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Abstract

Let k be a differential field of characteristic zero with an algebraically closed field of

constants C. This thesis concerns the problem of finding transcendental solutions of

first order (nonlinear) differential equations in an iterated strongly normal extension

of k. We deduce the structure of intermediate differential subfields of iterated

strongly normal extensions of k that have transcendence degree one. We also produce

a family of differential equations with no transcendental solutions in any iterated

strongly normal extension of k. We show that if a first order differential equation

has a transcendental solution in an iterated strongly normal extension of k, then

there can only be a maximum of three k−algebraically independent solutions. We

end the thesis with a conjecture regarding the algebraic dependence of solutions of

a first order differential equation.

We give an independent proof of the fact that every intermediate subfield of a

Picard-Vessiot extension is a solution field if and only if the differential Galois group

has solvable identity component. This result is then used to give the structure of

intermediate differential subfields of a Picard-Vessiot extension whose differential

Galois group is connected and solvable.

We analyse transcendental liouvillian solutions of first order differential equations

y′ = any
n+· · ·+a0, where ai ∈ k. In which case, the number of algebraic solutions is

finite. We deduce a relation between the algebraic and the transcendental solutions.

We also show that if a differential equation has a transcendental solution in an

exponential extension then the differential equation can be written in terms of the

algebraic solutions. When k = C(x) with x′ = 1, we provide a method of obtaining
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transcendental solutions in an exponential extension of C(x).
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Chapter 1

Introduction

Throughout this thesis, k stands for a differential field of characteristic zero equipped

with a single derivation ′ such that the field of constants C is algebraically closed.

Let f(Y, Z) ∈ k[Y, Z] be an irreducible polynomial involving the variable Z. By a

solution of the differential equation f(y, y′) = 0 we mean an element t in a differential

field extension E of k such that the field of constants of k(t, t′) and k are the same. If

t is transcendental (respectively, algebraic) over k, then it is called a transcendental

(respectively, algebraic) solution of the differential equation. A differential field

extension E of k is strongly normal if E is finitely differentially generated over k

and every differential isomorphism σ of E over k satisfies the following conditions:

1. σ|CE
=id and

2. EσE = EC(σ) = σEC(σ), where C(σ) is the field of constants of EσE.

For example, a Picard-Vessiot extension of k is a strongly normal extension. In

[17], Kolchin developed the notion of strongly normal extension as a differential

analogue of normal extensions of polynomial Galois theory. Let E be a differential
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field extension of k and k = E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ En+1 = E be a tower of

differential fields. If Ei is a strongly normal extension of Ei−1 for all i, then E is

called an iterated strongly normal extension of k. If for each i, Ei = Ei−1(vi), where

vi is either algebraic over Ei−1 or v′i ∈ Ei−1 or v′i/vi ∈ Ei−1, then E is called a

liouvillian extension of k.

The study of first order differential equations dates back to the work of Fuchs and

Poincaré in [12] and [28]. The simplest form of nonlinear differential equation

is the Riccati equation. In [21], Kovacic gave an algorithm to determine the

liouvillian solutions of a second order linear differential equation with rational

function coefficients by providing a degree bound for the algebraic solutions of the

corresponding Riccati equation. Thereafter, many algorithms have been given to

find liouvillian solutions of linear homogeneous differential equations, as described

in the book [40]. In the last few decades, many algorithms have been developed

to compute the rational and algebraic general solutions of nonlinear differential

equations using techniques from algebraic geometry [2, 10, 41].

In [37, Proposition 3.1], Srinivasan has provided a necessary and sufficient condition

for the first order autonomous differential equation y′ = f(y), where f(y) ∈ C(y),

to have a transcendental solution in a liouvillian extension of C. The result of

Srinivasan is an extension of [36, Corollary 2]. In [8], the authors give an algorithm

to compute the rational liouvillian solutions of a first order autonomous differential

equation. However, there is no systematic method to compute transcendental

solutions of nonlinear (non-autonomous) differential equations. So it is natural to ask

for a characterization of first order nonlinear, non-autonomous differential equations

that have transcendental solutions in an iterated strongly normal extension of k.

This thesis is focused on achieving that goal. Let E be an iterated strongly normal

extension of k and t ∈ E be a transcendental solution of a first order differential
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equation over k. Then k ⊆ k(t, t′) ⊆ E and k(t, t′) is a transcendence degree one

extension of k. Therefore, our approach to determining the transcendental solutions

of a first order differential equation is to find the structure of the transcendence

degree one subfields of an iterated strongly normal extension of k. We also deduce

the structure of intermediate subfields of liouvillian Picard-Vessiot extensions. As

liouvillian extensions of k with C as its field of constants are well known examples of

iterated strongly normal examples, we analyse first order differential equations that

have transcendental liouvillian solutions and also provide an algorithm for finding

such solutions.

In Chapter 2, we record known results from differential algebra for easy reference.

We also prove a result (Lemma 2.3.3) that gives the relationship between the

algebraic and transcendental solutions of the differential equation y′ = any
n +

an−1y
n−1 + · · · + a0, where ai ∈ k, an 6= 0. The lemma is then used to prove

that if the above differential equation has a transcendental liouvillian solution then

the number of algebraic solutions is finite.

In [38, Theorem B], the author has classified transcendence degree one subfields

of a liouvillian extension of a given field. In Chapters 3 and 4, we use the above

result and polynomial computations to find transcendental liouvillian solutions of

first order nonlinear differential equations over C(x), where C is an algebraically

closed field with zero derivation and x′ = 1.

In Chapter 3, we analyse the transcendental liouvillian solutions of the variable

separable differential equation

y′ = r(x)F (y), (1.1)

where r(x) is a nonzero polynomial in C[x] and F (y) is a nonzero polynomial

in C[y]. We show that if the above differential equation has a transcendental

3



liouvillian solution, then all the roots of F (y) are simple and these are the only

algebraic solutions of the differential equation (Theorem 3.1.2). The solution lies

in an exponential extension of C(x) if and only if 1
F (y)

=
∑n

i=1
mi

y−αi
, where n is a

positive integer, mi’s are nonzero integers and αi’s are pairwise distinct elements of

C. We provide a class of differential equations that have transcendental liouvillian

solutions but no algebraic solutions (Theorem 3.2.3).

Let y be a transcendental liouvillian solution of the differential equation

y′ = any
n + an−1y

n−1 + · · ·+ a0, (1.2)

where ai ∈ C(x) and an 6= 0. Using [37, Theorem 2.2] and [38, Theorem B],

we conclude that only one of the following can occur: either there is an element

z ∈ C(x, y) \ C(x) such that z′ = az + b, where a and b are nonzero elements

of C(x) or there is an element z ∈ C(x)(y) \ C(x) satisfying z′ = az, for some

nonzero a ∈ C(x). In Chapter 4, we are mainly interested in the latter case. Using

Lemma 2.3.3, we show that z can be written as z = g
∏l

i=1(y − αi)mi , where g is

a nonzero element of C(x), α1, . . . , αl are algebraic solutions of Equation (1.2) and

m1, . . . ,ml are nonzero integers. We give a necessary and sufficient condition (in

terms of the algebraic solutions) for the existence of transcendental solutions of the

differential equation in an exponential extension of C(x) (see Theorem 4.1.3). We

show that the number of algebraic solutions is at least n, where n is the degree of the

polynomial any
n + · · · + a0 (= y′). Many classes of differential equations satisfying

the conditions of Theorem 4.1.3, such as autonomous differential equations, have

precisely n distinct algebraic solutions. We show that if this phenomenon occurs,

then differential equation (1.2) can be written as follow:

y′ = an

n∏
i=1

(y − αi) +
n∑
i=1

(
n∏

j=1,j 6=i

y − αj
αi − αj

)
α′i,

4



where an ∈ C(x) and α1, . . . , αn are the algebraic solutions. So the differential

equation can be expressed in terms of its algebraic solutions. This gives us a large

class of differential equations that have transcendental liouvillian solutions. Using

these results, we provide a method to determine whether a differential equation

has a transcendental liouvillian solution if the minimal polynomials of the algebraic

solutions are known. We apply our results to solve Abel’s differential equation of

the first kind.

The focus of this thesis is to classify first order differential equations that have

transcendental solutions in iterated strongly normal extensions of k. To do so,

we have to determine the structure of differential subfields of a liouvillian Picard-

Vessiot extension of k. Chapter 5 is devoted to this purpose. We have used well

known results of algebraic geometry, linear algebraic groups and the work of Kolchin

in [17, 15] to obtain our results.

Let E be a Picard-Vessiot extension of k, K be a differential field intermediate

to E and k. Let T (K|k) be the set of all elements of K which are zeros of

homogeneous linear differential equations over k. It is known that T (E|k) is a finitely

generated simple differential k−algebra whose field of fractions Q(T (E|k)) equals

the differential field E. We show that every intermediate differential field K is the

field of fractions of T (K|k) if and only if E is a liouvillian Picard-Vessiot extension

of k (Theorem 5.2.1). We also show that if the differential Galois group G (E|k) is

connected solvable linear algebraic group then any intermediate differential field K

is given by K = k(t1, · · · , tn), where for each i, ti ∈ T (K|k), t′i = aiti + bi for ai ∈ k

and bi ∈ k(t1, · · · , ti−1) (Corollary 5.2.2). It is possible to deduce Theorem 5.2.1

from [1]. We have shown this derivation as well.

In Chapter 6, we give a structure theorem for transcendence degree one intermediate

differential subfields of an iterated strongly normal extension of k. In Theorem
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6.2.5, we show that if E is an iterated strongly normal extension of k and K is an

intermediate differential subfield of transcendence degree one, then there is a finite

algebraic extension k̃ of k such that k̃K = k̃(t, t′, z), where z is algebraic over k̃(t, t′),

and t is a transcendental solution of a Riccati or a Weierstrass differential equation

over k̃. Using this we classify a first order differential equation f(y, y′) = 0 into the

following types:

• Algebraic type: All the solutions of f(y, y′) = 0 are algebraic over k.

• Riccati type: The differential equation f(y, y′) = 0 has a transcendental

solution y such that there is a finite algebraic extension k̃ of k and an element

t ∈ k̃(y, y′) such that k̃(y, y′) is a finite algebraic extension of k̃(t) and t is a

solution of a Riccati differential equation:

t′ = a2t
2 + a1t+ a0, with a0, a1, a2 ∈ k̃, not all zero.

• Weierstrass type: The differential equation f(y, y′) = 0 has a transcendental

solution y such that there is a finite algebraic extension k̃ of k and an element

t ∈ k̃(y, y′) such that k̃(y, y′) is a finite algebraic extension of k̃(t, t′) and t is

a solution of a Weierstrass differential equation:

(t′)2 = α2(4t3 − g2t− g3), with g2, g3 ∈ C, α ∈ k̃ and 27g2
3 − g3

2 6= 0.

• General type: The differential equation is not of any of the above types.

In this thesis, we will not be concerned with differential equations of algebraic type.

In Theorem 6.3.1, we describe a family of irreducible plane curves f such that the

differential equation f(y, y′) = 0 is of general type. A subfamily of examples includes

Abel differential equations of the form

y′ = any
n + · · ·+ a2y

2, (1.3)
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where n ≥ 3, ai ∈ k and both a2 and a3 have no antiderivatives in k. The case when

n = 3, a2 = −1 and a3 = 1 was extensively discussed in [32] and [39].

