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Abstract

In this thesis, we study two aspects of infinite dimensional Lie algebras.

In the first part, we study the fusion product modules for current Lie algebras of type A».
Fusion products of finite-dimensional cyclic modules, that were defined in [23], form an
important class of graded representations of current Lie algebras. In [16], a family of finite-
dimensional indecomposable graded representations of the current Lie algebra called the
Chari-Venkatesh(CV) modules, were introduced via generators and relations, and it was
shown that these modules are related to fusion products. We study a class of CV modules for
current Lie algebras of type A;. By constructing a series of short exact sequences, we obtain
a graded decomposition for them and show that they are isomorphic to fusion products of
two finite-dimensional irreducible modules for current Lie algebras of s(3. Further, using
the graded character of these CV-modules, we obtain an algebraic characterization of the
Littlewood-Richardson coefficients that appear in the decomposition of tensor products of
irreducible sl3(C)-modules.

In the second part, we study the free root spaces of Borcherds-Kac-Moody Lie superalgebras.
Let £ be a Borcherds-Kac-Moody Lie superalgebra (BKM superalgebra in short) with the
associated graph G. Any such £ is constructed from a free Lie superalgebra by introducing
three different sets of relations on the generators: (1) Chevalley relations, (2) Serre relations,
and (3) Commutation relations coming from the graph G. By Chevalley relations we get a
triangular decomposition £ =ny @ b @ n_ and each roots space £ is either contained in

n or n_. In particular, each £ involves only the relations (2) and (3). We study the root
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spaces of £ which are independent of the Serre relations. We call these roots the free roots of
£. Since these root spaces involve only commutation relations coming from the graph, G
we can study them combinatorially.We construct two different bases for these root spaces
of, £ using combinatorics of Lyndon heaps and super Lyndon words. Finally, we relate the

k-chromatic polynomial with root multiplicities of BKM superalgebras.
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Chapter 1

Introduction

In this thesis, we study two aspects of infinite dimensional Lie algebras. The affine Kac-
Moody Lie algebras (in short, KMLA) and the Borcherds Kac-Moody Lie Superalgebras (in
short, BKM superalgebras) are two important classes of infinite-dimensional Lie algebras.
The current algebras of simple Lie algebras are natural parabolic subalgebras of the affine Lie
algebras. The first part is based on our paper [40], where we study certain finite-dimensional
representations of current Lie algebras. The second part is based on paper [49], where we

study the structures of BKM Lie superalgebras.

Let g be the simple Lie algebra over field C and gf] := g ® C[t] be the corresponding current
Lie algebra which inherits a grading coming from the natural grading on C[t]. Let C be
a category of finite dimensional graded g[¢]- modules. Since the last couple of decades,
researchers have been taking a keen interest in the category C due to its applications in
Quantum affine Lie algebra, mathematical physics and combinatorics. It was shown in [15],
that the graded limit of irreducible finite dimensional representations of quantum affine Lie
algebras are indecomposable (not necessarily irreducible) representations of current algebras
and these play an important role in the study of the tensor product modules of quantum affine

Lie algebra.



2 Introduction

Graded tensor products of finite-dimensional cyclic representations of of current Lie algebras
called fusion product modules were introduced by Feigin and Loktev in [23]. It was shown
in [14], that as conjectured in [23], the graded character of the fusion modules can be
written in terms of Kostka polynomials. Subsequently, it has been shown that these modules
have connections with symmetric Macdonald polynomials [6, 12, 36], Schur positivity
[25, 29], mock theta functions [5, 7] etc, indicating the importance of these representations in
combinatorics and number theory. The category C is also studied in mathematical physics due

to its connection with problems arising there, for example for X = M conjecture [1, 28, 47].

In the first part of the thesis, we study a class of finite-dimensional representations of the
current Lie algebras known as the fusion product modules. It is well known that the set
of irreducible g-modules of simple Lie algebra are parameterized by the set of dominant
integral weights, P™. For A € P*, let V(1) denote the irreducible finite-dimensional g-
module with the highest weight A and highest weight vector v, . Given a k-tuple of dominant
integral weights A := (A1,---,A4) of g and a = (ay,a,,---,a;) € CF, the tensor product of
the irreducible g-modules V(4;), V(A2),---, V(A) , acquires the structure of a g[t]-module,

called an evaluation module as follows:
k
x®P<t>.V1 ®V2®®Vk — ZP(ai>vl ®...vi71 ®x_vl-®vi+l ®Vk
i=1

We denote this g[t]-module by V(A,a). When these g;’s are all distinct, V(4,a) is an
irreducible g[¢]-module. Constructing a g-equivariant filtration on V(A,a), a N-graded,
the highest weight, cyclic g[t]-module V(A;)* *--- % V(A;)%, called the fusion product
module, was introduced in [23]. These modules were proposed as a way of constructing
the generalized versions of the Kostka polynomials. In 1999, Feigin and Loktev gave the
following conjecture, which claimed that the fusion product modules are independent of the

evaluation parameters.



Conjecture 1.0.1. /23] Let g be a simple Lie algebra, V,Va,..., Vi be cyclic g-modules.

Then for arbitrary k-tuples (z1,...,z;), (a1,...,a;) € C of distinct complex numbers,
Vs ok VIV Y

as g[t]-modules.

]

While the conjecture in its complete generality is not yet proved, it is known to hold in
certain special cases [14, 24, 16, 46, 27, 13, 4]. It is well understood that the fusion product
modules are quotients of a class of finite-dimensional highest weight integrable modules
called the local Weyl modules [15] and as g-module, V(A4;)% x... %V (A;)%* is isomorphic to
V(M)®--V (A).

We study the structure of the fusion product of two irreducible sl3-modules and, in this case,
give a new proof of the conjecture. We must mention, that the conjecture has already been
resolved for this case in [4]. However, the methods used to establish it are different. Our work
is motivated by the study of the construction of the monomial basis of the local Weyl modules
of sl,,+1 in [14] and its relation with the presentations of the fusion product modules given in
[16]. We generalize the approach taken in the latter and obtain a graded decomposition of the
fusion product of two irreducible sl3-modules. Though, like in [4], we settle the conjecture
by considering the graded decomposition of the corresponding fusion product modules, we
do not resort to the convex polytopes associated with the Littlewood-Richardson coefficients.
Our method is purely representation theoretic. We prove our results using a set of recurrence
relations on the dimensions of a set of CV modules and deduce the Littlewood-Richardson

coefficients in type A, as a consequence of the methods that we use.

We now describe our results in some details. Given a pair of dominant integral weights

1 = (U1, 42), one can canonically associate with it a family of partitions & u indexed by the
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positive roots of g. It can be easily shown that every fusion product module of the form
V(i) xV (Up)® is a quotient of the Chari Venkatesh module V (& u)- By associating a series
of short exact sequences of sl3[t]-modules with V (& Il>’ we obtain a sequence of recurrence
formulae on the dimensions of such modules. Using these, induction and the fact that the
dimension of V(§,,) is greater than equal to the product of the dimensions of V (y;) and
V(i2), we compute the dimension of the module V(& ,,). This helps us to prove that V(§,,)
is isomorphic to the fusion product of two irreducible evaluation modules for sl3[¢] with the
highest weights y; and u, respectively. Our methods help us obtain the graded character of
the modules V(§,,). We use them to define a set of polynomials in C[g], which in the limiting
case g — 1 give the Littlewood-Richardson coefficients associated with the decomposition
of the sl3-module V(u;) ® V(u2). Additionally, we give an algebraic characterization of the
Littlewood-Richardson coefficients that appear in the decomposition of tensor products of

irreducible sl3(C)-modules.

In the second part of the thesis, we study the free root spaces of Borcherds Kac-Moody
Lie superalgebras. Borcherds Kac-Moody Lie superalgebras (in short, BKM superalgebras)
[50, 51, 48, 42] are natural generalizations of two important classes of Lie algebras namely
Borcherds algebras (Generalized Kac-Moody algebras) [9, 37, 38, 3] and the Kac-Moody
Lie superalgebras [39, 18, 41, 21, 22]. Due to their application in mathematical physics,
[10, 30, 34], in particular, in the theory of supersymmetry, chiral supergravity, and Gauge
theory, [17, 31], there has been a lot of interest in the study of the structure and representation

theory of these Lie algebras.

Let £ be the Borcherds Kac-Moody Lie superalgebra associated with a Borcherds-Cartan
matrix (A, ¥) and G be the quasi-Dynkin diagram of £. It is well known that such a BKM Lie
superalgebra £ is constructed from a free Lie superalgebra by introducing three different sets

of relations, namely the Chevalley relations, Serre relations, and the commutation relations



that are obtained from the graph G. The roots of £ that are independent of the Serre relations

are called the free roots.

Heaps of pieces is a combinatorial tool that was introduced by Xavier Viennot in [55]. In
[43], Lalonde introduced a special class of heaps, namely, Lyndon heaps and showed that
there exists a bijective correspondence between set of Lyndon heaps and basis of free partially
commutative Lie algebras. We observe that these bases can be used to obtain a basis of the
free root spaces of BKM Lie algebra and show that given a supergraph (G,¥) one can extend
the notion of Lyndon heaps to super Lyndon heaps and use them to obtain a basis of free
partially commutative Lie superalgebras. In particular we show that for a fixed a tuple of
non-negative integers k = (k; : i € I), if (k) is a free root, then there exists a natural vector
space isomorphism between the free root space gy, (i) and the k grade space of free partially
commutative Lie superalgebras. This gives us a Lyndon heaps basis for the free root spaces

of BKM Lie superalgebras.

Graph polynomials are important graph invariants that carry useful pieces of information
about the associated graphs. Among others, the chromatic polynomials are the most cele-
brated ones. Chromatic polynomials were introduced by Birkhoff as an attempt to solve the
four-color conjecture. In [53, Propositions 1 and 2], a connection between the characters of in-
tegrable representations of a Kac-Moody Lie algebra and linear coefficients of the chromatic
polynomial of the associated Dynkin diagram was established. In [54], as a continuation, an
expression for the chromatic polynomial of a graph G in terms of root multiplicities of the
associated Kac-Moody Lie algebra was obtained and in [3], this connection was extended
to the level of Borcherds algebras and the generalized k-chromatic polynomials. As an
application of this connection, a basis for certain root spaces were constructed using Lyndon
words. We construct a similar basis for free root spaces of BKM Lie superalgebras using

super Lyndon words. We call this new basis LLN basis(Lyndon-Left-Normed basis).
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R. Stanley introduced a symmetric function generalization of chromatic polynomials, which
are called the chromatic symmetric functions. In [2], a connection between the root mul-
tiplicities of Borcherds algebras and the chromatic symmetric functions of the associated
quasi-Dynkin diagrams was discussed. We extend the connection between root multiplicities
of Borcherds algebras and the chromatic polynomial of the associated quasi-Dynkin dia-
grams to the case of Borcherds-Kac-Moody Lie superalgebras and explore the combinatorial

applications of this connection.

The thesis is organized as follows. While the results on the first part of the thesis are given in
Chapters 2-4 , the results second part of the thesis are given in chapters 5-7. The thesis is

structured in the following manner in detail.

* In Chapter 2, we establish the notations and recall the definitions of local Weyl modules,
fusion product module and the Chari-Venkatesh modules. We then show that given a
k-tuple of dominant integral weights A = (A, -+, A¢), one can canonically associate a
Chari-Venkatesh V (& ) module with it. For k = 2, such an association is unique. We

also list the properties of these modules from [16, 13].

* In Chapter 3, we state and prove the main results of the thesis. Beginning with the
statement of the main theorem Theorem 3.1.2, we study the Chari-Venkatesh modules
associated to a pair of dominant integral weights of sl3. We show that a series of short
exact sequences of sl3[f]-modules can be associated with such a module. Further, we
study these short sequences and, using dimension arguments on the corresponding
modules, complete the proof of the main result which helps establish Conjecture 1.0.1

in the case considered.

* In Chapter 4, we conclude the first part of the thesis, by giving the graded character of
fusion product modules. Additionally, from the graded character of the fusion product

modules, we are able to prove an analog of the Schur positivity conjecture in this case



and also obtain a set of polynomials in C[g], which in the limiting case g — 1 give the

Littlewood-Richardson coefficients, Theorem 4.4.1.

In Chapter 5, we recall the definitions of BKM Lie superalgebras, free root spaces,

denominator identity, free partially commutative Lie superalgebras and heaps monoid.

In Chapter 6, we recall the definition of Lyndon heaps and obtain the Lyndon heaps
basis of Free partially commutative Lie superalgebra. Then by identifying the root
spaces with grade spaces of free partially commutative Lie superalgebras, we obtain
Lyndon heaps basis for free root spaces of BKM Lie superalgebra. By using the
notion of Lyndon words, we construct LLN basis for free root spaces of BKM Lie

superalgebra.

In Chapter 7, we study some combinatorial properties of free root spaces. The number
of ways a graph G can be k—multicolored using g colors is a polynomial in g, called
the generalized k-chromatic polynomial. We relate the k-chromatic polynomial with
root multiplicities of BKM superalgebras. As a corollary, we obtain a combinatorial

formula for the multiplicities of free roots.
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Chapter 2

Preliminaries

In this chapter, we set the notations that will be used throughout. We shall denote by C the
field of complex numbers, by Z, Z,, N, the set of integers, the set of non-negative integers
and set of positive integers respectively and by V* the dual of finite dimensional vector space

V over C. We will recall all definitions using notations from [35].

2.1 Simple Lie algebra

Let g be a simple Lie algebra of rank n, h a Cartan subalgebra of g and I = {1,...,n} be the

indexing set. Let A = {@; : i € I'} be the set of simple roots of g with respect to b, R be the

set of positive roots, R~ = —R" and R = RT UR™ be the set of roots. Let {®; : i € I} be a
set of fundamental weights. Let P = Y Zw; (resp. Q = Y. Z;) be the weight lattice (resp.
i€l i=n
root lattice) of g and P* = Y Z, w; (resp. Q" = Y Z, o;) be the set of dominant integral
il il

weights (resp. positive root lattice) of g. For @ € R, let go = {x € g : h.x = a(h)x,Vh € h}.

Fix a Chevalley basis {xg,h;: o« € R*,1 <i < n} of g withxg € g1q. Letn® = @+ Cxg.
oER
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Then g has a triangular decomposition given by
g=n"®hdn .

Foriel, h; = [xgi,x&i] € b and be the elements of the Cartan subalgebra h. For any

o =Y nio; €R", hg =Y d;n;h; where d; = ﬁ, for i € I. It is well known that C-span of

the set {hq,x%} is isomorphic to sl,(C) and we shall denote this subalgebra by sl ().

2.1.1 Irreducible modules for simple Lie algebras

By Weyl’s Theorem [35, Theorem 6.3], every finite dimensional representation of a simple
Lie algebra is completely reducible. It is well known that the set of irreducible g-modules
of simple Lie algebra are parameterized by the set of dominant integral weights. Given

n
A =Y mjw; € PT, let V(L) denote the irreducible finite-dimensional g-module with the
i=1

highest weight A and highest weight vector v, . Then V(1) = U(n™)v, and

(1) x&.vl =0,Va €R".
(1) h.vy = l(h)vx, Vheb.

(iii) x5ty =0,V e RY.

2.1.2 Weyl group of simple Lie algebra

For each root o € R, we have a reflection s, defined as s¢ : h* — §* by

sa(A) = A — Alhg)a.



2.2 Affine Lie algebra 13

A reflection sq 1s said to be a simple reflection if & is simple root. The group W =

(Sq : o0 € A) generated by simple reflections is called Weyl group of g.

2.2 Affine Lie algebra

With each finite dimensional Lie algebra, one can associate an infinite dimensional Lie

algebra, known as the loop algebra. The underlying vector space of a loop algebra is given as
glt,t ' :=g®C[t,t "]

where Clt, t_l] is the ring of Laurent polynomials in the indeterminate ¢ and the Lie bracket
is given by

ke fy®g=[xy®fg
forall x,y € gand f,g € C[t,t7'].

A non-twisted affine Kac-Moody Lie algebra g is the semi-direct product of the universal

central extension of g[t,#~!] with a derivation d of glt,#~!]. As a vector space
g=9g®C[t,t 1o CcapCd
where c is central element and d is derivation, with the Lie bracket defined as
@™, y®1"] = [x,y] @ 1" + S (xly)e

and

d,x2t"] =m(x®1™)

forall x,y € g, m,n € Z.



14 Preliminaries

The subalgebras n* and the Cartan subalgebra 6 of g are defined as follows:
h=hoCcaCd,

wt=nteClle mTaeh) orticl!.
By defining A(¢) = A(d) =0 for A € h*, every element of h* can be considered as an element
of dual space 5* Let §,A¢ € E* be given by
0(c)=0=246(h),0(d) =1,
Ao(d) =0=Ao(h), A(c) = 1.

Let {@;: 0 <i<n,ap= 06— 0} denote the set of simple roots of g. Let {e;, f; : 0 <i <n}

be a set of Chevalley generators of g where
eo=fo®t, fo=eg®t ' ej=eq @1, fi=fo®1,1<i<n
Set
R* :={a+nd:acRneN}UR" U{nd:neN}
R :={o—nd:aeRneN}UR U{—nb:neN}
Re={0+nd:acRnel}
Rin = {né :n € 7\ {0}}

Then Rt, R™, Ry, Riy are the set of positive, negative, real and imaginary roots of g

with respect to E and R=RTUR = R\re Uﬁim is the set of roots of g. The root space
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decomposition of g is given by

i=ho@Pss

BeR
where gg = {x € @ : [h,x] = B(h)x,V h € h}. For B € Ry, dimgg = 1 and for f8 € Rim,
o~ n —~ n
dimfjﬁ = dimb. Let Q = Y, Za; (resp.Q" = Y Z. ;) be the root lattice (resp. positive
i=0 i=0

root lattice) and P = {4 € b* : A(hg) € Z,V i,0 < i < n} (resp. PT = {A € b*: A(hg,) €

Z.,¥ i,0 <i<n})denote the weight lattice (resp. dominant weight lattice) of g.

Let

it =D o

BeR*
then b = h @ AT is a Borel subalgebra of § and b (A~ ® C[t]) is a maximal parabolic

subalgebra of g.

2.3 Current Lie algebra

Let
it =D o
BeR+
and
b=hen"

Then b is a Borel subalgebra of g and g[f] := h&n™ & n~ is a maximal parabolic subalgebra

of the loop algebra gt,#~!] of g, known as the current Lie algebra.

As a vector space g[f] = g ® CJt], where C|[t] denotes the polynomial ring in indeterminate .

Clearly, glt] is a Lie algebra with Lie bracket given by

la® f,b@g]=la,bl®fg
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forall a,b € g and f,g € C[t]. C[t] has a natural Z, grading, determined by the degree of the
polynomial. Using the triangular decomposition of g, we have the following decomposition

for current algebra g[t] as n™ [¢] & h[t] ®n~[t], where for a subalgebra a of g, aff] := a @ C[t].

2.3.1 Universal enveloping algebra of g|¢]

Let U(g[t]) be the universal enveloping algebra of g[t]. With the Z_ -grading inherited from
g[t], U(gt]) is Z,-graded. We say an element X € U(gt]) has grade r| +ry+---+r,if X is
of the form (x; @) (xp ®1"2) - - - (x, @'7). For a positive integer s, we denote by U(g[z])[s]

the subspace of U(gt]) spanned by elements of grade s.

For every o € R, define the power series in the indeterminate u.
Xg ()= Y xg@" ™, Ho(w) =exp (— X7, 220w,
m=0

and for r,s € N, set

N

S(r,s) ={(bp)p>0:bp € Z, pr =, Z pb,=s}, x(rs)= Z H(x@ti)(bi).

p>0 p>0 (bp)p>0€S(r,s) i=0

The following result was proved in [32, Lemma 7.5] and formulated in its present form in

[15, Lemma 1.3].

Lemma 2.3.1. Givens €N, r € Z, and oo € R*, we have

(g @)W (g @ DI — (=1)(Y xg (nr+s—k)Pa(u),) € Uglt)nT ). (2.3.D)
k>0

)

where Py (u); denotes the coefficient of u* is the power series Hy(u) and (y)©) := %5 for

y € glt].
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2.4 Representations of current Lie algebra g|r]

2.4.1 Graded representations

A graded representation of g[t] is a Z -graded vector space V such that

V=& vl

reZ4
U(glt])[s].V[r] CV[r+s], V rseZs.

If U,V are two graded representations of glf], then we say y : U — V is a morphism of
graded g[t]-modules if y(U[r]) C V|[r] for all r € Z. For s € Z, let T, be the grade-shifting
operator given by

(V) [k = V[k —s]

for all k € Z, and graded representations V of g[t]. Given z € C and a g-module U, let
ev.(U) denote the corresponding evaluation module for g[t]. Clearly, for z=0evo(U) is a

graded representation and evy(U)[0] = U.

2.4.2 Local Weyl modules

The notion of local Weyl modules was introduced by Chari and Pressley in [15].

Definition 2.4.1. For A € P", the local Weyl module W,,.(1), is the g[¢]-module generated

by an element w; with the following defining relations:

e nt ®Cltlwy, =0, (h@t)w), = ).(/’l)agyowb Vheh

o (xg @Ay, =0, Viel
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Wioe(A) is a graded g[t]-module. Any finite dimensional, cyclic, integrable module is a

quotient of Wj,.(1).

2.4.3 Evaluation module

Definition 2.4.2. Given a finite-dimensional irreducible g-module V and z € C, we define an

action of g[f] on V as follows:
(xRt Yw=7xwxecgweV. reZ,.

We denote the g[t]-module thus obtained by ev,(V') and refer to it as the evaluation module.

2.4.4 Fusion modules

The fusion product of g[t]-modules was defined in [23]. Here we recall the definition in the

case that is of interest to us.

Definition 2.4.3. Given z = (z1,--,zs), a s-tuple of distinct complex numbers and finitely
many evaluation modules ev,, (V),---,ev, (V;), it was proved in [11] that the tensor product
V(z) =ev; (Vi) ®---®ev, (Vs) is an irreducible g[t] module. In this case, the N-grading in

U(g[r]) induces a g-equivariant grading on V(z) given by

V@)= P Ulgllr]vi @ @vy,

0<r<k

where v; is the generator of V; for 1 <i <. Then the associated graded g[¢]-module

DV@K/V(@)k—1]

keN

is called the fusion product of Vy,---, Vs at z and we denote it by Vf‘ * ook VS,
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Remark 2.4.4. Given a k-tuple of dominant integral weights A,..., A, and a tuple z =
(z1,--+,2k), of pairwise distinct complex numbers, the fusion product module V (A4;)% ... %

k
V(A4)%* is a cyclic, finite dimensional, highest weight module with highest weight Y A;.
i=1
k
Hence, by the universal property of local Weyl modules, it is a quotient of Wy,,.( ¥ 4;).
i=1

Remark 2.4.5. It was observed in [23] that as g-modules, V (4;) ® - - - ® V() is isomorphic
to V(A1) *...%V(A)%*. Hence, the dimension of fusion product V(A4;)% * ...V (A;)%* is

k
equal to [T dimV(4;).
i=1

In this context, the following lemmas are useful:

Lemma 2.4.6. Given an irreducible g[t]-module V(z), for v € V(z) let v denote its image in

Vi x...x V%, Then

xR V=x@(t—ay)---(t—ap).v, Vxeg,anday,---,a, € C.

2.5 Conjecture on Fusion modules

In 1999, Feigin and Loktev gave the following conjecture, which claims that fusion product

is independent of the evaluation parameters.

Conjecture 2.5.1. [[23]] Let g be a simple Lie algebra, V,Va,...,Vy, a set of finitely many
cyclic g-modules. Then for any k-tuple of distinct complex numbers, (z1,...,2),(a1,...,a;) €

Ck, there exists a glt|-module isomorphism between V{' % ...x V¥ and V{" % ... x V.

In 2006, Chari and Loktev gave a basis for a Local Weyl module and showed that when

n
g=sl,11 and A = ¥ m,;; is a dominant integral weight of g, then the dimension of Wj,.(1)
1

l
n
is equal to ] (”“)ml in [14]. Along with the remark 2.4.4, 2.4.5, this showed that the local
i=1
(

Weyl module, W,.(A), is isomorphic to the fusion product of the fundamental representations,
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«V (@;)*™i. Following independent approaches, Fourier and Littlemann proved the same
l
result for simply laced current Lie algebras in [26] and Naoi proved it for non simply laced

current Lie algebras in [46].

In 2015, Chari and Venkatesh introduced a new family of quotients of the local Weyl modules.
Using these modules, they reproved the conjecture 2.5.1 when g is of type A;. Using similar
methods, it was shown in [24] and [4] that the conjecture holds in some particular cases for

k=2.

2.6 CV modules

The new family of quotients of local Weyl modules introduced by Chari and Venkatesh in

[16] are referred to as CV - modules. We now recall their definition.

