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Abstract

This thesis focuses on both fundamental and applied aspects of quantum measure-
ments, specifically their role in describing the past of quantum particles, the two-state
vector formalism, wave-particle complementarity and quantum key distributions.

We investigate the predictions of the two-state vector formalism and weak values,
which are recognized as elements of reality in weak measurements. The combination
of weak values and the two-state vector formalism is utilized to operationally define the
past of quantum particles. The latter results in inception of various quantum paradoxes
known as weak value paradoxes. Through a thought experiment, we demonstrate that
weak values cannot consistently describe the past of quantum particles. To address this,
we develop novel techniques for describing the past of photons in an interferometer.
Our findings reveal that photons provide information about the past that is absent in
weak measurement scenarios. These predictions can be experimentally validated.

Furthermore, we explore the role of generalized weak values in quantum informa-
tion processing tasks. Our research demonstrates that the use of weak values can lead
to erroneous conclusions, particularly in quantum state discrimination and quantum
key distribution. Moreover, our results shed light on various shortcomings associated
with weak values and the weak measurement approach.

Subsequently, we develop a quantum key distribution protocol that employs block-
wise processing and post-selections. This protocol exhibits high noise tolerance against
collective attacks in asymptotic limits. Building upon the existing six-state protocol,
we divide the raw keys obtained into blocks of finite length. By performing specific
post-selections on these blocks, we generate new raw keys. The unconditional security
of this protocol is proven using information-theoretic proofs.

In addition, we establish a no-go theorem that states the impossibility of manip-
ulating or measuring the internal degrees of freedom of a quantum particle without
disturbing its spatial wavefunction. This theorem is derived based on the principle
of no-faster-than-light communication. We then apply this no-go result to a quan-
tum Darwinian scenario to explain the emergence of objectivity in the position basis.
Furthermore, we consider a decoherence model involving randomized spin-spin inter-
actions between a system in spatial superposition and a spin environment with spins
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0. Abstract

in arbitrary random states. By formulating the interaction Hamiltonian in accordance
with our no-go theorem, we demonstrate that it leads to the emergence of classical
objectivity in the position basis.

Finally, we propose an experiment to demonstrate wave-particle complementar-
ity using von Neumann interaction between a Gaussian pointer and a pre- and post-
selected qubit. Our research reveals that the complementarity between two observables
of a qubit can be operationally translated into a wave-particle complementarity rela-
tion. Additionally, we establish that for every pre- and post-selected qubit, there exists
an operationally equivalent Mach-Zehnder interferometer. These results can be easily
extended to higher-dimensional discrete-level systems.
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Chapter 1

Introduction

Quantum theory, without a doubt, stands as one of the most perplexing and astonishing
scientific theories ever formulated. It represents a departure from the classical theory
that had governed our understanding of the physical world for centuries. Unlike clas-
sical physics, which described the behavior of macroscopic objects with deterministic
laws, quantum theory deals with the microscopic realm of particles and their inter-
actions. Its emergence in the early 20th century brought forth a radical shift in our
perception of reality, challenging our intuition and defying common sense.

One of the striking features of quantum theory is its inherent uncertainty. In the
classical world, the properties of objects were thought to be well-defined and measur-
able. However, quantum theory reveals that at the fundamental level, particles such as
electrons and photons exist in a superposition of multiple states simultaneously, a no-
tion that seems bizarre from a classical standpoint. Moreover, when these particles are
measured, their behavior becomes probabilistic, with the outcome being described by a
wave function that encompasses all possible states. This probabilistic nature of quan-
tum theory poses a profound challenge to our traditional understanding of causality
and determinism. Another mind-boggling aspect of quantum theory is entanglement.
Two or more particles can become entangled, forming an inseparable connection that
persists even when they are separated by vast distances. Remarkably, the state of one
particle instantaneously affects the state of the other, defying the constraints of space
and time. This phenomenon, famously referred to by Albert Einstein as "spooky action
at a distance," bewildered scientists and continues to perplex researchers to this day.

Despite its perplexing nature, quantum theory has proven to be the most success-
ful and accurate scientific theory in history. Its predictions have been confirmed with
extraordinary precision through countless experiments, affirming its remarkable relia-
bility. Quantum mechanics underlies our understanding of a vast range of phenomena,
from the behavior of subatomic particles to the properties of materials, the functioning
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1. Introduction

of electronic devices, and even the behavior of the universe at its most fundamental
level. Last few decades have witnessed a wave of technological advancements and
applications that harness the unique properties of quantum systems. That includes
quantum cryptography [1, 2], quantum computation [3], quantum metrology [4, 5],
quantum heat engines [6, 7], quantum batteries [8] and many more.

This thesis presents a study of various aspects of quantum measurements, including
weak measurements and the interpretation of weak values. We analyze the existing
interpretation of weak measurements and weak values through a gedanken experiment.
Our findings indicate that weak values are not suitable for investigating the past of
quantum systems, effectively resolving the quantum paradoxes commonly referred to
as weak value paradoxes or pre-and post-selection paradoxes.

Additionally, we investigate interactions and measurements that adhere to the no-
faster-than-light communication principle. Our research reveals that manipulating the
internal degrees of freedom of a system inevitably introduces disturbances to its spatial
wavefunction. We apply this result to a decoherence model, shedding light on the
emergence of classical objectivity in the position basis.

In a subsequent chapter, we propose an experimental demonstration of wave-particle
complementarity that does not rely on conventional interferometers. This can be achieved
by utilizing von Neumann interactions between a Gaussian pointer and a pre-and post-
selected qubit, providing a novel insight into the complementarity principle.

Furthermore, we present a quantum key distribution protocol that employs post-
selection techniques to increase the noise tolerance in standard discrete variable pro-
tocols. This protocol offers improved security and noise resistance for quantum key
distribution.

Overall, this thesis delves into the intricacies of quantum measurements, explores
the limitations and implications of weak values, uncovers the impact of no-faster-than-
light communication on quantum systems, investigates wave-particle complementarity
through innovative experimental setups, and proposes an enhanced quantum key dis-
tribution protocol.

This chapter introduces various concepts mentioned above by providing a techni-
cal background to the same. In the subsequent sections, we introduce quantum mea-
surements, von Neumann model, two state vector formalism, weak values paradoxes,
quantum key distribution, quantum Darwinism and classical objectivity.

1.1 Quantum measurements

Measurements serve as a crucial link between the abstract mathematical framework of
a theory and the tangible experimental predictions. However, in the realm of quantum
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1.1 Quantum measurements

theory, the physics of measurements diverges significantly from classical mechanics.
Unlike classical measurements where the act of extracting information does not perturb
the system, in quantum mechanics, measurement disturbs the state of the system being
observed. This fundamental distinction implies that the outcomes of quantum mea-
surements are not predetermined, adding a layer of unpredictability to the quantum
world.

These intriguing features find their basis in the no-cloning theorem, which plays
a pivotal role in establishing the compatibility between quantum theory and the spe-
cial theory of relativity. The no-cloning theorem states that it is impossible to create
an identical copy of an arbitrary unknown quantum state [9]. This theorem has far-
reaching implications, particularly in the field of quantum key distribution [10, 11],
where secure communication relies on the inability to clone quantum states. By pre-
venting unauthorized copying, the no-cloning theorem enables the establishment of
secure communication channels based on the unique properties of quantum systems.

Moreover, the measurement process itself holds significant importance in the quest
to understand the quantum-to-classical transition [12, 13, 14]. Quantum mechanics
describes the behavior of microscopic particles, while classical mechanics provides a
framework for describing the macroscopic world. The measurement process is seen
as the bridge between these two realms, where the probabilistic nature of quantum
states collapses into a single definite outcome, resembling classical behavior. This
transition from quantum superposition to classical certainty is a topic of active research
and continues to be an area of fascination and investigation in quantum theory.

In this section, we briefly review the postulates of quantum theory, and von Neu-
mann model of quantum measurements.

1.1.1 Postulates of quantum theory

Every physical theory consists of three main components: the mathematical depic-
tion of physical states and observables, the transformation of states (known as time
evolution), and the measurement of physical quantities (which involves extracting in-
formation). For example, in Newtonian mechanics, a complete description of a particle
involves its position and momentum vectors in physical space. The transformation is
governed by Newton’s laws of motion or, equivalently, the Hamilton-Jacobi equation.
Measurements are straightforward, involving the projection of position and momentum
vectors onto a unit vector. However, these measurements do not disturb the systems. In
contrast, quantum theory operates within the realm of complex vector spaces and yields
non-trivial consequences. In this context, we provide a brief summary of the postulates
of quantum theory, outlining the mathematical framework for states, observables, time
evolution, and measurements [15, 16].
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Postulate 1: (States and observables) A Hilbert space is associated with
every isolated quantum system, where the state of the system is described
by a unit vector in it. Physical observables are defined by Hermitian oper-
ators acting over the Hilbert space.

Complex numbers are essential ingredients of quantum theory. In fact, it has been
shown recently that quantum theory cannot exist without complex numbers [17]. This
makes the theory extremely counter intuitive and hard to perceive its ontology. The
Hilbert space framework for isolated single systems is extended to composite systems
using tensor products:

Postulate 2: (Composite systems) The state space of a composite sys-
tem is the tensor product of the state spaces of the component systems.
If Hilbert spaces H1,H2, · · · ,Hn are associated with the component sys-
tems, then the Hilbert space associated with the composite system is H1⊗
H2 ⊗ · · · ⊗Hn.

The observables for composite systems are defined as Hermitian operators acting
on the tensor product space. It is the Postulate-2 that makes quantum theory universally
applicable to all scales [18] and gives birth to intriguing phenomena like quantum
entanglement and nonlocality [19, 20, 21]. Composite systems where the ontology
of component systems may not exist, are physically possible in the tensor product
space [22]. Quantum computing is the most practical application of the composite
system framework of quantum systems [15]. The transformations on a closed system
between preparation and measurement are deterministic, linear and unitary operations
governed by its Hamiltonian:

Postulate 3: (Evolution) The evolution of the state of a closed quantum
system is a unitary transformation. If the state at time t1 is |ψ(t1)〉, then
the state at a later time t2 is given by |ψ(t2)〉 = U(t2; t1) |ψ(t1)〉, where
the unitary operation U(t2; t1) depends on t1, t2 and the Hamiltonian Ĥ
of the system. Moreover, the dynamics of the evolution is given by the
Schrödinger time evolution equation,

i~
d |ψ〉
dt

= Ĥ |ψ〉 . (1.1)

The transformation unitary is given as U(t2; t1) = exp
(
− i

~

∫ t2
t1
Ĥdt

)
. For a closed

system, the evolution of state is deterministic. Even for composite systems of arbi-
trary scale, the state at an arbitrary time can be predicted if the complete Hamiltonian
including all the interactions is known. However, action of measurement breaks this
evolution by introducing irreversible collapse to the state.
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Postulate 4:(Measurements) Measurements on closed quantum systems
are described by a set of projection operators M ≡ {Πk : ΠkΠk =
Πk,

∑
k Π†kΠk = 1}, where the index k refers to the possible outcome.

Set {Πk} forms the spectrum of an observable. If the state of the system
immediately before the measurement is |ψ〉, then the probability of getting
k-th outcome is given by Born rule [15]:

p(k) = 〈ψ|Πk |ψ〉 . (1.2)

The state immediately after the measurement is given by the state update
rule:

|ψ′〉 =
Πk |ψ〉√
〈ψ|Π†kΠk |ψ〉

. (1.3)

Note that
∑

k p(k) = 1. Measurements described above are known as projector-
valued measures. PVMs on a composite system may generate transformations on the
component systems which are neither unitary nor projective measurements. Descrip-
tion of these transformations is given by generalized measurements called positive-
operator-valued measures (POVM): M′ ≡ {Mk : Mk ≥ 0,

∑
kM

†
kMk = 1} [15].

Unlike PVMs, POVMs can be nonorthogonal to each others i.e. MiMj 6= 0 for some
i 6= j.

Since all the interactions among the constituent systems of composite systems can
be modeled by the Schrödinger equation with specification of the Hamiltonian operator
of the composite system, it appears that the measurement postulate runs into conflict
with the time evolution postulate of the quantum mechanics. This problem is known
as quantum measurement problem [14]. It has also been discussed in the literature by
the names of Schrödinger’s cat [12] and Wigner’s friend paradoxes [23].

1.1.2 von Neumann model of quantum measurements
The first mathematical description and model of quantum measurements was pre-
sented by John von Neumann [24], known as the von Neumann measurement scheme
(vNMS). In vNMS, a (microscopic) quantum system S interacts with a pointer P in
such a way that they become maximally entangled in the basis of an observable of S
being measured. For instance, consider S in state |ψ〉 and the pointer in |ξ〉. The von
Neumann interaction corresponding to measurement of observable Â ≡∑i ai |ai〉〈ai|
transforms the composite state |ψ〉 ⊗ |ξ〉 as

|ψ〉 ⊗ |ξ〉 von Neumann interaction−−−−−−−−−−−−→
∑
i

αi |ai〉 ⊗ |ξi〉 , (1.4)

5



1. Introduction

where, {|ξi〉} is a set of orthogonal states in the Hilbert space associated to P . von
Neumann interaction can be realized using interaction Hamiltonian of the form Ĥ =
g(t)Â ⊗ p̂. The time function g(t) determines the strength of the measurement. von
Neumann proposed that when the size of the pointer is sufficiently large (as a classi-
cal object), the pointer collapses to one of the states {|ξi〉} with probabilities {‖αi‖2},
respectively, given by the Born rule. The entire process then becomes equivalent to re-
alization of PVMs {|ai〉〈ai|}. Such measurements are also known by names projective
measurements, strong measurements and sharp measurements in the literature.

Relaxing the orthogonality condition for states {|ξi〉} gives rise to unsharp von
Neumann measurements [25],

|ψ〉 ⊗ |ξ〉 un-sharp von Neumann interaction−−−−−−−−−−−−−−−−→
∑
i

αi |ai〉 ⊗ |ξ′i〉 , (1.5)

where {|ξ′i〉} does not form a set of orthogonal basis. The state after interaction can
be re-arranged in such a way that

∑
i αi |ai〉 ⊗ |ξ′i〉 =

∑
i α
′
i |a′i〉 ⊗ |ξi〉 where {|a′i〉}

are non-orthogonal states. As the pointer collapses to distinguishable classical config-
urations described by the set {|ξi〉}, the system S collapses to non-orthogonal states
{|a′i〉}. von Neumann interactions extremely weak interaction strength give rise to
weak measurements where state of the system remains nearly undisturbed after the lo-
calization of the pointer state [26]. Notably, weak measurements are special cases of
unsharp measurements.

The interaction between spin and spatial degree of freedom of a silver atom in the
Stern–Gerlach (SG) experiment is the suitable example of von Neumann interaction
(see Fig. 1.1). The spatial degree of freedom acts as a pointer in SG. The interaction is
given by Hamiltonian Hint = µ̂ · −→B , where µ̂ and

−→
B are spin and magnetic field, re-

spectively. Assuming that the x and y components of the magnetic field are negligible,
while the z component is linear in z i.e. Bz ≈ B0z, we have simpler expression for
the interaction Hamiltonian Hint = −µ0B0σz ⊗ ẑ. The constant γ = µ0B0 determines
the interaction strength. The composite state after the interaction is an entangled state
between the wavefunction and the spin. When the atom is detected on the screen, the
collapse of pointer in position basis induces collapse in the spin state. The outcomes
can be sharply or weakly distinguishable depending on the interaction strength and the
time particle spends in the magnetic field gradient.

1.2 Two state vector formalism
The two-state vector formalism (TSVF) extends the standard framework of quantum
mechanics by incorporating the future evolution of quantum systems. In this formal-
ism, a quantum system is represented by a ket vector in a Hilbert space, just like in
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ẑ

ŷ

S

N

Magnet Screen

|ψ〉S ⊗ |ξ〉P

System + Pointer

‖ξ(z)‖2 ‖ξ′(z)‖2

Figure 1.1: von Neumann interaction between spin and spatial degree of freedom in the
presence of magnetic field gradient. The particle is initially in |ψ〉S ⊗ |ξ〉P where the
spatial part |ξ〉 acts as a pointer. After passing through a magnetic field gradient in z-
direction, the wavepacket splits into two. The detection of the particle on the screen is a
strong measurement in the position basis which induces a collapse on the spin. Whether
the spin measurement is sharp or not depends on the overlap between the two wavepackets.
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standard quantum mechanics. However, unlike the latter, TSVF introduces an addi-
tional bra vector, representing the future state of the system. TSVF attempts to provide
a complete physical description of a pre-and post-selected ensemble. In this section,
we will briefly review the key ingredients and implications of TSVF.

1.2.1 Aharonov, Bergmann and Lebowitz retrodiction

In 1964, Aharonov, Bergmann and Lebowitz (ABL) proposed a framework to study
time-symmetric measurement scenarios [27]. According to ABL, selection of certain
outcomes in sequential measurements make ensemble time-symmetric, in a sense, that
reversing the measurements’ order does not change the physics. Consider a sequential
measurement scenario depicted in Fig. 1.2. A quantum system is pre-selected in the
state |ψ〉 with a preparation measurement P1 ≡ {|ψ〉〈ψ| , |ψ̃〉〈ψ̃|}. A subsequent pro-
jective measurement P2 ≡ {|φ〉〈φ| , |φ̃〉〈φ̃|} is preformed and systems corresponding
to outcome |φ〉 are selected. Such scenarios are called pre-and post-selection (PPS)
scenarios. Now suppose an observable A =

∑
i ai |ai〉〈ai| were measured between the

two measurements. ABL derived a retrodiction rule: given that the system is pre-and
post-selected in |ψ〉 and |φ〉, respectively, the probability of getting outcome ai in the
intermediate measurement is given by,

P (ai|ψ, φ) =
| 〈φ|ai〉 |2| 〈ai|ψ〉 |2∑
j | 〈φ|aj〉 |2| 〈aj|ψ〉 |2

. (1.6)

P (ai|ψ, φ) is conditioned on PPS states |ψ〉 and |φ〉 and remains invariant if pre-and
post-selection are interchanged.

Application of ABL rule in counterfactual attributions of reality to hypothetical
measurements’ outcomes in the past results in surprising and paradoxical situations.
Take the example of three box problem [28]: given that a particle is prepared in su-
perposition of being in three non-overlapping boxes A,B and C with state |ψ1〉 =

1√
3
(|A〉 + |B〉 + |C〉) and post-selected in state |ψ1〉 = 1√

3
(|A〉 + |B〉 − |C〉), the

probability of finding particle in box A or B upon opening the respective box at an
intermediate time is one according to ABL rule. In other words if either of the boxes
A and B had been opened at an intermediate time, one would always find the particle
there.

The application of ABL rule in time symmetric counterfactual reasoning faced a
serious refutation from Kastner [29], Miller [30], Cohen [31] and others on the philo-
sophical ground. Giving an alternative interpretation of ABL rule as being the proba-
bility of the outcome of an actual measurement of the observable between pre-selection
and post-selection measurements, the authors pinpointed that the paradoxes arise only
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|a1〉

|a2〉

|a3〉

|an〉

|ψ〉

˜|ψ〉
|φ〉

˜|φ〉

P1 P2

A

ρ

Figure 1.2: A system is pre-selected in |ψ〉 by discarding outcomes corresponding to
|ψ̃〉 in measurement P1. The system is then post-selected in the state |φ〉 by discarding
outcomes |φ̃〉 in measurement P2. The spectrum of the intermediate measurement of the
observable A is depicted between pre-and post-selection.
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1. Introduction

when one uses ABL rule for calculating probabilities of possible outcomes of observ-
ables which have not been actually measured at the intermediate time. Taking the crit-
icism as well as the defense of the counterfactual use of ABL rule into consideration,
one can write down two distinct interpretations of ABL rule:

Non-counterfactual interpretation: P (ai|ψ, φ) is the fraction of the en-
semble, which is pre-selected in |ψ〉 and post-selected in |φ〉, that had
taken eigenvalue ai of an observable A when it was measured at an in-
termediate time. ABL probabilities are only meaningful when there is an
actual intermediate measurement.

Counterfactual interpretation: P (ai|ψ, φ) is the probability that the sys-
tem, which is pre-selected in |ψ〉 and post-selected in |φ〉, would have
taken eigenvalue ai of an observable A if it had been measured at an inter-
mediate time. Assigning ABL probabilities are meaningful even in coun-
terfactual scenarios.

The debate about the interpretation of ABL rule was apparently settled with ex-
perimental realizations of counterfactual paradoxes using weak values introduced as a
witness of ABL rule. Before going into details of the relation between ABL rule and
weak values and the potential impact of this relation on our understanding of founda-
tions of quantum theory, it would be appropriate to emphasized the element of time
symmetry present in ABL rule.

Hamiltonian of the system was considered zero to derive ABL rule presented in
Eq. (1.6). Let us now consider the general case where the system evolves in time under
non-zero Hamiltonian H . The time transformation taking the state of the system from
time t1 to t2 is U(t2; t1) = exp

(
− i

~

∫ t2
t1
Hdt

)
. For such case the generalized ABL rule

can be re-written as:

P (t, ai|ψ, φ) =
| 〈φ(t)|Πi |ψ(t)〉 |2∑
j | 〈φ(t)|Πj |ψ(t)〉 |2 (1.7)

where |ψ(t)〉 = U(t; t1) |ψ〉, |φ(t)〉 = U(t; t2) |φ〉, and Πk = |ak〉〈ak|. It appears in
Equation (1.7) that the probability P (t, ai|ψ, φ) is determined by a state vector evolv-
ing forward in time |ψ(t)〉 and a state vector evolving backward in time |φ(t)〉 (see
Fig. 1.3). Moreover, the two vectors are on an equal footing. Aharonov and Vaidman
gave a profound meaning to Equation (1.7) by proposing a time symmetric formu-
lation of quantum theory called two state vector formalism (TSVF) [28]: a pre- and
post-selected system is completely described by the two vectors |ψ(t)〉 and |φ(t)〉 at an
intermediate time t. Formally, the two-states are denoted as 〈φ(t)||ψ(t)〉.
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t

t2

t1
Time

|ψ〉
Pre-selection

|φ〉
Post-selection

〈φ(t)| |ψ(t)〉

Figure 1.3: A pre-and post-selected quantum system is fully described by two-sate vectors
〈φ(t)||ψ(t)〉. The state 〈φ(t)| evolves backward while the state |ψ(t)〉 evolves forward in
time.

1.2.2 Weak values
The value of an observable does not hold a meaning prior to the measurement in the
standard formalism of quantum mechanics [32, 33, 34, 35]; however, in the time-
symmetric two-state vector formalism (TSVF) of quantum mechanics such a meaning
is alluded to via “weak values” [26, 36, 37]. TSVF and the concept of weak values were
introduced to validate the retrodiction formula introduced by Aharonov, Bergmann and
Lebowitz (ABL rule) to calculate probabilities of counterfactual-measurement out-
comes of an observable for a pre- and post selected ensemble [27]. In TSVF, the
weak values fully determine the properties of pre- and post-selected quantum system
at all intermediate times. Weak value of an observable A, for a system with two-states
〈φ(t)||ψ(t)〉 is

Aw(t) =
〈φ(t)|A|ψ(t)〉
〈φ(t)|ψ(t)〉 . (1.8)

The weak values can lie outside the range of the values of an observable allowed by
standard quantum mechanics and they need not even be real. The interpretation of
weak values as values of observables drew criticism from various authors [38, 39, 40,
41]. Despite the scholarly dispute over their physical meaning, weak values have been
experimentally measured using weak measurements [42, 43, 44]. The concept of weak
values, although formulated for the purpose of fundamental study of quantum mechan-
ics, has been extremely useful in various fields of experimental quantum mechanics.
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It has been used in understanding optical telecom networks [45], superluminal and
slow light phenomena in birefringent photonic crystals [46, 47], studying optical
cross-phase modulation jump [48], quantum process tomography [49], ultrasensitive
quantum measurements using weak value amplification [50, 51, 52], and a review is
available in reference [53]. Weak values have also been used in direct measurements of
wavefunctions and in providing an operational definition to the wavefunction [54, 55].

Apart from their applications, weak values have been thought to provide insights
into a number of fundamental issues in quantum mechanics, which include Hardy’s
paradox [56, 57, 58, 59], quantum tunneling time [60], the Legget-Garg inequality [61],
Bohmian trajectories [62, 63] and quantum contextuality [64]. These studies are firmly
based on the straightforward interpretation that the weak value is the value of an ob-
servable between two successive measurements of a quantum system. Weak values
have also been called the weak-measurement elements of reality (WMER) [65]. It has
been proposed that the trace a particle leaves at a location is proportional to the weak
value of the projection operator onto that particular location [66].

1.2.3 Weak values as witness of counterfactual ABL rule

The refutation of counterfactual ABL rule on the philosophical ground was firmly
based on the non-counterfactual interpretation. According to the measurement pos-
tulate of quantum theory, performing an actual measurement on quantum system at
the intermediate time would destroy the state making counterfactual interpretation no
longer valid. Then the question is how to experimentally witness the counterfactual-
ness of ABL rule. The answer lies in Eq. (1.7). Using Eq. (1.8),

P (t, an|ψ, φ) =
|Πw

n (t)|2∑
i |Πw

i (t)|2 (1.9)

here Πw
i (t) is the weak value of the operator Πi = |ai〉〈ai| at the intermediate time t

which can be experimentally measured using weak measurements [26, 36, 37]. When
A is a projection operator Π = |ξ〉〈ξ|, the ABL rule becomes:

Pt(Π = 1|ψ, φ) =
|Πw(t)|2

|Πw(t)|2 + |(1− Π)w(t)|2 (1.10)

The most compelling fact about the concept of weak values is that it provides a ground
for an experimental realization of ABL rule even if no actual measurement is per-
formed at the intermediate time. This gives the counterfactual interpretation an opera-
tional meaning.
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1.2.4 Weak measurements followed by post-selections
In order to experimentally realize the counterfactual ABL rule, the most essential
condition is that the state of the system remains undisturbed between pre- and post-
selection. Hence, to observe the ABL rule without an intermediate projective mea-
surement, it becomes necessary to devise a method for experimentally extracting in-
formation about the system between two successive measurements without causing
any disturbance. The technique of weak measurements makes the latter possible.

Weak measurements are von Neumann interactions between a system and a pointer
with extremely weak interaction strength. Suppose a system interacts with a pointer
according to the Hamiltonian Hint = −~κδ(t′ − t)A ⊗ P , where δ(t′ − t) is the
Dirac delta function of time t′ and κ is the interaction strength. Here, A and P are
system and pointer observables, respectively. The corresponding unitary is Uint =
exp(−iκA⊗ P ). Now consider the scenario presented in Fig. 1.4, the system is pre-
and post-selected in states |ψ〉 and |φ〉, respectively. If the initial state of the pointer is
|ξ〉, the state after the post-selection is obtained as,

|ξ′〉 = R(1 + iκA(1)
w P +

i2

2!
κ2A(2)

w P 2 + · · · ) |ξ〉 (1.11)

Here, R is a normalization constant, 1 is identity on pointer Hilbert space and A(i)
w is

weak value of the operator Ai given by:

A(i)
w =

〈φ(t)|Ai |ψ(t)〉
〈φ(t)|ψ(t)〉

The process of weak measurement followed by post-selection displaces the pointer
state from |ξ〉 to |ξ′〉. The interaction can introduce disturbance to the system as well.
Suppose F (κ) denotes the fraction of the pre-selected ensemble that gets post-selected
in |φ〉 when the interaction strength is κ. Then,

F (κ) =F (0)
[
1− 2κ Im(A(1)

w )〈P 〉

+ 2κ2

(
|A(1)

w |2
2
− 1

2!
Re(A(2)

w )

)
〈P 2〉

+ 2κ3

(
1

3!
Im(A(3)

w ) +
1

2!
Im(A(1)

w A(2)
w ∗)

)
〈P 3〉

− · · · ]

(1.12)

where 〈P i〉 = 〈ξ|P i |ξ〉 is the expectation value of pointer observable P i immediately
before the interaction. For κ = 0, we have F (κ) = | 〈φ(t)|ψ(t)〉 |2 = F (0). For
the minimal disturbance, we require |F (κ) − F (0)| to be minimum but 〈ξ′|ξ〉 6= 1 so
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t

t2

t1
Time

|ψ〉
Pre-selection

|φ〉
Post-selection

|ψ(t)〉
Uint

|ξ〉

|ξ′〉

Figure 1.4: The system is pre-selected in state |ψ〉 and a pointer is prepared in |ξ〉 at time
t1. Interaction Uint takes place between the two at time t. The system is then post-selected
in state |φ〉 at time t2. This leaves the pointer in state |ξ′〉.

that we can extract some amount of information from the pointer. The latter can be
achieved by choosing κ � 1 s. th. κ2 ≈ 0. In that case, we have only the first order
disturbance in the system. However, an unambiguous information about weak values
can be obtained with a large ensemble.

The condition for realization of counterfactual ABL rule: The condition that the
interaction is completely absent i.e. κ = 0, is the ideal situation for counterfactual
ABL rule. In order to perform a successful experimental realization of counterfactual
ABL rule, one must choose the value of interaction strength κ and the state of pointer
in such a way that on one hand F (κ)/F0 ≈ 1 with F (0) 6= 0, while on the other hand
there is enough displacement in the pointer state so that the effect of interaction with
system observable A is measurable. These two requirements, in the light of Eq. (1.11)
and (1.12), lead us to consider the necessity of simultaneous fulfilment of conditions:

〈P 〉 = 0

κ2N → 1 with N � 1
(1.13)

whereN is the number of pre- and post-selected systems in the presence of interaction.
If these conditions are not satisfied, operational inferences drown about the past of a
quantum system are no longer valid for the system with zero interaction with pointer.
More detailed discussion on the necessary condition for weak measurements is due to
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Aharonov and Vaidman in context of a generalized Hint and case of Gaussian pointer
state [36].

Measurement of weak values: In scenarios with satisfying conditions Eq. (1.13),
the final pointer state with some normalization constant R is given as,

|ξ′〉 ≈ R
(
1 + iκA(1)

w P
)
|ξ〉 (1.14)

The displacement in |ξ〉 is directly proportional to κA
(1)
w . Remember that κA(1)

w is
the weak value of A. Complete state tomography of the state of pointer right after
the post-selection of the system reveals the precise value of A(1)

w . The requirement
for precise quantum state estimation is that the ensemble size must be infinitely large
i.e. N → ∞. The proportionality relation between the displacement in the pointer
state and the weak value motivated the proponents of TSVF to interpret weak values
as values of corresponding observables for PPS systems.