In [39], Top et al. classify first order autonomous differential equations. Our

classification coincides with theirs when k = C. The authors show that an

autonomous differential equation of general type has no transcendental solution in

any iterated Picard-Vessiot extension of C. Thus, our results are a generalisation

of their work. Our approach is more algebraic than geometric. The aforementioned

paper discusses the algebraic independence of transcendental solutions of first

order autonomous differential equations. It is shown that there is a subclass of

the general type such that any number of distinct transcendental solutions are

C−algebraically independent. We show that Equation (1.3) also satisfies this

property (see Proposition 6.3.5) but differential equations (respectively, autonomous

differential equations) of nongeneral type have at most three (respectively, at

most one) k−algebraically independent (respectively, C−algebraically independent)

solutions in any no new constant extension of k (respectively, C) (see Theorem

6.3.6).

In a recent article [11], it was shown that if any four (respectively, two) transcen-

dental solutions of a first order differential equation (respectively, an autonomous

differential equation) are k−algebraically (respectively, C−algebraically) indepen-

dent, then any m distinct transcendental solutions are algebraically independent.

Thus, in view of Theorem 6.3.6 we put forth the following:

Conjecture A first order differential equation (respectively, an autonomous dif-

ferential equation) over k (respectively, over C) is not of general type if and

only if it has at most three (respectively, one) k−algebraically independent

(respectively, C−algebraically independent) solutions in any given no new

constant extension of k (respectively, C).
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We prove the above conjecture for rational autonomous differential equations, that

is, y′ = f(y), where f(y) is a nonzero rational function over C.
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Chapter 2

Preliminaries

In this chapter, we will recall basic definitions and results from differential algebra.

For details one may refer to [14], [23], [40] and [16].

2.1 Basic conventions

Definition 2.1.1. Let R be a ring. A mapping δ : r ∈ R 7→ r′ ∈ R is called a

derivation if, for all x, y ∈ R, (x + y)′ = x′ + y′ and (xy)′ = x′y + xy′. A ring

together with a derivation map is called a differential ring.

In this section, R stands for a differential ring. The derivation on a ring that

maps every element to zero is called the zero or trivial derivation. For example

R1 = Q[x], R2 = Q[z] with derivation r′ = 0 for all r ∈ Q and x′ = 1, z′ = z are

differential rings.

Suppose R is a differential integral domain and QR is the associated quotient field.
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Then any derivation δ : r → r′ on R extends to QR via the quotient rule

(r
s

)′
=
r′s− rs′

s2

and this is the unique extension of δ to QR.

Definition 2.1.2. An ideal I of a differential ring R is called a differential ideal

if it is closed under derivation, that is, x′ ∈ I for all x ∈ I. Furthermore, if I is

a radical (respectively, prime) ideal of R, it is called a radical (respectively, prime)

differential ideal.

Note that the differential ring R1 has no proper differential ideals, whereas In =

Q[zn] are the differential ideals of R2. R/I can be given a natural differential ring

structure by defining (r + I)′ = r′ + I for all r ∈ R.

Suppose R and S are differential rings with derivation δR and δS respectively.

Suppose that R ⊆ S such that δS|R = δR. Then R is called a differential subring

of S and R ⊆ S is a differential ring extension, the derivation δR on R is said to

extend to the derivation δS on S, and δS is said to be an extension of δR.

Definition 2.1.3. An element c ∈ R is called a constant if c′ = 0 and the set of

all constants of R is denoted by CR. A differential ring extension R ⊆ S is called

no new constant extension if CR = CS. If R is a differential field, then CR is a

differential subfield of R called the field of constants.

For example, the field of constants of Q(x) withx′ = 1 is Q.

Definition 2.1.4. Let (R, δR) and (S, δS) be two differential rings. A ring

homomorphism φ : R → S is called a differential homomorphism if φ commutes

with the derivations, that is, φ ◦ δR = δS ◦ φ.

10



The kernel of any differential homomorphism φ : R → S is a differential ideal of

R and φ(R) is a differential subring of S. Let K ⊆ E be differential fields. Let

G (E|K) be the set of all differential automorphisms σ : E → E such that σ|K = id.

Then G (E|K) is a group under usual composition. The following lemma describes

the differential Galois group in two important cases.

Lemma 2.1.5 (cf. [14, Lemma 3.9 and Lemma 3.10]). Let K ⊂ M ⊂ E be

differential fields with CE = CK. Suppose that w, z ∈ E \ K such that w and z

are transcendental over K.

(i) If M = K(w), where w′ ∈ K, then G (M |K) is isomorphic to CK. For each c ∈

CK, σc : M →M defined by σc(w) = w+ c are the differential automorphisms

of M over K.

(ii) If M = K(z), where z′/z ∈ K, then G (M |K) is isomorphic to C∗K. For each

nonzero c ∈ CK, σc : M → M defined by σc(z) = cz are the differential

automorphisms of M over K.

Consider the ring R[y0, y1, y2, . . . ] of polynomials in infinite number of ordinary

indeterminates. A unique derivation of R[y0, y1, y2, . . . ] is determined by assigning

y′i = yi+1. Change the notation so that

y0 = y, . . . , yn = y(n).

This procedure is called adjunction of differential indeterminate and is denoted by

R {y}. The ring R {y} is called the ring of differential polynomials in the variable

y and its elements are called differential polynomials. If R is a differential integral

domain with quotient field QR, then R {y} is also a differential integral domain,

whose fraction field is denoted by QR 〈y〉.

11



Note that the elements of R {y} can also be regarded as differential operators on R

as there is an obvious ring homomorphism R {y} → End(R) which maps y(i) to δi.

Let R ⊆ S be an extension of differential rings and X be a subset of S. Then R {X}

will denote the differential sub−R−algebra of S generated by X. If R and S are

differential fields, then R 〈X〉 will denote the differential subfield of S generated by

R and X.

2.2 Extending derivations

The following results provide important criteria for extending the derivation of a

differential field to a no new constant extension.

Lemma 2.2.1 (cf. [4, Theorems 6.2.5, 6.2.6]). Let F be a differential field of

characteristic zero, E be a field extension of F and w ∈ E.

(i) If w is algebraic over F , then the derivation on F extends uniquely to a

derivation on F (w). Moreover, if CF is algebraically closed, then CF (w) = CF .

(ii) If w is transcendental over F , then w′ ∈ F (w) can be assigned arbitrarily and

the derivation on F can be extended to F (w). Moreover, if F is a field with

trivial derivation, then for any w′ ∈ F (w) \ {0}, CF (w) = CF .

Note that if w is transcendental over F , then CF (w) may not be equal to CF even if

CF is algebraically closed.

Remark 2.2.2. Let C denote an algebraically closed field of characteristic zero with

trivial derivation. By Lemma 2.2.1 (ii), the trivial derivation on C naturally extends

to a derivation on the field C(x) of rational functions by letting the derivative of x

12



be equal to 1. Also, the field of constants of C(x) is C. Therefore by Lemma 2.2.1

(i), the field of constants of C(x) is also C.

The following result is well known. We prove the first part here. The other cases

are similar. For proofs of the remaining parts one may refer to [4, Lemma 6.4.3 (b)].

Proposition 2.2.3. Let F ⊆ E be differential fields of characteristic zero, w ∈ E

be transcendental over F and α, β ∈ F \ {0}. Then the following statements hold:

(i) If there is no nonzero element z ∈ F (w) such that z′ = nαz for any nonzero

integer n, then the differential field extension F (w), where w′ = βw + β and

β 6= 0, satisfies CF (w) = CF .

(ii) If there is no z ∈ F such that z′ = β, then the differential extension F (w) of

F satisfying w′ = α also satisfies CF = CF (w).

(iii) Suppose that for any positive integer l, there is no element x ∈ F such that x′ =

lαx. Then the derivation on F admits a unique extension to F (w) satisfying

both w′ = αw and CF (w) = CF .

Proof. We will prove the first part. Suppose that p ∈ F [w] \ F such that p′ = 0.

Let p = anw
n + an−1w

n−1 + · · ·+ a0, where ai ∈ F and an 6= 0. Now,

0 = p′ =
n∑
i=0

a′iw
i +

n∑
i=1

iaiw
i−1(αw + β)

Comparing the coefficient of wn we get that a′n = −nαan. This contradicts the

hypothesis of the first part. Suppose that (p/q)′ = 0, where p, q are nonzero relatively

prime elements of F [w]. We may assume that q is a monic polynomial in F [w] \ F .

Let q = wm + bm−1w
m−1 + · · · + b0, where bi ∈ F and m ≥ 1. Then q′ = mαwm +(

b′m−1 +mβ + (m− 1)bm−1α
)
wn−1 + · · ·+ (b′0 + b1β). Now,

0 =

(
p

q

)′
=
qp′ − pq′

q2
=⇒ q|q′.

13



From our previous observation q′ 6= 0. Therefore q′ = mαq. Comparing the

coefficient of wm−1 we get b′m−1 + mβ + (m − 1)αbm−1 = mαbm−1. Now observe

that (mw + bm−1)′ = α (mw + bm−1). This again contradicts the hypothesis of the

first part. Therefore CF (w) = CF .

Proposition 2.2.4 (cf. [23, Example 1.10, 1.11]). Let F ⊆ E = F 〈w〉 be an

extension of differential fields such that the characteristic of F is zero, CF is

algebraically closed and CE = CF .

(i) If w′ ∈ F , then either E = F or E = F (w) is a purely transcendental extension

of F . In the latter case, there is no z ∈ F such that z′ = w′.

(ii) If w′/w ∈ F , then either wn ∈ F for some n ∈ Z or w is purely transcendental

over F .

Let F be a differential field such that CF is algebraically closed and w be an

indeterminate over F . Then by Lemma 2.2.1, w′ can be assigned arbitrarily so

that F (w) is a differential field extension of F . Suppose b ∈ F such that b does not

have an antiderivative in F and if we define w′ = b, then by Proposition 2.2.3 (i),

F (w) is a no new constant extension of F . If b has an antiderivative x in F , then

the adjunction of w gives new constants as

(w − x)′ = b− b = 0.

Let a ∈ F \ {0} and suppose for any n ∈ N there is no f ∈ F such that f ′ = naf .

If we define w′ = aw, then by Proposition 2.2.3 (ii), F (w) is a no new constant

extension of F . If there exists f ∈ F such that f ′ = naf , then(
wn

f

)′
= 0.

These are two important types of building blocks for larger extensions. The first

is called extension by adjunction of integrals and the second is called extension

14



by adjunction of exponential of an integral. Next, we will discus differential fields

constructed using these building blocks.

Definition 2.2.5. A differential field E is called a liouvillian extension (respectively,

an elementary extension) of F if F is a differential subfield of E and E =

F (t1, · · · , tn), where either

(i) ti is algebraic over F (t1, · · · , ti−1) or

(ii) t′i ∈ F (t1, · · · , ti−1) (respectively, t′i = s′i/si for some si ∈ F (t1, · · · , ti−1) or

(iii) t′i/ti ∈ F (t1, · · · , ti−1) (respectively, t′i/ti = s′i for some si ∈ F (t1, · · · , ti−1)).

If (i) and (ii) (respectively, (i) and (iii)) hold, then E is called a primitive

(respectively, exponential) extension of F . Given a liouvillian extension E of F , it is

natural to ask for a criterion for algebraic independence of exponentials and primitive

elements of E. The following result was first proved, using analytic techniques, by

A. Ostrowski for a set of primitive elements over the field of meromorphic functions

over complex numbers. Later, using the language of differential Galois theory, the

theorem was reformulated and generalised by E. Kolchin.

Theorem 2.2.6 (Kolchin-Ostrowski). [18, p. 1155] Let E be a no new constant

extension of F . Let a1, . . . , am ∈ E and b1, . . . , bn ∈ E \ {0} be such that a′i ∈ F for

each i and b′j/bj ∈ F for each j. Then either a1, . . . , am, b1, . . . , bn are algebraically

independent over F or there exists (c1, . . . , cm) ∈ Cm \ {(0, . . . , 0)} such that∑m
i=1 ciai ∈ F or there exists (r1, . . . , rn) ∈ Zn \ {(0, . . . , 0)} such that

∏n
j=1 b

rj
j ∈ F .