Definition 2.6.1. For A € P*, a |[R"|-tuple of partitions & = (£%),cp+ is said to be A-

compatible if,

E¥=(E>&F>-), and Y &% =A(hg), YV €RT.

i>1

Given a A-compatible R -tuple of partitions & = (Ey) gep+» the Chari-Venkatesh module
V(&) is defined as the cyclic g[t]-module generated by a non-zero vector ve with the following

defining relations:
(0" @Clr])vg =0, (h®1°)vg = A(h)dove, VheD, (2.6.1)

(g ® Ha) Ty, =0, (2.6.2)

(xa'@t)(s)(x&ébl)(rﬂ)\/g =0, oc€R',rnsecNs+r>1+rk+ Z ﬁj‘-x, for k € N.
J>k+1
(2.6.3)
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Note that by definition CV-module V(&) is the graded quotient of local Weyl module W;,.(1)

by the submodule generated by graded elements

{xt o)y @)™ w, ca e R s eNys+r>1+rk+ Z &, for k € N}.

J=k+1

2.6.1 Properties of CV-module

Fork € Z, and r,s € N, set

KS(r,s) = {(bp)pZO € S(ns): b, =0,for p < k},
S(r,8)k = {(bp)p>0 € S(r,5) : by, = 0,for p > k},

Wx(r,s) = )y (et ®i),
(bp) p=0€xS(13)

x(r,s), = y Hf:O(x®ti)(bi)

(bp) p=0E€S(18)k

The following lemma was proved in [16, Section 2].

Lemma 2.6.2. Let r,s,k € N and L € Z such that r+s > kr+ L. Then the following holds.

(i) For o ERT,

Xy (1,8) = kxg (1,8) + Z xg(r—7 s —s g (7,5,
(rs)

where sum is taken over all pairs ¥',s' € N such that ¥’ < r,s' <sandr +s > rk+L.

(ii) If'V is a g[t]-module and v € V, then for o0 € R,

Xy (r,s)v=0, ifandonlyif rx,(r,s).v=0.

The following lemma is deduced from Lemma 2.3.1, [16, Proposition 2.7].
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Lemma 2.6.3. Given a R"-tuple of partitions & = (%) ycp+, let V(E) be the associated

Chari-Ventakesh module with generator vg. Then for all o € R*, we have

(xf @0 (xy @ l)(r“).vé = xq(15).ve, (2.6.4)
(xq (rs) — 1% (1,5))ve € Z U(sl3(C))xg (r',s)ve, (2.6.5)
r<r

Proof. By part(2) of above Lemma 2.6.2, for r,s,k € Nand L € Z,
Xg (r,s)vg =0, ifand onlyif 4x, (r,s).ve = 0.

By [16, Proposition 2.7], V(&) be the Chari-Ventakesh module is generated by ve with

defining relations of Wj,(A) and x4 (7, s).ve = 0. Therefore by definition of CV-module,
(g @) (xg ® 1)(r+s).v§ = Xq(15).ve.
Again using part(1) of Lemma 2.6.2 for k = 1, we have s = 5" and
Xg(r,s) = 1x4(r,s) + Zx& (r—7,0)1 1x4(¥,s),
p

where sum is taken over ¥ € N such that ¥ < r. Since x,, (r—',0); € U(sl3). Thus,

(xq (r8) —1xg (1,5))ve € Z U(sl3(C))xg (r',s)ve.

r<r
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2.7 Relation between CV-modules and Fusion modules

2.7.1 The set P"(A,k) and module F, for A € P*(A,k)

Given A € P" and a positive integer k, let

Pk ={A = (A, ) € (PT)k: fa,- — ).
i=1

For o € R™, let Ao = (A1 (her), ..., M(he)) and let A%, = (Ay (ha)¥ > ... > A(ho)*) € ZF be
the k-tuple of integers obtained by rearranging the A;(¢)’s in non-increasing order. Observe
that for each o € RT, A, is a partition of A (hg). Hence, &5 = (A%,)gcr-+ is a A-compatible
R -tuple of partitions. For A € PT, we denote the CV module associated to the R" -tuple of

partitions &, by Fj.

We define an ordering on Pt (A,k) as follows. Given A = (A,---,4) € PT(A,k) and

1= (U, -, ) € PT(A,k) we say A majorizes 4 and write A = p if for every o € R™,

k k
Y Ai(ha)* =Y pi(he)*,  forall 1 <i<k.

J=i J=i

Denoting the image of w, in Fj by v, , we see that Fj is a graded g[¢] module generated by

v, with defining relations:

(0~ @C[t])vy, =0, (h@1*)wy = A (k)8 9y, forall ke b, (2.7.1)
(x; @ 1)MEHLy =0, (2.7.2)
(G @) (g @ 1) vy =0, s+r>1+rl+ Y 2Ai(he)*, VELEN. (2.7.3)

J>l+1
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Observe that for k > 2, there can exist A, € P"(A,k) such that 7, = F;. For example,
consider the case when g is of type s[3(C), A =3®; +3w; and g = (20, 01,20 + @) and
A = (20 + @1, @,,20) are elements of P (A,3).

2.7.2 Properties of ./, -module

The following Lemma will be used in the proof of the main theorem.

Lemma 2.7.1. Let A = (Ay,..., 4), 0 = (W1,-.., 1) € PT(A,k). Then

(i) Fu is a quotient of Fy whenever A = W. In particular, the zero graded module

V(A)[0] 2 evo(V(A)) is the unique irreducible quotient of JF, for all A € PT (k). .
(ii) g@t*C[t].JF, =0 and hence Fy, is a module for Lie algebra g Clt]/(t*).
(iii) The graded g[t]-module, V (A1)% x---x V(A)% is a quotient of Fy,, for any set of
distinct scalars 71, - , 2.
Proof. Given A € Pt and A,pu € PT(A,k), let vy, vy be the image of w) in Fj and Fy
respectively.
(i) Using definition, for all o € R™,

k
(g @) (xg @ 1)(r+s).v# =0, wheneverr,s,q € N, satisfyr+s > 1 +qr+ Z wi(hg)*.
J=q+1
Since A =, le‘-:qH Aj(he)t > ):’;:qﬂ Wi(hg)¥, forall0<g<k—1,x € R, forr,s',q €

N are such that ¥/ +s" > 1 +r'q—|—2’1‘-:qJrl Aj(hg ), we have

k
(xd @0)) (xg ©1)" )y, =0, whenever /s, g € N, satisfy ' +5' > 1+gr' + Y Aj(ha)*.
J=q+1



2.7 Relation between CV-modules and Fusion modules 25

Hence there exists a surjective g[t]-module homomorphism ‘Pﬁ : Fp — Fu, such that
‘Pﬁ(m) = vy. Since A = (4,0,---,0), for all A € P*(A,k), V(A)[0] is a quotient of Fj.
Further, as V(A)[0] is irreducible as a g-module, it is irreducible as a g[t]-module. Thus

V(A)[0] is the unique irreducible quotient of Fj for all A € PT(A,k).

(i) Given A € P™(A,k), by definition of F3, we know that for all & € R, A, is a partition

of A(hgy) with at most k parts. Hence,
(@0 t) (g @) vy =0, r4s> 14kr
In particular for » = 1, we have x; ® tk.v)u =0 for all @ € R™, which implies that

g1*Clt].vy =0.

(iii) We know ev;,V (4;) is a quotient of the local Weyl module W;,.(4;) for 1 <i <k. If v;
is the image of wy, in ev;,(V(4;)), then V(A1) --- %V (Ag)%* is a integrable g[t]-module of
highest weight Y | A; = A, generated by the vector vy % - - - v;. Hence V (A1)% #-- -V (A4 )%

is a quotient of Wj,.(A), we have
(nT RC[t])vy *---* v =0, (hi @1%).A(hi)8sovi *---*vp =0

(X, @ DAIHT sy = 0.

For oo € R™, if o is an element of the symmetric group Sy such that

AL = Aoy (ha) = - > Aoy (ha)),
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then using the fact that

Xo @ (t = 26(1))(t —Z6(2)) - ( = Z6(0))-€V2e)V (A1) @ - ® vz, V(Ag(r) = 0,

and

k
(X 1) (xq @ 1) Vg4 1) @+ Qvopy =0 Vr+s>1+rl+ Y, Agj)(ha),
Jj={+1

the same proof as [16, Proposition 6.8] shows that for each ot € R
WC&(F,S).V] Kook yp = 0

whenever r,s,¢ € Nare such that r+s > 1+r0+Y ;511 Aj(ha)*. Since V (A; ) 5%V (Ag)%*
k
is quotient of local Weyl module W, ¥ 4;), it follows that V(41 )% - - - %V (A; )% is a quotient
i=1

Of./—")‘. L]

Remark 2.7.2. It follows from part (ii1) of Lemma 2.7.1 and Remark 2.4.5 that,

k
dim Fy, > [[dimV ().
i=1



Chapter 3

CV modules and Fusion modules for

current Lie algebra of type A,

In this chapter, we state and prove our main results on fusion product modules. We study
the CV modules and Fusion modules for sl3]¢] and prove that the fusion product of two
finite-dimensional irreducible s(3[t]-module is isomorphic to a CV-module. Since the CV
modules are defined by generators and relations, this isomorphism helps to establish the
conjecture 2.5.1 in the case when k = 2 and g is of type A,. While we prove our result using
a representation-theoretic approach, in [8], Barth and Kus establish it using combinatorial

tools.

3.1 Main Results

For g = sl;(C), using a series of canonical short exact sequences, it had been proved in
[16] that, given a partition £ of a positive integer n, the CV-module, V (&), is isomorphic
to the fusion product of evaluation modules for sl,[t]. Besides proving the conjecture

2.5.1, this helped obtain an explicit monomial basis for the modules V(&). In this section,
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we extend this method in the case when g = sl3(C) and A € PT(1,2) for A € P*. For

A=A +La € P, let A:= A1+ .

Definition 3.1.1. Let g := sl3(C). Given v € PT and (A,u) € PT(v,2) with A = 4, 0y +

Ay and U = Uy @) + Up @, We say:

i. (A,u)is a partition of v of first kind if |A|> |u|, A; > p; fori =1,2;
ii. (A,u)is a partition of v of second kind if |A|> |u|, A} > u; and up > A,.

iii. (A,u) is a partition of v of third kind if |A|> |u|, A2 > tp and u; > A,.

A

Notice that if (A, ) is a partition of third kind, then (A, 1) := (A @; + A 02, Ur @1 + L1 %)
is a partition of second kind and the Dynkin diagram automorphism of sl3(C) that maps
aj to o establishes a g[t]-module isomorphism between ) ,, and JF- ip In the rest of the
chapter, we shall therefore study the modules F; , for partitions (4,u) of A + p of first and

second kind only.

Given dominant integral weights, A = A, @) + 4,0, U = U0 + U@, such that |A|> |u|

and A; > uy, set

-7:/l+w2,,u—w2 if A2 > 1, >0
+ . .
‘7:7L,u =9 Fito H— it >0,u=0

fl"’(ﬂz—/lz)ﬂ)z,ﬂ—(uz—,lz)wz if Az < U

Theorem 3.1.2. Given A = A1 0; + A, s, U=U0+ Urn € P with |A|Z |,U| and Ay > Hi.

(i) Then there exists a short exact sequence

0 — ker(A,u) — Fj U Ee 0
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where the kernel, ker(A, W) admits a filtration whose successive quotients are the direct

sum of finitely many Chari-Venkatesh modules.

(ii) For any pair of distinct complex numbers (z1,z2) € C?, there exists a sl3[t]-module

isomorphism between F) ,, and the fusion product V*'(A) * V=2 (u) .

3.2 Relations in ./} ,

Proposition 3.2.1. Given A, € P*, let ), w ; u be as described in Theorem 3.1.2. Let

vyu and v; u be the generators of F ,, and F. ; u respectively. Set

{(xg, @1)F2v; 1, (g, @OH1TH2v, if o > pa >0,
Ko =9 {g @0Mva u, (Xg, @0 4}, if i >0,y =0,

{(xg, @by, i 0<s< -2}, fd <

Then there exists a surjective g|t]-module homomorphism ¢ (A, ) : Fy , — F; u Such that

OA, )y = vj;# and the kernel ker ¢ (A, 1) is the g|t]-module generated by the set Ky, .

Proof. Given (A, 1) € P*(A +,2), such that A(hg,,) = |A|> |it|= 1t (hey,) and A(hg, ) >

U (hg, ), note that

(A + oo, — ) if A > pp >0
(A1) = (A+o,u—o) if A > 1 >0, =0
(A + (2 =)oy, 1 — (2 — ) ) if A <

Hence by Lemma 2.7.1(iii) there exists is a surjective homomorphism ¢ (4, 1) : Fj, , — F, ;{ u

such that ¢ (A, u)(vy, ,) = vj{u.
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We now analyse the generators of ker @ (A, 1) case by case.

Case 1. Suppose 0 < Uy < A,. By definition, we have ]-"/‘{u = Fl+a,u—a,- Hence,

x&l(r,s).v;t“ =0, VrseN withr+s>14+r+u
xaz(r,s).v;tu =0, VrseN,withr+s>1+r+u—1

‘x&lz(ns)'vir’” :07 vr,S € N, with r + s Z 1—|—r—|-‘u1 _|_‘u2_1

whereas,

X (18)vau =0, VrseN withr+s>1+r+p, fori=1,2

Xap, (18) V3 =0, Vrs €N, withr+s> 147+ + o

Since by Lemma 2.7.1, (x, ®t2).v,17“ =0 for all @ € R™, it follows that in this case,
X&2<I‘, S).VA#, x(;lz (l"/,S/).Vlju S kerﬁb()%li)
forr=s=wand ¥ =5 = u + W, ie.,

(X, @122 1y (X ®t)“1+“2.v1# ckerg(A,u).

Case 2. Suppose up =0 and A; > y; > 0. By definition, we have .7:/{““ = Fito,u—o -

Following similar arguments, it is easy to see that

(x;l ®t)“1.v,17“, (x;12 ®I>“1-V1,u ekerd(A,u).
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Case 3. Suppose Uy > A, > 0. By definition, we have .7-";# = Fat(tr—2) 02,1t (ta— ) 0n -

Hence,

x&i(r,s).viu =0, VnseNwithr+s>1+4+r+u; fori=1,2,

x&lz(r,s).vj{’u =0, VrseN, withr+s>1+r+u+4,

whereas,

X (18) vy =0, VrseN withr+s>1+r+p, fori=1,2

Xy, (18) Vo =0, VrseN, withr+s> 147+ +

Since (xg, ®12).v3 4 =0, we see that xg (r,s).va y € ker@(A,p) for py + 24 <r=s<

.u’2+,l'L1’ i-e"
{(g, @OMTRTP oy,  10< p < — Mo} Ckerd(A,p).

Conversely, if X € U(glt]) is such that X.v; , € ker¢(4,u), then X.v;[“ = 0 and hence X

can be written as X =Y 4+ Z where Y is in the left ideal of U(g]f]) generated by the set
() = (e @19, (33 & )0 (h@09) — 5,0(3 + p)(W).1 g € Lot R hED )

and Z is in the left ideal of U(g[t]) generated by the set I} (A, it) where,

(). For 0 < up < Ay,

Ig(l,,u) _ {x&l(r,s) nseENr+s>14+r4+u}
U {xaz(r,s),x&lz(r/,s’) s, ENr+s>r+ U, ¥ +5 >+ u —i—/,tz}.
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(ii). For 0 < 1 < A1, pta = 0,
Ly (A,u) = {x&l(r,s)7x;12(r’,s/) rs, s ENyrds>r+u, v +5 > )
(iii). For up > A5,

I;(A;H) e {xal(rjs)%x&z(r/,j‘/) . }’,S,r/’s/ E N, r+s2 l_i_r_i_ul’r/_‘_s/ Z 1—‘—}’/—'—12}
U{xg,(ns) ins EN rts > 147+ + A2}

Since Y.vy , =0forall Y € Iy(A,u) and Z.vy ,, =0, forall Z € {xy (r,s) : s EN, r 5 >
1+r4u} when 0 < up <A and Z € {xy, (1,5), x5, (r',8") i ry5,7 8" € Nyr s > 141+
Ui, 7'+ > 147 +2A} when tp > Ay, it is clear that ker ¢ (A, it) is generated by elements

of Ky - Hence, the proposition. [
Lemma 3.2.2. Given a,b,p € 7., we have,

(i). [xg, @19, (xg, ®17)P)] = — (x5, @1°) P~ (xy, @147P),

(ii). [xg, @19, (xg, @1°)P)] = (x5, @1°) P~V (xy, @1970),
(iii). [xg @17, (x5 @) V)] = (xf @2)P~D(x @197P),

(lV) [x(;z ®Ia, (x;;lz ®lb)(p)] — _(x(JXrlg ®tb)(p*1)<xgl ®ta+b),

The following is an easy corollary of the lemma.

Corollary 3.2.3. Given ay,ay,b € Z we have the following:
(i) [, (g, @) (g, 1)) (ag, @) )] + (g, @)1V (o, 1) O~ (g, @ 1) 2+
is contained in U (g[t])htClt] © U (g[t]) n~t>Clt].

(i1) [y (¥ @0\ (g, ©1)) (g, @1) ] = (g, @)V o, @1) 0 (xg, @1)()

is contained in U (g[t])htC[t] © U (gt])n~t>C[t].
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We shall use the following notation in the rest of the chapter. For s, € Nand o € R, set
Xq(rs) = (x4 ®t)(5) (xg ® 1)(r+s)

Further, we denote X, (7, s) by X;(r,s) and Xg,, (7,5) by X12(r,5).

Lemma 3.2.4. Suppose V is a sl3[t]-module and for all @ € R™, v € V satisfies
P RCHv=0, HCHv=0, x;0R2v=0, (zo1)v=0VI>LY,

Xa(r,s)v=0 forrseN, r+s2rk+Lg(), whereLg()EZ+f0reachk21,

then we have,

X (r,5)(xg ®@1)%v =0, Vrts>rk+ LY 24, o e R, (3.2.1)

Xay, (1,5) (xg, @)% =0, Vrt+s> rlc—kLE)lfl)2 —d, forsomek>1 i=1,2,(3.2.2)

X (r,5)(xg, @ N9v=0 whenr+s> rk+Lg? for some k> 1, (3.2.3)
(X ® l)l(x&2 @) v=0 whenl> Lg)l) +d (3.2.4)
dio (clz) X (r—d,s)(xg, ©1)(xgq, ®1)" =0, Vr4s>rk+Ly) (3.2.5)
X (7,5) (xg, ®t)v=0, when r+s > rk+Lg<2) for some k > 1,
(X, @ l)l(x&1 ®1)4.v=0, when | > Lffj +d

/
Y ([ll)Xz(r—d,s) (X0 ®t)d(x&l @)~ =0, Vr+s> rk+Lg)2)
d=0
(3.2.6)

Proof. The relation (3.2.1) follows from [16, Corollary 6.6]. Using Lemma 3.2.2, we have

Yo X12(18).v = X12(7,8)x 0, v + X12(r55 — 1) (g, ® 1)1,
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Using (2.3.1), and the relations satisfied by v, it follows that,

X, X12(r,8).v = (=1)° (xg,, (r8)xg, v +xg, (s — )xg, @1.v) + Xia(r,s — 1).(xg, @1).v.

(—=1)* (x&z.x&m(r,s).v —|—x&lz(r,s — 1))@2 ®t.v) +Xp2(r,s — 1).(9@2 ®1).v.

Therefore, when r+s > rk +LE],?2 for some k € N, using the relations satisfied by v, commu-

tativity of x,, and x; . ®¢* and Lemma 2.6.2 we get,
Xp2(rs—1).(xg, ®1).v = (—l)s_l)c&12 (rs—1).(xg, ®1).v. (3.2.7)

Since,
(x&lz)(r_s) (Yo, @) y=0, whenr+s> rk+Lg?2,for somekeN  (3.2.8)

applying xj, to (3.2.8) we get,

(o)™ (g, @) (g @1)v 4 (g, ) i 00) v =0, (3.2.9)

when r+s > rk +Lg?2 for some k € N. On the other hand, if r+s5 > rk —|—Lg?2, then for all

k>0, (r—1)+s>rk+ LY —1> (r— Dk+ LY. Hence,
(x&n)(’_l_s).(x&n ®1)®) v=0, whenr+s> rk+Lg?2, for somek € N.
It thus follows from (3.2.7) and (3.2.9) that,
Xp2(rs—1).(xg, ®1).v = (—l)s_lx;u(r,s —1).(xg, ®1).v=0,
(k)

whenever r+s > rk+ Lg,, for some k € N. This shows that

X12(r,8).(xq, @1).v =0, whenr+s> rIH—LE)I:I)2 — 1, for some k € N.
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For any g > 0,
Xg (X, @)1 =0, h@t'.(xq,@t)1v=0,5>0
by repeating the above arguments we see that (3.2.2) holds.

Using Lemma 3.2.2 we have,

(xo, ®1)X1(r5)v =Xi(r,5)(xg, ®1) + X1 (r—1,5).(xg, ®1).v (3.2.10)

=X (1,5)(xg, ®1) + (xg, @1). X1 (r—1,5).v

Ifr+s> rk—i—Lg(l), thenr—1+s> (r—1)k +L(1k) for k > 1. Therefore, using the relations

satisfied by v, we see that

Xi(r,$).(xg, ®1).v=0, whenr+s > rk+Lgfl) for some k> 1,

Further applying x,, @1 to the relation (x,, ® 1)\.v=0forl> Lg?l), we get

(X, ® 1)1.)@2 ®t.v=0, whenr+s> Lg?l) +1.

As above, by repeating the above arguments we see that (3.2.4) holds.

Finally, applying (x,, ® t)! on both sides of (3.2.10) and using the relations satisfied by v,

Lemma 3.2.2 and Lemma 2.3.1 repeatedly, we get

l
[
L (d) X (r=d,s)(xa, ®[)d(x&z @) =0, Vr+s> rk+L£)?1).
d=0

This shows that (3.2.5) holds. Similarly by applying x5, on X (r,s)v and using Lemma 2.3.1
one can show that (3.2.6) holds. ]
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3.3 Structure of ker¢ (A, )

We have seen that ker ¢ (4, 1) is a graded submodule of ), . Note that for each m € Z,
ker@ (A, u)[m] is a finite dimensional sl3-module. In this section we give a filtration of
ker @ (A, ), then using induction and dimension argument obtain a s(3- module decomposi-

tions of the associated graded subspaces of ker(A, ).

By a case by case study, we now give a filtration of the sl3[¢]- submodule ker ¢ (4, i) of F ;.
Throughout this section, we assume that for given a pair (A,u) € PT(A +u,2), |A|> |u|

and A; > u;.
3.3.1 Casel: 1, > >0

Under the given conditions on A, i, set

Ogaig.ui?i:{lvz}
Snime(A, 1) = < (a1,a2) € Z2: . (3.3.1)
o —A <ax—a; <A —

For 0 < j < up+ Uy, let

SmnvOLy.u)[]] = {(a17a2> € Sninv()n.u) a1 tay = ]},

Y U(sl[t]) (xg, @)1 (xg, @) IHIma=a)(xo @)@ v, +Vy,
(al 7“2)€Sninv(l7u)[j]
Vi= if0<j<|ul—1
U(sl3[1]) (g, @ 1) #2)vz if j = [l

\

Using Proposition 3.2.1, we have the following theorem which gives us a filtration of

ker(A,u).

Proposition 3.3.1. Given A,u € PT with |A|> |u

, A > Wi for i = 1,2 and pp > 0, let
Sninv(A, 1), and Spiny(A, 1) [j], V; for 0 < j < |u| be defined as above. Then 0 C V|, C
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<+ C VI CVy gives a filtration of ker (A, ). Further, there exists a surjective sl3|t]-

homomorphism

(P]@,Il) : @ T‘L|V(7L—(u2+a1—2a2)a)1 —(u1+a2—2a1)a)2) —>Vj/Vj+1,
(a17a2)68ninv(lvu)[ﬂ

for 0 < j < |ul|, and a surjective homomorphism
(A.u) .
¢|u| : T\Z\(fl+u2(w1*w2)vﬂlwl) - V\N\'
Proof. Using Lemma 3.2.4 with v =v, , and,

(A+u)(ha)+1, k=0
Ly = Wlhe)+1, k=1 VaeRr™.
1 k>1

By Proposition 3.2.1, ker ¢ (A, 1) = U (sl3t]). (xg,, ®t)(|“|).vl’u +U(sl3[t])(xg, ®t)(”2)v;t7u.

By definition of F ,,
(Xo, ®t)k.vl’u =0, fork > ||, (xq ®Z)€.v,1# =0, for > p;,i=1,2.

Applying (xg, @) (xg, @1)™ to the relation (xg,, ®t)k.v,1,u =0 for k > |u|, using (2.3.1)

and the relation that x ® tz.v;h u = 0forall x € g, it is easy to see that
(x&1 ®t)(“1)(x&12 ®t)(‘”2)(x&2 ®l)(a2)-vk,u =0, aj+ap+a>|ul

Hence (x®1).(xg,, ®t)(‘“‘)v,17u =0, and (x®1).(xy, ®t)(”2)vl# =0, forall x € g.
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Now observe that for a; < u;, i =1,2,

(x;2 & 1)“1 (xgl X 1)“2 <x&12 ®t)(|”|)'vl,p.
= (¥ ®t)(ﬂ1)(x&12 ®t)(|ﬂ\*a1fa2)(x&2 ®t)(a2)-vl,# ekerd(A,pu).

