zero MED

value are evaluated to characterize them as one of the four known types of

CPs. The eigenvectors of Hessian at CPs are the principal directions, and

eigenvalues are the principal curvatures. The number of linearly independent
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eigenvectors defines the rank (R), and the algebraic sum of the signs of

eigenvalues is called the signatures (S) of the CP. Fours types of CPs of

MED are: (3,-3) [Maxima], (3,-3) [Minima], (3,-1) [1st-order Saddle],

and (3,+1) [2nd-order Saddle]. Apart from a few exceptions (Li2, Na2),

the MED in most of the systems, the (3,-1) saddle CPs appear in-between

two (3,-3) maxima CPs. The (3,+1) CPs are in the middle of several bonds

forming closed ring like molecules such as Benzene,Napthalene. Those

points where the MED is a local minimum in all directions depict (3,+3) CPs,

usually found in enclosed caged molecules like Tetrahedrane, Cubane.

The chemical parameters such as bond polarity, bond ellipticity, and bond

order have been quantified and formulated in terms of eigenvalues of Hessian

matrix and MED-value at the corresponding (3,-1) CP.[18, 43, 44] Collard

and coworkers showed that a change in structure brings the variation in

the number and nature of CPs in MEDs.[45] Bader et al. investigated the

nature of catastrophes during the C2V dissociation of the H2O molecule.[46]

In summary, reactivity patterns and structural changes can be studied from

the topography of MED.

Several algorithms to find the CPs of MED is available in the literature. The

Program SADDLE,[47] part of the AIMPAC package, is one such code based

on Newton-Raphson (NR) algorithm. The MORPHY[28, 29] program devel-

oped by Popelier provides an eigenvector following method-based modified

NR-technique based on involving scalar values called shift parameters. How-

ever, another improved and faster algorithm[48] to find CPs of MED was

based on the topological connectivity of CPs through selected gradient paths.

Balanarayan et. al.[49] presented an efficient and fast algorithm to search

for CP for, in general, any 3D-scalar field functions. The algorithm is based

on providing a guess from surface extrema (Maxima, minima, or saddles)

of appropriately defined atom-centered spheres. After that, a ray search is

2.2 Theoretical Description 103



performed using the Bisection method to locate local minima and maxima.

Finally, the NR technique using these ray minima/maxima is used as a guess

to search CPs. Another recent work by Alberto[50] finds CPs on the 3D grid

employing poly harmonic spline interpolation combined with smoothening

function based on molecular density.

We present the algorithm used in the ABELDYNPROP code to calculate all

the critical points of MED.

Guess Points: We provide points on the spherical grid centered around the

atomic positions as guess points. In addition, the atomic centers and their

midpoints are also taken as guess points. The spherical polar coordinates (r,

θ, φ) are used to generate points on the guess sphere. The inputs of number

of points required for the grid of these coordinates, rmax, nr, nθ, nφ, are

user-defined parameters.

To find critical points ~rcritic of electron density, one needs to solve for the

solutions of the equation ∇ρ(~rcritic) = ~0. A way to solve this equation is to

use the Newton-Raphson[51] (NR) method. In this method, starting with

a guess point vector ~ri, a new vector ~ri+1 is evaluated using the shift vector

which is evaluated as ~h = −Hi∇ρ(~ri). Thus, the calculation of new vector

follows ~ri+1 = ~ri + t~h, where t is a small scalar value, less than 1. The

calculations using the equations mentioned are iterated until ~∇ρ(~r) is equal

to the vector ~0 or has a small norm. There could be high oscillations near to

the critical points, when the gradient has a high norm value in critical point

neighbourhood, which is avoided by taking t < 1. The maximum number of

iterations and path length are defined by the user in the input file.

The Algorithm:

1. We have an iteration that runs over all guess points. At each step, a

new guess point is assigned as a (3 × 1) column vector, say V0, where
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V11 = rx, V21 = ry, and V31 = rz. The guess vector is the first input to

the NR routine in the next step.

2. The gradient vector G3×1 and Hessian H3×3 of MED are evaluated at the

first guess vector V0. A new vector V1 is generated using the gradient

vector and inverse Hessian of the previous vector V0 using NR relation.

The new vector serves as an input to the next NR step. In general, to

generate [Vn+1]3×1 vector from [Vn]3×1 vector, the following NR relation

is used,

[Vn+1]3×1 = [Vn]3×1 − [Hn]−1
3×3[Gn]3×1 (2.16)

Generating new vectors at each step continues until one of the two

conditions is satisfied. The first condition is the number of iterations. If

the number of iterations steps exceeds more than 100, the iterations

stop and proceed to the next step. The second condition is on norm

of difference vector ~∇V = [Vn]3×1 − [Vn+1]3×1, given by Eq. [2.17],

becomes less than 10−10.

|~∇V | =
√
∇V11

2 +∇V21
2 +∇V31

2 (2.17)

This condition confirms the convergence in the last vector found. When

the iterations stop, the previous Vn+1 vector, along with its gradient and

MED value, proceeds to the next step for further checks and assignment

of critical point type.

3. In this step, we identify the type of critical point found. Eigenvalues

and Eigenvectors of the invertible Hessian (det(Hn+1) 6= 0) is calculated

to assign rank and signature at converged vector Vn+1. To avoid any

false or spurious converged points (for e.g. points far from atoms where

ρ(~r) < 10−8), we perform certain checks before diagonalizing Hn+1 to
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obtain eigenvalues and eigenvectors. A conditional check is performed

on the norm value (| ~∇V | < 10−10) and non-zero MED value (ρ > 10−4)

at position depicted by Vn+1. This condition only allows converged

Vn+1 having non-zero MED values. To ensure, the first order derivative

is numerically close to zero at Vn+1, the gradient norm |∇Gn+1|, it is

ensured its value should be less that 10−5.

After performing all the checks and removing all the recurring or repeating

CPs, the unique ones are sorted based on their type and written in different

files. The coordinates of (3,−1), (3,−3), (3,+1), and (3,+3) CPs are written

out in cpm1.dat, cpm3.dat, cpp1.dat, and cpp3.dat files respectively. The

data concerning each CP: x, y, z coordinates, MED value, gradient vector,

Eigenvalues, and Eigen-vector of Hessian, for all (3,−1), (3,−3), (3,+1), and

(3,+3) CPs are printed in respective criticm1.dat, criticm3.dat, criticp1.dat

and criticp3.dat files.

2.2.7 Gradient paths, Bond paths, and Zero-flux

surfaces of MED

The trajectories traced out by the gradient vector fields of MED are called

gradient paths, which are obtained from the solutions of the following differ-

ential Eq. [2.18], for some initial value r(0)=r0.

d(r(s))
ds

= ∇ρ(~r(s)) (2.18)

Therefore, the points r(s) of the gradient path through r0 are given by,

r(s) = r0 +
∫

0

s

∇ρ(r(s))ds (2.19)
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The Eq. [2.19] can also be expressed in terms of arc length along the gradient

vector (the path length l), through the following expression,

dr
dl

= ∇ρ(~r)
|∇ρ(~r)| (2.20)

Starting at some arbitrary point r0, the trajectory of ∇ρ(~r) is obtained by

calculating ∇ρ(~r0), moving a distance ∆r away from r0, in the direction

indicated by gradient vector ∇ρ(~r0) and repeating the procedure until the

path, so generated terminates.

The role of critical points is essential in defining the topological properties

of MED. All the gradient field vectors either originate or terminate at these

critical points. The (3,-3) critical points behave as an attractor of the gradient

vector field. An attractor of ∇ρ, A ⊂ R3, should satisfy these conditions,

(i) being invariant to the flow of ∇ρ, (ii) trajectories originating in A are

contained in A, and (iii) an open invariant neighborhood B of A exists such

that any trajectories originating in B terminates at A. The basin of A is defined

w.r.t the largest neighborhood Bmax, which satisfies this condition.

The subspaces in th molecular electron density are determined by the pres-

ence of only a single local maximum in charge density located at nuclei (and

at non-nuclear positions in some cases), which acts as the attractor of the

gradient vector field. Using these observations on gradient field vectors,

Bader and coworkers concluded that the molecular space of electron density

can be partitioned into non-overlapping disjoint regions, also referred to as

the basins, each containing only one point attractor. Hence, they defined

atoms in a molecule as a union of attractor and its associated basin. Over the

years, it has been investigated that Bader’s atoms can contain the attractors

at nuclear and non-nuclear positions, also called as pseudo atoms.
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According to Bader’s theory, the atoms in a molecule can be defined in terms

of their boundaries present in the molecular space. The basin of an atom in a

molecule contains a single nuclear attractor in the whole molecular space R3.

The molecule’s atoms form basins, an open subset of R3. These atomic basins

are separated from other atoms by interatomic surfaces. These interatomic

surfaces pass through the (3,-1) critical points, and the gradient paths on

these surfaces terminate at the same (3,-1) CPs. The two eigenvectors v1 and

v2 associated with the two negative eigenvalues of the Hessian matrix of such

a critical point are used to generate this interatomic surface. The interatomic

surfaces SAB satisfies the following condition, given by the following Eq.

[2.21],

∇ρ(~r) · n̂(~r) = 0 ∀ ~r ∈ SAB (2.21)

where n̂(~r) is the unit vector normal to the surface at ~r. A surface which

satisfies Eq. [2.21] is called the zero-flux surface. Therefore, an atom in real

space occupies a region which a a contains a single nuclear attractor bounded

by interatomic surface or the zero-flux surface.

The interatomic surface coincides with its tangent plane in a very small

neighbourhood of the (3,-1) critical point. The entire interatomic surface

is spanned using vectors v1 and v2 with the gradients paths in very small

steps. A representation of the same is given in Fig. [2.1]. The following steps

describe the construction of zero-flux surface in the ABELDYNPROP code.

1. User-specified points on a small circle of radius 0.0001 a.u. are gener-

ated on the plane using the eigenvectors ~v1 and ~v2 of the corresponding

to the two negative eigenvalues of the hessian matrix at (3,-1) CP, ~r0.

The new points generated are calculated as in Eq. [2.22], where s is
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Figure 2.1: A representation of an eigenplane constructed by two eigenvectors cor-
responding to two negative eigenvalues of a (3,-1) CP of MED between
two atoms A and B.

a small scalar parameter chosen to be 0.0001 a.u. The parameter s is

also user defined.

~r1 = ~r0 + (s)(v1 cos θ + v2 sin θ) (2.22)

2. Starting with a point on the small radius circle, ~r0, the analytical

gradients at ~r0 are calculated to generate trajectory of ~∇ρ(~r0). It is

moved a distance ∆r away from ~r0 in the direction of ~∇ρ(~r0) using the

user-defined step-size to generate a new point, ~ri+1 = ~ri + t~∇ρ(~ri) in

the trajectory, where t is the user defined step-size parameter of vector

~∇ρ(~ri). The procedure is repeated and followed up to generate the

next point in the trajectory. The total number of points in the trajectory

are decided by the user-input.

3. The non-uniform grid points generated for each trajectory are is stored

and passed on to a triangulating subroutine to generate the zero-flux
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surface in visual toolkit (vtk) format file for the purpose of surface

visualization.

The role of gradient paths in defining the bonds paths is discussed in the

following paragraphs.

Bond Paths: These are trajectories generated from the eigenvectors ~v3 as-

sociated with the only positive eigenvalue of the (3,-1) critical points. The

two gradient paths can be carved out, each from ± directions of eigenvector

~v3. These two gradient paths trace out a line through the charge distribution

along which ρ(~r) is a maximum concerning any lateral displacement. These

two lines originated from the (3,-1) CP moving towards and terminating each

at one (3,-3) CP. Since these connect the two neighboring nuclear maxima,

such lines are often called bond paths. The union of bond paths is defined as

molecular graphs for a given nuclear geometrical configuration. Pictorially,

the molecular graph is the network of bond paths linking pairs of neighboring

nuclear attractors.

The (3,+1) and (3,+3) critical points in the molecular graph appear as

the consequence of a particular geometrical arrangement of bond paths

and define the remaining elements of molecular structure - rings and cages.

The eigenvectors associated with the two positive values of the Hessian

of a (3,+1) critical point span a ring surface in a molecular region and

hence called ring critical point. The other eigenvector corresponding to the

negative eigenvalue generates a pair of gradient paths that define an axis

perpendicular to the ring surface at the critical point. The properties at ring

critical points have been used to characterize H-bond strength in aromatic

and weakly hydrogen-bonded systems.[52–54] The eigenvectors associated

with the (3,+3) critical points denote a local minimum in ρ(~r), which is

the origin for the generation of infinite gradient paths in the molecular

space.[55]
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2.2.8 Atomic Properties

The quantum theory of atoms in molecules proposes that the molecular

region of electron density partitions into non-overlapping regions, each basin

containing a local maximum. Consequently, any atomic property PA is the

average over the atomic basin of an effective single-particle density p(~r).

Thus the value of property PA for the basin Ω is given by Eq. [2.23],

PA(Ω) =
∫

Ω
p(~r)d3r (2.23)

The follow-up definition of the average P value for the total molecular system
is the sum of all the basins containing the local maximum. The total property

PT for the molecular system is given in Eq. [2.24],

PT =
∑
Ω
PA(Ω) (2.24)

To evaluate the properties of PA(Ω), the surface bounding the basin region Ω

must be determined. These surface regions do not have trivial solutions since

the bounded regions may have irregular shapes and sizes, which makes the

basin integration in Eq. [2.23] difficult. Using zero-flux condition[18, 19]

and the divergence theorem[56], it is derived that the Laplacian of electron

density over atomic basin is zero,

∫
Ω
∇2ρ(~r)d3r = 0 (2.25)

Using in Eq. [2.25], the kinetic energy quantities, K(Ω) and L(Ω), is defined

as,

K(Ω) = −N4

∫
Ω

∫
· · ·

∫
[Ψ∗(~r, ~r2, · · · , ~rN)∇2

~rΨ(~r, ~r2, · · · , ~rN)

+Ψ(~r, ~r2, · · · , ~rN)∇2
~rΨ∗(~r, ~r2, · · · , ~rN)]d3r2 · · · d3rNd

3r (2.26)
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L(Ω) = N

2

∫
Ω

∫
· · ·

∫
∇~rΨ∗(~r, ~r2, · · · , ~rN) • ∇~rΨ(~r, ~r2, · · · , ~rN)

d3r2 · · · d3rNd
3r (2.27)

and are equal because,

L(Ω) ≡ K(Ω)−G(Ω) = −1
4

∫
∇2ρ(~r)d3r = 0 (2.28)

Here, Ψ represents the total electronic wavefunction related to ρ(~r). The Eq.

[2.28] represents the atomic virial theorem, which is satisfied when K(Ω)

and G(Ω) are equal to minus one times the energy of Bader atom Ω.[18]

The quality of integration is measure traditionally in terms of L(Ω). For a

perfect integration, this quantity vanishes. The properties calculated using

QTAIM can be used for wave-function-based methods and density-functional

theory. However, the validity of Eq. [2.27] and [2.28] could be checked only

for electronic wavefunctions, Ψ, that calculate electron density ρ(~r). In this

code, we compute atomic properties and check the quality of integration

using verification from Eq. [2.27] and [2.28]. We also verify if the sum of

the atomic property recovers the corresponding molecular property.

QTAIM employs the topology of electron density to perform analysis. Critical

points play a vital role in the QTAIM analysis. The critical points correspond-

ing to the electron density maxima, called attractors, are categorized as

nuclear/atomic or non-nuclear attractors. Each point in every basin draws

a gradient ascent path that terminates at its corresponding maximum or

attractor. Partitioning algorithms to integrate properties for these basins

developed by Popelier and Geerlings was complex and computationally

expensive.[57, 58] The commonly used algorithms[18, 28, 59] involves (i)

finding the critical points of MED where ∇ρ(~r) = 0, followed by (ii) the

construction of interatomic surfaces which intersect these points then (iii)

integration of the electronic density within each region. Determining inter-
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atomic surfaces was the most time-consuming step in these algorithms. They

made several improvements after the initial methods of finding Bader regions.

Popelier used the bisection method[61] to find the boundary surfaces and em-

ployed Chebyshev polynomials[62] to improve the basin integration method.

Popelier has suggested the calculation of enclosed charge[57] using the di-

vergence theorem by integrating the electric field on the dividing surface

around the atom. In the early 2000s, Macmolm and Popelier[63, 64] used

dynamic grid techniques, firstly implemented by Silvi and coworkers[65, 66]

to effectively treat complicated molecule bonding regions. Henkkelman

and group[27, 67–69] developed a fast and robust algorithm and further

improved it to calculate Bader charges using the pre-calculated density grid

files. They implemented a powerful algorithm since it finds no critical points

or zero-flux surfaces. The algorithm uses the steepest accent gradient path

following approach, w.r.t its neighboring points, which converge to one of the

local maxima. Rodgriguez and coworkers[70, 71] developed a grid-based

scheme to compute QTAIM properties without explicitly calculating zero-flux

surfaces. In this scheme, the integration grid in real space is partitioned in

subsets, Ωi. The subset, Ωi, makes up all the grid points in the atomic basin,

Ωi. Therefore, the integrations over Ωi are reduced to quadrature over the

points in Ωi.

In this work, we present a scheme that uses the spherical polar grid to

assign atomic basins following the basic philosophy of steepest ascent path

of gradient paths in the works of Henkelman et al.[67] Unlike the work

by Henkelman and group, we calculate the number of local maxima in the

electron density distribution. We employ a user-defined spherical grid (r,

θ, Φ) centered on the local maxima. It is followed by identifying the sets

(r, θ, Φ) belonging to the corresponding atomic basin. The integration over

the identified set of r, θ, Φ to calculate the properties such as Bader charges,

Laplacian, Kinetic energies, electrostatic moments, and dipole moment.
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Algorithm: A vector ~ro of user-defined length is drawn from the (3,-3) CPs

as the center for all θ and Φ of the spherical grid. For a given θ and Φ, we

will determine the cutoff length rcut of vector ~ro which belongs to the basin

by tracing the steepest-density-ascent gradient path to an attractor. We use

analytical forms to calculate gradient paths of density. A small step size

should be chosen to control the accuracy of gradient paths. However, at the

same time, the smaller step sizes would increase the computational time. The

steepest ascent path is terminated once it enters atomic trust sphere, which

could help reduce time to make it faster. For a given (3,-3) CP, for all θ and

φ, the largest value of r, rmax, belonging to this basin is determined. Once

this information is obtained, we integrate all the basin regions to compute

average properties, such as charges, norm, kinetic energies, dipole, and

electrostatic moments.

Atomic Trust Sphere: It was observed that the algorithm would be faster

if the atomic trust sphere (ATS) had a larger radius. It is calculated once

for all the (3,-3) CPs and then used in the main basin finding subroutine. It

is defined as the sphere’s radius for every θ and φ, where each point inside

it would terminate at the (3,-3) CP. The biggest radius rs satisfying this

condition would be chosen as the radius of ATS.

Screening the NNMs: The electron density and its gradients are numerically

very small at distances far away from any nucleus. In our quest for the

topological behavior of TDMED, we have also located new low-valued NNMs

at distances away from the bonds of molecules, especially along the direction

of laser polarization. To identify non-nuclear attractors in the electron density,

we find all the points in space that satisfy:

1. ρ(~r0) > ε. The values of ε is user defined. ε ∈ [10−4 − 10−7].

2. The norm of converged gradient vector ∇ρ(~r0) is almost zero.
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3. The Hessian at ~r0 should have three negative eigenvalues.

Steps of the overall algorithm:

1. All local maxima are located for the time-varying electron density

distribution at a time-step. This is evaluated using the same subroutine

of code discussed earlier in the manuscript. Since, the total number of

atomic basins (nuclear and non-nuclear, if any) equals the total number

of (3,-3) CPs, therefore the total local maxima are identified. Thereafter,

the MPI-paralleled version of the code is invoked. This invokes nodes

equivalent to the number of local maxima, and then it calculates the

properties of each basin on a separate distributed memory node.

2. A user-defined spherical polar grid (r, θ, Φ) is constructed with (3,-3)

CPs as the center. The number of points are the grid nr, nθ, nφ are

inputs to the code via input file. Here, the value of r is a user-defined

parameter and θ ∈ [0,π] and φ ∈ [0,2π]. Additionally, the choice for

grids to be either equally spaced or be a gauss-legendre type is provide

with the user.

3. We determine the atomic trust sphere of each of the local maximum.

The maximum grid step in r, ri+1, where every θ and φ, where all points

inside would converge to the local (3,-3) CP. If r < rATS, it helps in

reducing the number of iterative steps.

4. In this step, we identify the value of rmax for each set of θ and φ. The

rmax is identified using the gradients following the steepest ascent path.

We follow these sub-steps to find rmax.

a. A search through r grid (equally spaced/gauss-legendre) in user-

defined increments, rns, to find the ith step in r which terminates
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to the local (3,-3) CP. In the process, we perform termination/e-

limination of gradient path steps if (i) it diverges to other neigh-

bouring maxima (case: ρr > ρ−3) (ii) it enter the ATS radius (case:

r < rATS).

b. Since, the ZFS are open surfaces, two kind of scenarios are en-

countered in finding the rmax. For the regions not bounded by

ZFS, the rmax would be equal to the radius defined by the user

in the input file. On other hand, regions separated by ZFS, a

bisection is performed taking r in ith (found in step a) and i+ 1th

step as guess points to find rmax with better precision. Kindly note,

the increasing precision increases the computational cost. The

precision control parameter is user-defined.

5 The information of rmax at each set of θ and φ is used for perform

numerical integration over the basin to evaluate the properties. The

integration type is regular spherical polar integration or gauss-legendre

type integration. The average properties of atomic basins and total

properties are evaluated for the following listed analytical forms

N(Ω) =
∫

Ω
ρ(~r)dτ (2.29)

q(Ω) = ZA −
∫

Ω
ρ(~r)dτ (2.30)

M1(Ω) = −
∫

Ω
rΩρ(~r)dτ (2.31)

M2(Ω) = −
∫

Ω
r2

Ωρ(~r)dτ (2.32)

QXX(Ω) = −
∫

Ω
(3x2

Ω − r2
Ω)dτ (2.33)

QY Y (Ω) = −
∫

Ω
(3y2

Ω − r2
Ω)dτ (2.34)

QZZ(Ω) = −
∫

Ω
(3z2

Ω − r2
Ω)dτ (2.35)

Q10(Ω) = −
∫

Ω
zρ(~r)dτ (2.36)
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Q11c(Ω) = −
∫

Ω
xρ(~r)dτ (2.37)

Q11s(Ω) = −
∫

Ω
yρ(~r)dτ (2.38)

Q20(Ω) = −
∫

Ω

1
2(3z2 − r2)ρ(~r)dτ (2.39)

Q21c(Ω) = −
∫

Ω

√
3xzρ(~r)dτ (2.40)

Q21s(Ω) = −
∫

Ω

√
3yzρ(~r)dτ (2.41)

Q22e(Ω) = −
∫

Ω

1
2
√

3(x2 − y2)ρ(~r)dτ (2.42)

Q22s(Ω) = −
∫

Ω

√
3xyρ(~r)dτ (2.43)

µx =
∑
Ω
ZΩxΩ −

∫
Ω
xρ(~r)dτ (2.44)

where dτ is the volume element. The above mentioned analytical forms

represent Norm (N(Ω)), Bader’s charge (q(Ω)), first and second-order

moments (M1(Ω), M2(Ω)), Quadrapole moment in X, Y, Z (QXX(Ω),

QY Y (Ω), QZZ(Ω)), electrostatic moments (Q10(Ω), Q11c(Ω), Q11s(Ω),

Q20(Ω), Q21c(Ω), Q21s(Ω), Q22e(Ω), Q22s(Ω))), and dipole moments

(µx, µy, µz).