The following result is an extension of Corollary 2 of [36] and it gives an important

criterion for checking whether a first order autonomous differential equation has a

transcendental solution in a liouvillian extension of C or not.
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Proposition 2.2.7 (cf. [37, Proposition 3.1]). Let C be an algebraically closed field

of characteristic zero with trivial derivation and let H(Y ) be a non-zero element of

C(Y ). The equation Y ′ = H(Y ) has non-constant solution y which is liouvillian

over C if and only if there exists an element z in C(y) \ C such that z′ = 1 or

z′ = az for some nonzero constant a, that is,

1

H(y)
=
∂z

∂y
or

1

H(y)
=

1

az

∂z

∂y
.

2.3 First order differential equation

In this section, we will list some results about first order differential equations that

will be needed in Chapters 3 and 4. But first, we define what is meant by solutions

of a first order differential equation. As stated earlier, k is a differential field of

characteristic zero with an algebraically closed field of constants C. Let f(Y, Z) ∈

k[Y, Z] be an irreducible polynomial involving the variable Z. We can associate the

following k−algebra to the first order differential equation f(y, y′) = 0:

Rf = k[y, z,
1

d
] = k[Y, Z]/(f)

[
1

d

]
.

Observe that Rf naturally becomes a differential integral domain by defining y′ = z.

The derivation uniquely extends to the field of fractions k(f). Therefore k(f) =

k(y, y′), where y is transcendental over k and f(y, y′) = 0. Let X be a smooth

projective curve such that k(X) ∼= k(f). The genus of X will also be called the

genus of f . The following theorem on the genus will be used in Chapter 6.

Theorem 2.3.1. [5, Theorem 5, p. 99] Let F ⊆ M be an extension of fields. Let

M be a function field of one variable over F and F̃ be the algebraic closure of F in

M . Let L be a field extension of F̃ . Then the genus of M 〈L〉 over L is at most
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equal to the genus of M over F and the equality holds whenever L is separable over

F .

By a solution of the differential equation f(y, y′) = 0, we shall mean an element

t ∈ L, where L is a differential field extension of k, such that f(t, t′) = 0 and the field

of constants of k(t, t′) is C (see [27, p. 47 - 48]). If t is transcendental (respectively,

algebraic) over k, then it is called a transcendental solution (respectively, an

algebraic solution). Therefore f(y, y′) = 0 has a solution if and only if there is

a no new constant extension L of k such that there is a differential homomorphism

φ : Rf → L. In this case, φ(y) is the solution. If φ(y) is algebraic (respectively,

transcendental) over k, then {0} ( ker(φ) (respectively, {0} = ker(φ)). If the

differential equation has a transcendental solution t, then the differential fields k(f)

and k(t, t′) are isomorphic. On the other hand, if all the solutions are algebraic,

then there is an element v ∈ k(f)\k such that v is transcendental over k and v′ = 0.

Suppose we adjoin an indeterminate t to k and let t1 be algebraic over k(t) given by

f(t, t1) = 0. We extend the derivation of k to k(t, t1) by defining t′ = t1. If k(t, t′)

is a no new constant extension of k, then the differential equation f(y, y′) = 0 has a

transcendental solution. Let t and s be two transcendental solutions of a first order

differential equation. Then both k(t, t′) and k(s, s′) are isomorphic to the differential

field k(f) and hence k(t, t′) and k(s, s′) are isomorphic as differential fields.

If f is defined over the field of constants, then it is called an autonomous differential

equation. Let C(f) = C(y, y′), where y is transcendental over C. We note that

an autonomous differential equation always has a transcendental solution. This is

easily seen by noting that if there is an element v ∈ C(y, y′) \ C such that v′ = 0,

then x′ = 0 for all x ∈ C(y, y′). In particular, y′ = 0, that is, f(y, 0) = 0. This

contradicts the fact that y is a transcendental over C.

A solution t is called a liouvillian solution if L is a liouvillian extension of k and if
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t is transcendental over k, then it is called a transcendental liouvillian solution.

Proposition 2.3.2. Let t be a liouvillian solution of a first order differential

equation over k. Then there is a liouvillian extension E of k containing a solution

of the differential equation such that CE = C.

Proof. If t is an algebraic solution of a first order differential equation f(y, y′) = 0,

then since C is algebraically closed, k(t) is a liouvillian extension of k such that

Ck(t) = C. So let us assume that t is a transcendental liouvillian solution of f .

Then by definition k(t, t′) ⊆ L, where L is a liouvillian extension of k. Let k̃ be the

algebraic closure of k in k(t, t′). By [38, Theorem B], one of the following occurs:

(i) k(t, t′) = k̃(z, β), where z satisfies a first order linear differential equation over

k̃ and β is algebraic over k̃(z).

(ii) k(t, t′) ⊆ K, where K is a quadratic extension of k(t, t′) given by K =

k(α,w, β), where k(α) is a quadratic extension of k̃, w′/w ∈ k(α) \ k and

β is algebraic over k(α,w).

In the first case, k(t, t′) is a liouvillian extension of k with no new constants. In the

second case, K is an algebraic extension of k. Therefore CK = C. Also, note that

K is a liouvillian extension of k. Thus in either case, the differential equation has a

transcendental liouvillian solution.

The following lemma gives a relationship between the transcendental solutions and

the algebraic solutions of a first order differential equation.

Lemma 2.3.3. Let k be a differential field of characteristic zero with algebraically

closed field of constants C. Let y be a transcendental solution of the differential
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equation

y′ = any
n + an−1y

n−1 + · · ·+ a0, (2.1)

where ai ∈ k, an 6= 0. Let γ ∈ k and z ∈ k(y) \ k such that z′ = az + b, where

a, b ∈ k.

(i) If b 6= 0 and there is no w ∈ k(y) \ k such that w′/w ∈ k. Then γ is an

algebraic solution of differential equation (2.1) if and only if γ is a pole of z.

(ii) If a 6= 0 and b = 0, then γ is an algebraic solution of the differential equation

if and only if γ is a zero or a pole of z.

Proof. First, we observe that for any α ∈ k, the differential equation (2.1) can be

written as

(y′ − α′) = (y − α)

(
n∑
i=1

1

i!

∂if

∂yi
(α)(y − α)i−1

)
+ f(α)− α′, (2.2)

where f(y) = any
n+an−1y

n−1 + · · ·+a0. Thus, it is easily seen that α is an algebraic

solution of Equation (2.1) if and only if y − α divides y′ − α′ in the differential ring

k[y]. Let γ ∈ k be a pole of z of order l. Then we have the following series expansion

for z about γ :

z =
β−l

(y − γ)l
+ · · ·+ β−1

(y − γ)
+ β0 + β1(y − γ) + · · · , (2.3)

where βi ∈ k and β−l 6= 0. Now,

z′ =
−lβ−l(y′ − γ′)

(y − γ)l+1
+

β′−l
(y − γ)l

+ · · ·

From Equation (2.2), z′ can be written as follows:

z′ =
α−l−1

(y − γ)l+1
+

α−l
(y − γ)l

+ · · · , (2.4)

where α−l−1 = lβ−l (γ
′ − f(γ)).
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Note that z′ = az + b, where a, b ∈ k. Therefore, by comparing the coefficients of

y−l−1 in Equations (2.3) and (2.4), we get α−l−1 = 0. Since l 6= 0 and β−l 6= 0, we

obtain that γ′ = f(γ). Thus if γ is a pole of z, then it is an algebraic solution of

differential equation (2.1).

Now we will prove the converse part of (i). Let γ ∈ k be an algebraic solution of

Equation (2.1). Suppose that γ is not a pole of z, then we have

z = β0 + β1(y − γ) + · · · , where βi ∈ k and (2.5)

z′ = α0 + α1(y − γ) + · · · , where αi ∈ k and α0 := β′0 + β1 (f(γ)− γ′) . (2.6)

Note that α0 = β′0 as γ′ − f(γ) = 0. Also observe that β0 6= 0. Otherwise,

α0 = 0 and y − γ would divide both z′ and z. This would imply that y − γ divides

z′ − az = b, which is not possible as b lies in k \ {0}. Therefore, β0 6= 0. Since

z′ = az + b, comparing the coefficient of (y − γ)0 in Equations (2.5) and (2.6),

we obtain α0 = aβ0 + b. Since α0 = β′0, we get β′0 = aβ0 + b. Now consider the

element w := z − β0 and observe that w ∈ k(y) \ k and w′ = aw. This contradicts

the hypotheses of (i). Therefore if γ is an algebraic solution of differential equation

(2.1), then it must be a pole of z. This proves the first part.

To prove (ii), observe that we have z′ = az and that (1/z)′ = −a(1/z). Therefore,

it follows from the above calculation that every zero and pole of z is an algebraic

solution of the differential equation (2.1). If γ ∈ k is not a zero or a pole of z, then

we have a power series expansion for z, as in Equation (2.5), with β0 6= 0. Now if

γ′ = f(γ), then β′0 = aβ0 and we obtain that (β−1
0 z)′ = 0. This is a contradiction as

Ck(y) = C.

Proposition 2.3.4. For any α ∈ C(x), there exists γ ∈ C(x) such that γ′ = αγ if

and only if there are positive integers n, l, nonzero integers m1, · · · ,ml and pairwise

distinct elements β1, · · · , βl ∈ C such that α = 1
n

∑l
i=1

mi

x−βi .
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Proof. Suppose that there exists γ ∈ C(x) such that γ′ = αγ. Then by Proposition

2.2.4 (ii), γn ∈ C(x) for some positive integer n. Therefore γn = c
∏l

i=1(x − βi)mi ,

where c is nonzero constant, l is a positive integer, m1, · · · ,ml are nonzero integers

and β1, · · · , βl ∈ C are pairwise distinct elements. Thus,

α =
γ′

γ
=

1

n

l∑
i=1

mi

x− βi
.

To prove the converse, observe that if γ is an nth root of
∏l

i=1(x − βi)
mi , then

γ′ = αγ.

2.4 General solution

In this section, we will discuss the concept of general solutions of a differential

equation. The reader may refer to [29, 2].

Let C be an algebraically closed field of characteristic zero with trivial derivation,

C(x) be the differential field with derivation ′ := d/dx, and C(x) {y} be the ring

of differential polynomials. Consider the differential equation F (y, y′, · · · , y(n)) =

0, where F ∈ C(x) {y} \ C(x). We may always assume that F is an irreducible

polynomial in C(x)[y, y′, . . . , y(n)]. The highest derivative of y in F is called the

order of F denoted by ord(F ). Let o = ord(F ) > 0: We may write F as follows:

F =
d∑
i=0

aiy
i
o,

where ai’s are polynomials in y, y1, · · · , yo−1 and ad 6= 0; ad is called the initial of

F , SF := ∂F/∂yo is called the separant of F . The mth derivative of F is denoted by

F (m). Observe that

F (m) = SFyo+m +Rm,

where Rm is a differential polynomial of order lower than o+m.
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Lemma 2.4.1. (see [29]) Let F ∈ C(x) {y} such that F is an irreducible polynomial

in C(x)[y, y′, . . . , y(n)]. Then the ideal {F} can be factored as:

{F} = ΣF ∩ {F, SF} ,

where ΣF := {G ∈ C(x) {y} |GSF ∈ {F}} is a prime differential ideal.

The ideal ΣF is a unique prime differential ideal that does not contain the separant

SF of F . On the other hand, the second component {F, SF} is the intersection of

the other essential components of {F}.