1.2.5 Weak value paradoxes
The use of a straightforward interpretation of weak values in a few experimental schemes
has resulted in inception of new quantum paradoxes: the paradox of negative number
of particles and negative pressure [37, 67], the paradox of discontinuous trajectories
of photons [66, 68, 69, 70, 71, 72], and the paradox of quantum Cheshire cat [73, 74,
75, 76]. The last two have been at the center stage of the discussion for researchers
working on quantum foundations. The most surprising and ‘common sense’ defying
claim made by Danan et al. [69] is that a pre- and post-selected photon in a nested
Mach-Zehnder interferometer (NMZI) takes discontinuous trajectories to reach the
detector. The photon visits a region in the NMZI without entering and exiting it. An-
other ‘common sense’ defying claim is made by Aharonov et al. [73] and Denkmayr
et al. [74] that the internal degree of freedom of a quantum system can be separated
from its wavefunction. Many comments and papers have been published in criticism as
well as defense of these claims [77, 78, 79, 80, 81, 82, 83, 84, 85].

1.2.5.1 Photons with discontinuous trajectories

An intriguing example of weak value paradox is the past of photons in nested Mach-
Zehnder interferometer (NMZI), as investigated by Lev Vaidman [66, 68], where pho-
tons take discontinuous trajectories to reach the detector. The experimental setup is
shown in Fig. 1.5. Single photons are pre-selected at source S and post-selected at
detector D. If the phase shifter PS is tuned in such a way that there is a completely
destructive interference near mirror F , then the weak values of projection operators
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Figure 1.5: (a) Nested Mach-Zehnder interferometer. A Mach-Zehnder interferometer is
inserted in on of the arms of a larger Mach-Zehnder interferometer. Beam splitters BS1

and BS4 has 2/3 reflectivity, while BS2 and BS3 are 50 − 50. PS is a phase shifter, S
is a single photon source, and D is the detector. (2) Single photons coming from S are
post-selected at D. The corresponding forward and backward evolving wavefunctions are
denoted by solid and dashed lines, respectively.

near mirrors A, B, C, E, and F are Πw
A = 1,Πw

B = 1,Πw
C = −1,Πw

E = 0, and Πw
F = 0,

respectively. The interpretation of weak values as values asserts that the photons were
never present near mirror E and F , however, they passed by mirrors A, B and C. This
leads us to conclude that the photons took discontinuous trajectories to reach the de-
tector. In language of counterfactual ABL rule, one would get no detection clicks if a
detector had been placed near mirrors E and F . Vaidman’s predictions were experi-
mentally realized in Danan et al. [69] and Zhou et al. [70] using weak measurements.

Vaidman’s claims and the experimental results of Danan et al. have faced serious
criticism from various authers. Englert et al. [77] using ‘unambiguous which-path
information’ (UWI), and R. B. Griffiths [80] using the consistent histories (CH) ap-
proach argued that the paradox of discontinuous trajectories arises from discarding
second and higher order perturbation terms in the interaction strength κ. The same has
been advocated by Li et al. [86] and by D. Sokolovski [87] using different approaches.
The critique of the TSVF interpretation of the Danan experiment by these authors is
primarily based on their discarding certain higher order terms, which we think is insuf-
ficient to reject the main claims because an experimental realization of counterfactual
ABL rule requires the least possible disturbance to the system. For that one has to
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obey conditions of Eq. (1.13). According to counterfactual ABL rule, in absence of
any weak measurement devices, i.e.κ = 0, no photon would have been detected if a
photon detector were placed near E or F while in presence an order of κ2 fraction of
pre- and post-selected ensemble would have been detected which is less than one from
Eq. (1.13). Griffiths [80] has also agreed to the same in his consistent histories analysis
of Danan et al. experiment. In order to counter claims made in Danan et al. one has
to come up with an experimental setting where even the predictions based on the first
order perturbation differ.

1.2.5.2 Quantum Cheshire cat paradox

Aharonov et al. [73] predicted that the internal degree of freedom of a photon (grin)
can be separated from the wavefunction (cat) which has been experimentally supported
by Denkmayr et al. [74] and Ashby et al. [88]. The proposed experimental setup,
shown in Fig. 1.6, is a modified Mach-Zehnder interferometer in which a photon source
S and beam-splitterBS1 are used to pre-select a single photon in the state |ψ〉 = (|A〉+
i |B〉) |H〉 /

√
2 and a half wave plate (HWP), phase shifter (PS), a beam splitter (BS2),

a polarizing beam splitter (PBS) and a single photon detector (D) are used to post-
select the photon in the state |φ〉 = (|A〉 |V 〉 + |B〉 |H〉)/

√
2. Here states |A〉 and |B〉

are spatial state vectors of photon being in arm A and B, respectively. States |H〉 and
|V 〉 represent horizontal and vertical polarization, respectively. Eigen states of circular
polarization are denoted |±〉 = (|H〉 ± i |V 〉)/

√
2. Let us now ask a question: which

arm did photon pass through to reach detector D and what was the value of circular
polarization σz = |+〉 〈+|− |−〉 〈−| in each arm? To answer the question using TSVF,
we calculate weak values of operators ΠA = |A〉 〈A| ,ΠB = |B〉 〈B| , σAz = ΠA ⊗ σz
and σBz = ΠB ⊗ σz as:

(ΠA)w = 0; (ΠB)w = 1

(σAz )w = 1; (σBz )w = 0
(1.15)

According to TSVF, the circular polarization of the photon in arm A was non-zero
but it did not pass through arm A while photon passed through arm B but the circu-
lar polarization in that arm was zero. This is how Aharonov et al. could disembody
photon’s polarization (the grin) from its wavefunction (cat).

1.2.5.3 Hardy’s paradox

Hardy [56] used a gedanken experiment involving a bipartite system to give a logical
proof against local realism just like Greenberger, Horne, and Zeilinger (GHZ) [89]
did with tripartite systems, and to show a contradiction between quantum mechan-
ics and any realistic theory which has Lorentz invariant element-of-reality. There is
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Figure 1.6: Quantum Cheshire cat setup: a photon is pre-selected in |ψ〉 = (|A〉 +

i |B〉) |H〉 /
√

2 using a single photon source and a 50 − 50 beam splitter; and then post-
selected in the state |φ〉 = (|A〉 |V 〉 + |B〉 |H〉)/

√
2 using half-wave plate HWP , phase

shifter PS, another 50− 50 beam-splitter BS2, polarizing beam splitter PBS, and detec-
tor D.

no paradox if one drops realism and uses text book quantum mechanics without any
counterfactual reasoning. The paradox arises when one uses counterfactual reasoning
about the past of system in Hardy’s setup [57]. The setup, see Fig. 1.7, consists of two
Mach-Zehnder interferometers, one for an electron and another for a simultaneously
produced positron. X is an overlapping region of inner arms of both interferome-
ters (Ie±) such that if positron and electron encounter they annihilate each other with
probability one. Arms of interferometers are adjusted in such a way that there is no
detection in De± when the two interferometers are separated in such a way that there is
no overlapping region. When there is an overlap between Ie+ and Ie− , e−− e+ annihi-
lation in region X acts as an Elutzer-Vaidman bomb [90] and disturbs the interference
causing coincident detection in De± with probability 1/16. Let us now ask a question:
which arms do e+ and e− travel through when both end up in De± simultaneously? A
counterfactual reasoning leads to paradox: if there is coincident detection in De± then
e± must have traveled through region X in order to disturb the interference, but there
is no annihilation! Aharonov et al. [57] made the paradox even weirder when they
used weak values to answer the question. Authers reached the conclusions:

(i) e+ always had passage through region X.

(ii) e− always had passage through region X.
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Figure 1.7: Hardy’s setup: Simultaneously produced electron and positron passes through
two separate matter-wave Mach-Zehnder interferometers. The interferometers have an
overlap in the region X where electron and positron annihilate each other if they meet.

(iii) e− and e+ never both of them together had passage through region X.

Again, these conclusions are firmly based on the interpretation that weak values are
values of observables. One should not get surprised looking at (apparent) contradictory
statements because ‘e+ being at X’ and ‘both e+ and e− being together at X’ are two
different observables and can have simultaneous independent values in TSVF. The
weak value version of Hardy’s paradox has been experimentally realized using weak
measurements [59, 91].

1.3 Quantum key distribution
Quantum Key Distribution (QKD) is a revolutionary cryptographic technique that uti-
lizes the principles of quantum mechanics to enable secure key exchange between two
parties. Unlike traditional cryptographic methods that rely on mathematical complex-
ities [92, 93, 94], QKD leverages the inherent properties of quantum particles, such
as superposition and entanglement, to ensure the confidentiality and integrity of cryp-
tographic keys [10, 11]. By encoding the key information into quantum states and
transmitting them through an optical channel, QKD offers an unprecedented level of
security. The fundamental laws of physics make it virtually impossible for an eaves-
dropper to intercept or measure the quantum states without disturbing them, thereby
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1. Introduction

alerting the legitimate parties to the presence of an attacker. QKD holds immense
promise for enhancing the security of communication systems, particularly in the face
of future quantum computing advancements.

In this chapter, we summarize the main components of QKD protocols and infor-
mation theoretic proofs of the same.

1.3.1 Basic components of quantum key distribution protocols

A general QKD setup is presented in Fig. 1.8. Two parties Alice and Bob, who are
willing to share a symmetric key securely, are connected with a quantum communica-
tion channel over which they can share a bipartite system. Equivalently, one of them,
say Alice, can prepare and share a quantum system to Bob over the quantum chan-
nel. They can manipulate their respective systems by performing local measurements
choices of which are locally generated with true random number generators. Their
measurement outcomes are kept secret inside their respective labs with the assumption
of closed lab assumption until and unless they are needed to be announced publicly.
All public announcements are made over authenticated classical channels (ACC). An
adversary Eve, can have access to the quantum as well as the classical channel. How-
ever, attempts of eavesdropping are detectable in Alice’s and Bob’s lab using principles
of quantum theory. The latter ensures the unconditional security of the shared or gen-
erated quantum key. A QKD protocol can largely be divided into five steps.

(1) Quantum state sharing or distribution: In this step, a quantum state is shared
between two parties over the quantum communication channel. The two parties can ei-
ther share a bipartite entangled state–entanglement-based protocols–or one of them can
prepare and send it to another–prepare-and-measure protocols. The latter is equivalent
of the sender holding the purification of the system that is sent to the receiver [95, 96].
In prepare-and-measure protocols, Alice prepares a system in one of two or more com-
plementary basis and send it to Bob [95, 96]. The complementarity ensures that the
sent state cannot be guessed perfectly. The latter is a beautiful consequence of the lin-
earity of quantum mechanics. The state may get disturbed due to eavesdropping or the
environmental decoherence. BB84 [10] and the six-state protocol [97] are the prime
examples of prepare-and-measure protocols. In an entanglement based QKD proto-
col, they share a bipartite quantum system and performs their local measurements on
respective systems. Ekert protocol [98] and B92 [99] fall under this category. The
QKD protocol is called discrete variable QKD (DVQKD) or continuous variable QKD
(CVQKD), whether or not the systems used are discrete or continuous variable.
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Figure 1.8: A typical quantum key distribution setup has two parties Alice and Bob who
want to share a secure key. Alice and Bob are connected by a quantum communication
channel that shares a quantum state between them. Additionally, They are connected with
an authenticated classical channel (ACC). Alice and Bob can perform measurements on
their respective quantum systems or, in general, shared quantum black-boxes using mea-
surements Ma and Mb, respectively. Their inputs are locally generated and are random.
An eavesdropper Eve can have access to both ACC and the quantum channel.

(2) Measurements: After successful state sharing, both parties perform measure-
ments on their respective systems and store the outcomes. Generally, the measurements
are dichotomic. The measurements, hence, generate bit strings. The measurements are
randomly chosen from a set of complementary basis.

(3) Parameter estimation: Every protocol has a set of parameters that characterize
the protocol and quantify the security. In BB84, the parameter is the quantum bit
error rate (QBER): the probability of outcome-mismatch when they choose the same
measurement basis. Using ACC, both parties estimate the parameters with a fraction
of rounds. If the parameters are in range of secure communication, they proceed, else
the protocol is aborted.

(4) Sifting and raw key generation: Since both parties choose their measurement
inputs randomly, there are usually rounds which are not useful in final key generation.
These rounds are needed to be discarded. For instance in BB84, if their measurement
basis are not matched, the outcomes have zero correlations and should be discarded.
After discarding certain outcomes, they shorten the bit strings and finalized the raw
key bit strings. These strings can be partially correlated and insecure i.e. an adversary
may have access to some bits of Alice or Bob’s strings.
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(5) Classical post-processing: After the successful generation of partially correlated
and partially-secure raw keys, they use methods of classical information theory to ob-
tain a fully correlated and ideally secure symmetric key. First, they perform classical
error correction and then the privacy amplification. In the process they loose some of
the raw bits as a cost of the error correction.the protocol is secure, if the cost is less
than the number of raw bits unknown to the adversary.

1.3.2 Information theoretic security proofs

The earliest security proofs of QKD protocols methods of quantum error correction
codes. The advancement in the field of quantum information theory has provided a
framework for the information theoretic security proofs which are more robust and
easy to prove. Suppose a bipartite quantum state ρAB is shared between Alice and Bob.
The state might have been intercepted by an adversary Eve while the state sharing step.
The latter introduces disturbance to the system. Therefore, if can be assumed that the
purification of ρAB might be held by Eve who can use it to extract information about
Alice and Bob’s measurement outcomes. Let ρABE be the corresponding purified state.
After N rounds of the protocol, they share state ρ⊗NABE . Here, it is assumed that the
individual state sharing rounds are identical and independent. For asymptotically large
N , their state is an ensemble of pure state ρABE . Measurements by Alice and Bob
generates a classical-classical-quantum (ccq) state:

ΩABE =
∑

a,b∈{0,1}
P (a, b) |a〉〈a|A ⊗ |b〉〈b|B ⊗ ρabE (1.16)

where P (a, b) is the joint probability distribution of Alice and Bob’s raw key bits and
ρabE is Eve’s quantum memory when Alice and Bob have key bits a and b, respec-
tively. Eve can protect her memory and postpone her measurements to the classical
post-processing step where she can utilize information broadcast by Alice and Bob to
maximize her information. This is known as collective attack strategy. The security
against collective attacks is considered to be ultimate security against Eve’s all strate-
gies. Eve’s knowledge in collective attacks is bounded by Devetak-Winter key rat:

rDW ≥ I(A : B)− χ(A : E), (1.17)

where I(A : B) is the mutual information between Alice and Bob determined by the
joint probability distribution and χ(A : E) is the Holevo quantity between Alice’s bits
and Eve’s memory. Holevo quantity is the maximum information about Alice’s raw
bits that can be obtained from Eve’s quantum memory. A protocol is secure against
collective attacks in asymptomatic limits when rDW > 0.
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1.4 Organization of the thesis

1.4 Organization of the thesis
This thesis deals with quantum measurements, weak measurements and their role in
the investigations of the past of quantum particles, quantum key distributions, mea-
surements restricted by the no-faster-than light communication principle and demon-
stration of wave-particle duality using von Neumann interactions. The rest of the thesis
is organized as follows.

Chapter 2

This chapter proves that the past of quantum particles cannot consistently be described
by weak values. To do so, we propose a gedanken experiment that shows that photons
reveals their presence at locations where weak values of the position are zero.

Chapter 3

In this chapter, we investigate the generality of the two state vector formalism. We
show that weak values for mixed states can lead us to erroneous quantum state dis-
crimination. Which, consequently, can result into false security proofs of quantum key
distribution protocols.

Chapter 4

This chapter presents a quantum key distribution protocol where we have used quantum
block-wise processing to achieve high-noise tolerance against collective attacks. We
have provided an information security proof of the same in asymptomatic limits. Our
techniques shows a significant improvement in the noise-tolerance.

Chapter 5

This chapter presents a novel no-go theorem and its applications in quantum Darwin-
ism. We prove that the internal degrees of freedom cannot be manipulated or measured
without disturbing particles’ spatial wavefunctions. Furthermore, we use our no-go
theorem to explain emergence of the classical objectivity in the position basis.

Chapter 6

This chapter presents a proposal for the experimental demonstration of wave-particle
complementarity using discrete variable systems and a Gaussian pointer. We show
that the complementarity in discrete systems can be transferred to the pointer using
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von Neumann interactions and then the corresponding interference phenomena can be
observed. Our results provide an operational definition to the coherence in discrete
system in terms of fringe visibility of the corresponding interference pattern.

Chapter 7

In this chapter, we briefly summarize results presented in the thesis and discuss the
future outlook.
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Chapter 2

Weak values cannot consistently
describe the past of quantum particles

2.1 Introduction

The ABL rule provides a way to calculate the probability of a counterfactual mea-
surement outcome for a pre- and post-selected ensemble [27]. However, this rule can
assign probabilities to unperformed measurements, which may violate classical prob-
ability theory and give rise to retro-causal quantum paradoxes. The proponents of
the ABL retrodiction rule developed TSVF, a time-symmetric formalism of quantum
mechanics for pre-and post-selected ensembles. Claims of TSVF were backed by ex-
perimental demonstrations of weak values which are understood as values of physical
observables between two successive measurements. Although, the value of an observ-
able does not hold a meaning prior to the measurement in the standard formalism of
quantum mechanics [32, 33, 34, 35]; but, in TSVF such a meaning is alluded to via
“weak values” [26, 36, 37]. In the TSVF approach, weak values are used to fully de-
scribe quantum systems between successive measurements. These weak values may
be complex, in contrast to the always-real observable values in standard quantum me-
chanics, leading to debate about their physical significance and interpretation among
various authors.

Despite the lack of a consensus on interpretation [38, 39, 40, 41], weak values have
found important applications in quantum information processing [45, 49, 54, 55], quan-
tum metrology [50, 51, 52], and various fields of experimental quantum theory [46, 47].
Apart from their applications, weak values have been thought to provide insights into
a number of fundamental issues in quantum mechanics, which includes Hardy’s para-
dox [56, 57, 58, 59], quantum tunneling time [60], the Legget-Garg inequality [61],
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2. Weak values cannot consistently describe the past of quantum particles

Bohmian trajectories [62, 63], and quantum contextuality [64]. These studies are
firmly based on the straightforward interpretation that weak values are the values of
observables between two successive measurements of a quantum system. The latter
is motivated by the fact that when a system is weakly measured with a pointer, the
displacement (or translation) in the pointer state is directly proportional to the weak
value of the observable. This is strikingly like the projective measurement of an ob-
servable in which the translations in the pointer state are proportional to the eigenvalue
outcomes of the observable. This led L. Vaidman to define weak values as elements of
the reality of weak measurements [65].

The use of the straightforward interpretation of weak values has resulted in the
inception of various quantum paradoxes: the paradox of the negative number of par-
ticles and the negative pressure [37, 67], the paradox of discontinuous trajectories of
a photon [66, 68, 69, 70, 71, 72], weak value version of Hardy’s paradox, quantum
pigeonhole paradox, and the paradox of quantum Cheshire cat [73, 74, 75, 76]. These
paradoxes have been discussed among quantum physicists for a decade. One of the
most surprising and ‘common sense’ defying paradoxes (reported in Danan et al. [69])
is that a pre- and post-selected photon in a NMZI takes discontinuous trajectories to
reach the detector. The photon visits a region in the NMZI without entering and exit-
ing it. Another ‘common sense’ defying claim is made by Aharonov et al. [73] and
Denkmayr et al. [74] that the internal degree of freedom of a quantum system can be
separated from its wave function. Many comments and papers have been published in
criticism as well as defense of these claims [77, 78, 79, 80, 81, 82, 83, 84, 85].

This chapter presents a thought experiment utilizing time-varying Hamiltonians to
demonstrate that weak values do not provide a complete picture of a quantum particle’s
past [100]. This finding contradicts the assertion that the TSVF approach fully de-
scribes pre-and post-selected quantum systems. The Hamiltonian evolution and time-
dependent elements in the quantum state before measurement may not be apparent
in the postselection process, but they can be detected in the probability distribution
over time. The thought experiment incorporates oscillating, time-dependent elements
inserted at specific locations in the Hamiltonian, and the resulting frequencies in the
probability distribution indicate the particle’s passage through these locations. Our
analysis reveals that weak values within the TSVF formalism occasionally fail to cap-
ture the presence of quantum particles. Moreover, we prove that weak values cannot
always consistently describe the past of a quantum particle.

The material in this chapter is arranged as follows: Section 2.2 gives a brief re-
view of the ABL rule, TSVF, Weak Values, and their interconnections. Section 2.3
describes our gedanken experiment aimed at providing a counterexample to the weak
value-based interpretation of the past of a quantum particle. In Section 2.4 we com-
pare the predictions of our analysis with those of TSVF to demonstrate the mismatch.
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2.2 Weak value hypothesis and implications

Section 2.5 provides conclusions and discussion.

2.2 Weak value hypothesis and implications
According to the ABL rule, the measurement of an observable A of a quantum system
at time t which is pre-selected in state |ψ1〉 at time t1 < t and post-selected in state
|ψ2〉 at time t2 > t would yield eigenvalue an with probability [27, 28]:

Pt(an|ψ1, ψ2) =
| 〈ψ2(t)|Πan |ψ1(t)〉 |2∑
i | 〈ψ2(t)|Πai |ψ1(t)〉 |2 (2.1)

where Πai =
∑

α |ai,α〉 〈ai,α| with {|ai,α〉} being a complete set of eigen states of A

labeled by eigenvalues ai, and |ψj(t)〉 = exp
[
− i

~

∫ t
tj
Hdt

]
|ψj〉 with j = 1, 2. It can

be seen that the state |ψ1(t)〉 evolves forward while the state |ψ2(t)〉 evolves backward
in time both being on equal footing in the TSVF formalism.

According to the measurement postulate of quantum theory, performing an actual
measurement on a quantum system at the intermediate time would destroy the prepared
state making counterfactual interpretation no longer valid. Then the question is how
to experimentally witness the counterfactuals of the ABL rule. The answer is that the
ABL probabilities given by Equation (2.1) can be inferred using weak values Πw

ai
(t) of

the projection operators {Πai} at the intermediate time t, given as:

Πw
ai

(t) =
〈ψ2(t)|Πai |ψ1(t)〉
〈ψ2(t)|ψ1(t)〉 (2.2)

which can be experimentally determined without collapsing the wave function. The
concept of weak values has thus been claimed to have the potential to provide a ground
for an experimental realization of the ABL rule without performing a projective mea-
surement at intermediate times and thereby giving the counterfactual interpretation an
operational meaning.

Let us for a moment revisit, the three-box problem. If any of the boxes A and B
had been opened, according to the counterfactual ABL rule, the particle would have
been found with certainty (probability one) in the respective box. This raises a serious
and natural question: how can a single particle be present in more than one box with
certainty? The concept of weak values resolves this problem. It has been hypothesized
that the weak values are values of corresponding observables and fulfill the conditions
of being elements of the reality of weak measurements (WMER) [28, 65]. Let us call
it the weak value hypothesis (WVH). The validity of WVH naturally leads one to con-
clude that the weak value of a projection operator |η〉 〈η| is the number of quantum
systems present in the state |η〉. Therefore, the number of particles present in boxes
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2. Weak values cannot consistently describe the past of quantum particles

A,B, and C are 1, 1 and −1 respectively keeping the total number of particles one
at any intermediate time. As one can see one has to accept the concept of negative
number particles in this explanation!

A natural consequence of WVH is the truthfulness of the following statement:
S-A: If the weak value of the projection operator Πx = |x〉 〈x| at an intermediate

time is zero, where |x〉 is a position eigenstate; then the particle was not present at
position x at that time.

The above statement is just a codification of the counterfactual statement: that if
Pt(an|ψ1, ψ2) = 0 then the measurement of observable A on the system at the inter-
mediate state would never yield value an. Since the whole purpose of bringing the
concept of weak measurements was to provide an operational meaning to the coun-
terfactual ABL rule in terms of weak values, one can write an operational definition
of the past of a quantum particle, as has been done by Vaidman, using the concept of
weak values and weak trace [66]:

S-B: A quantum particle was present at a location if and only if it left a weak trace
on a pointer located at that location upon interaction.

A system, here a particle, leaves weak trace of its presence upon interaction with a
pointer. Weak traces can be experimentally measured by a complete state tomography
of the pointer state after the post-selection of the system state. Since the post-selection
measurement leaves the state of the system and the pointer separable, a further mea-
surement of the pointer state will definitely not affect the past of the system in a retro-
causality manner.

The adoption of S-A and S-B to investigate the past of quantum systems leads to
peculiar paradoxical situations [57, 66, 68, 73]. These paradoxes are being posed as
real paradoxes because weak measurements can be realized at an operational level and
the ABL rule is thought to be valid as a retrodiction formula for the assignment of
probabilities to ‘counterfactual events’. Such paradoxes are commonly known as weak
value paradoxes or pre-and post-selection paradoxes. These paradoxes have faced se-
rious skepticism which can be broadly divided into two categories. The First kind
of criticism focuses primarily on experimental aspects of the realizations of the para-
doxes using weak measurements where higher-order perturbation terms are neglected
according to the minimal disturbance assumption. It is argued, in this approach, that the
paradoxes can be resolved if one retains terms of all orders of the perturbation strength
in the analysis [77, 80, 86, 87]. While the second kind of criticism, primarily due to
D. Sokolovski [41, 101], focuses on the refutation of the WVH and re-interpretation
of weak values as Feynman’s transition amplitudes. A critical analysis of some of
the weak value paradoxes based on this approach can be found in reference [101].
Even though both approaches contribute significantly to the debate by providing logi-
cal solutions to the paradoxes, the existing literature still lacks a concrete operational
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refutation of these paradoxes where one can show experimental disagreement with the
‘weak trace’ approach but to the first order. Here, we fill this gap by proposing an ex-
perimental scenario where disagreement with the ‘weak trace’ approach can be shown
to first order. Our results invalidate WVH as it challenges its ability to pin down the
past of a quantum particle.

2.3 The gedanken experiment

We now describe our main results where we will consider a situation where the pre-
dictions of weak values can be seen to come in contradiction with descriptions based
on standard quantum mechanics. Consider A quantum system with a six-dimensional
Hilbert space H. For the purpose of the gedanken experiment, we can think of a quan-
tum particle being in six non-overlapping boxes. If the particle is found in the ith box
with certainty, the state vector of the particle is written as |i〉. In the absence of in-
teractions, these states are orthogonal to each other. The boxes are designed in such
a way that the interactions can be switched on so that the particle can tunnel between
any pair of boxes in a controlled manner. The boxes i and j can be made to interact
instantaneously at time t′ via the interaction Hamiltonian H ′ = gδ(t − t′)σ(ij)

y . Here
σ

(ij)
y = i(−|i〉〈j| + |j〉〈i|) is σy Pauli matrix and δ(t − t′) is a Dirac delta function

of time t. The tunable parameter g represents the tunneling strength and we call the
process a leakage process when g is sufficiently small. Further, the operational condi-
tion g2N ≈ 1 has to be satisfied where N is a large number representing the ensemble
size is being considered by the experimenter. Therefore, we need to retain only the
terms linear in g unless it is multiplied by N . In the rest of the chapter, whenever we
neglect the contribution of higher powers of some quantity, it is understood that we are
assuming that the operational condition is satisfied.

Consider a quantum state |ψ(t0)〉 of the particle at t0 which undergoes time evolu-
tion according to the Hamiltonian:

H =
9∑
i=1

Hi, (2.3)
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with

H1 = −~{sin−1(
√

2/3)δ(t− t1)(σ(13)
y + σ(24)

y )}
H2 = −ε~ cos (ω1t)δ(t− t2)σ(34)

y

H3 = −π
4
~δ(t− t3)(σ(35)

y + σ(46)
y )

H4 = −ε~δ(t− t4){cos (ω2t)σ
(12)
y + cos (ω3t)σ

(34)
y + cos (ω4t)σ

(56)
y }

H5 = −π
2
~δ(t− t5)(I(56) − σ(56)

z )

H6 = −π
4
~δ(t− t6)(σ(35)

y + σ(46)
y )

H7 = −ε~ cos (ω5t)δ(t− t7)σ(34)
y

H8 = −~{sin−1 (
√

2/3)δ(t− t8)(σ(13)
y + σ(24)

y )}
H9 = −π

4
~δ(t− t9)σ(12)

y (2.4)

where I(ij) = |i〉〈i|+|j〉〈j| and σ(ij)
z = |i〉〈i|−|j〉〈j|. The impulsive interaction occurs

at moments of time t0 < t1 < t3 < · · · < t8 < t9. The parameter ε � 1 is such that
the contributions of higher powers of ε in the experimental observations are negligible.
Therefore, H2, H4, and H7 generate leakage processes between certain boxes. The
time intervals between ti’s are kept fixed for repeated runs of the experiment. Since
all the transformations generated by Hi are momentary and well separated in time, the
state of the particle at time t > t9 is given for infinitesimally small ∆ as

|ψ(t)〉 = exp

[
− i
~

∫ t9+∆

t9−∆

H9dt

]
exp

[
− i
~

∫ t8+∆

t8−∆

H8dt

]
· · ·

· · · exp

[
− i
~

∫ t2+∆

t2−∆

H2dt

]
exp

[
− i
~

∫ t1+∆

t1−∆

H1dt

]
|ψ(t0)〉

(2.5)

The sequence of momentary interactions presented in Equation (2.4) and the time
evolution of the system shown in Equation (2.5) can be understood as a sequence of
unitary operations U1, U2, · · · , U9 acting on the system at times t1, t2, · · · , t9 respec-
tively, where

Uj = exp

[
− i
~

∫ tj+∆

tj−∆

Hjdt

]
(2.6)

Unitary operations {Ui} are 6× 6 matrices:

U1 = U8 =


1√
3
I

√
2
3
I 0

−
√

2
3
I 1√

3
I 0

0 0 I

 ;U2 =

 I 0 0
0 L1 0
0 0 I


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2.3 The gedanken experiment

U3 = U6 =

 I 0 0
0 1√

2
I 1√

2
I

0 − 1√
2
I 1√

2
I

 ;U4 =

 L2 0 0
0 L3 0
0 0 L4



U5 =

 I 0 0
0 I 0
0 0 σz

 ;U7 =

 I 0 0
0 L5 0
0 0 I

 ;U9 =

 R 0 0
0 I 0
0 0 I


where

I =

[
1 0
0 1

]
;0 =

[
0 0
0 0

]
;R =

1√
2

[
1 1
−1 1

]

L1 =

[
cos (ε cosω1t2) sin (ε cosω1t2)
− sin (ε cosω1t2) cos (ε cosω1t2)

]

L5 =

[
cos (ε cosω5t7) sin (ε cosω5t7)
− sin (ε cosω5t7) cos (ε cosω5t7)

]
and

Li =

[
cos (ε cosωit4) sin (ε cosωit4)
− sin (ε cosωit4) cos (ε cosωit4)

]
for i = 2, 3, 4.