However, since v, ,, satisfies the conditions of Lemma 3.2.4, putting r = |1|—az, s =a; and

[ =|u|—aj in (3.2.5), for r+s = |u|—az +a; > A1 + 1) we get,

|l~l|z—:al (],u|—a1

J )Xl(\u\—az —d,a1) (g, @1)" (g @) HIm 17y | =0,
d=0

As (xg, ®t)‘“‘_“1_dvl7u =0, for |u|—a; —d > uy,

\> tl—ar , ,
X — — '7 - t m—ai+i/,.— t U —i _ 07
=~ (“1 —a1+i) (e —ax +ay —i,a1)(xy, 1) (X, @)y

whenever Uy —ay +a; > A;. Consequently, we have,

Ur—ar—1

i=0 <,U‘1ul;f1jrl)xl ('u2 —ayt+ar—ia ) (X&IZ ® t)“l_al+i(x&2 ® t)'uz_ivlv#
()X (@1,a0) (g, @M (g, @1) 2y,
w
+ Z ( |u]—ar
i=ly—az+1

,Ul—al—i—i)Xl (M2 —az +ay —i,a1)(xg), @) 7a1+i(x&2 ®t)”27ivl# =0,
for up —ap +a; > A;. Using the relation x, ®ts.v;t7u =0fors>2and o € R", we see that
(g, @)1 (xg,, @ 1) IHIma1=a2) (0 @ p)(@2) =

SE- u|—a i -
o X — —1 - t 1—ayrif,.— ¢ h—I
i=0 (nul —ap+ i) 1(“2 a+a lval)(xan ® ) (xaz ® ) VA

(3.3.2)
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for U, —ap +ay > Ay, i.e, for (a,a) € ZZ>O with a; < py and ap < W

(g, ®t)(a1)(x&12 ®t)(\#\*a1*az)(x&2 ®t>(az) C

Up—ar—1 ) )
- ( Y, U()(rg, ®1)" (xg, @M ™ (xg,, ®1)H T (xg, ®t)”2_’m,u> ,
i=0
whenever Uy — ap +a; > A;. Applying the above relations repeatedly, we see that

kerg(A,u) C Y U(9)(xg @0 (xg, @n)Hma—a) @)@y,
(al 7”2)€Sninv()h:u)

+ U(g)(xg, ®1)H2) vy

||
Jj=0

Let 0 < j < |u|. For a fixed (aj,az) € Spiny(A, 1)[Jj], set
Vi = U(s13[1]) (g @) (g, @) =1 72) (g @)=y,
Since a) +ap = j for (ay,az) € Spiny(A, 1)[j], it follows from (3.2.3) that
Xgo-Viay CVirta +Virtai+1 S Vigr, fori=1,2.

Further, as h®tk.v;w =0 and x, @t! =0 for k > 1 and ¢ > 2, we see that,

h@th. (xg, @1) W) (xg @)=l (o @p)U=a)y, | =0, Vheb, k>1.

Using Lemma 3.2.4 with Lgfl)2 7L§k) as given above, it follows from (3.2.2) that fori =1, 2,

(xg, ®1). <(x&1 ®[)(a1)<x&12 ®t)(ﬂ1+ﬂ1*a1*a2)(x&2 ®t)(j*al).vl7‘u>

=xg _(xgl )(02).()5&2)(“1)()6&]2 @t)(lulﬂ),v/w =0,
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and
Xg, 1. <(x&1 ®1)(a1)(x&12 @t)(|#|—a1—a2)(x&2 ®t)(j_a1)-v/l,u>

= (x&l)(aZ).(x—"a_z)(al)(x&u ®l)w‘+1'vl,u = O,

Hence, Vj 4, /Vj4+1MV; 4, is a quotient of the CV-module T[L‘V({;ml )where §; , = (&%, )acr+
with

i, =M — o — a1 +2a,

£y = Ao — i —ax+2ay,

EM2 = |A|+ay + a2 — 1 — o

Jar

As (ar,az) € Spim(A, 1), we see that éﬁ‘;l >0, éﬁ?ll > 0 and hence 'g'Ja(‘fl = 5}21 + éﬁ?ll >

0. This means for each pair (j,a), V(& is isomorphic to the irreducible sl3-module

j7al)

V()u — (,LLQ—{—al —2a2)0)1 — (,ul +a2—2a1)a)2) . Since, for 1 < j < “.L’,

Vi= Z Viars
0<a;<yy,

and as are all distinct, it follows that V; | C V; and V;/V; is a quotient of

D Ty V(A = (e + a1 —2a@) o1 — (1 + a2 —2a1) @), V1< j<|uf.
(a1,a2)€S(A,1)[/]

To see that ¢)|(ul|’“ Jisa surjective homomorphism, observe that using Lemma 3.2.2 and the

relations satisfied by VAo

X (X, @)Wy =0, fori=1,2; h@t* (x5 @1)H)y; |, =0 fork>1 -

Further, using Lemma 3.2.4 with L(O];)Z,Lgk) as given above, we see that from (3.2.1), —,(3.2.4),

it follows that V|, is a quotient of the CV-module ’L'FMV(&) where & = (£%) ,cr+ With

N =M+ =m=0), E%=(A—mp=0), = (A= wm =0).



3.3 Structure of ker ¢ (A, ) 41

Clearly, V(&) is isomorphic to F (@1 — ) o - This completes the proof of the proposi-

tion. O]

332 Case2: 1, >y, up =0

In the Proposition 3.3.1, notice that if y; = 0, applying (xg, ®)*? to the relation

(g @D vy =0, V>4 +1,

Ha
weget, ¥ () (e @ 1 (g, 91 (g, @0 v =0, VhZ A+ 1.

When p; > A; and k = A; + 1, the above relation reduces to

A A+1—d d d
dz_o (d)(xa1®1) T (g, @) (xg, ®1)H2 7% = 0.

Hence we have,

M

_ _ T 125 _d, — _ _

(a9 gy 5004 = B (42 g 1)1, ) g 90
d=0

(3.3.3)

Since, by Proposition 3.2.1, there is a surjective homomorphism

(A @) 2 7 10, = Fatan, (1)

whose kernel is generated as a sl3[t]-module by (x5, ®)*vy , and (xg, ®1)*2v, ,, follow-

ing similar arguments as in Proposition 3.3.1 and using (3.3.3) repeatedly, we see that

ker ¢ (A, ta@y) C y U(g)(xg, @1)H27%) (xp @1)“ vy
(O’QZ)ESninv(AmLQ(DZ)

where,  Spim(A, o) = {(0,a2) € Z2 : max{0,p — A1} < a2 <t}
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Let M, = max{0, , — A, };

U (s13[1]) (g, 1) W27 (xg, @1) vy + U (s13[1]) (g, @1)#2)vp o, My < j<pp—1,
V=

U(shr]) (xg, @) #2)vz s J=
Similar arguments as in Proposition 3.3.1 show that
ker ¢ (A, t2) = U(s3[1]). (g, @1) 17 (xg, 1) M) vy 4+ U (s[1]) (g, @1) vz,

and0C Vy, C------ Vi, =ker ¢ (A, upa,) is a filtration of ker ¢ (A, up a»). Further using the

relation
(g, ® D) ((xg, @) 27 (xg, @)W vy ) = (xg, @0) 277D (xg, @)Uy,

we see that in this case V;/V;1 is aquotient of 7, V(A — (U2 —2j) 01 — jan) for My < j < .
This shows that Proposition 3.3.1 holds even when, y; = 0 and in this case we have the

following result:

Proposition 3.3.2. Ler A, 0 € PT with |A|> |u

, Ai > Wi fori= 1,2 and u; = 0. Then

Ho
dimker(A,u) < Y dimV(A — (1 — 2i) @) — i)
i=M,

By taking, iy, a;, A; and @, in place of U, @, A| and @ resp., the following proposition

can be deduced which gives the filtration for ker @ (A, 1) in the case when u = u; ;.

Proposition 3.3.3. Let A, u € P with |A|> |u|, i > y; for i = 1,2 and py = 0. Then there

exists a surjective homomorphism

(p(ﬂ‘?ulwl) : F)L,/,L]w] %fl,(ﬂlfl)(x)p
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andker ¢ (A, 1y @y) have a filtration 0 C Vy,, C --- Vi, =ker ¢ (A, g @) where My = max{0, u; —
At

Vi =U(sl[t]) (xg, 1)) (xg,, @1) W17 vy | + U (s3[t]) (g, @) F vz i, for My < j<pu,
and V;/V;1 is a quotient of T, V(A — joy — (W — 2j) @) for My < j < ;.

Hence, in this case, we also have the corresponding analog of Proposition 3.3.2:

Proposition 3.3.4. Let A = Lo, + A0 € Pt and p = wy ;. Then

Hi
dimker(A,u) < ) dimV (A —iwy — (uy —2i)an).
i=max{0,u —A,}

333 Case3: > Ay

Under the given conditions, for 1 < /¢ < u; — A, set,

0<a; <p,0<a, <A,
(Sim(A, 1) =< (ar,a2) € ZZZO: ;
mi—+l<ar—ay <A —A—¢

3.3.4)
Sim (A, 1) [je] = {(a1,a2) € (Simy(A, 1) 1 a1 +a2 = jg}, for 1 < jp <y + 25
Vip= Ul(sh[t]).(xg, @) HHRt0y, | forl </ <uy—A,
Ve, = L UGG (g @0 (g, @) irhra=el o, @n(®)y, |
e

+ U(5[3[l‘]).(x&12®t)(”1+/12+£+1).vl7‘u, forl < j, <y + A.
(3.3.5)
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Proposition 3.3.5. Let A, € P™ with |A|> |u

AL >y and gy > Ay, For 1 <0<y — Ay,

0 < jo <+ A, let (Siy(A, 1), and (Siny(A, )] i), Vi j, be defined as above. Then

0C Vi o2, € CVouy 12, V22 V21 CVo o CVy 43, C--Vin CVip= kerg(4, ),
(3.3.6)
gives a filtration of ker ¢ (A, ). Further, for 1 <{<Ay— U, 0< j; < U+ Ay, there exists

sl3[t]-epimorphisms

(Pé(,/}é“) : D T’ (MO + @ — (Ay + a1 — 24 + £) 0y — (W1 + a2 — 2a; +£) )
(al,az)EZSinv(lvu)Uﬁ]

5 Vf,j//vajﬁrl

and

A, %
¢g(,o #) : T/,L,+12+€V()L +u— 5(601 + (1)2)) — VK,O/V&l-

Proof. We prove this proposition in the same way as Proposition 3.3.1, by repeatedly using

Lemma 3.2.4 withv = Vi

LY = min{u(ha) A(ha)}+1, k=1 VYa€eR"
1 k>1

By Proposition 3.2.1, in this case ker ¢ (A, i) is generated as a sl3[t]-module by the set of
vectors {(xo(;2 ®t)(“'+’12+£)vl7“ 1 << — Mo} As (xg, ®1)Pvy =0 for p > |u| the

same arguments as in Proposition 3.3.1 show that

(xg, @) (xg, @)1 (xg, @1)2vy , =0, foray+app+ax > |ul+1
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and for each 1 </ < up — A5,
(xq, @)™ (x&lz®t)(“1+12+£_a1_a2)(x&2®t)a2.v,17“ ekerg(A,u), fora; <y anda; < Ay.

However, since v, , satisfies the conditions of Lemma 3.2.4, putting r = p; + A, —az + ¢,
s=ay and [l = + A+l —a;in (3.2.5), forr+s = 5] +M+l—ar+a; > M + Ui, wWe

get,

“1+l§€_al (,Ltl + A+l —a

4 >X1 (M +A+l—ar—d,a;)(xgq, ®;)d(x&2 @t)uthtt-ai—d

d=0

Using (xg, ®t)“‘+12+£’“‘*dvk# =0 for gy + A +{¢—a; —d > Ay, we get,

A2
w+h+l—a ) B i i
X (A — —1i, FH—ar+i =i =,
ZZ{)( Wi +¢—ay+i 1l —ax+a lal)(xa12® ) (xoc2® )

and hence,

(X&l ®l‘)(a1) (x&n ®1)(#1+7Lz—a1—a2+€) (x&z ®t)(a2)

(/12—612—]

i—0 (uﬁlhtz?jnfl;ail)xl (2 —ay+a1— i’al)(x&lz ®t)m+€_al+i<x&2 ®t)/12_i) '
=

The same arguments as Proposition 3.3.1 show that in this case

Uo—A
ker(A ) C ¥ Y U(0)(xg @0 (xg, @) HHa=a) (o @)y, |,
/=1 (al,az)@Sim,(l,u)

o—2Ay wi+2A+L
= Z Z Vf,jg'
=1 Jje=0
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Forafixed 1 </ <y — A, and (ay,a2) € ¢Sim (A, 1) [je] set

ey = U513 [1]) (xg, ®t)(a1)(x&u ®l)(#1+12+€—jé)(x&2 ®t)(je—a1)_vl7u

By definition, Vj(lel C Vi j,- The same arguments as in Proposition 3.3.1, show that for

1§£§N2_2‘2’

+v!)

+ v (0) ,
'xOC,"V cv; Jje+l,a;+1 C V]Z+11£

j({,CII ][“y’l,ﬁl]
h@t™.(xg, ®t)(“1)(x512 @ 1)HitAat=jp) (Xq ®t)(j5_al).vx#. =0, form > 0,

(Ko, 1) (X @) (g, @ 1) BT RH00) (0 ) ean)
€ U(sls [l‘])(x‘;lz ® t)(ll1+lz+£7j/j+1)’
(x&f ®t)(x&] ®t)(al) (X&lz ®I)(“1+/12+4*J’£) (X&Z ®I)(j/:*al).V)L,#

€ U(sl3]t])(xq,, ® 1)l l=jitl)

U (s13[t]) (g, @ 1) W2 D vy for jip < iy + o,

U(shalt]) (xg,, @) WD C vy, for jo =y + A,

we see that for 1 <2 < uy — A, 0 < jy < py + A, (respectively j, =+ Ap), Vj(;g] /(V(g) N

Jo,a

/ (V(é) NVi410)) is a quotient of the Chari Venkatesh

- ()
Vi j+1) (respectively, V. i A

Ui+,

module V(§; , ) where §; , = (&7, )acr+ With

EN =M —d—ai+2a,— (>0,

J0,a1

éaz =W — Uy —ay—~L+2a; >0,

Je,a1

§%2 = (A —22) + (2 — 1) + a1 +ar =20 > 0,
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which is isomorphic to the irreducible s(3-module
Tysnp eV (M — Ao — a1 +2a0 — )01 + (o — fy — az +2a1 — £) ).

Since these a’ls are all distinct, it follows from (3.3.5), (3.3.6), that V ;, /Va, js+1 (respectively,

Vi +2,/Ves1,0) is a quotient of

P Ty itV (M@ + oy — (A2 +az —2a + )@ — (1 + a2 —2a1 + L) )
(a1,a2) €S (A1) je]

and this completes the proof of the proposition. [

3.4 Proof of Theorem 3.1.2

In this section, we complete the proof of Theorem 3.1.2. Recall from Remark 2.7.2 that for

given (A, 1) € PH(A +1,2)
dimF;_, > dimV/(A).dimV (). (3.4.1)

We obtain the reverse inequality in the following proposition by deducing, from the results
of Section 3.3, a set of recurrence relations on the dimension of CV-modules and using

induction on them. Throughout this section, we assume for v, y € P,

dim Fy y = 0, whenever either v or ¥ is non-zero, non-dominant weight and

dim 7y y = dimV(v) whenever y=0,and v € P".

Proposition 3.4.1. Let A, € PT with |A|> |i| and A > p;.
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(i) If (A, W) is a partition of A + W of first kind with [, > 0 and p; = 0, then the surjective

)

homomorphisms {q)j@’” : My < j < |u|} given in Proposition 3.3.2 are isomorphisms.

(Here, M, = max{0, tp — A1 }.)

(ii) If (A, ) is a partition of A + W of first kind with Ly > 0 and W > 0, then the surjective

homomorphisms {gb](-/l’“) :0 < j < |ul} given in Proposition 3.3.1 are isomorphisms.

(iii) If (A, W) is a partition of A + U of second kind, then the surjective homomorphism
q)z(’}/’“) given in Proposition 3.3.5 is an isomorphism for every 1 < < p — A, 0 <

Joe <+ A

Consequently, dim F) ,, = dimV(A)dimV ().

3.4.1 Proof of Proposition 3.4.1(i).

Subcase 1: Suppose A and u are both multiples of ®; and 1| > p;.

By Proposition 3.3.2, ker ¢ (A, @y, 4 @, ) is a quotient of V ((A; — ;) ; + 1y @,). Hence,

dim 7y, =dimF(, 41y, —1)o, +dimker@ (4, 1) (3.42)

<dimF ey, (- D)o, TAmMV (A — )@ + o).

Note that for yu; =1, ‘F@1+1)w1,(l~11*1)w1 = V(()Ll + 1)(01). Hence, we have,

dim}",l’“ < dimV(/h + 1)0)1) —f—dimV((l] — 1)(01 + (1)2)
<HA+2)(M+3) +24 (M +2)] = 3.(L + 1) (A +2)
dimV(}tla)l)dimV(wl).

Along with (3.4.1), this inequality implies that, dim F g, o, = dimV(4o;)dimV (w;).
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Now, by induction hypothesis assume that dim 7, ¢, 40, =dimV (A1) dimV (@) V u; €

N such that p; < n. Then by using Proposition 3.3.2 we have,

4 dimf?h(mmah <4 dimf(ll+1)a)1,(n71)w1 +4 dimV((ll —n)(x)l +na)2)
<[M+2) (M +3)nn+1)+2(A —n+1)(n+1) (A +2)]

<(M+D)AM+2)(n+1)(n+2)=4dimV(40;)dimV (nw;).
(3.4.3)

Once using (3.4.1), we deduce from 3.4.3 that dim F g, 0, = dimV (A1 @;)dimV (nay).
Note that equality of dimension is possible only if ker ¢ (A; @, it @) is isomorphic to the CV
module F 3, i)+ w0 = V (A1 — 1) @1 + 1 0, ). Hence Theorem 3.1.2 holds whenever

A and p are multiples of a fundamental weight.

Subase 2: Suppose A, € PT, is such that A, > 0, u, =0 and A; > u; > 0.

Then by Proposition 3.3.2,

H
dimker(A, uy o) < Y dimV (A —iw; — (u; —2i)w)) (3.4.4)
i:max{07u1—lz}

In particular, this means when u; =1,

2dimFy o < 2dimV(A+ o) +2dimV(A+ (@ — o)) +2dimV (A — a)
< M +2)a+ DA+ A2 +3) + (Ao +2) (A + A2 +2)

+A+1)(A) (M +4+1)

3+ DM+ DA+ +2) + (A + 1) (24 + A2 +4)

—(A-A+D)(AM++2)— (A +1)(A +242 +2)

< 3+ (A4 1) + A2 +2) = 2dimV (@) dimV(4).

(3.4.5)

VAN

Using the same argument as in Subcase 1, it follows that ker¢ (A, ®;) is isomorphic to

the direct sum of the CV modules J _ (o, —a,),0 D Fa—q, 0 that is the Theorem 3.1.2 when
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f1 = 1. By induction hypothesis assume that Theorem 3.1.2 holds for CV module F; ,; o,

whenever U, € N is such that yu; < n, i.e,
dim F) o, = dimV(A)dimV (u @) for all uy <n.

Using induction hypothesis and Proposition 3.3.2, for y; = n we thus have,

dimker¢(A,nw;) < dimV (A +n(w, — @y))
X (o) MV (A — @ —io) — (n—1-20)ay)) (3.4.6)
< dimV(A+n(@, —@;))+dimker (A — @, (n— 1))

Since by Proposition 3.3.2, dimker ¢ (4,11 @1) = dim F), o, —dimFy 4o (1, 1)y » it fOI-
lows from (3.4.6) that,

dim Fy e < diM I 4o (n1)oy + M I o, (1), — HM TR 00—y, (n—2) 0 (3.4.7)

+dimV (A +n(w, — wy)).

4dim.7:;L’nw1
< (M+2)+ D)+ 22 +3)+ (M + 1)) (A + A+ 1)) () (n+1)

(M A2) )M+ A +2)(n— D+ 2(A —nt DA +n+ 1) (A1 +Ap +2)

(3(/11 F DM+ DA+ +2) — 4 (A +2)(4 -I—?Lz—i-Z))n(n-l— 1)

(M A2 M)A+ A +2)(n— D+ 2(A —n+ D(Aa+n+ 1) (A +Ap +2)
(using (3.4.5))

(30 + D2+ 1) = M (A +2) = Ao +2) ) (1 + Ao +2)(n+ 1)

+2<(7Ll F2)on+ (A —n+1)(Aa+n+ 1))(11 A2 +2)

((/11 + 1)(/12+1)+2) (A + A2 +2)n(n+1)

+2(n(1112+2/12—12+11 +1)—nn+1)+ A +1)(A2+ 1))(11 +A2+2)

A+ 1) M+ D4+ A+ 2)nn+ 1) +2[(n+ 1) (A + 1) (Aa+ D] (A + A2 +2)

IN

IN

IN

IN
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< M+ +2)M+ 1)+ 1) (n+1)(n+2) = 4dimV(A).dimV (1 o).

Along with (3.4.1), using the same arguments as in Subcase 1, we now see that Proposi-

tion 3.4.1(i) holds and hence Theorem 3.1.2 holds in this case.