Definition 2.4.2. Consider the differential equation F (y, y′, ..., y(n)) = 0.

(i) Let I be a nontrivial prime differential ideal of C(x) {y}. A zero η of I in

a differential field extension of C(x) is called a generic zero of I if for any

differential polynomial P , P (η) = 0 implies that P ∈ I.

(ii) A generic zero of the differential ideal ΣF is called a general solution of F . A

zero of the ideal {F, SF} is called a singular solution.

(iii) An algebraic general solution of F is a general solution η of F which satisfies

the following equation:

G(x, y) =
n∑
i=0

nj∑
j=0

aijx
iyj,

where aij ∈ C and G(x, y) is irreducible in C[x, y]. If n = 1, then η is called a

rational general solution of F .

A general solution of F = 0 is usually defined as a family of solutions with o

independent parameters where o = ord (F ). The definition given by Ritt is more

precise.
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Remark 2.4.3. Let F (y, y′) = 0 be a first order differential equation. Singular

solutions are solutions of F and SF = ∂F/∂y′, therefore they are always algebraic.

Since ΣF is a prime differential ideal, whenever it has an algebraic generic zero, all

of the other generic zeros are also algebraic. Therefore, if the differential equation

has an algebraic general solution, then it has no transcendental liouvillian solution.

2.5 Picard-Vessiot theory

In this section, we will briefly discuss the theory of Picard-Vessiot extensions. One

may refer to [40, Chapter 1] or [1].

A Picard-Vessiot ring R for a matrix differential equation Y ′ = AY , where A ∈

Mn(k), is a simple differential ring such that there is a matrix F ∈ GLn(R) satisfying

F ′ = AF , called a fundamental matrix for Y ′ = AY and R is minimal with respect

to these properties, that is, R is generated as a ring by the entries of F and the

inverse of the determinant det F of the matrix F .

By a differential k−module (M,∂), we mean a finite dimensional k−module M

together with an additive map ∂ : M → M such that ∂(αm) = α′m + α∂(m) for

all α ∈ k and m ∈ M . Let M be a differential k−module. By fixing a k−basis

e1, . . . , en of M , we obtain a matrix A = (aij) ∈Mn(k) such that ∂(ei) = −
∑

j ajiej

and a corresponding matrix differential equation Y ′ = AY . Choosing any other

basis will amount to obtaining a differential equation of the form Y ′ = ÃY , where

Ã = B′B−1 + BAB−1 for some B ∈ GLn(k). Furthermore, if R is a Picard-Vessiot

ring for Y ′ = AY with fundamental matrix F , then (BF )′ = ÃBF and thus R

is also the Picard-Vessiot ring of Y ′ = ÃY . This observation allows one to define

a Picard-Vessiot ring for a differential module M to be a Picard-Vessiot ring of a

corresponding matrix differential equation Y ′ = AY of M .
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LetM be a differential module with matrix differential equation Y ′ = AY andM∨ be

the dual of a differential module of M . Then Y ′ = −AtY , where At is the transpose

of A, is a matrix differential equation corresponding to M∨. Thus, if R is a Picard-

Vessiot ring with fundamental matrix F ∈ GLn(R), then ((F t)−1)
′

= −At(F t)−1

and thus M and M∨ have the same Picard-Vessiot ring R.

Let k[∂] be the ring of differential operators over k and L := ∂n + an−1∂
n−1 +

· · · + a0 ∈ k[∂]. Then there is a way of producing a matrix differential equation

from L . Let M = k[∂]/k[∂]L , a matrix equation corresponding to the dual M∨ is

Y ′ = ALY . Thus if R is a Picard-Vessiot ring for M∨, then the fundamental matrix

F for Y ′ = ALY is a Wronskian matrix, where

AL =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 · · · · · · 1

−a0 −a1 · · · · · · −an−1


, F =


y1 y2 · · · yn

y′1 y′2 · · · y′n
...

...
...

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

 .

Note that y1, . . . , yn are C−linearly independent and the C vector space V spanned

by y1, . . . , yn is the set of all solutions of L (y) = 0.

Picard-Vessiot rings are integral domains. A Picard-Vessiot extension for the

equation Y ′ = AY over k (or for a differential module M over k) is the field of

fractions for the Picard-Vessiot ring for this equation. Let Y ′ = AY be a differential

equation of degree n, having Picard-Vessiot field E and differential Galois group G .

Then G considered as a subgroup of GLn(C) is an algebraic group ([40, Theorem

1.27]).
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2.6 Strongly normal extensions

In this section, we shall recall a few known results from the theory of strongly normal

extensions, which was developed by Kolchin. One may refer to [17, 15, 19, 20].

Kolchin wanted to develop the concept of Galois extensions for differential fields.

The main problem in developing such a theory is defining the concept of normal

extensions of a differential field. He had two special cases of Galois theory for

differential fields: finite Galois extension of a differential field and Picard Vessiot

extension of a differential field. Naturally, he looked into these cases for hints.

In classical Galois theory, N is a normal extension of a field L if the fixed field

of G (N |L) is L. In this case, if M is a field intermediate to N and L, then N is

a normal extension of L. This is not the case for differential fields. Let E be a

differential field extension of k. E is called a weakly normal extension of k if k is the

fixed field of G (E|k). It is possible that there is an intermediate differential subfield

K such that E is not weakly normal over K. To overcome this shortcoming, Kolchin

defined a differential field E to be a normal extension of k if E is weakly normal

over every intermediate differential subfield between E and k (see [16, Section 16]).

In the aforementioned paper, it was shown that when E is normal over k, then

there is a one-to-one Galois correspondence between the set of all differential fields

intermediate to k and E and a certain set of subgroups of the group G (E|k). But

there was no characterization of those ” certain ” subgroups that correspond to

the intermediate differential fields. To overcome this problem, Kolchin looked into

classical Galois theory and Picard-Vessiot extensions for possible hints.

In classical Galois theory, N is a normal extension of L if every field homomorphism

φ : N → L has image N . This property is not shared by Picard-Vessiot extensions.

The Picard-Vessiot theory, however, offers a suggestion for how to proceed. Let E
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be a Picard-Vessiot extension of k. Then CE = Ck = C, E is finitely generated

and of finite transcendence degree over k. It is easy to varify that if σ is an

isomorphism of E over k into an extension of E and if C(σ) denotes the field of

constants of the compositum EσE, then EσE = EC(σ) = σEC(σ). We recall

that a differential isomorphism σ of E over k means a differential homomorphism

(necessarily injective) of E into some differential field extension M of E with σ|k =id.

One would expect that there exists a ”large enough” differential extension of E that

contains an isomorphic copy of every M one could possibly encounter.

Definition 2.6.1. Let E∗ be a differential field extension of E. We shall call E∗ a

universal extension of E if for every finitely generated differential field extension E1

of E with E1 ⊆ E∗ and every positive integer n and every prime differential ideal I

of E1 {y1, . . . , yn}, there exists a generic zero (η1, . . . , ηn) of I with ηi ∈ E∗.

A necessary and sufficient condition for an extension E∗ of E to be universal is

that for every finitely generated extension E1 of E with E1 ⊆ E∗ and every finitely

generated extension M of E1 there exist an isomorphism of M over E1 into E∗.

Theorem 2.6.2. [17, p. 771] Every differential field has a universal field.

With all this in our hands, we are ready to define a strongly normal extension of k.

Definition 2.6.3. A differential field extension E of k is strongly normal if E is

finitely differentially generated over k and every differential isomorphism σ of E over

k satisfies the following conditions:

1. σ|CE
=id and

2. EσE = EC(σ) = σEC(σ), where C(σ) is the field of constants of EσE.
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A differential isomorphism σ of E over k is called strong if it satisfies the above

properties. If E is a strongly normal extension of k then E is finitely generated over

k (as fields) and that CE = Ck = C ([19, Propositions 12.2, 12.4]). Picard-Vessiot

extensions are examples of strongly normal extensions.

Definition 2.6.4. Let E be a no new constant extension of k. A non constant

element t ∈ E is called weierstrassian over k if t satisfies the Weierstrass differential

equation, that is, t′2 = α2(4t3 − g2t − g3) for some α ∈ k and g2, g3 ∈ C with

27g2
3 − g3

2 6= 0. The extension k 〈t〉 is called an elliptic extension of k.

Elliptic extensions are examples of strongly normal extensions. For other examples,

see [20, Example 14.2].

The group of all differential automorphisms of E over k is called the Galois group of

E over k and is denoted by G (E|k). G (E|k) is an algebraic group (not necessarily

affine) defined over C. Picard-Vessiot extensions are precisely those strongly normal

extensions whose Galois groups are linear algebraic groups. Now we will discuss the

existence of strongly normal extensions.

Theorem 2.6.5. [15, Theorem 2, p. 880] Let X be a connected algebraic group over

C. There exist differential fields F ⊆ E such that E is a strongly normal extension

of F whose Galois group is isomorphic to the group of C-rational points of X.

In particular, the above theorem shows that every abelian variety over C can be

realised as the differential Galois group of a strongly normal extension. We would

like to point out that a linear homogeneous differential equation gives rise to a

Picard-Vessiot extension, but a non-linear differential equation need not give rise to

a strongly normal extension (as we will see in Section 6.3.1).

The fundamental theorem of strongly normal extension provides a bijective corre-

spondence between differential subfields intermediate to E and k and the Zariski
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closed subgroups of G (E|k). If H is a closed subgroup of G (E|k) and K is an

intermediate differential field, then the bijective correspondence is given by the maps

K → G (E|K) := {σ ∈ G (E|k) | σ(u) = u ∀ u ∈ K}

H → EH := {u ∈ E | σ(u) = u ∀ σ ∈H } .

The field fixed by G (E|k) is k, that is EG (E|k) = k. Let K be a differential field

intermediate to E and k. Then K is a strongly normal extension of k if and only

if G (E|K) is a closed normal subgroup of G (E|k). In which case, the differential

Galois group G (K|k) is isomorphic to the quotient group G (E|k)/G (E|K). The

algebraic closure of k in E is a finite Galois extension, which we denote by E0. A

strongly normal extension E over k is said to be abelian if G (E|k) is an abelian

variety. Note that elliptic extensions are examples of abelian extensions.

The following result is called the Chevalley-Barsotti structure theorem.

Theorem 2.6.6. [30, Theorem 16] Let G be a connected algebraic group over C.

Then there exists a connected normal linear algebraic subgroup H of G such that

G /H is an abelian variety. H is unique and contains all the other linear algebraic

subgroups of G .

Let E be a strongly normal extension of k and G be the group of differential

automorphisms of E over k. From the fundamental theorem of strongly normal

extensions, corresponding to the closed subgroups G ⊇ G 0 ⊇ H ⊇ 1 we have a

tower of fields:

k ⊆ E0 ⊆ L ⊆ E,

where E0 is a finite normal extension of k with Galois group G /G 0, L is a strongly

normal extension of E0 with Galois group G 0/H isomorphic to an abelian variety

and E is a Picard-Vessiot extension of L with a connected differential Galois group

H .
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The following theorem classifies the transcendence degree one strongly normal

extensions of k.

Theorem 2.6.7. [15, Theorem 3] If E is a strongly normal extension of k is of

transcendence degree one over k and if k is relatively algebraically closed in E, then

there exists an element α such that either α is primitive over k and E = k(α), or α is

exponential over k and E = k(α), or α is weierstrassian over k and E is an abelian

algebraic extension of k 〈α〉 of finite degree. In the latter case, if k is algebraically

closed, then the weierstrassian element α may be chosen so that E = k 〈α〉.
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Chapter 3

Liouvillian solutions of first order

variable separable differential

equations

In this chapter, we are mainly interested in finding the algebraic and transcendental

liouvillian solutions of variable separable differential equations over C(x), where

C(x) is endowed with usual derivation d/dx. We also want to understand the

relationship between algebraic and transcendental solutions.