As we shall see, the leakage processes described above are engineered to provide
us with a tool to investigate the past of the particle. A leakage process between two
completely empty boxes will definitely not make any contribution to the time evolution
of the state of the particle and hence will not have any measurable effects. Therefore,
the measurable effect of such a leakage process, between any two boxes in the state
of the particle is evidence that the amplitude of the particle was not zero at least in
one of the boxes involved in the leakage interaction. It is easy to see that due to the
leakage process, the change in the probability amplitude of the particle being in one
box is proportional to the probability amplitude of it being in the other box.

The initial state of the particle is prepared in |1〉 at time t0. The probability of
finding the particle in state |1〉 according to Born rule at time t′ > t9, retaining only
terms linear in ε, is calculated using Equation (2.5) as:

P =
1

18
{1 + 2ε(2 cosω1t2 − cosω2t4 + cosω3t4 + cosω4t4)} (2.7)

For the purpose of possible experimental realization of the sequence of unitaries
on a state in six-dimensional Hilbert space, one can think of a single photon interfer-
ometer with six ports as detailed in Figure. (2.1). In this setup a single photon inside
the interferometer can be in a superposition of six non-overlapping ports forming a
six-dimensional Hilbert space. The single photon prepared in a superposition of being
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Figure 2.1: Six-port interferometer with empty dots showing the input ports and filled
dots showing the output ports. The dark square boxes are the beam-splitters (BS), the
light boxes are the time-dependent L elements and the long dark rectangle are the mirrors.
The top left corner shows the input and output ports for L and BS.
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2.3 The gedanken experiment

present in six ports at time t0 < t1 undergoes the sequence of unitaries U1, U2, · · · , U9

at moments of time t1, t2, · · · , t9 respectively. The first two zero-loss beam-splitters
(BS) having transmission and reflection coefficients of one-third and two-thirds respec-
tively act on pairs of ports-1, 3, and ports-2, 4 to generate the unitary time transforma-
tion U1 at time t1. U2 is generated by an element L1, which is also a beam-splitter but
with a time-varying reflectivity, acting on pair of port-3 and port-4. The reflectivity of
L1 is so small that the probability amplitude in either of the input ports (3 or 4) remains
unaffected but at the same time, it transfers a very tiny amplitude between the ports in
either direction as a leakage process so that it can make a contribution in providing
information about the past of the photon in the interferometer. The role of the time
dependence of L1 will become clear from the discussion that follows. The unitary U5

is generated by a phase shifter η which produces a phase shift of π in the probability
amplitude of photon in the port-6. The rest of the unitaries can be easily related to
processes presented in Figure (2.1) which are either BS or leakage processes.

As one would expect, the probability P depends on the reflectivity of the time-
dependent beam-splitters {Li} at the moments of time when the localized wave packet
of photon passes through them. Looking carefully at the experimental setup shown in
Figure (2.1), we can say t1, t2, · · · , t9 are not independent variables present in unitaries
but are dependent on the time when the photon enters the interferometer. To make the
latter point clearer we emphasize the fact that the optical path length of the photon
traveling from one optical device to another is fixed over time. In other words, one
can say that the time difference between the unitaries is fixed. Consider the optical
path length from the source to the optical device generating Uj to be lj , then one has
tj = t0 + lj/c where t0 is the time when the photon leaves the source. The time
of detection of the photon at port-1 is t′ and t′ − t0 = τ is constant across various
repetitions of the experiment. Physically it means that the photon takes τ time to travel
from source to detector each time the experiment is carried out. Using the relation
tj = t′ + (lj/c− τ), Equation (2.7) can be re-written as a function of t′ as follows:

P =
1

18
[1 + 2ε{2 cos(ω1t

′ − θ1)− cos(ω2t
′ − θ2)

+ cos(ω3t
′ − θ3) + cos(ω4t

′ − θ4)}]
(2.8)

Where θ1 = ω1(τ − l1/c), θi = ωi(τ − l4/c) for i = 2, 3, 4 depend on oscillation
frequencies of various time-varying beam splitters and the geometry (optical path-
length) of the interferometer and hence are constant phases. Further assuming the
condition ω−1

j � τ with j = 1, 2, · · · , 5 which gives θi � 1 for i = 1, 2, 3, 4;
Equation (2.8) can be simplified as:

P ≈ 1

18
[1 + 2ε(2 cosω1t

′ − cosω2t
′ + cosω3t

′ + cosω4t
′)] (2.9)
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2. Weak values cannot consistently describe the past of quantum particles

Probability P depends on the reflectivities of various Lj’s at the time when the
photon passes through them. Equations (2.8) and (2.9) are our main results. We use
Equation (2.9) in drawing operational inferences about the past of the photon. It is to be
emphasized here that these inferences can be drawn by using Equation 2.8 also to avoid
any misunderstanding regarding the approximation ω−1

j � τ , however, Equation 2.9
is simpler and more convenient to use.

Experiments with a single particle cannot reveal any information about the time
dependency of probability P , but experimental runs over ensembles with varying times
can provide information about the frequencies present in the modulated probability P .
As we describe next, the experimental realization of Equation (2.9) can be achieved
if we sample a sufficient number of photons in a time window in which the time-
dependent optical elements in the circuit do not vary appreciably.

2.3.1 Sampling protocol
The probability P can be experimentally measured by repeating the experiment a large
number of times at a certain rate. We need to have the frequencies ωi sufficiently small
so that we can measure over a sufficiently large number of particles before the time-
varying elements Li changes appreciably. Suppose at each time t = t0 + 2nτ where
n = 0, 1, 2, · · · , Ns, a particle is pre-selected which will undergo a post-selection
measurement at time t = t′ + 2nτ . Ns is the number of particles pre-selected in
one sample run. Note that not all pre-selected particles get post-selected. A particle
found in state |1〉 is counted, otherwise, it is discarded. Right after each post-selection
measurement the experimental setup is kept ready to perform pre-selection on a new
particle. The sampling time period Ts = 2τNs is the time taken to run an experiment
on a sample ofNs particles. Ns and εmust be chosen in such a way that the operational
condition ε2Ns ≈ 1 is satisfied.

As we shall see this can be easily achieved with photons. For a precise measure-
ment of modulations, the change in the number of post-selected particles in each con-
secutive sample is required to be smooth, hence 1 � Tsωi is necessary. The number
of post-selected particles in the kth sample is:

Nk =
Ns

18
+
εNs

9
[2 cos{ω1(2k − 1)

Ts
2
}

− cos{ω2(2k − 1)
Ts
2
}+ cos{ω3(2k − 1)

Ts
2
}

+ cos{ω4(2k − 1)
Ts
2
}]

(2.10)

Due to εNs � 1, the (co)sinusoidal oscillations can be observed. The Fourier analysis
of the best fit of (2.10) reveals the frequencies ωi.
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2.3 The gedanken experiment

In the case of photon: τ = l
c
, here l is the optical path-length - the distance each

photon travel from source to detector in the interferometer. The requirements for the
weakness of ε and sampling are: ε2Ns ≈ 1 and 1 � Tsωi. That gives ωi � cε2

2l
(here

we have used Ns = Ts
2τ

). For an interferometer of length one meter and ε ≈ 10−2,
ωi � 15000. The choice of ωi ≈ 100 is reasonable. For photons with well-localized
wave packets, one can increase Ns (hence decrease ε) by sending a train of photons
with a small spacing between the two successive photons into the interferometer.

2.3.2 Where was the photon?

We make use of Equation (2.9) to draw inferences about the presence of the photon
at various locations inside the interferometer. The appearance of any observable sig-
nature of a localized device in the post-selection probability is considered an indicator
of the presence of the particle at that location. In an experimental setup involving
(co)sinusoidal time-varying leakage processes Lj’s with various frequencies ωj’s, our
operational definition of the past says: it cannot be possible that the particle was not
present at the location where Li is installed if frequency ωi corresponding to device Li
is present in the modulated probability P of post-selection. Therefore, we interpret the
past using the following principle:
S-C: A quantum particle cannot carry information about a localized object without
interacting with it. In particular, if the particle is a photon inside an interferometer,
it cannot not visit the location of a localized optical device and still gain information
about it.

Let us now look at Equation (2.9) and draw valid inferences about the past of a pho-
ton inside the interferometer under discussion. Appearances of frequencies ω1, ω2, ω3,
and ω4 tell a story about the past of the photon: one cannot say with certainty that the
photon, pre- and post-selected at the entrance and exit of port-1 respectively, has not
been at anyone or more of the locations where time-varying beam-splitters L1, L2, L3

and L4 are installed.
The key result of this section to be emphasized for further use is that one cannot

claim with certainty that the photon entered the interferometer through port-1 and de-
tected at output port-1 was not present at L1 at any intermediate time. One may ask an
interesting question here, how many of the pre-and post selected particles had visited
the optical device L1? We would like to emphasize here, as a remark, that the an-
swer to this question depends on the ontological interpretation of the quantum theory.
For instance, the answer given by De Broglie–Bohm interpretation (a ψ-supplemented
ontological model [102]) differs from that given by a ψ-complete interpretation (a
quantum theory without any hidden variables). Any further discussion on this matter
is out of the reach of this article. The goal of this work is to show that WVH cannot
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2. Weak values cannot consistently describe the past of quantum particles

consistently explain the key result of this section.

2.4 TSVF analysis of the gedanken experiment
Let us now explore the predictions of the TSVF of quantum mechanics for our gedanken
experiment. In order to answer the question of whether the particle was present in at
least one box of the pair of boxes right before the leakage took place, we perform
weak measurements on both boxes. The weak traces present in the pointer state after
the post-selection will reveal the presence of the particle. For the particle pre-selected
in state |ψ〉 = |1〉 at time t0 and post-selected in the state |φ〉 = |1〉 at time t′, we
calculate the weak values of the projection operators at those boxes at the correspond-
ing times. The weak value of projection at box k (port-k of the interferometer in case
of the photon) right before time tj is written Πw

k (tj). The weak values of projections
Πk = |k〉 〈k| right before all the leakage processes come out to be:

Πw
3 (t2) = ε(2 cosω1t

′ + cosω3t
′ + cosω4t

′)

Πw
1 (t4) = 1− ε(2 cosω1t

′ + cosω3t
′ + cosω4t

′)

Πw
3 (t4) = −1 + ε(2 cosω1t

′ − cosω2t
′ + 2 cosω3t

′ + cosω4t
′ + cosω5t

′)

Πw
4 (t4) = ε cosω1t

′

Πw
5 (t4) = 1− ε(2 cosω1t

′ − cosω2t
′ + cosω3t

′ + cosω5t
′)

Πw
6 (t4) = ε cosω1t

′

Πw
4 (t7) = ε(2 cosω1t

′ + cosω3t
′ + cosω4t

′)

Πw
3 (t7) = Πw

4 (t2) = Πw
2 (t4) = 0 (2.11)
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Figure 2.2: The thick (red) and thin (blue) lines represent the forward and backward
evolving state vectors of the single photon, pre and post-selected at source S and detector
D, respectively. The solid lines represent the non-vanishing and significant probability
amplitude, dashed lines represent insignificant (order ε) probability amplitudes, and the
absence of a line represents amplitudes that are zero or proportional to higher powers of
ε. w1, w2, · · · , w10 denote weak measurement devices of corresponding projection opera-
tors.
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2. Weak values cannot consistently describe the past of quantum particles

2.4.1 Measurement of weak values

The weak values can be measured by introducing weak von Neumann-type interaction
between the system and the pointer with interaction Hamiltonian between the system
and the apparatus given by

HSA = κδ(t− t′)Â⊗ p̂ (2.12)

Where κ is the strength of the measurement, Â is the observable being measured (in
our case it is the projection operator onto a particular location) and p̂ is the pointer
momentum operator. The measurement is weak when κ � 1. After this interaction,
the displacement of the pointer state vector is proportional to the weak value of the
observable being measured. The initial state of the ancillary system is taken to be
a Gaussian with a finite width. In the case of a photon, one can use the frequency
space of the photon as a pointer and perform weak coupling using electro-optics phase
modulators (EOM) [70]. The weak interaction leads to a small shift in the center of
the Gaussian state, which is the measure of the weak trace that the photon leaves on
the ancillary system.

The experimenter in a weak measurement scenario has complete control over the
size of the pre-and post-selected ensemble, the state of the pointer, and the weak mea-
surement interaction strength; and can tune these parameters suitably so that weak val-
ues can be measured up to a desired precision. The weak nature of the measurement
implies that the effects of higher powers of coupling strength κ are not recordable ex-
perimentally. In an ideal weak measurement scenario, the choice of κ and the size of
the ensemble N should be such that Nκ2 → 1 when N → ∞. The ideal condition
N → ∞ is not feasible, therefore, the experimenter can choose κ and N < ∞ such
that Nκ2 ≈ 1 while 0 < κ� 1 in all practical scenarios.

2.4.2 Where was the photon according to TSVF?

The story told by weak values is surprisingly different. For a single photon, pre-
selected in input port-1 and post-selected in output port-1, the weak values of pro-
jection operators at locations of weak measurements w1, w2, · · · , w10 shown in Fig-
ure (2.2) are detailed in Equation (2.11). The values reveal that the presence of the
particle was of the order of 1 at w3, w5, and w7 and of the order of first or higher pow-
ers of ε at the rest of the locations. Particularly, for port-3 and port-4, between t1 and
t2, at least one of the forward and backward evolving wave functions vanishes to order
ε (see Figure (2.2) for pictorial representation). To see the contradiction between the
conclusion drawn in subsection 2.3.2 and the retrodiction of TSVF, let us consider the
following two cases:
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2.4 TSVF analysis of the gedanken experiment

Case 1: The parameter ε of the interferometer is tuned in such a way that Nε2 → 1
when N → ∞. If the experiment (as described in section 2.3) is performed on an
infinitely large ensemble (N →∞), there will be no traces of ε2 or higher orders in the
final probability but at the same time one can record deviations of the order ε. Once the
pre-and post-selected ensemble (which is defined by pre-and post-selection states and
all the unitaries including time-varying beam-splitters i) is fixed, the experimenter can
deploy weak measurement schemes to investigate the past of the photons according to
TSVF. The most optimal weak measurement setup requires Nκ2 → 1 when N →∞.
This amounts to κ2 ≈ 0 and we already have ε2 ≈ 0, therefore, we conclude that
κε ≈ 0, which implies that the weak traces corresponding to weak values of the order
ε are too small to be observed (even ideally) in this case. In other words, operational
condition, Nε2 → 1 and Nκ2 → 1 when N →∞, implies Nκε→ 1. Since the weak
values of order ε (in this case) are not experimentally measurable, according to Equa-
tion (2.11); the photon leaves weak traces only at ports 1, 3, and 5 with nonzero weak
values Πw

1 (t4),Πw
3 (t4), and Πw

5 (t4) respectively. The information about the presence
of the photon in the pair of ports 3 and 4 just before L1 is completely absent from the
weak signal, which leads us to draw a conclusion on the basis of weak value-based
operational definition of the past of a quantum particle: the photon has not been in
the vicinity of time-varying beam-splitter L1. This prediction is in direct contradiction
with our earlier conclusions based on standard quantum mechanical analysis under the
same approximations.

Case 2: Consider a case where the parameter ε of the interferometer is tuned in such
a way that Nε2 ≈ 1 for some finite N and 0 < ε � 1. Under these conditions, the
experimenter can choose arbitrarily large ensemble N ′ � N in a weak measurement
setup and can easily record weak values of order ε. Now, for time being, imagine a
situation where the experimenter chooses to perform the experiment with N systems.
Although, this is not an optimal weak measurement setup, however, one can draw cer-
tain inferences based on TSVF retrodiction using the ABL rule. As we have discussed
earlier, TSVF goes hand in hand with the ABL rule. ABL rule can be expressed in
terms of weak values, using equations (2.1) and (2.2), as:

Pt(an|ψ1, ψ2) =
|Πw

an|2∑
i |Πw

ai
|2 (2.13)

Now we ask the following question: given that the experimenter performs an experi-
ment on a finite number of systems N such that Nε2 ≈ 1, how many systems would
have been found if the box-i were opened at some intermediate time t? The answer,
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2. Weak values cannot consistently describe the past of quantum particles

according to the ABL rule, is NPt(i), where

Pt(i) =
|Πw

i (t)|2
|(I − Πi)

w(t)|2 + |Πw
i (t)|2 . (2.14)

Weak values {Πw
i (t)} presented in equation (2.11) dictate us to conclude that less than

one out ofN systems would have been found in boxes 3 and 4 at t2 (in ports 3 and 4 just
before L1) if the respective boxes were opened. This leads us further to conclude that
no photon was present in the vicinity of Li if the ensemble size was N . On the other
hand, equation (2.9) (more explicitly equation (2.10)) suggests that a given ensemble
ofN photons or a significant fraction of it (at least of order εN ) does carry information
about the time-varying element L1. In light of S-C, one can safely conclude that one
cannot claim with certainty that out of theN photons, which entered the interferometer
through port-1 and were detected at output port-1, no photons (or only at most of order
one) were present at L1.

2.5 Conclusions and Discussion
The truthfulness of S-C asserts that it cannot be the case that the photon did not pass
through L1 with certainty while S-B asserts that it did not have a passage through L1

with certainty given that the operational condition Nκ2 ≈ 1 and Nε2 ≈ 1 with N � 1
is satisfied. Even when the operational condition is not satisfied, a clear difference in
the quantitative presence of photons inside the interferometer at various locations can
be seen in both approaches. For instance, TSVF quantifies the presence of a particle
in terms of the weak value of the position projection operator, according to which the
presence of photons near L1 is much smaller than those near L2, L3 and L4; while any
possible quantification of the presence based on amplitudes of oscillating terms present
in equation (2.9) suggests that the presence of the particle near L1 should be twice of
its presences near L2, L3 and L4.

In the language of the counterfactual ABL rule, less than one (which is zero) photon
would have been detected if one had tried to detect N pre-and post-selected photons
in entrance ports of L1 indicating no presence of a photon near L1. The contradictory
conclusions inferred from two assertions imply: at least one of S-C and S-B is false.
Since S-C is based on the fact that all the interactions in nature are local and the
operational definition of the past based on weak values itself is implicitly based on
S-C, one is forced to forgo S-B. This further leads us to conclude that the S-A is false
i.e.if the weak value of a projection operator |x〉 〈x| is zero, then it is not necessary that
the particle is not present at location x. This invalidates the WVH that the weak value
of an observable is the value of that observable i.e. if the weak value is zero then the
system does not carry the corresponding property.
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Since all weak value (TSVF) paradoxes are based on the correctness and rationality
of WVH more specifically truthfulness of S-A, our results, therefore, have a bearing on
these paradoxes. As per our conclusions, the absence of certain traces in the Danan et
al. [69] experiment does not imply that the photon does not pass through those regions
taking discontinuous trajectories to reach the detector. Similarly, zero weak values of
certain observables do not imply circular polarization of a photon is separated from the
wave function in the quantum Cheshire cat paradox [73]. The same is applicable to the
weak value version of Hardy’s paradox [57].

A natural question arises: what are weak values if not properties of systems? What
do weak values tell about the properties of systems between two successive measure-
ments? A plausible answer is given by D. Sokolovski [41]: the weak value of an
observable is the transformation generated by weak measurement unitaries on the pre-
selected state which reaches the post-selection. If the observable is projection operator
|a〉 〈a| then the weak value is the relative transition amplitude of pre-selected state |ψ〉
to post-selected state |φ〉 through state |a〉.

Before concluding, we want to clarify the scope of this chapter. Our objective is
not to propose a comprehensive approach for describing a particle’s past but to provide
a counter-example to the WVH that can be experimentally validated. Therefore, the
purpose of our work is to offer empirical evidence that challenges the WVH. While our
methods have been effective, we are cautious about extending their applicability be-
yond the experimental context presented here. Although our technique has enabled us
to draw conclusions about a particle’s past, even in the presence of some interference,
it remains unclear whether it can consistently describe a quantum system’s past in the
general case. We defer further investigation of this matter, as well as the question of
whether our method could provide a more accurate account of the system’s past, to
future studies.

To summarize our analysis, we have demonstrated that TSVF and the correspond-
ing weak values (WVH) may not always yield accurate conclusions about the past of
a quantum system. Furthermore, caution must be exercised when applying the ABL
rule to analyze pre- and post-selected quantum systems and assigning probabilities
to counterfactual events. Our experiment has produced measurable probability dis-
tributions from regions of the interferometer where the TSVF claims that the photon
was never present or its presence was not detectable. Notably, our work presents a
significant point of contention with the ’weak value trace’ approach, which can be ex-
perimentally tested under the condition of ’minimal disturbance’ by retaining only the
first-order perturbations. Further research is necessary to determine the precise role
of weak traces and the circumstances in which they offer valuable insights into parti-
cle trajectories. The prospect of conducting interferometric experiments to investigate
these issues is intriguing.
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Chapter 3

Weak-value formalism for
mixed-states and quantum key
distribution

3.1 Introduction

The weak values and weak measurement formalism were initially limited to pure
states [26, 36, 42]. However, it was later extended to mixed states [103, 104, 105, 106],
leading to intriguing applications in quantum information processing tasks [49, 55].
Proponents of the two-state vector formalism consider weak values as abstract proper-
ties of a physical system describing a complete picture of the system between suc-
cessive measurements [28, 36, 106]. They go even further hypothesizing that the
weak values are elements of the reality of weak measurements [65]. The remark-
able achievements of the weak value formalism in experimental quantum mechanics
have persuaded most of quantum physicists that it is impeccable. However, we ex-
plore a scenario where the formalism of weak values for mixed states is employed in a
quantum communication protocol but discover that it generates inaccurate outcomes.
This reinforces our previous conclusion that the weak values may not be elements of
the reality of weak measurements, contrary to what the pioneers of weak values pro-
posed [100].

In a weak measurement scenario, the displacement in the pointer state is propor-
tional to the weak value of the observable being measured. Suppose, a pointer is pre-
pared in a state described by a Gaussian wave packet centered at zero in the position
basis as

ψ(x) = (2πδ2)−1/4 exp
(
−x2/4δ2

)
. (3.1)
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3. Weak-value formalism for mixed-states and quantum key distribution

The pointer then interacts with a system prepared in a mixed state ρ as per the interac-
tion unitary UBP = exp(−iγA⊗ p̂) where γ � 1, A is a system observable, and p̂ is
the momentum operator of the pointer. After the system is post-selected in state |φ〉,
the probability of finding the pointer on position x is given by

P (x) = (2πδ2)−1/2 exp

(
−(x− γ Re{〈A〉w})2

2δ2

)
, (3.2)

here, we have assumed γ2 ≈ 0 i.e. retained only the first-order terms in interaction
strength considering the measurement to be weak. The quantity 〈A〉w is the weak
value ofA for the system prepared in ρ and post-selected in |φ〉. 〈A〉w can be expressed
explicitly as (see refs. [55, 103, 106])

〈A〉w =
〈φ|Aρ |φ〉
〈φ| ρ |φ〉 . (3.3)

As we can see from Eq. (3.2) and (3.3), weak values for mixed states exhibit the same
characteristics in pointer-system interaction during weak measurements as they do in
the case of pure states, and therefore, the former appears to be a natural extension of
the latter. This is made clear by the pioneers of the field in ref. [106]. Furthermore,
the authors of ref. [106] has argued that weak values may appear as statistical averages
of the pointer displacements, but in reality, their physical significance is far beyond.
According to them, weak values are equivalent to eigenvalue outcomes of (weak) mea-
surements.

This chapter thoroughly examines the role of generalized weak values in quantum
information processing and identifies a potential flaw that, if overlooked, could result
in misleading quantum security in a quantum key distribution protocol. Moreover, we
propose a quantum state discrimination scheme that apparently can be deployed in a
quantum key distribution (QKD) protocol to reduce the quantum bit error rate. We
show that a trivial application of generalized weak values in such a QKD scenario
leads us to devise a protocol that appears legitimate and secure according to weak
value formalism, but in reality, it is not. As we will show, the misleading proof of
security stems from the weak measurement approximation assumption i.e. neglecting
the higher-order powers of the interaction strength in the calculations.

The problem of quantum state discrimination (QSD) plays an important role in
QKD protocols [107, 108, 109]. In a QKD protocol, a sender (Alice) sends a system
prepared in one of the several possible states to a receiver (Bob), or equivalently, she
can steer the state of a system at Bob’s end using nonlocal correlations. Bob’s task
is to guess the state with minimum error using local resources which boils down to
the quantum game of state discrimination. Noisy quantum channels of communication
makes information sharing vulnerable to eavesdropping [11, 110, 111]. Because of
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such a noisy channel, Bob always receives the system in a mixed state even if Alice
sends it in a pure state. This makes Bob’s task of guessing Alice’s preparation even
more difficult and non-trivial. The protocol is secure if the mutual information shared
by Alice and Bob is larger than the information leaked to a potential eavesdropper Eve
(modeled with Eve’s quantum memory) [110, 111, 112]. Security can be improved
either by limiting Eve’s knowledge by utilizing quantum information processing tasks
or by improving Alice and Bob’s correlations. The latter can be achieved by improv-
ing the state discrimination tasks on Bob’s side. The probability of successful state
discrimination in a minimum error discrimination (MED) strategy is strictly bounded
by Helstrom-Holevo bound [113, 114]. However, it appears that the concept of weak
values and weak measurements can be deployed to achieve a low error state discrimi-
nation. We deploy formalism of generalized weak values to devise a scheme for QSD
that can significantly reduce the quantum bit error rate and, hence, can the increase
correlation between Alice and Bob. This increases the noise tolerance–the maximum
allowed noise in the channel up to which the communication is proved to be secure
against collective attacks–of a protocol. Before introducing the QSD using weak val-
ues, we derive Eq. (3.3) from a purely fundamental perspective using two-state vector
formalism. Furthermore, we discuss and emphasize the fact that Eq. (3.3) is indeed a
legitimate generalization of weak values originally derived for pure states.

This chapter is arranged as follows: Section 3.2 presents a simple derivation for
generalized weak values. Section 3.3 presents our scheme of state discrimination using
weak values, and Section 3.4 describes the quantum key distribution protocol where
we have employed the state-discrimination technique using weak values. The protocol
is a modification of the six-state protocol [97]. In our protocol, the receiver (Bob)
utilizes a weak value-based state discrimination strategy to guess the sender’s (Alice)
bit. Section 3.5 defines the security criteria for the protocol. In Section 3.6, we analyze
the security of the protocol assuming weak measurement approximation (WMA) that
the higher powers of interaction strength are negligible and can be avoided. We would
like to emphasize the fact that it is the WMA because of which the displacements in the
pointer state are linearly proportional to weak values. Indirectly, by assuming WMA
we are accepting that the weak values truly describe elements of the reality of weak
measurements. We derive expressions for joint probability distributions of Alice and
Bob and estimate the quantum memory of the eavesdropper under the assumption of
depolarizing quantum communication channel. We show that the use of weak values
gives a higher noise tolerance in the six-state protocol (SSP). Section 3.7 presents a
security analysis of the protocol without applying weak measurement approximation.
Here, we show that the protocol gives no advantage over the original six-state protocol
when all powers of interaction strength are retained during the key-rate calculation. In
Section 3.8, we discuss the main results and their implications.
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3. Weak-value formalism for mixed-states and quantum key distribution

3.2 Weak value formalism for mixed states
Here, we present a derivation of weak values for mixed states using the formalism of
weak values for pure states. Weak value of an observable A for a system pre-selected
in state |ψ〉 and post-selected in the state |φ〉 is given by [26]

〈A〉w =
〈φ|A |ψ〉
〈φ|ψ〉 . (3.4)

Now, instead of pre-selection in the pure state |ψ〉, let us consider the case where the
system is prepared in a mixed state ρ =

∑
i pi |ψi〉〈ψi| and post-selected in the state

|φ〉. The purification of ρ, denoted by |Ψ〉, can be given by introducing an ancillary
system with eigenvectors {ei}, as

|Ψ〉 =
∑
i

√
pi |ψi〉 ⊗ |ei〉 (3.5)

The preparation of the system in ρ is physically equivalent to the pre-selection in the
composite state |Ψ〉 of the system and the ancilla. The post-selection of the system in
|φ〉 is equivalent to performing a post-selection measurement Mpost, given by

Mpost = {|φ〉〈φ| ⊗ 1,1⊗ 1− |φ〉〈φ| ⊗ 1}, (3.6)

on the combined system and selecting outcomes corresponding to the projection |φ〉〈φ|⊗
1. The combined state of the system plus ancilla after the post-selection is given by

|Φ〉 = N |φ〉 ⊗
∑
i

√
pi 〈φ|ψi〉 |ei〉 , (3.7)

where N is a normalization factor. Since the combined system is pre-and post-selected
in pure states, the weak value ofA can be calculated as

〈A〉w =
〈Φ|A⊗ 1 |Ψ〉
〈Φ|Ψ〉 . (3.8)

Using Eqs. (3.5) and (3.7),

〈A〉w =
〈φ| ⊗∑i

√
pi 〈ψi|φ〉 〈ei|

∑
j

√
pjA |ψj〉 ⊗ |ej〉

〈φ| ⊗∑i

√
pi 〈ψi|φ〉 〈ei|

∑
j

√
pj |ψj〉 ⊗ |ej〉

=

∑
i pi 〈ψi|φ〉 〈φ|A |ψi〉∑
i pi 〈ψi|φ〉 〈φ|ψi〉

=
〈φ|Aρ |φ〉
〈φ| ρ |φ〉 .

(3.9)
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The interesting thing about our derivation of the generalized weak values is that it is
derived without considering specifications of the pointer state, weak measurements, or
using rigorous mathematics of the density matrix formalism. We have only used the
two-state vector formalism that asserts that the physical properties of a system between
two successive measurements are represented by Eq. (3.4). Therefore, Eq. (3.3) is a
legitimate generalization of Eq. (3.4) and all implications of two state vector formalism
should be applicable to mixed states also. Similar has been argued by the authors of
ref. [106].