2.3 Methodology

The ABELDYNPROP package calculates electronic properties using wave-

functions or molecular orbitals coefficients as input. The time-dependent

coefficients obtained from the solutions of the TDSE are used to evaluate

time-dependent properties. The ABELDYNPROP code, in general, can use

inputs from any code-solving TDSE. However, we performed all the tests

and checks using molecular orbitals coefficients from the in-house ABELDYN

code.[3]
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The program uses exponents and contraction coefficients of Gaussian basis

function as input to form the time-independent or time-dependent wavefunc-

tions. A general Gaussian-type functions is given by[72]

η(~r) = Nc(x− xA)lx(y − yA)ly(z − zA)lz (2.45)

exp[−α|(x− xA)2 + (y − yA)2 + (z − zA)2|]

where α is the exponent of the Gaussian. The notations lx, ly, and lz represent

the indexes of the angular momentum labels along x, y, z directions. The

position vector ~A is the center of the Gaussian-orbitals which denotes the po-

sition of the atom placed at xA, yA, zA in three-dimensional space. The factor

Nc represents the normalization constant and is calculated as follows,

Nc = (2πα)3/4

 (4α)lx+ly+ly

(2lx − 1)!!(2ly − 1)!!(2lz − 1)!!

 1
2

(2.46)

The evaluation of any properties in real space requires the evaluation of three-

dimensional wavefunction or molecular orbitals. The molecular orbitals are

computed using coefficients Cai obtained from the solutions of TISE/TDSE.

The ath orbital are calculated as,

Ψa(~r) =
Nbas∑
i=1

CaiMiΦi(~r) (2.47)

where Mi represent the normalized contraction coefficients, and the summa-

tion goes over the total number of basis functions Nbas, which are basically all

the contracted Gaussian functions in the system. Φi(~r)’s are basis functions

constructed using the linear combination of primitive Gaussian functions. The

following forms describes the construction of contracted Gaussian Φi(~r),

Φi(~r) =
J∑
j=1

aijfj(~r) (2.48)
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In Eq. [2.48], the ith contraction includes J primitive Gaussian functions

and aij is the pre-fixed coefficient to the primitive Gaussian. Given the set of

all molecular orbitals Ψa(~r), the electronic properties in position space are

calculated.

The codes in the ABELDYNPROP package are written in Fortran 90. The main

driver routine of code reads the specifications provided through the input file,

input.dat. Each property is assigned a specific keyword in the code, which

calls that required specific subroutine to calculate and present the output

to the user. The ABELDYNPROP is executed through bash shell scripting to

perform computation for a batch of input time steps files.

Pre-requisites: For the execution of the code would require fortran complier

(gfortran), and numerical linear algebra libraries (essentially LAPACK, BLAS)

to be pre-installed on the machine. The code is tuned in for multi-processing

machine with distributed memory system, therefore, installation of message

passing interface (MPI) is necessary.

2.3.1 Description of an input file, and bash shell

script to execute the program

The ABELDYNPROP code specially designed to evaluate dynamic properties

in time-dependent fields is executed through a bash shell script, runtd.sh.

However, before the execution of the bash shell script, we require a set to

input files/folders to be provided beforehand. To compute properties for a

set of time-dependent wavefunctions Ψ(~r, ti), the working directory should

contain two folders, inpdir, timefiles and the executable run.exe.

• inpdir: This folder should include two files. The first one, (a) input.dat

- Provides information on the type of job and user-defined parameters
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regarding the molecular propertry in position space to be calculated.

A detailed description of input.dat is to be provided in the subsequent

sections of the manuscript. The second file is (b) the molecular informa-

tion file obtained from the GAMESS[40] output, a .dat formatted file.

This file contains information about the atom, its atomic number, carte-

sian coordinates in Angstrom, exponents, and pre-fixed coefficients of

primitive Gaussian functions. This file also includes free-field molecular

orbital coefficients for the same basis functions. The file name of this

.dat is provided in the input.dat file.

• timefiles: This folder contains the files that provide the coefficients

of the complex wavefunction at each time step of the time-dependent

fields such as lasers. The complex-valued wavefunction for all timesteps

is obtained by executing the in-house built ABELDYN code in the form

of two files, one containing the real part (say, tmcofr.dat) and the

other the imaginary part (say, tmcofi.dat). Each row of both of these

files, represent the all the coefficients of the wavefunction of the size

(Nbas ∗ Nbas). Using a simple fortran code, makemo.f90, each row in

these files (tmcofi.dat, tmcofr.dat) are converted into a single column

and each one is stored in a seperate files pertaining to the timestep file.

The makemo.f90 code takes total basis function Nbas, total timesteps

Nt and files names of the complex wavefunction files. This is done for

both the real and imaginary parts of complex-valued wavefunction.

• run.exe: This is the executable created by compiling the code using

Fortran 90. All the main programs, subroutines, and functions of the

ABELDYNPROP code are provided in the prog folder. We provide a bash

shell script, comp.sh, which, when executed, creates the executable

run.exe when the user installs the ABELDYNPROP code. The bash shell

script runtd.sh uses this executable script to evaluate the properties.
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The ABELDYNPROP’s code executable, run.exe, reads the information regard-

ing the atom coordinates, basis functions, property to calculate keywords,

user-defined parameters required for the job-type, and timestep indexes via

input.dat file kept in the inpdir folder. For a time-dependent property job, A

sample input.dat file is described here,

# SECTION-PROPERTY

PROPERTY_TO_CALCULATE :: EDEN

ATOM_BASIS_FILE :: h2o.dat

MO_REAL_OR_COMPLEX :: COMPLEX

N_PROCS :: 4

# SECTION-PARAMETER

CART_GRID_XMIN_XMAX_NX :: -8.000000000, 8.000000000, 11

CART_GRID_YMIN_YMAX_NY :: -8.000000000, 8.000000000, 11

CART_GRID_ZMIN_ZMAX_NZ :: -8.000000000, 8.000000000, 11

DATA_FILE_TYPE_CUBE/VTK :: cube

# SECTION-TIMEFILE

TIMEFILE_PREFIX :: tmcoef

TIMEFILE_START_INDEX :: 1

TIMEFILE_END_INDEX :: 2

TIMEFILE_STEP_SIZE :: 1

This input file is divided into three section. The first section in the input file

is, SECTION-PROPERTY. This sections describes about the type of property

to be calculated, name of atom-basis file and type of wavefunction used in

the calculation. We shall describe the lines in this section,

1. PROPERTY_TO_CALCULATE ::
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The list of keywords implimented in the code and with their properties are

mentioned here,

1.1 EDEN: Evaluates the Molecular Electron Density (MED) on a three-

dimensional cartesian grid. The grid specifications are provided in the

Section-parameter. Analytical form used for calculation is shown in Eq.

[2.2]. We generate eden.cube/eden.vtk files as output.

1.2 EGRD: The analytical gradients of MED in x, y, and z are calculated on

a 3D grid. Analytical form used for calculation is shown in Eq. [2.7].

We get egrd.cube/egrd.vtk as output.

1.3 EHES: The Hessian of MED are calculated on a 3D grid. Analytical form

used for calculation is shown in Eq. [2.11]. Since, Hessian matrix is

symmetric, we only calculate lower diagonal elements of the Hessian

matrix (See Eq. [2.10]). The output we get are ehes.cube/ehes.vtk

files.

1.4 ELAP: The Laplacian of MED are calculated on a 3D grid. Only the

sum of diagonal elements of Hessian matrix (three terms) are evalu-

ated using the form described in Eq. [2.12]. The output we get are

ehes.cube/ehes.vtk files.

1.5 VDEN: Calculates the X, Y, and Z components of the vector current

density on the grid. The output file is names vden.cube/vden.vtk.

1.6 ELF: Computes the electron localization function on the 3D provided.

The data is stored in output files named elf.cube/elf.vtk.

1.7 MORB: The user-defined molecular orbitals are calculated on a 3D carte-

sian grid. They are evaluated Eq. [2.3]. For the time-dependent calcula-

tion, separate data files for real and imaginary parts are created for the

athk orbital (morbrak.cube/morbrak.vtk and morbiak.cube/morbiak.vtk).
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1.8 ALLCRITIC: Locates all the 4 types of three dimensional non-degenerate

critical points (if it exists) of the molecular electron density distribution.

The procedure to find critical finds are mentioned in the sections above

using NR method and using Eq. [2.16] and [2.17]. The user-defined pa-

rameters to locate critical points are mentioned later in the parameters

section. The coordinates of the critical points are stored in cpm1.dat,

cpm3.dat, cpp1.dat, and cpp3.dat. The details of electron density, their

gradient norm, eigenvectors and eigenvalues regarding the critical

points are provided in criticm1.dat, criticm3.dat, textitcriticp1.dat, and

criticp3.dat data files.

1.8 ZEROFS: For all the (3,-1) CPs found, interatomic surface or zeroflux

surface is computed using this keyword. The surface is created using Eq.

[2.22]. The output is stored in cpai.vtk (the index depict the athi (3,-1)

CP) files which can be used for visualization. In addition to this, we also

evaluate bond paths, gradient paths, basin boundaries and molecular

graphs in the MED distribution. The output of bondpaths, gradient

paths and basin boundaries are stored in bondpath.dat, cp3grad.dat,

and cp1grad.dat data files respectively.

1.9 BDPARTSP: All the (3,-3) CPs are located, their Bader regions are identi-

fied and average properties in these regions are calculated. We calculate

the norm, bader charge, kinetic energies, bader volume, electrostatic

moments, dipole moment and stored in a file named bader.dat.

1.10 PLDEN: Through this keyword, MED, its gradient, Laplacian, and vec-

tor current densities could be calculated on the plane. The data is

stored in out files named denplane.dat, lapplane.dat, gradplane.dat, and

vdenplane.dat.
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1.11 DIPMOM: Dipole moment components in X, Y and Z are evaluated

using the points provided by the user. The values of dipole moment in

x,y, and z are provided in atomic units and Debyes respectively in the

output file output.log.

1.11 ELEMOM: The electrostatic moments, also called dipole integral matrix

elements are computed using this keyword. The integral matrix ele-

ments are printed in the output.log file. This keyword is only applicable

for REAL type wavefunctions in the code.

2. ATOM_BASIS_FILE :: h2o.dat

A file containing the information regarding the cartesian coordinates of atom,

exponents and coefficients of primitive Gaussian functions centered on atoms.

Additionally, they also contained coefficients of the free-field wavefunctions.

This is .dat formatted file and could be obtained by using GAMESS for the

desired system and job type.

3. MO_REAL_OR_COMPLEX :: COMPLEX

The information, if the wavefunction/MO is REAL or COMPLEX is provided

here. In the cases the input wavefunction REAL, it is read directly from the

GAMESS .dat Atom-basis file. When the wavefunction is COMPLEX, all the

time-step files should be provided in the timefiles folder.

The second section of the input file, SECTION-PARAMETER. Specific user-

defined inputs are required for the calculation of properties, which are

provided in this section. For the grid-based properties, with keyword, EDEN,

EGRD, EHES, ELAP, require the input of x, y, z, range and number of points

to be calculated. The input keywords in the parameter section are,
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4.1 CART_GRID_XMIN_XMAX_NX :: -8.000000000, 8.000000000, 11

CART_GRID_YMIN_YMAX_NY :: -8.000000000, 8.000000000, 11

CART_GRID_ZMIN_ZMAX_NZ :: -8.000000000, 8.000000000, 11

DATA_FILE_TYPE_CUBE/VTK :: cube

Cartesian grid values of Xmin, Xmax, Ymin, Ymax, Zmin, Zmax are provided. Also,

the number of points along each grid Nx, Ny, and Nz should be included. The

data storing format type, either .cube or .vtk is specified in this section. Since

the calculation of molecular orbitals using MORB keyword requires the value

of N th orbital, this information is provided using the parameters with a extra

line above the grid specifications, as shown in next lines

MOL_ORB_N :: 5

CART_GRID_XMIN_XMAX_NX :: -8.000000000, 8.000000000, 51

CART_GRID_YMIN_YMAX_NY :: -8.000000000, 8.000000000, 51

CART_GRID_ZMIN_ZMAX_NZ :: -8.000000000, 8.000000000, 51

DATA_FILE_TYPE_CUBE/VTK :: cube

If the property keyword is ALLCRITIC, the following parameter file is used,

4.2 R_NR_NTHETA_NPHI :: 8.000000, 11, 21, 21

MAX_NEWTON-RAPHSON_ITER :: 50

CONVERGENCE :: 1.0E-8

MINIMUM_DENSITY :: 1.0E-8

The first line takes the inputs of a radius of the guess sphere, the total number

of points for Nr, Nθ, NΦ. The second lines provides the input of the maximum

number of iterations to be used in the Newton-Raphson routine NRmax to

find CPs. The convergence criteria εc for the new critical point found is set

using this third line in parameter section. The last line provides the cutoff

density rc, only critical points are found if ρ > 1.0−8 a.u. in this example. The
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εc = |~ri − ~ri+1|, refers to the norm of the difference vector between the new

and old vector found between the ith and (i+ 1)th iteration. A critical point

could be found if εc user-defined value.

When the property keyword used is ZEROFS, the parameters are detailed as

follows,

4.3 R_NR_NTHETA_NPHI :: 8.000000, 11, 11, 11

MAX_NEWTON-RAPHSON_ITER :: 50

CONVERGENCE :: 1.0E-7

MINIMUM_DENSITY :: 1.0E-6

ZFS_TOTAL_CIRCLE_POINTS :: 50

ZFS_GRADIENT_STEP_SIZE :: 0.05

ZFS_POINTS_ALONG_VECTOR :: 100

BP_GVEC_STEP_SIZE :: 0.00010

BP_MAX_POINTS :: 100000

GP_PLANE_VECTOR_1 :: 0.00, 1.00, 0.00

GP_PLANE_VECTOR_2 :: 0.00, 0.00, 1.00

GP_PLANE_CIRCLE_POINTS :: 32

GP_VECTOR_STEP :: 0.001

GP_TOTAL_STEPS :: 6000

The first four lines are similar parameters that were used for finding CPs. The

following three lines provide the parameters required for the construction

of ZFS. The fifth line in this parameter section provides the total number of

points to be taken on the small circle (of radius 0.0001 a.u.), as mentioned in

steps of the ZFS construction algorithm, using Eq. 2.22. The step size of the

analytical gradients and the total number of steps to be followed along the

gradient line is mentioned in the subsequent 6th and 7th line. The parameters

for the calculation of bond-paths and gradient paths are provided in the next

set of 7 lines.

126 Chapter 2 ABELDYNPROP: A parallel program for the evaluation of

time-dependent electronic properties in position space



On the other hand, when the property keyword used is BDPARTSP, the

parameters are detailed as follows. For this keyword, the program utilizes

the first four lines in the parameter file to locate all the (3,-3) CPs. The

same number of nodes are invoked as the number of (3,-3) CPs found in the

code.

4.3 R_NR_NTHETA_NPHI :: 8.000000, 11, 21, 21

MINIMUM_DENSITY :: 0.0001

MAX_NEWTON-RAPHSON_ITER :: 50

CONVERGENCE :: 1.0E-10

PART-RMAX_NR_NTHETA_NPHI :: 9.000000, 101, 20, 40

STEPS_MOVE_NR :: 20

SCALAR_GRADIENT_STEP :: 0.05

MAX_STEP_ITER :: 200

BISECTON_ERROR :: 1.0E-07

INTEGRATION_METHOD :: 1

TOTAL_INTEG_POINTS :: 301

After the fourth line, We mention the parameters required to implement

Bader’s partitioning. In the 5th line, the maximum value of r, rmax, and the

number of points Nr, Nθ, NΦ in spherical polar grid (r, θ, Φ) are mentioned.

The algorithm does not run for all steps in the r grid but at specified intervals;

therefore, the step size in r is provided in the 6th line. The next two lines

provide the scale value describing the step-size and maximum number of

iterations to be followed of the analytical gradients used in the routine.

The error εbs between the two points near the two points in the bisection

method, which finds the Rcut, is described in the next line. For example,

in the case mentioned above, the bisection method would terminate when

εbs < 1.0E − 07 or less.
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For the property keyword PLDEN, the parameters of the plane grid should be

provided as mentioned in the following syntax,

4.4 PLANE_ORIGIN :: 0.00,-12.00,-12.00

PLANE_VECTOR_1 :: 0.00,1.00,0.00

PLANE_VECTOR_2 :: 0.00,0.00,1.00

VECTOR_STEP_SIZE :: 0.2

TOTAL_STEPS_N1_N2 :: 101, 101

Here, the first line describes the origin point of the grid, while the next two

lines defines the X, Y and Z components of the two vectors to be be utilized

to construct the points of the plane’s grid. The fourth lines provides the input

for the step-size of the vector to be used, while the last line provides the

number of steps to be followed along the vectors v1 and v2.

The next property keyword is DIPMOM, which evaluates the dipole moment

vector components µx, µy and µz.

4.5 CENTER_POINT :: 0.00,0.00,0.00

We provide the only a point using which dipole is evaluated as parameters

for the calculation in the following way described in the above line.

5.1 TIMEFILE_PREFIX :: tmcoef

TIMEFILE_START_INDEX :: 1

TIMEFILE_END_INDEX :: 100

TIMEFILE_STEP_SIZE :: 5

The third and last section of the input file is SECTION-TIMEFILE. It defines

the prefix name of the timefile in the first line, the start index, the end index

in the next two lines (2nd and 3rd) and the step size of time file execution

in the fourth line. For the example shown here, represents that in the
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timefiles folder the timefile are named as (tmcoefr1.txt, tmcoefr2.txt,· · · ,

tmcoefi1.txt,tmcoefi2.txt,· · · ). The jobs will be processed, starting from the

first timefiles and continuing till the last 100th files in steps of 5, executed

through the bash shell script run.sh.

We have discussed about the ABELDYN code in the chapter 1, which is

important for obtaining the time-evolving wave functions. In the next sub-

section, we briefly describe the various input parameters required to run the

ABELDYN ocde.

2.3.2 Description of the Sample input file for

ABELDYN code

The sample input file format required to execute the ABELDYN code is shown

here. The example input file presented specifies the input files and parameters

required to set up the calculation for acetylene molecule in the presence of

linearly polarized laser along z-direction with laser frequency and electric

field strength of 0.114 a.u. and 0.054 a.u. respectively. The successful run

provides a set of output files concerning the data related to: properties of

system, error check, population, charge, occupancy, density matrix, orbital

coefficients (Real and Imaginary parts), and fourier components, at time

instances with step size of 0.10 a.u. along the full laser pulse.

#------------------------------------------------------------------------------

# Parameters for the time-dependent calculations

#------------------------------------------------------------------------------

" onelectron integral file 1-D array lower diag :: "./matrx/onelec.txt

" unique twolectron integral file 1-D array :: "./matrx/twelc.txt

" dipole AO integral file 1-D array lower diag :: "./matrx/dplao.txt

" CAP AO integral file 1-D array lower diag :: "./matrx/capao.txt
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" coefficient matrix file in AO 2-D array :: "./matrx/coef.txt

" molecule type/coordinate/basis input file :: "./matrx/molcord.xyz

" laser electric field strength :: " 0.0540000D+00

" laser frequency :: " 0.1140000D+00

" initial pahse of the laser :: " 0.0000000D+00

" direction of the laser(1. x, 2. y, 3. z ) :: " 3

" strength of complex absorbing potential :: " 1.0000000D+00

" number of Floquet channel for (t,t’)-method :: " 25

" number of Fourier components of density matrix:: " 5

" number of optical cycles for starting pulse :: " 2

" number of optical cycles for cw-region pulse :: " 2

" number of optical cycles for ending pulse :: " 2

" total number of optical cycles :: " 8

" delta t eg. (1,10; dt=0.1), (2,10; dt=10) :: " 1, 10

" number of orbital energies to be written :: " 10

" number of steps in which density is written :: " 1

" file out for the properties :: "tmprp.txt

" file out for the error check :: "tmerr.txt

" file out for the population and TD charges :: "tmpop.txt

" file out for the time-dependent charges :: "tmchrg.txt

" file out for the time-dependent occupancy :: "tmocc.txt

" file out for time-dependent density matrix :: "tmden.txt

" file time-dependent imag coefficient matrix :: "tmcoefi.txt

" file time-dependent real coefficient matrix :: "tmcoefr.txt

" Time-dependent Fourier components :: "tmfrr.txt

The first six lines of the input file require data files containing information related

to one-electron integrals (oneelec.txt), two-electron integrals (twelec.txt), dipole

integrals along X, Y, and Z directions (dplao.txt), complex absorbing potential (ca-

pao.txt), field-free molecular orbital coefficients (coef.txt), number of atoms, atomic

charge, multiplicity, number of basis function on each atom and coordinates of atoms
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in molecule (molcord.xyz). These data files are prepared in column (oneelec.txt,

twoelec.txt, dplao.txt, capao.txt) and 2D matrix (coef.txt) formats. These data

files should be available before performing calculations using ABELDYN code. The

one-electron integrals, two-electron integrals, dipole integrals, field-free molecular

orbital coefficients are obtained from the Hartree-Fock theory calculations performed

using the modified source code of the electronic structure package GAMESS.[40] The

molecular information, that is, the number of atoms, charges, multiplicity, number

basis function on each atom and coordinates of atoms in the molecule are read

from a .xyz file. An in-house code is executed to obtain complex absorbing potential

(CAP), for a box-type grid as input. The CAP is imaginary potentials, iηW (η = CAP

strength, W = real and positive potential), added to the Hamiltonians to change the

boundary condition of problem such that the wavefunction becomes from scattering

to square-integrable. The use of CAP is essential w.r.t evolution of wavefunction;

hence we describe this briefly here:

In the evolution of wave packets, often, the solutions are carried out using a discrete

representation of Hamiltonian and wavefunction on a finite grid. However, in scat-

tering processes, the wavefunction could move towards some outgoing asymptotic

state where the effect of interaction or even some in parts could vanish since one or

more coordinates reach infinity at the boundary. This spatial finite grid box does not

represent this indefinite process because it will get reflected when the wavefunction

arrives at the box edge. The reflected wave could interfere with the part of the wave

remaining in the box and spoil the physical validity of the calculation. Increasing

the boundaries may solve the problem but at an expensive calculation cost. An

alternate and effective way is the addition of complex absorbing potential at the

boundaries.[73] The complex absorbing potential absorbs the wavefunction without

making any changes in the physical wavefunction in the inner part of the grid. This

makes the method numerically robust.