The liouvillian solutions of the following differential equation is analysed in the first

section.

y′ = r(x)F (y), (3.1)

where r(x) is a nonzero polynomial in C[x] and F (y) is a nonzero polynomial in

C[y]. We use [37, Theorem 2.2] and [38, Theorem B] to provide a necessary and

sufficient condition for the existence of a transcendental liouvillian solution of the

above equation.
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In [31], Rosenlicht has shown that if the differential equation yn = f(y, y′, y′′, . . . ),

where f is a polynomial in several variables with coefficients in C(x) and of total

degree less than n, has a liouvillian solution then it has an algebraic solution. We

will provide a class of differential equations with transcendental liouvillian solutions

but no algebraic solution.

3.1 Main results

In this section, first we will prove few results about the algebraic solutions of the

differential equation (3.1) then we will prove our main results. If F (y) = c, where

c ∈ C \ {0} then there is an element v ∈ C[x] such that v′ = cr(x) = r(x)F (y). In

this case the differential equation does not have transcendental solutions. Since if t is

a transcendental solution, then in the differential field C(x, t), we have (t− v)′ = 0,

a contradiction. Thus, if F (y) ∈ C \ {0} then the differential equation does not

have any transcendental solution. Therefore from now on we shall assume that

F (y) ∈ C[y] \ C.

Proposition 3.1.1. The differential equation (3.1) does not have any nonconstant

algebraic solutions if all the roots of F are simple.

Proof. Before we proceed with the proof, we make the following observations. Since

C is algebraically closed, all roots of F are in C. Let γ ∈ C be a root of F. Then

F (γ) = 0 = γ′ and thus, all the roots of F (y) are solutions of the differential

equation. We also have

F =
n∑
i=1

ai (y − γ)i,

where ai ∈ C, an = 1 and as F has only simple roots, a1 6= 0.
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First we show that the differential equation does not have solutions in C(x) \ C.

Let p ∈ C[x] \ C. Then by comparing the degree of p′ and r(x)F (p), we conclude

that differential equation (3.1) does not have any nonconstant solution in C[x].

Let p, q ∈ C[x] \ {0} be relatively prime polynomials. We shall assume q /∈ C or

equivalently, q′ 6= 0. Suppose that p/q is a solution of the differential equation.

Then, for p1 = p− γq, we have

(p1/q)
′ = (p/q)′ = r(x)F (p/q)

= r(x)
(
(p1/q)

n + an−1(p1/q)
n−1 + · · ·+ a1(p1/q)

)
.

Therefore qn (qp′1 − p1q
′) = r(x)

∑n
i=1 ai p

i
1 q

n+2−i and we obtain p1 divides p′1.

Since deg (p1) > deg (p′1), we must have p′1 = 0. Let m =deg(q). The degree

of qnp1q
′ is m(n + 1) − 1, whereas, since a1 6= 0, the degree of the polynomial

r(x)
∑n

i=1 ai p
i
1 q

n+2−i is at least m(n+ 1). Thus, the differential equation (3.1) does

not have any nonconstant rational solutions.

We will now show that there is no solution in C(x) \ C(x). Let n = deg (F )

and for i = 1, · · · , n, let αi ∈ C be the simple roots of F (y). If n = 1,

then the differential equation is of the form y′ = r(x) (y − α1) and the solutions

of the differential equation are c1 exp(
∫
r(x)) + α1, where c1 ∈ C. Thus the

nonconstant solutions are transcendental over C(x). Now assume that n > 1.

Suppose that the differential equation has a solution α in C(x) \ C(x). Let

Y be an indeterminate over C(x) and P (x, Y ) be an irreducible polynomial in

C[x, Y ] such that P (x, α) = 0. Note that degY (P ) > 1. Now consider the

polynomial P1(x, Y ) := ∂P/∂x + (∂P/∂Y ) r(x)F (Y ). Note that P1 6= 0 as

degY ((∂P/∂Y ) r(x)F (Y )) > degY (∂P/∂x). Taking the derivative of P (x, α) = 0,

we obtain that P1(x, α) = 0. Therefore, P divides P1 in C(x)[Y ] and there exists a

nonzero polynomial Q(x, Y ) ∈ C(x)[Y ] such that

∂P

∂x
+
∂P

∂Y
r(x)F (Y ) = Q(x, Y )P (x, Y ), (3.2)
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Comparing the degrees of Y in (3.2), we get degY (Q) = n − 1. Then Q may be

written as h(x)Q(x, Y ) =
∑n−1

i=0 gi(x)Y i, where h(x) ∈ C[x] is a nonzero polynomial,

gi(x) ∈ C[x], gn−1(x) 6= 0 such that gcd(h(x), g0, · · · , gn−1) = 1. It follows from

Equation (3.2) that h(x) divides the irreducible polynomial P (x, Y ). Therefore

h(x) = 1 and Q ∈ C[x, Y ]. Since P ∈ C[x, Y ] is irreducible and degY (P ) > 1,

P (x, αi) 6= 0. On the other hand, since degY (Q) = n − 1, there must be a j such

that Q(x, αj) 6= 0. Substituting Y = αj in Equation (3.2), we have

∂P (x, αj)

∂x
= Q(x, αj)P (x, αj). (3.3)

Since Q(x, αj) 6= 0 and P (x, αj) 6= 0, we have ∂P (x, αj)/∂x 6= 0. But for a non zero

polynomial P (x, αj), degx (∂P (x, αj)/∂x) < degxP (x, αj). Thus we have arrived at

a contradiction.

Now we shall prove our main result.

Theorem 3.1.2. The differential equation (3.1) has a transcendental liouvillian

solution y if and only if there exists z ∈ C(x, y) \ C(x) satisfying only one of the

following conditions:

(i) z′ = cr(x)z, where c is a nonzero constant,

(ii) z′ = (c0r(x) +h′/h)z+β, where c0 is a nonzero constant, h and β are nonzero

elements of C(x).

In this case, all the roots of F (y) are simple roots and the roots of F (y) are the

algebraic solutions of the differential equation.

Proof. To prove the necessary part consider the differential field extension C(x, y)

of C(x) where y is an indeterminate and y′ = r(x)F (y). Suppose that there is
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an element z ∈ C(x, y) \ C(x) such that z′ = cr(x)z for some nonzero constant

c. By Proposition 2.3.4, there is no element t ∈ C(x) such that t′ = ncr(x)t for

any nonzero integer n. Therefore by Proposition 2.2.3 (iii), the field of constants of

C(x, z) is C. Since C(x, y) is an algebraic extension of C(x, z), the field of constants

of C(x, y) is also C (by Lemma 2.2.1 (i)). Thus, in this case y is a transcendental

liouvillian solution of the differential equation. Similarly, if case (ii) occurs, then by

Proposition 2.2.3 (i) one can show that the field of constants of C(x, y) is C.

Now we prove the sufficient part. Let y be a transcendental liouvillian solution of

the differential equation (3.1) and E be a liouvillian extension of C(x) such that

y ∈ E. Then by definition the field of constants of C(x, y) is C. If γ is a multiple

root of F then (∂F/∂y) (γ) = 0 and from Equation (2.2), (y−γ)′ = (y−γ)R(y−γ),

where (y− γ) divides R(y− γ). But, from [38, Proposition 4.1], it is known that the

liouvillian solutions of such differential equations are algebraic over C(x). Therefore

all the roots of F (y) must be simple roots. By Proposition 3.1.1, the algebraic

solutions of the differential equation are the roots of F (y).

Let γ be a simple root of F. Since (y−γ)′ = (y−γ)R(y−γ) and y−γ is transcendental

and liouvillian over C(x) if and only if y is transcendental and liouvillian over C(x),

we shall replace y − γ with y and obtain

y′ = r(x)F (y), where F (y) = yn + an−1y
n−1 + · · ·+ a1y, ai ∈ C and a1 6= 0. (3.4)

Let α1, α2, . . . , αn be the simple roots of F (y). Note that C(x, y) is purely

transcendental over C(x) and is an intermediate differential subfield of C(x) and

E. From Theorem 2.2 of [37], there is an element in C(x, y) \ C(x) satisfying a

linear homogeneous differential equation of order ≥ 1 over C(x). Now C(x, y) is

finitely generated over C(x) and therefore the hypotheses of [38, Theorem B] are

satisfied. Thus,
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1. there is an element z ∈ C(x, y) \ C(x) which satisfies a first order linear

differential equation over C(x). Therefore either

(a) z′ = αz, or

(b) z′ = β, or

(c) cases (1a) and (1b) do not hold and z′ = αz+ β, where α, β ∈ C(x) \ {0},

or

2. there is an element w ∈ C(x)(y) \ C(x) such that w′ = αw for some α ∈

L \ C(x), where L is a quadratic extension of C(x).

Note that the cases (1a), (1b), (1c) and (2) are pairwise disjoint. We will show that

case (1b) and case (2) can not occur.

Suppose that there exists w ∈ C(x)(y) \C(x) satisfying the conditions of (2). Then

by Proposition 3.1.1, all the algebraic solutions of equation (3.1) are constants. Then

by Lemma 2.3.3 (ii), w = g
∏n

i=1(y − αi)mi , where g is a nonzero element of C(x),

mi are nonzero integers. Taking the logarithmic derivative of w we get

w′

w
= α =

g′

g
+

n∑
i=1

mi
y′ − α′i
y − αi

.

Now consider the element w1 ∈ C(x, y) given by w1 =
∏n

i=1(y − αi)mi . Note that

w1 ∈ C(x, y) \ C(x) and w′1/w1 = α − (g′/g). Also note that w′1/w1 ∈ C(x, y).

Therefore w′1/w1 lies in the intersection of C(x, y) and C(x), which implies w′1/w1 ∈

C(x). This contradicts the hypothesis of (2). Thus case (2) does not hold.

Suppose that case (1a) holds. Then by Lemma 2.3.3 (ii), z =
∏n

i=1(y−αi)mi , where

mi are nonzero integers. Now,

α =
z′

z
=

n∑
i=1

mi
(y′ − α′i)
y − αi

= r(x)F (y)
n∑
i=1

mi

y − αi
.
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Since the intersection of the subfields C(x) and C(y) is C, therefore

α

r(x)
= c = F (y)

(
n∑
i=1

mi

y − αi

)
=⇒ α

r(x)
= c and

1

F (y)
= c−1

n∑
i=1

mi

y − αi
, (3.5)

where c is a nonzero constant.

Suppose that case (1a) does not hold and there is an element z ∈ C(x, y) \ C(x)

such that z′ = αz + β, for some nonzero β ∈ C(x). By comparing the degrees of y

in αz + β and z′ one can easily show that z /∈ C(x)[y]. By Lemma 2.3.3 (i), the

algebraic solutions of the differential equation are the poles of z. Let l be the order

of the pole at zero. Then z can be written as follows

z =
β−l
yl

+ · · ·+ β−1

y
+ β0 + β1y + · · · . (3.6)

Note that the denominator of z is of the form
∏n

i=1(y−αi)mi , where αi are the roots

of F (y) and mi are nonzero integers. Therefore βi ∈ C(x) for all i and also note

that β−l 6= 0. Differentiating z, we obtain

z′ =− lβ−lr(x)y−l−1 (a1y + · · ·+ yn) + · · ·+ (−β−1)r(x)y−2 (a1y + · · ·+ yn) + · · ·

+
β′−l
yl

+ · · ·+
β′−1

y
+ β′0 + β′1y + · · · (3.7)

Since z′ = αz + β, comparing the coefficient of y−l in Equations (3.6) and (3.7) we

obtain β′−l = (α + l a1 r(x)) β−l. If α = 0, then la1r(x) = β′−l/β−l, which contradicts

Proposition 2.3.4 as la1r(x) is a nonzero polynomial. So case (1b) is not possible.