3.3 State discrimination using weak values
There are two major approaches for state discrimination: (1) minimum error discrimi-
nation (MED), where states are distinguished with a non-zero error, and (2) unambigu-
ous discrimination (UD) in which the setup can distinguish input states with zero error
but can sometimes give inconclusive answers [108, 109]. There can also be a mixture
of these two strategies such that the setup discriminates input states with non-zero error
and also gives inconclusive answers with some non-zero probability. In such a strategy
error probability below Helstrom-Holevo bound can be achieved.

Let us now consider an example where Bob is given a task to distinguish between
two Gaussian wavefunctions prepared with equal a prior probability,

ψ+(x) = (2πδ2)−1/4 exp

(
−(x− ε)2

4δ2

)
ψ−(x) = (2πδ2)−1/4 exp

(
−(x+ ε)2

4δ2

) (3.10)

The minimum error in MED for uniform a prior probability is given by [109, 113, 114]

Perr =
1

2

(
1−

√
1− | 〈ψ+|ψ−〉 |2

)
(3.11)

Since, 〈ψ+|ψ−〉 =
∫∞
−∞ ψ

∗
+(x)ψ−(x)dx = exp(−ε2/2δ2), we have

Perr =
1

2

(
1−

√
1− exp(−ε2/δ2)

)
(3.12)

Now, assume that the states given to Bob are very close to each other i.e. ε/δ �
1. In this case, Perr ≈ 1

2
(1 − ε/δ) meaning Bob can only discriminate the given

states with the probability of order ε/δ � 1 using the MED strategy. Let us now
introduce a scheme to distinguish states with higher success probability, but with a
cost of inconclusive results. Bob performs measurement on the particle in the position
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Figure 3.1: Perr is plotted as a function of α for ε/δ2 = 0.1

basis x. If the particle is found at x = α, the state is considered to be |ψ+〉, and if
it is found at x = −α, the state is guessed to be |ψ−〉 where α > 0. The result is
inconclusive if the particle is found in any other place. Bob’s action can be modeled
mathematically by a measurement setting M ≡ {Π+,Π−,Π?} acting on the particle
where Π+ = |α〉〈α|, Π− = |−α〉〈−α|, and Π? = 1 − Π+ − Π−. Note that outcomes
corresponding to Π+, Π−, and Π? correspond to |ψ+〉, |ψ−〉, and inconclusive results,
respectively. The probability of incorrect identification of the state conditioned on
conclusive results can be evaluated as

Perr =
〈ψ+|Π− |ψ+〉+ 〈ψ−|Π+ |ψ−〉

〈ψ+|Π− |ψ+〉+ 〈ψ−|Π+ |ψ−〉+ 〈ψ−|Π− |ψ−〉+ 〈ψ+|Π+ |ψ+〉

=
exp(−(α + ε)2/2δ2)

exp(−(α + ε)2/2δ2) + exp(−(α− ε)2/2δ2)

=
1

1 + exp
(

2αε
δ2

)
(3.13)

As we can see in Figure 3.1, Perr decreases as α is increased for some constant
ε/δ2. In fact, we can achieve arbitrary low error in state discrimination for given |ψ+〉
and |ψ−〉 but at a cost of increased probability of inconclusive results.

Applied with weak measurements, the above strategy can be used to discriminate
states in Hilbert spaces of discrete dimensions. Suppose Bob is asked to discriminate
between two states |φ1〉 and |φ2〉 in Hilbert space H of dimension d. Bob performs
weak measurement of some observable A of the given system using a pointer state
prepared in the Gaussian state ψ(x) = (2πδ2)−1/4 exp(−x2/4δ2) followed by post-
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3.3 State discrimination using weak values

selection of the system in some state |φ〉. With a suitable choice of interaction, the
pointer state transforms into

ψi(x) = (2πδ2)−1/4 exp

(
−(x− γ Re{〈A〉wi })2

4δ2

)
(3.14)

where i ∈ {1, 2} and γ � 1 is a quantification of interaction strength. 〈A〉wi is the
corresponding weak value given by

〈A〉wi =
〈φ|A |φi〉
〈φ|φi〉

(3.15)

It is easy to verify that Bob can always choose A and |φ〉 in such a manner that
Re{〈A〉w1 } = β and Re{〈A〉w2 } = −β for some β ≥ 0. Bob’s action can be mod-
eled by a quantum map B(·) that transforms |φi〉 into ψi(x) i.e. B(|φi〉) = ψi(x). Bob
can now use the state discrimination strategy described above to discriminate between
ψ1(x) and ψ2(x) which is equivalent to discriminating |φ1〉 and |φ2〉. The use of weak
values in our approach makes mixed-state discrimination promising, which is other-
wise a non-trivial and mathematically difficult problem. Suppose, Bob is given a copy
of two of possible mixed states ρ1 and ρ2. Similar to the pure-state case, Bob can al-
ways find a suitable post-selection state and an observable A such that the pointer state
ψ(x) transforms to corresponding ψi(x).

In a prepare-and-measure QKD protocol, Alice prepares a system in any of two
pure states say |0〉 and |1〉 or in |+〉 and |−〉 with equal probability (as in BB84 proto-
col [10]), and sends it to Bob. Assuming the channel to be depolarizing, the sent state
|ψ〉 ∈ {|0〉 , |1〉 , |+〉 , |−〉} transforms to ρψ = (1−2η) |ψ〉〈ψ|+η1, where η ∈ [0, 1/2]
is the channel noise. After guessing the correct basis, Bob applies a strategy to discrim-
inate between ρ0 and ρ1 (or between ρ+ and ρ−) for raw key generation. In BB84, Bob
just measures the system in a correctly guessed preparation basis and generates the
key bit with a quantum bit error rate (QBER) equal to η. In security proofs against
collective attacks, the depolarizing noise η is attributed to the potential eavesdropping
by Eve [2, 95, 96]. From now on, in this and the subsequent chapters, the term ‘noise-
tolerance’ is used to mean ‘tolerance of the higher QBER’. Corresponding to every
QKD protocol, there is maximally tolerated channel noise ηtol above which the proto-
col is considered to be insecure. The noise tolerance of BB84 against collective attack
is ≈ 11%, while the six-state protocol [97] has a tolerance of ≈ 12.62% [11, 111].

In this chapter, first, we present a QKD protocol where Bob (the receiver) applies
the above-presented quantum state discrimination strategy using weak values for mixed
states. Assuming Eq. (3.3) to be a valid expression for the weak values for mixed states,
and assuming the first-order approximation of weak measurements, we show that such
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3. Weak-value formalism for mixed-states and quantum key distribution

a QKD protocol can guarantee a secure key rate at an arbitrary high level of eavesdrop-
ping i.e. at an arbitrary high ηtol. We present an information theoretic security proof
of the protocol against collective attacks while assuming the weak measurement ap-
proximation (WMA) in which higher order terms in system-pointer interaction unitary
are neglected. WMA is at the center of weak measurement methodology and has been
validated by various experimental demonstrations [42, 43, 49, 54]. Moreover, WMA
has played an important role in studies of various quantum paradoxes and phenomena
[45, 46, 48, 61, 62, 69, 74]. We then re-analyze the security of the protocol without
assuming WMA i.e. retaining all terms in system-pointer interaction unitary. We find
that the protocol does not show tolerance against arbitrary high noise levels as it ap-
pears in WMA analysis. Furthermore, it is observed that the noise tolerance is in fact
not better than BB84 or six-state protocols. Our results teach us non-trivial aspects of
WMA and weak values for mixed states. Contrary to what it is generally understood,
the use of weak values and weak measurements can mislead into completely wrong
conclusions and predictions.

3.4 QKD Protocol using weak values

Alice prepares an entangled qubit pair in state |Φ+〉 = 1√
2

(|00〉+ |11〉) and sends
one of the qubits to Bob via a quantum channel E(·) while keeping the other in her
lab protected from any adversarial access. This step is repeated N number of times,
where N is asymptotically large. For simplicity, we assume both parties have quantum
memories and measurements can be postponed to the end of the state sharing step. The
protocol can easily be generalized to memoryless scenarios as well.

Both parties then, agreeing over an authenticated classical communication (ACC),
divide the shared pairs into two parts where one is used for parameter estimation and
the second for raw key generation. The choice of whether a pair is used for parameter
estimation or key generation is completely random and made after the completion of
the successful sharing of systems.

Alice and Bob then use measurement settings of the six-state protocol to estimate
the channel noise as a (set of) parameter(s). More specifically, they randomly measure
Pauli operators σx, σy, and σz and estimate errors εx, εy, and εz, where εi = P (ai 6= bi)
is the probability of getting different outcomes when both parties measure the same
operator σi, ∀i ∈ {x, y, z}. For depolarizing channels, εx = εy = εz = η is the
measure of channel noise. If η ≥ ηtol, for some 0 ≤ ηtol ≤ 1/2, they abort the
protocol, else they continue to raw key generation from the remaining set of pairs.

Alice and Bob then execute the following steps to generate their raw keys X and
Y , respectively, from the remaining set of pairs:
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1: Bob prepares an ancillary system, we call it pointer here, in state |ξ〉 specified
by a Gaussian wave function ξ(x) = (2πδ2)−1/4 exp(−x2/4δ2) in position basis.
He then applies the unitary UBP = exp(−iγσz ⊗ p̂) on the combined state of his
qubit and the pointer such that γ2/δ2 � 1 where p̂ is the momentum operator of
the pointer.

2: Alice performs measurement of the observable σz on her qubit and records bi-
nary outcomes as 0 and 1 corresponding to eigenvalues +1 and−1, respectively.

3: Bob then post-selects his qubit in the state |+〉 = 1√
2

(|0〉+ |1〉). The rest of
the rounds, i.e. corresponding to Bob’s outcome |−〉 = 1√

2
(|0〉 − |1〉) in post-

selection measurement, are discarded after agreeing over ACC.

4: Thereafter, Bob performs measurement M ≡ {Π0,Π1,Π?} on pointer where
Π0 = |α〉〈α|, Π1 = |−α〉〈−α|, and Π? = 1− Π0 − Π1 for some α ≥ 0. Rounds
corresponding to Bob’s outcome Π? are discarded after agreeing over ACC. Bob
stores outcomes corresponding to Π0 and Π1 as 0 and 1, respectively, and keeps
them secret and protected from any adversarial access. This is Bob’s raw key.

Alice and Bob now have partially secure and non-identical bit strings X and Y
(raw keys), respectively, of equal length. They then proceed to perform classical error
correction (EC) and privacy amplification (PA) on their raw keys to extract fully secure
and completely identical keys.

3.5 Security definition

We consider security against collective attacks where the same measurement strategy
is applied on independent and identically distributed (i.i.d.) quantum states and devices
during every round of the protocol. Similarly, Eve can also extract information from
the quantum channel by interacting with shared systems identically and independently
in all rounds. Eve is always allowed to have quantum memory and can postpone her
measurements to the end of classical post-processing i.e. EC and PA.

Let HA, HB, HE , and HP be Hilbert spaces of Alice’s system, Bob’s system,
Eve’s quantum memory, and Bob’s pointer, respectively. In each round, Alice and
Bob share a bipartite state ρAB = E(|Φ+〉〈Φ+|). Any noise introduced by channel
E(·) is attributed to Eve’s attempt of eavesdropping and thus the purification of ρAB
is described by a tripartite state |Ψ〉ABE distributed among Alice, Bob, and Eve. The
combined state, including Bob’s pointer, can be expressed (with respect to Bell basis
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in HA ⊗HB) as

|Ψ〉ABEP =
4∑
i=1

√
λi |Φi〉AB ⊗ |νi〉E ⊗ |ξ〉P (3.16)

where |Φ1〉AB , |Φ2〉AB , |Φ3〉AB , |Φ4〉AB are Bell states |Φ+〉, |Φ−〉, |Ψ+〉, and |Ψ−〉,
respectively, in HA⊗HB and {|νi〉} denotes a set of orthogonal states forming a basis
in Eve’s state space HE .

Now, suppose that Alice and Bob prepare a bipartite system in the state |Φi〉 and
post-select in |ψa〉 = |a〉 ⊗ |+〉 where a ∈ {0, 1}, after weak measurement of the
observable σ = 1 ⊗ σz using interaction unitary UBP . This generates a translation in
the pointer state proportional to the weak value

〈σai 〉w =
〈ψa|σ |Φi〉
〈ψa|Φi〉

. (3.17)

If the initial wave function of the pointer is ξ(x), the wave function after the post-
selection event can be written as

ξai (x) = (2πδ2)−1/4 exp

(
−(x− γ Re{〈σai 〉w})2

4δ2

)
, (3.18)

for ∀a ∈ {0, 1}. Using Eq. (3.18), the joint state of Alice’s register, Eve’s memory,
and Bob’s pointer after the post-selection event (and tracing out Bob’s qubit) is given
by

ρ′AEP =
1

2

∑
a∈{0,1}

|a〉〈a|A ⊗ |χa〉〈χa|EP (3.19)

where

|χa〉EP = 2
4∑
i=1

〈ψa|Φi〉
√
λi |νi〉E ⊗ |ξai 〉P (3.20)

with |ξai 〉P denoting the state of the pointer specified by wave function ξai (x). Bob then
measures the pointer in the position basis.The state after this is described by

ρ′′AEP =
1

2

∑
a∈{0,1}

|a〉〈a|A ⊗
∫ +∞

−∞
Pa(x)ρaE(x)⊗ |x〉〈x| dx. (3.21)

Here, normalized state ρaE(x) denotes Eve’s memory corresponding to Alice’s outcome
a when the pointer collapses to position eigen state |x〉, and

Pa(x) = (2πδ2)−1/2 exp

(
−(x− γ Re{〈σa〉w})2

2δ2

)
(3.22)
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denotes the probability of finding the pointer at position x conditioned on the event
that Alice gets outcome a, where

〈σa〉w =
〈ψa|σρAB |ψa〉
〈ψa| ρAB |ψa〉

(3.23)

is the weak value of σ for the pair prepared in mixed state ρAB and post-selected in
|ψa〉 (given according to Eq. 3.3).

Let P̃ (a, 0) = Pa(α) and P̃ (a, 1) = Pa(−α),∀a ∈ {0, 1}, and

P̃ =
∑

a,b∈{0,1}
P̃ (a, b). (3.24)

Then, the ccq-state describing raw key registers of Alice and Bob, and correspond-
ing Eve’s quantum memory, given that Alice and Bob discard rounds when Bob gets
outcome Π? in measurement M, is expressed as

ρABE =
∑

a,b∈{0,1}
P (a, b) |a〉〈a|A ⊗ |b〉〈b|B ⊗ ρa,bE . (3.25)

Here |b〉〈b|B denotes the state of Bob’s key bit when he gets outcome Πb∈{0,1}. The
joint probability distribution P (a, b) is calculated as P (a, b) = P̃ (a, b)/P̃ , ∀a, b ∈
{0, 1}. The state of Eve’s memory conditioned on Alice’s and Bob’s key bits is given
by

ρa,bE = ρaE((−1)bα),∀a ∈ {0, 1} (3.26)

Note that Tr
(
ρa,bE

)
= 1, ∀a, b ∈ {0, 1}.

The correlation between the raw keys of Alice and Bob is quantified using the
mutual information I(A : B) with the joint probability distribution P (a, b), and the
mutual information between Alice and Eve is upper bounded by the Holevo quantity

χ(A : E) = S(ΩE)− 1

2

(
S(Ω0

E) + S(Ω1
E)
)
, (3.27)

where S denotes von Neumann entropy, the state

Ωa
E =

P (a, 0)ρa,0E + P (a, 1)ρa,1E
P (a, 0) + P (a, 1)

(3.28)

represents Eve’s quantum memory corresponding to Alice’s bit a, and ΩE = (Ω0
E + Ω1

E) /2
is Eve’s partial state. The secret key rate r in asymptotic limit with one-way optimal
error correction is lower bounded with Devetak-Winter rate [112],

r ≥ `DW = Ω [I(A : B)− χ(A : E)] (3.29)

where Ω is the post-selection probability. The protocol is secure when r > 0. The
tolerable noise for secure protocol is then upper bounded by

ηtol = max{η|η ∈ [0, 1/2], `DW > 0}. (3.30)
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3.6 Security analysis with weak measurement approxi-
mation

Here we present a mathematical model of the proposed QKD protocol. Moreover, we
will derive the classical-classical-quantum (ccq) state of raw key bits held by Alice
and Bob, and the corresponding quantum memory of any potential adversary Eve.
Since we are only considering the asymptotic case under collective attack with i.i.d.
assumption, a mathematical description of only individual rounds is required at the end
for the security analysis.

3.6.1 Quantum inputs and measurements

Two parties, Alice and Bob, share an entangled pair of qubits. Qubits are initially
prepared in the Bell state |Φ+〉 = 1√

2
(|00〉+ |11〉) and then distributed to them over a

quantum channel E(·). which can introduce noise to the system transforming the pure
state into a mixed state,

ρAB = E
(∣∣Φ+

〉〈
Φ+
∣∣) (3.31)

In collective attacks, any noise introduced by the quantum channel is attributed to
the potential adversary Eve. A purification ρABE = |ΨABE〉〈ΨABE| of ρAB is used to
describe the tripartite quantum state of Alice, Bob, and Eve’s quantum memory. Bob
then prepares an ancillary system (pointer) in state |ξ〉 with Gaussian wave function
in the position basis centered at zero. The combined state is denoted |Ψ〉ABEP ∈
HA ⊗HB ⊗HP ⊗HE . With respect to Bell Basis in HA ⊗HB, we write

|Ψ〉ABPE =
4∑
i=1

√
λi |Φi〉AB ⊗ |ξ〉P ⊗ |νi〉E (3.32)

where

|Φ〉1 =
1√
2

(|00〉+ |11〉) ,

|Φ〉2 =
1√
2

(|00〉 − |11〉) ,

|Φ〉3 =
1√
2

(|01〉+ |10〉) ,

|Φ〉4 =
1√
2

(|01〉 − |10〉)

(3.33)
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State after Bob’s pre-measurement unitary UBP ,

|Ψ′〉 = UBP |Ψ〉ABPE

=
4∑
i=1

√
λiUBP (|Φi〉AB ⊗ |ξ〉P )⊗ |νi〉E

=
4∑
i=1

√
λi

[
|Φi〉AB ⊗ |ξ〉P − iγσ |Φi〉AB ⊗ p̂ |ξ〉P + O(γ2)

]
⊗ |νi〉E

(3.34)

Since measurements by Alice and Bob are performed on different systems, their
measurement operators commute. Consequently, the combined effect of the post-
selection of Bob’s qubit in state |+〉 followed by Alice’s measurement

MA ≡ {|0〉〈0| , |1〉〈1|}

on her qubit can be represented by

M(·) =

∑
a∈{0,1}Ka(·)K†a

Tr
{∑

a∈{0,1}Ka(·)K†a
} , (3.35)

where Ka = |a〉〈a|A ⊗ |+〉〈+|B ⊗ 1P ⊗ 1E .
Let |ψa〉 = |a〉 ⊗ |+〉, then

Ka |Ψ′〉 =
4∑
i=1

√
λi

[
|Φi〉AB ⊗ |ξ〉P − iγσ |Φi〉AB ⊗ p̂ |ξ〉P + O(γ2)

]
⊗ |νi〉E

=
4∑
i=1

√
λi |ψa〉AB ⊗

[
〈ψa|Φi〉 |ξ〉P − iγ 〈ψa|σ |Φi〉 p̂ |ξ〉P + O(γ2)

]
⊗ |νi〉E

=
4∑
i=1

〈ψa|Φi〉
√
λi |ψa〉AB ⊗

[
|ξ〉P − iγ

〈ψa|σ |Φi〉
〈ψa|Φi〉

p̂ |ξ〉P + O(γ2)
]
⊗ |νi〉E

=
4∑
i=1

〈ψa|Φi〉
√
λi |ψa〉AB ⊗

[
|ξ〉P − iγ〈σai 〉wp̂ |ξ〉P + O(γ2)

]
⊗ |νi〉E

= |ψa〉AB ⊗
4∑
i=1

〈ψa|Φi〉
√
λi |ξai 〉P ⊗ |νi〉E

(3.36)
Where we have used notation 〈σai 〉w = 〈ψa|σ |Φi〉 / 〈ψa|Φi〉 and

|ξai 〉P = |ξ〉P − iγ〈σai 〉wp̂ |ξ〉P + O(γ2) (3.37)
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3. Weak-value formalism for mixed-states and quantum key distribution

Note that 〈Φi |ψa〉〈ψa|Φi〉 = 1/4, ∀a ∈ {0, 1}, i ∈ {1, 2, 3, 4}; and therefore we have
Tr
{
Ka |Ψ′〉〈Ψ′|K†a

}
= 〈Ψ′|Ka |Ψ′〉 = 1/4. Consequently,

Tr

 ∑
a∈{0,1}

Ka |Ψ′〉〈Ψ′|K†a

 = 1/2,

and

M (|Ψ′〉〈Ψ′|ABPE) =
1

2

∑
a∈{0,1}

|ψa〉〈ψa|AB ⊗ |χa〉〈χa|PE (3.38)

where

|χa〉PE = 2
4∑
i=1

〈ψa|Φi〉
√
λi |ξai 〉P ⊗ |νi〉E (3.39)

is a normalized joint state of the pointer and Eve’s memory. The joint state of Alice’s
qubit, (Bob’s) pointer, and Eve’s memory after operation M(·) and tracing out Bob’s
qubit (since it has been post-selected in |+〉), is given by

ρ′APE =
1

2

∑
a∈{0,1}

|a〉〈a|A ⊗ |χa〉〈χa|PE (3.40)

Measurement on the pointer in position basis is modeled by a completely positive
trace preserving (CPTP) map

X(·) =

∫ +∞

−∞

(
1A ⊗ |x〉〈x|P ⊗ 1E

)
(·)
(
1A ⊗ |x〉〈x|P ⊗ 1E

)†
dx. (3.41)

Therefore, the state after measurement on the pointer is

ρ′′APE =
1

2

∑
a∈{0,1}

|a〉〈a|A ⊗
∫ +∞

−∞

(
|x〉〈x|P ⊗ 1E

)
|χa〉〈χa|PE

(
|x〉〈x|P ⊗ 1E

)†
dx

(3.42)
Using Eq. (3.39),

|x〉〈x|P ⊗ 1E |χa〉PE = 2
4∑
i=1

√
λi 〈ψa|Φi〉 〈x|ξai 〉 |x〉P ⊗ |νi〉E (3.43)

That gives

ρx =
(
|x〉〈x|P ⊗ 1E

)
|χa〉〈χa|PE

(
|x〉〈x|P ⊗ 1E

)†
= |x〉〈x|E ⊗

(
4

4∑
i=1

4∑
j=1

√
λiλj 〈ψa|Φi〉 〈Φj|ψa〉 〈x|ξai 〉

〈
ξaj
∣∣x〉 |νi〉〈νj|E )

= |x〉〈x|P ⊗ ρ̃aE(x)

(3.44)
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3.6 Security analysis with weak measurement approximation

Note that ρ̃aE(x) is un-normalized. Let

Pa(x) = Tr

{(
|x〉〈x|P ⊗ 1E

)
|χa〉〈χa|PE

(
|x〉〈x|P ⊗ 1E

)†}
and ρaE(x) = ρ̃aE(x)/Pa(x) ∀a ∈ {0, 1}. Here state ρaE(x) is normalized i.e. Tr{ρaE(x)} =
1. Now, we can re-write Eq. (3.42) as

ρ′′APE =
1

2

∑
a∈{0,1}

|a〉〈a|A ⊗
∫ +∞

−∞
Pa(x) |x〉〈x|P ⊗ ρaE(x)dx (3.45)

Bob then registers his key bit as b = 0 if measurement on the pointer gives outcome
x = α, and b = 1 if it gives outcome x = −α for some α > 0. Else, Bob discards
the round and broadcast it to Alice so that she can also discard the corresponding
bit. This action can be modeled by a CPTP map BP→B(·) followed by a projection
Π = |0〉〈0|B + |1〉〈1|B. Map BP→B(·) is specified as,

BP→B(|x〉〈x|) =


|0〉〈0| if x = α
|1〉〈1| if x = −α
|∅〉〈∅| else

(3.46)

where {|i〉}i∈{0,1,∅} forms a set of orthogonal states. Consequently, we have

Ω′ABE = BP→B(ρ′′APE)

=
1

2

∑
a∈{0,1}

|a〉〈a|A ⊗
[
|0〉〈0|B ⊗ Pa(α)ρaE(α)

+ |1〉〈1|B ⊗ Pa(−α)ρaE(−α) + |∅〉〈∅|B ⊗
∫
x/∈{α,−α}

Pa(x)ρaE(x)dx
] (3.47)

After applying Π i.e. discarding rounds corresponding to |∅〉〈∅|B,

Ω′′ABE = ΠΩ′ABEΠ†

=
1

2

∑
a∈{0,1}

|a〉〈a|A ⊗
[
|0〉〈0|B ⊗ Pa(α)ρaE(α) + |1〉〈1|B ⊗ Pa(−α)ρaE(−α)

]
=

1

2

∑
a∈{0,1}

|a〉〈a|A ⊗
[
P̃ (a, 0) |0〉〈0|B ⊗ ρa,0E + P̃ (a, 1) |1〉〈1|B ⊗ ρa,1E

]
=

1

2

∑
a,b∈{0,1}

P̃ (a, b) |a〉〈a|A ⊗ |b〉〈b|B ⊗ ρa,bE .

(3.48)
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3. Weak-value formalism for mixed-states and quantum key distribution

where we have used notations P̃ (a, 0) = Pa(α), P̃ (a, 1) = Pa(−α), ρa,0E = ρaE(α),
ρa,1E = ρaE(−α). Note that ρa,bE is a normalized state of Eve’s memory correspond-
ing to the bit pair (a, b) of Alice and Bob. The state Ω′′ABE , given in Eq. (3.48), is
not yet normalized. Let us denote the corresponding normalized state by ΩABE =
Ω′′ABE/Tr{Ω′′ABE}, then with the notation,

P (a, b) =
P̃ (a, b)∑

a,b∈{0,1} P̃ (a, b)
(3.49)

we have
ΩABE =

∑
a,b∈{0,1}

P (a, b) |a〉〈a|A ⊗ |b〉〈b|B ⊗ ρa,bE . (3.50)

3.6.2 Joint probability distribution of Alice and Bob

In Eq. (3.50), P (a, b) denotes the joint probability distribution of raw key bits a and b
of Alice and Bob, respectively. P (a, b) can be numerically computed if the expression
for Pa(x) is known ∀a ∈ {0, 1}. Here we derive the expression for Pa(x). We have

Pa(x) = Tr

{(
|x〉〈x|P ⊗ 1E

)
|χa〉〈χa|PE

(
|x〉〈x|P ⊗ 1E

)†}
= 4

4∑
i=1

λi 〈ψa|Φi〉 〈Φi|ψa〉 〈x|ξai 〉 〈ξai |x〉

= 4
4∑
i=1

λi‖ 〈ψa|Φi〉 ξai (x)‖2,

(3.51)

we have used Eq. (3.39) here. Let us now evaluate an expression for ξai (x) = 〈x|ξai 〉.
We have

|ξai 〉 =
(
1− iγ〈σai 〉wp̂+ O(γ2)

)∫ +∞

−∞
|x〉 〈x|ξ〉 dx

≈
∫ +∞

−∞
exp(−iγ〈σai 〉wp̂) |x〉 〈x|ξ〉 dx

=

∫ +∞

−∞
|x+ γ Re{〈σai 〉w}〉 〈x|ξ〉 dx,

(3.52)

Using 〈x|ξ〉 = ξai (x) = (2πδ2)−1/4 exp (−x2/4δ2), we have

ξai (x) ≈ (2πδ2)−1/4 exp

(
−(x− γ Re{〈σai 〉w})2

4δ2

)
. (3.53)
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3.6 Security analysis with weak measurement approximation

Assuming γ2/δ2 � 1, Eq. (3.51) can be re-written as

Pa(x) = 4(2πδ2)−1/2

4∑
i=1

λi‖ 〈ψa|Φi〉 ‖2 exp

(
−(x− γ Re{〈σai 〉w})2

2δ2

)

≈ 4(2πδ2)−1/2

4∑
i=1

λi‖ 〈ψa|Φi〉 ‖2 exp

(
− x2

2δ2

)
exp

(
γ Re{〈σai 〉w}

δ2
x

)

= 4‖ξ(x)‖2

4∑
i=1

λi‖ 〈ψa|Φi〉 ‖2
(

1 +
γ

δ2
Re{〈σai 〉w}x+ O(γ2)

)
= 4‖ξ(x)‖2

4∑
i=1

λi‖ 〈ψa|Φi〉 ‖2

(
1 +

γ

δ2
Re

{∑4
i=1 λi‖ 〈ψa|Φi〉 ‖2〈σai 〉w∑4

i=1 λi‖ 〈ψa|Φi〉 ‖2

}
x+ O(γ2)

)
(3.54)

Note that
4∑
i=1

λi‖ 〈ψa|Φi〉 ‖2 = 〈ψa| ρAB |ψa〉

and
4∑
i=1

λi‖ 〈ψa|Φi〉 ‖2〈σai 〉w = 〈ψa|σρAB |ψa〉 .

Now, let 〈σa〉w = 〈ψa|σρAB |ψa〉 / 〈ψa| ρAB |ψa〉, then

Pa(x) = 4‖ξ(x)‖2

4∑
i=1

λi‖ 〈ψa|Φi〉 ‖2
(

1 +
γ

δ2
Re{〈σa〉w}x+ O(γ2)

)
≈ 4(2πδ2)−1/2 exp

(
−(x− γ Re{〈σa〉w})2

2δ2

)
4∑
i=1

λi‖ 〈ψa|Φi〉 ‖2

(3.55)

Since ‖ 〈ψa|Φi〉 ‖ = 1/4, ∀a ∈ {0, 1} and i ∈ {1, 2, 3, 4}, we have

Pa(x) = (2πδ2)−1/2 exp

(
−(x− γ Re{〈σa〉w})2

2δ2

)
. (3.56)

3.6.3 Joint probability distribution for depolarizing channels
Here we evaluate an expression for the joint probability distribution of Alice and Bob
under the usual assumption of depolarizing quantum communication channel E(·).
More specifically, we give expressions for weak values 〈σa〉w ∀a ∈ {0, 1} and cor-
responding Pa(x). If E(·) is a depolarizing channel, we have λ1 = 1 − 3η/2, and
λ2 = λ3 = λ4 = η/2, where η = εx = εy = εz, specified in the main text, is the
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3. Weak-value formalism for mixed-states and quantum key distribution

parameter quantifying channel noise. Therefore, ρAB = (1− 2η) |Φ1〉〈Φ1|AB + η
2
1AB

and consequently, we have

〈σa〉w =
〈ψa|σρAB |ψa〉
〈ψa| ρAB |ψa〉

=
(1− 2η) 〈ψa|σ |Φ1〉〈Φ1|ψa〉+ η

2
〈ψa|σ |ψa〉

(1− 2η)〈ψa |Φ1〉〈Φ1|ψa〉+ η
2

.