3.4.2 Proof of Proposition 3.4.1(ii)

Given (A, u) a partition of A + u of first kind with u;, u > 0. then using Proposition 3.3.1
we have,
dimF, , = dimF) 4, 4w, + dimker(4,u)

< dim P, pu—a, TAMFR L (0—on) o

+ )y dimV (A — (U2 +a; —2a2) o — (W1 +az —2a;) ws).
(alvaZ)GSninv()‘mu)
(3.4.8)
In particular when u, = 1, for (aj,az) € Spim(A, 1@ + @), 0 < ap < 1 and
W — A2 <a; <min{y;,A; — 1}. Hence a; = 0 and we have,
dim 5 1 0+0, S AMFR 0, 10, M TG 4 (0, —0y) 00,
min{ul,ll—l} (349)
+ ) dimV().—(l—i—i)a)l—(ul—2i)a)2).
i=max{0,u; —2>}
Further, using Proposition 3.3.2 and Proposition 3.4.1(i), we have
dimker(A —6,u—6) = dimker(A — 6, (u; — 1))
=1
= Z dimV(l—e—i(Dl—(u] —1—2i)602)
i:max{O,ul—M}

Hence (3.4.9) can be rewritten as,

dimF) 4o, < AMF Lo, u0 M FL L (60— ay) 00 +dimker(2 — 6, (1 — 1) o)

+(1— 5u1,zl)dim"(7t — 0] — W O] + U 0)
(3.4.10)
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When A; = py, then the right-hand side of the inequality (3.4.10) is equal to,

4 (dim Fron 2100 + 4 Fi 4 (0 n) 1y + dimer(2 =6, (4 — D))
= 4<dimﬂ+w2,xlwl +dim Py (o —an) oy TAMFR 0 (2~ 1)y — dimﬂ—ah,(al—z)wl)
= M+D)M+2) M+ A +3) A+ DA +2)+ (M +2) (M) (A + A2 +2) (A + 1) (A +2)
P (A + )M (A +1) — (A + DA (A +Aa + D(A — DA
- (/11+1)(/11+2)<(/11+1)(12+2)(Al+/12+3)+Az(/11+2)(/11+/12+2))
A (A1) (z (M +Aa) — /11—1)(/11”2“))
= M+ DM+ D) ((Ro+ DA +22+2)+ A +2% +4)
42 +2) (o + D +1) =l =1+ 2) |+ M (b + 1) (o +1)
= 2+ 12 +2) (A + 1) (A + 22 +2) + (A + 1)2 (A +2) (A +24 +4)
F(A A+ 1) (A +2) A (M + A2 +2) = (A + 1) (A +2) (4 + A2 +2) + iAo (A +1) (A2 + 1)
= 20+ 124 +3) A+ D) (A +24+2) =24 + 1) (A 4+ 1)(A + 24+ 2)
F 412 +2) (M +2) + (A + DA +2) (A + A +2) + i (A + 1) (A + 1)
= 2 +12(M +3) M+ DA + Az +2)
)((Aluﬁz Y MAs 20 — 2240 — 241 — 225 —2)
(Al+1)(zlzz+2(zl+Az+2))+xlzz(zz+1))
= 2L+ 12 +3) (A + 1) (M + 22 +2) =dimV(A)dimV (A @) + o)

7(‘1—|—1

When A; > py, the right-hand side of the inequality (3.4.10) is equal to,

4(dim o 0+ M F (0 -0m) giron + 4 FA 0 (1)
+dimV (A4 — 1 = 1)1 + (A2 + ) @) — dim';l:(/l1+u2—2)w1+(/12—u2)w2+w1,(ul—z)wl>
= <(7Ll + (A2 +2) (A +2A2+3) (1 + 1) (1 +2) + (4 +2)(A2) (A1 + 42 +2)> (U +1)
(U +2)+ (Mlz(/ll +2) (1) + (4 — ) (A + i+ 1D)(4 + 242+ 1)2
— (A + DA (Ag + Ao+ D)y (g — 1)) (Using Proposition 3.4.1.(i))
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= (300 + D)+ D +22+2) = (o + D(A) (A + 20+ 1)) (1 + 1) (1 +2)
+<7Ll/12()q ) (4 1)+ Ay — ) (Ao + g+ 1) (A + Ap +1)2
— (A + DA (A + A2+ D (1 +1 —2))
=3+ DA+ (A + A2 +2) (g + 1) (11 +2)
—<(/12+ DA (A + A2+ 1) = (A +A2) + (A1 + DAz (A + A + 1))<u1 )
+2(A1 + Ao+ 1)((/11 — ) (Ao i+ 1) + (A + Doty — (Ao + DAy (1 + 1))
=3(A+ 1) (A2 + )4+ +2) (w1 + 1) (p +2)
—((/11 2+ ) (M +Aa 1)+mz) (i1 + D)py — 2(A + A2 + Dy (g + 1)
=3(M+1D)(A+ )M+ +2)( + 1) (1 +2) — (1 + 1) (A + 1) (A2 + 1) (A + A2+ 2)
=2+ 1)+ DM +24+2)(ur+1)(u +3) =4dimV (L) dimV (u; 0 + @)

Hence, along with it (3.4.1), it follows that in this case, Proposition 3.4.1(ii) holds and

dim}—l,mwﬁ—wz = dimV(l)dimV(ula)] + (1)2)

By induction hypothesis assume Proposition 3.4.1(ii) holds for y, € N with || < k. Also

note, it follows from the definition of S, that whenever A; > u; > 0, fori = 1,2,

Snim(A ) = Spim(A— 0,1 — 0) U{(1,b) b € 0,0 < b <y — 1, || —b < A b < Ao}

U{(ape—1):a€Zi,0<a<m—1a+a—p+1 <A, |u[-1-a<}.
(3.4.11)

Hence using Proposition 3.3.1, Proposition 3.3.2, and induction hypothesis on i, we have
the following equations :

Yy dimV(l—9—(,LL2—1—|—a1—2612)(1)1—(/,11—1—{—612—2611)0)2)
(alvaZ)ESninv(l_evl'L_e)

= dimker(A — 6,11 — 0) —dim 3 g (4,-1)(01- ), (1~ 1)y

=dimF7 gu-0 —diMI2 g1y p-6-0, —dMFL 64 (1) (01— 0). (11 V-
(3.4.12)
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Hp—1
Y dimV(?L—(,uﬂ—u] —2b)a)1—(u1+b—2u1)w1)
i=max{0,|u|-1-21>}
Hy—1
= Y dimV(A — (w1 + 1) o + 1oy — (U — 1 —2b)w; — boy)

i=max{0,|u|-1-21>}

= dimker(A, (o — Nwp = dimFy/ (1, 1y, — M F L1 0 (1,2

(3.4.13)
where A" = (A — uy — 1)y + (A2 + y1) @, and
Hi—1 ]
dimV (A — (2 +a—2(p — 1)) o1 — (Ju|—1—2a)an)
i=max{0,|u|-1-2,} 1
-
= ) dimV(/l+,u2(a)1—u2)—2w1—aw1 —(,ul— 1—2a)(02)
i=max{0,|u|—1-2,}
= dimker(A”, (u; — 1))
= dimf,lll7(m,1)wl — dimfl//+wl7(m —2)o; s
(3.4.14)

where A" =4 — 0+ (u, — 1)(w; — @,). Using (3.4.11) —(3.4.14), for up = k+ 1, we can

thus rewrite the inequality (3.4.8) as follows,

4dimFy < A4(dim o on ko DM T 1) (0 -0 o DM T2 g, (11 +ka
—dimF) g1 g, (4 1)+ (k-1 — HMF2 g4 k(e —wy), (i~ Doy T M I ke,
—dim Py 0y (1) + M Frr (1 1y — M o (a ,2)0,,)
< 4<dim]:/l+wz,u1w1+sz +HAIMF y, (0-@n) oy T M TR0, (110 +her
+dim Fps e, —dimF) g (1~ 1)+ (k—2) 0

—dim Py 1+ (2e—k- 1o (20 ~ M2 0 (k1)
(3.4.15)

where ' = (4 —wy — Do+ (A +u)w and A = (A +k— 1) + (A —k— 1) w,. As-
suming dim 7/ ,» = 0 whenever A’ or u’ is not a dominant integral weight and dim 7, ,,» =
dimV (A’) whenever A’ € P* and p’ = 0, and using induction hypothesis, the right hand side

of the above inequality is as follows :
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Set

M+ DA +2)(M + A2 +3) (i + 1) (k+ 1) (g +k+2)
(A +k+2) (A + A2 4+2) (A2 — k) (1 + 1) (1 +2) + M Ao (A + A2 (K + 1) (1 +k+ 1)
M+ D) (A + 2+ Dwk(p +k) + (A — w) (2 + i+ D (A + 2+ D (k+1)(k+2)
—(M =) (A + i +2) (A + 22 +2) (k) (k+1)

—(MHEk+1) A= k) (A + A+ 1) (uy — Dy

M+ DA+ DM+ A +2)( + 1) (k+ 1) (g +k+2)

(A + 1D (A +2) (A + A +3) (g + 1) (g +2k+2)

(A=A =2k —1)(A +2A2+2) (1 + 1) (1 +2)

+AMA (A + )y (ur +2k+1) — A (Ao + 1) (A + Ao+ 1)y (g +2k— 1)

+(A =) (A + i+ 1) (A + A2+ 1) (2k+2) — (A — ) (A2 + i +2) (A1 + A2 +2)2k
—( =4 =2k) (M + A2+ 1)( — D

(M +DM+ 1) M+ A2 +2)(u + 1) (k+ 1) (1 +k+2)

(A A+ DA+ 1D (A + A +2) (g + 1) (g + 2k +4)

2 A+ 1D (A + 1) (A + A2 +2) (11 4+ 1)+ (A + 1) (A +240 +4) (g + 1) (g +2k+2)
222 (A + M) — A (A + 220 + 1) (g + 2k — 1)

20 =) A+ + (A + 242+ 1) — (4 — ) (A + 1 +242+3)2k

(M 422+ 1) (Ao — Ay — 2k) (4 +2) = 2(My +k+ 1) (uf 43 +2)

M+ DA+ D) (A + A2 +2) (i + 1) (k+2) (1 +k+3)

24+ D) (M + 1) (A + A2 +2) (g + 1) 4+ (A + 1) (A + 24 +4) (g + 1) (g +2k+2)
22 A (M + M) — (A 4225 4+ DA (1 + 2k — 1)

F2(A — ) (A2 + iy + 1) (A + 22+ 1) — (A — ug) (A + 1 +242 + 3)2k

(M 42+ 1) (Ao — Ay — 2k) (4 +2) = 2(My +k+ 1) (uf 43 +2)

24+ DA+ 1) (A + A2 +2) (1 + 1)+ (A 4 1) (A + 24 +4) (g + 1) (g + 2k +2)
20 Ag (A + A2 1 — Ay (Ag + 225 + 1) (1 + 2k — 1)

+F2(A — ) (M + i+ D)4 + 2+ 1) — (A — ) (A + g +242 +3)2k

(M + A2+ 1) (Ao — Ay = 2k) (41 +2) = 2(A + k4 1) (uf + 31 +2)
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Then, 4 dimfl7ﬂlw1+(k+1)w1 < (11 + 1)(124— 1)(11 —l—lz—l—Z)(ul + 1)(k+ 2) (,u1 —l—k—|—3) +A.

Observe that the coefficient of 2k in A is :

=M+ D +1D)A+22+4) — g (A +22+ 1) — A4 (A + wp +24, +3)

(A + 1 +24243) — (A + Ao+ 1) (41 +2) — (U7 4311 +2)

— M (xl+2zz+4—zl o1 —4) (A + DA +24 +4) — (A2 — )
— (A1 — 1) (242 +3)241 —2(Aa + 1) (211 + 1) — (u? + 311 +2)

— M+ A (/11+u1+1+212+4—212—3—2—/11)

20 +4+ (212+3+212+4—412—4—3> (At 1)—2=0

Using the above relation we see that A reduces to the following:

A=

M+ DA+ DA+ Ao +2) (4 1) + (A + 1) (A +220 +4) (g + 1) (11 +2)
UL A+ ) — A (A 2+ D) (u — D 4+2A4 — ) (A +u + D) (A + A4+ 1)
A +A+ 1) (A —A) (g +2) —2(A + 1) (Ui + 31 +2)

(1) (1) (0t + 2R +2242) (11 +2)A2 — 200+ 1) (A + A2 +2))

F20 (A + A2 — A (14242 + A1) (1 — 1) +2(A — ) (A2 + i + 1) (A + A2+ 1)
+(A + 2+ 1) (A2 — A1) (411 +2)

(a4 1)+ 1) (A + 20 +2) (11 = 220) = Aoty +2))

A (lez(ll ) — (1420 4+ Ap ) (1 — 1)) F2(0 — ) Mg+t + 1) (A + A+ 1)
+(M+A2+1) (A — A1) (41 +2)

Aty (m (A +A2) — 220 (A1 +A2) — 425 + Aoty + 225 + 240 (A1 + o) — 1y (Ag +22)
+27Lz) + 20 puf = Mpd + AT A A 4 (A 4+ 1) <(/11 + A2 +2) (11 —242)

o +2)) 12— ) (Ao + 1+ DA+ Ao+ 1)+ (A + Ao+ 1) (Ao — Ar) (4py +2)
(A + W+ 1)((11 + A2 +2) (U1 —2A2) + Ao (1 +2) +7L]LL1>

F2(A —w) (2 +u + DM+ A2+ 1)+ (A + A+ 1) (A — A1) (4 +2)

2(A+ A+ 1)((11 a4 D (= A2) + (A — ) Ao+ + 1)+ (Ao — A) (2 + 1))

0
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Hence, 4dimF) ;04D < (M1 +1) (A2 +1)(A + 242 +2) (11 + 1) (k+2) (11 +k+3),

which along with (3.4.1) implies
dim‘/—-%lh@-i-(k“‘l)wl = dimV(l)dimV(ula)l + (k—l— 1)(1)1),

whenever dim F), ,; o, 110, = dimV(4)dimV (u;o; + fa;) for £ < k. This completes the

proof of the proposition in this case.

3.4.3 Proof of Proposition 3.4.1(iii)

Given a partition (A, ) of A + u of second kind, we begin by setting some notations. Given

(A, 1) € (P)?, set (C"}, £)) € (PT)? such that
L= Mo+ ey, O =mor+ o,

Using Proposition 3.3.5, we have,

dim}",wl = dim]:éﬁ@f +dimker(A, u),
dimker(A, 1)

< Y dimV ({F — 00 — (A2 + a1 —2az) 01 — (W1 +az — 2a1) @),
(aa2)e U Siw(Ap)
1<t<py -2
(3.4.16)

We now prove the result by applying induction on u — A;. For t; — A, = 1, we have
dimker(A,u) =dim Fy , — dim]—"g}’ u,

dimker(A, ) < Y dimV (§} — 0 — (A2 +a1 —2a2) 0 — (u1 + a2 —2a1) @)
(01702)6181‘”‘,(/1,/.1)
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Given A, i € P" such that |A|> |u| and g, = A, + 1, clearly A; > uy. Hence (A — oy, 1 —

@,) € (PT)? with A; — 1 > ;. Now comparing definitions (3.3.1) and (3.3.4) we see that

1Sim (A, 1 @1 4 (A2 + 1))

0<a, <A, 0<a <y,

= (al,az) € ZZZO :
Lh—M—-1D)<a—a <(—1)—w

= Snim(A — o1, 0 —n)U{(a1,M2) €Z%,:0<a; <, —(M—1)<h—a; <h—}

= Spim(A — o, 14— ) U{(11,22)}

Further, using Proposition 3.4.1(1)-(ii), we have,

Z dimV(Cf}—G—(?Lz—l—al—2a2)a)1—(u1+a2—2a1)a)2)
(a1,a2)€1Sim (A1)
= Yy dimV((ﬂ,l —1)(014—12(02—(124—611—2612)0)1 —(,u1+a2—2a1)a)2)

(al 7a2)€Sninv(l_wl 7“_(02)
+  dimV((A& — 1+ — 1)@y + py o)

= dimV((4 —u +A2— 1)) + 410;) + dimker(A — oy, 4 — @)

Note,

dim 75 _ oy p—w, = M F4 ooy 40y p—20, A > 1
— )

—dim F; _ _ 7
dimker(A — @y, 4 — ) = A—@1+2a(01 - @) p 0

| dim Py o~ dMF) oo papw i A2 =0,

and using Proposition 3.4.1(ii), it follows from above that when A; > 1 and up = A, + 1,

dimF; , < dimV (A4 @+ (L +1)wn).dimV (4 o) + o)
+dimV (A — 1) o1 + @) dimV (uy o + A2 0%)
—dimV((A4 — Do+ (A + 1) ap).dimV(u o) + (A, — 1))
—dimV (A4 + 2, — 1)op)dimV () +dimV (A + A — g — 1)@ + 1 @)
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4dim]:;w

< ((kl+1)(12+2)()Ll+7Lz+3)+11(12+1)(11+7Lz+1)>(u1+1)(12+1)(u1+7tz+2)
—(A) (A2 +2) (M +2A2+2) (1 + 1) (A2) (1 + A2+ 1))

(200 + Ao = ) = (R + &) (1 +2)) (1 + Ao+ 1) ( +1)

(30 + 1)+ 1) = (R +2)40 ) (A + Ao +2) (1 + 1) (Ao + 1) (b1 + A2 +2)

— (A1) (A2 +2) (M +2A2+2) (1 + 1) (A2) (11 + A2+ 1))

M+ DM+ +2) () +1)  [using(3.4.5)]
(3(zl+1)(xz+1)_(xl+2)7Lz—/11(12+2)>@1+/12+2)<u1+1>(/12+1)<u1+12+2)
A (A2 +2) (M + 2 +2) ( + 1) (2 + 1 +2) — (A + Ao+ 1) (A + A2 +2) (g +1)
((Al+1)(/12+1)+2>(7L1+Az+2)(u1+1)(Az+1)(u1+7tz+2)
+((Al)(zz+z)<zzz+u1+2)_(xl+zz+1>u1)<xl+/x2+z)(ul+1)

(A1 + D) (Ao + 1) +2)(A + A2 +2) (g + D (Ao + D)y + A2 +2)
+([(Al+1)(zz+1)+(zl—/12—1)](212+u1+2)—(xl+7Lz+1)u1])(zl+zz+z)(u1+1)
(A + A +2) (1 + DA+ D (Ao + D (A +2) (11 + A +3) —2(A + 1) (A2 + 1)
(A=A — D)2+ 11 +2) +2(A + 1) (g + A2 4+2) — i (A + A2+ 1))

< M+DA+ DA +24+2) (U + 1) (A +2) (11 + 22+ 3)

= 4dimV(A).dimV (o + (A + 1)

IN

IN

IN

IN

VAN

Along with (3.4.1), the same argument that is used in Proposition 3.4.1(i1) show that Proposi-
tion 3.4.1(iii) holds when u, = A, +1 and A, > 1. Similarly, it can be shown that the result

holds when A, =0 and u, = 1.

By induction hypothesis assume that the result holds for all (A, 1) € PT(A 4 u,2) of second

kind with u; — A, < k. For g, — Ay = ¢ > 1, note that by definition (3.3.4),

0<a; <y, o+Ll+1+4+a—ay <A,
er1Sim (A, 1) =4 (ar,a2) € Z: :
0<a <A, i+l+1—ar+a <l

= (Sinv()L — 0, U — (DZ)
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Since under the given conditions, the pair (A — @, — ) € (P*)? satisfies the condition

Ur — 1 — Ay = ¢— 1, applying induction hypothesis we see that for all ¢ < k,

y dimV ({} — 00 — (A2 + a1 — 2az) @01 — (W1 +az — 2a1) @)
(al,az)e @] gS,‘nv(l,,U.)
2<U<py—2y
= dimker(A —o,p—w) = dimF;_g ;o —dim ‘FC[}*O,C;’C :
(3.4.17)

Since A; > u; and up — A > 1, using definitions (3.3.4) and (3.3.1), observe that,

ISinv(la.u)

={(ar,a) €Z%): 0<a;<p,0<ar <l lo—(M—1)<ar—ay < (ua—1)—p; }

Snimo (¢ — 0,2
nmv(Cy C/l ) T QLQ 7& 0,
U{(a1,42) : max{0, 1 + A2 — o + 1} < a; <min{uy, Ay — 1},
| Suim (G} —6,8}), if 2 = 0.
Further, using Proposition 3.3.1 and Proposition 3.4.1(ii), we get,
y dimV (¢} — 6 — (A +ar — 2a2) 01 — (4 + a2 — 2a;) )

(a1 7a2)€Sninv(C;%_eva)

- dim]:C&—&C,{‘ - dim]:é&—emz,éf—wz — (1= 61270)dim]:éﬁ—eﬂz(wl—wz)vulwl
(3.4.18)
and using Proposition 3.3.2 and Proposition 3.4.1(i), we get
)y dimV(C&—G—(/'LQ—Fal —2612)601 —(,u1+a2—2a1)w2)
(al,az)ES
Hy
= Yy dimV(C[}—Q—(?Lz+a1—27Lz)a)1—(u1+2,2—2a1)(02)

aj=max{0,u;+A—r+1}

= dimker(Cﬁ“ —9—|—7l,2((1)1 —a)z),[.tl(l)l)

01— @), 11 @ 01 —)+o;,(u—1) o

(3.4.19)
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where S = {(a1,4;) : max{0,u; + A, — up + 1} < a; <min{y;,A; — 1}}. Using (3.4.17)—

(3.4.19) in (3.4.16), and applying induction hypothesis, for 1 < ¢ < k+ 1 we have,

dim}—g}gf+dim]:/1—w1-,u—wz_dim}—g}—w2 , ifA, =0,

7(”1_])(01

dim 5, < dlm]:C/}-,Cf +dimFy o, y—w, — dlm./’-"g,}_wl7(/12_1)(027 ifp; =0,
dlmfcz}gf " dlm]-_l*wl.}l*ab B dlmfgﬁ%_wl»gf_wz if.u“172~2 7& 0.

0~ )—a, (1 —1)op’

(3.4.20)

Note that the cases when A, = 0 and g; = 0 can be obtained from the case when py,A; # 0
using appropriate substitutions. By induction hypothesis assume that the result holds when
Uy — Ay < k. We then prove that the result in the case when ujA; #0and up — A, = k+ 1.
Using Proposition 3.4.1(i1), it follows from (3.4.20) that

4dim F , < 4<dimV(Ala)1 (Mt k+ 1)) dimV (1 op + o)
+dimV (41 — 1) @) + A,0;) dimV (@) + (A2 + k) )
—dimV (A1 — Do + (A2 +k+ 1)) dimV (11 + (A — 1 an)
—dimV (1 + )01 + kop)dimV (1 — ey) )

(A + 1) (Ao 4 k+2) (At + Ao 4k 3) (1 + 1) (A + 1) (1 + Ao +2)
(1) (Ra+ 1)+ A+ 1) (Ao +k+1) (1 + A2 +k+2)

IN

— (A +k+2) (Mg +k+2) 2 (1 + Ao + 1))
—(M+ A+ D) (k+1) (A + A +k+2)p (11 + 1)

4 dimFy

< (/11+1)(u1+1)(/12+1)(u1+7Lz+2)((7nz+k+1)(/11+7Lz+k+2)+itl+2/12+2k+4>
20 (A 4+ 1) (A + Ao+ 1) (1 + l)((7Lz+k)(N1 k1) + +2/12+2k+2)
(g 4+ DA+ A+ 1)((/12+k+ DM+ A2 +k+1)+ A, +212+2k+3)

—(A+ Ao+ D ( +1)(k(7t1 A k1) 4N +/12+2k+2)
(3.4.21)
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Since for g, = A, 4k, by induction hypothesis,

dimF) g = dimV(1)dimV (4 — @)
= dimV (A0 + (A +k)w)dimV (u 0 + A, o)
+dimV (A — D)oy + 0;)dimV (w0 + (A +k— 1))
—dimV((A4 — Do + (2 +k)an).dimV (g o + (A2 — 1) an)
—dimV((4 +2A2) @1 + (k—1)@z)dimV (1 — 1))

and 2dimV (u) =2dimV (u —an) + (p1 + 1) (11 +2242 42k +4), rearranging the coefficients
in inequality (3.4.21), we get:

4 dimJF) ,

IA

4dimV (A)dimV (4 — @)

F (A4 D)+ 1) (1w +1)((xl 42+ 2) (200 + 2k +4) — (A —,ul)(lz—ka—i—Z))
_)L])LZ<()L] + A2+ 1) (U1 + 222 +2k+3) — (A4 —H1)(7Lz+2k+2))(u1 +1)

(4 A 1) (A (1) (1 22 +2K42) — 1y (A + A0+ 26+2)) (1 + 1)
4dimV(4)dimV (1) — (()Ll +1)(A2+1) —/11/12) (M — ) (A2 +2k+2) (11 + 1)
—MAa (A 4+ A+ 1) (Uy 4+ 240 + 2k +3 — py — 22 — 2k —2) (uy + 1)

IN

+H(A+ A+ DA (24 +2k+2) — (A + A2 +2k+2)](u1 + 1)
4dimV (A)dimV () = (A +1D)(Ra+1) = Mo ) (= 1) (Ao +2Kk+2) ( +1)
A (A Ao+ 1) (g + 220 + 2k +3 — g — 22 — 2k —2)(u; + 1)

(Ao 1) (A — ) (R +2Kk+2) + o ) (1t + 1)

= 4dimV(1)dimV ().

IN

Along with (3.4.1), the above inequality shows that the results holds when u, = A, +k+ 1

and A, > 1 and this completes the proof of Proposition 3.4.1(iii).

Proof of Theorem 3.1.2 (i) Observe that part(i) of the theorem follows from Proposition 3.2.1,

Proposition 3.3.1-Proposition 3.3.5 and Proposition 3.4.1.
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(ii). By Lemma 2.7.1, for (A,u) € PT(A + u,2), the fusion product V(1)% « V()% is a
sl3[t]-quotient of F; , and by Proposition 3.4.1, dim ) ,, = dimV(A)dimV(u). So using,
Remark 2.7.1 we conclude that for any distinct pair of complex numbers (z1,22), F 4 is

isomorphic to V(A1) « V()% as a sl3[t]-module. O

3.5 Discussion on the case k > 2.

There is a natural question that arises here. Why are we restricting ourselves to the case

k=27

To answer this, we observe that when g is of type A, there exists a one-one correspondence
between elements of P+ (v,2) and R -tuple of v-compatible partitions with number of parts
less than equal to 2. However this fails when we consider elements of P+ (v, k) for k > 3.
Via an example, we show that for k > 3, there exist fusion product modules that are proper

quotients of CV modules. In future, we intend to study such modules further.

Forany A € P*, v =(vi,v,,v3) € PY(1,3), and z = (z1,22,23), distinct triplet of complex
numbers, set,

V¥(v,z) := V(v *V(vy)2 %V (v3)5.

In this case, consider g = s(3(C), A = 3w, + 3@, and p = 2w,, 01,20 + @) and A =
(2w, + @1, @;,20) are elements of P7(4,3). Observe that F) = Fy. But V*(A,z) 2
V*(u,z), as even g module decomposition of both is different. Both are proper quotients of

F3 follows from following arguments.

We have the following exact sequence,
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with Ker(4) = U(g[r]) (xg,, ®1%)v; having filtration 0 C V3 + V4 C V5 C V; = Ker(A) where

Vs = Ulgl]) (g, ©1) (g, © )0
Vs = Ulgl]) (g, ©1) (g, @202

Vs = U(glt]) (g, ®1) (xg,, ®1%)v3

such that V;/V, is quotient of V (2@, + 2@,), hence isomorphic to V (2w, 4+ 2w,) as V;
being generated by a non-zero vector. V,/(V3 4 Vy) generated by non-zero vector of weight
) + @, is quotient of V(w; + @,), hence isomorphic to this. V3 + Vy is a quotient of

V(3w,) ®V (3a,). Hence,
dimker(A) < dimV (2w, +2w;) +dimV (w; + @) + dimV (3@, ) +dimV (3a,)

But dim F2e, + @y, 0,420, + MV (201 +20,) +dimV (0; + ;) +dimV (3w, ) =dimV* (i, z)
and dim Fag, + a0, +20, MV (20, +2@,) +dimV (@) + @) +dimV (30,) =dimV*(4,z).