The next set of 14 lines (from 7th to 20th line) ask for inputs related to laser

parameters, the number of Floquet channels (NF ), number of Fourier components

to be considered in the Fourier expansion series of the density matrix, time-step
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size (∆t), and number of molecular orbitals, (Norb) energies and coefficients to

be printed. All the parameters are to be specified in atomic units. In the sample

input file, the laser frequency (ω), and electric field strength (ε) are 0.054 a.u.

(∼ 4.48 × 10−16s) and 0.114 a.u. (∼ 0.40 × 1016W/cm2) respectively with laser

polarization along Z direction with zero initial phase. The strength of CAP, η, is

taken as 1.0. To calculate the time-dependent part of density matrix, it is expanded

into Fourier series. The number of Fourier components of the density matrix is taken

as 5 in the sample input file. To construct the full Floquet Fock matrix, the number

of Floquet channels used is 25. The next set of parameters specifies the number

of optical cycles for the starting pulse region, continuous-wave pulse region, and

ending pulse region of the laser. The inputs to these three regions’ optical cycles is

used to be 2,2 and 2, respectively. The total number of optical cycles (Ncycle) of the

laser pulse is specified to be 8. The following function gives the form of the laser

pulse,

f(t) =



ε0 sin2
[
π
2

t
ton

]
, 0 ≤ t ≤ ton

ε0, ton ≤ t ≤ toff

ε0 cos2
[
π
2

(t−toff )
(tmax−toff )

]
, toff > t

(2.49)

For a frequency of 0.114 a.u., the total laser time period, Ttot = Ncycle × τ where

τ = (2π
ω ), calculated to 440.92 a.u. The time-step size parameter takes two values

as input. The first input specifies the type of step-size preferred (choose either 1

or 2) and the second input specifies the step-size value to be taken to calculate the

time-step size. For e.g., if one specifies (1, 10), the ∆t will 1
10 i.e. 0.10 whereas if

input is (2, 10), the ∆t will 10.00. The total number of time-steps to be calculated

Nt will be (Ttot∆t ), which is approximately 4409 time steps for the case of sample

input file. The next input is the number of orbital values Norb (orbital energy and

orbital coefficient), to be written out in the properties and population output files

respectively. The density matrix values are written out in the tmden.txt files in steps

of 1 which is specified in the sample input file.
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As shown in the sample input file, in the tmprp.txt file, the columns contain laser

time (Ttτ ), the value of f(t) at time t, induced dipole moment at time t, the sum of the

real part of electronic energy and nuclear energy, the imaginary part of electronic

energy and the list of orbital energies (Norb) as specified by the user, at time t. A

list of checks is performed on the time-evolving molecular orbitals, atomic orbitals,

electronic energies, and norms are reported in the tmerr.txt. The population file

tmpop.txt, contains, time-dependent coefficients ofNorb molecular orbitals. The time-

dependent Mülliken charges on all atoms in molecules are written out in tmchrg.txt.

The orbital occupancy of all molecular orbitals is written out at all time steps in

tmocc.txt file. The time-evolving real and imaginary part of all molecular orbitals

at all time steps is written out in tmcoefr.txt and tmcoefi.txt respectively. Also, the

time-dependent density matrices are printed in tmden.txt. The final output tmfrr.txt

provides the time-dependent Fourier components.

The output files, tmcoefr.txt and tmcoefi.txt, provide the time-dependent real and

imaginary coefficients of molecular orbitals data in a matrix form. Each row of

these files represents all the values (= Nbas × Nbas) of molecular orbitals at each

time step. Furthermore, to be used in ABELDYNPROP code, each row of tmcoefr.txt

and tmcoefi.txt are written out as columns in separate files using a simple gfortran

code.

2.3.3 Execution of the ABELDYNPROP program

The algorithm for ABELDYNPROP code is presented in Fig. [2.2]. The runtd.sh

script reads the timefile prefix, the start-index, end-index and time-step size for

the job to run. For each iteration the run.exe is executed. The program reads the

input keyword, atom-basis file name and COMPLEX/REAL type molecular orbtial

from the file from the input file. Since, all properties are evaluated on a grid. If

the keyword are any of EDEN, EGRD, EHES, ELAP, MORB, parameters of uniform

grid are read from the parameter section to evaluate the properties to be stored

in .cube/.vtk data files. On the other hand, if the keyword is ALLCRITIC, ZEROFS,
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Figure 2.2: A flow chart depicting the steps involved in the ABELDYNPROP code to
calculate the time-dependent properties.

or BDPARTSP, properties are evaluate based on the user-defined parameters from

the input.dat. For each index of the timefile, the output is stored in a folder named

propertystepindex.

2.4 Results and Discussion
The ABELDYNPROP code is tested and implemented for a closed shell atom Beryl-

lium, diatomic homonuclear molecule DinitrogenN2, diatomic heteronuclear molecule

Carbon monoxide CO, ring molecular systems, Cyclopropane C3H6), Benzene C6H6,

and one cage molecule Tetrahedrane (C4H4). The optimization of test molecules

is performed at HF/aug-cc-pvdz level of theory. The optimization is chosen such

that diatomic systems are oriented along the Z-axis, the Cyclopropane, Benzene

molecules on the XY-plane, and Tetrahedrane is oriented such that one of the CH

bonds falls on the Z-axis. The time-evolving wavefunctions are obtained using

frequency parameters described in table 2.1 as an input in the ABELDYN in-house
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Figure 2.3: Test systems used to implement the ABELDYNPROP code: Beryllium
atom, Dinitrogen, Carbon monooxide, Cyclopropane, Benzene and
Tetrahedrane in linearly polarized laser field. The direction of laser
polarization is depicted by the red colored double-ended arrow. The
molecules in the set of test systems are optimized using HF/aug-cc-pvdz
level of theory and the wavefunction obtained from ABELDYN in-house
code. The electric field strength of laser used in calculations is 5.14
× 108 V/cm, while the frequency used is mentioned in table 2.1. The
inputs: atom coordinates is considered in bohr, LASER parameters in
atomic units and the calculation of output: MED and properties derived
from MED are performed in atomic units.
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Figure 2.4: Beryllium Atom properties in linearly polarized laser along Z at
five different time-steps. The columns represent time-dependent
atomic electron density (second), its Laplacian (third), difference
density (fourth) and gradient lines (fifth).The iso-contour are ρ:
(0.37,0.1,0.01,0.001,0.0001), ∇2ρ: (± 0.35,± 0.1,± 0.01, ± 0.001)
and ∆ρ: (± 0.1,± 0.01,± 0.001, ± 0.0001). The blues lines and yellow
in presents the gradient lines and basin boundaries. Black Dots: (3,-3)
CPs, Green Dots: (3,-1) CPs, Purple Dots: (3,+1) CPs and Red Dots:
(3,+3) CPs. The laser parameters are mentioned in table [2.1]. The
inputs: atom coordinates is considered in bohr, LASER parameters in
atomic units and the calculation of output: MED and properties derived
from MED are performed in atomic units.
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Figure 2.5: Dinitrogen properties in linearly polarized laser along Z at five dif-
ferent time-steps. The columns represent time-dependent molec-
ular electron density (second), its Laplacian (third), difference
density (fourth) and gradient lines (fifth).The iso-contour are ρ:
(0.37,0.1,0.01,0.001,0.0001), ∇2ρ: (± 0.35,± 0.1,± 0.01, ± 0.001)
and ∆ρ: (± 0.1,± 0.01,± 0.001, ± 0.0001). The blues lines and yellow
in presents the gradient lines and basin boundaries. Black Dots: (3,-3)
CPw, Green Dots: (3,-1) CPs, Purple Dots: (3,+1) CPs and Red Dots:
(3,+3) CPs. The laser parameters are mentioned in table [2.1]. The
inputs: atom coordinates is considered in bohr, LASER parameters in
atomic units and the calculation of output: MED and properties derived
from MED are performed in atomic units.
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Figure 2.6: Dinitrogen properties in linearly polarized laser along Y at five dif-
ferent time-steps. The columns represent time-dependent molec-
ular electron density (second), its Laplacian (third), difference
density (fourth) and gradient lines (fifth).The iso-contour are ρ:
(0.37,0.1,0.01,0.001,0.0001), ∇2ρ: (± 0.35,± 0.1,± 0.01, ± 0.001)
and ∆ρ: (± 0.1,± 0.01,± 0.001, ± 0.0001). The blues lines and yellow
in presents the gradient lines and basin boundaries. Black Dots: (3,-3)
CPw, Green Dots: (3,-1) CPs, Purple Dots: (3,+1) CPs and Red Dots:
(3,+3) CPs. The laser parameters are mentioned in table [2.1]. The
inputs: atom coordinates is considered in bohr, LASER parameters in
atomic units and the calculation of output: MED and properties derived
from MED are performed in atomic units.
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Figure 2.7: Carbon Monooxide properties in linearly polarized laser along Z at
five different time-steps. The columns represent time-dependent
molecular electron density (second), its Laplacian (third), differ-
ence density (fourth) and gradient lines (fifth).The iso-contour are
ρ: (0.37,0.1,0.01,0.001,0.0001), ∇2ρ: (± 0.35,± 0.1,± 0.01, ± 0.001)
and ∆ρ: (± 0.1,± 0.01,± 0.001, ± 0.0001). The blues lines and yellow
in presents the gradient lines and basin boundaries. Black Dots: (3,-3)
CPw, Green Dots: (3,-1) CPs, Purple Dots: (3,+1) CPs and Red Dots:
(3,+3) CPs. The laser parameters are mentioned in table [2.1]. The
inputs: atom coordinates is considered in bohr, LASER parameters in
atomic units and the calculation of output: MED and properties derived
from MED are performed in atomic units.
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Figure 2.8: Cyclopropane properties in linearly polarized laser along Y at five
different time-steps. The columns represent time-dependent molec-
ular electron density (second), its Laplacian (third), difference
density (fourth) and gradient lines (fifth).The iso-contour are ρ:
(0.28,0.1,0.01,0.001,0.0001), ∇2ρ: (± 0.35,± 0.1,± 0.01, ± 0.001)
and ∆ρ: (± 0.1,± 0.01,± 0.001, ± 0.0001). The blues lines and yellow
in presents the gradient lines and basin boundaries. Black Dots: (3,-3)
CPw, Green Dots: (3,-1) CPs, Purple Dots: (3,+1) CPs and Red Dots:
(3,+3) CPs. The laser parameters are mentioned in table [2.1]. The
inputs: atom coordinates is considered in bohr, LASER parameters in
atomic units and the calculation of output: MED and properties derived
from MED are performed in atomic units.
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Figure 2.9: Benzene properties in linearly polarized laser along X at five dif-
ferent time-steps. The columns represent time-dependent molec-
ular electron density (second), its Laplacian (third), difference
density (fourth) and gradient lines (fifth).The iso-contour are ρ:
(0.33,0.1,0.01,0.001,0.0001), ∇2ρ: (± 0.35,± 0.1,± 0.01, ± 0.001)
and ∆ρ: (± 0.1,± 0.01,± 0.001, ± 0.0001). The blues lines and yellow
in presents the gradient lines and basin boundaries. Black Dots: (3,-3)
CPw, Green Dots: (3,-1) CPs, Purple Dots: (3,+1) CPs and Red Dots:
(3,+3) CPs. The laser parameters are mentioned in table [2.1]. The
inputs: atom coordinates is considered in bohr, LASER parameters in
atomic units and the calculation of output: MED and properties derived
from MED are performed in atomic units.
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Figure 2.10: Tetrahedrane properties in linearly polarized laser along Y at five
different time-steps. The columns represent time-dependent molec-
ular electron density (second), its Laplacian (third), difference
density (fourth) and gradient lines (fifth).The iso-contour are ρ:
(0.30,0.1,0.01,0.001,0.0001), ∇2ρ: (± 0.35,± 0.1,± 0.01, ± 0.001)
and ∆ρ: (± 0.1,± 0.01,± 0.001, ± 0.0001). The blues lines and
yellow in presents the gradient lines and basin boundaries. Black Dots:
(3,-3) CPw, Green Dots: (3,-1) CPs, Purple Dots: (3,+1) CPs and Red
Dots: (3,+3) CPs. The laser parameters are mentioned in table [2.1].
The inputs: atom coordinates is considered in bohr, LASER parameters
in atomic units and the calculation of output: MED and properties
derived from MED are performed in atomic units.
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Figure 2.11: QM vector current density plots on the YZ-plane for the Be atom in the
presence of linearly polarized laser at different time-steps is shown.
The time-evolving movies are provided in supplementary files. The
inputs: atom coordinates is considered in bohr, LASER parameters
in atomic units and the calculation of output: MED and properties
derived from MED are performed in atomic units.

Figure 2.12: QM vector current density plots on the YZ-plane for the N2 molecule
in the presence of linearly polarized laser at different time-steps. The
time-evolving movies are provided in supplementary files. The inputs:
atom coordinates is considered in bohr, LASER parameters in atomic
units and the calculation of output: MED and properties derived from
MED are performed in atomic units.
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Figure 2.13: QM vector current density plots on the YZ-plane for the CO molecule
in the presence of linearly polarized laser at different time-steps. The
time-evolving movies are provided in supplementary files. The inputs:
atom coordinates is considered in bohr, LASER parameters in atomic
units and the calculation of output: MED and properties derived from
MED are performed in atomic units.

Figure 2.14: QM vector current density plots on the YZ-plane for the C6H6 molecule
in the presence of linearly polarized laser at different time-steps. The
time-evolving movies are provided in supplementary files. The inputs:
atom coordinates is considered in bohr, LASER parameters in atomic
units and the calculation of output: MED and properties derived from
MED are performed in atomic units.
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Table 2.1: Laser parameters used for the calculating properties of the test systems
shown in Fig. [2.3]. The level of theory HF/aug-cc-pvdz was used to
optimize molecules. The table mentions the total basis functions Nbas,
frequency ω, classical quiver distance α, total time of the eight optical
cycle pulse, polarization direction of the linear laser and its orientation
w.r.t molecule.

System Nbas ω(a.u.) α0(a.u.) Ttot(fs) Ldir System axis
Be 35 0.3294 0.9216 3.69 Z -
N2 50 0.7273 0.1890 1.66 Z Parallel to N-N

Y Perpendicular to N-N
CO 50 0.6362 0.2470 1.91 Z Parallel to C-O
C3H6 129 0.4598 0.4730 2.64 Y C2-axis of Molecule
C6H6 204 0.3732 0.7180 3.25 X C2(X)-axis of Molecule
C4H4 136 0.3735 0.7168 3.25 Z C3(X)-axis of molecule

code. The electric field strength of the laser used in the calculations was 0.10 a.u.

In addition, table 2.1 also mentions the total number of basis functions Nbas, the

classical quiver distance, the molecule’s total time in the laser field, and finally, the

direction of laser polarization and orientation of the molecule w.r.t laser, which

were used in the calculations. The red arrows in Fig. [2.3] visually depict the laser

polarization direction w.r.t laser orientation. The direction of laser polarization is

chosen along the Z-axis for the Be atom, along the X and Z-axis, which is parallel

and perpendicular to the N-N bond in N2 molecule, Z-axis parallel to the C-O bond

in the CO molecule, Y-axis parallel to C2 axis of XY-oriented Cyclopropane, X-axis

parallel to the C2 axis of XY-oriented of Benzene, Y-axis parallel to the C3 axis of

passing through the C-H bond of Tetrahedrane molecule.

Fig. [2.4], [2.5], [2.6], [2.7], [2.8], [2.9], and [2.10] depicts the time-evolution of

electron density ρ, its Laplacian ∇2ρ, difference density ∆ρ, and gradient field lines

~∇ρ at five time snapshots of the linear laser pulse. The electron density, Laplacian,

gradient lines, and critical points are calculated for the first time step of the laser,

showing faithful replications w.r.t to the free-field properties calculated with other

packages.[35], for all test cases, we observe deformations in the distribution of

electron density and related properties depicted in the timesteps along the laser. As

depicted in the blue-colored isosurface plot in Fig. [2.4] of the Be atom, the electron
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density distribution shrinks in the Y direction while widening in the Z direction.

When the laser’s polarization direction was parallel to the bond N-N (in N2) and C-O,

the electron density distribution showed elongation in the Z-axis while narrowed in

the region near the mid of the bond. In the case of the Planar ring molecule, the

electron density distribution blows up in the +ve direction of polarization while

shrinking in the -ve direction. A similar trend is observed for tetrahedrane molecules

in the polarized laser parallel along one of its C-H bonds. Therefore, the electron

density generally tends to align along the direction of the field’s polarization. The

third column in the plots depicts the Laplacian of electron density in the time-

evolving field. The plots depicted by the blue and green regions show ∇2ρ > 0

and ∇2ρ < 0. The regions where ∇2ρ > 0 depict the charge depleted regions and

∇2ρ < 0 show the charge accumulated regions. The movement of charge density

shifting, depleting, and concentrating at various timesteps are represented in the

red and yellow colored isocontour plots of difference density in the fourth column.

From these plots, it was observed that the value of electron density gets lowered

and higher w.r.t the free-field case in the region towards the +ve direction and -ve

directions of the field of polarization. This trend reverses and repeats at the peaks

and valleys of the laser pulse. The topological changes brought in by deformations

in the electron density distribution are depicted in the fifth column in the plots.

We show the gradient field lines (royal blue), basin boundaries (yellow), bond

paths (maroon red), and critical points in the plot. Since the electron density gets

deformed, the topological changes are reflected through the bends in gradient field

lines, basin boundaries, and shifts in the positions and values of critical points.

2.5 Conclusions
The chapter describes the capabilities, methodologies, and working implementations

of the ABELDYNPROP code. It can compute time-dependent electron densities of

atoms and molecules in position space over three-dimensional regular grids. The an-

alytical forms of the first and second derivatives of electron density are programmed

to evaluate gradient, hessian, and Laplacian. The code is capable of computing these
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properties over 3D as well as 2D-defined planes. This section of code is parallelized

for distributed memory systems using MPI to evaluate electron densities, its gradient,

hessian, and Laplacian over 3D regular grids. One can explore the topological

features of the time-evolving, such as critical points, gradient paths, bond paths,

and interatomic surfaces/zero-flux surfaces, using the ABELDYNPROP code. The

ABELDYNPROP code also includes subroutines to evaluate several average proper-

ties of all the basins in the time-dependent electron densities. These subroutines

present the atoms-in-molecule analysis of the code. The ABELDYNPROP code uses

the coefficients of the time-evolving wave functions obtained from the in-house code

ABELDYN code. The ABELDYNPROP code uses analytical forms of Gaussian-type

orbitals specifically for S, P, D, and F functions, whose mathematical expressions

are described in the appendix section. Bash shell scripting enables the package

to execute the code at each time step, making the file and job handling easy and

non-tedious.
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Chapter 3 Atomic electron densities

in Linearly polarized laser

1Graphical abstract presents the changes in the distribution of the spherically symmetric
electron densities of at a time-step in the Z-polarized linear laser field.
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Abstract

The chapter presents the application of the ABELDYNPROP code on the two test

systems, Helium and Beryllium atoms, in the presence of a Z-polarized linear laser

field. The time-evolving atomic electron densities, gradient paths, Laplacian, differ-

ence densities, topology, and the time-varying norm are evaluated and discussed.

Time-dependent plots of electron density distributions show symmetric deformations.

This distribution spreads along the laser polarization directions while shrinking in

perpendicular directions. These changes are elucidated through the time evolutions

of gradient paths, Laplacian, and difference densities plots. New topological features

are found regarding critical points, especially non-nuclear maxima accompanied

with (3,-1) CPs. All basin’s norms are evaluated, which justifies redistributing elec-

tronic charges from the atomic basin region to another non-nuclear basin’s regions.

These deformations and redistributions are observed repeatedly over the half and

full cycles of the laser pulses.
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3.1 Introduction
Many electron atoms time-independent quantum mechanical electron densities

show a spherically symmetric distribution in all directions centered around their

atomic position. In most cases, the atomic electron densities possess a single

nuclear maximum, a (3,-3) CP at the origin in the ground state. From theory, this

fact can be proved using Kato’s cusp condition. The electron density value at a

nuclear position, ρ0 of a free atom in the Hartree-Fock approximation is roughly

proportional to the cube of the atom’s nuclear charge, which has the mathematical

form ρ0 = 0.4798Z3.1027 a.u., for 1 < Z < 55.[1] The atomic electron density

distribution shows exponential and monotonic decay along the radial distance,[1–3]

starting from the nuclear position along all directions. In the free-field scenario,

the gradient vectors in all the atomic space would always converge to the nuclear

position. Additionally, there does not exist any zero-flux surface in the case of

free-field atomic densities. Due to the absence of any other atom in its vicinity, the

atomic electron densities lack any other bond, ring, or cage CPs except the maximum

CP in the free-field cases.

The three-dimensional topology of the electron density of atoms may appear to

be a spherical isosurface. On the other hand, the topology of Laplacian ∇2ρ(~r)

of electron density exhibits a very different topology. The determination of a

radius at which ∇2ρ(~r) is a minimum determines the radius of the sphere at which

charge density is maximally concentrated and vice versa.[1] The electron densities

exhibit a maximum at nuclear positions, but this does not mean that the electron

density would be concentrated at all distances when moving toward the nucleus.

Additionally, the integral of ∇2ρ(~r) over the whole space of the atom is zero because

of the zero-flux condition. Because of this condition, there will be regions where the

electron density would be locally concentrated (∇2ρ(~r) < 0) and locally depleted

(∇2ρ(~r) > 0) regions towards the nucleus along a radial line. Since ∇2ρ(~r) is a

continuous and a differentiable function in the molecular space, there must exist

regions where ∇2ρ(~r) = 0. Therefore, it is elucidated that these regions show
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spherical nodes in the Laplacian ∇2ρ(~r) of atomic electron densities. The number of

nodes in the Laplacian distribution is found to have a relation with its shell structure.

Bader and coworkers[4, 5] found out that for each principle quantum shell, there

exists a pair of regions, each consisting of one positive and one negative region.

Sagar,[6] Boyd and coworkers[7] have defined the number of shells like this by the

Laplacian of charge density. It was defined for atoms whose atomic number Z < 40,

that the number of shells has a direct relation with the number of maxima in the

radial distribution.