(3.57)

Since, 〈ψa|σ |ψa〉 = 0 and 〈ψa |Φ1〉〈Φ1|ψa〉 = 1/4 for a ∈ {0, 1}, and 〈σai 〉w =
〈ψa|σ |Φi〉 / 〈ψa|Φi〉, we can write

〈σa〉w =
〈σa1〉w

1 + 2η
1−2η

. (3.58)

Note that 〈σa1〉w = (−1)a, ∀a ∈ {0, 1}. Hence,

〈σa〉w = (−1)a(1− 2η) (3.59)

In light of Eq. (3.59), we can re-write Eq. (3.56) as

Pa(x) = (2πδ2)−1/2 exp

(
−(x− (−1)a(1− 2η)γ)2

2δ2

)
. (3.60)

Using Eq. (3.60), P̃ (a, b) can be expressed as

P̃ (0, 0) = P̃ (1, 1) = (2πδ2)−1/2 exp

(
−(α− (1− 2η)γ)2

2δ2

)
,

P̃ (0, 1) = P̃ (1, 0) = (2πδ2)−1/2 exp

(
−(α + (1− 2η)γ)2

2δ2

)
,

(3.61)

Using Eq. (3.49), we can write joint probability distributions of Alice and Bob as

P (a, b) =


1

2(1+exp(− 2(1−2η)γα

δ2
))

if a = b

1

2(1+exp( 2(1−2η)γα

δ2
))

if a 6= b
(3.62)

Therefore, the raw key-bit error rate Q = P (a 6= b) = P (0, 1) + P (1, 0), i.e. the
probability that both parties guess different key bits, is given by

Q =
1(

1 + exp
(

2(1−2η)γα
δ2

)) (3.63)
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Figure 3.2: Secret key fraction according to weak measurement approximation. The secret
fraction is plotted as a function of depolarizing noise η for (a) α = 0.1 and (b) α = 0.2.
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3.6.4 State of Eve’s memory and her side information

In order to calculate ρa,bE , we first need to find ρaE(x) which is given by (see Eq. (3.44)
and (3.45))

ρaE(x) =
4

Pa(x)

4∑
i=1

4∑
j=1

√
λiλj 〈ψa|Φi〉 〈Φj|ψa〉 〈x|ξai 〉

〈
ξaj
∣∣x〉 |νi〉〈νj|E (3.64)

Note that 〈σ0
1〉w = 〈σ0

2〉w = 〈σ1
3〉w = 〈σ1

4〉w = 1 and 〈σ1
1〉w = 〈σ1

2〉w = 〈σ0
3〉w =

〈σ0
4〉w = −1. Let us denote 〈x|ξai 〉 = ξ+(x) if 〈σ0

i 〉w = 1 and 〈x|ξai 〉 = ξ−(x) if
〈σ0

i 〉w = −1 for all a ∈ {0, 1} and i ∈ {1, 2, 3, 4}. Clearly,

ξ±(x) = (2πδ2)−1/4 exp

(
−(x∓ γ)2

4δ2

)
. (3.65)

For the case of depolarizing noise, we have λ1 = 1− 3η/2 and λ2 = λ3 = λ4 = η/2.
Note that ξ+(x)ξ−(x) = ‖ξ(x)‖2 exp(−γ2/2δ2) ≈ ‖ξ(x)‖2. Therefore, after denoting

κ =
√(

1− 3η
2

)
η
2
, we can express ρaE(x) in matrix form as

ρ0
E(x) = 1

P0(x)



(
1− 3η

2

)
‖ξ+(x)‖2 κ‖ξ+(x)‖2 κ‖ξ(x)‖2 κ‖ξ(x)‖2

κ‖ξ+(x)‖2 η
2
‖ξ+(x)‖2 η

2
‖ξ(x)‖2 η

2
‖ξ(x)‖2

κ‖ξ(x)‖2 η
2
‖ξ(x)‖2 η

2
‖ξ−(x)‖2 η

2
‖ξ−(x)‖2

κ‖ξ(x)‖2 η
2
‖ξ(x)‖2 η

2
‖ξ−(x)‖2 η

2
‖ξ−(x)‖2


,

ρ1
E(x) = 1

P1(x)



(
1− 3η

2

)
‖ξ−(x)‖2 −κ‖ξ−(x)‖2 κ‖ξ(x)‖2 −κ‖ξ(x)‖2

−κ‖ξ−(x)‖2 η
2
‖ξ−(x)‖2 −η

2
‖ξ(x)‖2 η

2
‖ξ(x)‖2

κ‖ξ(x)‖2 −η
2
‖ξ(x)‖2 η

2
‖ξ+(x)‖2 −η

2
‖ξ+(x)‖2

−κ‖ξ(x)‖2 η
2
‖ξ(x)‖2 −η

2
‖ξ+(x)‖2 η

2
‖ξ+(x)‖2


,

(3.66)
Eve’s memory corresponding to the Alice bit a, say Ωa

E , is calculated by applying
|a〉〈a|A ⊗ 1B ⊗ 1E on ΩABE and then tracing out classical bits of Alice and Bob,

Ωa
E = TrAB

(
(|a〉〈a|A ⊗ 1B ⊗ 1E)ΩABE(|a〉〈a|A ⊗ 1B ⊗ 1E)

)
(3.67)
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From Eq. (3.50), we have

Ω0
E = P (0, 0)ρ0,0

E + P (0, 1)ρ0,1
E

Ω1
E = P (1, 0)ρ1,0

E + P (1, 1)ρ1,1
E

(3.68)

After normalization and using the fact that Q = 2P (0, 1) = 2P (1, 0) and 1 − Q =
2P (0, 0) = 2P (1, 1),

Ω0
E = (1−Q)ρ0,0

E +Qρ0,1
E

Ω1
E = (1−Q)ρ1,1

E +Qρ1,0
E

(3.69)

States ρa,bE ,∀a, b ∈ {0, 1} can be calculated numerically using Eq. (3.26) and (3.66).

3.6.5 Secure key rate and the noise tolerance
In subsections 3.6.3 and 3.6.4, we have calculated joint probability distribution and es-
timated Eve’s memory for collective attacks. The secret fraction (Fsec) of raw keys gen-
erated by Alice and Bob can be calculated using the Devetak-Winter rate (Eq. (3.29)),
as

Fsec = I(A : B)− χ(A : E). (3.70)

The mutual entropy for the joint probability distribution given by Eq. (3.62) is calcu-
lated numerically using

I(A : B) = 1− h(Q) (3.71)

where h(Q) = −Q log2(Q)− (1−Q) log2(1−Q) is the binary Shannon entropy for
bit error rate Q given by Eq. 3.63. Holevo quantity χ(A : E) (given by Eq. (3.27))
is numerically calculated using Eq. (3.69). We computed the secret fraction of the
raw keys with weak measurement approximations for different values of α and γ. The
results are plotted in Figure 3.2. A positive key rate can be achieved at a high noise
rate (quantified by η which is also QBER for the six-state protocol). We see that the
protocol can be secure even at 35% QBER by choosing the appropriate α. Such a
protocol seems to have improved noise tolerance drastically. As we will see, the above
results are wrong and the increased noise tolerance is just a consequence of neglecting
higher power terms in the calculations. We re-analyze the security in the next section.

3.7 Security analysis without weak measurement ap-
proximation

In the previous section, we have calculated the secret fraction assuming weak mea-
surement approximation. Here, we re-analyze the security of the protocol without as-
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suming the weak measurement approximation i.e. retaining all powers of interaction
strength in calculations.

The state after applying UBP on |ΨABPE〉 (Eq. (3.34)) can be written without ap-
proximation as

|Ψ′〉 = UBP |Ψ〉ABPE

=
4∑
i=1

√
λiUBP (|Φi〉AB ⊗ |ξ〉P )⊗ |νi〉E

=
4∑
i=1

√
λi

[
|Φi〉AB ⊗ cos(γp̂) |ξ〉P − iσ |Φi〉AB ⊗ sin(γp̂) |ξ〉P

]
⊗ |νi〉E

(3.72)
The state of the pointer corresponding to Alice’s bit a and Bell state |Φi〉 can be ex-
pressed without approximation as

|ξai 〉P = exp(−i〈σai 〉wγp̂) |ξ〉P (3.73)

The mathematical expression for ccq-state remains the same as calculated for weak
measurement approximation given by Eq. (3.50).

3.7.1 Joint probability distribution of Alice and Bob

The joint probability distribution of Alice and Bob can be calculated numerically using
Pa(x), which without approximation is given by

Pa(x) = Tr

{(
|x〉〈x|P ⊗ 1E

)
|χa〉〈χa|PE

(
|x〉〈x|P ⊗ 1E

)†}
= 4

4∑
i=1

λi 〈ψa|Φi〉 〈Φi|ψa〉 〈x|ξai 〉 〈ξai |x〉

=
4∑
i=1

λi‖ξai (x)‖2,

(3.74)

Let us now evaluate an expression for ξai (x) = 〈x|ξai 〉. From Eq. (3.73), we have

|ξai 〉 = exp(−iγ〈σai 〉wp̂)
∫ +∞

−∞
|x〉 〈x|ξ〉 dx

=

∫ +∞

−∞
|x+ γ〈σai 〉w〉 〈x|ξ〉 dx,

(3.75)
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Since 〈x|ξ〉 = ξ(x) = (2πδ2)−1/4 exp (−x2/4δ2), we have

ξai (x) = (2πδ2)−1/4 exp

(
−(x− γ〈σai 〉w)2

4δ2

)
. (3.76)

Eq. (3.74) can be re-written as

Pa(x) = (2πδ2)−1/2

4∑
i=1

λi exp

(
−(x− γ〈σai 〉w)2

2δ2

)
. (3.77)

Since 〈σ0
1〉w = 〈σ0

2〉w = 〈σ1
3〉w = 〈σ1

4〉w = 1 and 〈σ1
1〉w = 〈σ1

2〉w = 〈σ0
3〉w =

〈σ0
4〉w = −1, we can write

P0(x) = (2πδ2)−1/2

[
(λ1 + λ2) exp

(
−(x− γ)2

2δ2

)
+ (λ3 + λ4) exp

(
−(x+ γ)2

2δ2

)]
,

P1(x) = (2πδ2)−1/2

[
(λ1 + λ2) exp

(
−(x+ γ)2

2δ2

)
+ (λ3 + λ4) exp

(
−(x− γ)2

2δ2

)]
.

(3.78)
Let us now denote

ξ±(x) = (2πδ2)−1/4 exp

(
−(x∓ γ)2

4δ2

)
. (3.79)

Using Eq. (3.79), Eq. (3.78) is re-written as

P0(x) = (λ1 + λ2)‖ξ+(x)‖2 + (λ3 + λ4)‖ξ−(x)‖2,

P1(x) = (λ1 + λ2)‖ξ−(x)‖2 + (λ3 + λ4)‖ξ+(x)‖2.
(3.80)

Remember that P̃ (a, b) = Pa((−1)bα). Using Eqs. (3.80), we can now express P̃ (a, b)
as

P̃ (0, 0) = (λ1 + λ2)‖ξ+(α)‖2 + (λ3 + λ4)‖ξ−(α)‖2,

P̃ (0, 1) = (λ1 + λ2)‖ξ+(−α)‖2 + (λ3 + λ4)‖ξ−(−α)‖2,

P̃ (1, 0) = (λ1 + λ2)‖ξ−(α)‖2 + (λ3 + λ4)‖ξ+(α)‖2,

P̃ (1, 1) = (λ1 + λ2)‖ξ−(−α)‖2 + (λ3 + λ4)‖ξ+(−α)‖2,

(3.81)

For the case of depolarizing noise, we have λ1 = 1− 3η/2 and λ2 = λ3 = λ4 = η/2.
Therefore,

P̃ (0, 0) = P̃ (1, 1) = (1− η)P+ + ηP−,

P̃ (0, 1) = P̃ (1, 0) = (1− η)P− + ηP+,
(3.82)
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where

P± = (2πδ2)−1/2 exp

(
−(α∓ γ)2

2δ2

)
. (3.83)

Note that, P−/P+ = exp(−2γα/δ2). Thus, using

P (a, b) =
P̃ (a, b)∑

a,b∈{0,1} P̃ (a, b)
, (3.84)

we can write joint probability distributions of Alice and Bob as

P (a, b) =


(1−η)+η exp(− 2γα

δ2
)

2(1+exp(− 2γα

δ2
))

if a = b

(1−η) exp(− 2γα

δ2
)+η

2(1+exp(− 2γα

δ2
))

if a 6= b

(3.85)

3.7.2 State of Eve’s memory and her side information
In order to calculate ρa,bE , we first need to find ρaE(x) which is the same as the case of
assuming the approximation. ρaE(x) is given by (see Eq. (3.44) and (3.45))

ρaE(x) =
4

Pa(x)

4∑
i=1

4∑
j=1

√
λiλj 〈ψa|Φi〉 〈Φj|ψa〉 〈x|ξai 〉

〈
ξaj
∣∣x〉 |νi〉〈νj|E (3.86)

Note that 〈x|ξai 〉 = ξ+(x) if 〈σ0
i 〉w = 1 and 〈x|ξai 〉 = ξ−(x) if 〈σ0

i 〉w = −1 for all
a ∈ {0, 1} and i ∈ {1, 2, 3, 4}. Let us now denote S± = ‖ξ±(x)‖2, and

S = ξ+(x)ξ−(x) = ‖ξ(x)‖2 exp

(
− γ2

2δ2

)
.

Here, remember that

‖ξ(x)‖2 = (2πδ2)−1/2 exp
(
−x2/2δ2

)
.

Then, the state ρ0
E(x) can be expressed in matrix form as

1
P0(x)



(
1− 3η

2

)
S+

√(
1− 3η

2

)
η
2
S+

√(
1− 3η

2

)
η
2
S
√(

1− 3η
2

)
η
2
S√(

1− 3η
2

)
η
2
S+ η

2
S+ η

2
S η

2
S√(

1− 3η
2

)
η
2
S η

2
S η

2
S− η

2
S−√(

1− 3η
2

)
η
2
S η

2
S η

2
S− η

2
S−


,

(3.87)
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and, similarly, the state ρ1
E(x) can be expressed as

1
P1(x)



(
1− 3η

2

)
S− −

√(
1− 3η

2

)
η
2
S−

√(
1− 3η

2

)
η
2
S −

√(
1− 3η

2

)
η
2
S

−
√(

1− 3η
2

)
η
2
S− η

2
S− −η

2
S η

2
S√(

1− 3η
2

)
η
2
S −η

2
S η

2
S+ −η

2
S+

−
√(

1− 3η
2

)
η
2
S η

2
S −η

2
S+ η

2
S+


.

(3.88)

3.7.3 Secure key rate and the noise tolerance

Similar to the case of weak measurement approximation in Subsection 3.6.5, the secret
fraction Fsec can now be computed using the joint probability given in (3.85), and Eve’s
memory states described by Eqs. (3.87) and (3.88). In Figure 3.3, we have plotted
Fsec for different values of α and γ. As it is clear from the plots, no positive secret
fraction was observed above the noise tolerance of the six-state protocol i.e. 12.62%.
In fact, for small α and γ, the secret fraction is smaller than that of six-state protocol
for the same noise. If we look carefully, the joint probability distribution P (a, b) in
Eq. (3.85) approaches the joint probability of the six-state protocol as α is increased.
That means even with the use of a weak value-based state discrimination scheme, the
mutual information of Alice and Bob cannot exceed what is observed in the six-state
case. The latter is in contrast with what we saw in Section 3.6.

3.8 Discussion and conclusions
In this chapter, we have derived the weak value formalism for mixed states from the as-
sumptions of TSVF. Our generalization of weak values is the same as that proposed by
other authors who used different methods to formulate it [103, 104, 105, 106]. We then
devised a state discrimination scheme using weak measurements, where we assumed
the core properties of weak values and the weak measurement approximation. Our
scheme is motivated by the fact that two Gaussian distributions can be distinguished
with arbitrarily low error probability by selecting only out-layer events. The formu-
lation of weak values for mixed states was then used to discriminate mixed states in
the six-state protocol. This approach apparently increased the noise tolerance drasti-
cally, giving an advantage over the original six-state QKD protocol. Moreover, this
approach guarantees secure key generation at arbitrary high depolarizing noise. How-
ever, we found that these exciting results are wrong and appear only because of first
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Figure 3.3: Secret key fraction calculated without assuming the weak measurement ap-
proximation. The secret fraction is plotted as a function of depolarizing noise η for (a)
γ = 0.1 and (b) γ = 0.2, note that plots for α = 20, 25, 30, 35 are coinciding.
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order approximation in weak measurements. Moreover, these approximations are mo-
tivated by TSVF and the assumption of weak values as elements of reality in weak
measurements. Our results have shown that such approximations must not be used
without caution. More interestingly, our quantum state-discrimination scheme may
give the correct answer for pure states but can fail in the case of mixed states. This
puts a serious caution on the uses and implications of generalized weak values. Con-
trary to what is implied by TSVF (Section 3.2), weak values for mixed states might
not be on equal footing with those for pure states. We would also like to emphasize
a direct implication of our analysis that L. Vaidman’s proposition that weak values
are elements of the reality of weak measurements [65, 106] needs to be revisited and
reanalyzed.
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Chapter 4

High noise-tolerant quantum key
distribution using block-wise
processing

4.1 Introduction

Quantum computers threaten the security of modern cryptography which is primar-
ily based on the computational complexities of certain mathematical problems [92,
93, 94]. Even though large-scale quantum computers are a distant reality right now,
the store now, decrypt later or retrospective decryption attacks have made the present
long-term strategic communications vulnerable. The quantum theory provides a so-
lution to the problem in the form of quantum key distribution (QKD) [10, 11]. QKD
allows two distant parties, Alice and Bob, to exchange symmetric keys using quan-
tum channels which can be unconditionally secure. The security of the keys is en-
sured by the principles of quantum mechanics such as the no-cloning principle [9],
Bell-nonlocality [98, 115, 116], quantum contextuality [117, 118], or entanglement
monogamy [119].

In a QKD protocol, Alice and Bob share quantum signals through a quantum chan-
nel and generate (partially) correlated bit strings using local measurements. Such chan-
nels can introduce noise to the signals. An eavesdropper Eve may replace these noisy
channels with more technologically advanced noise-less channels and make use of the
respective portion of the exchanged signals to gain information about Alice and Bob’s
bit strings. However, Alice and Bob can characterize the channel by estimating the
security parameters of the protocol which usually quantify the noise of the channel.
They then can use quantum mechanical principles to estimate the maximum allowed
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4. High noise-tolerant quantum key distribution using block-wise processing

Eve’s knowledge about Alice or Bob’s bits corresponding to the observed parameters.
If Eve’s correlation with Alice’s bit (or Bob’s, whichever is larger) is less than the cor-
relations between Alice’s and Bob’s keys, then their communication can be considered
secure in the asymptotic limit. The information accessible to Eve in her collective
attack strategies is bounded by Holevo quantity provided that the key length is asymp-
totically large [112].

The security parameter in BB84 [10], E91 [98], B92 [99], and six-state protocol
(SSP) [97] is the quantum bit error rate (QBER). QBER is the probability that the key
bits of Alice and Bob do not match. For a depolarizing channel, QBER is half the
depolarizing probability in a qubit-based QKD protocol. QBER is called the channel
noise in the context of QKD. Noise-tolerance for BB84 (equivalently E91 and B92)
against collective attacks is 11% whereas for the six-state protocol, it is 12.62% with
one-way communication in classical post-processing [11, 111]. Devising a QKD pro-
tocol that can tolerate as high a quantum channel noise as possible is recommended for
long-distance secure quantum communications. Moreover, high noise tolerance is also
required for practical purposes.

Various strategies have been adopted in the past to improve channels’ noise tol-
erance. The method of noisy preprocessing increases noise tolerance up to 14.1% for
one-way SSP [110, 120]. Lo-Chau scheme using quantum computers can tolerate noise
up to 18.9% [121]. Gottesman and Lo proposed techniques of two-way classical post-
processing that shows 26.4% noise tolerance [122]. Methods of classical advantage
distillation in one-way SSP can have a noise tolerance of 27.6% [110, 123, 124]. This
is so far the highest noise tolerance in a two-level quantum system-based QKD scheme
with one-way classical post-processing. This appears to be a bottleneck in the progress
of achieving high noise-tolerant QKD schemes. However, semiquantum approaches
with two-way quantum communications have also been used to breach the threshold,
but could only achieve noise tolerance of 26% [125, 126]. Noise tolerance against
certain individual attacks such as asymmetric error patterns and photons-splitting at-
tacks have been shown to be up to 33% [127, 128]. Another approach to achieving
high noise tolerance is the high dimension QKD (HDQKD) [129, 130, 131, 132, 133].
Such schemes do show an increased noise tolerance but they require systems with high
dimensions.

In this chapter, we present a QKD scheme using two-level quantum systems that
can tolerate noise levels above 30%. We use entanglement-based SSP and then perform
block-wise processing by constructing blocks of a finite length say m. If the bipartite
state ρAB is shared over the quantum channel, a key bit is generated from a single
copy of ρAB. In our scheme, we use a block ρ⊗mAB to generate a single key-bit instead.
The state-sharing and measurement strategies for Alice and Bob remain the same as
for the six-state protocol. In addition, Alice and Bob use certain permutations on

72



4.2 Protocol steps

their respective bit-strings to construct blocks. They then discard certain blocks using
classical communications over an authenticated classical channel. From the remaining
blocks, they generate their raw keys. This process decreases their key-bit error rate
with a huge margin and effectively increases their correlations without error correction.
On the other hand, these additional steps do not increase Eve’s knowledge significantly.
Therefore, the overall effect increases the secret key fraction shared between Alice and
Bob. We provide an information-theoretic security proof against collective attacks.
The secure key fraction is computed using computer programs. Due to computational
limitations, we could only analyze the security of the protocol with block size up to
m = 7. For m = 7, the noise tolerance is found to be 30.53% which is a significant
improvement over the advantage distillation scheme that shows 27.6% noise tolerance.

The material in this chapter is arranged as follows. Section 4.2 presents the proto-
col, Section 4.3 presents a detailed mathematical model of the protocol. In Section 4.4,
we analyze the security of the protocol assuming that the channel is depolarizing. We
begin with defining security criteria in Subsection 4.4.1. Then in Subsection 4.4.2,
we derive the joint probability distribution for Alice and Bob’s raw keys and the state
of corresponding Eve’s memory. Then in Subsection 4.4.3, we compute the secret
key fraction and noise tolerance for various blocks. Finally, Section 4.5 presents the
discussion and conclusions of this chapter.

4.2 Protocol steps

The protocol consists of the following steps: state sharing, measurements, sifting, pa-
rameter estimation, and classical post-processing (error correction followed by privacy
amplification). The step of state sharing followed by measurements is repeated N

number of times where N is asymptotically large. Here, we present all the steps of our
protocol.

(1) State sharing. Bell state |Φ+〉 = 1√
2

(|00〉+ |11〉) is shared between Alice and
Bob over a quantum channel E(·). Systems received by Alice and Bob in i-th pair are
denoted Ai and Bi, respectively.

(2) Measurements. Alice and Bob perform six-state measurements on their respec-
tive systems with uniformly random measurement choices. Formally, Alice randomly
chooses input α ∈ {0, 1, 2} from a classical register Rα, and performs the measure-
ment Mα

Ai
≡ {Ma|α

Ai
}a∈{0,1} on Ai, where the index a ranges over Alice’s outcomes.

Similarly, Bob draws the random input β ∈ {0, 1, 2} from a classical register Rβ and
performs the measurement Mβ

Bi
≡ {M b|β

Bi
}b∈{0,1} on Bi, where the index b ranges over
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Figure 4.1: Schematic diagram of the QKD protocol. Alice, Bob, and Eve share the
tripartite system ΨABE . The strings of systems or alphabets are symbolic. Rα, Rβ, Rπ

are locally generated random inputs. Classical communications is denoted by Ci where i
is the suitable superscript. All the functions, transformations, transcripts, and the alphabets
strings are explained in Section 4.2.
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Bob’s measurement outcomes. We consider the following measurement settings:

M0
Ai

= M0
Bi
≡ {|0〉〈0| , |1〉〈1|},

M1
Ai

= M1
Bi
≡ {|+〉〈+| , |−〉〈−|},

M2
Ai

= M2
Bi
≡ {|↑〉〈↑| , |↓〉〈↓|} ,

(4.1)

where |±〉 = 1√
2

(|0〉 ± |1〉), |↑〉 = 1√
2
(|0〉+ i |1〉), and |↓〉 = 1√

2
(|0〉 − i |1〉). Suppose

the measurement projections of Alice and Bob in the i-th round of the protocol are
M

a|α
Ai

= |Ai〉〈Ai| and M b|β
Bi

= |Bi〉〈Bi|, respectively. Then, they store their outcomes in
the classical registers A′ and B′ as alphabets A′i and B′i, respectively, where A′i, B

′
i ∈

{0, 1,+,−, ↑, ↓} ≡ M. Note that the alphabets of A′ and B′ have information about
the measurement basis and the outcomes of the corresponding rounds as well. After
the completion of N rounds of the system sharing followed by the measurements,
Alice and Bob have the alphabet strings A′ = A′1A

′
2 · · ·A′N and B′ = B′1B

′
2 · · ·B′N as

classical registers. They then proceed to the sifting process which is a very important
part of our protocol.

(3) Sifting. Both parties then perform the sifting on A′ and B′ to obtain the raw
keys X and Y of an equal length n ≤ N by executing the following steps:

3a: Alice and Bob broadcast their measurement inputs (the choices of their mea-
surement basis) in form of the classical transcripts Cα ∈ {0, 1, 2}N and Cβ ∈
{0, 1, 2}N with i-th entries denoted by Cα

i and Cβ
i , respectively. Hereafter, we

denote the i-th entry of any classical register, transcript or alphabet string S by
Si.

3b: They discard all the rounds for which their measurement basis does not match.
Formally, they generate the alphabet strings T̄A and T̄B using the following
functions

T̄Ai =

{
A′i; if Cα

i = Cβ
i

⊥; if Cα
i 6= Cβ

i

, (4.2)

and

T̄Bi =

{
B′i; if Cα

i = Cβ
i

⊥; if Cα
i 6= Cβ

i

. (4.3)

They then generate the strings TA and TB by discarding all the T̄Ai = T̄Bi = ⊥
from T̄A and T̄B, respectively. Note that TAi , T

B
i ∈M, ∀i.

3c: Alice divides TA into two equal parts Ape and A′′ by randomly choosing the
alphabets of Ape and A′′ from TA. She then discards A′′i if A′′i ∈ {0, 1, ↑, ↓}, ∀i.
Then, she announces whether A′′i is kept or discarded by sending the following
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transcript over the ACC:

C•i =

{
◦; if TAi is kept, either in Ape or in A′′

•; if TAi is discarded (after sending it in) A′′ . (4.4)

The string formed by the remaining alphabets of A′′ is denoted by Ā. Note that
Āi ∈ {+,−}, ∀i. String Ape will be used for the parameter estimation while Ā
for the raw key generation.

3d: Alice distributes alphabets of Ā further into the alphabet blocksA1, A2, · · · , An′
of size m in such a way that all the alphabets in a block Aj are either + or all of
them are − where the choice of + and − is uniformly random. The choices are
drawn from a locally generated random seed Rπ. Thus, Aj is a random element
in the set {+ + + · · ·+,−−− · · ·−} with uniform probability.

3e: Alice then prepares a transcript Cπ of ordered pairs as follows: if TAk is relocated
to the i-th position in the block Aj , where j = pe, 1, 2, · · · , n′, then Cπ

k = (j, i).
It should be noted that Cπ does not contain any information about the values of
the alphabets of Aj i.e. whether they are + or −. Alice then broadcasts Cπ.

3f: Bob generates the blocks Bpe, B1, B2, · · · , Bn′ by permuting the alphabets of
TB according to the transcript Cπ. Formally, he relocates TBk to the i-th position
in the block Bj if Cπ

k = (j, i). It is to be emphasized here that the i-th alphabets
of the two blocks Aj and Bj i.e. Aji and Bj

i , held by Alice and Bob respectively,
∀j ∈ {pe, 1, 2, · · · , n′} are generated from the same entangled pair shared by
the two parties. Note that, unlike Aj , block Bj can have both + and − alphabets
in it ∀j ∈ {1, 2, 3, · · · , n′}. In general, Bj ∈ {+,−}m.

3g: Alice generates a bit string X ′ ∈ {0, 1}n′ from blocks {Aj} for all j ∈ {1, 2, 3,
· · · , n′} as follows,

X ′j =

{
0; if Aj ∈ {+}m i.e. Aj ≡ + + + + · · ·+ +
1; if Aj ∈ {−}m i.e. Aj ≡ −−−− · · · − − . (4.5)

Bob generates an alphabet string Y ′ ∈ {0, 1,∅}n′ from blocks {Bj} for all
j ∈ {1, 2, 3, · · · , n′} as follows,

Y ′j =


0; if Aj ∈ {+}m i.e. Aj ≡ + + + + · · ·+ +
1; if Aj ∈ {−}m i.e. Aj ≡ −−−− · · · − −
∅; else

. (4.6)

The actions of Alice and Bob can be modeled using functions of form F :
{+m,−m} → {0, 1} and G : {+,−}m → {0, 1,∅}, respectively. Formally,
X ′i = F (Ai) and Y ′i = G (Bi).
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3h: Bob prepares a transcript Cκ ∈ {X,∅}n′ by setting

Cκ
i =

{
∅; if Y ′i = ∅
X; else . (4.7)

He then broadcasts it over the ACC.

3i: Bob generates a bit string Y ∈ {0, 1}n from Y ′ of length n ≤ n′ by discarding all
Y ′i = ∅. Alice discardsX ′i if Cκ

i = ∅. The reduced bit string of Alice is denoted
by X ∈ {0, 1}n. X and Y are the raw keys of Alice and Bob, respectively.