Hence

dimF) = dimFoe, +wy,0,+20m, +dimker(A)
< dim Foe, +ay,0+20, +diMV (20 +20) +dimV (0 + 0,) +dimV (3w;)
+dimV (3m)
= dimV*(A,z) +dimV (3w;)
= dimV*(u,z)+dimV (3a,)

But V*(u,z) (resp. V*(A,z) ) is the quotient of F, and V(3ay) (resp. V(3m;,)) occurs in
g-module decomposition of V*(l,z) (resp. V*(A,z) ) but not in Fog, +w,,0,+20, S0 V (301)

(resp. V(3@,)) occurs in g-module decomposition of Ker(A ). Thus,

dimker(A) > dimV (2@, +20;) + dimV (@) + @;) +dimV (3w, ) + dimV (3a,).
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Hence, dimJF, =dimV*(4,z)+dimV(3w,) =dimV*(u,z)+dimV (3w;). Therefore,

Fa
(xgy ®1)(xgy, ®12)vy >

Fa,

and V*(A,z) = :
*.2) < (xg, ®1) (xgy, @12y >

Viu,z) = -

]






Chapter 4

Graded character of module /), ,

For A,u € P™ the CV-module F. A,u 18 @ Z -graded vector space and for each s > 0, the
subspace JF ,[s] is a finite-dimensional g-module on which the action of b is semisimple,

1.e.,

JT:)L,/,L: @ fl,u[s]n7

(n,s)EPXZy
where F [s]y = {u € Fy yls] : hu=n(h)u,Vh € b}. The graded character of F , is the

polynomial in indeterminate ¢ with coefficient in Z[P] given by

chgy Fp = Z dim]-",wl[s]n e(n)q’.
(n,s)EPXZ4

Since for each s € Z, F; [s] is a finite-dimensional g-module, using Weyl’s theorem,

F ), uls] can be written as the direct sum of 7;V(v), with v € P*. Hence,

Chgr]:)t,u = Z Chg }—l,u[s] qs = Z Chg(TS*V(V))qS.

S€Zy (v,s)eEPTXZy
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Define a polynomial in indeterminate g by,

[-Fl,u V(V)lg = Z [-Fl.,u : T;(V(V))]qp,

p>0

where [F} ,, : T,V (V)] is the multiplicity of 7,V (Vv) in a given filtration of the module F} ;.
The polynomial [F}, ,, : V(Vv)], is called the graded multiplicity of V(v) in F , and, at q =

1, it gives the numerical multiplicity of V (V) in the g-module V(1) @V (u).

4.1 Let (A,u) € P"(A+ u,2) be a partition of first kind

with Ho = 0
We know by Proposition 3.3.2 and Proposition 3.4.1(1) that

fka”lwl = fl+w17(ﬂ1*1)wl @ker(p(l"u‘lwl)’

H

ker@ (A, 1or) Sy D VA -ao - (1 -2a)m)
a=max{0,u;—A}

Using the sl3[f]-module decomposition for the successive quotients, F) jon,(m—jor 1 <
Jj < ui, we have
i Mi—j
Fru Zei) D o, Ty VA +(J—bj)or — (11 — j—2bj)an).
J=0 bj=max{0,u; —j—22}
As a consequence the graded character of J) ,; o, is given as follows: Comparing the

coefficients of @; and @y, for given pairs of integers (j,b;) and (k,by) we see,

A+(j—bj)or—(u1—j—2bj)an =A+ (k—by) oy — (U1 —k —2by)m,
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only if j =k and b; = b;. Hence, when A; > u;, each sl3[t]-irreducible component of
F 0 1s multiplicity free. Let

Viap) = l—i—(,ul—p—a)wl—(p—2a)a)z, ‘v’(a,p) EZ%,
Pninv(lv.ul wl) - {V(a,p) rac [p_ 2'27p] ﬂZ+, VS [Onul] ﬂZ+}.

P, ifv=y, € Pyim(A, o),
Then, [Fpu:V(V)ly=14 © (@p) (A, o)

0, otherwise.

42 Let (A,u) € P"(A+ u,2) be a partition of first kind

with iy, Uy > 0

By Proposition 3.3.1 and Proposition 3.4.1(ii), we have,

]:l,u = ~7:/l+a>2,u—w2 Dkerg(A,u),

ker¢(A,u) =sls1] T:Q‘F/Vrllz(wl*wz)#lwl
) @ T‘;‘V(A—(uz—%al—2a2)a)1—(u1+a2—2a1)a)2)
(alvaZ)ESm‘nv(l:ﬂ)
Using the sl3[¢]-module decomposition for the successive quotients F; jopp—jops 1 S J <

Uz, we have,

Hp—1

F(Au)= @ ker (A + jan,u — jon) © F)Huzwz,mw]
=0

-1

~ *

=sl3[r] @ TﬂZ*.f‘Fl"‘ij"‘(Nz_j)(wl_(02)#1601 @]:Huzwz.,ulwl
Jj=0

2%)
s J
@® @ T“u‘*jv(v(ah 7aj2))

J=0 \ (), .aj,)ESpim/(A+jan u—jar)
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where v(j ) =A+jon— (W — j+aj, —2aj,)o— (W +aj, —2aj, ). For (¢, ) € 72,

ajysdjy

let M;} (¢, ) = max{0,|u|—¢— A, —2j}. Using 4.1, we have,

Ha
_ . ) Ma2— ]
Chgr ]:/l,u - Z Chgrf/l—i—jwz-i-(uz—ﬂ(wl—602)#1 o 4

j=0

ur—1 ) Hls
* J ui=J

+ Z Z . Chg T\H\*J'V(D(ajpajz)) q

]:O (ajl 7611'2)68”,'”\;(2'4-](027/.1—](02)

H =L , ; ;
=) ) Y chg T V(A +jor+ (= j) (01 — @) + (0 —a)) o — (1 — £ —2a)) @) | g*1 ="
J=0L=0 \aj=nt;(¢.))

+ ) > chy T,V (0]

" aj 7aj2)> q“l‘ij
J=0 (ajl7aj2)€Sninv(l+jw2mu7jw2)

Comparing the coefficients of ®; and @, in the irreducible components of .F; ,, we now

determine the polynomials [F; , : V(V)]4.
(i). Given (aj,az) € Spiny(A, 1), and integers ¢, j such that 0 < j < up and 0 < ¢ < py,

A+ jon+ (2 — j) (o — @)+ (£ —al)oy — (w1 — £ —2a)) o

=A— (u2+a1 —2(12)(1)1 — (,I.L1 +a2—2a1)a)2

—1 2\ [a QU — j+al
only if = Ha=JTay |, that is,

2 -1 ap 2j— Mo +L+2a)
(a1,a2) = (j+€+a), p2 +0).

But by definition, (3.3.1), a» < U, therefore this case cannot occur.
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(ii). Forintegers j,¢ suchthat0 < j <, and0<¢ < and (aj,,a},) € Spin(A+ jon, 1 —

jan), ag € [max{0, |u|—0— 22}, iy — (] NZ,

A+ (01 — @)+ (L —ag) oy — (U — £ —2ap) o

= )~+j0)2_ (NZ_j+aj1 _zah)wl - (.ul +aj, —261]'1)0)2

-1 2 a; 2#2—}—6—(14—]'
only if A - , that is,

2 -1 aij, —Up — j+L+2ay
(ajlvajz) = (E"'_aﬁ — jylo—j+1L).
But by definition, (3.3.1), a;, < U, — j, therefore this case cannot occur.

(iii). Given triples of integers, (j,E,aé) and (j+s,r, a{“), with0<j<j+s<,lre

[0, 1] and max{0, |u|—k—2Ap —2s} <aj <y —kforse {{,r} and k € {j, j+ s},

At jor + (2 = j) (@1 — @) + (= af) o1 — (p — £ —2a])) o

=A+(j+s) o+ (2 —j—s)(01 — @) + (r—al™)or — (1 —r —2a]") o,
only if a) —a/™* = s+ ¢ —rand 2(a] " —a}) = £ — r — 25, implying,

(=r, and a)=al"+s=a)"+s.

Observe,

if a) € [|ul—d—0—2j,u —€]NZy, forsome (£, /) € [0, 1] x [0, o], then,

aj+1e(|ul—2o—£0—-2(j— 1), — N Zy, unlessa) € {py — £, || —A — £ —2j}.
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@iv).

Setting, Vi = A+ (k2 + ¢ (a] +J))on — (||~ ~2(a] + ) @2,

Priny (A, 1) :{Vag 3“2 €llul-A2 =l —ANZy }
Ha

VUL, ra) € (i —tlul—h — -2/} N7},
j=1

we have,

J

ap .
[“Fl,ﬂ : V(Va-[f)]q = Z q|'u|7£7S7ja for Vaz € ZPninv(A‘nu): v (&]) S [Oa.ul] X [OJ.UZ]
' s=0 '

Given triples of integers, (j,a;,,a;,) and (j—l—s,a]-/l,ajlz), with0< j<j+s< U —
1, (aj,,aj,) € Spimy(A + joo, 14 — jen) and (aj,a;) € Snim(A + (j + )@, 0 — (j+
5) @),

A+ jor— (o —j+aj —2aj,)on — (i +aj, —2aj,)

:7L—|—(j+s)a)2—(,u2—j—s+aj/l —2aj/2)(x)1 —(u1+aj/2—2aj/1)a)z

1 =2\ (a 1 -2\ [ay s
only if = M — that is,
-2 1 aj, -2 1 aj s

(aji,aj,) = (aj +s,a; +s).

From the sets Sy (A + jan, U — jon), for 0 < j < up, (3.3.1), we see that,
if (a,b) € Spiny(A + (j+ 1), 10 — (j+ 1) @), then (a+1,b+ 1) € Spim (A + jar, 1 — jon)

unless b—a=M+j—uotb—a=Uu—A —j

Setting, V(4 p,) = A+ jor — (Mo — j+a;—2bj) o — (H1 +bj —2a;)mn,

Pnlinv(luu) = {v(ao,bo) : (Clo,bo) € Sninv(ka.u)}

-1 (aj,bj) € Spim(A + jon, 1w — jon), . @2
. v(ajvbj) . )
= bj—aj € {Ad— i+ j, o — M — j}
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min{aj,bj} .
we have,  [Fp 0V (Vg 0,)lg = )_:0 gHl=s—i Viasby) € Poimy (A5 1)
Hence,
min{a;,b;} +1, if V=g, € Pl (A, 1)
[‘F/ly,u :V(V)]qzl = aé"' 17 ifv= vaé' € ZPninv()Lw.u)v (671) € [O#ll] X [OnLLZ]

0 otherwise.

43 Let (A,u) € P*(A+ u,2)is a partition of second kind

It follows from Proposition 3.3.5 and Proposition 3.4.1(iii) that,

Fop= ‘FCZMf dkerg(A,u),

o~
kero(A 1) =0 B B 7 aV (G — (atar—2m+ 0o — (1 +a—2a,+£) ).
(= 1(“1 QZ)Eéva(luH)

For (¢, j) € 72, let 1\2;}(€,j) = max{0, \Cf]—lz — ¢ —2j}. Since for (A,u), a partition of

second kind, (¢ [}, 4 f ) is a partition of A + u of first kind, using 4.2, we get,

Chq./_")L#

H2—%2
=) qlii‘M( Y chgv«;j—(xﬁal—zazw)wl—(u1+az—2a1+€>wz))
/=1 (ahaz)efginv(kvﬂ)

A [ W = y e
L R A PEE

370 \ =0 \ajitf (0.

A—1

uy_
+Y Y ch V(n(a, az)) q%1-i
J=0 (alua2)€Snir1V(€/f}+ja&7Cf_jwz)

wherena C=hjon+ (M — j) (@1 — @)+ (E—a))or — (u — £~ 2a(])a)2andn(

ara)

Cﬁ“ +jo— (A — j+aj, —2aj,)o1 — (U1 +aj, —2aj,)@,. Now, by comparing the coeffi-
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cients of @; and @; in the irreducible components of ) , we determine the polynomials
[}—QL,M;V(V)]CI'

First observe that for 1 </ < u; — A,

(Sinv()‘ml“w - [,Lz—ﬂ,z—rSinv<)‘mu> forr = Uz — )LZ — L.
Therefore,

0<a <u;,,0<a, <A
Nz—lz—rSinv()Lnu): (alaaZ)ezz: S ’ ’ VOSFSNZ_)LZ_L
=AM —r<ay—a <A —u+r

and

/.szlzfrfISiHV()Hu) = ,UQ*}{Q*VSI.I’W<A’7“’)
0<a; <u;, 0<a; <Ay,
U (al,az)ezzz =ar=H ! 2
a)—a € {[.Lz—ﬁ,l —7‘—1,;1,2—‘1.11 —I—}’—f—l}
4.3.1)

(i). Given triplet of integers (r,aj,az) with 1 <r < uy — A, (a,a2) € ,Sipy(A, 1) and

(&j?‘lé.) WlthOSES‘LLl, ) OSJSAQ? Clé € [|C;tt|_/12_e—2],ﬂl —E]HZ+,

Cﬁ—(/12+a1—202+r)w1—(H1+a2—2a1+r)w2
= Cr o+ jor+ (M — j) (o1 — @)+ (0~ a))or — () — € —2a])an
1 -2\ [a 1 -2\ [d jor—"
only if = + i.e., when
2 —1 ar 2 —1 Ao 2j—|—}’—|—€

(a1,a2) = (aé—l—j—l—r—I—é,lz + ¢+ r). This cannot happen since ay < A, and r < 1.
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(i) Given triplets of integers (U — A — £, ay,az) and (Up — Ay — £ —s,b1,by) with 0 < £ <

C+s<p—A—1,(a,a2) € 4,2, Sim(A, 1) and (b1,b2) € 3, —¢—Simv(A, 1),

i — (Ao +ar —2ay+ i — Ao — )1 — (1 + a2 —2a1 + i — Ay — £) @)

:C&—()Lz—l—bl—2b2—|—‘u2—7L2—f—S)0)1—([,L1+b2—2b1+‘u2—12—£—s)(1)2)

-2 a 1 -2 b1 N .
only if = — i.e., when
-2 1 a -2 1 b, S
(ar,az) = (b1 +s,b2+5). (4.3.2)

For (ar,br) € yy—2,—rSim (A, 1), set

B4, p,) = Cﬁ — (M +ar—2b,+y — Ay —r)or — (U + by —2a,+ U — Ay — 1),

Pl”lV(A‘Hu’) :{ﬁ(ao,bo) : (Cl(),b()) S LLQ-AgSinV(A‘Hu)}U

“2_ﬁ_1 19 (ar,br) E u27},2—rSinV(A’7u)7
(ahbl‘) .

Then it follows from (4.3.1) and (4.3.2) that the distinct irreducible components of
2=
JF ), that are parametrized by the elements of U Siw (4, 1) are V(S p,)), with

ﬁ(a,,b,) S Plnv(;l‘ ’ [.L)

min{a,.b,}

Thus, [Fru:V(Oep))le= X g"I=r=s_for B4, .5,) € Piv(A, 10).

s=0
(iii). Given a triplet of integers (¢,aj,az) with 1 < /¢ <y, — A, (ay,az) € ¢Sipy(A, 1) and

(j,b1,b2) with 0 < j < Ao — 1, (b1,b2) € Spinm (2 + jon, §L' — jen),

Cl/} — (7Lz—f—a1 —2a2+£)a)1 — (‘LL1 +ay —2a —}-K)(Dz

={ — (Mo +by — 20y — j)oy — () + by —2b1 — j)an
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2 -1 b 2 -1 ai ——j
only if = + , 1.e., when
-1 2 b -1 2 as —l—
(b1,b2) = (a1 — € — j,az — £ — j). (4.33)

Hence using (4.3.3), we see,
if for some r =t — 2 — £, V(4 p,) = V(a;5;) With B(g, p,) € Pan(A, 1) and v, ) €
Phin (G 1) then by —a, = bj—aj. However, by (4.2.1), for j > 1, V(5 €
P (G C1) only if
bj—aj=w—u+j or Ar—A —}j,

whereas, by (3.3.4),

M=+ W—A—r)<b—a, <t — 1 — (U — A —7),
with0<r<m—-A4—-1.Ash—-A —j<lb—A+(u—2A—r)and up — u; —
(W—2Ap—r1)<pp—u+jforall0 <r<puy—A,—1and j >0, we see that in order

to determine the polynomials [F(3 . : V(n)], it is sufficient to consider the cases

when B, ;) = V(4 p,)- Observe that

i — (Mo +ar—2b,+r)oy — (1 + by —2a,+ 1)@

= {h = (ot (ar—r) =2(br = r))or = (1 + (br =) = 2(a, = 1)) o2

and [/12—),1+(/.L2—12—r),u2—u1 —(,Ltz—ﬂ,z—r)] C [lz—ll,[.tz—,ul],fOrOS

r < Up — Ay — 1, and setting,

~ Ha—l (aj,bj) € Sninv(‘:ﬁL "‘J'wZaC)tt —j@),
Pr}mv(C;iLaCf) = U v(aj,bj) : Y
=0 bj—aj€{dr— i +j,lo—A —j}
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min{a‘,-,bj}

weget [Fau:VVigeplla = & =T for Vi, € Bl (8,63,
§=

Thus given a partition (A, ) of A + u of the second kind, we have,

min{a;, b} +1, if V="V, € PL (G ),

J : A g :
a,+ 1, ifv= Vi€ ﬂPninV(Cv ’C/l ), fOI‘(l,]) € [0,#1] X [0,/12],
[-Fh,u :V(V)]qzl = !
min{a,,b,}+1 ifv= ﬁ(ahbr) € Ppy(A, 1)

{ 0 otherwise

4.4 Littlewood-Richardson Coefficients

The following is an important consequence of the results obtained in this section.

Theorem 4.4.1. For A, u,n € PT, let cg y be the multiplicity of V(n) in the sl3(C)-module
V(A)aV(u).

i. Suppose (A,) is a partition of A + W of first kind with & = U @;. Let Pyjny(A, i @)
be as defined in Section 4.1. Then

17 lfn EPm'nv(l;.l-l'l(ﬁol)

CTI _
YN )
0, otherwise,
ii. Suppose (A,LL) is a partition of A + W of first kind with y; > 0 for i = 1,2. Let
PL (A,u) and yPyny(A, 1) be defined as in Section 4.2. Then

min{aj7bj}+ 1, whenn = Viajbj) € Pnlinv()”»u)’
cl.,u o aé+ 1, Whenn - Vaé € ZPninv<)Lnu)7f0r<lvj) € [O,‘UI] X [03“2]7

0 otherwise
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iii. Suppose (A1) is a partition of A + [ of second kind. Let Py,(A, u),ﬁnlinv(é_fﬁ’}, Cf),

and aninv(C&, 4 f ) be defined as in Section 4.3. Then

min{a,,b,} +1, whenn =3 ;) € Pi(4, 1),
min{ajﬂbj} +1, whenn = Vajb; € Isrzinv(C;iLa C,{L);

a£+ L, when1n = vaé € EPninv(C\av7€f)7f0r<laj) € [Oa.ul] X [0512]7

0 otherwise
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Chapter 5

Borcherds Kac-Moody Lie superalgebra

Borcherds Kac-Moody Lie superalgebra (BKM superalgebra in short) is a natural generaliza-
tion of Kac-Moody Lie superalgebra. It can also be regarded as Z;-graded generalization of
Borcherds Kac-Moody Lie algebra. In this part of thesis, we study the free root spaces of
BKM Lie superalgebra and give two types of basis of it using combinatorial tool heaps of

pieces.

In this chapter, we set the notations, recall some basic notions and results from [56, 50] that
we shall use in the subsequent chapters. In this part of the thesis, we shall denote by 7, a

countable (possibly infinite) set.

5.1 BKM Supermatrix and associated Lie superalgebra

Definition 5.1.1. A Z,-graded vector space V is a direct sum, Vj & Vi, of vector spaces. We
call elements of Vj (resp. V) even (resp. odd). The non-zero elements of VUV are all

homogeneous. For any homogeneous element x € V;, i € Z,, we set X = i, the degree of x.
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A Lie superalgebra is a Z,-graded vector space £ = £(@® £, with Lie bracket, [,]: £x £ — £
satisfying the following:
() [£i, L] C Liyjfori,je Zy,

(i) [a,b] = —(—1)%[b, ],

for all homogeneous elements a,b,c € £

Remark 5.1.2. Any Lie superalgebra £ is a Lie sub-superalgebra of g/(£) via the adjoint

action, where £ is considered as a Z,-graded vector space.

Definition 5.1.3. Let ¥ be any subset of /. A real matrix A = (a;;); jes together with a choice
of W is said to be a Borcherds-Kac-Moody supermatrix (BKM supermatrix in short) if the

following conditions are satisfied: For i, j € I we have
(1) a;j=2o0ra; <O0.
(i) a;; <O0ifi# j.
(iii) a;; =01if and only if a; = 0.
(iv) a;j € Zif a;; = 2.
(V) ajj€2Zifa;=2andic V.

Remark 5.1.4. A is said to be symmetrizable if there exists a diagonal matrix D = diag(d;);es

with positive entries such that DA is symmetric.

Definition 5.1.5. An index i € [ is said to be real if a;; = 2 and imaginary if a;; < 0. Denote
by

Ire:{ielzai,-:2},

\{]}"e — \P m Ire,

TQZ{iElPZCl,'i:O}
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Definition 5.1.6. The BKM Lie superalgebra associated with a BKM supermatrix (A, V) is

the Lie superalgebra £(A,¥) generated by e, f;, hj,i € I with the following defining relations:
() [hi,hj]=0fori,jel,
(i) [hi,ej] = aijej, [hi, fj] = —aijfj fori,jel,
(iii) [e;, fj] = O;jhi fori, j €1,
(iv) degh; =0,i €1,
(v) dege;=0=degf;ifi ¢ W, dege; =1 =degf;ifi € ¥,
(vi) (ade;)!"%ie;=0=(ad f;)1~%if;if i € I" and i # j,
(vii) (ad e;)!"Fe;=0=(ad f;)! "2 f;if i € W and i # J,

(viii) (ade;)!~Fe; = 0= (ad £;)! "2 f; if i € W and i = J, i.e., [ei,e]] = 0 = [f;, fi] for

ieW¥,
(ix) [eie;] =0=[f;, fj] if aij = 0.
The relations (vi)-(viii) are refered to as Serre relations of £.

The abelian Lie sub-superalgebra by spanned by {A; : i € I} is called the Cartan subalgebra of
£(A,¥). Let {a; : i € I} be the set of simple roots of £(A,¥), {¢;:i € ¥ =1} be the set
of odd simple roots and {¢; : i € Ip = I\ I, } be the set of even simple roots of £(A,¥). If

a;; > 0 for all i € I then £(A, W) is said to be Kac-Moody Lie superalgebra.

Remark 5.1.7. All finite dimensional semisimple Lie algebras and affine Lie algebras
are BKM algebras. However, all finite dimensional and affine Lie superalgebras are not
BKM Lie superalgebras. A simple finite dimensional Lie superalgebra £ is a BKM super-
algebra if and only if £ is of type A(m,0) =sl(m+1,1),A(m,1) =sl(m+1,2),B(0,n) =
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osp(1,2n),B(m,1) =o0sp(2m+1,2),C(n) =0sp(2,2n—2),D(m, 1) = 0sp(2m,2),D(2,1; x)
for o # 0,—1, F(4), and G(3). An affine BKM Lie superalgebra is either a Kac-Moody Lie

superalgebra or has degenerate generalized symmetric Cartan matrix A = (0).

5.2 Quasi Dynkin diagram

Definition 5.2.1. Let G be a countable (possibly infinite) simple graph with vertex set V =
{a:i €I} and asubset W C . The vertices in V| = {o; : i € ¥} (resp. Vo = {0 : i € \W¥})
are called odd (resp. even) vertices of G. Such a graph (G, ¥) with Z,-graded vertex set V
is called a supergraph. If A is the classical adjacency matrix of the graph G then the pair

(A,W) is called the adjacency matrix of the supergraph (G,%¥).

Definition 5.2.2. Let (A = (q;j),'¥) be a BKM supermatrix and £ be the associated BKM
superalgebra. The quasi Dynkin diagram of £ is the supergraph (G, ¥) with vertex set V
such that two vertices o;, &; € V are connected by an edge if and only if a;; # 0. We often

refer to (G, W) simply as the graph of £.

In other words, the quasi Dynkin diagram can be obtained from the Dynkin diagram of £ by
replacing all the multi edges with a single edge. For any subset S C IT, we denote by |S| the
number of elements in S. The subgraph induced by the subset S is denoted by Gg. A subset
S C I is said to be connected if the corresponding subgraph Gg is connected, and S is said to

be independent if Gy is totally disconnected.