Thus if case (1a) does not hold then z′ = αz + β, where α 6= 0 and β 6= 0 and

α = −la1r(x) + β′−l/β−l.

Now we shall prove the following well known result.

Proposition 3.1.3. Let h(x) be a nonzero rational function in C(x). Let F (y)

and G(y) be nonzero relatively prime polynomials in C[y] such that G(y)/F (y) =
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∑λ
i=1

ni

y−αi
, where λ is a positive integer, ni’s are nonzero integers and αi are pairwise

distinct elements of C. Then the differential equation

y′ = h(x)
F (y)

G(y)
(3.8)

has a transcendental liouvillian solution y if and only if there is no nonzero γ ∈ C(x)

such that γ′ = h(x)γ. In this case, α1, . . . , αλ are the algebraic solutions and there is

an element z in C(x, y)\C(x) such that z′ = ch(x)z, where c is a nonzero constant.

Proof. Suppose that there is a nonzero γ ∈ C(x) such that γ′ = h(x)γ then by

Proposition 2.3.4, h(x) = 1
l

∑δ
i=1 mi/(x − βi), where l, δ are positive integers, mi

are nonzero integers and βi’s are pairwise distinct elements of C. Let mi > 0, for

i = 1, 2, . . . µ and mi < 0, for i = µ + 1, . . . δ, where 0 6 µ 6 δ. Let ni > 0, for

i = 1, 2, . . . τ and ni < 0, for i = τ + 1, . . . λ, where 0 6 τ 6 λ. Consider the

following polynomial

Pc(Y ) =

(
τ∏
i=1

(Y − αi)lni

)(
δ∏

i=µ+1

(x− βi)mi

)
−c

(
λ∏

i=τ+1

(Y − αi)lni

)(
µ∏
i=1

(x− βi)mi

)
where c is a constant. It can be easily shown that Pc(Y ) is an algebraic general

solution of Equation (3.8). Therefore the equation does not have transcendental

liouvillian solutions.

Suppose that there is no nonzero element γ ∈ C(x) such that γ′/γ = mh(x), for

any nonzero integer m. Consider the differential extension of C(x, z) of C(x), where

z′ = h(x)z. Note that C(x, z) is a no new constant extension of C (by Proposition

2.2.3 (iii)). Let y1 ∈ C(x, z) be a root of the following polynomial

Q(Y ) =
τ∏
i=1

(Y − αi)ni − z
λ∏

i=τ+1

(Y − αi)ni .

Then C(x, z, y1) is a differential field extension of C(x, z). Observe that y1 is

transcendental over C(x) and y1 is a solution of the differential equation (3.8). Since
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y1 is algebraic over C(x, z), the field of constants of C(x, z, y1) is C (by Lemma 2.2.1

(i)). Note that C(x, z, y1) = C(x, y1). As in Lemma 2.3.3 (ii), one can show that

α1, . . . , αλ are the algebraic solutions of Equation (3.8).

Corollary 3.1.4. The differential equation (3.1) has a transcendental solution in an

exponential extension of C(x) if and only if 1
F (y)

=
∑n

i=1
mi

y−αi
, where n is a positive

integer, mi are nonzero integers and αi are pairwise distinct elements of C. In this

case α1, . . . , αn are the algebraic solutions.

Proof. Observe that the necessary part of Corollary 3.1.4 follows from Proposition

3.1.3 and the sufficient part follows from Equation (3.5).

3.2 A few counterexamples

Here we provide few counterexamples where the conclusions of Theorem 3.1.2 do

not hold.

1. If a variable separable differential equation: y′ = r(x)F (y), where r(x) ∈

C[x], F (y) ∈ C[y] admits a transcendental liouvillian solution then by Theorem

3.1.2, the number of algebraic solutions is equal to the degree of F in Equation

(3.1). This phenomenon need not hold in general. For example, consider the

differential equation y′ = (1/x) y3. There is no t ∈ C(x) such that t′ = −2/x.

Now consider the tower of differential fields C(x) ⊆ C(x, t) ⊆ C(x, t, y), where

t is transcendental and t′ := −2/x and y is algebraic over C(x, t) satisfying

the relation y2 − 1/t = 0. Then C(x, t, y) is a liouvillian extension of C. In

particular C(x, y) is a liouvillian extension of C(x), y is transcendental over

C(x), t = 1/y2 ∈ C(x, y) and y′ = (1/x)y3. By Proposition 2.2.3 (ii) and
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Lemma 2.2.1 (i), the field of constants of C(x, y) is C. Now taking z = t and

a = 0 in Lemma 2.3.3 (i), we obtain that the only algebraic solution is zero.

2. If the differential equation (3.1) has a transcendental liouvillian solution, then

there are finitely many algebraic solutions. But the existence of finitely many

algebraic solutions does not imply the existence of a transcendental liouvillian

solution. For example, it is shown in [37, p. 421] that y′ = (1/x)y2(y − 1)

does not have a transcendental liouvillian solution over C(x). Using arguments

similar to those given in Proposition 3.1.1, one can also show that the only

algebraic solutions of the differential equation are 0 and 1.

3. By Proposition 3.1.3, there are variable separable differential equations with

infinitely many algebraic solutions. For example, consider y′ = (1/x)y(y −

1)(y−2). Now for any nonzero constant c, the roots of the polynomial Pc(Y ) =

cx2(Y −1)2− Y (Y −2) in C(x) are solutions of the above differential equation.

Until now we have discussed differential equations that have at least one algebraic

solution. We shall now give necessary and sufficient conditions for the existence of

a transcendental liouvillian solution of the following differential equation

f(y) y′ = g(x), where f(y) ∈ C[y] \ {0} , g(x) ∈ C(x) \ {0} . (3.9)

We will also show that there are no algebraic solutions if such a solution exists. We

will need the following propositions to prove our result.

Proposition 3.2.1. Let q be a monic, irreducible polynomial in C(x)[Y ], where Y

is an indeterminate. Then the roots of q are algebraic solutions of Equation (3.9) if

and only if q divides the polynomial H(Y ) := f(Y ) ∂q
∂x

+ g(x) ∂q
∂Y

.
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Proof. Suppose that q divides the polynomial H(Y ). Then there is a polynomial

Q ∈ C(x)[Y ] such that

f(Y )
∂q

∂x
+ g(x)

∂q

∂Y
= q Q. (3.10)

Observe that q 6= Y − c1, for any c1 ∈ C, otherwise the above equation reduces to

g(x) = (Y − c1)Q, which is absurd. Let α be a root of q, then α ∈ C(x) \C. Taking

the derivative of q(x, α) = 0, we get

∂q

∂x
(x, α) +

∂q

∂Y
(x, α)α′ = 0. (3.11)

Substituting Y = α in Equation (3.10) we obtain

f(α)
∂q

∂x
(x, α) + g(x)

∂q

∂Y
(x, α) = 0. (3.12)

Multiplying Equation (3.11) by f(α) and subtracting it from Equation (3.12), we

get
∂q

∂Y
(x, α) (f(α)α′ − g(x)) = 0. (3.13)

Since q is the minimal polynomial of α, ∂q
∂Y

(x, α) 6= 0. Note that f(Y ) ∈ C[Y ]

therefore f(α) 6= 0. Thus f(α)α′ − g(x) = 0, this proves the sufficient part.

Conversely, let the roots of q(x, Y ) be algebraic solutions of Equation (3.9). Let α

be a root of q. Since the differential equation does not have any solutions in C,

so α ∈ C(x) \ C. Suppose that α ∈ C(x), then since q is monic and irreducible,

q = (Y − α). In this case, it can be easily shown that H(α) = 0, thus q divides

H(Y ). Let us assume that α ∈ C(x) \ C(x). Then C(x)[α] is a finite algebraic

extension of C(x) and the derivation extends uniquely to C(x)[α]. So there exists

h(x, Y ) ∈ C(x)[Y ] such that α′ = h(x, α). Note that by Proposition 2.2.4 (i),

α′ /∈ C(x). Therefore degY h(x, Y ) ≥ 1. Differentiating q(x, α) = 0, we have

∂q

∂x
(x, α) +

∂q

∂Y
(x, α)α′ = 0. (3.14)
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Consider the polynomial P ∈ C(x)[Y ] given by P (x, Y ) = (∂q/∂x)+(∂q/∂Y )h(x, Y ).

Observe that degY (q) > degY (∂q/∂x) as q is a nonzero monic polynomial in C(x)[Y ].

Since degY (h) ≥ 1, degY ((∂q/∂Y )h(x, Y )) ≥ degY (q) > degY (∂q/∂x). Therefore

P is a nonzero polynomial in C(x)[Y ] such that P (x, α) = 0. Now consider

the polynomial Q(x, Y ) = f(Y )h(x, Y ) − g(x). Since degY h(x, Y ) ≥ 1, Q is a

nonzero polynomial. Also, note that Q(x, α) = 0. Therefore, there exists nonzero

polynomials P1(x, Y ), P2(x, Y ) ∈ C(x)[Y ] such that

f(Y )h(x, Y )− g(x) = q(x, Y )P1(x, Y ) (3.15)

∂q

∂x
+

∂q

∂Y
h(x, Y ) = q(x, Y )P2(x, Y ). (3.16)

Multiplying Equations (3.15) and (3.16) by (−∂q/∂Y ) and f(Y ) respectively and

adding them, we get

f(Y )
∂q

∂x
+

∂q

∂Y
g(x) = q(x, Y )P3(x, Y ),

where P3(x, Y ) = f(Y )P2(x, Y )− (∂q/∂Y )P1(x, Y ). Therefore q divides H(Y ).

Proposition 3.2.2. Suppose that the differential equation (3.9) has a transcendental

liouvillian solution y. Then it has at most finitely many algebraic solutions.

Proof. If the differential equation (3.9) has a transcendental liouvillian solution y,

then by Theorem (B) of [38, p. 359] and Theorem 2.2 of [37, p. 414], there is an

element z ∈ C(x, y) \ C(x) that satisfies a first order linear differential equation

over C(x) or there is an element w ∈ C(x)(y) \ C(x) satisfying w′ = aw, where

a ∈ C(x) \ C(x). We will prove the proposition assuming that there exists z ∈

C(x, y) \C(x) satisfying z′ = b, where b ∈ C(x) \ {0}. The proofs of the other cases

are similar. Suppose that z = p/q, where p, q ∈ C(x)[y] \ {0} and (p, q) = 1. Now,

z′ = b =⇒ qp′ − q′p = bq2 =⇒ f(y) (qp′ − q′p) = bf(y)q2. (3.17)
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Therefore q divides f(y)q′ and by Proposition 3.2.1, one can show that all the roots

of q are solutions of differential equation (3.9).

Let α be an algebraic solution of the differential equation. Let q1 ∈ C(x)[y] be the

minimal polynomial of α. Then since the differential equation (3.9) does not have

any solutions in C, α ∈ C(x) \C and q1 ∈ C(x)[y] \C[y]. Suppose that q1 divides p.

Then p can be written as p = qn1 p1, where p1 ∈ C(x)[y]\{0}, n is a positive integer,

and (q1, p1) = 1. Note that q′1 6= 0 as C(x, y) is a no new constant extension of C.