(4) Parameter estimation. In the parameter estimation step, Alice broadcasts the
alphabet string Ape as a transcript Cpe, i.e. Cpe

i = Apei . Bob estimates the probability
of error Q = P (Cpe

i 6= Bpe
i ). The protocol is aborted if Q ≥ Qtol, where Qtol ∈

[
0, 1

2

]
is the tolerated error rate of the protocol.

(5) Classical post-processing. If the protocol is not aborted, Alice and Bob perform
the error correction followed by the privacy amplification on their weakly correlated
and partially secure raw keys X and Y to obtain an identical and fully secure key
K ∈ {0, 1}n̄ where n̄ ≤ n is the bit length of the final key.

4.3 Mathematical model of the protocol
Here, we present a mathematical model of the proposed quantum key distribution pro-
tocol. Moreover, we will derive the classical-classical-quantum (ccq) state of the raw
key bits held by Alice and Bob and the corresponding quantum memory of any po-
tential adversary Eve. Since we are only considering the asymptotic case under the
collective attacks with i.i.d. assumption, the mathematical description of only the in-
dividual rounds is required at the end for the security analysis. However, at some
intermediate steps of the protocol, like the block-wise processing during sifting, we
may need a complete description of all the rounds. Thus, we will provide a complete
description whenever it is needed.

4.3.1 Quantum inputs and the measurements
Two parties, Alice and Bob, share entangled qubit-pairs. The pairs are prepared in the
Bell state |Φ+〉 = 1√

2
(|00〉+ |11〉) by a third party and distributed between them over

the quantum channel E(·), or equivalently, Alice can prepare the pair in |Φ+〉 and send
one of the qubits to Bob over E(·) while keeping the second qubit with herself. The
channel E(·) can introduce noise to the system transforming the state to a mixed state,

ρAB = E
(∣∣Φ+

〉〈
Φ+
∣∣) . (4.8)
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The noise introduced by the quantum channel is attributed to the potential eaves-
dropper Eve. A purification ρABE = |ΨABE〉〈ΨABE| of ρAB is used to describe the
tripartite quantum state of Alice, Bob, and Eve. If the rounds are repeated N times,
then the state of all systems, given that all the devices are memoryless and behave
identically and independently during the complete execution of the protocol (i.i.d. as-
sumption), is jointly represented as

ρABE = ρ⊗NABE (4.9)

The quantum systems held by Alice, Bob, and Eve in the i-th round are denoted by
Ai, Bi, and Ei, respectively. The measurements performed by Alice and Bob on the
systems Ai and Bi, are modeled by the positive operator-valued measures (POVMs)
{Ma|α

Ai
}a∈{0,1} and {M b|β

Bi
}b∈{0,1}, where α, β ∈ {0, 1, 2} are the measurement settings

chosen by Alice and Bob, respectively. The register Rα from which the values of α are
drawn can be represented by the state of a finite-dimensional quantum system with a
set of orthogonal basis {|α〉} as

ρRαi =
1

3

∑
α∈{0,1,2}

|α〉〈α|Rαi (4.10)

Similarly, the quantum state corresponding to Bob’s register Rβ is given by

ρRβi
=

1

3

∑
β∈{0,1,2}

|β〉〈β|Rβi (4.11)

Eq. (4.10) and (4.11) model only the i-th inputs drawn by the respective parties (i.e.Rα
i

and Rβ
i ) during the implementation. With i.i.d. assumption, the quantum state for the

register Rα can be expressed as ρRα = ρRαi
⊗N . Similarly, ρRβ = ρRβi

⊗N .
The measurement on Ai with the input α is represented by a completely positive

trace-preserving (CPTP) map MAi→A′i|Rαi that maps the quantum state of the system
Ai to a (classical) alphabet A′i as a measurement outcome registered in a register A′.
Formally, dropping the index i,

MA→A′|Rα (ρABE) =∑
a∈{0,1}

∣∣ξa|α〉〈ξa|α∣∣A′ ⊗ TrA

{(
M

a|α
A ⊗ IB ⊗ IE

)
ρABE

(
M

a|α
A ⊗ IB ⊗ IE

)†}
,

(4.12)
where the alphabet corresponding to Alice’s outcome a with the measurement input α
is mathematically modeled by the quantum state

∣∣ξa|α〉〈ξa|α∣∣. Considering all measure-
ment choices α ∈ {0, 1, 2} in a generalized measurement, the map can be represented
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as

MA→A′ (·) =
1

3

∑
α∈{0,1,2}

∑
a∈{0,1}

|α〉〈α|Rα ⊗
∣∣ξa|α〉〈ξa|α∣∣A′ ⊗

TrA

{(
M

a|α
A ⊗ IB ⊗ IE

)
(·)
(
M

a|α
A ⊗ IB ⊗ IE

)†}
.

(4.13)

Similarly, the map corresponding to Bob’s generalized measurement is given by

MB→B′ (·) =
1

3

∑
β∈{0,1,2}

∑
b∈{0,1}

|β〉〈β|Rβ ⊗
∣∣ξb|β〉〈ξb|β∣∣B′ ⊗

TrB

{(
IA ⊗M b|β

B ⊗ IE
)

(·)
(
IA ⊗M b|β

B ⊗ IE
)†}

,

(4.14)

where the alphabet corresponding to Bob’s outcome b with the measurement input
β is mathematically modeled by the quantum state

∣∣ξb|β〉〈ξb|β∣∣. Since the two maps
MA→A′|Rα and MB→B′|Rβ acts on separate systems, they commute. Hence, MAB→A′B′
= MA→A′ ◦MB→B′ = MB→B′ ◦MA→A′ , and after tracing out Rα, Rβ , A, and B, the
ccq-state of A′, B′, and the corresponding Eve’s memory is given by

ρA′B′E =
1

9

∑
α∈{0,1,2}

∑
β∈{0,1,2}

∑
a∈{0,1}

∑
b∈{0,1}

∣∣ξa|α〉〈ξa|α∣∣A′⊗∣∣ξb|β〉〈ξb|β∣∣B′⊗ρab|αβE , (4.15)

where

ρ
ab|αβ
E = TrAB

{(
M

a|α
A ⊗M b|β

B ⊗ IE
)
ρABE

(
M

a|α
A ⊗M b|β

B ⊗ IE
)†}

. (4.16)

Note that the state ρab|αβE is not normalized yet. After the normalization, the state
becomes

σ
ab|αβ
E =

TrAB

{(
M

a|α
A ⊗M b|β

B ⊗ IE
)
ρABE

(
M

a|α
A ⊗M b|β

B ⊗ IE
)†}

Tr

{(
M

a|α
A ⊗M b|β

B

)
ρAB

(
M

a|α
A ⊗M b|β

B

)†} . (4.17)

Let us denote

P ab|αβ = Tr

{(
M

a|α
A ⊗M b|β

B

)
ρAB

(
M

a|α
A ⊗M b|β

B

)†}
. (4.18)
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4.3.2 Sifting process
The sifting operation S : A′B′ → XY maps the states representing alphabet strings
A′, B′ ∈MN to the states representing bit strings X, Y ∈ {0, 1}n of a shorter length n
held by Alice and Bob, respectively. Here we present a mathematical model of all the
intermediate steps of the sifting process and derive the ccq-state.

(a) Taking the transcripts CA and CB into account, the state up to a normalization
factor is given by

ρA′B′CACBE =
∑

α∈{0,1,2}

∑
β∈{0,1,2}

∑
a∈{0,1}

∑
b∈{0,1}

∣∣ξa|α〉〈ξa|α∣∣A′ ⊗ ∣∣ξb|β〉〈ξb|β∣∣B′
⊗ |α〉〈α|CA ⊗ |β〉〈β|CB ⊗ ρ

ab|αβ
E

(4.19)

(b) Alice and Bob then discard all the rounds for which α 6= β. This can be modeled
by a post-selection projection Π acting upon the state ρA′B′CACBE , where

Π = 1A′ ⊗ 1B′ ⊗

 ∑
i∈{0,1,2}

|i〉〈i|CA ⊗ |i〉〈i|CB

⊗ 1E (4.20)

The transformation can be represented by the map D(·) = Π(·)Π†/Tr{Π(·)Π†}.
After tracing out the transcripts CA and CB, the ccq-state up to a normalization
factor can be written as

ρTATBE = TrCACB {D(ρA′B′CACBE)}
=

∑
α∈{0,1,2}

∑
a∈{0,1}

∑
b∈{0,1}

∣∣ξa|α〉〈ξa|α∣∣TA ⊗ ∣∣ξb|α〉〈ξb|α∣∣TB ⊗ ρab|ααE

(4.21)

(c) Dividing the string TA into Ape and A′′, and the corresponding TB into Bpe

and B′′, respectively, is equivalent to dividing the ensemble ρTATBE into two
identical ensembles ρApeBpeE and ρA′′B′′E i.e.

ρApeBpeE = ρA′′B′′E = ρTATBE (4.22)

Further sifting operations are performed only on ρA′′B′′E . The ensemble ρApeBpeE
is only used for parameter estimation. The process of discarding all A′′i ∈
{0, 1, ↑, ↓} is equivalent to performing a post-selection corresponding to the pro-
jection

Π′ =

 ∑
a,b∈{0,1}

∣∣ξa|1〉〈ξa|1∣∣A′′ ⊗ ∣∣ξb|1〉〈ξb|1∣∣B′′
⊗ 1E. (4.23)
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Note that the alphabets + and − are outcomes of the measurement setting α =
β = 1 i.e. |+〉 ≡

∣∣ξ0|1
〉

and |−〉 ≡
∣∣ξ1|1

〉
. The ensemble after this process is

represented by the following state up to a normalization factor,

ρĀB̄E = D′(ρA′′B′′E)

=
∑

a∈{0,1}

∑
b∈{0,1}

∣∣ξa|1〉〈ξa|1∣∣Ā ⊗ ∣∣ξb|1〉〈ξb|1∣∣B̄ ⊗ ρab|11
E

=
∑

a∈{0,1}

∑
b∈{0,1}

P ab|11
∣∣ξa|1〉〈ξa|1∣∣Ā ⊗ ∣∣ξb|1〉〈ξb|1∣∣B̄ ⊗ σab|11

E .

(4.24)

Here, we have used Eqs. (4.17) and (4.18) in the last step. Let us now denote
P ab|11 ≡ P̃ (ξa|1, ξb|1), σab|11 ≡ σ

ξa|1,ξb|1
E , and + ≡ ξ0|1,− ≡ ξ1|1. Eq. (4.24) is

then re-written as

ρĀB̄E =
∑

a,b∈{+,−}
P (a, b) |a〉〈a|Ā ⊗ |b〉〈b|B̄ ⊗ σa,bE , (4.25)

where

P (a, b) =
P̃ (a, b)∑

a,b∈{+,−} P̃ (a, b)
. (4.26)

(d-f) Let us denote the process of forming the blocks A1, A2, · · · , An′ from the string
Ā s. th. eitherAj = +++ · · ·+ orAj = −−− · · ·− for j = 1, 2, · · · , n′ using
the function PĀ→SA|Rπ , where Rπ is the random choice for the permutation, and
SA denotes the string of blocks {Aj} i.e. {SAi ≡ Ai}. The process of generating
the transcript Cπ is denoted by CSA→SACπ . Furthermore, let PB̄→SB |Cπ denote
Bob’s action of generating the block-string SB by performing the permutation
on B̄ as per the transcript Cπ. The overall effect of these operations can be
represented by

PĀB̄ERπ→SASBERπCπ = PB̄→SB |Cπ ◦ CSA→SACπ ◦ PĀ→SA|Rπ . (4.27)

The process PĀB̄ERπ→SASBERπCπ followed by tracing out Cπ and Rπ is mathe-
matically equivalent to performing a post-selection

K =
(
|+〉〈+|⊗mĀ + |−〉〈−|⊗mĀ

)
⊗ 1⊗m

B̄
⊗ 1⊗mE (4.28)

on a block of m copies of the state ρĀB̄E i.e. ρ⊗m
ĀB̄E

. The un-normalized state
after applying K is given as

τSASBE = K
(
ρ⊗m
ĀB̄E

)
K†

=
∑

a∈{+,−}

(
|a〉〈a|⊗m

)
SA
⊗

∑
λ∈{+,−}m

Pm(a, λ) |λ〉〈λ|SB ⊗ σa,λE , (4.29)
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4. High noise-tolerant quantum key distribution using block-wise processing

where the index λ runs over the 2m binomial permutations of the symbols {+,−}.
Now suppose that we can represent the index λ as λ ≡ λ1λ2λ3 · · ·λm where
λi ∈ {+,−}∀i ∈ {1, 2, 3, · · · ,m}, then the state |λ〉〈λ| is given by

|λ〉〈λ| =
⊗

i∈{1,2,··· ,m}
|λi〉〈λi| , (4.30)

and the corresponding block of Eve’s memory is given by

ρa,λE =
⊗

i∈{1,2,··· ,m}
ρa,λiE . (4.31)

The joint probability distribution Pm(a, λ) is given by

Pm(a, λ) =
∏

i∈{1,2,··· ,m}
P (a, λi), (4.32)

where P (a, λi) is the joint probability of Alice and Bob getting a ∈ {+,−} and
λi ∈ {+,−}, respectively, in a single round of the state sharing followed by the
measurements. If the state shared between Alice and Bob in a single round is
ρAB, then with i.i.d. assumption, the joint probability Pm(a, λ) is given as

Pm(a, λ) =
m∏
i=1

Tr {ρAB |a〉〈a|A ⊗ |λi〉〈λi|B} . (4.33)

(g) The maps corresponding to the functions F and G are represented by FSA→X′(·)
and GSB→Y ′(·), respectively, s. th.

FSA→X′
(
|+〉〈+|⊗mSA

)
= |0〉〈0|X′ ,

FSA→X′
(
|−〉〈−|⊗mSA

)
= |1〉〈1|X′ ,

GSB→Y ′
(
|+〉〈+|⊗mSB

)
= |1〉〈1|Y ′ ,

GSB→Y ′
(
|−〉〈−|⊗mSB

)
= |1〉〈1|Y ′ ,

GSB→Y ′ (|ψ〉〈ψ|SB) = |∅〉〈∅|Y ′ ,

(4.34)

where |ψ〉〈ψ| /∈
{
|+〉〈+|⊗m , |−〉〈−|⊗m

}
. The map FSA→X′ ◦ GSB→Y ′(·) trans-

forms τSASBE into the state (up to a normalization factor)

τX′Y ′E =FSA→X′ ◦ GSB→Y ′(τSASBE)

=
∑

x,y∈{0,1}
Q′(x, y) |x〉〈x|X′ ⊗ |y〉〈y|Y ′ ⊗ ωx,yE

+
∑

x∈{0,1}
|x〉〈x|X′ ⊗ |∅〉〈∅|Y ′ ⊗ ρ̄xE,

(4.35)
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where using Eq. (4.32) and Eq. (4.33)

Q′(0, 0) = P (+,+)m, Q′(1, 0) = P (−,+)m,

Q′(0, 1) = P (+,−)m, Q′(1, 1) = P (−,−)m,
(4.36)

and using Eq. (4.31), we have

ω0,0
E =

(
σ+,+
E

)⊗m
, ω1,0

E =
(
σ−,+E

)⊗m
,

ω0,1
E =

(
σ+,−
E

)⊗m
, ω1,1

E =
(
σ−,−E

)⊗m
.

(4.37)

Specification of the state ρ̄xE is not required here.

(h-i) The collective effect of the preparation and broadcast of Cκ followed by dis-
carding the blocks corresponding to |∅〉〈∅|Y ′ is mathematically equivalent to
applying a post-selection of the form

L =
∑

x,y∈{0,1}
|x〉〈x|X′ ⊗ |y〉〈y|Y ′ ⊗ 1E. (4.38)

Hence, the state after the completion of these steps is given by

τXY E = XX′→X ◦ YY ′→Y (τX′Y ′E)

= L(τX′Y ′E)L†

=
∑

x,y∈{0,1}
Q′(x, y) |x〉〈x|X′ ⊗ |y〉〈y|Y ′ ⊗ ωx,yE .

(4.39)

After the normalization, τXY E can be re-written as

τXY E =
∑

x,y∈{0,1}
Q(x, y) |x〉〈x|X ⊗ |y〉〈y|Y ⊗ ωx,yE , (4.40)

where

Q(x, y) =
Q′(x, y)∑

x,y∈{0,1}Q
′(x, y)

. (4.41)

Note that, here, we have used the fact that Tr{ωx,yE } = 1, ∀x, y ∈ {0, 1}.

4.4 Security analysis

4.4.1 Security criteria
The protocol is secure against all the collective attacks in asymptotic limits if the
Devetak-Winter key rate is greater than zero. The Devetak-Winter key rate is given
by

r ≥ `DW = I(A : B)− χ(A : E) (4.42)

83



4. High noise-tolerant quantum key distribution using block-wise processing

where I(A : B) is the mutual information between Alice and Bob’s raw keys X and
Y , respectively, and χ(A : E) is the corresponding Holevo information. The mutual
information and the Holevo quantity can be evaluated using the ccq-state of Alice,
Bob, and Eve’s memory.

4.4.2 Joint probability distribution and Eve’s quantum memory

Here, we evaluate the joint probability distribution of Alice and Bob’s raw bits, and
the state of the corresponding Eve’s quantum memory. Let us denote the state shared
between Alice and Bob by ρAB = E (|Φ+〉〈Φ+|), where |Φ+〉〈Φ+| = 1√

2
(|00〉+ 〈11|).

Let us now attribute the noise introduced by the channel to the eavesdropper Eve. In
that case, we can assume that the purification of the mixed state ρAB is held by Eve as
a quantum memory. She can utilize her quantum memory corresponding to all rounds
and all the classical information shared between Alice and Bob collectively to estimate
the final key shared between them. Let the Hilbert spaces associated with qubits of
Alice and Bob, and Eve’s quantum memory be HA,HB, and HE , respectively. The
purification |ΨABE〉 ∈ HA⊗HB⊗HE can be written in Bell-basis of Alice and Bob’s
qubits as

|Ψ〉ABE =
4∑
i=1

√
λi |Φi〉AB ⊗ |νi〉E , (4.43)

where |Φ1〉AB , |Φ2〉AB , |Φ3〉AB , |Φ4〉AB are the Bell states |Φ+〉, |Φ−〉, |Ψ+〉, and |Ψ−〉,
respectively, and {νi} forms a set of orthogonal basis which span HE ≡ C4. For a de-
polarizing channel, we have λ1 = 1− 3η/2, λ2 = λ3 = λ4 = η/2, where η ∈ [0, 1/2]
is the depolarizing noise. In six-state and BB84, η is equal to the quantum bit error
rate. Eq. (4.43) can now be re-written as

|Ψ〉ABE =

√
1− 3η

2

∣∣Φ+
〉
AB
⊗ |ν1〉E +

√
η

2

∣∣Φ−〉
AB
⊗ |ν2〉E

+

√
η

3

∣∣Ψ+
〉
AB
⊗ |ν3〉E +

√
η

2

∣∣Ψ−〉
AB
⊗ |ν4〉E .

(4.44)

The corresponding bipartite state ρAB ∈ HA ⊗HB is given by

ρAB = (1− 2η)
∣∣Φ+

〉〈
Φ+
∣∣
AB

+
η

2
1A ⊗ 1B (4.45)

Note that for η = 0, the state remains unchanged i.e. ρAB = |Φ+〉〈Φ+|, and for η = 1/2
the state is completely destroyed i.e. ρAB = 1A ⊗ 1B/4. Suppose Alice and Bob
perform the measurements M1

A and M1
B i.e. they measure their respective systems in
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x-basis. The probability distribution P (a, b) for a, b ∈ {+,−} can be evaluated using
Eq. (4.33) as

P (+,+) = P (−,−) =
1− η

2

P (+,−) = P (−,+) =
η

2

(4.46)

Using Eqs. (4.36),(4.41), and (4.46), the joint probability distribution Q(x, y) for the
ccq-state given in Eq. (4.40) is given by

Q(x, y) =


( 1−η

2 )
m

2(( 1−η
2 )

m
+( η2 )

m
)
; if x = y

( η2 )
m

2(( 1−η
2 )

m
+( η2 )

m
)
; if x 6= y

. (4.47)

Let us now calculate the state corresponding to Eve’s memory. The state σa,bE for
a, b ∈ {+,−} represents Eve’s quantum memory when Alice and Bob’s outcomes are
a and b, respectively. The state σa,bE can be calculated using Eqs. (4.17) and (4.18) as
(also see the notations for σa,bE presented before Eq. (4.25))

σ+,+
E = 1

1−η


1− 3η

2
0
√(

1− 3η
2

)
η
2

0

0 0 0 0√(
1− 3η

2

)
η
2

0 η
2

0

0 0 0 0

,

σ−,−E = 1
1−η


1− 3η

2
0 −

√(
1− 3η

2

)
η
2

0

0 0 0 0

−
√(

1− 3η
2

)
η
2

0 η
2

0

0 0 0 0

.
(4.48)
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σ+,−
E = 1

η


0 0 0 0

0 η
2

0 −η
2

0 0 0 0

0 −η
2

0 η
2

,

σ−,+E = 1
η


0 0 0 0

0 η
2

0 η
2

0 0 0 0

0 η
2

0 η
2

,
(4.49)

Eve’s quantum memory ωa,bE corresponding to the Alice and Bob’s raw key bits
a and b, respectively, generated from the blocks of size m can be computed using
Eq. (4.37) and Eqs. (4.48), (4.49).

4.4.3 Secure key fraction and the noise-tolerance
Let us now denote the state of Eve’s memory corresponding to Alice’s bit x by Ωx

E . The
state Ωx

E is calculated by projecting the state τXY E (given in Eq. (4.40)) into |x〉〈x|X ⊗
1Y ⊗ 1E and then tracing out X and Y as

Ωx
E =

TrXY {(|x〉〈x|X ⊗ 1Y ⊗ 1E) τXY E (|x〉〈x|X ⊗ 1Y ⊗ 1E)}
Tr {(|x〉〈x|X ⊗ 1Y ⊗ 1E) τXY E (|x〉〈x|X ⊗ 1Y ⊗ 1E)}

=
Q(x, 0)ωx,0E +Q(x, 1)ωx,1E

Q(x, 0) +Q(x, 1)
.

(4.50)

Here, ωx,yE are computed using Eqs. (4.37), (4.48), and (4.49). Note that for x ∈ {0, 1},
Ωx
E ∈ H⊗mE is a 4m dimensional state and needs to be computed using a computer

program. The mutual information between Alice and Bob is computed as

I(A : B) = 1− h(Q) (4.51)

where
h(Q) = −Q log2Q− (1−Q) log2 (1−Q) (4.52)

is the binary Shannon entropy for the bit error rate Q = Q(0, 1) +Q(1, 0) in Alice and
Bob’s strings. Using Eq. (4.47), Q is given as

Q =

(
η
2

)m(
1−η

2

)m
+
(
η
2

)m (4.53)
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Figure 4.2: The secret fraction computed using the Devetak-Winter key rate formula for
different block sizes.
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The Holevo quantity corresponding to Eve’s memory is given as

χ(A : E) = S(ΩE)− 1

2

(
S(Ω0

E) + S(Ω1
E)
)
, (4.54)

where ΩE = (Ω0
E + Ω1

E) /2 and S(ρ) is the von Neumann entropy of ρ. We computed
the Devetak-Winter secure key fraction using Eqs. (4.42), (4.51) and (4.54). The secret
fractions for different values of m are presented in Fig. 4.2. We evaluated the noise
tolerance for varying block size and listed them in Table 4.1. The dimension of Eve’s
memory increases exponentially with m. Hence, the computation of Holevo quantity
becomes difficult as m increases. Due to computational limitations, we could compute
noise tolerance and secret key fraction only up to m = 7.

Table 4.1: Noise-tolerance for various block sizes.

m 1 2 3 4 5 6 7

ηtol 12.62% 22.01% 25.77% 27.78% 29.04% 29.90% 30.53%

4.5 Discussion and conclusion
In this chapter, we presented a QKD scheme based on block-wise processing. Our
scheme increases the noise-tolerance by a significant margin with respect to the ear-
lier protocols. Against collective attacks, our protocol can tolerate up to 30% of the
depolarizing noise. Security is evaluated against collective attacks which are consid-
ered to be general attacks. The core assumptions that go into our security proof are
the following: we assumed that the devices of Alice and Bob are fully trusted but the
quantum channel is insecure. The labs of Alice and Bob are sealed and all operations
corresponding to the discarding certain outcomes are done within the labs. The sys-
tems and devices used by both parties are identically and independently prepared (i.i.d.
assumption) and the protocol rounds are repeated an asymptotically large number of
times. Furthermore, all the permutations and the random variables are locally gener-
ated in the sealed labs. These are the usual assumptions for the trusted device QKD
schemes. Our protocol appears complicated and hard to implement, however, it opens
possibilities for the high noise-tolerance QKD. As a future prospect, it would be in-
teresting to see the generalization of such methods to continuous variable QKD, and
semi-device independent QKD. Another future prospect can be the finite-key analysis
of our QKD scheme.

88



Chapter 5

A no-go theorem on restricted
measurements and implications
thereof

5.1 Introduction

The postulate of state description in quantum mechanics associates a Hilbert space
to every closed quantum system and the states are represented by unit vectors in it.
However, quantum theory does not tell us what the Hilbert space is for a given closed
system [134]. Discovering a Hilbert space is not a trivial task. One pragmatic way to
discover a Hilbert space associated with a closed quantum system is that an observable
of the system is measured and all the distinguishable outcomes are considered to be
orthogonal vectors spanning the space. For instance, energy levels of monochromatic
electromagnetic radiation inside a cavity gives Hilbert space spanned by photon num-
ber states, or the measurement of magnetic dipole of silver atoms in the Stern–Gerlach
experiment reveals the associated discrete Hilbert space of the angular momentum.
Once the associated Hilbert space is identified, the arena of quantum mechanics for
the corresponding closed quantum system is fixed. The postulate of composite sys-
tems tells us how to construct the Hilbert space associated with the closed composite
systems when the Hilbert spaces associated with the component systems are known.
If H1 and H2 are the Hilbert spaces associated with two closed quantum systems S1

and S2, respectively, then the space associated with the composite system is the tensor
product H1 ⊗H1. If we look carefully, it is this postulate that underlies the phenom-
ena of quantum entanglement and makes quantum theory universally applicable to any
scale.
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One of the most intriguing feature of quantum theory is that it can treat every degree
of freedom of a particle as an independent quantum system and associate a Hilbert
space to it. For example, x, y and z coordinates form three different Hilbert spaces Hx,
Hy, and Hz and the wave function of the particle is written in the composite Hilbert
space Hx ⊗Hy ⊗Hz. Here, three different spatial degrees of freedom of a quantum
particle behave like they are three independent physical systems. Similarly, spatial
and internal degrees of freedom can be treated as two separate systems. If the Hilbert
spaces associated with the spatial degree of freedom and the spin of an electron are Hr

and Hs, respectively, then the Hilbert space associated with the composite system is
Hr ⊗Hs.

Quantum mechanics allows manipulations on the internal degrees of freedom with-
out involving the spatial degree of freedom. In other words, quantum states in Hilbert
spaces associated with the internal degrees of freedom like spin of the electron or the
energy levels of a hydrogen atom can be prepared, transformed and measured unre-
stricted without disturbing the spatial wave function of the system. Formally, we can
apply operations of the form 1r⊗Ts on Hr⊗Hs, where Ts is a valid quantum operation
acting on Hs. Such operations are trivial and have been used frequently in quantum
literature.

In this chapter, we present a no-go theorem stating that the internal degree of free-
dom of quantum particles cannot be manipulated without introducing disturbance to
the spatial wavefunctions. Our no-go theorem is implied by the no-faster-than speed of
light communication principle. Formally, we show that operations of the form 1r ⊗ Ts
on Hr⊗Hs can enable faster than speed of light communications and, hence, cannot be
physically possible. Furthermore, we show that the no-go result has a very interesting
implication in explaining the emergence of classical objectivity in the position basis.
Quantum Darwinism and quantum decoherence paradigm attempt to explain objectiv-
ity withing the framework of standard quantum theory [135, 136, 137, 138, 139, 140].
However, all the previous works have considered oversimplified decoherence models
which are considered to be far from practicality. For instance, the spin-spin interaction
model assumes all the constituent subsystems of the environment are in pure and same
state [135, 139]. The interactions are also considered to be of restricted forms. In
addition, quantum Darwinism demands system-environment interaction to happen in
a preferred system-basis [136]. In reality, the classical objectivity is seen to take place
in the position basis all the time. To explain this, earlier works have considered di-
electric sphere illumination model in which interaction with thermal photons localizes
a dielectric sphere in the position basis [141, 142]. Our no-go result makes the posi-
tion a universally preferred basis in all interactions. We show that random spin-spin
interactions between environment and a system lead to emergence of objectivity in the
position basis of the latter.
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5.2 The no-go theorem and the proof
Special theory of relativity does not allow faster than speed of light communications.
Speed of light is a fundamental constant of nature and it has been observed to be
valid at all scales in the observed universe. All phenomena in classical mechanics are
intrinsically local in the sense that all variables and observables of the theory remain
completely undisturbed by space-like separated events. However, in quantum theory,
we observe that collapse of a quantum state is non-local. In the famous Einstein-Bohr
debate, Einstein introduced the notion of non-local collapse of the wavefunction of
a quantum particle [143, 144]. He proposed a thought experiment where a particle
is prepared in a superposition of wave packets localized at two spatially separated
locations [145]. Detection of the particle at one location instantaneously collapses the
wavefunction to nothing at the other location. In ψ-ontic theories, the wavefunction
itself is an ontic variable i.e. it represents the reality. Therefore, the non-local collapses
can steer the element of reality in space-like separated events. Einstein called it a
spooky action at a distance [102].

The collapse of wavefunction is a faster than speed of light phenomena. This was
later utilized in the famous Einstein–Podolsky–Rosen (EPR) paradox [143] that even-
tually led to discovery of Bell non-locality [20]. However, the non-local collapse of
wavefunctions cannot be used to send information faster than speed of light [146].
The latter is ensured by the linear structure of the quantum theory and more generally
by the no-signaling principle [147, 148]. According to the no-signaling principle, the
statistics of a subsystem of a composite system remains undisturbed when local mea-
surements are performed on the other subsystem. In simple words, an observer cannot
use local measurements on a subsystem to send information to another observer who
can have access to the other half of the composite system.