All the topological features exhibited by the free-field atomic electron densities result

from the attractive force exerted by bound potential created by the nuclei on the

electronic charge distribution. However, in the presence of an external field, apart

from the two potential (nuclear-electron and electron-electron) terms in Hamiltonian,

an additional term is introduced for an atom in a LASER. This additional term for

a linearly polarized laser pulse is ~E(t) · ~r, where ~E(t) = E0cos(ωt) for laser with

frequency ω. Therefore, the updated electronic Hamiltonian for N-electron atom

would be,[8]

Ĥele = −
N∑
i=1

1
2∇

2
i −

N∑
i=1

ZA
riA

+
N∑
i=1

N∑
j>i

1
rij

+ ~E(t) · ~r (3.1)

Several phenomena, such as quasi-bound states, metastable states, and slow ioniza-

tions, have been predicted theoretically and experimentally verified at high-intensity

and high-frequency regimes of LASER fields.[9] Moiseyev and coworkers predicted

that atoms and anions could achieve stable states by overcoming the binding po-

tential and following to and fro motions about the classical turning points of the

high-frequency LASER fields.[10–13] The results showed time-averaged dichotomic

states of atoms in high-intensity and high-frequency fields. This meant that the

electron density of a single atom would resemble a homonuclear diatomic molecule.

Kramer and Henneberger were the first to pioneer these concepts, which were later

realized for noble gases like helium and neon.[14–16]
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This chapter presents the time evolution of atomic electron densities, their Laplacian,

and difference electron densities of Helium and Beryllium atoms in the presence

of a linearly polarized laser. The topological tools will analyze the critical points,

isocontours, and gradient paths. The results and discussions section will discuss the

time-evolving norm of the atomic basin and other non-nuclear basins.

3.2 Computational details
Two atoms, Helium and Beryllilum are taken to be the test system in this study.

The basis set used are d-aug-cc-pvdz (35 functions) and aug-cc-pvdz (25 functions)

for Helium and Beryllium atoms respectively. The coordinates of Helium and

Beryllium were used as an input to obtain free-field molecular orbitals, one-electron,

two-electron, and dipole integrals (in X, Y, and Z directions) from the modified

GAMESS-US code. We use these in ABELDYN code to obtain molecular orbitals

coefficients for the test systems at each timestep in a continuous wave Linearly

polarized laser (CW-LPL) field. The chosen polarization direction of the laser was

to be along the Z-direction. We choose the laser pulse frequency as the free field

energy difference between highest occupied and lowest unoccupied orbitals in the

ground state for both atoms. The frequency used for Helium, and Beryllium are

ωHe = 0.9371, and ωBe = 0.3294 a.u. respectively. These frequency ranges fall

within the extreme UV range of light. The electric field strength of the laser used

was ε = 0.100a.u. We use a total of 8 optical cycles. The two cycles times the laser

pulse rising (ton = 0− 2), two optical cycles in the CW region (tcw = 2− 4), and two

cycles times the laser pulse switches off (ton = 4− 6), and and the remaining two

free cycles makes up the total laser pulse duration. A box-type complex absorbing

potential with the box length of (10.00,10.00,10.00) a.u. was used for both Helium

and Beryllium atoms. The strength of complex absorbing potential used was 1.00.

The total norm is preserved in the case of Helium atom while the norm decays to

3.65 a.u. for the Beryllium atom’s calculation. The input details are provided in the

supplementary information file provide all the parameters of the calculations. The

orbital coefficients obtained from the ABELDYN code[17, 18] are used as input to
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calculate the electron density, and its critical points, the gradient path, Laplacian,

norm, critical points and atoms-in-molecule analysis, using the in-house properties

code ABELDYNPROP.

3.3 Results and Discussion
Atomic electron densities of Helium: The Helium atom’s field-free electron density

(ED) exhibits a spherically symmetric density distribution in all directions centered

around its nuclear position. This ED distribution contains a single maximum at

the Helium atom with an ED value of 3.341 a.u. and decays monotonically in an

exponential fashion away from the nuclear position. All the gradient vector lines

converge at the nuclear attractor, corresponding to the maximum.

This electron density of He atom is one of the simplest models to study the time-

varying topography of electron density in linearly polarized laser fields. Fig. [3.1]

shows the Helium atom’s time-dependent electron density (TDED) distribution,

gradient lines of electron density, its Laplacian, and density difference at different

time steps in the Z-polarized linear laser field. The TDED distribution of the Helium

atom loses the spherically symmetric shape and causes deformations majorly along

the polarization direction Z in the linear laser field. The laser field’s electron density

tends to align along the direction of field polarization (Refer to TDED movie of

Helium in Appendix).

The contour plots of TDED ρ(~r, t) reveal the distribution becoming wider in ±Z

while narrowed in the Y-direction. The red-color contour plots show the negative

values of the time-dependent Laplacian, which indicates the charge accumulated

regions containing the non-nuclear maxima in the electron density distribution. The

redistribution of electron density is elucidated from the time-varying difference

density contour plots, where the density value gets curtailed down mostly near the

regions close to the atom (red-colored). It gets amplified in the atomic spaces away

from the nucleus (grey-colored). The deformations in TDED and related properties
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Figure 3.1: Time dependent electronic properties of Helium (placed at origin) in
the presence of linearly polarized laser field (Parameters - ε0 = 0.100,
and ω = 0.937 a.u.) along Z-direction: laser time step topt - first
column, molecular electron density ρ(~r) - second column, gradients
lines of electron density ∇ρ(~r) - third column, Laplacian of electron
density ∇2ρ(~r) - fourth column, difference density ∆ρ(~r) - fifth column,
calculated on the YZ-plane, x=0. Negative values are represented
by red-colored contours, and positive values by black/grey-colored
contours. The critical points representation: Black dots - (3,-3) CPs,
Green dots - (3,-1) CPs, Red dots - (3,+3) CPs, Purple dots - (3,+1)
CPs. The yellow and maroon colored lines depict basin boundaries and
bond paths, respectively. Level of theory: TDHF/d-aug-cc-pVDZ. The
intermediate steps are shown in Appendix section, Fig. [4.1]. All the
properties are mentioned in atomic units.

along the laser pulse follow a cyclic pattern, i.e., similar deformation in shapes of

distributions are repeated at full and half cycles of the laser pulse.

We observe a to and fro motion of Helium’s nuclear maximum, the (3,-3) CPs on

the Z-axis, i.e. (0.0,0.0,±z) where z∼(−0.0003 to 0.0006), and its respective TDED

values show small increments/decrements. The topological investigation of the

deformed TDED distribution shows the appearance of new features characterized

by the formation of low ED-valued (3,-3), (3, -1), and (3,+3) CPs. These CPs are

located at distances ranging ∼4-7 a.u. from the Helium’s nuclear maximum on the
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Figure 3.2: Average number of electrons N(Ω) in non-overlapping regions of time-
depended electron density distribution of Helium atom (placed at
origin) in the presence of linearly polarized laser field (Parameters
- ε0 = 0.100, and ω = 0.937 a.u.) along Z-direction. Lowest panel -
norm of helium nuclear maxima’s basin NHe, the middle two panel -
norm of non-nuclear maxima’s basin NNNM1 , and NNNM2 , and topmost
panel - error in total norm |∆N |. Level of theory: TDHF/d-aug-cc-pVDZ.
All the properties are mentioned in atomic units.

Z-axis. The (3,-3) CPs are non-nuclear positions (NNMs) are accompanied by (3,-1)

BCPs, appear at time steps near the peaks (complete cycles, topt=3.00, 4.00, 5.00,

6.00) and valleys (half cycles, topt=2.50, 3.50, 4.50, 5.50) of the laser pulse.

At time steps near peaks and valleys of the laser pulse, NNMs appear at +Z and

-Z directions, respectively, along the laser polarization. The redistribution of the

TDED in the Helium’s atomic space is also reflected through the deviation in the

paths of gradient lines. The gradient lines bend in the direction perpendicular to

the polarization field, which are the X and Y-directions in this case. The extent of

bending is maximum near peaks and valleys when NNMs appear. Here, the atomic

space of TDED is divided into two regions separated via zero-flux surface (depicted

as the yellow-colored boundary basin, Refer Fig. [3.1]). Fig. [3.2] plots the average

number of electrons, norm in each region containing the nuclear maximum and
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NNMs. The region’s norm contained Helium’s nuclear maxima, NHe ranges from

1.968 to 1.999 a.u. Whereas the norm in the areas having each of the two NNMs,

NNNM1 , NNNM2 ranges from 0.005 to 0.035 a.u.

Atomic electron densities of Beryllium: Fig. [3.3] depicts the five-time steps in the

time-evolving atomic electron densities, its gradient, Laplacian, and difference den-

sities of Beryllium atom in the presence of linearly polarized laser along Z-direction.

The appendix section of the thesis provides the picture of intermediate steps and

the weblink to the time-evolving movie (https://youtu.be/6KtGtCQ2HNk) of these

properties .

The first panel presents the properties in the first time-step of LASER. At this step,

the concentric isocontours represent the spherically symmetric electron density

distribution in all directions centered around the nuclear position. A maximum

exists at the Beryllium’s position with the electron density value of 33.952 a.u.

and decays monotonically along all directions going away from the nucleus. The

first panel of Fig. [3.3] shows all the gradient vectors converging to the nuclear

maximum, and two negative valued contours of the Laplacian plot represent the two

shells of the Be atom.

The following four panels of Fig. [3.3] represent the Beryllium atom’s time-evolving

electron densities, its respective gradient paths, Laplacian, and difference electron

densities at four time-steps, that is, 2nd, 4th, 5th and 6th optical cycles of the LASER

pulse. The time-evolving picture shows that the electron densities are no longer

spherically symmetric in shape. Just like that of Helium atom’s densities, Fig.

[3.3] shows the deformation in the electron density distribution occurs such that

it experiences elongation in the direction of laser polarization, that is, along ±Z-

direction, and the distribution shrinks along the perpendicular direction to the laser

polarization, X and Y-directions. It is also observed new critical points, specially

(3,−3) and (3,−1), appear on the (0,0,±Z) line. The motion of gradient paths

(blue-colored lines) shows a bend in the direction X and Y, perpendicular to the

polarization direction. The gradient path lines tend to bundle up/close up along
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Figure 3.3: Time dependent electronic properties of Beryllium (placed at origin) in
the presence of linearly polarized laser field (Parameters - ε0 = 0.100,
and ω = 0.329 a.u.) along Z-direction: laser time step topt - first
column, molecular electron density ρ(~r) - second column, gradients
lines of electron density ∇ρ(~r) - third column, Laplacian of electron
density ∇2ρ(~r) - fourth column, difference density ∆ρ(~r) - fifth column,
calculated on the YZ-plane, x=0. Negative values are represented
by red-colored contours, and positive values by black/grey-colored
contours. The critical points representation: Black dots - (3,-3) CPs,
Green dots - (3,-1) CPs, Red dots - (3,+3) CPs, Purple dots - (3,+1)
CPs. The yellow and maroon colored lines depict basin boundaries
and bond paths, respectively. Level of theory: TDHF/aug-cc-pVDZ. The
intermediate steps are shown in Appendix section, Fig. [4.2]. All the
properties are mentioned in atomic units.

the Z-direction. At the same time, few lines appear in the Y-direction since they

move away/disappear owing to a decrease in the electron density value along the

Y-axis. The red-colored isocontour plots depicted the negatively valued Laplacian

and difference densities. The negatively valued isocontours appear in the regions

of ±Z-axis, which indicates local charge accumulation at these regions. These are

the same regions where the non-nuclear maxima, the (3,-3) CPs appear. Similarly,

the difference density isocontour plots depict electron density getting depleted in

the region closer to the atom while increasing in the regions away from the atomic
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center. A cyclic pattern in the deformations of time-evolving density and its related

properties appear over the half and full cycles of the laser pulse.

The electron density values at the nuclear maximum in the presence of laser show

marginal increments and decrements, ∆ρ ∼ (−1.11 to 0.00) a.u. Even the position

of nuclear maximum remains almost the same with marginal displacements ∆r ∼

(0.0, 0.0,±0.00002) a.u. The investigation of the time-evolving topology reveals the

presence of new features found in the form of (3,-3), (3,-1), and (3,+1) critical

points at various time steps along the laser. Since the choice of laser is linear along

Z, the CPs are always positioned on the (0,0,±Z). The local non-nuclear maxima,

(3,-3) CPs appears at the distances (0.00, 0.00,±Rnnm), where Rnnm ranges from 3.2

to 6.1 a.u. The value of electron densities at these NNMs ranges from 0.002 to 0.018

a.u. These NNMs are also accompanied by (3,-1) CPs. Just like Helium, here as well,

appear at time steps near the peaks (complete cycles, topt = 3.00, 4.00, 5.00, 6.00)

and valleys (half cycles, topt = 2.50, 3.50, 4.50, 5.50) of the laser pulse. At time steps

near Peaks and valleys, NNMs appear at +Z and -Z directions, respectively. However,

there also exist certain time steps around the peaks and valleys of the laser when

NNMs appear at ±Z simultaneously. The redistribution of time-dependent electron

density is reflected through gradient paths, Laplacian, and difference density plots.

The gradient paths show maximum bends in the Y-direction (perpendicular to the

laser). The appearance of NNMs in electron density dictates that the whole atomic

space could be partitioned into sub-regions, each containing a local maximum and

separated by zero-flux surfaces. It is to be noted that no zero-flux surfaces exist for

free-field atomic electron densities, which is not the case for time-evolving atomic

electron densities of Beryllium and Helium atoms.

We have performed atoms-in-molecules analysis of time-dependent electron densities

to evaluate properties such as charge, Norm, moments, and kinetic energies. The

calculations here show the time-varying decay in the norm. Fig. [3.4] shows

the variation of Norm in the Beryllium’s atomic basin NBe and two non-nuclear

maximum’s basins NNNM1 , NNNM2 . There is a loss in the Norm along time-steps

of the laser pulse. We observe that whenever there is a decrease in the Norm of
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Figure 3.4: Average number of electrons N(Ω) in non-overlapping regions of time-
dependent electron density distribution of Beryllium atom (placed at
origin) in the presence of linearly polarized laser field (Parameters -
ε0 = 0.100, and ω = 0.329 a.u.) along Z-direction. Lowest panel -
norm of Be nuclear maxima’s basin NBe, the middle two panel - norm
of non-lium nuclear maxima’s basin NNNM1 , andNNNM2 , and topmost
panel shown total norm NTotal. Level of theory: TDHF/aug-cc-pVDZ.
All the properties are mentioned in atomic units.

Beryllium’s atomic basin, there is an increase in one of the non-nuclear maximum’s

basin. This redistribution of total electrons in the whole system at the time steps

is done through the decrease of norm property in one basin (atomic basin) and

simultaneous increase in the other (NNM’s basin). The region’s Norm contained

Beryllium’s nuclear maximum, NBe ranges from 2.45 to 3.99 a.u., Whereas the Norm

in the areas having each of the two NNMs, NNNM1 , NNNM2 ranges from 0.005 to

1.4 a.u. Since we observe a decrease in Norm in this case, the increase in both the

NNMs is not symmetric like what was observed in Helium’s case.
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3.4 Conclusion
The time-dependent atomic electron densities and their properties are computed for

the test case, Helium and Beryllium atoms in the presence of Z-polarized linearly

laser fields. Because of the spherical symmetry of free-field atomic electron density,

different polarization directions will have the same effect as that of the Z-direction.

The nuclear electron densities are observed to lose their spherical symmetry and get

a new deformed yet symmetric shape in the presence of a laser pulse. The electron

density distribution shows alignment such that it elongates along the polarization

direction while shrinking in the perpendicular direction. Assertion of this fact is

demonstrated through the isocontour plots. It is also reflected in time-varying

gradient paths, which bends maximum at half and full cycles of laser pulses. The

gradients tend to bundle up in the direction of laser polarization. The time-varying

Laplacian depicts charge concentration at the regions of ±Z, and the field-free shell

structure is distorted. There seems to exist more number of nodes, that is, regions

where ∇2ρ(~r) = 0 along the time-varying fields. The difference in densities depicts

electron density values becoming negative in regions nearer to the atom’s center

and positive in regions far from it. The total norm in the Helium’s calculation is

conserved to 2.00, while it is not conserved in the Beryllium’s calculation. The

redistribution of time-dependent electron density is confirmed by calculating the

time-varying norm of the atomic basins and their counterpart non-nuclear basins.

The increase in the electron count in the non-nuclear basins compensates for the

number of electrons decreasing in the atomic basin. This trend is observed at each

half and full cycle of the linearly polarized laser pulses.
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Chapter 4 Molecular electron densi-

ties in a Linearly polarized laser:

A topological study and Non-

nuclear maxima

1The graphical abstracts shows the time evolving properties of water and HF molecules
in Z-polarized linear laser field.
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Abstract

This work presents time-evolving molecular electron densities and their gradient

lines, Laplacian, and difference electron densities in a Z-polarized linear laser field

for the test cases: Hydrogen Fluoride, Water, Methane, and Ethylene molecules. The

polarization direction of the laser field creates symmetric and cyclic deformations

along the path of polarization along the laser pulse. The gradient lines bend in

the directions perpendicular to the direction of polarization, and the Laplacian

show plots depicting charge concentrations at the terminal of molecular space. The

contour plots of electron density difference demonstrates increase or decrease in the

molecular electron density over certain regions in the molecular space. This work’s

novelty lies in the critical points of TDMED, especially non-nuclear maxima, through

the topological analysis of all the test cases. The electronic population analysis done

for the newly formed basins due to the creation of NNMs shows a significant number

of electrons residing in these regions.
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4.1 Introduction
Recent advancements in the twenty-first century led to the development of coherent

light sources, creating ultra-short laser pulses of few attosecond (1as = 10−18s)

timescales. Such timescales provide a way to directly control the rapid motion

of electrons in a molecule. Since the time evolution in time-dependent electron

density is responsible for bond-breaking and bond-forming in chemical reactions,

this has opened up another way of doing chemistry called attochemistry.[1–3] At-

tosecond technology has investigated ultrafast electronic dynamics in atoms and

molecules.[4, 5] Light-induced ultrafast electronic dynamics play an essential role

in the early stages of photosynthesis processes, radiation damages of biologically

relevant molecules, and chemical and biological processes where electron trans-

fer occurs.[6] In this respect, the quantum electron dynamical models have been

developed, solving the time-dependent Schrödinger equation (TDSE) with explicit

time-dependent Hamiltonian to simulate interactions of atoms and molecules in the

presence of ultrashort laser pulses. When the Hamiltonian is time-dependent, the

solution to TDSE has the following form,

ψ(~r, t) = τ̂ e
−ι
~

∫ t
t0
Ĥ(~r,t′)dt′

ψ(~r0, t) (4.1)

where τ̂ is the time-ordering operator. The formalism of time-ordering operator arises

because the time-dependent Hamiltonian is non-commutative at two different time

instances, that is [Ĥ(~r, t), Ĥ(~r, t′)] 6= 0. The Chebychev Propagator method[7] and

(t, t′) method[8–10] are two such numerical receipes incorportating time evolution

operator which have been developed to solve the TDSE with explicit time-dependent

Hamiltonians. Recently, Raj et al. have proposed a efficient and fast algorithm to

solve TDSE using (t, t′) and (t, t′, t′′) method for molecules interacting with short

laser pulses.[11] The solutions obtained from solving TDSE by these methods,

provide the time evolving molecular electronic wavefunctions ψ(~r, t) or molecular

orbitals for atoms and molecules, in the presence of time-dependent oscillating
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electric fields such as lasers. As a consequence, this interplay between theory and

experiments allows for the microscopic characterization of chemical processes.

According to the basic postulate of quantum mechanics, the wavefunction can be

used to determine all the physically observable informations about a quantum sys-

tem. Molecular electron density (MED) is one such important observable which

is a non-negative real-valued scalar-field property analytically obtained from the

wavefunctions or molecular orbitals (MOs). MED are quantities routinely evaluated

for molecules using X-ray scattering experiments.[12, 13] Therefore, MEDs find

its role important in understanding the molecular structure parameters and chem-

ical reactivity. The MED is evaluated from the 4N-dimensional time-independent

wavefunction ψ(x1,x2,· · · ,xN) as

ρ(~r) = N
∑
σ

∫
|ψ(x, x2, · · · , xN )|2d3r2 · · · d3rN (4.2)

Here, the x1, x2, · · · , xN represents the set of spin-coordinates (spin and position).

The summation runs over all the spin-coordinate, the integration over all but one

spatial coordinate, and N is the total number of electrons. MED, ρ(~r), is defined as

the probability of finding an electron at ~r around the volume element d3r. In this

work, we present the study of electronic dynamics for time-dependent molecular

electron density (TDMED) using analysis from topological tools, in the presence

of linearly-polarized lasers for various chemically different test molecules. The

time-evolution in TDMED ρ(~r, t) is incorporated via the time-dependent molecular

electronic wavefunctions ψ(~r, t) obtained from the solutions of TDSE. At the time

instant t, for the time-dependent wavefunction, ψ(~r, t) = ψ(x1, x2 · · · , xN , t), the

TDMED is evaluated as

ρ(~r, t) =
occ∑
i

ψi(~r, t)ψ∗i (~r, t) (4.3)

where the summation index i goes over all the set of occupied molecular orbitals

ψ(~r, t). Exploring the electronic dynamics of TDMED requires the study of the

response of electron density to the time-dependent linearly polarized laser. For the

174 Chapter 4 Molecular electron densities in a Linearly polarized laser: A

topological study and Non-nuclear maxima



free-field MEDs, Bader and coworkers showed the response of chemical reactions

resulted in the movement of critical points producing topological catastrophes.[14,

15] Ayers et. al. added to this notion through the electron preceding picture. In

this model, the electron-density response around the critical point correlates with

the magnitude of eigenvectors of the Hessian of ρ(~r).[16–18] In addition to this,

Eberhart and coworkers have recently developed a scheme called gradient bundle

analysis, which uses changes in the gradients and topology of MED to study the

response of electron density to external perturbations to gain insights into chemical

reactivity.[19, 20]

The information concerning the electronic dynamics of TDMED is not abundant

in the literature. However, few reports related to quantum molecular dynamics

of MED are present. The charge transfer in H+
3 and LiF is studied using quantum

molecular dynamics of MED’s topological properties.[21]. The report on the study of

the coupled electronic-nuclear dynamics, including the time dependence of electron

density, has been carried out for model systems.[22, 23] Another report presented

the photodissociation of NaI molecules with electron transfer, followed graphically

by the electron density contribution of the two valence orbitals.[24]

Bader and coworkers explored the in-depth topology of MED and developed the

quantum theory of atom-in-molecules (QTAIM).[14] The gradients of MED terminate

at one of the atomic nuclei. Bader utilized[25] this gradient feature to develop the

concept of partitioning the molecular space into atomic basins. The partitioning of

molecular space happens into exhaustive and nonoverlapping regions enclosing a

nuclei and separated by boundaries called interatomic surfaces or zero-flux surfaces

(ZFS). The ZFS of MED is an open surface, i.e.; it does not surround atomic nuclei in

the molecule from all directions. The MED-based atomic basins obeys the local virial

theorem. Therefore it is utilized to integrate the electron density and calculate the

average properties of these subsystems (atomic basins), such as charges, electrostatic

moments, polarizability, and kinetic energies. The MED-based QTAIM has been

utilized to study chemically relevant quantities such as electronegativity, lewis

acidity and basicity.[26, 27]
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The gradient vector field of MED, ∇ρ(~r) = ∂ρ
∂x x̂ + ∂ρ

∂y ŷ + ∂ρ
∂z ẑ, informs about the

nature of the function at ~r, i.e. if increasing, decreasing or flat. The solutions to

the differential equation d~r(s)/ds = ∇ρ(~r(s)) provides a set of points drawing a

path called gradient paths, ~r(s). All the non-zero density points where gradient

vanishes, ∇ρ(~r) = 0, represent the critical point (CP) of MED. The eigenvalues

and eigenvectors of the Hessian Hij(~r) = ∂2ρ(~r)/∂ri∂rj at those points are used to

find its rank and signature (λ, σ) and thereafter characterize the kind of CP. The

Laplacian of MED, L(~r) = -∇2ρ(~r, t) = (∂2/∂x2 +∂2/∂y2 +∂2/∂z2)ρ(~r, t), that is, the

sum of diangonal elements of Hessian. The regions where ∇2ρ(~r)<0 shows charge

concentration and regions show charge depletion when ∇2ρ(~r)>0. The Laplacian

has been utilized to locate electrophilic site.[14, 28]

The dominant form of MED presents local maxima, (3,-3) critical points mostly

near the atomic nuclei in the molecule, with few exceptions. For each pair of local

maxima of MED in molecules, there exists a (3,-1) CP, referred to as bond cp (BCP).