5.3 Root System

Definition 5.3.1. The formal root lattice Q is defined as the free abelian group generated

by oy, i € I with a real valued bilinear form (¢, ;) = a;j. Let A be root system of BKM
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superalgebra and A} := AN Q. the set of positive roots where Q := Y Z @ is the positive
i€l
root lattice of £.

Definition 5.3.2. Define three functions ht: A — N, supp : A — P(I), and wt: A — Z,

where P(I) denotes the power set of I such that for @ = Y k;a; € A,

ht(a) = Yk
supp(et) = {iel: ki #0} -
wt(ot) := k= (kj:i€l)

For o« = ), mjo; € A, the root space £4 is defined as
j=1

Lo={xel:[hx]=ah)x ¥V heb}.

Foriel, £4 = Ce; and £_4 = Cf;. The root space £y (resp. £_¢) is generated by the
brackets of an element of £4, m-times with an element of £4, my-times, ..., with an element
of £q, my-times, i.e., [e;,[ - [ei,e;]]] (vesp. [fi;, [+ [fir, fir]l] )- Such a root & is said to
be an odd root if the number of i;,1 < k < j, coming from /; is odd otherwise it is an
even root, denoted as A and A respectively. So, a root space £ is either contained in the
even part £5 or odd part £ of the BKM superalgebra £. The dimension of root space £q
is called the multiplicity of root ¢. All root spaces are finite dimensional. Observe that

dim€y, =1 =dimg g.i€l.

Definition 5.3.3. A root @ = Y k;a; € Q" having weight k = (k; : i € I) is said to be a free
icl

root, if k; < 1 fori € " UWy. A root & € A s called real if and only if (o, @) > 0 otherwise

we call it an imaginary root. The set of real roots is denoted by A™ and imaginary roots by

Aim — A\Are.
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It was shown in [56, Proposition 2.40] that for i € I'", if o € A \ {04} such that supp(a + ;)

is connected then, for all j € Z,, o+ joy € A+. If @ € A then supp(o) is connected.

Definition 5.3.4. The generalized Cartan decomposition of the BKM superalgebra £ is
defined as

L2n @han’, wheren® = P L.

(XEIEA+

5.4 Weyl Group

For ¢ € A’¢, define the reflection s, along the hyperplane perpendicular to o by

2(4, ) o

sald) == 0

The Weyl Group W of BKM superalgebra £ is generated by simple reflections sq, 00 € A”.

Also, bilinear form on £ is W-invariant, i.e. (w(a),w(B)) = (a, ) for all a,f € A.

Define the length of w € W by length of reduced expression of w, denoted by ¢(w). A vector
p € b* such that 2(p, o;) = (o4, o) for all i € I is called the Weyl vector. Such a vector exist

only if there exists a non-degenerate bilinear form on h*.

Remark 5.4.1. The Chevalley automorphism w of order 4 acting on BKM superalgebra £ by

(@) fis ifie¥
wle;) =
—fi, otherwise

5.5 Denominator identity

Let € be the set of all y € O such that
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(i) y= ijl Qi; + Y1 liBi, where the o, (resp. [3;) are distinct even (resp. odd)

imaginary simple roots,
(i) (o4, ;) = (Bi;,By) = 0 for j # k; (i, Bi,) = O for all j, k;
(iii) If Z;, > 2, then (B;,,B;,) = 0.

The following denominator identity of BKM superalgebras is proved in [56, Section 2.6]:

(1 _ efoc)mult(oc)

Z ZS(W)g(}/)eW(P*Y)*P _ HaeAg

(5.5.1)
weW yeQ HaeAi(l +ema)muli(@)

where mult(a) = dim £, &(w) = (—=1)"") and g(y) = (—1)".

Remark 5.5.1. If ¥ is the empty set then Equation (5.5.1) reduces to the denominator
identity of the Borcherds algebras. Further, if I is also empty, then Equation (5.5.1) reduces

to the denominator identity of the Kac-Moody algebras.

5.6 Free partially commutative Lie superalgebras

Let (G,¥) be a supergraph with a vertex set V = {¢; : i € I} and edge set E(G). = VUV
where V; = {a; : i € I;} for j € {0,1} and edge set E(G). V is totally ordered with respect
to the order induced from set /. Let V* be the free monoid generated by V. Note that V* is
totally ordered with respect to the lexicographic order. A word w € V* is called even if the
number of alphabets from V; in w is even and odd otherwise. This defines a Z,—gradation

on V*. First, we define the free Lie superalgebra on a Z,-graded set V = Vy L V.

Definition 5.6.1. Let ) be the Z,-graded vector space with basis V and 7'()) be the tensor
algebra on V. The algebra T'()) has an induced Z;-gradation, which makes it an associative

superalgebra with basis V*. Clearly, 7' ()) has a natural Lie superalgebra structure. The free
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Lie superalgebra on the superset, V denoted by F LS(V), is defined to be the smallest Lie

sub-superalgebra of 7'()) containing V.

If V] is an empty set, then F LS (V) is a free Lie algebra on the set V.

Definition 5.6.2. Let J be the ideal in FLS(V) generated by the relations {[o;, ¢ :
(o, aj) ¢ E(G)}. The quotient algebra w, denoted by LS(G,¥), is the free par-
tially commutative Lie superalgebra associated with the supergraph (G,¥). When ¥ = I;
is the empty set, LS (G, ) is the free partially commutative Lie algebra associated with the
graph G and is denoted by £(G). It is well-known that F LS(V) and hence LS(G,P) is

graded by Zﬂr.

5.7 Free partially commutative super monoid

Let M(V,G,¥) := V*/~ be the free partially commutative super monoid associated with a
supergraph (G,¥), where ~ is generated by the relations ab ~ ba, if (a,b) ¢ E(G). Observe
that M(V,G, W) has a natural Z,-gradation induced from the Z,-gradation of V*. When V¥ is
empty, M(V,G, W) is called the free partially commutative monoid associated with the graph

G and denoted simply by M(V,G).

Associate with each element [a] € M(V,G,¥) a unique element @ € V* which is the maximal
element in [a] with respect to the lexicographic order. This element is called the standard
word of the class [a] and it is denoted by st([a]). A total order on M(V,G,¥) is then given
as follows:

] < [b] & stla] < st[p]. (5.7.1)
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5.8 Heaps monoid

We now recall essential definitions from the theory of heaps of pieces to define pyramids and

Lyndon heaps from [44].

5.8.1 Heaps of pieces

Let (G,¥) be a supergraph with a vertex set V = {o; : i € I'} and edge set E(G). V is totally
ordered with respect to order induced from set /. Define a relation § on the set, V such
that alb for a,b € V, if a and b are connected by an edge in the super graph (G,%¥), i.e.,
(a,b) € E(G).

A pre-heap E over (V, () is a finite subset of V x {0, 1,2,... } satisfying, if (a,m), (b,n) € E
with a b, then m # n. Each element (a,m) of E is called a basic piece. For (a,m) € E, the

position and level of the piece (a,m) is denoted by
w(a,m)=a, h(a,m)=m.

A basic piece will be simply denoted by a when we do not need to emphasize its level. The

set T(E) is defined to be the set of all positions occupied by the pieces of E.

A partial order <g is defined on a pre-heap E as follows:
(a,m) <g (b,n) if alb and m<n.

Two pre-heaps E and F are said to be isomorphic if there exists a position preserving order

isomorphism ¢ between (E,<g) and (F,<p).

A heap E over (V,{) is a pre-heap over (V, {) such that: if (a,m) € E with m > 0 then there

exists (b,m — 1) € E such that a{b. Every isomorphism class of pre-heaps contains exactly
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one heap, and this is the unique pre-heap E in the class for which Y. A(a,m) is minimal.
(a,m)€E
Observe that, for any o; €V, {(a;, 1)} is also a heap, which we shall denote by ;.

Remark 5.8.1. The graph G can have a countably infinite number of vertices, but each heap

E over the graph G has only a finite number of pieces by definition.

Let H(V, ) denote the set of all heaps over (V, ). Let |E| denote the number of pieces in E

and for a € V, |E|, denote the number of pieces of E in the position a. Define a map

H(V, ) — T

by E — (k;)ic; where k; is the number of pieces of E at position o, i.e.,

ki=|{(a,m) € E : mw(a,m) = a;}|= |E|q

This defines a natural Z/, -gradation on the set 7(V, {) of all heaps. Let Hg(V, ) be the

set of all heaps of grade k for k = (k;);e; € ZL...

Define the superposition E o F, of F over E, as heap F ‘falls’ over E. H(V,{) is a monoid

with product as superposition of heaps. Define a map

vV = H(V, )

by, W(p1p2 -+ px) = p1 © p2 o---0 pi. Observe that w~!(E) is the set of all linear orders
compatible with <g. Since M(V,G,¥) = V*/~ where a ~ b means (a,b) ¢ E(G), it is clear
that y extends to grade and order-preserving isomorphism of the monoids M (V,G,¥) and
H(V,&). This defines a total order on H(V,{). It also defines a Z,-grading, H(V,{) =
Ho(V,8) ®Hi(V,) where Ho(V, ) (resp. Hi(V,)) consists of all those heaps in which
the number of pieces coming from V] is even (resp. odd). The standard word of a heap E is

defined to be st(E) = st(y~!(E)) [c.f. Equation (5.7.1)].
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5.8.2 Pyramids and Lyndon heaps

For a heap E, minE is the heap composed of minimal pieces of E with respect to <g, i.e.,
set of pieces of heap E of level 1. A heap E such that minE = {a} is said to be a pyramid

with the basis a.

A heap E is said to be periodic if there exists a heap F # 0 (0 - empty heap) and an integer
k > 2 such that E = F*. Similarly, E is primitive if E = U oV =V o U implies either U = 0
or V = 0. If the minimum piece of pyramid has the lowest position (with respect to the total

order on /) then such a pyramid is known as admissible pyramid.

A pyramid E with the basis {p} such that |[E|,= 1 is said to an elementary pyramid.
An admissible pyramid that is also elementary is known as a super-letter. The set of all

super-letters in H(V, {) is denoted by A(V, {).

Let E be a heap. If E = U oV for some heaps U and V, we say that V o U is a transpose of E.
The transitive closure of transposition is an equivalence relation on H(V, ), which we call

the conjugacy relation of heaps and is denoted by ~.

A non-empty heap E is said to be Lyndon if E is primitive and minimal in its conjugacy class.

Let LH(V,{) denote the set of all Lyndon heaps over the super graph (G, V).

The following diagram is an example of Lyndon heap. All the diagrams of heaps and Lyndon
heaps in this chapter has the following assumptions: Let G be path graph on vertex set

V={o,0,03,04} and a; < o < o3 < 0.

Example 5.8.2. A Lyndon heap over the path graph on 4 vertices.
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This is example of Lyndon heap E = ot 0 03001 04 03.

Using Lyndon heaps, there is a Lyndon heaps basis defined for free partially commutative
Lie algebras, we will generalize this notion to super Lyndon heaps and construct a basis of
free partially commutative Lie superalgbera. Then we identify the free root spaces of a BKM
superalgebra with the grade spaces of free partially commutative Lie superalgebra. This
identification helps to construct one type of basis, known as the Lyndon heaps basis, for the

free root spaces of a BKM superalgebra £. [



Chapter 6

Basis of free root spaces

This chapter’s objective is to introduce two types of free root space basis, namely Lyndon
heaps basis and Lyndon Left Normed (LLN) basis. Throughout this chapter, we fix a tuple
k= (ki:i€l)€Z suchthatk; <1 forielLI¥. Set, n(k) = Lk and wt(n(k)) = k.

6.1 Main Result I: Lyndon heaps basis of free root spaces

The aim of this section is to identify the free root spaces of a BKM superalgebra with the
grade spaces of free partially commutative Lie superalgebra. This identification helps to

construct the Lyndon basis for the free root spaces of a BKM superalgebra £.

We begin by recalling the definition of standard factorization of Lyndon heaps and the Lyndon

heaps basis of Lalonde from [43].

Definition 6.1.1. If E is a Lyndon heap then the standard factorization £(E) of E is given by
Y(E) = (F,N), where

1. F # 0 (empty heap)
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2. E=FoN
3. Nis Lyndon

4. N is minimal in the total order on H(V, §).

We associate a Lie monomial A(E) in £(G) corresponding to each Lyndon heap E € H(V, ()

in the following way.
Q; HE=o,cV

[A(F1),A(F)] ifX(E) = (F, F2)

The following theorem gives the Lyndon basis of the free partially commutative Lie algebra

L(G).

Theorem 6.1.2. [43] The set {A(E) : E € H(V,{) is a Lyndon heap} forms a basis of L(G).

6.1.1 The identification of the spaces £, and LSk(G)

Let LS(G, W) be the free partially commutative Lie superalgebra associated with the super-
graph (G, ¥). The following lemma establishes a natural vector space isomorphism between

the root space £, k) of £ and the grade space LSk(G,¥) of LS(G,¥).

Lemma 6.1.3. Let n(k) = Y kio; € Ay with wi(n(k)) =k = (k; : i € 1) € ZI such that
ki <1 foriel”U¥y. Then

(i) The root space £y can be identified with the grade space LSk(G). In particular,
dim £, = dim LSk (G, ¥).

(ii) The root space £y x) is independent of the Serre relations.
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Proof. The positive part ny of £ can be written as ( @ £4)D( D Lq). Using the
(XGA+ (XEA+
free non-free

defining relation (ix) of £, there exist a natural grade preserving surjective map
T: ES(G,‘P) —» Ny

given by o; — ¢;. Using the defining relations (vi)-(viii) of £, we see that the kernel of this

map is generated by the elements
(ad o) "%iq;ifi € I and i # j,

(ad o)~ 7 ot; if i € W and i # j, and
(adoy)' ™7 @t if i € Wy and i = j

of LS(G,¥). Observe that in all these elements, some ¢;’s (corresponding to a real simple
root or an odd simple root of norm zero) occur at least twice. Since Y preserves the grading,
the grade space LSk(G,¥) is injectively mapped onto the free root space £, () of £ by our

assumption on k. This completes the proof. 0

6.1.2 Super Lyndon heaps and the standard factorization

We have seen in Theorem 6.1.2 that the Lyndon heaps in H(V, {) parameterizes a basis for
free partially commutative Lie algebra £(G). Now we generalize this result to free partially

commutative Lie superalgebras by introducing the notion of super Lyndon heaps.

Definition 6.1.4. A heap E € H(V,{) = Ho(V,{) @ H1(V,{) is said to be a super Lyndon

heap if E satisfies one of the following conditions:

* E is a Lyndon heap.
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* E=FoF where F € H;(V,{) is Lyndon.

Let SLH(V, ) be the set of all super Lyndon heaps over the supergraph (G, ¥).

Example 6.1.5. A super Lyndon heap over the path graph on 4 vertices with I, = {o, 0, a3 }

@G
(e
()

C)—)—09—@9

and Iy = {0y} is the following.

This is an example of a super Lyndon heap E = otj op 0301 0 03 with F = ot; 0, 03, a Lyndon

heap in H(V,{).

Definition 6.1.6. Let E be a super Lyndon heap in H(V,{). If E = F o F where F is a
Lyndon heap in #(V,{) then £(E) = (F,F) is the standard factorization of E. We associate

aLie word A(E) in LS(G) corresponding to each super Lyndon heap E € H(V, ) as follows

o; ifE=0;,€V

AR),A(R)] ifX(E) = (Fi,F)

6.1.3 Basis of free partially commutative Lie superalgebras

The following theorem is the main result of this section. Here we construct the Lyndon heaps

basis for free partially commutative Lie superalgebras.

Theorem 6.1.7. The set {A(E) : E € H(V,{) is super Lyndon} forms a basis of LS (G,¥).
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The rest of the section is dedicated to the proof of the above theorem. The proof of the

following lemma is immediate.

Lemma 6.1.8. Let E € SLH(V, ). Then A(E) = Y orF where ar € Z. Since
FESLHK (V)

there are finite number of heaps of degree K, the sum is a finite sum.

Proposition 6.1.9. The set H(V,{) parameterizes a basis for the universal enveloping

algebra of the free partially commutative Lie superalgebra LS (G,WV).

Proof. Let i be the C-span of the heaps monoid H(V, ) associated with the supergraph
(G,P). Then 4 has an algebra structure induced from the multiplication in H(V, ). This is
the free partially commutative superalgebra associated with the supergraph (G,¥). Since
it is the smallest associative superalgebra containing £LS(G), i is the universal enveloping

algebra of the Lie superalgebra LS(G,¥). O

Proposition 6.1.10. Let L be a super Lyndon heap of weight k over the supergraph (G,P).
Put A(L) = Y opE. Then
E€SLHK (VL)
(i) ar = 1ifLis a Lyndon heap
(ii) ap =2if L=LyoLy, Ly is Lyndon heap in H,(V,{)

(iii) If og # 0 then E > L.
Proof. If E is a Lyndon heap, then part(i) and (iii) follow from [43, Theorem 4.2].

(ii) Let L= L;oL; where L, is Lyndon heap in H(V,{). We have,

A(L) = I[A(L1),A(Ly)]
=[ Y ogE, Y opE'] (Using part(i) and (iii)) for Lyndon heaps)

E>L, E’ZL]
=[Li,Li]+ Y opop[E.E'|+ ¥ aglE.Li]+ ¥ op(L,E']
E>L E>L, E/>L1
E,>L1

— 2L+2K>L a[(K.
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This proves (ii).

(iii) Since, st(EoE') > st(E)-st(E') > st(Ly)-st(Ly) =: st(L; oLy), this implies, EoE > L.

Similarly, we have E oE>L.Also,EoL; > L, LioE > L. Hence (iii) follows.

]

Corollary 6.1.11. The set B = {A(L) : L is a super Lyndon heap} is linearly independent in
LS(G,¥).

Proof. Assume that

Z BLA(L) =0, BreC

LeB

where all but finitely many f3; are zero. Then by the Proposition 6.1.10, we have

Yo ¥ k)=
LeB E>L
wt(E)=wt(L)

1, ifLe LH(V,])
Z Br | oL+ Z ogE | =0 where o =

Leb wt(Eb;iat(L) 2, ifL=EocE, EcH(V,{)

This implies,

Y BL+2 Y BL+Y Y BLagE=0

LeLHre) ECLTL(V.0) LB i wm)

Since LS is graded space, for each Kk in the grade space LSk(G,¥), we get,

Y  BLL+ Y BragE =0, if k; is odd for some i € supp(k)
LeLHK(V,0) ESL
wt(E)=wt(L)
EcSLHK (V)
Y BiL+2 % BLL+ Y PragE =0, otherwise.
LeLHk(V,E) LeLH(V,E) E>L
L=EoE wi(E)=wt(L)
\ ECLH\(V.C)  LeSLHy(V.D)



6.1 Main Result I: Lyndon heaps basis of free root spaces 99

Since heaps form a basis of &l = C(H(V,{)) it follows that B;, = 0 for all L € B in the above

equations. This completes the proof. [

Proposition 6.1.12. Let L and M be super Lyndon heaps such that L < M. Then

[A(L), A(M)] = Z onA(N).
NeSLH(V.L)
N<M

<
deg(N)=deg(LoM)

Proof. We prove the result by considering the three different cases.

Case (i):- Suppose L, M are Lyndon heaps satisfying L < M, then result follows from [43,
Theorem 4.4].

Case (ii):- Suppose exactly one of L, M is a super Lyndon heap. Without loss of generality,
assume that L = Ly o Ly where L; is Lyndon heap in #(V,{) and M is an arbitrary Lyndon

heap. Now,

[A(L), A(M)] = [[A(L1),A(L1)], A(M)]

=2[A(Ly), Y o AMN)] (CLi<LioLi=L<M)
NeLH(V,C)
Ni<M
deg(Ny)=deg(LioM)
=2 Y o, [A(L1), A(N1)]
N1€£H(V7C)
Ni<M

deg(Ny)=deg(L1oM)

—2| Y awAC)AMDE Y o lAL).AM)
NIE‘CH(va) NIEEH(VaC)
Li<N<M Ni<Ly
deg(Ny)=deg(LioM) deg(Ny)=deg(LioM)

Using case (1) in the first term of the above equation, we get,
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Y am[AL),AN)] = Y oy Y o, A(N2)
NieLHV,E) NieLHV,E) NreLH(V,E)
Li<N{<M Ni<M Nr<N1 <M
deg(Ny)=deg(LioM) deg(Ny)=deg(LioM) deg(Ny)=deg(LioNy)=deg(LoM)
= Z Z (05Vd OthA(Nz)
NreLH(V,E) N'eLH(V,E)

No<M No<N'<M
deg(Ny)=deg(LoM) \ deg(N')=deg(L oM)

(. J

~~
some constant CN2

= Y (emom)A(N)
N2€£H (ch)
No<M
deg(Ny)=deg(LoM)

For the second summation, [A(L;),A(N;)] = —(—1)™°4 [A(Ny), A(Ly)] where ay,, by, €

{0,1} according to Ni,L; € H;(V, ) fori € {0,1}. Therefore,

AL, AN)] = —(=1)™ )} o A(K)
KeLH(V,0)
K<Li<M
deg(K)=deg(N oL )=deg(LoM)

Y om[AL)AN)] == Y oy (=)™ ¥ ox A(K)
NieLH(V,E) N eLH(V,E) KeLH(V,E)
Ni<M Ni<M K<Li<M
deg(Ny)=deg(LioM) deg(Ny)=deg(LioM) deg(K)=deg(LoM)
Li>N;
=— ¥ Y (—)™hay | axAK)
K6§HZS/£) N'eLH(V.G)

< !
K<N'<M
deg(K)=deg(LoM) deg(N")=deg(LioM)

-

P
constant cx

= Y axA(K) where o = —cgOk.
KeLHV,)
K

<M
deg(K)=deg(LoM)
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Thus,

aAm=2( Y (mam)AM)+ Y aAK)).

melA(1.0) KeCHVL)
< <
deg(Ny)=deg(LoM) deg(K)=deg(LoM)

Case (iii):- Suppose L =Ly oL;, M = Mj o My where Ly, M are Lyndon heaps in H;(V, )

satisfying L < M. Then

[A(L), AM)] = [[A(L1), A(L1)], A(M)]
= 2[A(L1), [A(L1), A(M)]]

=2[A(Ly), Y oy A(N)] (by the previous case)
NeLH(V,E)
N<M
deg(N)=deg(LioM)
=2 ) o [A(L1), A(N)]
NeLH(V,0)
N<M
deg(N)=deg(LioM)
=2( T aAL)AN+ T anlA(L).AW)))
NeLHV,E) NeLH(V,L)
Li<N<M N<M and Li >N
deg(N)=deg(LioM) deg(N)=deg(LioM)

For those N € LH(V,{) such that, L; < N then by first case,

[A(L1),A(N)] = )y BxA(K)
KeLH(V,E)
K<N<M
deg(K)=deg(L;oN)

= Y an[A(L),A(N)] = ) oy ) BrA(K)
NeLH(V,0) NeLH(V,E) KeLH(V.0)
N<M N<M K<M
deg(N)=deg(LioM) deg(N)=deg(LioM) deg(K)=deg(LoM)
Li<N
= Y o A(K)
KELHV,E)

K<M
deg(K)=deg(LoM)
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For N € LH(V,{) such that L; > N we have,

[A(L1),AN)] = —[A(N),A(L1)] = — )y Br, A(K>)
NeLH(V,0)
Ky<Ly
deg(Ky)=deg(NoLy)
Y o alAz)AMI= Y e Y BrAK)
NeLH(V,0) NeLH(V,0) KeLH(V,L)
N<M N<M K<L <M
deg(N )L:d>elgv(L1 oM) deg(N)=deg(LioM) deg(K»)=deg(LoM)
1

= Y o, A(K>)

KZEEH(va)
Ky<M
deg(Ky)=deg(LoM)
AL AM=2( Y AR+ Y apAK)
KeLH(V,Q) KreLH(V,E)
K<M Kr<M
deg(K)=deg(LoM) deg(Ky)=deg(LoM)
This completes the proof. ]

By the above proposition, the Lie subsuperalgebra generated by B = {A(L) : L is super
Lyndon heap} in LS(G,¥) contains V. So this subalgebra is equal to LS(G,¥). This
completes the proof of Theorem 6.1.7 and in turn, gives the Lyndon basis for the free roots

spaces of BKM superalgebra £ whose associated supergraph is (G, ¥) [c.f Lemma 6.1.3].

Example 6.1.13. Consider the BKM superalgebra £ associated with the BKM supermatrix

-1 -3 4 -1 0 O
-4 -4 0 0 -1
-1 0 2 -1 O
O 0 -1 -2 0

oS o o O

0O -1 0 0 =3

The quasi-Dynkin diagram G of £ is as follows:
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We have I = {1,2,3,4,5,6},% ={3,5} and " = {1,4}. Assume the natural total order on /.