Here, we use no faster-than-light communication principle as a more general ver-
sion of the no-signaling principle. We assume that quantum systems cannot be used
for faster-than-light communication. Formally, we define our version of no signaling
principle as follows.

Theorem 5.2.1. (The no faster-than-light communication principle) Consider that
Alice and Bob are two observers and they have black boxes A and B, respectively, in
their labs in such a way that A only takes inputs and B gives only outputs. Suppose
Alice generates a random bit string A in the space-time region EA and feed it into A

as an input. Bob then generates a bit string B as an output from B in the space-time
region EB. If EA and EB are space-like separated then I(A : B) = 0, where I(A : B)

is the mutual information between strings A and B.

The mutual information quantifies the correlation between two strings. Theo-
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5. A no-go theorem on restricted measurements and implications thereof

rem 5.2.1 states that any locally and independently generated bit string is completely
uncorrelated with any bit string that is generated in a space-like separated region.
Freely generated information cannot be sent to space-like separated regions. Any black
box scenario that violates Theorem 5.2.1 is physically impossible. We use this princi-
ple to show that internal degrees of freedom of a quantum particle cannot be manip-
ulated without disturbing its spatial wavefunction. Formally, we prove the following
theorem.

Theorem 5.2.2. (The no-go theorem) Suppose HS and HI are the Hilbert spaces
associated with the spatial and internal degrees of freedom of a quantum particle,
respectively. Then,

(a) Unitary operations of the form U = 1S ⊗ UI on the state space HS ⊗HI are
restricted by the no faster-than-light communication principle.

(b) Measurements of the form M = {1S⊗ΠI ,1S⊗ Π̃I} on the state space HS⊗HI

are restricted by the no faster-than-light communication principle, where ΠI and
Π̃I are projection operators and ΠI + Π̃I = 1I .

Proof. We prove the theorem using contradiction. Consider, without loss of generality,
that the internal degree of freedom is a two-level system. For simplicity, we consider
an electron and its spin. Using gedanken experiments, we show that the operations
mentioned in the theorem enable the faster-than-light communication. Suppose a sin-
gle electron is prepared in a wavefunction that spreads over arbitrary large distances.
Without loss of generality, we assume that the electron is prepared in a superposition of
being in the labs of observers Alice and Bob who are stationed at x = −α and x = α,
respectively (see Fig. 5.1). Furthermore, the spin of the electron is prepared in the state
|0〉. More specifically, the composite state of the electron describing its spatial degree
of freedom and the spin is given by |Ψ〉SI = |ψ〉S ⊗ |0〉I ∈ HS ⊗HI , s. th.

ψS(x) = 〈x|ψ〉S = N

[
exp

(
−(x− α)2

4σ2

)
+ exp

(
−(x+ α)2

4σ2

)]
(5.1)

where N is a normalization constant and σ � α. The wavefunction ψ(x) is a super-
position of two Gaussian wave packets, one of which is centered in Alice’s lab while
the other in Bob’s lab. Here, we assume that the distance between the two labs is
large i.e. 1 � α. Since the electron is spread over two labs, it can act as a long black
box accessible to both observers. It is intriguing that quantum mechanics does not
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Alice Bob

2α

a
meas. setting

b
meas. outcomes

Figure 5.1: Alice and Bob are stationed in two laboratories separated by distance 2α. They
share a common quantum particle which is simultaneously present in both laboratories.
Alice chooses an operation based on randomly generated bit a and performs it on the
internal degree of freedom of the particle. Bob performs a fixed measurement on the
internal degree of freedom and registers the outcome as a bit b.

associate a sense of ‘physical space’ to the spin degree of freedom. Therefore, it is le-
gitimate to assume that the spin of the electron is available where ever its wavefunction
is non-vanishing. We use this setup to prove the theorem.

(a) Alice generates a uniformly random bit a as a message to send it to Bob. The
quantum state representing the bit can be written as

ρA =
1

2

∑
a∈{0,1}

|a〉〈a| . (5.2)

The classical-quantum (cq) state of Alice’s bit and the electron can be expressed
as

ρASI =
1

2

∑
a∈{0,1}

|a〉〈a|A ⊗ |ψ〉〈ψ|S ⊗ |0〉〈0|I . (5.3)

If Alice wants to send the bit a to Bob, she applies an operationUa on the electron
state |Ψ〉SI , where

Ua =

{
1⊗ 1; if a = 0,

1⊗ σx; if a = 1,
(5.4)
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The state after Alice’s operation becomes

ρ′ASI =
1

2

∑
a∈{0,1}

|a〉〈a|A ⊗ |ψ〉〈ψ|S ⊗ |a〉〈a|I . (5.5)

Bob measures the operator σz on the electron and records the outcome as a bit
b ∈ {0, 1}. After tracing out electron wavefunction and its spin state, we have
classical-classical (cc) state of Alice and Bob’s bits as

ρAB =
1

2

∑
a,b∈{0,1}

|a〉〈a|A ⊗ |a〉〈a|B . (5.6)

Now assume that τ is the time difference between Alice’s bit generation (call it
event EA) and Bob’s act of recording his measurement outcome (event EB) s.
th. cτ � 2α, where c is the speed of light. From Eq. (5.6), the mutual informa-
tion between A and B is I(A : B) = 1. This contradicts the no faster-than-light
communication principle (Theorem 5.2.1). Hence, the part (a) is proved.

(b) Similar to the previous case, Alice generates a bit a ∈ {0, 1}, the state of which
can be given by Eq. (5.2) and the cq-state of Alice’s bit and electron is given by
Eq. (5.3). To send bit a = 0, Alice performs 1S ⊗ 1I on the electron i.e. she
does not disturb the electron state. To send the bit a = 1, she perform following
measurement on the electron state |Ψ〉SI ,

Mx = {1⊗ |+〉〈+| ,1⊗ |−〉〈−|} (5.7)

Note that measurement Mx is a measurement on the internal degree of freedom
without disturbing the spatial wavefunction. The state after Alice’s operation
becomes

ρ′ASI =
1

2
|0〉〈0|A⊗|ψ〉〈ψ|S⊗|0〉〈0|I+

1

4
|1〉〈1|A⊗|ψ〉〈ψ|S⊗

∑
k∈{+,−}

|k〉〈k|I . (5.8)

Bob measures σz on the electron and records the outcome as a bit b ∈ {0, 1}.
After tracing out electron wavefunction and its spin state, we have classical-
classical (cc) state of Alice and Bob’s bits as

ρAB =
1

2
|0〉〈0|A ⊗ |0〉〈0|B +

1

4
|1〉〈1|A ⊗ |1〉〈1|B +

1

4
|1〉〈1|A ⊗ |0〉〈0|B (5.9)
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Using Eq. (5.9), the mutual information between Alice and Bob is

I(A : B) = 1− h
(

1

4

)
= 1 +

1

4
log2

1

4
+

3

4
log2

3

4

≈ 0.19

(5.10)

Suppose that the time difference between Alice’s bit generation (the event EA)
and Bob’s bit recording (the event EB) is τ s. th. cτ � 2α i.e. events EA and
EB are space-like separated. Clearly, the result in Eq. (5.10) contradicts the no
faster-than-light communication principle (Theorem 5.2.1). Hence, the part (b)
is proved.

Remark 5.2.1. We have only considered specific operations in our proof. However,
the proof is valid without loss of generality. For instance, in case (a), we can choose
the spin state in such a way that a given unitary acts as a bit flip operation. In our
case we have only considered the state |0〉 and the unitary σx. Similarly, in case (b),
for an arbitrary measurement setting M ≡ {1 ⊗ Π,1 ⊗ Π̃}, we can prepare the spin
in a state that belongs to a mutually unbiased basis to {Π, Π̃}. Bob then measures the
spin in the preparation basis. In our proof, we have used the measurement Mx and,
therefore, prepared the spin in |0〉.

Our main argument is based on the assumption that the spin of the electron (or
the internal degree of any quantum particle) is accessible at locations where ever the
wavefunction is non-zero. Moreover, we implicitly assume that the internal degree has
no association with the spatial degree of freedom and, thus, any manipulation at any
point in space updates the spin-state at all points in the space and that is how Alice
and Bob are able to signal. In order to make all operations spatially local, we need to
include the notion of spatially localized quantum operations such as

U ′ = |−α〉〈−α| ⊗ σx + (1− |−α〉〈−α|)⊗ 1, (5.11)

or measurement of the form

M′ ≡ {|−α〉〈−α| ⊗ |+〉〈+| , |−α〉〈−α| ⊗ |−〉〈−| , (1− |−α〉〈−α|)⊗ 1} . (5.12)

Eqs. (5.11) and (5.12) incorporate the fact that manipulations on spin that take place
inside Alice’s lab do not disturb the spin in Bob’s lab. It is easy to follow that such
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operations do not violate the no faster-than-light communication principle. At first
glance, Theorem 5.2.2 and its proof appear very trivial. However, our proof using
no faster-than-light communication principle highlights a deeper aspect of the connec-
tion between the spatial wavefunction and the internal degree of freedom. Moreover,
our theorem has established that no manipulations (unitary or measurements) on the
internal degree can be performed without disturbing the spatial wavefunction. If op-
erations of the form U or M (as specified in Theorem 5.2.2) are not permitted, it may
be questioned what types of operations are permissible under the no faster-than-light
communication principle. An accurate answer to this question may not be plausible
here. However, we propose a possible solution which can be used in a crude way in
certain physical scenarios to get interesting results.

Proposition 5.2.1. Suppose an observer, localized at some position x, performs an
operation E on the internal degree of freedom of a quantum particle, then

(i) if E is a unitary U , the operation on the composite state of spatial and internal
degrees of freedom is given by

U = |x〉〈x| ⊗ U + (1− |x〉〈x|)⊗ 1.

(ii) if E is a measurement operation of the form {Π, Π̃} s. th. Π + Π̃ = 1, then the
measurement on the composite state of spatial and internal degrees of freedom
is given by

M ≡
{
|x〉〈x| ⊗ Π, |x〉〈x| ⊗ Π̃, (1− |x〉〈x|)⊗ 1

}
.

Here, we have assumed that the observer is sharply localized at a position x. This
is an unrealistic scenario. In a more practical situation, we can assume the effects of
observer’s action are reachable in a spatial region x ± δ. In that case, we can replace
the projection operator |x〉〈x| by

∫ x+δ

x−δ |x′〉〈x′| dx′. So far, we have only considered the
simple case of one dimensional spatial degree of freedom. However, the generalization
to three dimensional space is straightforward and more realistic.

5.3 Implications in quantum Darwinism
Quantum Darwinism attempts to explain the emergence of classical reality from the
underlying quantum world. The theory proposes that the environment plays a cru-
cial role in selecting which quantum states are accessible to us as observers, leading
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to the emergence of objective, classical reality. According to the theory, the environ-
ment continually monitors and records information about the quantum system, which
is then redundantly imprinted on many different fragments in the environment. Mul-
tiple observers now can have access to separate fractions and gain information about
the system (or the corresponding pointer) observable. Due to the redundant imprinting
of the information, every observer has the same knowledge about the system. Such a
wide availability of the information about the system is reflected in the emergence of
classical reality that we all experience.

The framework of quantum Darwinism is based on concepts of quantum informa-
tion theory and deals less with the dynamics of decoherence. However, the dynamical
emergence of the objectivity demands strong constraints on the pointer-environment
interaction Hamiltonian. The key result of quantum Darwinism is: if a sufficiently
large number of observers have access to complete information about different observ-
ables of the pointer just by probing disjoint fragments of the environment, then their ob-
servables commute. In simpler words, different observers can only have complete in-
formation about a set of compatible observables of the pointer. Such a post-interaction
structure can only emerge if the pointer-environment interaction singles out a preferred
observable of the pointer. This leads to consideration of simplified decoherence mod-
els such as, the spin model with C-NOT or C-MAYBE interactions [149, 150], central
spin decoherence with non-interacting spins [149, 151, 152, 153, 154, 155], quantum
Brownian motion model [156], and illuminated dielectric sphere model [141, 142].
These models consider pointer-environment coupling in the pointer-observable basis.
Additionally, the initial states of environment subsystems are assumed to be in pure and
identical states, except for the illuminated dielectric sphere model where the environ-
ment is initially in a mixed state of optical plane waves. However, pointer-environment
interactions remains controlled-unitary type with the assumption of symmetric envi-
ronments in all models. These assumptions are strong and limit the applicability of
quantum Darwinism to a specific set of decoherence mechanisms. In real world sce-
narios, environments can interact to a system with randomized interaction Hamilto-
nian. Such scenarios do not usually fulfill the required dynamical conditions for the
quantum Darwinism.

Here, we preset a model where a randomized interaction Hamiltonian can produce
effects of quantum Darwinism. In fact, we show that, as a direct consequence of our
no-go theorem (Theorem 5.2.2), any random interactions between internal degrees of
freedom of system and environment-subsystems result into emergence of objective
reality in the position basis. This solves a long-standing problem in the decoherence
paradigm.

Instead of using information theoretic approach established by W. H. Zurek and
his collaborators [135, 136, 138, 140], we here use approach of structural broadcast
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structure [157, 158] to show the emergence of objectivity in our decoherence model.
Suppose an environment E is divided into fragments (collections of subsystems of E)
E1, E2, · · · , En after its interaction with a system S in such a way that the joint state
can be expressed as

%S:En =
∑
i

pi |i〉〈i|S ⊗ %E1
i ⊗ %E2

i ⊗ · · · ⊗ %Eni (5.13)

where {|i〉} is some orthogonal basis in the system’s Hilbert space, {pi} is a valid
probability distribution and states %Eki are perfectly distinguishable:

%Eki %Ekj = 0 ∀i 6= j, k = 1, 2, · · · , n. (5.14)

Then, %S:En is called a spectrum broadcast structure. According to the main theorem
proven in [157], the appearance of the spectral broadcast structure is a necessary and
sufficient condition for objectivity. Here, eventually, we will show that arbitrary inter-
actions between internal degrees of freedom of system and subsystems of environment
lead to emergence of objectivity in the position basis.

5.3.1 Decoherence Model
The system S is a quantum particle that can be located only at d locations {−→x i}i∈{1,2,··· ,d}.
Additionally, S has an internal degree of freedom described by states in a two dimen-
sional Hilbert space denoted by HS . Suppose S is initially in the state:

%S = |Ψ〉〈Ψ| ⊗ ρS (5.15)

where

|Ψ〉 =
d∑
i=1

αi |−→x i〉 , (5.16)

s. th.
∑d

i=1 ‖αi‖2 = 1, 〈−→x i|−→x j〉 = δij , and ρS ∈ HS is the state of the internal degree
of freedom that, we assume here, is the spin. The particle is assumed to be point-like or
a sphere of an arbitrary small radius. Here, the particle is present in a superposition of
all possible locations {−→x k}k∈{1,2,··· ,d}. The particle is surrounded by an environment
E made of N subsystems. Here we consider that the subsystems of E are pin-1/2
point-like particles localized in the position space. We assume that the state of the k-th
subenvironment Esub

k before system-environment interaction is of the form:

%Esubk
= |ψk〉〈ψk| ⊗ ρk (5.17)

where |ψk〉 ∈ {|−→x i〉}i∈{1,2,··· ,d} and ρk is an arbitrary spin-1/2 state of Esub
k before

the interaction takes place. Note that unlike all the previous models, we do not make
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Figure 5.2: The system is in superposition of positions {xi}i=1,2,··· ,d. Environment spins
{Eij} are randomly located near positions {xi}. Eij is the j-th subenvironment near xi.
Random spin interactions take place between subenvironments and the system.

any assumption about the initial spin states of subenvironments. Our only assumption
about the states of subenvironments is that they are well localized in the position space.
Subenvironments can indeed be present at locations other than {−→x k}k∈{1,2,··· ,d} but
they do not interact with system S and, thus, play no role in the process of decoherence.
It is noteworthy that {Esub

k } are present at random locations {−→x k}k∈{1,2,··· ,d} and there
can be multiple subenvironments present at a location. The initial state of the system
plus environment is as usually assumed to be a product form:

%S:E = %S ⊗ %Esub1
⊗ %Esub2

⊗ %Esub3
· · · ⊗ %EsubN

(5.18)

Note that the state of E here is more general than the previous models where it is
assumed to be of the form (%Esub)

⊗N .
Let us now specify the interaction model. The subenvironment spins are assumed

to be independent and do not interact with each other. Furthermore, the interactions
between subenvironment spins and the spin of S are considered to be the most general
and random. The latter is inspired by the fact that the environments in real scenarios
are uncontrollable and random. All previous decoherence models in quantum Dar-
winism paradigm have assumed controlled-unitary interaction models where actions
on the subenvironments are controlled by an unjustified preferred basis of the system
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or pointer space. For instance, following form of interaction is considered in spin-
interaction models assuming all subenvironment spins are initially in |0〉:

HS:E = σSz ⊗
N∑
i=1

gi(t)σ
Esubi
x

⊗
j 6=i

1E
sub
j (5.19)

It is easy to visualize that US:E = exp
{
−ι
∫
HS:Edt

}
, where ι =

√
−1, is a series

of unsharp von Neumann interactions with varying strength εi =
∫
gi(t)dt where the

subenvironments {Esub
i } play the role of ancilla qubits. Furthermore, it can be argued

that US:E is a sequential unsharp measurement of σz spin on the system S. There-
fore, the emergence of objectivity in z-basis is expected. Thus, the form of US:E in
Eq. (5.19) is a strong assumption. It was also argued that a preferred basis-interaction
is required for the emergence of Darwinian structure. Showing emergence of objectiv-
ity for arbitrary interaction is still a challenging problem.

In our model we assume the most general spin-spin interaction model where spin
of S has arbitrary interactions with {Esub

i }:

HS:E = −
N∑
i=1

gi(t)σ
S
i ⊗ σE

sub
i

⊗
j 6=i

1E
sub
j (5.20)

where σSi = âi · σ, σEsubi = b̂i · σ and âi, b̂i are random unit vectors in the physical
space. Every subenvironment in this model interacts with the system differently. Here
we assume that subenvironments do not interact with each others. We will show that
the system becomes objective in the position basis when Theorem 5.2.2 is taken into
account.

5.3.2 Formation of the broadcast structure

Let the state spaces associated with the position and the spin of Esub
k be Hx

k and Hk,
respectively. Clearly, the initial state %Esubk

∈ Hx
k ⊗Hk. The composite state space of

system plus environment is:

HS:E = (Hx
S ⊗HS)⊗ (Hx

1 ⊗H1)⊗ (Hx
2 ⊗H2)⊗ · · · ⊗ (Hx

N ⊗HN) , (5.21)

where Hx
S is the space associated with the position of S. According to Theorem 5.2.2,

any interaction between S and a subenvironment must be mediated by the spatial de-
gree of freedom. Therefore, the interaction unitary between S and Esub

k has the form
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in the rearranged space Hx
S ⊗Hx

1 ⊗HS ⊗Hk:

ŪS:Esubk
=
∑
i=j

|−→x i〉〈−→x i|S ⊗ |−→x j〉〈−→x j|Esubk
⊗ Uxi

S:Esubk

+
∑
i 6=j
|−→x i〉〈−→x i|S ⊗ |−→x j〉〈−→x j|Esubk

⊗ 1
(5.22)

where

Uxi
S:Esubk

= exp

{
ισSk,xi ⊗ σ

Esubk
xi

∫
gxik (t)dt

}
(5.23)

is a unitary operation acting over the space HS⊗Hk with arbitrary spin operators σSk,xi
and σE

sub
k

xi . The position dependencies of spin operators signifies that the factors which
determine the interaction between the system and subenvironments at a location −→x i

are local and random. Note that this condition is an implication of the Theorem 5.2.2
rather an assumption. The complete interaction between the system and environment
can now be expressed as:

ŪS:E =
N∏
k=1

ŪS:Esubk

⊗
j 6=k

1E
sub
j , (5.24)

where 1E
sub
j is identity over Hx

j ⊗Hj . Since we have assumed localized subenviron-
ments in our model (see Eq. 5.17), we can rearrange the state of environment (specified
in Eq. 5.18) depending on the position of subenvironments {Esub

i } as

%E = (|−→x1〉〈−→x1| ⊗ ρx11 )⊗ (|−→x1〉〈−→x1| ⊗ ρx12 )⊗ · · · ⊗
(
|−→x1〉〈−→x1| ⊗ ρx1m1

)︸ ︷︷ ︸
%mac1

⊗ (|−→x2〉〈−→x2| ⊗ ρx21 )⊗ (|−→x2〉〈−→x2| ⊗ ρx22 )⊗ · · · ⊗
(
|−→x2〉〈−→x2| ⊗ ρx2m2

)︸ ︷︷ ︸
%mac2

⊗ · · ·

⊗ (|−→xd〉〈−→xd| ⊗ ρxd1 )⊗ (|−→xd〉〈−→xd| ⊗ ρxd2 )⊗ · · · ⊗
(
|−→xd〉〈−→xd| ⊗ ρxdmd

)︸ ︷︷ ︸
%macd

≡ %mac1 ⊗ %mac2 ⊗ · · · ⊗ %macd .

(5.25)

Here, we assume thatmk subenvironments are localized at position−→x k s. th.
∑

kmk =
N . The subenvironments localized at −→x k form a macroscopic fraction of the environ-
ment specified by the state %mack . State %S:E can be written using Eq. (5.25):

%S:E = %S ⊗ %mac1 ⊗ %mac2 ⊗ · · · ⊗ %macd

=

(∑
i,j

αiα
∗
j |−→x i〉〈−→x j| ⊗ ρ

)
S

⊗ %mac1 ⊗ %mac2 ⊗ · · · ⊗ %macd

(5.26)
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Let us assume without loss of generality that the system interacts with macro-
scopic fractions one by one in the order Emac

1 , Emac
2 , · · · , Emac

d . Furthermore, let
Esub
ij denote the j-th subenvironment in the fraction Emac

i . Clearly, the initial state
of Esub

ij ∈
{
Esub
k

}
k=1,2,··· ,N is |−→x i〉〈−→x i| ⊗ ρxij (see Eq. (5.25)). Without loss of gener-

ality, we can assume that subenvironments interact with the system one by one within
a macroscopic fraction. The interaction unitary ŪS:Esub11

transforms the system plus
environment state as

%S:E

Ū
S:Esub11−−−−→ ‖α1‖2 |−→x 1〉〈−→x 1|S ⊗ |−→x 1〉〈−→x 1|Esub11

⊗(
Ux1
S:Esub11

)
ρS:E11

(
Ux1
S:Esub11

)† ⊗
Esubij 6=11

%Esubij

+
∑
k,l 6=1

αkα
∗
l |−→x k〉〈−→x l|S ⊗ |−→x 1〉〈−→x 1|E11

⊗

ρS:E11

⊗
Esubij 6=11

%Esubij

(5.27)

where we used the notation ρS:Eij ≡ ρS ⊗ (ρxij )Esubij
. Let us denote

ŪS:Emack
= ŪS:Esubkm1

· · · ŪS:Esubk2
ŪS:Esubk1

,

Uxk
S:Emack

= Uxk
S:Esubkm1

· · ·Uxk
S:Esubk2

Uxk
S:Esubk1

,
(5.28)

and

ρS:Emack
= ρS

mk⊗
l=1

(ρxkl )Esubkl
. (5.29)

Let us now evaluate the state after all interactions. The interaction ŪS:Emac1
transforms

%S:E into:

%S:E

ŪS:Emac1−−−−−→ ‖α1‖2 |−→x 1〉〈−→x 1|S ⊗
(
|−→x 1〉〈−→x 1|⊗m1

)
Emac1

⊗
(
Ux1
S:Emac1

)
ρS:Emac1

(
Ux1
S:Emac1

)†⊗
Emack 6=1

%Emack

+
∑
k,l 6=1

αkα
∗
l |−→x k〉〈−→x l|S ⊗

(
|−→x 1〉〈−→x 1|⊗m1

)
Emac1

⊗ ρS:Emac1

⊗
Emack 6=1

%Emack

(5.30)

102



5.3 Implications in quantum Darwinism

It is easy to evaluate that the series of unitary operations ŪS:Emac1
, ŪS:Emac2

, · · · , ŪS:Emacd

gives,
%′S:E =

(
ŪS:E

)
%S:E

(
ŪS:E

)†
=

d∑
i=1

‖α1‖2 |−→x i〉〈−→x i|S ⊗
(
|−→x i〉〈−→x i|⊗mi

)
Emaci

⊗
(
Uxi
S:Emaci

)
ρS:Emaci

(
Uxi
S:Emaci

)†⊗
Emack 6=i

%Emack

(5.31)

After tracing out the spatial degree of freedom of the subenvironments, we have

%′S:E =
d∑
i=1

‖αi‖2 |−→x i〉〈−→x i|S ⊗
(
Uxi
S:Emaci

)
ρS:Emaci

(
Uxi
S:Emaci

)†⊗
Emack 6=i

ρEmack

≡
d∑
i=1

‖αi‖2 |−→x i〉〈−→x i|S ⊗ ρ′S:Emaci

⊗
Emack 6=i

ρEmack
,

(5.32)

where ρ′S:Emaci
is the post-interaction state of system plus i-th macro-environment spin.

Since ρ′S:Emaci
is generated by random interactions, the derivation of the general form of

ρ′S:Emaci
is highly nontrivial and unimportant. State %′S:E reduces to spectrum broadcast

structure when a sufficiently large fraction of the environment is traced out. The proof
of the latter is difficult due to generality of the randomized interactions and, therefore,
not in scope of this thesis. However, the emergence of Born probabilities {‖αi‖2}
is already visible in Eq. (5.32). Nonetheless, we show the formation of broadcast
structure for an specific case.

Suppose the spin of the system is initially in maximally mixed state i.e. ρS = 1S
2

.
Let ρ(k)

S:Emaci
denote the state of system plus i-th macro-environment after interaction

with k subenvironments:

ρ
(k)
S:Emaci

=
(
Uxi
S:Esubik

· · ·Uxi
S:Esubi2

Uxi
S:Esubi1

)
ρS:Emaci

(
Uxi
S:Esubik

· · ·Uxi
S:Esubi2

Uxi
S:Esubi1

)†
.

(5.33)
Note that ρ(mi)

S:Emaci
= ρ′S:Emaci

. From Eq. (5.23), we have

Uxi
S:Esubij

=
(

cos(θij)1S ⊗ 1Esubij
+ ι sin(θij)σ

S
j,xi
⊗ σE

sub
ij

xi

)⊗
k 6=j

1Esubik
, (5.34)

where we have denoted θij =
∫
gxij (t)dt. Using Eq. (5.34), we obtain

ρ
(1)
S:Emaci

=
(
Uxi
S:Esubi1

)
ρS:Emaci

(
Uxi
S:Esubi1

)†
=

(
1

2
⊗ ωxi1 + Ωxi

1

)
S:Esubi1

⊗
j 6=1

(
ρxij
)
Esubij

(5.35)
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where
ωxi1 =

(
cos2(θi1)ρxi1 + sin2(θi1)σ

Esubi1
xi ρxi1 σ

Esubi1
xi

)
≡
(
cos2(θi1)ρxi1 + sin2(θi1)ρ̃xi1

)
,

ΩS:Esubi1
= ι sin(2θi1)

σS1,xi
2
⊗ σ

Esubi1
xi ρxi1 − ρxi1 σ

Esubi1
xi

2
.

(5.36)

Note that Tr{ωxi1 } = 1 and TrS

(
(Ωxi

1 )S:Esubi1

)
≡ 0. Similarly,

ρ
(2)
S:Emaci

=
(
Uxi
S:Esubi2

)
ρ

(1)
S:Emaci

(
Uxi
S:Esubi2

)†
=

(
1

2
⊗ ωxi1 ⊗ ωxi2 + Ωxi

2

)
S:Esubi1 Esubi2

⊗
j 6=1,2

(
ρxij
)
Esubij

(5.37)

where
ωxi2 =

(
cos2(θi2)ρxi2 + sin2(θi2)σ

Esubi2
xi ρxi2 σ

Esubi2
xi

)
≡
(
cos2(θi2)ρxi2 + sin2(θi2)ρ̃xi2

)
,

(5.38)

and (Ωxi
2 )S:Esubi1 Esubi2

is a traceless operator. More specifically, we have

TrS

(
(Ωxi

2 )S:Esubi1 Esubi2

)
≡ 0. (5.39)

It is straightforward that

ρ′S:Emaci
=

(
1S

2

⊗
j

(
ωxij
)
Esubij

+ (Ωxi
2 )S:Emaci

)
, (5.40)

s. th.
TrS

((
Ωxi
j

)
S:Emaci

)
≡ 0. (5.41)

and
ωxij = cos2(θij)ρ

xi
j + sin2(θij)ρ̃

xi
j , (5.42)

where
ρ̃xij = σ

Esubij
xi ρxij σ

Esubij
xi . (5.43)

After tracing out system’s spin, we obtain

ρ′Emaci
= (ωxi1 )Esubi1

⊗ (ωxi2 )Esubi2
⊗ · · · ⊗

(
ωximi
)
Esubimi

. (5.44)

Using Eqs. (5.32) and (5.44), we obtain the post-interaction state of the system’s spatial
degree of freedom and the environment-spins as:

%′S:E =
d∑
i=1

‖αi‖2 |−→x i〉〈−→x i|S ⊗ ρ′Emaci

⊗
Emack 6=i

ρEmack
. (5.45)
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Remember that the spatial degrees of freedom of subenvironments and spin of the sys-
tem are traced out. As we will see, Eq. (5.45) is a spectrum broadcast structure where
the information of about the system’s position is redundantly imprinted on multiple
fragments of environment-spins. Since we have discarded the spatial degrees of free-
dom of all the subenvironments, our environment E consists of only subenvironment-
spins hereafter. Let us now divide E into fragments F1, F2, · · · , Fn in such a way that
Fk for all k ∈ {1, 2, · · · , n} has randomly chosen subenvironments from all macro-
environments {Emac

j }j∈{1,2,··· ,d}. This can be easily achieved by applying a random
permutation on all subenvironment-spins in Eq. (5.45) and then dividing them into
n fragments of equal size. In this way have fragments consisting of asymptotically
l = N/n subenvironments. Let us denote the post-interaction state of the environment
corresponding to the system’s position −→x i by

ΞE
i = ρ′Emaci

⊗
Emack 6=i

ρEmack
. (5.46)

With re-indexing (as in Eq. (5.18)), the state ΞE
i can be rewritten as:

ΞE
i = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρ′s+1 ⊗ ρ′s+2 ⊗ ρ′s+3 · · · ⊗ ρ′s+mi︸ ︷︷ ︸

ρ′
Emac
i

⊗ρs+mi+1 ⊗ · · · ⊗ ρN , (5.47)

where ρj and ρ′j are the initial and the post-interaction states of the j-th subenviron-
ment, respectively. States {ρ′j} are specified by Eq. (5.42) i.e. we can write

ρ′j = cos2(θj)ρj + sin2(θj)ρ̃j, (5.48)

where θj is a random angle and ρ̃j = σjρjσj s. th. σj is a random spin operator.
Therefore, ρ̃j is also a valid density matrix. After a random shuffling (permutation)
and re-indexing on the subenvironments, we obtain

ΞE
i = ρ1 ⊗ ρ′2 ⊗ ρ3 · · ·︸ ︷︷ ︸

F1

⊗ ρ′r+1 ⊗ ρ′r+2 ⊗ ρr+3 · · ·︸ ︷︷ ︸
F2

⊗ ρ′s+1 ⊗ ρs+2 ⊗ ρ′s+3 · · ·︸ ︷︷ ︸
F3

⊗ ρ′t+1 ⊗ ρt+2 ⊗ ρt+3 · · ·︸ ︷︷ ︸
Fn

≡ξF1
i ⊗ ξF2

i ⊗ ξF3
i ⊗ · · · ⊗ ξFni

(5.49)

where ξFki is the state of k-th fragment corresponding to the system’s position−→x i. Note
that ξFki has multiple disturbed (post-interaction) and undisturbed (initial) subenviron-
ment spins in the product state. Eq. (5.45) can now be re-expressed as:

%′S:E =
d∑
i=1

‖αi‖2 |−→x i〉〈−→x i|S ⊗ ξF1
i ⊗ ξF2

i ⊗ ξF3
i ⊗ · · · ⊗ ξFni . (5.50)
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Let us now prove that states ξFki are perfectly distinguishable i.e.