This BCP represents being maximum in two directions while minimum along the

path joining the pair of local maxima. The MED of every molecule features the

presence of (3,-3) and (3,-1) CPs. Also, the two other kinds, (3,+1) and (3,+3)

CPs, may be present in molecules. The (3,+1) CPs manifest the arrangement of

the (3,-1) BCPs in a ring fashion, called ring cp (RCP). The (3,+3) CPs represent

the local minima of MED in molecules. It results from the enclosed arrangement

of BCP and RCPs, called cage cp (CCP). Cyclopropane and tetrahedrane molecular

examples show RCP and CCP, respectively. Since there always exists a (3,-1) BCP in

between a pair of (3,-3) CPs, the gradient path line forming between those (3,-3)

CPs through (3,-1) BCP they are referred to as bond paths. The eigenvalues of the

Hessian and electron density at BCP have been used to determine parameters such

as bond ellipticity (a measurement of π character) and bond order.[29–33]

The molecular electron density distributions, ρ(~r), shows maxima at the nuclear

positions and then decays off exponentially. However, this being the most dominating

feature of ρ, there have been exceptions when maxima appear at non-nuclear

positions, which are called non-nuclear maxima (NNMs) or non-nuclear attractors
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(NNAs). NNMs was first theoretically predicted in alkali metal clusters [34–36], and

later experimentally observed in metallic beryllium and magnesium.[37] Dilithium,

Li2 molecule, has been studied with advanced theoretical methods to confirm that

the occurrence of NNM is not an artifact due to the level of theory employed.[38–42]

Glaser et al.[38] discussed that the third valence molecular orbital of Li2 causes

a negative curvature in the central bonding region, which is the reason for the

occurrence of NNM in Li2. Most of the advanced calculations support the existence

of NNM in the middle of the Li-Li bond, but for other systems, the same cannot be

said conclusively. In 1999, Pendas and co-workers[43] attempted to resolve this

uncertainty for homonuclear systems. They introduced the promolecular model,

in which the electron density of a molecule is made by the superposition of free

atomic densities. Observations from the internuclear variations predicted that NNMs

occurred in specific ranges, including the equilibrium bond length.[44] According to

them, the atomic shell structures could be a responsible factor for the formation of

NNMs when two atoms bind.

In this work, we present the study of time-dependent topology of TDMED in the pres-

ence of linearly-polarized laser-driven fields for Hydrogen Fluoride, Water, Methane

and Ethylene molecules as test cases. We employ atoms-in-molecule analysis to

compute the properties of atomic basins. All the topological properties of TDMED

are evaluated using the time-evolving wavefunctions along the laser pulse. These

time-dependent electronic wavefunctions are the output obtained from the in-house

package called Ab-initio Electron Dynamics (ABELDYN), which incorporates a numer-

ical solution to the TDSE using a (t, t′) real-time Hartree Fock method.[11] A general

trend of the with-field response of electron density, ρ(~r, t), in TDMED in the presence

of a linearly polarized laser shows an oscillatory motion about the free-field MED.

This picture elucidates the expansion and contraction of electron density isocontours

with time compared to the field-free MED. This fact is further confirmed via density

depletion and accumulation picture from the difference molecular electron density,

∆ρ(~r, t) = ρt(~r, t)−ρ0(~r, t) plots. These oscillatory motions of electron density create

deformations. As a consequence, they get reflected in their topological features.

The gradients of TDMED, ∇ρ(~r, t), provide information to perform time-dependent
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topological analysis concerning the time evolution in critical points, gradient-path,

bond paths, and zero-flux surfaces. The MED in the laser-driven field gets deformed.

We observe new critical points appearing at ε = 0.100a.u., especially NNMs, at the

laser pulse’s peaks and valleys of optical cycles. The NNMs appear in LPLs along Z

for electric field strengths ε ≥ 0.100a.u. In this manuscript, we measure the electron

density response in linear-polarized laser through the time evolution in topology.

4.2 Computational details
The test systems, Hydrogen Fluoride, Water, Methane and Ethylene molecules were

optimized at HF/aug-cc-pvdz using the electronic structure package Gaussian 09.

The optimization of Water, Ethylene molecule is done such that it lies on the YZ

plane, and the HF on the Z-axis. Two coordinates are chosen for Methane molecule

in such a way that the Z-axis coincides with its C2 axis in one and C3 axis in the other.

The coordinates of the optimized geometry were used as an input to obtain free-field

molecular orbitals, one-electron, two-electron, and dipole integrals (in X, Y, and Z

directions) from the modified GAMESS-US code. We take the free-field parameters

as input to the in-house RTHF code. We used the code to obtain molecular orbitals

coefficients for the test systems at each timestep in a continuous wave Linearly

polarized laser (CW-LPL) field. The chosen polarization direction of the laser was

to be along the Z-direction. We choose the laser pulse frequency as the free field

energy difference between HOMO and LUMO, ωHF = 0.688, ωwater = 0.547a.u,

ωmethane = 0.579 and ωethylene = 0.419 a.u. These frequency ranges fall within

the extreme UV range of light. The electric field strength of the laser used was

ε = 0.100a.u.. We use a total of 8 optical cycles. The two cycles times the laser pulse

rising (ton = 0− 2), two optical cycles in the CW region (tcw = 2− 4), two cycles

times the laser pulse switch off (toff = 4 − 6) and the remaining two free cycles

make up the total laser pulse duration. A box-type complex absorbing potential

with the box length of (20.00,20.00,20.00) a.u. was used for all the molecules.

The strength of complex absorbing potential used was 1.00. The input details are

provided in the supplementary information file provide all the parameters of the
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calculations. The norm (Ntot) throughout the pulse duration is conserved in our

calculation. The molecular orbital coefficients obtained from the RTHF code are

used as input to calculate the electron density and related properties, the gradients,

hessian, Laplacian, norm, critical points and atoms-in-molecules analysis, using the

in-house properties code, Ab-initio electron dynamics (ABELDYNPROP).

In the present work, we use the time evolving electronic wavefunctions from an in-

house code Ab-Initio Electron Dynamics (ABELDYN), solving Real Time Hartree-Fock

(RTHF) using (t, t′) method.[11, 45, 46] The molecular orbital coefficients of this

electronic wavefunction are used as an input at each time step for the calculation

of electronic properties. In the next subsections, we provide the description and

working of in-house ABELDYN code, which we have used to obtain time-dependent

molecular orbital coefficients.

Time-dependent molecular orbital coefficients obtained from the solutions

from RTHF using (t, t′) method: The ABELDYN-PROP the code requires inputs

in the form of pre-calculated molecular orbital coefficients for the user-specified

molecular system, at those time-step for which the time-dependent properties are

to be evaluated. The time-dependent molecular orbital coefficients are retrieved

from the output of in-house code ABELDYN, that solves time-dependent Schrödinder

equation numerically from the mean-field approach of RTHF using (t, t′) formalism

for a fixed nuclear geometry.[45, 46] The codes incorporates the effects from an os-

cillating electric field such as lasers, through suitable changes made in the electronic

hamiltonian. One of the main benefits from solutions of RTHF calculations is that,

it provides direct visualization of orbitals mixing and time-evolving densities and

observe what happens to electrons in molecules in the presence of ultrashort laser

fields.

The next sections provides a discussion to the set of results obtained for the prop-

erties calculated using ABELDYNPROP code using wave function information from

ABELDYN code.
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Figure 4.1: Time dependent electronic properties of Hydrogen fluoride molecule
(placed at Z-axis) in the presence of linearly polarized laser field (Pa-
rameters - ε0 = 0.100, and ω = 0.688 a.u.) along Z-direction: laser time
step topt - first column, molecular electron density ρ(~r, topt) - second
column, gradients lines of electron density ∇ρ(~r, topt) - third column,
Laplacian of electron density ∇2ρ(~r, topt) - fourth column, difference
density ∆ρ(~r, topt) - fifth column, calculated on the YZ-plane, x=0.
Negative values are represented by red-colored contours, and positive
values by black/grey-colored contours. The critical points representa-
tion: Black dots - (3,-3) CPs, Green dots - (3,-1) CPs, Red dots - (3,+3)
CPs, Purple dots - (3,+1) CPs. The yellow and maroon colored lines
depict basin boundaries and bond paths, respectively. Level of theory:
TDHF/aug-cc-pVDZ. The intermediate steps are shown in Appendix
Section, Fig. [4.3]. All the properties are mentioned in atomic units.

4.3 Results and Discussion
Hydrogen Fluoride: The molecular electron density (MED), gradient vector lines,

and Laplacian of Hydrogen fluoride in the field-free case has been demonstrated in

the first row of Fig. [4.1]. We considered the HF molecule to be oriented along the

Z-axis. The field-free MED distribution centered around the Fluorine atom is the

widest in Z, followed by the Y direction. At the same time, it shrinks in Y when going

down from Fluorine to the Hydrogen atom in the HF molecule. It contains two (3,-3)
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CPs corresponding to local nuclear maxima at Fluorine and Hydrogen atoms in HF

with MED values of 429.28 and 0.394 a.u. respectively. A (3,-1) Bond CP, whose

MED value is 0.390 a.u., lies between the two maxima closer to the Hydrogen atom.

All the gradient lines converge to one of the local maxima, dividing the molecular

space into two non-overlapping regions separated by basin boundary. The field-free

norms of Fluorine and Hydrogen basins are 9.760 and 0.240 a.u. respectively. The

computed dipole for the HF molecule is 0.747 a.u. The two atoms, Hydrogen and

Fluorine, in HF, are very different chemically. Therefore, the effect of the laser field

on their respective basins would be very different.

Fig. [4.1] presents the MED, its gradients, Laplacian, and difference density plots

in the presence of the Z-polarized laser field. The TDMED distribution of the HF

molecule widens in the Y direction. The gradient vector lines bend in the Y direction.

The red and grey-colored contour plots in Fig. [4.1] represent negative valued

Laplacian and difference density. The negatively valued Laplacian shows the charge-

accumulated regions positioned over and below the Fluorine and Hydrogen atoms.

The difference density plots reveal that the electron density values go down in either

±Z directions at half cycle and full cycle of the laser. In Fig. [4.2], the bottom

two panels plot the time-dependent norm of Fluorine and Hydrogen basins. The

norm of atomic basins, NF and NH , shows a complementary relationship. At full

cycle timesteps of the laser, the Hydrogen’s basin NH population increases, while in

Fluorine’s basin, NH population decreases. The vice-versa is followed at half-cycle

steps. The time-dependent norm of atomic basins ranges from ∼9.3 to 10.0 a.u. for

NF , whereas it ranges from ∼0.00 to 0.60 a.u. for NH . The field-free (3,-1) BCP

and (3,-3) CP (of Hydrogen) are very close, and their MED values differ marginally

by 0.004 a.u. When subjected to a Z-polarized laser field, at half-cycle timesteps

along the laser, these two CPs merge, forming a degenerate CP. At the same timestep,

at the extended Z-axis (0.0, 0.0,−Z), an NNM forms. The basin population of this

NNM, NNNM1 , near the 2.5 optical cycles is 0.02 a.u., which increases to 0.035 a.u.

at the 4.50 cycle and decreases after that in the succeeding half cycles of the laser.

Moreover, the formation of another NNM, NNM2, occurs near full cycles of the laser.

These NNMs are located near Fluorine on the Z-axis (0.0, 0.0,+Z). The maximum
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Figure 4.2: Average number of electrons N(Ω) in non-overlapping regions of time-
dependent electron density distribution of Hydrogen fluoride molecule
(placed at Z-axis) in the presence of linearly polarized laser field (Pa-
rameters - ε0 = 0.100, and ω = 0.688 a.u.) along Z-direction. Lowest
panel - norm of Fluorine nuclear maxima’s basin NF , second panel -
norm of Hydrogen nuclear maxima’s basin NH , third and fourth panel -
norm of non-nuclear maxima’s basin NNNM1 , andNNNM2 , and topmost
panel - error in total norm |∆N |. Level of theory: TDHF/aug-cc-pVDZ.
All the properties are mentioned in atomic units.

norm of basins containing these NNMs, NNNM2 is 0.012, which is almost (1/3)rd of

NNNM1 .

Water: In the YZ-oriented water molecule, Z being the principle axis, the field-free

MED distribution is spread widest along Z, followed by Y and X. It contains three

(3,-3) CPs, the local maxima at positions near Oxygen and Hydrogen atoms with

MED values 297.40 and 0.404 a.u. According to QTAIM, the field-free molecular

space of the MED function may be divided into three disjoint subspaces, one region

corresponding to the Oxygen basin and two other of Hydrogen basins. The average

number of electrons in the Oxygen and Hydrogen atomic basins are 9.259 and

0.370 a.u. respectively. Each Hydrogen basin is separated from the Oxygen basin

by cone-shaped zero-flux surface. The yellow colored line in Fig. 4.3 row 1 is its 2D

182 Chapter 4 Molecular electron densities in a Linearly polarized laser: A

topological study and Non-nuclear maxima



Figure 4.3: Time dependent electronic properties of water molecule (oriented at YZ-
plane) in the presence of linearly polarized laser field (Parameters - ε0 =
0.100, and ω = 0.546 a.u.) along Z-direction: laser time step topt - first
column, molecular electron density ρ(~r, topt) - second column, gradients
lines of electron density ∇ρ(~r, topt) - third column, Laplacian of electron
density ∇2ρ(~r, topt) - fourth column, difference density ∆ρ(~r, topt) -
fifth column, calculated on the YZ-plane, x=0. Negative values are
represented by red-colored contours, and positive values by black/grey-
colored contours. The critical points representation: Black dots - (3,-3)
CPs, Green dots - (3,-1) CPs, Red dots - (3,+3) CPs, Purple dots - (3,+1)
CPs. The yellow and maroon colored lines depict basin boundaries
and bond paths, respectively. Level of theory: TDHF/aug-cc-pVDZ. The
intermediate steps are shown in Appendix Section, Fig. [4.4]. All the
properties are mentioned in atomic units.

depiction on the YZ plane, called the basin boundaries. The basin boundaries are

parallel in the negative Z-axis and arranged almost linearly in the Y.

TDMED, its gradient vector lines, Laplacian, and difference density plots on the

YZ-plane for water in the Z-polarized linear laser fields are portrayed in Fig. 4.3.

The deformations of MED in the Z-polarized field follow C2V symmetry throughout

the laser pulse. At time steps of full cycles (2.0, 3.0. 4.0. 5.0, and 6.0), the

time-dependent MED distribution shrinks in the region near and above the oxygen

atom (wider in Z and narrower in Y) and expands in the region near and below
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Figure 4.4: Average number of electrons N(Ω) in non-overlapping regions of time-
dependent electron density distribution of water molecule (oriented on
YZ-plane) in the presence of linearly polarized laser field (Parameters
- ε0 = 0.100, and ω = 0.688 a.u.) along Z-direction. Lowest panel -
norm of oxygen nuclear maxima’s basin NO, second panel - norm of
Hydrogen nuclear maxima’s basin NH , third and fourth panel - norm of
non-nuclear maxima’s basin NNNM1 , andNNNM2 , and topmost panel -
error in total norm |∆N |. Level of theory: TDHF/aug-cc-pVDZ. All the
properties are mentioned in atomic units.

hydrogen atoms (narrower in Z and wider in Y). The trend is reversed at half-cycle

(2.50, 3.50, 4.50, 5.50) time steps. At the full cycles, the Laplacian depicts a red

region above the Oxygen atom, signaling charge concentration and vice-versa at

half cycles. Similar patterns of MED value depletion and increments are shown in

difference density plots. Fig. 4.4, panel 1 and 2 (from the bottom) shows Hydrogen

and Oxygen basin populations. The norm of Oxygen and both Hydrogen ranges

(8.8-9.6) and (0.20-0.60) a.u. respectively. The time-varying norms of Oxygen

and Hydrogen show an inverse relation w.r.t to each other; that is, as the norm of

the Oxygen basin increases, there is a decrease in Hydrogen’s norm. The reason is

evident because in the laser-driven field when the molecular region of the atomic

basin of Oxygen atoms swells up, the regions of the atomic basin of Hydrogen atoms

shrink simultaneously.
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The gradient lines bend in the direction perpendicular to the polarization field

direction, i.e., X and Y directions. The topological analysis of TDMED at full cycles

reveals an NNM accompanied by a (3,-1) CP located on the positive Z-axis above

the Oxygen atom. However, it could be accompanied by more number of (3,-1) CPs

or (3,+1) RCPs, (3,+3) CCPs. The time-dependent 2D movie shows the gradient

vector lines emptying this region by bending away or closing/converging towards a

(3,-1) BCP or (3,+3) CCP. A well-shaped boundary separates the region containing

this NNM. In addition to this, At half cycles, the formation of two NNMs on the YZ

plane in the extended OH-bond direction takes place. At the same YZ-plane and

same time steps, in addition to these NNMs, the formation of three (3,-1) BCPs,

one (3,+1) RCP, and one (3,+3) CCP, or more may take place along the laser. A

separate basin containing these NNMs is formed at these, whose boundaries are very

close to Hydrogen’s atomic basin. In addition, a basin boundary is formed on the

XY-plane, which borders the two NNMs basins. We call this NNM as NNM type 1,

NNM1, and the other kind as NNM as NNM2. The MED values of NNM1 are of the

order 10−2 − 10−4 a.u., while that of NNM2, appearing near Oxygen atom are of

the order 10−3 − 10−6 a.u. The norm population of NNM1, NNNM1 is around 0.025

at 2.50 opt cycles, increasing to about 0.05 at 3.50 and 4.50 optical cycles. The

population of electrons in the NNM2 basin, NNNM2 is 0.006 a.u. at the 2.00 cycle

and increases to 0.012 and 0.0.16 a.u., at 3.00 and 4.00 optical cycles. It is to be

noticed that the norm of NNM1 is always higher than the norm of NNM2. Therefore,

electron density redistribution is more facile towards the Hydrogen’s side than the

Oxygen’s region.

Time-dependent electron density properties for the Y-polarized laser field case have

been depicted in Fig. [4.5]. Unlike the Z-polarized laser, the TDMED follows CS

symmetry in the Y-polarized laser field. The TDMED expands in the positive Y-

direction and shrinks in the negative Y at half-cycle time steps and vice-versa at

full cycles. The time-dependent difference density contour plots show red regions

representing the decreased value of MED at those molecular spaces. These regions

appear symmetrically in positive and negative Y directions along the laser. Also,

the Laplacian along the laser pulse shows red-colored contour plots depicting its
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Figure 4.5: Time dependent electronic properties of water molecule (oriented at YZ-
plane) in the presence of linearly polarized laser field (Parameters - ε0 =
0.100, and ω = 0.546 a.u.) along Y-direction: laser time step topt - first
column, molecular electron density ρ(~r, topt) - second column, gradients
lines of electron density ∇ρ(~r, topt) - third column, Laplacian of electron
density ∇2ρ(~r, topt) - fourth column, difference density ∆ρ(~r, topt) -
fifth column, calculated on the YZ-plane, x=0. Negative values are
represented by red-colored contours, and positive values by black/grey-
colored contours. The critical points representation: Black dots - (3,-3)
CPs, Green dots - (3,-1) CPs, Red dots - (3,+3) CPs, Purple dots - (3,+1)
CPs. The yellow and maroon colored lines depict basin boundaries
and bond paths, respectively. Level of theory: TDHF/aug-cc-pVDZ. The
intermediate steps are shown in Appendix section, Fig. [4.5]. All the
properties are mentioned in atomic units.

negative value. The 2D plots are shown in Fig. [4.5] row 2 points their locations at

the top and bottom right of the YZ-plane. Similar plots are shown in row 3 but at

the top and bottom left of the YZ plane. These regions depict charge-concentrated

regions. The time-dependent gradient vector lines tend to move in the ±Z directions.

The norm of Oxygen (NO) and Hydrogen (NHr , NHl) atoms is very different from

what was noticed in the TDMED along Z-polarized laser (refer Fig. [4.6]). Here the

electron population changes have an inverse relation among the hydrogen atoms.

The population in the left Hydrogen basin decreases while it increases in the right

Hydrogen basin. This population NHr , NHl , ranges from 0.00 to 0.70 au. The
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Figure 4.6: Average number of electrons N(Ω) in non-overlapping regions of time-
dependent electron density distribution of water molecule (oriented on
YZ-plane) in the presence of linearly polarized laser field (Parameters
- ε0 = 0.100, and ω = 0.688 a.u.) along Y-direction. Lowest panel -
norm of oxygen nuclear maxima’s basin NO, second panel - norm of
Hydrogen nuclear maxima’s basin NH , third and fourth panel - norm of
non-nuclear maxima’s basin NNNM1 , andNNNM2 , and topmost panel -
error in total norm |∆N |. Level of theory: TDHF/aug-cc-pVDZ. All the
properties are mentioned in atomic units.

population of the Oxygen basin changes cyclically but remains like this till the 7th

optical cycle and increases marginally from there on. The population of the Oxygen

basin, NO, ranges (from 8.8 to 9.6). We observe that near the half and full-cycle

timesteps, one of the Hydrogen’s (3,-3) CP coalesces with its respective (3,-1) CP.