Since the roots of q1 are solutions of Equation (3.9), therefore by Proposition 3.2.1,

f(y)q′1 = q1Q, where Q is a nonzero polynomial in C(x)[y]. Substituting p = qn1 p1

and f(y)q′1 = q1Q in f(y) (qp′ − pq′) = f(y)(bq2), we get

qn1 (nqQp1 + f(y)qp′1 − f(y)p1q
′) = f(y)(bq2).

This implies that q1 divides q, which is a contradiction as (p, q) = 1. Therefore, q1

does not divide p. Now we will show that q1 is a factor of q. If it is not so, then

q(x, α) 6= 0. From the previous discussion, α is not a root of p; therefore p(x, α) 6= 0.

Note that f(α) 6= 0 as α ∈ C(x) \ C. We may write

p =
n∑
i=0

ci (y − α)i, q =
m∑
i=0

di (y − α)i, f(y) =
l∑

i=0

ei(y − α)i

where n,m, l, are non negative integers, ci, di, ei ∈ C(x) and cn, c0, dm, d0, el, e0

are nonzero elements. Comparing the coefficient of (y − α)0 in f(y) (qp′ − pq′) =

f(y)(bq2), we get

e0 (d0 c
′
0 − c0 d

′
0) = e0 (b d2

0) =⇒ (c0/d0)′ = b.

Now z′ = b which implies that (z−c0/d0)′ = 0. This contradicts the fact that C(x, y)

is a no new constant extension of C. Therefore d0 = 0, which implies q(α) = 0.

Let z1 ∈ C(x, y) \ C(x) such that z′1 ∈ C(x), then by Kolchin-Ostrowsky Theorem
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z1 = c1z+h, where c1 is a nonzero constant and h ∈ C(x). So the denominator of z is

unique up to multiplication by nonzero scalars. Thus every root of q is an algebraic

solution of the differential equation (3.9) and conversely. Since q has finitely many

roots, the differential equation has finitely many algebraic solutions.

Theorem 3.2.3. The following differential equation

f(y)y′ = g(x), where f(y) ∈ C[y] \ {0} , g(x) ∈ C(x) \ {0} ,

has a transcendental liouvillian solution y if and only if the antiderivative of g(x)

does not lie in C(x). In this case, there exists an element z ∈ C(x, y) \ C(x) such

that z′ = g(x) and the differential equation does not have any algebraic solution.

Proof. Suppose the differential equation (3.9) has a transcendental liouvillian

solution y. Let f(y) =
∑n

i=0 ai y
i, where ai ∈ C and an 6= 0. If there exists t ∈ C(x)

such that t′ = g(x), then the differential equation has an algebraic general solution

given by Qc(Y ) =
∑n

i=0 (ai/(i+ 1)) Y i+1− t+ c, where c is a constant. In this case,

the differential equation does not have a transcendental liouvillian solution. Thus

g(x) does not have any antiderivative in C(x). This proves the sufficient part.

Consider the element z ∈ C(x, y) given by z =
∑n

i=0 (ai/(i+ 1)) yi+1. Clearly, z is

transcendental over C(x) and z′ = g(x). Suppose that α is an algebraic solution of

the differential equation. Note that the field of constants of C(x, z) is C. Then by

Proposition 3.2.2, the minimal polynomial of α divides the denominator of z. Since

z is a polynomial in y, the differential equation does not have any algebraic solution.

Conversely, suppose that g(x) has no antiderivative in C(x). Then define a

differential extension C(x, z) of C(x) by z′ = g(x). Note that C(x, z) is a purely

transcendental extension of C(x) such that the field of constants of C(x, z) is C

(by Proposition 2.2.3 (ii)). Define an algebraic extension C(x, z, y1) of C(x, z),
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where y1 ∈ C(x, z) is a root of the polynomial P (Y ) =
∑n

i=0 (ai/(i+ 1)) (Y )i+1− z.

Observe that y1 is transcendental over C(x) and it can be easily shown that y1 is

a solution of the differential equation (3.9). Also note that the field of constants of

C(x, z, y1) is C. Thus C(x, z, y1) is a liouvillian extension of C(x) which contains a

transcendental solution of the differential equation.
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Chapter 4

Transcendental liouvillian

solutions of first order nonlinear

differential equations

The content of this chapter is based on the author’s work in [33]. Consider the

following first order nonlinear differential equation:

y′ = any
n + an−1y

n−1 + · · ·+ a0, (4.1)

where ai ∈ C(x) and an 6= 0. Let y1 be a solution of differential equation (4.1).

If n = 2 (respectively n = 3), then the above equation is called Riccati equation

(respectively Abel’s differential equation of the first kind).

In this chapter our focus is to develop methods to find transcendental solutions of

the differential equation in an exponential extension of C(x).
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4.1 Relation between algebraic and transcenden-

tal solutions

In the following theorem we provide the relationship between the algebraic and

transcendental liouvillian solutions of differential equation (4.1).

Theorem 4.1.1. Suppose differential equation (4.1) has a transcendental liouvillian

solution y. Then the differential equation has finitely many algebraic solutions.

Proof. Suppose that y is a transcendental liouvillian solution of Equation (4.1).

Then by definition, the field of constants of C(x, y) is C. By Theorem 2.2 of [37],

there is an element in C(x, y) \ C(x) satisfying a linear homogeneous differential

equation of order greater or equal to one over C(x). Now C(x, y) is finitely

generated over C(x), therefore the hypotheses of [38, Theorem B] are satisfied.

Since y is transcendental over C(x), the algebraic closure of C(x) in C(x, y) is C(x)

itself. Therefore there exists an element z ∈ C(x, y) \ C(x) which satisfies a linear

differential equation of order 6 2. If there is no element in C(x, y) \ C(x) that

satisfies a first order linear differential equation, then z satisfies an irreducible linear

homogeneous differential equation of order 2. In which case, there exists an element

w in C(x)(y) \ C(x) such that w′ = aw, where a lies in a quadratic extension of

C(x). Therefore only one of the following two cases can occur:

1. there is an element z ∈ C(x)(y) \ C(x) such that z′ = az, for some nonzero

a ∈ C(x).

2. there is an element z ∈ C(x)(y)\C(x) satisfying z′ = az+b, where a, b ∈ C(x)

and b 6= 0.
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By Lemma 2.2.1 (i), the derivation of C(x, y) extends uniquely to a derivation of

C(x)(y) and the field of constants remains the same. Suppose that case (1) holds.

Then by Lemma 2.3.3 (ii), algebraic solutions of Equation (4.1) are the zeros and

poles of z. Since the number of zeros and poles of z is finite, the number of algebraic

solutions of the differential equation is also finite. Similar arguments can be applied

to case (2). Therefore in both cases, the number of algebraic solutions is finite.

The converse is not true. In Chapter 6 we will show that the differential equation

y′ = (1/x)(y3 − y2) has transcendental solutions over C(x) but no transcendental

liouvillian solution. We have already seen that it has only two algebraic solutions.

From this point on, we will discuss transcendental liouvillian solutions of Equation

(4.1) where there exists z ∈ C(x)(y) \ C(x) such that z′ = az, for some nonzero

a ∈ C(x), that is, the differential equation has a transcendental solution in an

exponential extension of C(x).

Proposition 4.1.2. Let K be an algebraically closed differential field of character-

istic zero. Let K(y) be a no new constant extension of K. Suppose that there is an

element z ∈ K(y) \K such that z′/z ∈ K. Then there is an element w ∈ K(y) \K

with w′/w ∈ K such that any z1 ∈ K(y) \ K satisfying z′1/z1 ∈ K is of the form

z1 = g1w
n for some nonzero element g1 ∈ K and nonzero integer n.

Proof. Since K is algebraically closed, y is transcendental over K and CK is

algebraically closed. Consider the following set:

S = {t ∈ K(y) \K | t′/t ∈ K and K(z) ( K(z, t)} .

Since K(y) is a finite algebraic extension of K(z), the number of fields intermediate

to K(z) and K(y) is finite. Therefore there is a finite set Ω = {z, t1, . . . , tm} such

that for any t ∈ S, K(z, t) = K(z, ti) for some ti ∈ Ω. By Kolchin-Ostrowski
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theorem ti = giz
ri/si , where gi ∈ K \ {0}, ri, si ∈ Z \ {0} and (ri, si) = 1. We

may assume that |ri| < |si|. Therefore K(z, ti) = K(z1/si). Let n = max{|si|} and

w = z1/n.

We claim that any z1 ∈ k(y)\K satisfying z′1/z1 ∈ K lies in K(w) = K(z1/n). If z1 ∈

K(z) then we are done. Suppose that K(z) ( K(z, z1). Then K(z, z1) = K(z, tj) =

K(z1/sj), for some j ∈ {1, . . . ,m}. Note that |sj| ≤ n. If K(w) ( K(w, z1). Then by

Kolchin-Ostrowski theorem z1 = gwr/s, where g ∈ K \ {0}, r, s ∈ Z \ {0}, (r, s) = 1

and |r| < |s|. Then z1 = gzr/(ns). Let r/(ns) = r0/s0, where r0, s0 ∈ Z \ {0} and

(r0, s0) = 1. Now we will show that |s0| > n. Suppose that d = (r, ns). Then since

(r, s) = 1, we have d = (r, n), r0 = r/d and s0 = (ns)/d. Clearly, d ≤ |r| < |s|. This

implies that n = (n/d)d < (n/d)|s| = |s0|. Now, K(z1/sj) = K(z, z1) = K(z1/s0).

This implies |s0| = |sj|. But n < |s0| and |sj| ≤ n. Thus z1 ∈ K(w).

Theorem 4.1.3. Let y be a transcendental liouvillian solution of the differential

equation

y′ = any
n + an−1y

n−1 + · · ·+ a0, where ai ∈ C(x) and an 6= 0. (4.2)

Suppose that there is an element z ∈ C(x)(y) \ C(x) such that z′ = az, where

a ∈ C(x) \ {0}. Then the following statements hold:

(i) There are at least n pairwise distinct algebraic solutions of differential equation

(4.2).

(ii) z = g
∏l

i=1(y − αi)mi and a = g′/g + an
∑l

i=1miα
n−1
i , where g is a nonzero

element of C(x), l is a positive integer, {α1, . . . , αl} is the set of algebraic

solutions of the differential equation and m1, . . . ,ml are nonzero integers.
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(iii) αi and mi satisfy the following equations:

l∑
i=1

mi = 0,
l∑

i=1

miαi = 0, . . . ,
l∑

i=1

miα
n−2
i = 0, an

l∑
i=1

miα
n−1
i 6= γ′

γ
, (4.3)

for any nonzero γ ∈ C(x).

Conversely, suppose that α1, α2, . . . , αl are algebraic solutions of differential equation

(4.2) and m1,m2, . . . ,ml are nonzero integers that satisfy Equation (4.3). Then the

differential equation has a transcendental liouvillian solution y such that there exists

z ∈ C(x)(y) \ C(x) satisfying z′ =
(
an
∑l

i=1 miα
n−1
i

)
z.

Proof. Let y be a transcendental liouvillian solution of differential equation (4.2)

then C(x, y) is a no new constant extension of C(x). Suppose that there exist an

element z ∈ C(x)(y) \ C(x) such that z′ = az, for some nonzero a ∈ C(x). Then

by Theorem 4.1.1, the differential equation has finitely many solutions in C(x). Let

{α1, . . . , αl} be the set of all the algebraic solutions of Equation (4.2). Then by

Lemma 2.3.3 (ii), z = g
∏l

i=1(y − αi)mi , where g is a nonzero element of C(x) and

mi are nonzero integers. Note that z is transcendental over C(x). Therefore by

Proposition 2.2.4 (ii), there is no nonzero γ ∈ C(x) such that a = γ′/γ. Now,

a =
z′

z
=
g′

g
+

l∑
i=1

mi
y′ − α′i
y − αi

. (4.4)

Since each αi is an algebraic solution of the differential equation, it follows from

Equation (2.2) that y − αi divides (y′ − α′i) and we have

y′ − α′i
y − αi

= any
n−1 + (anαi + an−1)yn−2 + · · ·+

(
anα

n−1
i + an−1α

n−2
i + · · ·+ a1

)
.