ξFki ξFkj = 0 ∀ i 6= j, k = 1, 2, 3, · · · , n, (5.51)

or equivalently, the fidelity of states ξFki and ξFkj for i 6= j is zero:

F
(
ξFki , ξFkj

)
= 0 (5.52)

where the fidelity of two density matrices ρ and σ is defined as

F (ρ, σ) = Tr
√
ρ1/2σρ1/2. (5.53)

Fidelity F is multiplicative under tensor products:

F (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = F (ρ1, σ1)F (ρ2, σ2) . (5.54)

Since the fidelity for same states is one i.e. F(ρ, ρ) = 1, we obtain

F
(
ξFki , ξFkj

)
=
∏
u∈Fkij

F (ρu, ρ
′
u) , (5.55)

where Fkij is the set of subenvironments in the fraction Fk s. th. their states correspond-
ing to −→x i and −→x j are unequal. It is easy to verify that one of the states is the initial
state while the other one has the form specified by Eq. (5.48). Since ρu 6= ρ′u ∀u ∈ Fkij ,
we can assume without loss of generality that

F (ρu, ρ
′
u) = 1− εu, (5.56)

where 0 ≤ εu < 1. Therefore, in the asymptomatic case where the size of the environ-
ment is infinitely large, we have

F
(
ξFki , ξFkj

)
= 0 ∀ i 6= j, k = 1, 2, 3, · · · , n. (5.57)

This proves our main claim.

5.4 Discussion and conclusion
In this chapter, beginning with no faster-than-light communication principle we have
proved a no-go theorem according to which all interactions are mediated by spatial
degree of freedom. More specifically, interactions in the internal degree of freedom
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Figure 5.3: The system is in superposition of positions {xi}i=1,2,··· ,d. Environment spins
{Eij} are randomly located near positions {xi}. Subenvironments with the same color
constituent a fragment F . For example, all subenvironments in red are part of a fragment
Fj , in green form Fk and so on.

are localized in the position basis. Due to this the internal degrees of freedom cannot
be measured or manipulated without disturbing the spatial degree of freedom.

Our result can be interpreted using many world interpretation: suppose a system
has a spatial wavefunction ψ(x) and the state corresponding to the internal degree of
freedom (spin) is |φ〉. In many world interpretation, there exists infinitely many worlds
each corresponding to a different position x. When the system interacts with another
system located at some position x′, the spin in only the world where the particle is
located at x′ interacts with the spin of another particle. In this way, the branching takes
place only in the position basis. It naturally asserts that all valid transformations must
always be written carefully taking the spatial degree of freedom into account.

We then applied the no-go result in a decoherence model to demonstrate the generic
emergence of objectivity in the position basis. So far only a set of specific decoher-
ence models have been studied in the decoherence paradigm to demonstrate quantum
Darwinism and consequently the emergence of objectivity. These models are over
simplified and far from practical. Another shortcoming is that they do not explain
emergence of objectivity in the position basis. In this chapter, we have considered
most general form of spin interactions and using our no-go theorem we could show the
emergence of objectivity in the position basis. A point-like particle initially in super-
position at different locations leaves redundant imprinting of the information about the
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position on environment fragments made of spins. More specifically, we showed that
randomized spin interactions generate a spectrum broadcast structure in the position
basis. Our results show that position basis is special and preferred by nature.
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Chapter 6

Demonstration of wave-particle
complementarity using von Neumann
measurements

6.1 Introduction

Wave-particle complementarity is a fundamental concept in quantum mechanics that
explores the dual nature of particles and waves [32, 35]. It arises from the realiza-
tion that at the microscopic level, matter and energy can exhibit both particle-like and
wave-like behavior, depending on how they are observed or measured. This concept
challenges our classical intuition and forms the basis of the wave-particle duality prin-
ciple.

According to wave-particle complementarity, particles such as electrons, photons,
or even larger objects like atoms, can exhibit wave-like properties under certain condi-
tions. This wave-like behavior is characterized by phenomena such as interference and
diffraction, similar to what is observed with classical waves like water waves or sound
waves. When particles exhibit these wave-like properties, they can spread out, interfere
with each other, and display patterns of constructive or destructive interference.

On the other hand, particles can also exhibit particle-like properties. They can be
localized, possess definite positions, and can be individually detected or measured.
This behavior is reminiscent of classical particles, which occupy specific points in
space and can be observed independently of each other.

The intriguing aspect of wave-particle complementarity is that a particle’s behavior
can change depending on how it is observed or measured [35, 159]. When we try
to measure a particle’s position precisely, its wave-like behavior diminishes, and it
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manifests more as a localized particle. Conversely, when we try to measure a particle’s
momentum or energy precisely, its wave-like behavior becomes more prominent, and
its position becomes uncertain. The phenomena is well understood with Wheeler’s
delayed choice [159] and welcher-weg delayed choice [35] experiments

Experimental investigations of the wave-particle complementarity with welcher-
weg, quantum erasers and delayed choice experiments have drawn attention in recent
years [160, 161, 162, 163]. Wheeler’s delayed choice experiment with quantum me-
chanically controlled beam splitter [164] has been demonstrated in various experi-
ments [165, 166, 167, 168]. Recently, the possibility of a superposition in wave and
particle nature was investigated [169]. The quantitative complementarity and the du-
ality relations in asymmetric interference is also under experimental and theoretical
investigations [170, 171].

The experimental investigations of complementarity require sophisticated interfer-
ometers and high experimental skills. Here, we present a scheme in which wave-
particle complementarity can be experimentally investigated without requiring con-
ventional interferometers. The von Neumann coupling between a Gaussian ancilla and
a pre- and post-selected two-level quantum system can induce interference patterns on
the ancilla wavefunction. Furthermore, we demonstrate that the setup is operationally
equivalent to a Mach-Zehnder interferometer. Our proposal makes the quantum super-
position of beam splitters in Wheeler’s delayed choice scenario much easier compared
to earlier experiments. Similarly, it simplifies the experimental investigation of nonlo-
cal features of wave-particle duality.

6.2 Revisiting welcher-weg experiments

Mach–Zehnder interferometer (MZI) is a classic setup for the demonstration of wave-
particle duality. The Mach-Zehnder interferometer is an optical device widely used in
interferometry and quantum optics experiments. It consists of a beam splitterBS1, two
mirrors, and two output ports. The input light beam is split into two arms by the beam
splitter, and each arm travels a different path before recombining at the output ports
with the help of another beam splitter BS2. By adjusting the relative path lengths or
introducing phase shifts in one of the arms, interference occurs when the light waves
recombine, leading to constructive or destructive interference at the output ports. This
interference pattern reveals valuable characteristics about the wave-particle nature of a
single photon inside the interferometer.

When a single photon is injected into one of the ports of BS1, e. g. arm A, it is
split into two possible paths A and B. For a single photon setup, beam splitters can be
thought as basis transformation operators on path degree of freedom. A beam splitter in
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such a scenario with transmittance t can be specified by the following transformation:

|A〉 BS−−→
√
t |A〉+

√
1− t |B〉

|B〉 BS−−→
√

1− t |A〉 −
√
t |B〉

(6.1)

where we have assumed that the beam splitter itself does not introduce any phase dif-
ferent between the paths. With transmittance t1 for BS1, the state after the first split
can be given as

|ψ〉 =
√
t1 |A〉+

√
1− t1eiη |B〉 (6.2)

where 0 ≤ t1 ≤ 1 the transmittance ofBS1 and η is the phase difference introduced by
a possible asymmetric optical path inside the interferometer. Generally the phase shift
η is generated by a phase shifter inserted in one of the paths. BS2 with transmittance
t2 transforms |ψ〉 into

|ψ′〉 =
√
t1
(√

t2 |A〉+
√

1− t2 |B〉
)

+
√

1− t1eiη
(√

1− t2 |A〉 −
√
t2 |B〉

)
=
(√

t1t2 + eiη
√

(1− t1)(1− t2)
)
|A〉

+
(√

t1(1− t2)− eiη
√

(1− t1)t2

)
|B〉

(6.3)

Probabilities of finding the photon in arms A and B after BS2 are:

P (A) = 1− t1 − t2 + 2t1t2 + 2
√
t1t2(1− t1)(1− t2) cos η

P (B) = t1 + t2 − 2t1t2 − 2
√
t1t2(1− t1)(1− t2) cos η

(6.4)

Probabilities P (A) and P (B) are periodic functions of the phase shift η. Since η is the
phase difference between the two paths inside the interferometer, these probabilities
are interference patterns manifesting the wave nature of the photon. Note that when
either of t1 or t2 is zero or one, the interference patterns disappear. In that case the
photon behaves like it followed only one of the two paths revealing its particle nature.
A quantification of wave nature at port A is given by the fringe visibility [172]:

VA =
max
η
P (A)−min

η
P (A)

max
η
P (A) + min

η
P (A)

=
2
√
t1t2(1− t1)(1− t2)

1− t1 − t2 + 2t1t2

(6.5)

Similarly the fringe visibility for port B is:

VB =
2
√
t1t2(1− t1)(1− t2)

t1 + t2 − 2t1t2
(6.6)
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The fringe visibility, in a sense, is a measure of how unlikely is the path indistinguisha-
bility of a photon inside an interferometer. If the guessing probability of the path taken
by the photon is one half, the fringe visibility is one i.e. photon behaves like a perfect
wave. And if the guessing probability is one, the photon behaves like a particle and,
hence, the fringe visibility becomes equal to zero. If one guesses the most probable
way then the probability of success is (1 +P)/2, where P and V are constrained by the
complementarity inequality [173]:

P2 + V2 ≤ 1 (6.7)

where P is known as predictability of the path. Welcher-weg (which path) experiments
establish the wave-particle or indisputably known as the ‘interferometic duality’ in
a beautiful manner: the observation of an interference pattern and the acquisition of
welcher-weg information are mutually exclusive.

One of the most striking and somewhat strange fact about the single photon MZI
experiment is that it is simply an experiment on a two-level quantum system. In this
way, actions of beam splitters, phase shifters, and detectors can simply be implemented
on a spin system or the energy levels of an atom. The only wave-particle picture arises
when we visualize a photon traveling in the space. Can one really talk of wave-particle
duality when all above quantum operations are performed on a spin-1/2 system? Al-
though, one can easily reproduce results of welcher-weg experiment using a spin-1/2
but it may lack an interpretation of the results. Indeed, one can face similar difficulties
in the welcher-weg experiment with MZI if the setup is slightly reformulated: suppose
the photon before BS2 is as usual in state |ψ〉 =

√
t1 |A〉+

√
1− t1eiη |B〉. The action

of BS2 followed by detection in arm A can be interpreted as post-selection in the state
|φ〉 =

√
t2 |A〉+

√
1− t2 |B〉. In this case, we only have a pre-and post-selection sce-

nario where a photon is prepared in |ψ〉 and measured in |φ〉. Here, the interpretation
of wave-particle duality is nontrivial, although the results are same. In this chapter we
will present a technique that enable us to visualize the wave-particle complementarity.

6.3 Interference and wave-particle complementarity us-
ing von Neumann interactions

In this section, we present a technique where a duality relation between properties of
discrete level systems can be translated into wave-particle duality of a photon in an
interferometer. In fact, we will demonstrate that there exists a single-photon-double-
slit experimental scenario associated with a pre-and post-selected scenario with two-
level quantum systems. Suppose a qubit S is prepared in the state:

|ψ〉 =
√
p |0〉+ eiα

√
1− p |1〉 , (6.8)
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where 0 ≤ p ≤ 1 and α is an arbitrary phase. Additionally, an ancilla A is prepared in
a Gaussian wave function in the position basis as:

ξ(x) = (2πδ2)−1/4 exp

(
− x2

4δ2

)
. (6.9)

The ancilla couples with the system with a von Neumann interaction of the form:

Hint = −g(t)σz ⊗ x̂ (6.10)

where σz = |0〉〈0| − |1〉〈1| is the usual z-Pauli operator and x̂ is the position operator
of the ancilla. Suppose interaction takes place for a time period ∆t. Let us denote
γ =

∫ t+∆t

t
g(t)dt. The entangling unitary corresponding to the interaction is given

evaluated as:
U = 1⊗ cos(γx̂) + iσz ⊗ sin(γx̂) (6.11)

Let |Ψ〉 = |ψ〉 ⊗ |ξ〉 be the initial composite state of S and A, where ξ(x) = 〈x|ξ〉.
The post-interaction state |Ψ′〉 = U |Ψ〉 is obtained as:

|Ψ′〉 =
√
p |0〉 ⊗ |ξ0〉+ eiα

√
1− p |1〉 ⊗ |ξ1〉 , (6.12)

where
|ξ0〉 = exp(iγx̂) |ξ〉 ,
|ξ1〉 = exp(−iγx̂) |ξ〉 . (6.13)

The position wavefunctions corresponding to |ξ0〉 and |ξ1〉 are evaluated as:

ξ0(x) = (2πδ2)−1/4 exp

(
iγx− x2

4δ2

)
,

ξ1(x) = (2πδ2)−1/4 exp

(
−iγx− x2

4δ2

)
.

(6.14)

The ancilla is coupled with the system in its z-basis which destroys its coherence.
However, a post-selection can transfer the initial coherence in the z basis to the ancilla
wave-function making it behave like a particle in a double-slit experimental setup. The
system is post-selected in state |φ〉 after the coupling:

|φ〉 =
√
q |0〉+ eiβ

√
1− q |1〉 , (6.15)

where 0 ≤ p ≤ 1 and β is the relative phase. After the post-selection, the ancilla
wavefunction up to a normalization factor is given as:

ξ′(x) =
√
pqξ0(x) +

√
(1− p)(1− q)ei(α−β)ξ1(x) (6.16)
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The probability density P (x) = ‖ξ′(x)‖2 is obtained as:

P (x) =pq‖ξ0(x)‖2 + (1− p)(1− q)‖ξ1(x)‖2

+ 2
√
pq(1− p)(1− q) Re

{
ei(α−β)ξ∗0(x)ξ1(x)

} (6.17)

Since ‖ξ(x)‖ = ‖ξ0(x)‖ = ‖ξ1(x)‖, we have

P (x) = N‖ξ(x)‖2
(

1− p− q + 2pq + 2
√
pq(1− p)(1− q) cos(2γx+ α− β)

)
,

(6.18)
where N is the normalization factor. The distribution P (x) manifests a fringe pattern
enveloped in a Gaussian distribution ‖ξ(x)‖2. The fringe pattern is exactly same as if
it is produced in a MZI output port except that the fringes are in real space i.e. position
and the pattern is Gaussian shaped. P (x) has more resemblance with the fringe pattern
of a double slit experiment. One can quantify the fringe visibility as it is done in the
case of MZI and double slit experiments.

It is worth noting that any pre-and post-selection scenario with a two-level quan-
tum system is operationally equivalent to a MZI scenario where the post-selected state
can reveal information about the coherence in a particular basis. The information it
can reveal is bounded by the corresponding complementarity inequality. For example,
if a system prepared in |ψ〉 is post selected in |φ〉, the maximum predictability whether
the system was in |0〉 or |1〉 is upper bounded by P ≤

√
1− V2, where V is the fringe

visibility of the corresponding interference pattern generated by the von Neumann in-
teraction Hint = −g(t)σz ⊗ x̂ with a Gaussian pointer. In a sense, it quantifies the
coherence in the σz basis: e. g. a perfect interference pattern i.e. V = 1 has zero pre-
dictability meaning that |ψ〉 is a uniform superposition of |0〉 and |1〉. In other words,
it is in a complementary basis. Similarly, V = 0 signifies error-free predictability of
the state. The system in this case is operationally equivalent to a system well localized
in σz basis.

The post-selection measurement can have outcomes other then |φ〉 which are dis-
carded. Suppose it has two outcomes |φ〉 and |φ′〉 s. th. 〈φ′|φ〉 = 0. The interference
pattern corresponding to the post-selection |φ′〉 is obtained as:

P̃ (x) = Ñ‖ξ(x)‖2
(
p+ q − 2pq − 2

√
pq(1− p)(1− q) cos(2γx+ α− β)

)
(6.19)

where Ñ is a normalization factor.
Our results are applicable to mixed states as well. Suppose the system is in a mixed

state ρ initially:

ρ = p |0〉〈0|+ Γeiα |0〉〈1|+ Γe−iα |1〉〈0|+ (1− p) |1〉〈1| , (6.20)
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where 0 ≤ p ≤ 1, 0 ≤ Γ and α the coherence factor and coherence phase, respectively.
With the ancilla prepared in |ξ〉, interaction U and post-selection of the system in |φ〉,
we obtain the corresponding fringe pattern:

P (x) = N‖ξ(x)‖2
(

1− p− q + 2pq + 2Γ
√
q(1− q) cos(2γx+ α− β)

)
, (6.21)

Note that for q = 1/2, the fringe visibility is V = 2Γ.

6.4 Welcher-weg detections, quantum erasers and Wheeler’s
delayed-choice experiments

Consider the MZI arrangement of Section 6.2. Now suppose, an observer uses a quan-
tum memory, initially prepared in state |χ〉, to record the path of the photon inside the
interferometer. The interaction between the photon and the memory is specified by:

|A〉 ⊗ |χ〉 int−→ |A〉 ⊗ |0〉
|B〉 ⊗ |χ〉 int−→ |B〉 ⊗ |1〉

(6.22)

The interaction stores the path information in the memory. One can find out the path
by simply measuring the memory in the {|0〉 , |1〉} basis. The state after BS2 becomes:

|Ψ′〉 =
√
t1
(√

t2 |A〉+
√

1− t2 |B〉
)
⊗ |0〉

+
√

1− t1eiη
(√

1− t2 |A〉 −
√
t2 |B〉

)
⊗ |1〉

= |A〉 ⊗
(√

t1t2 |0〉+ eiη
√

(1− t1)(1− t2) |1〉
)

+ |B〉 ⊗
(√

t1(1− t2) |0〉 − eiη
√

(1− t1)t2 |1〉
)
,

(6.23)

Consequently,
P (A) = 1− t1 − t2 + 2t1t2

P (B) = t1 + t2 − 2t1t2.
(6.24)

The fringe visibility is zero. Leaving out the path information wipes out the in-
terference. The fringes can be retrieved by erasing the quantum memory with de-
layed choice. Suppose after the detection of photon, the memory is projected into
|+〉 = (|0〉 + |1〉)/

√
2. The corresponding probability densities of ancilla are equal to

P (A) and P (B) of Eq. (6.4). Just by choosing a measurement on quantum memory
in a different basis regenerates the interference patterns. A measurement in a comple-
mentary basis to {|0〉 , |1〉} erases the path information and photons start to behave like
waves.
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To demonstrate the same with von Neumann interaction scenario, we consider a
two qubit entangled state:

|Ψ〉 =
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) . (6.25)

where the qubits A and B are held by Alice and Bob, respectively. Bob couples qubit
B to the ancilla in σz basis and then post-selects in the state |φ〉 (given in Eq. (6.15)).
The corresponding probability density of the ancilla is P (x) = ‖ξ(x)‖2 with zero
fringe visibility. It is obvious that the the qubit A carries the information about the
coherence of B in the σz basis which destroys the wave nature. Suppose qubit A
undergoes a measurement in the basis {|ψ〉 , |ψ′〉}, where |ψ〉 is given by Eq (6.8) and
〈ψ′|ψ〉 = 0. The interference patterns corresponding to Alice’s outcomes {|ψ〉 and
|ψ′〉} are obtained:

Pψ(x) = ‖ξ(x)‖2
(

1− p− q + 2pq + 2
√
pq(1− p)(1− q) cos(2γx+ α− β)

)
Pψ′(x) = ‖ξ(x)‖2

(
p+ q − 2pq − 2

√
pq(1− p)(1− q) cos(2γx+ α− β)

)
(6.26)

Pψ(x) and Pψ′(x) are complementary to each other i.e. the sum Pψ(x) + Pψ′(x) has
zero fringe visibility.
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Figure 6.1: Pψ(x) (solid line), Pψ′(x) (dashed line), and Pψ(x) + Pψ′(x) (dotted line)
are plotted against x for (a) γ = 4, p = q = 0.5, α = β = 0, (b) γ = 4, p = 0.05, q =

0.5, α = π/2, β = 0, (c) γ = 4, p = 0.002, q = 0.5, α = π, β = 0, (d) γ = 6, p = q =

0.5, α = β = 0, (e) γ = 6, p = 0.05, q = 0.5, α = 0, β = π/2, (f) pq = 0.
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6.5 Conclusion

As we discussed, a photon’s nature whether it is a particle or a wave is somehow
determined by the beam splitters and the detection events in MZI scenario. Equiva-
lently, in the von Neumann interaction scenario, it is determined by the pre-and post-
selections. When BS2 is not inserted in the MZI, the photon takes a deterministic path
to reach the detector revealing its particle nature while behaves like a wave when it is
inserted. It appears, in quite a strange manner, that the photon knows about the appa-
ratus in advance. The situation becomes even weirder with Wheeler’s delayed choice
experiment: suppose BS2 is randomly inserted or removed from the setup by an ex-
ternal observer with free choice just after the photon passes through BS1 and before it
reaches BS2. Furthermore, it is ensured that the observer’s choice exists outside of the
photon’s light cone. In this scenario, photon must never know whether the two arms
interfere in the future or not. However, contrary to the expectation, the wave-particle
nature is correlated with the observer’s choice. Wheeler’s thought experiment plays
a central role in the investigations on the wave-particle complementarity. The loop-
hole free experimental realization of this experiment has gained a momentum in recent
years. Quantum implementation of remote insertion and removal of a beam splitter is
exceptionally difficult. Our methods with von Neumann interaction scenario make the
realization of Wheeler’s delayed choice experiment relatively convenient.

Instead of a single qubit system, let us consider a three qubit GHZ state:

|Φ〉 =
1√
2

[|00〉A ⊗ |0〉B + |11〉A ⊗ |1〉B] (6.27)

Alice keeps a pair of qubits while the third is sent to remotely located Bob. Alice
performs von Neumann scenario on the first qubit while post-selects the second in |+〉
which acts as a welcher-weg memory. Bob can freely chose to measure either of the
basis {|0〉 , |1〉} and {|+〉 , |−〉}. The fringe visibility corresponding to Bob’s outcomes
is:

V0 = V1 = 0

V+ = V− = 1,
(6.28)

where the subscript notation is understood. The space-like separated choice of Bob’s
measurement basis determines whether the ancilla is a wave or a particle. This reveals
the nonlocal nature of wave-particle duality: the element of reality corresponding to
the property whether the system is a wave or particle does not exist locally before the
measurement.

6.5 Conclusion
In this chapter, we propose a scheme to demonstrate wave-particle complementarity
without requiring an actual interferometer. Effects equivalent to those of a MZI or
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a double-slit interferometer are generated on a particle with a Gaussian wavefunc-
tion using a von Neumann-type interaction with a two-level quantum system in a pre-
and post-selection scenario. Contrary to sophisticated optical and matter-wave inter-
ferometers, our setup is easier to realize. It only requires a qubit, an ancilla with a
Gaussian wavefunction, and measurement setups for qubits. Our scheme facilitates
the implementation of welcher-weg and quantum eraser experiments. Furthermore,
we demonstrate how it can play a crucial role in investigations on Wheeler’s delayed
choice gedanken experiments and experimental research on the nonlocality of wave-
particle duality. Since pre- and post-selections on the qubit manifest the configuration
of an interferometer, a nonlocal manipulation of the latter is easily implementable us-
ing entangled qubits.

Our approach associates wave-particle complementarity with the incompatibility
of observables in discrete-level systems. Additionally, the framework presented here
provides an operational definition of quantum coherence in a two-level system: the
coherence factor is directly proportional to the fringe visibility of the associated von
Neumann interference.
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Chapter 7

Summary

The physics of quantum measurements play a crucial role in quantum foundations
and quantum information theory, bridging the gap between the quantum and classical
worlds. Despite the well-established mathematical framework of quantum measure-
ment theory, the dynamics of measurements and the quantum-to-classical transition
continue to puzzle physicists. This thesis explores various aspects of quantum mea-
surements, including the investigation of the past behavior of quantum particles, inter-
actions that adhere to special relativity, the emergence of classical objectivity in the
position basis, and wave-particle duality. Additionally, a novel quantum key distribu-
tion technique utilizing post-selections on qubit blocks is presented.

In the first chapter, the predictions of the two-state vector formalism (TSVF), a
time symmetric framework for sequential quantum measurements, are examined. Fur-
thermore, a gedanken experiment is proposed to challenge the claim that weak values
represent observables, which contributes to the legitimacy of several quantum para-
doxes. The analysis demonstrates that a zero weak value of the position operator does
not imply the absence of the particle, thereby resolving paradoxes such as the quantum
Cheshire cat, weak value version of Hardy’s paradox, three-box paradox, and more.
Experimental realization of our gedanken experiment is an interesting future prospect.
Since weak values are known to be useful in quantum state and process tomography,
it would be interesting to see whether our techniques deployed here to investigate the
past of a quantum system can be useful for the same purpose.

The following chapter investigates the weak value framework for mixed states.
According to the TSVF, weak values extend beyond statistical averages and offer in-
sights into the physics of pre- and post-selected quantum systems. A quantum state
discrimination scheme based on weak values for mixed states is devised, allowing for
the apparent discrimination of arbitrary mixed states with high precision. This scheme
can be employed in secure quantum key distribution protocols, even in the presence
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of significant noise. The security proof of the protocol is reanalyzed without relying
on weak values and weak measurement approximations, revealing potential flaws in
the previous approach. These findings challenge the notion that weak values for mixed
states represent elements of reality in weak measurements, as advocated by proponents
of TSVF.

The subsequent chapter introduces a quantum key distribution protocol that utilizes
novel techniques of quantum block-wise processing and post-selections. This protocol
builds upon the six-state protocol and involves forming blocks of finite length after suc-
cessful raw key generation, utilizing an authenticated classical channel. These blocks
undergo random permutations and post-selections, resulting in a significant reduction
in the bit error rate and increased noise tolerance. This approach enables secure quan-
tum key distribution over highly noisy quantum channels, presenting a promising solu-
tion for long-distance quantum communications. It would be intriguing to see whether
our methods can be applied to continuous variable quantum key distributions as well.
Another important prospect is proving the security for finite length keys. Since our
protocol offers low bit error rate in the presence of high noise, it would be interesting
to investigate whether the computation cost in classical post-processing is significantly
lower.

In the next chapter, a no-go theorem is presented, highlighting the non-feasibility
of certain quantum operations and their implications in explaining the emergence of
classical objectivity within the framework of quantum theory. The theorem states that
internal degrees of freedom cannot be manipulated or measured without disturbing the
spatial wavefunction of the corresponding physical system, necessitating local inter-
actions in physical space. Based on the no-faster-than-light communication principle,
this proof holds fundamental significance. The theorem is then applied to a general de-
coherence model with a spin environment, demonstrating the emergence of objectivity
in the position basis through a quantum Darwinian approach. These results resolve
a long-standing problem in the decoherence paradigm, showing that arbitrary interac-
tions between a system and environment subsystems always localize the system in its
position basis, leaving a redundant imprint on the environment. Our theorem can have
far-reaching implications in the fields of quantum foundations and quantum informa-
tion. Investigations on the process of information dissipation in open quantum systems
due to decoherence are an active field of research. Various decoherence models at-
tempt to characterize the system-environment interaction Hamiltonian. Such studies
play crucial roles in quantum controls and physical realizations of quantum comput-
ers. The prospect of modeling decoherence and open quantum system dynamics in
light of our no-go theorem is intriguing. Implications in the dynamics of quantum
thermalization and quantum many-body interactions are also worth investigating. An
experimental test of our no-go result is an intriguing avenue of research.
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The final chapter investigates novel aspects of von Neumann interactions in con-
nection with the wave-particle complementarity principle. While wave-particle com-
plementarity is typically associated with interferometry, this chapter proposes a mech-
anism that defines wave-particle duality for discrete variable systems. It is shown that
a von Neumann interaction between a Gaussian pointer and a pre- and post-selected
two-level quantum system is operationally equivalent to a Mach-Zehnder interferom-
eter with single photons. Fringe visibility and which-way predictability for a qubit
can be defined within this framework, providing an operational interpretation of quan-
tum coherence for discrete systems in terms of wave-particle complementarity. We
have only investigated two-level quantum systems here. However, our methods are ex-
tendable to higher dimensional discrete-level systems as well. As a future prospect, it
would be interesting to quantify the coherence of a higher dimensional system in terms
of the fringe visibility of the corresponding von Neumann scenario. Experimental real-
izations of our proposal are also an important prospect. Quantum state interferography
is a newly proposed experimental technique for state reconstruction and tomography
that deploys interference phenomena as a key tool. Our results can make quantum state
tomography for discrete-dimensional systems.
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