The topological analysis of this TDMED shows that after the coalesce formation of

NNM CPs (one or two) takes place and (3,-1) BCPs, (3,+1) RCPs, and (3,+3) CCPs

may appear. The critical points appear symmetrically on the YZ plane’s left and right

sides. The population of the NNMs formed on the right side, NNNMr , ranges from

0.006 to 0.018. A similar population range is observed on the left side as well.

Methane: Fig. [4.7] and [4.9] demonstrate the TDMED distribution of methane

molecule and its gradient, Laplacian, and difference density plots. The linear laser

field’s polarization direction is the Z direction, but the molecule is oriented such that
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the polarization would become parallel to its C2 and C3 axis. Fig. [4.7] and [4.9]

shows the plots on the YZ plane containing the H-C-H bond of methane molecule

for when the polarization is parallel to C2 and C3 respectively. Since the molecule is

symmetrical, plotting TDMED and its properties in one of the H-C-H would suffice to

understand similar or complementary changes in other H-C-H planes or Hydrogens

and the molecule overall. The field-free MED distribution is depicted on the YZ-

plane in the first rows of Fig. [4.7] and [4.9]. The distribution shows similarities to

Water’s MED distribution. The difference is that the heavy atom, the Carbon, in this

case, occupies less molecular space when compared to hydrogen. Also, the basin

boundaries are V-shaped, unlike Water’s free-field MED distribution. The free-field

MED of Methane contains 5 (3,-3) CPs, one of Carbon and the other four of hydrogen,

with MED values of 120.57 and 0.388 a.u. respectively. In Bader’s analysis, we

would find five Bader volumes according to QTAIM theory, each containing one

atomic nuclear maximum. The average number of electrons in the Carbon basin is

5.695 a.u. While in Hydrogen basins is 1.076 a.u.

The nature of TDMED and its properties of methane in a Z-polarized laser field (|| to

C2) show similarities with the TDMED of Water. The TDMED distribution becomes

wider in Y and Z. The gradient vector lines on the YZ plane move away from the Z

directions and bend towards the ±Y directions to the linear field. The topological

investigation of TDMED of methane reveals the presence of NNM accompanied

with (3,-1) BCPs on the YZ-plane near the half cycles timesteps (2.50, 3.50, 4.50,

5.50) of the laser pulse (refer Fig. [4.7], row 3). NNMs would be observed on the

other H-C-H plane perpendicular to the former near the laser’s full cycle timesteps

(2.00, 3.00, 4.00, 5.00, 6.00). These NNMs and their respective (3,-1) BCPs are

found to be located on the YZ-plane along the extended C-H bond sites. One of the

features observed in TDMED distributions contains gradient vector lines converging

to (3,+1) RCPs and (3,+3) CCPs on the YZ plane. These RCPs and CCPs are found

to be located on the Z-axis above the Carbon atoms or middle left/right position

in the frame of the YZ-plane shown in Fig. [4.7] The red-colored contour plots

in the time-dependent Laplacian representing charge-concentrated regions in the

molecular space are arranged in an enclosing fashion around the H-C-H of methane.
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Figure 4.7: Time dependent electronic properties of methane molecule in the pres-
ence of linearly polarized laser field (Parameters - ε0 = 0.100, and
ω = 0.5799 a.u.) along Z-direction parallel to its C2-axis: laser time
step topt - first column, molecular electron density ρ(~r, topt) - second
column, gradients lines of electron density ∇ρ(~r, topt) - third column,
Laplacian of electron density ∇2ρ(~r, topt) - fourth column, difference
density ∆ρ(~r, topt) - fifth column, calculated on the YZ-plane, x=0.
Negative values are represented by red-colored contours, and positive
values by black/grey-colored contours. The critical points representa-
tion: Black dots - (3,-3) CPs, Green dots - (3,-1) CPs, Red dots - (3,+3)
CPs, Purple dots - (3,+1) CPs. The yellow and maroon colored lines
depict basin boundaries and bond paths, respectively. Level of theory:
TDHF/aug-cc-pVDZ. The intermediate steps are shown in Appendix
Section, Fig. [4.6]. All the properties are mentioned in atomic units.

The 2D time-dependent movies depict the enclosed plot moving around the H-C-H

in two major semi-circle island-like features. The time-dependent norm of Carbon

and Hydrogen atoms are shown in the Fig. [4.8]. The behaviour of norm in the

pairs (H1, H2) and (H3, H4) (See Methane molecule depicted inside the plot in Fig.

[4.8]) follows a inverse relation shown in black and red colors.

The TDMED of methane in the Z-polarized laser field parallel to the C3-axis is very

different to that discussed above. Here, the Z-polarization is parallel to one of the

C-H bonds in methane. Plots for these are shown in Fig. [4.9]. The time-dependent
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Figure 4.8: Average number of electrons N(Ω) in non-overlapping regions of time-
dependent electron density distribution of methane molecule in the
presence of linearly polarized laser field (Parameters - ε0 = 0.100, and
ω = 0.579 a.u.) along Z-direction, parallel to its C2 axis. Lowest panel
- norm of carbon nuclear maxima’s basin NO, second panel - norm of
Hydrogen nuclear maxima’s basin NH , third and fourth panel - norm of
non-nuclear maxima’s basin NNNM1 , andNNNM2 , and topmost panel -
error in total norm |∆N |. Level of theory: TDHF/aug-cc-pVDZ. All the
properties are mentioned in atomic units.

topology of TDMED of methane in this case show two kinds of NNMs on the ±Z-axis.

The first kind of NNM, NNM1, is located on the +Z axis above the Hydrogen atom

of the C-H bond, while the other one NNM2 is found on the -Z axis, right at the

center of the three Hydrogen atoms. These NNMs are accompanied with other

(3,-1) BCPs, (3,+1) RCPs, and (3,+3) CCPs on the YZ-plane shown in the plots.

The time-dependent norms shown Fig. [4.10]. In TD norm plot of the Hydrogens

(second panel from bottom), NH , shows black colored plots for Hydrogen basins,

H1, H2, and H3 (See the location of H2, H3 and H4 in the inset figure of Methane)

which ranges from 0.30 to 1.50 a.u. In the same panel, the red-colored plot shows

the H1 atom basin’s norm, which lies on the C-H bond parallel to the polarization

axis. When the norm in H1 increases, the norm in H2, H3, and H4 basins decrease.

No specific pattern is drawn in the norm of Carbon atom’s basin. However, this norm
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Figure 4.9: Time dependent electronic properties of methane molecule in the pres-
ence of linearly polarized laser field (Parameters - ε0 = 0.100, and
ω = 0.579 a.u.) along Z-direction which is parallel to its C3-axis:
laser time step topt - first column, molecular electron density ρ(~r, topt)
- second column, gradients lines of electron density ∇ρ(~r, topt) - third
column, Laplacian of electron density ∇2ρ(~r, topt) - fourth column, dif-
ference density ∆ρ(~r, topt) - fifth column, calculated on the YZ-plane,
x=0. Negative values are represented by red-colored contours, and
positive values by black/grey-colored contours. The critical points rep-
resentation: Black dots - (3,-3) CPs, Green dots - (3,-1) CPs, Red dots -
(3,+3) CPs, Purple dots - (3,+1) CPs. The yellow and maroon colored
lines depict basin boundaries and bond paths, respectively. Level of the-
ory: TDHF/aug-cc-pVDZ. The intermediate steps are shown in Appendix
section, Fig. [4.7]. All the properties are mentioned in atomic units.

oscillates between 4.9 to 6.4 a.u. The norms of NNM, NNM1, NNNM1 maximizes

to 0.29 a.u., which is quite significant. While its lowest value of norm is 0.05 a.u.

The norm range for NNM2 from 0.04 to 0.12 a.u.

Ethylene: The field-free MED of ethylene molecules, placed on the YZ-plane, is

distributed widest along the Z direction while narrower in the Y direction, as shown

in Fig. [4.11], row 1. This MED contains six (3,-3) CPs, two nuclear maximums

corresponding to Carbon (ρ−3 = 120.79), and four nuclear maximum (ρ−3 = 0.394)

corresponding to Hydrogen atoms. Also, the distribution includes five (3,-1) BCPs

(ρ−1 = 0.350 between C-C bond, ρ−1 = 0.287) between C-H bond). The Elliptical
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Figure 4.10: Average number of electrons N(Ω) in non-overlapping regions of time-
dependent electron density distribution of methane molecule in the
presence of linearly polarized laser field (Parameters - ε0 = 0.100, and
ω = 0.579 a.u.) along Z-direction, parallel to its C3 axis. Lowest panel
- norm of carbon nuclear maxima’s basin NO, second panel - norm of
Hydrogen nuclear maxima’s basinNH , third and fourth panel - norm of
non-nuclear maxima’s basin NNNM1 , andNNNM2 , and topmost panel -
error in total norm |∆N |. Level of theory: TDHF/aug-cc-pVDZ. All the
properties are mentioned in atomic units.

plane separates the C-C atomic basins, while the C-H atomic basins are divided by

a curved ZFS. For this molecule, we used two axes of polarization: the Z and Y

directions. The polarization direction Z is parallel to the C-C bond of the ethylene

molecule, while the Y direction is perpendicular to it.

Fig. [4.11] depicts the time-dependent MED, gradient lines, Laplacian, and differ-

ence density plots for Methane in Z-polarized laser fields. For the Z-polarized laser,

the TDMED contour plots show the distribution becoming elongated along the Z

axis while getting narrower in Y. For this case, the gradient vector field lines tend to

move away and bend toward the Y direction. These gradient vector lines converge

into minima (3,+3) CPs. These minimum CPs are located either on the ±Z axis or

at the end winds of the basin boundaries for the C-C bonds. The topological analysis

shows the presence of NNMs in the TDMED distribution. The NNMs are present
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Figure 4.11: Time dependent electronic properties of Ethylene molecule in the
presence of linearly polarized laser field (Parameters - ε0 = 0.100, and
ω = 0.419 a.u.) along Z-direction which is parallel to the C-C bond of
C2H4 molecule: laser time step topt - first column, molecular electron
density ρ(~r, topt) - second column, gradients lines of electron density
∇ρ(~r, topt) - third column, Laplacian of electron density ∇2ρ(~r, topt) -
fourth column, difference density ∆ρ(~r, topt) - fifth column, calculated
on the YZ-plane, x=0. Negative values are represented by red-colored
contours, and positive values by black/grey-colored contours. The
critical points representation: Black dots - (3,-3) CPs, Green dots -
(3,-1) CPs, Red dots - (3,+3) CPs, Purple dots - (3,+1) CPs. The yellow
and maroon colored lines depict basin boundaries and bond paths,
respectively. Level of theory: TDHF/aug-cc-pVDZ. The intermediate
steps are shown in Appendix Section, Fig. [4.8]. All the properties are
mentioned in atomic units.

at two sites. They could be situated along the ±Z-axis or on the right/left top or

bottoms on the YZ-plane shown in the plots. It is also noticed that the ZFS plane

between the C-C bond also shows significant bends in either direction of polarized

field Z.

Similar properties plots with different Y-polarized linearly laser fields are depicted

in Fig. [4.12]. This polarization direction is perpendicular to the C-C bond of the

ethylene molecule. The TDMED contour plots show that the distribution blows up

in the +Y direction at full cycle timesteps while the vice-versa is observed in the -Y
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Figure 4.12: Time dependent electronic properties of Ethylene molecule in the
presence of linearly polarized laser field (Parameters - ε0 = 0.100,
and ω = 0.419 a.u.) along Y-direction which is perpendicular to
the C-C bond of C2H4 molecule: laser time step topt - first column,
molecular electron density ρ(~r, topt) - second column, gradients lines
of electron density ∇ρ(~r, topt) - third column, Laplacian of electron
density ∇2ρ(~r, topt) - fourth column, difference density ∆ρ(~r, topt) -
fifth column, calculated on the YZ-plane, x=0. Negative values are
represented by red-colored contours, and positive values by black/grey-
colored contours. The critical points representation: Black dots - (3,-3)
CPs, Green dots - (3,-1) CPs, Red dots - (3,+3) CPs, Purple dots -
(3,+1) CPs. The yellow and maroon colored lines depict basin bound-
aries and bond paths, respectively. Level of theory: TDHF/aug-cc-pVDZ.
The intermediate steps are shown in Appendix section, Fig. [4.9]. All
the properties are mentioned in atomic units.

direction. The gradient field lines show them moving away and bending towards the

±Z directions. These gradient field lines converge to minima (3,+3) CPs. These CPs

are located near the ±Y-axis on the YZ plane. The NNMs in the TDMED are located

either on the ±Y or top and bottom around the Y axis. In addition, bow-shaped

basin boundaries get formed in either direction of the oscillation field Y.
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4.4 Conclusion
The TDMED and its properties are evaluated for test cases, Hydrogen Fluoride, Water,

Methane, and Ethylene molecules in the presence of Z and Y-polarized linear laser

fields. It is evident through the contour plots of TDMED distribution that it shows

deformations, as it tends to align in the direction of field polarization. The behavior

of deformations is symmetric and cyclic w.r.t polarization direction over the laser

pulse timesteps. The Hydrogen’s nuclear maxima (3,-3) CPs and its respective (3,-1)

CPs coalesced for the cases of HF in Z-polarized laser and water in Y-polarization. In

this work, for every test case, we have found new critical points, mainly NNMs, along

the Z-axis or the extended bonding regions of the molecule. The average number

of electrons, the norm of each nuclear and non-nuclear atomic basin, is calculated.

The time-dependent norms among nuclear basins (such as the Oxygen-Hydrogen

pair and carbon-hydrogen pair) have been found to follow an inverse relationship.

The population of electrons in basins containing NNMs has been small in magnitude

but yet significant when compared to atomic basins.
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Appendix

A1. Physical quantites in atomic units and conver-
sion factors

The physical quantities such as distance, time, frequency often are mentioned in

atomic units in the present thesis. We here provide a brief description of atomic

units for these quantites.

Distance, r: The unit of distance in atomic units is provided by the defination of

Bohr radius, a0. Formally, 1a.u. ∼ 0.529 × 10−11m. This conversion is calculated

using the following form,

r = (4πε0~)
4π2mee2 (4.1)

Here, in Eq. [4.1], me, and e represents the mass(9.11× 1031kg) and charge(1.9×

1019C) of electron respectively. ~(6.626× 10−34m2kgs−1) is the plank’s constant.

Time, t: The time taken for an electron to travel a distance equivalent of 1 Bohr

radius or 1 a.u. The value of atomic unit in time is equal to 2.42 × 10−17s. It is

calculated using the following form, h3

8π3mee4 .

Energy, ε: Two times the binding energy of a Hydrogen atom is considered as one

unit of energy in atomic units. One unit energy in atomic units 27.211 eV and

evaluate using the form, 4π2mee4

(4πε0h)2 = 4.36× 10−18J .

Frequency, ν: The frequency in atomic units is given as, ν = ε
h = 4π2mee4

(4πε0)2h3 =

4.134× 1016Hz.



Angular Frequency, ω: The angular frequency is defined as, ω = 2πω = 8π3mee4

(4πε0)2h3 =

2.597× 1017rad/s.

Electric Field Strength, E0: In atomic units, the Electric Field Strength is equivalent

to 5.14× 1011V/m. It is evaluated using the following form, E0 = ε
ea0

= 4π3mee3

h2 .

Intensity, I: Intensity in atomic units is related to the square of electric field in

vaccum. It is given by, I = 1
2εcE0 = 3.51× 1016W/cm2.

Quiver distance in a plane wave field, α0: When an electron is subjected to one

atomic unit of field intensity of any plane wave. It is given by, α0 = E0
ω2 .

A2. Appendix: Chapter 2

The ABELDYNPROP code is written specifically for cartesian gaussian functions. The

general form of a cartesian gaussian function for a exponent α, centered around an

atom ~A with angular indices l (≡ l,m,n) is given by Eq. [4.2]

η(α, ~A,~l) = (x− xA)l(y − y −A)m(z − zA)n exp[−α | ~r − ~A |2] (4.2)

The exponent α is a real and positive scalar quantity, and the vector ~A represent

the 3D cartesian of atom A, that is, (xA, yA, zA). The qunatity |~r − ~A| represents the

distance between the two vectors and calculate as given in Eq.

| ~r − ~A |= [(x− xA)2 + (y − yA)2 + (z − zA)2]
1
2 (4.3)

A2.1. Analytical expression for cartesian gaussian-
type functions in position space

The following list of equations represents the S, P, D and F-type cartesian gaussian

functions.

S-type function:

ΦS(~r) = exp[−α | ~r − ~A |2] (4.4)
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P-type function:

ΦPX (~r) = (x− xA) exp[−α | ~r − ~A |2] (4.5)

ΦPY (~r) = (y − yA) exp[−α | ~r − ~A |2] (4.6)

ΦPZ (~r) = (z − zA) exp[−α | ~r − ~A |2] (4.7)

D-type function:

ΦDXX (~r) = (x− xA)2 exp[−α | ~r − ~A |2] (4.8)

ΦDY Y (~r) = (y − yA)2 exp[−α | ~r − ~A |2] (4.9)

ΦDZZ (~r) = (z − zA)2 exp[−α | ~r − ~A |2] (4.10)

ΦDXY (~r) = (x− xA)(y − yA) exp[−α | ~r − ~A |2] (4.11)

ΦDXZ (~r) = (x− xA)(z − zA) exp[−α | ~r − ~A |2] (4.12)

ΦDY Z (~r) = (y − yA)(z − zA) exp[−α | ~r − ~A |2] (4.13)

F-type function:

ΦFXXX (~r) = (x− xA)3 exp[−α | ~r − ~A |2] (4.14)

ΦFY Y Y (~r) = (y − yA)3 exp[−α | ~r − ~A |2] (4.15)

ΦFZZZ (~r) = (z − zA)3 exp[−α | ~r − ~A |2] (4.16)
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ΦFXXY (~r) = (x− xA)2(y − yA) exp[−α | ~r − ~A |2] (4.17)

ΦFXXZ (~r) = (x− xA)2(z − zA) exp[−α | ~r − ~A |2] (4.18)

ΦFY Y Z (~r) = (y − yA)2(z − zA) exp[−α | ~r − ~A |2] (4.19)

ΦFXY Y (~r) = (x− xA)(y − yA)2 exp[−α | ~r − ~A |2] (4.20)

ΦFXZZ (~r) = (x− xA)(z − zA)2 exp[−α | ~r − ~A |2] (4.21)

ΦFY ZZ (~r) = (y − yA)(z − zA)2 exp[−α | ~r − ~A |2] (4.22)

ΦFXY Z (~r) = (x− xA)(y − yA)(z − zA) exp[−α | ~r − ~A |2] (4.23)

A2.2. Analytical expression for the first order carte-
sian gaussian-type functions

First order derivatives of the above mentioned functions are given below. First order

derivative of S-type function:

∂

∂x
ΦS(~r) = −2α(x− xA) exp[−α | ~r − ~A |2] (4.24)

∂

∂y
ΦS(~r) = −2α(y − yA) exp[−α | ~r − ~A |2] (4.25)

∂

∂z
ΦS(~r) = −2α(z − zA) exp[−α | ~r − ~A |2] (4.26)
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First order derivative of PX function:

∂

∂x
ΦPX (~r) = [1− 2α(x− xA)2] exp[−α | ~r − ~A |2] (4.27)

∂

∂y
ΦPX (~r) = −2α(y − yA)(x− xA) exp[−α | ~r − ~A |2] (4.28)

∂

∂z
ΦPX (~r) = −2α(z − zA)(x− xA) exp[−α | ~r − ~A |2] (4.29)

First order derivative of PY function:

∂

∂x
ΦPY (~r) = −2α(x− xA)(y − yA) exp[−α | ~r − ~A |2] (4.30)

∂

∂y
ΦPY (~r) = [1− 2α(y − yA)2] exp[−α | ~r − ~A |2] (4.31)

∂

∂z
ΦPY (~r) = −2α(z − zA)(y − yA) exp[−α | ~r − ~A |2] (4.32)

First order derivative of PZ function:

∂

∂x
ΦPZ (~r) = −2α(x− xA)(z − zA) exp[−α | ~r − ~A |2] (4.33)

∂

∂y
ΦPZ (~r) = −2α(y − yA)(z − zA) exp[−α | ~r − ~A |2] (4.34)

∂

∂z
ΦPZ (~r) = [1− 2α(z − zA)2] exp[−α | ~r − ~A |2] (4.35)

First order derivative of DXX function:

∂

∂x
ΦDXX (~r) = [2− 2α(x− xA)2](x− xA)exp[−α | ~r − ~A |2] (4.36)

∂

∂y
ΦDXX (~r) = −2α(y − yA)(x− xA)2exp[−α | ~r − ~A |2] (4.37)
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∂

∂z
ΦDXX (~r) = −2α(z − zA)(x− xA)2exp[−α | ~r − ~A |2] (4.38)

First order derivative of DY Y function:

∂

∂x
ΦDY Y (~r) = −2α(x− xA)(y − yA)2exp[−α | ~r − ~A |2] (4.39)

∂

∂y
ΦDY Y (~r) = [2− 2α(y − yA)2](y − yA)exp[−α | ~r − ~A |2] (4.40)

∂

∂z
ΦDY Y (~r) = −2α(z − zA)(y − yA)2exp[−α | ~r − ~A |2] (4.41)

First order derivative of DZZ function:

∂

∂x
ΦDZZ (~r) = −2α(x− xA)(z − zA)2exp[−α | ~r − ~A |2] (4.42)

∂

∂y
ΦDZZ (~r) = −2α(y − yA)(z − zA)2exp[−α | ~r − ~A |2] (4.43)

∂

∂z
ΦDZZ (~r) = [2− 2α(z − zA)2](z − zA)exp[−α | ~r − ~A |2] (4.44)

First order derivative of DXY function:

∂

∂x
ΦDXY (~r) = [1− 2α(x− xA)2](y − yA) exp[−α | ~r − ~A |2] (4.45)

∂

∂y
ΦDXY (~r) = [1− 2α(y − yA)2](x− xA) exp[−α | ~r − ~A |2] (4.46)

∂

∂z
ΦDXY (~r) = −2α(z − zA)(x− xA)(y − yA) exp[−α | ~r − ~A |2] (4.47)

First order derivative of DXZ function:

∂

∂x
ΦDXZ (~r) = [1− 2α(x− xA)2](z − zA) exp[−α | ~r − ~A |2] (4.48)
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∂

∂y
ΦDXZ (~r) = −2α(y − yA)(x− xA)(z − zA) exp[−α | ~r − ~A |2] (4.49)

∂

∂z
ΦDXZ (~r) = [1− 2α(z − zA)2](x− xA) exp[−α | ~r − ~A |2] (4.50)

First order derivative of DY Z function:

∂

∂x
ΦDY Z (~r) = −2α(x− xA)(y − yA)(z − zA) exp[−α | ~r − ~A |2] (4.51)

∂

∂y
ΦDY Z (~r) = [1− 2α(y − yA)2](z − zA) exp[−α | ~r − ~A |2] (4.52)