Letk = (0,0,3,0,0,3) € Z[I]. Then (k) = 303 + 306 € Al . Fix i = 3 (minimal element

in the support of k), then the super Lyndon heaps of weight 1 (k) are
{0305060605 06, 06305306306 0l Ot, - 083,003 0t O3 O Ot

with standard factorization X( 0303 0 0t 0304 ) = (03030l O, 003.0), L 0303063, 046 06 Ol ) =
(03, 0303066 046 0 ) and X (03030l 03 0l Ol ) = (43, Q3 0l O3 0 O ) . The associated Lie mono-

mials

{lles. lles el eqll. fessesll, [es, [es, [lfes,ec]. sl eell],  [e, lfessesls less el q]]] |

spans £y ). We have dim £, ) = 3 [c.f. Example 7.3.6]. So these Lie monomials form a

basis for £, ).

Example 6.1.14. Consider the BKM superalgebra £ associated with the BKM supermatrix

2 -1 0 0 0 O

-1 -3 -1 0 0 O

O -2 4 -1 0 O
A=

o 0 -1 2 -1 0

o o o0 -1 -2 -1

o o o 0 -1 -3
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The quasi-Dynkin diagram G of £ is as follows:

We have I = {1,2,3,4,5,6}, ¥ ={3,5},1I" ={1,4},n(k) =203 + 04 + 205 + 0. Assume
the natural total order on /. Fix i = 3, observe that the Lyndon heaps of weight 7 (k)
are { Q303040505 0lg, 0303044065 0l 05 } with standard factorizations, X( 0 0304 06506 05) =
(a3, 30140506 0ts) and X( 030304 05 06506 ) = (043, 043064 0l5 Qs O ) . The associated Lie mono-
mials are

{les; [es; [ea; [[es, eq],es]l]],  [e3,e3; [ea; [es, [es, eq]]1]]}

which form a spanning set of £, y). Since dim £,y = 2 [c.f. Example 7.3.7]. These Lie

monomials form a basis of £, ).

6.2 Main result II: LLN basis of free root spaces

In this section, we extend the [3, Theorem 2] to the case of free root spaces of BKM Lie
superalgebras £. In what follows in this section, we use the super-Jacobi identity (up to sign)
to prove our results.

6.2.1 Initial alphabet and Left normed Lie word associated with a word

Given [W] € M(V,G,¥) [c.f. Section 5.7] and w = b; - - - b, be an element in the class [W].

We define,
lengthof w = |w|=r
[i(w) =Hj:bj=oi}| Viel
supp(w) = {iel:i(w)|# 0}
wt(w) = Y |i(w)]o.

iel
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For i € I, the initial multiplicity of ¢; in w is defined to be the largest k > 0 for which there
exists u € M(V,G,¥) such that w = afu. We define the initial alphabet 1A, (W) of w to be
the multiset in which each o; € I occurs as many times as its initial multiplicity in w. The
underlying set is denoted by IA(w). The left normed Lie word associated with w is defined
by

e(w) = [[---[len, ep,],€p5] -y er,_,Jen,] € L. (6.2.1)

Using the Jacobi identity, it is easy to see that the association w — e(w) is well-defined and

preserves the Z,—grading.

6.2.2 Lyndon words and their Standard factorization

For a fixed i € I (which is assumed to be minimal in the total order on /), consider the set

X, ={weMV,G,¥):1A,(w) = {j, } and |ip(w)|=1}.

Using (5.7.1) &j, (and hence X}) is totally ordered and Z,—graded. We denote by F LS(X;,)
the free Lie superalgebra generated by &, = &, o U &}, 1 where & o (resp. &, 1) is the set

of even (resp. odd) elements in A&, .

Universal property of the free Lie superalgebra FLS(X,): Let [ be a Lie superalgebra
and @ : X — [, a set map that preserves the Z, grading. Then & can be extended to a Lie

superalgebra homomorphism & : FLS(Xj,) — .

Definition 6.2.1. A non-empty word w € A is called a Lyndon word if it satisfies one of

the following equivalent definitions:

* w is strictly smaller than any of its proper cyclic rotations.

* we &), or w=uv for Lyndon words u and v with u < v.
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We say, w = uv is a standard factorization of Lyndon word w when u, v are Lyndon words
such that u < v and v is of maximal possible length satisfying this property. The standard

factorization of w is denoted by o(w) = (u,v).

6.2.3 Super Lyndon words and their associated Lie word

Definition 6.2.2. A word w € Xl:‘) is said to be super Lyndon if w satisfies one of the

following conditions [19]:

* wis a Lyndon word.

e w=uu where u € Xlz 1 is Lyndon. In this case, we define w = uu is the standard

factorization of w, i.e., o(W) = (u,u).

We will use Lyndon words (resp. super Lyndon words) to construct a basis for the Borcherds
Lie algebras (resp. BKM Lie superalgebras). To each super Lyndon word w € Xiz, we

associate a Lie word L(w) in FLS(Xj,) as follows.

e If we A&, then L(w) = w.

0?
* If w = uv is the standard factorization of w, then L(w) = [L(u),L(V)].
For more details about Lyndon words and super Lyndon words, see [20, 45, 52]. The

following result can be seen in [20, 45] and the basis constructed there is known as the

Lyndon basis for free Lie superalgebras.
Proposition 6.2.3. The set {L(w) : w € X is super Lyndon} forms a basis of FLS(Xj,).

Corollary 6.2.4. If the set X, | is empty then FLS(X;,)) becomes the free Lie algebra

FL(X,). In this case, {L(w) : w € X" is Lyndon} forms a basis of FL(Xj,).



6.2 Main result II: LLN basis of free root spaces 107

6.2.4 LLN basis of BKM superalgebras

In this section, we construct another basis of free root spaces, which is known as Lyndon

Left Normed (LLN) basis.

Define a map

P X, =L Pw) =e(w)

where e(w) is the left normed Lie word associated with w. The map & preserves the Z,

grading. By the universal property, we have a Lie superalgebra homomorphism
®:FLS(X;) = £, wie(w) Vwe k). (6.2.2)

Since P preserves the O -grading and £ can be infinite-dimensional, the map & need not be
surjective. Let £(ip) be the image of the homomorphism @ in £. Then £(ip) is Q+-graded
Lie sub-superalgebra of £ generated by {e(w) : w € Xj,}. Observe that & maps any basis
of the free Lie superalgebra FLS(Xj,) to £(ip) and the image spans £(ip). For any root
n(k) = Y k;o; € Q4 satisfying k; < 1 for i € I LU, we construct a basis for the root space
£ (k) from this spanning set. This is done by identifying the following combinatorial model

from [3] with the set of super Lyndon heaps of weight k.

Co(k,G)={we X, : wis a super Lyndon word, wt(w) =1 (k)}, 1(w):=®oL(w).
(6.2.3)
This basis is known as Lyndon Left Normed (LLN) basis.

Theorem 6.2.5. With the notations as defined above, the set {1(w):w € C?(k,G)} is a
basis of the root space £y ). Moreover, if kiy = 1, the set {e(w) : w € Xy, wt(w) = n(k)}

forms a left-normed basis of £y k).

We need the following lemmas in order to prove the theorem.
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Lemma 6.2.6. The root space £y = S(io)n(k) forn(k) =Y ko € Q4 satisfying k; < 1

fori € ' LYy,

Lemma 6.2.7. With the notations as above, we have

IC(k,G)|= dim FLS(X;,) = dim LSk (G, ).

The proofs of these lemmas are postponed to the subsequent section. By assuming them, we

prove the theorem.

Proof. By Lemma 6.2.6, £; ) = £(i0)()- S0 {1(w):weC(k,G)} is a spanning set
for £y) of cardinality equal to |C(k,G)|. Now, Lemmas 6.2.7 and 6.1.3 show that
{1(w):weC(k,G)} is in fact a basis. O

We now show two examples to explain Theorem 6.2.5.

Example 6.2.8. From Example 6.1.13, consider the root space £,y where (k) =30 +
304. Fix ip = 3. Super Lyndon words of weight n(k) in C?(k,G) = {w € X} : wt(w) =
n(k),w is super Lyndon} are { 0303 0 Qg 0430, 06303 03 0l O O, O3 Ol3 0l 043 0 Ol } and cor-

responding Lie monomials are

{[[637 [le3, 6], e6]l, le3, 6], [e3, [e3, [[[e3, eq], ec] e6]]], [e3, [[e3, €6], [[€3a66]a66]]]}

which spans £, ). But mult(n(k)) = 3 [c.f. Example 7.3.6]. So, these Lie monomials form

a basis for £ y).

Example 6.2.9. From Example 6.1.14, consider the root space £, ) where 1 (k) =203+

oy + 2065 + 0. Fix ig = 3, observe that

Xz ={03, 3oy, 03OL40s, 030LUs0s, 030404, 0304050405, -}
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The only Lyndon words on X5 of weight 1(k) are { 0303040505506, 030630640506 05 } With
standard factorization, 0 (03030405 0t506) = (03, 030405 Qls O ), and O (03 03 0Ly s O Ols ) =

(03, 030405046 05) respectively. Hence the corresponding Lie monomials

{len.[lles.ea.es).ecl.esll, e, [l el es).es). el }

spans £, ). But mult(n(k)) = 2 [c.f. Example 7.3.7]. Hence, these Lie monomials form a

basis for £, k).

6.2.5 Proof of Lemma 6.2.6

We claim that £, ) = S(io)n(k). This is proved in multiple steps. First, we show that the

left normed Lie words of weight k starting with a fixed o, € V, for ip € 1, spans £, ).

Lemma 6.2.10. Fix an index i € I. Then the root space Ly ) is spanned by the set of left

normed Lie words {e(w) : w € X wt(w) =n(k)}.

10’

Proof. Observe, w € X" if and only if IA(w) = {a;,}. Since, the set B = {e(w) : w €
Mg(V,G,¥)} forms a spanning set for £ (k) to prove the required result, it is enough to
show that each element of B can be written as a linear combination of left normed Lie
words e(w) satisfying wt(w) = 1 (k) and IA(W) = {a;, }. Let w=b1b,--- b, € Mx(V,G,¥).
Assume that b; = o,. If [IA(w)|> 1 then e(w) = 0 and there is nothing to prove. If
IIA(w)|=1 then IA(W) = {;, } and the proof follows in this case. When b # ¢, consider
the seti(w) = {j: b = o, }. Assume min{i(w)} = p+ 1 and set W = b1b,---b, ;. First,

we claim,
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e(w)
14 A
= e(abiby---by)+ ,Zze(aiobjlblbz“'bjl -by)
J1=
+ L e(aiobjlbjzble"b}z"'bAjl"'bp)
1<j2<j1<p
+ )y e(aiobjlbjzbj3b1b2"'b}3"'bAjz ”b}l 'bp)
1<j3<jp<j1<p
+ . Z ) e<ai0bj1bj2bjzbj4b1b2'"b}4"'b}3"'b}z "b}l bp)+
1<js<jz3<j2<j1<p
+ )y e(aiobjlbjzbjg'"bj,,,gbj,,,zblbz"-bj;,z'--bj;,3---b}z---b}l

1<jp-2<jp-3<<ja<j1<p

+e(oc,-0b,,bp_1 . 'bzbl)

where d means the omission of the alphabet a in the expression. We prove the claim by apply

induction on p. For p =1,

W/ = blaio = e(w') = [e%,ebl] = €((X,‘Ob1).

Assume that the result is true for p = k. Now, consider p = k+ 1

e(ble . 'bk-Haio) = [[[H[eln7eb2]7eb3”7eb4] T 7ebk]7ebk+1]7eai0]

(6.2.4)

= H[Heb’laeb3]eb4]; T 7ebk]7ebk+l]7eaio]

by taking [ep,,ep,] = ey

side of Equation 6.2.4, we get

H[[[Heb’laeb3]veb4]7 T ’ebk]7ebk+l]7eai0] = €(b/1b3b4 coobpa (Xio)

e(OCiObjbllb3 .- -bAj .. 'bk—H)

= e(tGbiby- b))+ X

3<j<k+1

+ )» e(aiobjlbjzbllb3"'b}z"'b}l"'bk+1)+"'
3< < j1<k+1

+ )y e(0ibj bj,bjy -+ -bj bybs--

3<h1 << o< j1 kA1

te(byi1by b))

b

A

Je=1""

i .e.,b/1 = [b1,bs]. Using the induction hypothesis on the right-hand

bjy-bj - bryy)

(6.2.5)
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Now,

e<ai0bj1 bj, - 'bjrbl)

N

= [[Heaiovebjl]’ebjz]?'"7ebj,]7[ebl a\eb}/“

-~

X y 4

= E[[[[eaioaebjl]vebsz T 7eb_,'t]7eb1]7eb2] + [[[Heaioaebjl]?eijL T 7eb_,'t]7eb2]aeb1]

J (. J

g g

[be.y].2l (Px,z].y]
= e(0Gybj by -bj;biby) +e(Qlighj bj, - bjbaby).

This implies,

e(0iybj bj, -+ bjbyb3 - byy1)

= [[[[[[eai()?ebjl]?ebjz]?'”ebj,]eb ]7eb3]7"’ebk+1] = [He(aiobjlbjz"'bjtbl>veb3]7'”7ebk+1]

.

/
1

v~
/

e(aiobjlbj2~--bjtb1)
= [[le(ctighj bj, -+~ bj,b1b2) +e(ttiphj bj, - bj;babr),eny], -+ ep,, ]
= [[e(aiobjlbjz..bjtblbz),€b3], ..,ebk+l] + He(ibjlbjz‘-bjtbzbl)7eb3]-~76bk+1]

= e(Qipbj,bj, - bjbibabz---byy1) +e(Qigbjibj, -+ bjbabibs -+ -byi1)
(6.2.6)

Using Equation 6.2.6 in Equation (6.2.5) we get,

[[H[eb/17eb3]eb4]7 T 7ebk]7ebk+1]ae(xio]
:e(aiob1b2b3 brit) +€((Xi0b2b1b3 obpat)

+ Z (e(aiobjblbzbg,---b’\j-~'bk+1)+€(Oéiobjb2b1b3---bAj-ukarl))
3<j<k+1

+ Z (e(aiobjlbj2b1b2b3”'b}2"'bAj1 "'bk—i—l)+e(aiobj1bj2b2b1b3"'b}2"'bAjl"'bk+1)>
3<p<j1<k+1

A A N

+oe Z (e(aiobjlbj2bj3'“bjk—lblbz.“b].k—l“.b].Zn.bjl "'bk+1)

3<jk—1 << jp<j1<k+1
+e(0iybj bjbjy--bj baby---bj_,-+-bj, by, "'bk+l)>

+ (e(ociobk+1bk- . -blbz) + €((Xi0bk+1bk .- -bzbl))
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= <€(Otiob1b2b3 .- -bk+1) +€((Xi0b2b1b3 . 'bk—H) + Z e(aiobjb1b2b3 .- -l;j .- 'bk+1)>
3<j<ht1

+< Z e(oc,-objbzblbg---l;j---ka)-|— Z e(aiobjlbj2b1b2b3---b}z---b}l---ka))
3<j<k+1 3<p<ji<k+l

+ Z e(a,-objlbjzbzb]bgmb}z~~-b}1~-bk+1)

3<p<ji<k+1
+ ) e(0ighj,bjpbjsbabibs -+ by ---bj, b}, ---ka)) +-ot
3<j3<j2<j1<k+1
+ Z e(0ibj bj,bjs - +bj,_baby - ka 1 "b}z"'b}l"'bk+1>

3< k1 << o< j1 <k+1

+e(ligbry1by -+ -b1bz)> + e(Qliybrt1by - - - baby)

k+1
=Y e(ibjbriby---bj--bri)+ Y, e(qbjbj,biby- by, b bii)
j=1 I<jp<ji<k+1
+ Z e(aiobjlbjzbj3blb2"'b}3"'b}z"'b}l"'bk+1)+"'+
1<j3<jp<j1<k+1
+ Z e(aiobjlbjzbjz. bj_biby - ka 1 "b}z"'b}1"'bk+1)

1<ji_1<<ja<j1<k+1

+€((X,'0bk+1bk . -bzbl)

Thus the result is true for p=k+1. This proves our claim. Hence we have,

p
e(W')=e(0<iob1b2"'bp)+Z ewi)+ Y, ewip)+ Y, e(Wjj) oot

J1= 1<j2<j1<p 1<j3<j2<j1<p

+e(Wp(p—1)-21)

A A

where W;, j,...;, = (0,bj,bj, -~ bj,b1by - - bM -+bj, ,---bj ---bp). Observe that all the words
Wj, ... appearing in the summand of ¢(w’) have the same weight. Further, they belong

to X

io» ¢(Wjjp-j,) = 0 whenever some b;, commutes with 0,bj,,bj,,--,bj, . By the
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linearity of the brackets we have,

p

e(Wibpia) =) e(Wj-bpa)+ Y eWjjbpa)+ ) e(Wjijjs bpsa)

J1=1 I<jp<ji<p 1<j3<ja<j1<p

Tt e<wp(p—1)~--2.1 : bp+2)
Similarly, the remaining alphabets b3, ...,b, can be added to the above expression. This
gives,

e(w) = Z o(u)e(u) for some scalars a(u).
“EX:'B
wi(u)=n(k)

Hence the lemma. O

Lemma 6.2.11. Ifu v € X are Lyndon words then exactly one element of the set {uv,vu}

is Lyndon.

Proof. We observe that if u < v then uv is Lyndon, otherwise vu is Lyndon. 0

Lemma 6.2.12. Let w,Ww € Xlz be Lyndon words with standard factorization w = ujuy, W =

V1V2. Assume that ww is a Lyndon word. Then

[L(W),L(W)] € span{L(C(wt(wW)),G)}.

Proof. We have two possibles situations: either up > W or up < w.

If up > W then o(WW) = (ugup,vyvy) is the standard factorization of ww. Indeed ¢(wWWw) #
(ujuyg,upvyvy) for any standard factorization o (uy) = (uz1,u33), as Uy < W < Uy = UpUy;
implies upy < upq i.e. as up = upuyy cannot be a Lyndon word. Thus, 6(wW) = (ujup,viv3)

and [L(w),L(W)] = L(wW) € span{L(C(wt(wW)),G)}. Hence the lemma holds in this case.
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If uy < W then 6(WW) = (uy,uzvyv2). Observe that 6(WW) # (uy1,upuvyvy) for any
standard factorization o (uy) = (uy1,uy2) of uyas uyp < up implies uypu; is the longest right

factor of w = ujjuypuy which contradicts w = ujuy is the standard factorization.

If 6(wW) = (uy,uzvyv2) then

[L(W) ) L(‘TV)] = [L(u1u2) ) L(W)]
= [[L(uy1),L(uz)], L(W)] (6.2.7)

= [L(uy), [L(uz), L(W)] + [[L(uy), L(W)], L(u2)]

subcase(i):- If u,W is a Lyndon word with 6(u;W) = (up, W) and uyW is a Lyndon word

with o(u;W) = (uy, W) then

[L(w),L(W)] = [L(u1), L(uz2W)] + [L(ug W), L(u)]
= [L(lll) , L(UZW)] + L(ll]Wllz)

as uy < W so o(uywup) = (uyWw,up).

We repeat the above procedure on [L(uy),L(u;W)] and the subsequent terms till we get terms
like [L(vy),L(v2)], where vy,v, are Lyndon words with vy € Xj,. This is possible since

wt(uy) < wt(w).

subcase(ii):- If upw is a Lyndon word with 6 (u;W) = (uz1,uzW) where o(uy) = (uzq,u3;)

and o (w3 W) = (uy, W) then right-hand side of Equation 6.2.7 is equal to,

= [L(uy), [[L(u21),L(uz2)], L(W)]] + [L(u1W), L(uy)]
(6.2.8)

= [L(w), [[L(uz1), L(W)], L(uz2)]] 4 [L(w1), [L(uz1), [L(u22), L(W)]]] + L(ug Wuz)
We repeat the above procedure firstly for [L(upy),L(W)], [L(uz3),L(W)], then using this in
the Equation 6.2.8 and repeat the procedure for subsequent terms and stop when terms like

[L(v1),L(v2)], are obtained where vy, v, are Lyndon words with vy € Aj,.
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subcase(iii):- If uyW is Lyndon word with 6 (u;W) = (uz1,u2,W) where 6(uz) = (uzq,u;)
and uy W is Lyndon word with o (u; W) = (uyq1,u15W) where o(u;) = (uy1,u;2) then then

right-hand side of Equation 6.2.7 is equal to,

=[L(u1), [[L(uz1), L{uz2)], L(W)]] + [[[L(w11), L(u12)], L(W)], L(uz)]
=[L(u1), [[L(uz1), L(W)], L(u22)]] + [L(uy), [L(w21), [L(uz2), L(W)]]] (6.2.9)

+[[L(u11), [L(u12), L(W)]], L(uz)] + [[[L(w11), L(W)], L(u12)], L(uy)]

We repeat the above procedure for [L(uyz),L(W)],[L(uy1),L(W)], then using this in the
Equation 6.2.9 and repeat the procedure for subsequent terms and stop when terms like

[L(v1),L(v2)], are obtained where vy, v are super Lyndon words with vy € &j,. O

The following example explains the above lemma. Here we denote any word w = o, 04 1 - .. O

by w=i(i+1)...j to avoid confusion.

Example 6.2.13. Consider the root space gy, ) where 1 (k) = 2053 + a4 +205 + 0 from Ex-
ample 6.1.14. Fix ig =3 . Let w = 334345, w' = 34635364 € X} then o(w) = (3,34345) =
(uy,up),0(w') = (346,35364) = (v1,v3). Thus L(w) = [L(uy),L(up)] = [3,[34,345]] and
L(w') = [L(vy),L(v3)] = [346,[35,364]]. Since

o(ww') = 0(33434534635364) = (3 ,3434534635364),

uju w ug uw

we have,

[L(w), L(W)] =[[L(3), L(34345)], L(34635364)]

[

N N

[L(uy),L(uz)] L(w")

[L(3),[L(34345), L(34635364)]] + [[L(3), L(34635364)], L(34345)]

(. J/ N J/
~ ~

[L(uy),[L(uz),L(w")]] ([L(ug),L(W)],L(uz)]

= [L(3),[[L(34),1(345)], L(34635364)]] + [L.(334635364), L(34345)]

7 . 7
-~

[L(uy),[[L(uz1),L(uz2)],L(W')]] [L(u3w),L(uz)]
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—[L(3), [[L(34),L(34635364)], L(345)] + [L(34), [L(345), L(34635364)]]

7

~~

[[L(uz1),L(W")],L(az2)]+[L(uay),[L(uzz ), L(W)]]

+ L(33463536434345)

J/

-~

L(uyw'uy)

=[L(3), [L(3434635364),L(345)] + [L(34), L(34534635364)]] + L(33463536434345)

J/

-~ -~

[L(ugyw),L(ugy)]+[L(uzguzy),L(W)] L(uyw'uy)

=[L(3),L(3434635364345) + L(3434534635364)| + L(33463536434345)

-~

L(uzyw'ugy)+L(uzquz)w') L(ugw'uy)

=1(33434635364345) + L(33434534635364) 4 L(33463536434345)

-~ -~ -~

L(uguz;w'uyy) L(uguzquzw’) L(uyw'uy)

Example 6.2.14. Let/={1,2,3,4,5,6}, ¥ = {3,5},1; = {3,5},1p = {1,2,4,6}, " = {1,4},
N(k) =203 + o4 + 205+ 0. Fix ip =3 . Let w = 334365, w' = 34635364 € X5 then
o(w) = (3,34365) = (uy,u),0(w) = (346,35364) = (vq,V3) be standard factorization of

these words. Since o(ww') = 0(33436534635364) = (_ 3 ,3436534635364),

uuy w u uw

[L(w), L(W)] = [[L(3),L(34365)], L (34635364),

(L(uy),L(uz)] L(w')

= [L(3), [L(34365), L(34635364)]] + [[L(3), L(34635364)], L(34345)]

N J/ J/

N ~

[L(uy),[L(uz),L(w")]] ([L(uy),L(w)],L(u2)]

[L(3),L(3436534635364)] + [L(334635364), L(34345)]

[L(uy),L(uzw")] [L(uyw'),L(uz)]

= L(33436534635364) + L(33463536434345)

i J
g g

L(ujupw') L(uyw'uy)

Lemma 6.2.15. If w, and wy, are super Lyndon words then

[L(Wa),L(wp)] € span{L(C(wt(wawp)),G)}.
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Proof. Since w, and wy, are super Lyndon words, we have the following cases:-

(i) o(Wa) = (u,u), 6(Wp) = (v1,V2) where vy # v,.
(i) &(Wa) = (u1,3), G(Wp) = (v, v) where uy # u,.
(iii) o(wa) = (u,u), o(wp) = (v,v).
(v) O(Wa) = (ug,uz), G(Wp) = (v1,v2) where uy # uz, v1 % V2.