∂

∂z
ΦDY Z (~r) = [1− 2α(z − zA)2](y − yA) exp[−α | ~r − ~A |2] (4.53)

First order derivative of FXXX function:

∂

∂x
ΦFXXX (~r) = [3− 2α(x− xA)2](x− xA)2 exp[−α | ~r − ~A |2] (4.54)

∂

∂y
ΦFXXX (~r) = −2α(y − yA)(x− xA)3 exp[−α | ~r − ~A |2] (4.55)

∂

∂z
ΦFXXX (~r) = −2α(z − zA)(x− xA)3 exp[−α | ~r − ~A |2] (4.56)

First order derivative of FY Y Y function:

∂

∂x
ΦFY Y Y (~r) = −2α(x− xA)(y − yA)3 exp[−α | ~r − ~A |2] (4.57)

∂

∂y
ΦFY Y Y (~r) = [3− 2α(y − yA)2](y − yA)2 exp[−α | ~r − ~A |2] (4.58)

∂

∂z
ΦFY Y Y (~r) = −2α(z − zA)(y − yA)3 exp[−α | ~r − ~A |2] (4.59)
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First order derivative of FZZZ function:

∂

∂x
ΦFZZZ (~r) = −2α(x− xA)(z − zA)3 exp[−α | ~r − ~A |2] (4.60)

∂

∂y
ΦFZZZ (~r) = −2α(y − yA)(z − zA)3 exp[−α | ~r − ~A |2] (4.61)

∂

∂z
ΦFZZZ (~r) = [3− 2α(z − zA)2](z − zA)2 exp[−α | ~r − ~A |2] (4.62)

First order derivative of FXXY function:

∂

∂x
ΦFXXY (~r) = [2− 2α(x− xA)2](x− xA)(y − yA) exp[−α | ~r − ~A |2] (4.63)

∂

∂y
ΦFXXY (~r) = [1− 2α(y − yA)2](x− xA)2 exp[−α | ~r − ~A |2] (4.64)

∂

∂z
ΦFXXY (~r) = −2α(z − zA)(x− xA)2(y − yA) exp[−α | ~r − ~A |2] (4.65)

First order derivative of FXXZ function:

∂

∂x
ΦFXXZ (~r) = [2− 2α(x− xA)2](x− xA)(z − zA) exp[−α | ~r − ~A |2] (4.66)

∂

∂y
ΦFXXZ (~r) = −2α(y − yA)(x− xA)2(z − zA) exp[−α | ~r − ~A |2] (4.67)

∂

∂z
ΦFXXZ (~r) = [1− 2α(z − zA)2](x− xA)2 exp[−α | ~r − ~A |2] (4.68)

First order derivative of FY Y Z function:

∂

∂x
ΦFY Y Z (~r) = −2α(x− xA)(y − yA)2(z − zA) exp[−α | ~r − ~A |2] (4.69)
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∂

∂y
ΦFY Y Z (~r) = [2− 2α(y − yA)2](y − yA)(z − zA) exp[−α | ~r − ~A |2] (4.70)

∂

∂z
ΦFY Y Z (~r) = [1− 2α(z − zA)2](y − yA)2 exp[−α | ~r − ~A |2] (4.71)

First order derivative of FXY Y function:

∂

∂x
ΦFXY Y (~r) = [1− 2α(x− xA)2](y − yA)2 exp[−α | ~r − ~A |2] (4.72)

∂

∂y
ΦFXY Y (~r) = [2− 2α(y − yA)2](y − yA)(x− xA) exp[−α | ~r − ~A |2] (4.73)

∂

∂z
ΦFXY Y (~r) = −2α(z − zA)(y − yA)2(x− xA) exp[−α | ~r − ~A |2] (4.74)

First order derivative of FXZZ function:

∂

∂x
ΦFXZZ (~r) = [1− 2α(x− xa)2](z − zA)2 exp[−α | ~r − ~A |2] (4.75)

∂

∂y
ΦFXZZ (~r) = −2α(y − yA)(z − zA)2(x− xA) exp[−α | ~r − ~A |2] (4.76)

∂

∂z
ΦFXZZ (~r) = [2− 2α(z − zA)2](z − zA)(x− xA) exp[−α | ~r − ~A |2] (4.77)

First order derivative of FY ZZ function:

∂

∂x
ΦFY ZZ (~r) = −2α(x− xA)(z − zA)2(y − yA) exp[−α | ~r − ~A |2] (4.78)

∂

∂y
ΦFY ZZ (~r) = [1− 2α(y − yA)2](z − zA)2 exp[−α | ~r − ~A |2] (4.79)
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∂

∂z
ΦFY ZZ (~r) = [2− 2α(z − zA)2](z − zA)(y − yA) exp[−α | ~r − ~A |2] (4.80)

First order derivative of FXY Z function:

∂

∂x
ΦFXY Z (~r) = [1− 2α(x− xA)2](y − yA)(z − zA) exp[−α | ~r − ~A |2] (4.81)

∂

∂y
ΦFXY Z (~r) = [1− 2α(y − yA)2](x− xA)(z − zA) exp[−α | ~r − ~A |2] (4.82)

∂

∂z
ΦFXY Z (~r) = [1− 2α(z − zA)2](x− xA)(y − yA) exp[−α | ~r − ~A |2] (4.83)

A2.3. Analytical expression for the second order
cartesian gaussian-type functions

Second order derivatives of functions mentioned in subsection 4.4 are given below.

Second order derivative of S-type function:

∂2

∂x2 ΦS(~r) = [1− 2α(x− xA)2](−2α) exp[−α | ~r − ~A |2] (4.84)

∂2

∂y2 ΦS(~r) = [1− 2α(y − yA)2](−2α) exp[−α | ~r − ~A |2] (4.85)

∂2

∂z2 ΦS(~r) = [1− 2α(z − zA)2](−2α) exp[−α | ~r − ~A |2] (4.86)

∂2

∂x∂y
ΦS(~r) = 4α2(x− xA)(y − yA) exp[−α | ~r − ~A |2] (4.87)
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∂2

∂x∂z
ΦS(~r) = 4α2(x− xA)(z − zA) exp[−α | ~r − ~A |2] (4.88)

∂2

∂y∂z
ΦS(~r) = 4α2(y − yA)(z − zA) exp[−α | ~r − ~A |2] (4.89)

Second order derivative of PX function:

∂2

∂x2 ΦPX (~r) = [3− 2α(x− xA)2](−2α)(x− xa) exp[−α | ~r − ~A |2] (4.90)

∂2

∂y2 ΦPX (~r) = [1− 2α(y − yA)2](−2α)(x− xA) exp[−α | ~r − ~A |2] (4.91)

∂2

∂z2 ΦPX (~r) = [1− 2α(z − zA)2](−2α)(x− xA) exp[−α | ~r − ~A |2] (4.92)

∂2

∂x∂y
ΦPX (~r) = [−2α(y − yA)][1− 2α(x− xA)2] exp[−α | ~r − ~A |2] (4.93)

∂2

∂x∂z
ΦPX (~r) = [−2α(z − zA)][1− 2α(x− xA)2] exp[−α | ~r − ~A |2] (4.94)

∂2

∂y∂z
ΦPX (~r) = 4α2(z − zA)(y − yA)(x− xA) exp[−α | ~r − ~A |2] (4.95)

Second order derivative of PY function:

∂2

∂x2 ΦPY (~r) = [1− 2α(x− xA)2](−2α)(y − yA) exp[−α | ~r − ~A |2] (4.96)

∂2

∂y2 ΦPY (~r) = [3− 2α(y − yA)2](−2α)(y − yA) exp[−α | ~r − ~A |2] (4.97)

∂2

∂z2 ΦPY (~r) = [1− 2α(z − zA)2](−2α)(y − yA) exp[−α | ~r − ~A |2] (4.98)
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∂2

∂x∂y
ΦPY (~r) = [−2α(x− xA)][1− 2α(y − yA)2] exp[−α | ~r − ~A |2] (4.99)

∂2

∂x∂z
ΦPY (~r) = 4α2(z − zA)(y − yA)(x− xA) exp[−α | ~r − ~A |2] (4.100)

∂2

∂y∂z
ΦPY (~r) = [−2α(z − zA)][1− 2α(y − yA)2] exp[−α | ~r − ~A |2] (4.101)

Second order derivative of PZ function:

∂2

∂x2 ΦPZ (~r) = [1− 2α(x− xA)2](−2α)(z − zA) exp[−α | ~r − ~A |2] (4.102)

∂2

∂y2 ΦPZ (~r) = [1− 2α(y − yA)2](−2α)(z − zA) exp[−α | ~r − ~A |2] (4.103)

∂2

∂z2 ΦPZ (~r) = [3− 2α(z − zA)2](−2α)[z − zA] exp[−α | ~r − ~A |2] (4.104)

∂2

∂x∂y
ΦPZ (~r) = 4α2(y − yA)(x− xA)(z − zA) | exp[−α | ~r − ~A |2] (4.105)

∂2

∂x∂z
ΦPZ (~r) = [−2α(x− xA)][1− 2α(z − zA)2] exp[−α | ~r − ~A |2] (4.106)

∂2

∂y∂z
ΦPZ (~r) = [−2α(y − yA)][1− 2α(z − zA)2] exp[−α | ~r − ~A |2] (4.107)

Second order derivative of DXX function:

∂2

∂x2 ΦDXX (~r) = [4α2(x− xA)4 − 10α(x− xA)2 + 2] exp[−α | ~r − ~A |2] (4.108)

∂2

∂y2 ΦDXX (~r) = [1− 2α(y − yA)2](−2α)(x− xA)2 exp[−α | ~r − ~A |2] (4.109)
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∂2

∂z2 ΦDXX (~r) = [1− 2α(z − zA)2](−2α)(x− xA)2 exp[−α | ~r − ~A |2] (4.110)

∂2

∂x∂y
ΦDXX (~r) = [−2α(y−yA)][2−2α(x−xA)2](x−xA) exp[−α | ~r− ~A |2] (4.111)

∂2

∂x∂z
ΦDXX (~r) = [−2α(z−zA)][2−2α(x−xA)2](x−xA) exp[−α | ~r− ~A |2] (4.112)

∂2

∂y∂z
ΦDXX (~r) = 4α2(z − zA)(y − yA)(x− xA)2 exp[−α | ~r − ~A |2] (4.113)

Second order derivative of DY Y function:

∂2

∂x2 ΦDY Y (~r) = [1− 2α(x− xA)2](−2α)(y − yA)2 exp[−α | ~r − ~A |2] (4.114)

∂2

∂y2 ΦDY Y (~r) = [4α2(y − yA)4 − 10α(y − ya)2 + 2] exp[−α | ~r − ~A |2] (4.115)

∂2

∂z2 ΦDY Y (~r) = [1− 2α(z − zA)2](−2α)(y − yA)2 exp[−α | ~r − ~A |2] (4.116)

∂2

∂x∂y
ΦDY Y (~r) = [−2α(x−xA)][2−2α(y−yA)2](y−yA) exp[−α | ~r− ~A |2] (4.117)

∂2

∂x∂z
ΦDY Y (~r) = 4α2(z − zA)(x− xA)(y − yA)2 exp[−α | ~r − ~A |2] (4.118)
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∂2

∂y∂z
ΦDY Y (~r) = [−2α(z−zA)][2−2α(y−yA)2](y−yA) exp[−α | ~r− ~A |2] (4.119)

Second order derivative of DZZ function:

∂2

∂x2 ΦDZZ (~r) = [1− 2α(x− xA)2](−2α)(z − zA)2 exp[−α | ~r − ~A |2] (4.120)

∂2

∂y2 ΦDZZ (~r) = [1− 2α(y − yA)2](−2α)(z − zA)2 exp[−α | ~r − ~A |2] (4.121)

∂2

∂z2 ΦDZZ (~r) = [4α2(z − zA)4 − 10α(z − zA)2 + 2] exp[−α | ~r − ~A |2] (4.122)

∂2

∂x∂y
ΦDZZ (~r) = 4α2(y − yA)(x− xA)(z − zA)2 exp[−α | ~r − ~A |2] (4.123)

∂2

∂x∂z
ΦDZZ (~r) = [−2α(x−xA)][2−2α(z−zA)2](z−zA) exp[−α | ~r− ~A |2] (4.124)

∂2

∂y∂z
ΦDZZ (~r) = [−2α(y−yA)][2−2α(z−zA)2](z−zA) exp[−α | ~r− ~A |2] (4.125)

Second order derivative of DXY function:

∂2

∂x2 ΦDXY (~r) = [3−2α(x−xA)2](−2α)(x−xA)(y−yA) exp[−α | ~r− ~A |2] (4.126)

∂2

∂y2 ΦDXY (~r) = [3−2α(y−yA)2](−2α)(x−xA)(y−yA) exp[−α | ~r− ~A |2] (4.127)

215



∂2

∂z2 ΦDXY (~r) = [1−2α(z− zA)2](−2α)(x−xA)(y− yA) exp[−α | ~r− ~A |2] (4.128)

∂2

∂x∂y
ΦDXY (~r) = [1− 2α(x− xA)2][1− 2α(y − yA)2] exp[−α | ~r − ~A |2] (4.129)

∂2

∂x∂z
ΦDXY (~r) = [−2α(z−zA)][1−2α(x−xA)2](y−yA) exp[−α | ~r− ~A |2] (4.130)

∂2

∂y∂z
ΦDXY (~r) = [−2α(z−zA)][1−2α(y−yA)2](x−xA) exp[−α | ~r− ~A |2] (4.131)

Second order derivative of DXZ function:

∂2

∂x2 ΦDXZ (~r) = [3−2α(x−xA)2](−2α)(x−xA)(z−zA) exp[−α | ~r− ~A |2] (4.132)

∂2

∂y2 ΦDXZ (~r) = [1− 2α(y− yA)2](−2α)(x−xA)(z− zA) exp[−α | ~r− ~A |2] (4.133)

∂2

∂z2 ΦDXZ (~r) = [3− 2α(z− zA)2](−2α)(x−xA)(z− zA) exp[−α | ~r− ~A |2] (4.134)

∂2

∂x∂y
ΦDXZ (~r) = [−2α(y−yA)][1−2α(x−xA)2](z−zA) exp[−α | ~r− ~A |2] (4.135)
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∂2

∂x∂z
ΦDXZ (~r) = [1− 2α(x− xA)2][1− 2α(z − zA)2] exp[−α | ~r − ~A |2] (4.136)

∂2

∂y∂z
ΦDXZ (~r) = [−2α(y−yA)][1−2α(z−zA)2](x−xA) exp[−α | ~r− ~A |2] (4.137)

Second order derivative of DY Z function:

∂2

∂x2 ΦDY Z (~r) = [1− 2α(x−xA)2](−2α)(y− yA)(z− zA) exp[−α | ~r− ~A |2] (4.138)

∂2

∂y2 ΦDY Z (~r) = [3− 2α(y− yA)2](−2α)(y− yA)(z− zA) exp[−α | ~r− ~A |2] (4.139)

∂2

∂z2 ΦDY Z (~r) = [3− 2α(z− zA)2](−2α)(y− yA)(z− zA) exp[−α | ~r− ~A |2] (4.140)

∂2

∂x∂y
ΦDY Z (~r) = [−2α(x−xA)][1−2α(y−yA)2](z−zA) exp[−α | ~r− ~A |2] (4.141)

∂2

∂x∂z
ΦDY Z (~r) = [−2α(x−xA)][1−2α(z−zA)2](y−yA) exp[−α | ~r− ~A |2] (4.142)

∂2

∂y∂z
ΦDY Z (~r) = [1− 2α(y − yA)2][1− 2α(z − zA)2] exp[−α | ~r − ~A |2] (4.143)
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Second order derivative of FXXX function:

∂2

∂x2 ΦFXXX (~r) = [6−14α(x−xA)2+4α2(x−xA)4](x−xA) exp[−α | ~r− ~A |2] (4.144)

∂2

∂y2 ΦFXXX (~r) = [1− 2α(y − yA)2](−2α)(x− xA)3 exp[−α | ~r − ~A |2] (4.145)

∂2

∂z2 ΦFXXX (~r) = [1− 2α(z − zA)2](−2α)(x− xA)3 exp[−α | ~r − ~A |2] (4.146)

∂2

∂x∂y
ΦFXXX (~r) = [−2α(y − yA)][3− 2α(x− xA)2](x− xA)2 exp[−α | ~r − ~A |2]

(4.147)

∂2

∂x∂z
ΦFXXX (~r) = [−2α(z − zA)][3− 2α(x− xA)2](x− xA)2 exp[−α | ~r − ~A |2]

(4.148)

∂2

∂y∂z
ΦFXXX (~r) = 4α2(z − zA)(y − yA)(x− xA)3 exp[−α | ~r − ~A |2] (4.149)

Second order derivative of FY Y Y function:

∂2

∂x2 ΦFY Y Y (~r) = [1− 2α(x− xa)2](−2α)(y − yA)3 exp[−α | ~r − ~A |2] (4.150)

∂2

∂y2 ΦFY Y Y (~r) = [6−14α(y−yA)2+4α2(y−yA)4](y−yA) exp[−α | ~r− ~A |2] (4.151)
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∂2

∂z2 ΦFY Y Y (~r) = [1− 2α(z − zA)2](−2α)(y − yA)3 exp[−α | ~r − ~A |2] (4.152)

∂2

∂x∂y
ΦFY Y Y (~r) = [−2α(x−xA)][3−2α(y−yA)2](y−yA)2 exp[−α | ~r− ~A |2] (4.153)

∂2

∂x∂z
ΦFY Y Y (~r) = 4α2(z − zA)(x− xA)(y − yA)3 exp[−α | ~r − ~A |2] (4.154)

∂2

∂y∂z
ΦFY Y Y (~r) = [−2α(z−zA)][3−2α(y−yA)2](y−yA)2 exp[−α | ~r− ~A |2] (4.155)

Second order derivative of FZZZ function:

∂2

∂x2 ΦFZZZ (~r) = [1− 2α(x− xA)2](−2α)(z − zA)3 exp[−α | ~r − ~A |2] (4.156)

∂2

∂y2 ΦFZZZ (~r) = [1− 2α(y − yA)2](−2α)(z − zA)3 exp[−α | ~r − ~A |2] (4.157)

∂2

∂z2 ΦFZZZ (~r) = [6−14α(z−za)2 +4α2(z−zA)4](z−zA) exp[−α | ~r− ~A |2] (4.158)

∂2

∂x∂y
ΦFZZZ (~r) = 4α2(y − yA)(x− xA)(z − zA)3 exp[−α | ~r − ~A |2] (4.159)
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∂2

∂x∂z
ΦFZZZ (~r) = (−2α)(x−xA)[3−2α(z−zA)2](z−zA)2 exp[−α | ~r− ~A |2] (4.160)

∂2

∂y∂z
ΦFZZZ (~r) = (−2α)(y−yA)[3−2α(z−zA)2](z−zA)2 exp[−α | ~r− ~A |2] (4.161)

Second order derivative of FXXY function:

∂2

∂x2 ΦFXXY (~r) = [2−10α(x−xA)2+4α2(x−xA)4](y−yA) exp[−α | ~r− ~A |2] (4.162)

∂2

∂y2 ΦFXXY (~r) = [3−2α(y−y)2](−2α)(x−xA)2(y−yA) exp[−α | ~r− ~A |2] (4.163)

∂2

∂z2 ΦFXXY (~r) = [1−2α(z−zA)2](−2α)(x−xA)2(y−yA) exp[−α | ~r− ~A |2] (4.164)

∂2

∂x∂y
ΦFXXY (~r) = [1− 2α(y − yA)2][2− 2α(x− xA)2](x− xA) exp[−α | ~r − ~A |2]

(4.165)

∂2

∂x∂z
ΦFXXY (~r) = (−2α)(z−zA)[2−2α(x−xA)2](x−xA)(y−yA) exp[−α | ~r− ~A |2]

(4.166)

∂2

∂y∂z
ΦFXXY (~r) = (−2α)(z − zA)[1− 2α(y − yA)2](x− xA)2 exp[−α | ~r − ~A |2]

(4.167)
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Second order derivative of FXXZ function:

∂2

∂x2 ΦFXXZ (~r) = [2−10α(x−xA)2+4α2(x−xA)4](z−zA) exp[−α | ~r− ~A |2] (4.168)

∂2

∂y2 ΦFXXZ (~r) = [1−2α(y−yA)2](−2α)(x−xA)2(z−za) exp[−α | ~r− ~A |2] (4.169)

∂2

∂z2 ΦFXXZ (~r) = [3−2α(z−zA)2](−2α)(x−xA)2(z−zA) exp[−α | ~r− ~A |2] (4.170)

∂2

∂x∂y
ΦFXXZ (~r) = [−2α(y−yA)][2−2α(x−xA)2](x−xA)(z−zA) exp[−α | ~r− ~A |2]

(4.171)

∂2

∂x∂z
ΦFXXZ (~r) = [1− 2α(z − zA)2][2− 2α(x− xA)2](x− xA) exp[−α | ~r − ~A |2]

(4.172)

∂2

∂y∂z
ΦFXXZ (~r) = (−2α)(y − yA)[1− 2α(z − zA)2](x− xA)2 exp[−α | ~r − ~A |2]

(4.173)

Second order derivative of FY Y Z function:

∂2

∂x2 ΦFY Y Z (~r) = [1−2α(x−xA)2](−2α)(y−yA)2(z−zA) exp[−α | ~r− ~A |2] (4.174)

∂2

∂y2 ΦFY Y Z (~r) = [2−10α(y−yA)2+4α2(y−yA)4](z−zA) exp[−α | ~r− ~A |2] (4.175)
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∂2

∂z2 ΦFY Y Z (~r) = [3−2α(z−zA)2](−2α)(y−yA)2(z−zA) exp[−α | ~r− ~A |2] (4.176)

∂2

∂x∂y
ΦFY Y Z (~r) = (−2α)(x−xA)[2−2α(y−yA)2](y−yA)(z−zA) exp[−α | ~r− ~A |2]

(4.177)

∂2

∂x∂z
ΦFY Y Z (~r) = (−2α)(x−xA)[1−2α(z−zA)2](y−yA)(z−zA) exp[−α | ~r− ~A |2]

(4.178)

∂2

∂y∂z
ΦFY Y Z (~r) = [1−2α(z−zA)2][2−2α(y−yA)](y−yA) exp[−α | ~r− ~A |2] (4.179)

Second order derivative of FXZZ function:

∂2

∂x2 ΦFXZZ (~r) = [3−2α(x−xA)2](−2α)(z−zA)2(x−xA) exp[−α | ~r− ~A |2] (4.180)

∂2

∂y2 ΦFXZZ (~r) = [1−2α(y−yA)2](−2α)(z−zA)2(x−xA) exp[−α | ~r− ~A |2] (4.181)