Case(i):- Let 6(w,) = (u,u), o(wp) = (vq,v2). Then 6(wawp) = (u,uvyvy). Thus,

[L(Wa),L(wp)] = [[L(u), L(w)], L(wWp)]
= 2[L(u), [L(u), L(wp)]]
= 2[L(u), L(uwy)]

= L(uuwp)

Case(ii):- Let 0(w,) = (ug,u3), o(wp) = (v,v). If uy < v then 6(wawp) = (ug,uzvv).
Thus,
[L(Wa), L(wp)] = [[L(u1),L(u2)], L(wp)]

= [[L(ug),L(wp)],L(uz)] + [L(uy), [L(uz), L(Wp)]]
= [L(uywp), L(uz)] + [L(ay), L(uzwp)])]

Otherwise, 0 (WaWp) = (ujup, vv). This implies,

[L(Wa),L(Wp)] = L(WaWp)

Case(iii):- Let 0(w,) = (u,u), 6(wp) = (v,v). Since u < v, 6(WaWwp) = (u,uvv). Thus,

[L(Wa), L(wp)] = [[L(w), L(w)], L(W)]

= [L(u),L(uwy)].
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Case(iv):- Let 6(w,) = (ug,u3), (W) = (v, V2) wWhere uy # uy, v1 # v3. This case follows

from Lemma 6.2.12. O]

Lemma 6.2.16. The root space £y ) is contained in the span {e(L(C*(k,G))}.

Proof. Let e(w) € £ for some w € Mk (V, ). By Lemma 6.2.10, we can assume that
IA(w) = {0;,} . We prove the lemma by induction on ht(n(k)). If ht(n(k)) =1 then
w = o, and there is nothing to prove. Assume that the result is true for any w such that
ht(wt(W)) < ht(n(k)). Let w = o b1b - -- b, = @i, - .

If ig(u) = ¢ then w € X;, = L(W) = w = e(w) = e(L(w)) € span{e(L(Ci(k,G))}.

If ip(u) # ¢, suppose min{ip(u)} = p+ 1. Then setting W' = @;,b1 b, - - - b, 0;,. We have,

e(W) = [[[[eai()?ebl]’ebz] o 7ebp]7eai0]
= _[eai()’ [Heaioaeh]vebz] o 7619,7“

= _e(L(aioaiobl .- bp))

This implies, e(w') € span{e(L(C(wt(W'),G))} as (04, 04,b1 - - b)) is a super Lyndon word.

Now,

e<w/ ) bP+2) = [[H[e(aio)vebl]’ebz] T 7ebp]7eaio]7ebp+2] = [e(w/)7ebp+2]
= [[e(ocio),e(ocioblbg .. -bp)],epr]
= [e(t,), [e(tigh1b2 - - 'bp)vebp+2]] + [[e(aio)vebp+2]7e<aiob1b2 o 'bp)]

= [e(0tiy), e(igh1b2 -+ bpbp12)] + [e(@iybp+2), e(Qiyb1by -+ bp)]
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Similarly, using the Jacobi identity, we have

k

e(w) :[e(aio),e(oc,-oblbg .. -prJrl .- 'br)] + Z [e(aioblbz .- 'pr+1 . -l;t .- -br),€<a,'0bt)]+
t=p+2
k A A A
+ ), e(0ighibae by by eobyy - by) e(Olighy by, )]
P+2<t<i<r
k
+ Z [e(aioble"'bp-i-l"'btl"'blz"'bl‘3"’bi’)?e(aiobllbtzb%)]+'“
P2t <tp<t3<r

+ [e(aiobl o 'bp)’e(aiobp+2 e 'br)]

Using induction hypothesis, we see that each term on the right-hand side is of the form

le(tigb1by -+ bybpiy -+ by, by, - -b}j <+-by),e(Cigb by, - by)] = | Y e(L(wa)), ¥ e(L(wp))
a b

as wt(o;,b1by - - -bAppr . 'bAn ---bA,Z . -bA,j -+by) < wt(w) and wt(0 by, by, -+ - by;) < wt(w).
So,

e(abiby - .[;ppr <oy by 'bAzj oby) = Ze(L(wa))
a

e(aiobtl by, - 'blj) = Ze(l‘<wb))
b

where w, and wp, are super Lyndon words such that wt(wy) = wt(Qiybr, by, -+ by;) and

Wt(Wa) = Wt(Qiyb1ba -+ bpbpyy by -+ by, -+ by, -+ by). This implies,

Y e(L(wa)), Y e(L(wp))| =} [e(L(Wa)),e(L(W))]

b ab

X;,e (IL(Wa), L(Wp)]) -

By Lemma 6.2.15, [L(w,),L(Wp)] € span{L(Cl(k,G))}. Thus,

Z;;’e([L(Wa),L(Wb)]) € span {e(L(C"(k,G))}
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1.e.,

e(w) € span{e(L(C*(k,G))}.

Hence £,y is contained in the span of {e(L(C(k,G))} C £(ip) - O

6.2.6 Proof of Lemma 6.2.7 (Identification of C*(k, G) and super Lyn-

don heaps)

Fixk=(kj:jel)e Zﬂ_ such that k; < 1 for j € I"*LUWy. Fix ip € I and assume that iy is

the minimum element in the total order of / such that k;, # 0. Consider,
X, ={weM(V,G,¥) :1A,,(W) = {, } and @, occurs only once in w}.

Let w € &), and E = y(w) be the corresponding heap. Then

1. IA,, (W) = {0, } implies that E is a pyramid.
2. oy, occurs exactly once in w implies that £ is elementary.

3. a;, is the minimum element in the total order of V implies that £ is an admissible

pyramid.

Therefore,

w € X, if and only if E = y/(w) is a super-letter. (6.2.10)

Let A;,(V,{) be the set of all super-letters with basis {e, } in H(V, ). Let Af (V, ) be
the monoid generated by A;, (V. ) in H(V, ). Then A; (V,8) = A} o(V,§) @ A (V. ()

is also Z,-graded. From [44, Section 2.1, Proposition 1.3.5 and Proposition 2.1.5], it follows

that this monoid is free. Since H(V, {) is totally ordered, A;,(V, {) is totally ordered. Hence
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Ai (V,€) is totally ordered by the lexicographic order induced from the order in A;,(V, )

(call it <*).

The following proposition from [44, Proposition 2.1.6] illustrates the relation between the

total order < on the heaps monoid H(V, ) and the total order <* on the monoid A7 (V, ).

Proposition 6.2.17. Let E,F € A; (V,{). Then E <* F if, and only if, E <F.

With respect to this ordering, we can define Lyndon words over the alphabets A;,(V, ). The
following proposition from [44, Proposition 2.1.7] illustrates the relationship between the

Lyndon words in A7 (V,{) and the Lyndon heaps in H(V, ).

Proposition 6.2.18. For E € A} (V, ), E is a Lyndon word in A; (V,§) if and only if E is a

Lyndon heap as an element of H(V, ).

Next, we prove the following generalization of Proposition 6.2.18 for the case of super

Lyndon words and super Lyndon heaps.

Proposition 6.2.19. For E € A; (V,{), E is a super Lyndon word in A} (V, ) if and only if

E is a super Lyndon heap as an element of H(V, ().

Proof. Let E € A; (V,{) be a super Lyndon word. Then two cases can occur.

Case(i). Suppose E is a Lyndon word .A;-"O (V, ) then, by Proposition 6.2.18, E is a Lyndon

heap and hence is a super Lyndon heap in H(V, ).

Case(ii). Suppose E = F o F for some Lyndon word F € A? | (V. () then by Proposition

6.2.18, F is a Lyndon heap in H(V,{) and hence E = F o F is a super Lyndon heap in
H(V, Q).

Conversely, suppose E is a super Lyndon heap in H(V, ).

Case(i). If E is a Lyndon heap in H(V, {) then, by Proposition 6.2.18, E is a Lyndon word

and hence is a super Lyndon word in A; (V, ).
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Case(ii). If E = F o F for some Lyndon heap F € H(V, ) then, by Proposition 6.2.18, F is

a Lyndon word in A |(V,{) and hence E = F o F is a super Lyndon word in A} (V,{). [

Proof of Lemma 6.2.7: By Equation (6.2.10), we can identify X’ with A; (V, ). This
implies,

|C"(k,G)| = |{ super Lyndon words in X;; of weight k} |
= |{ super Lyndon words of weight k in A; (V,{)}|
= |{ super Lyndon heaps of weight k in (V. {)}|
= dim LSk(G)
= dim £,y (By Theorem 6.1.7).

This shows that the elements of C0(k, G) are precisely the Lyndon heaps of weight k. Hence

the lemma. O



Chapter 7

Combinatorial properties of free roots of

BKM superalgebras

In this chapter, we explore the combinatorial properties of free roots of BKM superalgebras.
Let (G, ) be a finite simple supergraph with vertex set V = {«; : i € I'}, edge set E(G), and

the set of odd vertices parameterized by W C [ [c.f. Definition 5.2.1].

7.1 Free roots of BKM superalgebras

Let (A = (b;;),¥) be the adjacency matrix of a finite simple supergraph (G, ¥). We construct

a class of BKM supermatrices from (A, ¥) as follows:
(1). Replace the diagonal zeros of A by arbitrary real numbers.

(i1). If one such number is positive, then replace all the non-zero entries in the corresponding
row by arbitrary non-positive integers (resp. non-positive even integers) provided i ¢ ¥ (resp.
i € ). Otherwise, replace the non-zero entries in the associated row of A with arbitrary

non-positive real numbers.
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Let My (G) be the set of BKM supermatrices associated with the supergraph (G,¥) con-
structed in this way. Let M(G) = |J My(G) and C(G) be the set of all BKM superalgebras
whose quasi-Dynkin diagram is (G\I:‘glf) for some ¥ C 1. We observe that the set C(G) consists
of BKM superalgebras whose associated BKM supermatrices are in M (G). In the following

context, we recall the following lemma.

Lemma 7.1.1. [56, Proposition 2.40] Let i € I'™ and o € A, \{0;} such that a(h;) < 0.

Then oo+ joy € Ay forall j € Z..

In the following proposition, we prove that all the BKM superalgebras belonging to C(G)

share the same set of free roots and have equal respective multiplicities.

Proposition 7.1.2. Let G be a graph. Let £ be a BKM superalgebra which is an element of

C(G). Let Q4 be the root lattice of £. We have,

1. If @ € Q4 is free, then o is a root in £ if and only if supp & is connected in G. In
particular, A™(£1) = A" (£,) for £1,£, € C(G). Further, if '™ = 0 then there exists a
one-one correspondence between the connected subgraphs of G and the free roots of

L.

2. For any £ € C(G), the multiplicity of a free root o depends only on the graph G and
this multiplicity is equal to the number of super Lyndon heaps of weight k = (k; 1 i € I)

where ot = Y k;o;.
i€l

Proof. The necessary part of (1) is straight forward, and we prove the sufficiency part.
Assume o € Q4 is free and supp & is connected in G.
By applying induction on height of ¢, we show « is a root of £. Clearly, o is a root

when ht(a) = 1. Suppose ht(a) =2, i.e., &« = o; + o and a;; < 0. If o; is real, then

se; (0j) = otj — a;j0; is a root of £ implying o; + ¢; is a root as the root chain of ¢; through
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o; contains o +mq; for all 0 < m < k for some k € N. If both @; and «; are imaginary, then

Lemma 7.1.1 completes the proof.

Assume that the result is true for all connected free o € Q4 of height r — 1. Let B be a
connected free element of height r in Q. Since supp 3 is connected, there exists a vertex
o; € supp B such that supp B\{e;} is connected in G. Now, ¢ = Y. «; is connected,
ojesupp B
J#i
free, and has height r — 1. By the induction hypothesis ¢ is a root in £. If ¢; is real then
sg; (@) is a root, hence B = o + @; is also root. If ¢ is imaginary then, by Lemma 7.1.1, f is
aroot. This completes the proof of (1). Now, the proof of (2) follows from Lemma 6.1.3 and

Theorem 6.1.7. ]

Example 7.1.3. Let [} > 1,l, > 2 and /3 > 3 be positive integers satisfying [} = I = [3.
Then the complex finite dimensional simple Lie algebras A;,B;, and Cj, have the same
quasi-Dynkin diagram, the path graph on /; vertices with W = (). These algebras have the

same set of free roots by the Proposition 7.1.2.

Proposition 7.1.4. [51, Corollary 2.1.23] A simple finite dimensional Lie superalgebra £ is a
BKM superalgebra if and only if £ is contragredient of type A(m,0) = sl(m+1,1),A(m,1) =
sl(m+1,2),B(0,n) =o0sp(1,2n),B(m,1) =o0sp(2m+1,2),C(n) = 0sp(2,2n—2),D(m,1) =
osp(2m,2),D(2,1,a) for o =0,—1,F(4), and G(3).

Using Proposition 7.1.4, we list, in Table 7.1, the BKM superalgebras for which the path

graph on 4 vertices is the quasi-Dynkin diagram along with its free roots.

Remark 7.1.5. We observe that the number of free roots of a BKM superalgebra is equal to
the number of connected subgraphs C(G) of G. In particular, when G is a tree, this number

is equal to the number of subtrees of G.
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Table 7.1 BKM superalgebras with equal set of free roots

BKM superalgebras | Simple roots [39, Section 2.5.4] Free roots

Ay o =€ —&,00 =8 — &3, o, 00,03, 04, 02, 043,
O3 = €3 —&4,04 = &4 — Es. A4, 003, 004, 034.

By o =€ —&,00==86— &3, 0,00, 03,04, 02, 013,
03 = €3 — &4,04 = &4. 14, 003, 004, 034.

Cy o =€ —&,00 =& — &3, o, 00,03, 04, 02, 043,
03 = €3 — €4, 004 = 2€4. 014, 003, 004, 034.

A(3,0) o) =& —&,00p =& — &, ap, 0, 03,04,012,013,
03 = €3 — €4,04 = € — 0. 014, 003, 004, 034.

A(2,1) o) =& —&,0p =& — &3, ap, 0, 03,04,012,013,
03 =& — 61,04 = 61 — 0. 014, 003, 04, 034.

B(0,4) o1 =61 — 0,00 =6 — 6, oy, 0,03, 04,002,013,
03 = 03 — 04,04 = 4. Ol14, 003, 0004, 034

B(3,1) (041 :51—81,062:81—82, ap, 0, 03,04,012,013,
o3 =& —&3,04 = &3. 014,003, 004, 034.

C(4) o) =¢& — 0,0 =0 — 0, oy, 0,03, 04,002,013,
03 =0 — 63,04 = 263. Ol14, 003, 0004, 034

F(4) o :%<81+82+83+5),(X2:—81, 0,00, 03,04, 002, 03,
03 =€ —&,0 =& — &3. a4, 003, 004, 034.

7.2 Multicoloring and the k-chromatic polynomial of G

For any finite set S, let P(S) be the power set of S. For a tuple of non—negative integers

k= (k:icl)eZ , setsupp(k)={ic€l:k #0}.

Definition 7.2.1. We callamap 7:V — P({l1,...,q}) a proper vertex k-multicoloring of G

if the following conditions are satisfied:
(i) Foralliel, ’T((Xi)‘: ki,
(ii) Foralli, j € I such that (¢, aj) € E(G) we have 7(o;) Nt(0t;) = 0.

For more details on multicoloring, we refer to [33]. The case k; = 1, for i € I, corresponds
to the classical graph coloring of graph G. The number of ways in which a graph G can

be k—multicolored using ¢ colors is a polynomial in g called the generalized k-chromatic
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polynomial (k-chromatic polynomial in short). It is denoted by ﬂf (g)- A k-chromatic
polynomial is defined as follows. Let P (k, G) be the set of all ordered k—tuples (P, ..., F;)

such that:

1. each P, is a non—empty independent subset of V, i.e. no two vertices have an edge

between them;

2. Foralli € I, o occurs exactly k; times in total in the disjoint union P{U- - - UF;.

Then,

wio) = LInwo) (7). 721

k>0
Let G(k) be the graph constructed as follows: For each j € supp(k), take a clique (complete
graph) of size k; with vertex set {Oc} ey afj } and join all vertices of the r—th and s—th
cliques if (o, @) € E(G). Let n'lG ) (g) be the chromatic polynomial of the graph G (k). We
have the following relation between the ordinary chromatic polynomials and the k-chromatic
polynomials:

1
1l(q) = =M (g) (7.2.2)

where k! = [1;¢/ ki!.

7.2.1 Bond lattice and an isomorphism of lattices

For the rest of this paper, we fix a tuple of non-negative integers k = (k; : i € I) such that

ki <1forielU¥,and set T](k) =Y kia;.

Definition 7.2.2. Let L;(k) be the weighted bond lattice of G, which is the set of J =

{J1,...,Ji } satisfying the following properties:

(i) Jisamultiset, i.e. we allow J; = J; for i # j;
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(1) each J; is a multiset and the subgraph spanned by the underlying set of J; is a connected

subgraph of G foreach 1 <i <k;

(iii) For alli € I, a; occurs exactly k; times in total in the disjoint union J;U- - - UJj.

For J € Lg(k) we denote by D(J;,J) the multiplicity of J; in J and set
mult(B(J;)) = dim £g;,),

where, B(J;) = Lgey 0. LetJo = {J; € J: B(J;) € A%} and J; = J\Jo.

In the following context, we recall the following lemma.

Lemma 7.2.3. [3, Lemma 3.4] Let P be the collection of multisets y= {1, .., Br} (we allow
Bi = Bj for i # j) such that each B; € Ay and By +---+ B, = n(k). The map y : Lg(k) — P
defined by {Jy,...,Ji } = {B(J1),...,B(Jx)} is a bijection.

7.3 Main Result (Chromatic polynomial and root multiplic-
ities)
Now we relate the k-chromatic polynomial with root multiplicities of BKM superalgebras.

Theorem 7.3.1. Let G be the quasi Dynkin diagram of a BKM superalgebra £. Assume

k= (ki:i€l)€Z issuchthat k; <1 fori € I'" U¥,. Then

Gy — (_1)htn(K) TR q mult(B(J)) —qmult(B(7))\
0= (0 F (- JQO( o )J]}( o )

where Lg(K) is the bond lattice of weight K of the graph G.
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As a corollary, we obtained the following result, which gives a combinatorial formula for the

multiplicities of free roots.

Corollary 7.3.2. We have,

u(e)

ma09) = 24 G alal i k) = Do
{k i€
and
_1\¢+1
mue(n () = ¥ T E D 120 gl i nw e a7
|k

where |1 (q)[q]| denotes the absolute value of the coefficient of q in ©C(q) and W is the

Mobius function. If k;’s are relatively prime, in particular if for some i € I, ki = 1, we have,

mult(n (k) = | (q)lg]]  for any n(k) € A"

7.3.1 Proof of Theorem 7.3.1

For a Weyl group element w € W, fix areduced word w =s;, - --s;, andletI(w) = {a;,,..., 0 }.
Observe that I(w) is independent of the choice of the reduced expression of w. For
Y=Y mio; € Q, let [,,(7y) be the multiset { ¢, ..., : i € I'} and I(y), the underlying set of
i€l —
m; times

I,(7). Define
Fo(y) = 1(y)N¥o,

J(y) ={w e W\{e}: I(w)UI(y) is an independent set}.

The following lemma is a generalization of [54, Lemma 2.3] (for Kac-Moody Lie algebras)
and [3, Lemma 3.6] (for Borcherds algebras) in the setting of BKM superalgebras. Since the
proof of this lemma is similar to the proof of the Borcherds algebras case, we omit the proof

here.
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Lemma7.33. LetweW,y= Y o+ ¥ mio; € Q. ForweW, set p—w(p)+w(y) =
iEI\“Po l'ElP()
Y acriba(w,y)a. Then we have

(i) ba(w,y) € Z forall oo € Il and bo(w,y) =0 if o ¢ I(w) UI(7y).
(ii) bo(w,y) > 1 forall a € I(w).
(iii) ba(w,y) = 1if a € I(y)\Wo(y) and ba(w,y) = mq if & € ¥o(y).

(iv) If we J (), then ba(w,y) =1 forall o« € I(w)U (I(y)\Po(7)), ba(w,y) = mg for all
o € Yo(y).

(v) Ifw ¢ J(y)U{e}, then there exists a € I(w) C II such that ba(w,y) > 1.

The following proposition is an easy consequence of the above lemma and essential to prove

Theorem 7.3.1. Let U be the sum-side of the denominator identity (Equation (5.5.1)), i.e.,

U=Y Y ewe(ye P, (7.3.1)

weW yeQ

Proposition 7.3.4. Let g € 7. Then
Ute "] = (-1 7 (g),

where U4[e~1X)] denotes the coefficient of e=1%) in U4.

Proof. Note, U? = (1+(U—1))?= kg'o (4) (U — 1)*. From Lemma 7.3.3, we get

wp)—p—wy)=—-r— Y a, forweJ(y)U{e}.

acl(w)
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Since k; < 1 for i € I" LIy, the coefficient of ¢~ in (U — 1)¥ is equal to

(Z Z s(y)s(w)e‘Y—Zaeuw)“)k[e—n(k)]. (7.3.2)
reQweJ(v)
v#0
i.e.,
U-DFe ™= Y e(n)-e(m)ew) - e(wy), (7.3.3)
(Vi)

where the sum ranges over all k—tuples (71,...,%) € QX and (w1,...,w;) € WX such that

e wi€ J(n)U{e}, 1 <i<k
o I(w))U---Ul(wy)={a;:i €I k; =1},
o I(wj))UI(y;) #0 foreach 1 <i<k,

Vit H %= ) ko

iefim
It follows that (I(w1)UI(N),...,I(wx) UI(%)) € P(k,G), i.e., the sum ranges over all
elements in P, (k,G). Hence,

(U = 1) e 1M] = (=) ®D P (k, G)|. (7.3.4)

Therefore using Equation (7.2.1), we have

Uil ] = ¥ (U= = (@)D" |R(K.G)

— (_1)ht(n(k)) nf(q).

Remark 7.3.5. In order to extend the [3, Theorem 1] to the case of BKM superalgebras,

we need the extra assumption, k; < 1 for i € Wy. If k; > 1 for some i € Wy, then each ¥;
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contributes 7,,(7) to the required coefficient in Equation (7.3.2). Note that ,,(¥;) and hence
I(wi) ULy(7) can be multisets. Since the independent sets considered in Equation (7.2.1)
are not multisets, by assuming k; < 1 for i € ¥, we dismiss the possibility of 7,,(7;) to be a

multiset.

Proof of Theorem 7.3.1: By the denominator identity (5.5.1),

H(XEA& (1 _ e*a)mult(a)
" Moear (1+e-eymiia)” (7.3.5)
and hence,
1—e @ gmult(a)
U4 = H(xeAg< e %) _ H (1 _g(a)e—a)s(a)qmult(a)
[Tyeat (1 + e~ 0t)gmult(a) 1
o o (7.3.6)

= T (% (-efog)t (P ) v,

A, k>0

where ¢(a0) = 1if ¢ € A% and — 1if a € AL.

On the other hand, by Proposition 7.3.4,
Ue 1K) = (—1)ht &) 7G4y,

Hence, from Equation 7.3.6, we get,

7l (g) = (—1)M®) Y I (qmult(B(J))) Bl <—qmult([3(])))‘ -

JeLg(k) Jelo D(J’ J) Jeh D(‘]’ J)
Formula for multiplicities of free roots

Let A := C[[X; : i € I]] with X; = e~ % be the algebra of formal power series. For { € A with

constant term 1, log({) = — Yy>1 (l_kC)k is well-defined.
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Proof of Corollary 7.3.2: Considering U as an element of A [c.f. Equation 7.3.1], using

Proposition 7.3.4,

_ k
—log(U) = (1-0) :
k>1 k
—U)\k[e—n(k)
ie., —log(U)[e_n(k)] _ (1-U)"e ]7
1 k

_ 1)k
_y & (—1)1®)|p(k,G)| ( By Equation 7.3.4)

he(n (k (=1)*
= (- Y Rk, G)

Now applying —log to Equation 7.3.5, we get,

¥ L mue(n 6/0) = (50 (@)lg]l B € A 737
7
and
(_1)£+1 G . .
L S mitn (/0) = Infla)l] B0 €47 138
o

The statement of the corollary is now an easy consequence of the following Mdbius inversion

formula: g(d) = Y4, f(d) <= f(n) = Xan 1t(5)8(d) where p is the mobius function. [

Example 7.3.6. Consider the BKM superalgebra £ and the root space 1(k) = 303 + 3¢ €
AL from Example 6.1.13. The k-chromatic polynomial of the quasi Dynkin diagram G of £

is equal to

me (q) = (Z) (q;3> = ﬁqw— 1)(g—2)(g—3)(g—4)(g—5).
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By Corollary 7.3.2, since 1 (k) is odd,

1y
mut(n(1)) = ¥, 0 116 (g)1g)

— 178l + M2 128(g) )] where K’ = (0,0,1,0,0,1)
1

Example 7.3.7. Consider the BKM superalgebra £ from the previous example. Let k =
(2,1,0,1,2,0) € Z., . Then n(k) = 20t + o + a4 + 205 € AY. We have

mult(n(K)) = Z# ()]l
k

This implies that mult(n (k)) = | (¢)[q]|. We have 7l (q) = 1q(q—1)*(q—2)?. Therefore
mult(n(k)) = 1.
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