∂2

∂z2 ΦFXZZ (~r) = [2−10α(z−zA)2+4α2(z−zA)4](x−xA) exp[−α | ~r− ~A |2] (4.182)

∂2

∂x∂y
ΦFXZZ (~r) = (−2α)(y−yA)[1−2α(x−xA)2](z−zA)2 exp[−α | ~r− ~A |2] (4.183)
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∂2

∂x∂z
ΦFXZZ (~r) = [1− 2α(x− xA)2][2− 2α(z − zA)2](z − zA) exp[−α | ~r − ~A |2]

(4.184)

∂2

∂y∂z
ΦFXZZ (~r) = (−2α)(y−yA)[2−2α(z− zA)2](z− zA)(x−xA) exp[−α | ~r− ~A |2]

(4.185)

Second order derivative of FXY Y function:

∂2

∂x2 ΦFXY Y (~r) = [3−2α(x−xA)2](−2α)(y−yA)2(x−xA) exp[−α | ~r− ~A |2] (4.186)

∂2

∂y2 ΦFXY Y (~r) = [2−10α(y−yA)2+4α2(y−yA)2](x−xA) exp[−α | ~r− ~A |2] (4.187)

∂2

∂z2 ΦFXY Y (~r) = [1−2α(z−zA)2](−2α)(y−yA)2(x−xA) exp[−α | ~r− ~A |2] (4.188)

∂2

∂x∂y
ΦFXY Y (~r) = [1− 2α(x− xA)2][2− 2α(y − yA)2](y − yA) exp[−α | ~r − ~A |2]

(4.189)

∂2

∂x∂z
ΦFXY Y (~r) = (−2α)(z − zA)[1− 2α(x− xA)2](y − yA)2 exp[−α | ~r − ~A |2]

(4.190)

∂2

∂y∂z
ΦFXY Y (~r) = (−2α)(z−zA)[2−2α(y−yA)2](y−yA)(x−xA) exp[−α | ~r− ~A |2]

(4.191)
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Second order derivative of FY ZZ function:

∂2

∂x2 ΦFY ZZ (~r) = [1−2α(x−xA)2](−2α)(z−zA)2(y−yA) exp[−α | ~r− ~A |2] (4.192)

∂2

∂y2 ΦFY ZZ (~r) = [3−2α(y−yA)2](−2α)(z−zA)2(y−yA) exp[−α | ~r− ~A |2] (4.193)

∂2

∂z2 ΦFY ZZ (~r) = [2−10α(z−zA)2+4α2(z−zA)4](y−yA) exp[−α | ~r− ~A |2] (4.194)

∂2

∂x∂y
ΦFY ZZ (~r) = (−2α)(x−xA)[1−2α(y−yA)2](z−zA)2 exp[−α | ~r− ~A |2] (4.195)

∂2

∂x∂z
ΦFY ZZ (~r) = (−2α)(x−xA)[2−2α(z− zA)2](z− zA)(y−yA) exp[−α | ~r− ~A |2]

(4.196)

∂2

∂y∂z
ΦFY ZZ (~r) = [1−2α(y−yA)2][2−2α(z−zA)2](z−zA) exp[−α | ~r− ~A |2] (4.197)

Second order derivative of FXY Z function:

∂2

∂x2 ΦFXY Z (~r) = [3− 2α(x− xA)2](−2α)(x− xA)(y− yA)(z− zA) exp[−α | ~r− ~A |2]

(4.198)

∂2

∂y2 ΦFXY Z (~r) = [3− 2α(y− yA)2](−2α)(x− xA)(y− yA)(z− zA) exp[−α | ~r− ~A |2]

(4.199)
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∂2

∂z2 ΦFXY Z (~r) = [3− 2α(z − zA)2](−2α)(x− xA)(y− yA)(z − zA) exp[−α | ~r− ~A |2]

(4.200)

∂2

∂x∂y
ΦFXY Z (~r) = [1− 2α(x− xA)2][1− 2α(y − yA)2](z − zA) exp[−α | ~r − ~A |2]

(4.201)

∂2

∂x∂z
ΦFXY Z (~r) = [1− 2α(x− xA)2][1− 2α(z − zA)2](y − yA) exp[−α | ~r − ~A |2]

(4.202)

∂2

∂y∂z
ΦFXY Z (~r) = [1− 2α(y − yA)2][1− 2α(z − zA)2](x− xA) exp[−α | ~r − ~A |2]

(4.203)
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A3. Basis set example for test H2O molecule

The gaussian basis set used for calculations in the present thesis. The form of input

is provided for an example molecule H2O, for the aug-cc-pvdz basis set.

O 8.0 0.0000000000 0.0000000000 0.1135960000

S 9

1 11720.0000000000 0.00071000

2 1759.0000000000 0.00547000

3 400.8000000000 0.02783700

4 113.7000000000 0.10480000

5 37.0300000000 0.28306200

6 13.2700000000 0.44871900

7 5.0250000000 0.27095200

8 1.0130000000 0.01545800

9 0.3023000000 -0.00258500

S 9

1 11720.0000000000 -0.00016000

2 1759.0000000000 -0.00126300

3 400.8000000000 -0.00626700

4 113.7000000000 -0.02571600

5 37.0300000000 -0.07092400

6 13.2700000000 -0.16541100

7 5.0250000000 -0.11695500

8 1.0130000000 0.55736800

9 0.3023000000 0.57275900

S 1

1 0.3023000000 1.00000000

S 1

1 0.0789600000 1.00000000

P 4

1 17.7000000000 0.04301800
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2 3.8540000000 0.22891300

3 1.0460000000 0.50872800

4 0.2753000000 0.46053100

P 1

1 0.2753000000 1.00000000

P 1

1 0.0685600000 1.00000000

D 1

1 1.1850000000 1.00000000

D 1

1 0.3320000000 1.00000000

H 1.0 0.0000000000 0.7535270000 -0.4543820000

S 4

1 13.0100000000 0.01968500

2 1.9620000000 0.13797700

3 0.4446000000 0.47814800

4 0.1220000000 0.50124000

S 1

1 0.1220000000 1.00000000

S 1

1 0.0297400000 1.00000000

P 1

1 0.7270000000 1.00000000

P 1

1 0.1410000000 1.00000000

H 1.0 0.0000000000 -0.7535270000 -0.4543820000

S 4

1 13.0100000000 0.01968500
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2 1.9620000000 0.13797700

3 0.4446000000 0.47814800

4 0.1220000000 0.50124000

S 1

1 0.1220000000 1.00000000

S 1

1 0.0297400000 1.00000000

P 1

1 0.7270000000 1.00000000

P 1

1 0.1410000000 1.00000000

The input described above contains the coordinates of O, H atoms of H2O molecule.

The Gaussian basis set is shown just below the coordinates. The type of function is

mentioned along with the Gaussian exponent α and contraction coefficients.

A4. Movies of time-dependent electron densities
and their properties

The time-dependent electronic wavefunctions in position space are obtained from

the in-house package ABELDYN. The properites code ABELDYNPROP has been used

to evaluate the TDMED and its properties. The time-dependent plots of intermediate

steps are provided here in the following 2D figures. The 2D and 3D movies are

provided through the weblink.
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The Laser parameters in a.u. and SI are provided in the following table

Mol. ω(a.u.) ω(nm) light ε (a.u.) ε (a.u.) I (W/cm2) Ttot(fs) αo

HF 0.688 66.217 XUV 0.100 5.14× 108 3.51× 1014 1.76 0.211

H2O 0.546 83.496 XUV 0.100 5.14× 108 3.51× 1014 2.22 0.336

CH4 0.580 78.572 XUV 0.100 5.14× 108 3.51× 1014 2.10 0.297

C2H4 0.419 108.69 XUV 0.100 5.14× 108 3.51× 1014 2.90 0.569

Be 0.329 138.32 XUV 0.100 5.14× 108 3.51× 1014 3.69 0.922

He 0.937 48.622 XUV 0.100 5.14× 108 3.51× 1014 1.30 0.114

N2 0.727 62.648 XUV 0.100 5.14× 108 3.51× 1014 1.66 0.189

CO 0.636 71.62 XUV 0.100 5.14× 108 3.51× 1014 1.91 0.247

C6H6 0.373 122.09 XUV 0.100 5.14× 108 3.51× 1014 3.25 0.718

C3H6 0.4598 99.02 XUV 0.100 5.14× 108 3.51× 1014 2.64 0.473

Mol. Basis Nbas

HF aug-cc-pvdz 34

H2O aug-cc-pvdz 43

CH4 aug-cc-pvdz 61

C2H4 aug-cc-pvdz 86

C2H4 aug-cc-pvdz 86

Be aug-cc-pvdz 25

He d-aug-cc-pvdz 35

N2 aug-cc-pvdz 50

CO aug-cc-pvdz 50

C6H6 aug-cc-pvdz 204

C3H6 aug-cc-pvdz 129
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Weblinks of Time evolving 3D movies:

Helium Atom in Linearly Polarized LASER, parallel to Z-axis: 1. Time dependent

Molecular Electron Densities, Laplacian, and Difference densities:

https://youtu.be/mlcuENC5d5s

2. Time dependent zero-Flux Surfaces, bond paths, basin boundaries, and critical

points:

https://youtu.be/6UHD3PWjRRI

Hydrogen Fluoride in Linearly Polarized LASER, parallel to H-F bond: 1. Time

dependent Molecular Electron Densities, Laplacian, and Difference densities:

https://youtu.be/MEeYCCf3kBk

2. Time dependent zero-Flux Surfaces, bond paths, basin boundaries, and critical

points:

https://youtu.be/q4fzoIZN21g

Water in Linearly Polarized LASER along the Z-axis:

1. Time dependent Molecular Electron Densities, Laplacian, and Difference densities:

https://youtu.be/E1qkvEh3k-M

2. Time dependent zero-Flux Surfaces, bond paths, basin boundaries, and critical

points:

https://youtu.be/Dmq9WdYoxkA

Water in Linearly Polarized LASER along the Y-axis:

1. Time dependent Molecular Electron Densities, Laplacian, and Difference densities:

https://youtu.be/hEkohvBdFog

2. Time dependent zero-Flux Surfaces, bond paths, basin boundaries, and critical

points:

https://youtu.be/MAsuX_Kj8cs
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Methane in Linearly Polarized LASER along the C3-axis:

1. Time dependent Molecular Electron Densities, Laplacian, and Difference densities:

https://youtu.be/gQ_2cOww_mU

2. Time dependent zero-Flux Surfaces, bond paths, basin boundaries, and critical

points:

https://youtu.be/DahsH9pJFOE

Methane in Linearly Polarized LASER along the C2-axis:

1. Time dependent Molecular Electron Densities, Laplacian, and Difference densities:

https://youtu.be/oAsVdKtlYtY

2. Time dependent zero-Flux Surfaces, bond paths, basin boundaries, and critical

points:

https://youtu.be/3WadDwiNFk0

Ethylene in Linearly Polarized LASER along the Z-axis, parallel to C-C bond:

1. Time dependent Molecular Electron Densities, Laplacian, and Difference densities:

https://youtu.be/Lw7CjXNxQ84

2. Time dependent zero-Flux Surfaces, bond paths, basin boundaries, and critical

points:

https://youtu.be/eycKki8O7Hg

Ethylene in Linearly Polarized LASER along the Y-axis, perpendicular to C-C

bond:

1. Time dependent Molecular Electron Densities, Laplacian, and Difference densities:

https://youtu.be/wrXpPGuPcy0

2. Time dependent zero-Flux Surfaces, bond paths, basin boundaries, and critical

points:

https://youtu.be/tJAg94zZxNA
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Weblinks for 2D movies:

1. Helium atom in a linearly polarized LASER along Z: Time dependent atomic

electron densities, gradients, Laplacian and difference densities on a 2D plane

https://youtu.be/UhHj95bvFp4

2. Beryllium atom in a linearly polarized LASER along Z: Time dependent atomic

electron densities, gradients, Laplacian and difference densities on a 2D plane

https://youtu.be/6KtGtCQ2HNk

3. Hydrogen Fluoride in a linearly polarized LASER along Z: Time dependent MED,

gradients, Laplacian and difference densities on a 2D plane

https://youtu.be/vlB69L89Yno

4. Water in a linearly polarized LASER along Z: Time dependent MED, gradients,

Laplacian and difference densities on a 2D plane

https://youtu.be/Pd0sMU8dRTI

5. Water in a linearly polarized LASER along Y: Time dependent MED, gradients,

Laplacian and difference densities on a 2D plane

https://youtu.be/tKgLH_Xg8Ig

6. Water in a linearly polarized LASER along Y: Time dependent MED, gradients,

Laplacian and difference densities on a 2D plane

https://youtu.be/W1OYUgeHkis

7. Ethylene in a linearly polarized LASER along Y: Time dependent MED, gradients,

Laplacian and difference densities on a 2D plane

https://youtu.be/W1OYUgeHkis

8. Ethylene in a linearly polarized LASER along Y: Time dependent MED, gradients,

Laplacian and difference densities on a 2D plane

https://youtu.be/wAUztbgTZsk

A4.1 Movies of the time dependent QM vector cur-
rent densities

Weblinks of movies for time-evolving QM vector current densities:

1. Helium Atom:

https://youtu.be/rmroZ_owc0Y
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2. Hydrogen Fluoride in Linearly Polarized LASER along Z:

https://youtu.be/Uo73fGY8aYk

3. Water in Linearly Polarized LASER along Z:

https://youtu.be/fehoCk2SE2E

4. Water in Linearly Polarized LASER along Y:

https://youtu.be/CCrIXqLKdDg

5. Ethylene in Linearly Polarized LASER along Z:

https://youtu.be/uevLd1pNqSY

6. Ethylene in Liearly Polarized LASER along Y:

https://youtu.be/8pHPN54Pn4g
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Example input and output to run ABELDYNPROP
code

Prerequisite: The user should ensure the successful installation of ABELDYNPROP

codes on local desktop or server computing machines with any Unix-based operating

system. The machine should have Fortran, linear algebra library packages (BLAS

and LAPACK), and MPI installed before running the code. The required source code

and installation files are provided in the ’abeldynprop.zip’ folder on a CD with the

thesis physical copy.

The input files describe the input parameters required for calculating molecular

electron density and related properties based on the input property keywords (for

example, keywords: EDEN, EGRD, ELF, VDEN, ZEROFS, BDPARTSP, ...). The input

file contains three sections called "SECTION-PROPERTY," "SECTION-PARAMETER,"

and "SECTION-TIMEFILE." The section "SECTION-PROPERTY" takes the input of

the property keyword, atom-basis file, real/complex wavefunction information,

and number of processors for the calculations. The parameters required for every

property keyword may differ, which are specified in the "SECTION-PARAMETER."

The "SECTION-TIMEFILE" should be present for a time-evolving wavefunction in the

input file. The section takes the time file prefix name, start and end indices of time

steps, and the time file step size.

To perform the calculation follow these steps in the working directory:

1. Create a folder named "inpdir". This folder should contain two files: 1.

"input.dat", and 2. molecular information file (for example, "h2o.dat", See

chapter 2). The molecular information file is a ".dat" extension file could

obtained by running a single point energy job using GAMESS package.

2. If the card mentioned below in the "input.dat" file is COMPLEX, then the user

should create a folder named "timefile".

MO_REAL_OR_COMPLEX ::
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All the wavefunction coefficient files at each time step are obtained from

the solutions of TDSE and should be kept in the "timefile" folder. We use

wavefunctions obtained from an in-house code ABELDYN, which solves time-

dependent Hartree Fock for this case. Generally, the wavefunction coefficients

obtained from TDSE solutions are complex. To use the code, the real-part and

the imaginary-part part of the complex wavefunction coefficients should be

written out in single column as separate files (Ntot = Nbas × Nbas).

If the card mentioned in the "input.dat" file is "REAL", then "timefile" folder is

not required.

3. The bash script "runscript.sh" would run the code for the specific job. After

the completion of the run, a "result" folder is created. This folder would

contain the output files of the calculations in specific keywords with timefile

prefixes. For example, in the "result" folder, a job for the calculation of electron

density (keyword-EDEN) for ten-time steps would contain 10 folders named

"edenstep1", "edenstep2", "edenstep3", ... , "edenstep10".
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Example-1: Input and output example for the calculation of molecular electron

density over a 3D-grid for YZ-oriented water molecule in the presence of a Strong

linearly polarized LASER field. The following is an input file format to be written in

file named as "input.dat" for the calculation:

# SECTION-PROPERTY

PROPERTY_TO_CALCULATE :: EDEN

ATOM_BASIS_FILE :: h2o.dat

MO_REAL_OR_COMPLEX :: COMPLEX

N_PROCS :: 4

# SECTION-PARAMETER

CART_GRID_XMIN_XMAX_NX :: -8.000000000, 8.000000000, 101

CART_GRID_YMIN_YMAX_NY :: -8.000000000, 8.000000000, 101

CART_GRID_ZMIN_ZMAX_NZ :: -8.000000000, 8.000000000, 101

DATA_FILE_TYPE_CUBE/VTK :: cube

# SECTION-TIMEFILE

TIMEFILE_PREFIX :: tmcoef

TIMEFILE_START_INDEX :: 1

TIMEFILE_END_INDEX :: 921

TIMEFILE_STEP_SIZE :: 1

Output: A successful run of the code using this input file would generate output

files for each 921 time-step for water molecule in the "result" folder. The outputs

will contain ".cube" data files for the three-dimensional rectangular grid.

Note: A similar input file description would be required to calculate gradients,

hessian, laplacian, vector-current density, and electron localization function. Prop-

erty keywords: EGRD, EHES, ELAP, VDEN, and ELF. The first card input in the

"SECTION-PROPERTY" should be substituted with the appropriate keyword for the

user to evaluate the desired property.
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Example-2: Input and output examples for calculating critical points, zero-flux

surfaces, gradient paths, and bond paths for water molecules in a Strong linearly

polarized LASER field. The following is an input file format to be written in a file

named "input.dat" for the calculation:

# SECTION-PROPERTY

PROPERTY_TO_CALCULATE :: EDEN

ATOM_BASIS_FILE :: h2o.dat

MO_REAL_OR_COMPLEX :: COMPLEX

N_PROCS :: 4

# SECTION-PARAMETER

R_NR_NTHETA_NPHI :: 8.000000, 11, 11, 11

MAX_NEWTON-RAPHSON_ITER :: 50

CONVERGENCE :: 1.0E-7

MINIMUM_DENSITY :: 1.0E-6

ZFS_TOTAL_CIRCLE_POINTS :: 50

ZFS_GRADIENT_STEP_SIZE :: 0.05

ZFS_POINTS_ALONG_VECTOR :: 100

BP_GVEC_STEP_SIZE :: 0.00010

BP_MAX_POINTS :: 100000

GP_PLANE_VECTOR_1 :: 0.00, 1.00, 0.00

GP_PLANE_VECTOR_2 :: 0.00, 0.00, 1.00

GP_PLANE_CIRCLE_POINTS :: 32

GP_VECTOR_STEP :: 0.001

GP_TOTAL_STEPS :: 6000

# SECTION-TIMEFILE

TIMEFILE_PREFIX :: tmcoef

TIMEFILE_START_INDEX :: 1

TIMEFILE_END_INDEX :: 921
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TIMEFILE_STEP_SIZE :: 1

Output: The results would create output files containing the information of all the

types of critical points, zero-flux surfaces, gradient paths and bonds paths at each

time step for water molecule in linearly polarized field.

The (3,-3), (3,-1), (3,+1), (3,+3) CPs will be written out in "cpm3.dat", "cpm1.dat",

"cpp1.dat" and "cpp3.dat" respectively. The zero-flux surfaces can be visualized

through "cp1.vtk" and "cp2.vtk" files. The output data of gradient paths and bond

paths are present in files with suffixes as "grad" and "bondpatha"/"bondpathb."
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Example-3: Input and output examples for calculating norm, charge, kinetic ener-

gies, moments, and dipole of all the atomic basins present in the molecular electron

densities of water molecules in a Strong linearly polarized LASER field. The following

is an input file format to be written in a file named "input.dat" for the calculation:

# SECTION-PROPERTY

PROPERTY_TO_CALCULATE :: EDEN

ATOM_BASIS_FILE :: h2o.dat

MO_REAL_OR_COMPLEX :: COMPLEX

N_PROCS :: 4

# SECTION-PARAMETER

R_NR_NTHETA_NPHI :: 8.000000, 11, 11, 11

MAX_NEWTON-RAPHSON_ITER :: 50

CONVERGENCE :: 1.0E-7

MINIMUM_DENSITY :: 1.0E-6

BP_RMAX :: 10.000000

BP_NR_NTHETA_NPHI :: 201, 30, 60

BP_R_STEP_INCREMENT :: 20

BP_GRADIENT_SCALAR :: 0.05

BP_ASCENT_MAX_SEARCH :: 600

BP_BISECTION_ERROR :: 1.0E-5

BP_INTEGRATION_TYPE :: 1

BP_INTEGRATION_POINTS :: 501

# SECTION-TIMEFILE

TIMEFILE_PREFIX :: tmcoef

TIMEFILE_START_INDEX :: 1

TIMEFILE_END_INDEX :: 921

TIMEFILE_STEP_SIZE :: 1
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Output: The successful run of the abeldynprop code would create a set of data files

containing the information on the total number of critical points and the BADER

partitioning properties of all the basins present. The information on properties for

each atomic basin is tabulated in the "bader.dat" file.
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Electronic properties of molecules

The figures show plots of molecular electron densities, their gradient, laplacian, and

difference densities in the presence of linearly polarized laser for various molecules.

The plots are shown for time steps near the half and full cycles in the LASER pulse.

These represent the plots for the same molecules discussed in the thesis chapters.
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Figure 4.1: TDMED and its properties for ten time steps of Hellium atom in Z-
polarized laser. Details described in Chapter 3.
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Figure 4.2: TDMED and its properties for ten time steps of Beryllium atom in
Z-polarized laser. Details described in Chapter 3.
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Figure 4.3: TDMED and its properties for nine time steps of Hydrogen Fluoride
molecule in Z-polarized laser. Details described in Chapter 4.
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Figure 4.4: TDMED and its properties for ten time steps of Water molecule in
Z-polarized laser. Details described in Chapter 4.
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Figure 4.5: TDMED and its properties for ten time steps of Water molecule in
Y-polarized laser. Details described in Chapter 4.
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Figure 4.6: TDMED and its properties for ten time steps of Methane molecule in
Z-polarized laser, parallel to C2 axis. Details described in Chapter 4.
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Figure 4.7: TDMED and its properties for ten time steps of Methane molecule in
Z-polarized laser, parallel to C3 axis. Details described in Chapter 4.
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Figure 4.8: TDMED and its properties for ten time steps of Ethylene molecule in
Z-polarized laser, parallel to C − C bond. Details described in Chapter
4.
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Figure 4.9: TDMED and its properties for ten time steps of Ethylene molecule in
Z-polarized laser, perpendicular to C − C bond. Details described in
Chapter 4.
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