(4.5)
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From Equations (4.4) and (4.5), we get

a− g′

g
=

l∑
i=1

mi

(
any

n−1 + (anαi + an−1)yn−2 + · · ·+ anα
n−1
i + an−1α

n−2
i + · · ·+ a1

)
=an

(
l∑

i=1

mi

)
yn−1 +

(
an

l∑
i=1

miαi + an−1

l∑
i=1

mi

)
yn−2 + · · ·+(

an

l∑
i=1

miα
n−1
i + an−1

l∑
i=1

miα
n−2
i + · · ·+ a1

l∑
i=1

mi

)
. (4.6)

Note that a − g′/g 6= γ′/γ, for any nonzero γ ∈ C(x). Otherwise, a = (gγ)′ / (gγ),

which is a contradiction. Since an 6= 0, we get Equations (4.3) by comparing the

coefficients of yi in the Equation (4.6) . If l < n, then since the αi are pairwise

distinct elements of C(x), the only solution of Equations (4.3) is mi = 0 for all

i = 1, . . . , l. This contradicts the fact that mi are nonzero integers. Therefore the

differential equation has at least n distinct algebraic solutions.

Conversely, suppose that α1, . . . , αl are pairwise distinct algebraic solutions of

Equation (4.2) and that there exists nonzero integersm1, . . . ,ml satisfying Equations

(4.3). Then consider the field extension C(x) ⊆ C(x, α1, . . . , αl, y1), where y1 is

transcendental over C(x, α1, . . . , αl). Since αi are algebraic over C(x), therefore

by Lemma 2.2.1 (i), the derivation of C(x) extends uniquely to a derivation of

C(x, α1, . . . , αl) and the field of constants remains the same. We define y′1 =

any
n
1 + · · · + a0. Then by Lemma 2.2.1 (ii), C(x, α1, . . . , αl, y1) is a differential

field extension of C(x). Now consider the element z1 ∈ C(x, α1, . . . , αl, y1) given by

z1 =
∏l

i=1(y1 − αi)mi . Note that αi are solutions of Equation (4.2), therefore from
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Equation (4.6) we obtain

z′1
z1

=
l∑

i=1

mi
y′1 − α′i
y1 − αi

=an

(
l∑

i=1

mi

)
yn−1

1 +

(
an

l∑
i=1

miαi + an−1

l∑
i=1

mi

)
yn−2

1 + · · ·+(
an

l∑
i=1

miα
n−1
i + an−1

l∑
i=1

miα
n−2
i + · · ·+ a1

l∑
i=1

mi

)
. (4.7)

Since mi and αi satisfy Equations (4.3), we obtain z′1 =
(
an
∑l

i=1 miα
n−1
i

)
z1. Also,

there is no nonzero element γ ∈ C(x) such that γ′ =
(
an
∑l

i=1miα
n−1
i

)
γ, therefore

by Proposition 2.2.3 (iii), C(x, α1, . . . , αl, z1) is a purely transcendental differential

field extension of C(x, α1, . . . , αl) such that the field of constants is C. Note that

y1 lies in an algebraic extension of C(x, α1, . . . , αl, z1). So the field of constants of

C(x, α1, . . . , αl, y1) is C. Thus y1 is a transcendental liouvillian solution of Equation

(4.2). By Lemma 2.3.3 (ii), α1, . . . , αl are precisely the algebraic solutions of the

differential equation. This proves the converse part.

Remark 4.1.4. Let y and z be as defined in the above theorem. Now we will show

that the nonzero integers mi are not unique but their fractions are. By Proposition

4.1.2, there is an element w ∈ C(x)(y) \ C(x) such that w′/w ∈ C(x) and any

z1 ∈ C(x)(y) \ C(x) satisfying z′1/z1 ∈ C(x) is of the form z1 = g1w
r for some

nonzero integer r. Then by Theorem 4.1.3 (ii), w =
∏l

i=1(y − αi)
mi . Therefore

z1 = g
∏l

i=1(y − αi)rmi . Now

rmi

rm1

=
mi

m1

, ∀ i > 1.

Proposition 4.1.5. Let y and z be as defined in Theorem 4.1.3. If z ∈ C(x, y) \

C(x), then z can be written as z =
∏r

i=1G
mi
i , where G1, . . . , Gr are the minimal

polynomials of the algebraic solutions.
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Proof. Let {α1, . . . , αl} be the set of algebraic solutions of Equation (4.2). Let

{G1, . . . , Gr}, where 1 6 r 6 l, be the set of minimal polynomials of the algebraic

solutions of differential equation. Let z = p/q, where p, q ∈ C(x)[y] \ {0} and

(p, q) = 1. By Lemma 2.3.3 (ii), α1 is a root of either p or q. Let α1 be a root of

p and G1 be the minimal polynomial of α1. Then all the roots of G1 are algebraic

solutions of the differential equation. Note thatG1 divides p sinceG1 is an irreducible

polynomial. Also, G1 does not divide q as (p, q) = 1. Therefore p can be written

as p = Gm1
1 p1, where p1 ∈ C(x)[y] and (G1, p1) = 1. Therefore, if αi and αj are

the roots of same minimal polynomial, then mi = mj and z can be written as

z =
∏r

i=1G
mi
i .

Next we will prove two polynomial identities which will be used to prove Proposition

4.1.7 later.

Lemma 4.1.6. Let K be a differential field of characteristic zero and K(y) be the

rational function field over K. Let r1, . . . , rn ∈ K be the roots of the polynomial

p(y) =
∑n

j=0 fjy
n−j, where f0 = 1. Then

n∑
i=1

mi

(
n∏

j=1,j 6=i

(y − rj)

)
=

n−1∑
j=0

(
j∑
i=0

bifj−i

)
yn−1−j and (4.8)

n∑
i=1

mir
′
i

(
n∏

j=1,j 6=i

(y − rj)

)
=

n−1∑
j=0

(
j∑
i=0

b′i+1

i+ 1
fj−i

)
yn−1−j, (4.9)

where m1, . . . ,mn are nonzero integers and bi =
∑n

j=1mjr
i
j, for i = 0, . . . , n.

Proof. Since r1, . . . , rn are the roots of p(y), therefore using Vieta’s formulas, we

have

(−1)jfj =
∑

16i1<i2<···<ij6n

(
j∏
l=1

ril

)
, for j = 1, . . . , n. (4.10)
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Let gi,0 = 1 and gi,j = (−1)jfj − rigi,j−1, for all 1 6 i, j 6 n. Let dj =
∑n

i=1 migi,j,

for 0 6 j 6 n− 1. Then
∏n

j=1,j 6=i(y − rj) =
∑n−1

j=0 (−1)jgi,jy
n−1−j and

n∑
i=1

mi

(
n∏

j=1,j 6=i

(y − rj)

)
=

n−1∑
j=0

(−1)jdjy
n−1−j. (4.11)

We will show that (−1)jdj =
∑j

i=0 bifj−i, for all 0 6 j 6 n− 1.

dj =
n∑
i=1

migi,j =
n∑
i=1

mi

(
(−1)jfj − rigi,j−1

)
=(−1)j

n∑
i=1

mifj −
n∑
i=1

miri
(
(−1)j−1fj−1 − rigi,j−2

)
=(−1)j

n∑
i=1

mifj + (−1)j
n∑
i=1

mirifj−1 + (−1)j
n∑
i=1

mir
2
i fj−2 + · · ·+

(−1)j
n∑
i=1

mir
j−1
i f1 + (−1)j

n∑
i=1

mir
j
i f0

=(−1)j (b0fj + b1fj−1 + · · ·+ bj−1f1 + bjf0) .

We obtain Equation (4.8) by substituting the value of (−1)jdj in Equation (4.11).

Similarly, one can show that Equation (4.9) also holds.

In Theorem 4.1.3 (i), we have seen that if Equation (4.2) has a transcendental

solution in an exponential extension of k(x), then there are at least n algebraic

solutions, where n is the degree of the polynomial y′ = any
n + · · · + a0 (= y′). In

the following proposition we will discuss the structure of differential equation (4.2)

when there are precisely n algebraic solutions.

Proposition 4.1.7. Let y, z and a be as defined in Theorem 4.1.3. Suppose

that differential equation (4.2) has precisely n pairwise distinct algebraic solutions

α1, α2, . . . , αn. Then the differential equation is of the following form:

y′ = an

n∏
i=1

(y − αi) +
n∑
i=1

(
n∏

j=1,j 6=i

y − αj
αi − αj

)
α′i. (4.12)
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Proof. Given that {α1, . . . , αn} is the set of all the algebraic solutions of the

differential equation. Note that by Theorem 4.1.3 (i) and (ii), Equation (4.2) has at

least n distinct algebraic solutions and z = g
∏n

i=1(y − αi)mi , where g ∈ C(x) \ {0}

and m1, . . . ,mn are nonzero integers. Let z1 = hz, where h is a nonzero element of

C(x). Then z′1 = (h′/h+ a)z1. Therefore we may take g = 1. Now,

a =
z′

z
=

n∑
i=1

mi
y′ − α′i
y − αi

=⇒

(
n∑
i=1

mi

(
n∏

j=1,j 6=i

(y − αj)

))
y′ = a

n∏
i=1

(y − αi) +
n∑
i=1

(
mia

′
i

n∏
j=1,j 6=i

(y − αj)

)
.

(4.13)

From Proposition 4.1.6, we obtain the following expression:

n∑
i=1

mi

(
n∏

j=1,j 6=i

(y − αj)

)
=

n−1∑
j=0

(
j∑
i=0

fj−ibi

)
yn−1−j, (4.14)

where bi =
∑n

j=1mjα
i
j and fi ∈ C(x) such that

∏n
i=1 (y − αi) =

∑n
i=0 fiy

n−i. Note

that bi = 0 for i = 0, . . . , n−2 as the mi and the αi satisfy Equations (4.3). Therefore

Equation (4.14) becomes

n∑
i=1

mi

(
n∏

j=1,j 6=i

(y − αj)

)
=

n∑
i=1

miα
n−1
i . (4.15)

By Theorem 4.1.3 (ii),
∑n

i=1 miα
n−1
i = a/an. Substituting the above values in

Equation (4.13), we get

y′ = an

n∏
i=1

(y − αi) +
n∑
i=1

(
an
a
miα

′
i

n∏
j=1,j 6=i

(y − αj)

)
. (4.16)

For any αt ∈ {α1, . . . , αn}, if we substitute y by αt in Equation (4.15), then we get

n∑
i=1

miα
n−1
i = mt

n∏
j=1,j 6=t

(αt − αj).
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Since
∑n

i=1 miα
n−1
i = a/an, we obtain a/(anmt) =

∏n
j=1,j 6=t(αt − αj), for all t =

1, . . . , n. Thus Equation (4.16) can be written as

y′ = an

n∏
i=1

(y − αi) +
n∑
i=1

(
n∏

j=1,j 6=i

y − αj
αi − αj

)
α′i.

Remark 4.1.8. Equation (4.12) is independent of the mi and is only dependent on

the algebraic solutions of the differential equation.

Let r1, . . . , rn ∈ C(x) be pairwise distinct rational functions. Suppose there exists

nonzero integers m1, . . . ,mn such that ri and mi satisfy Equation (4.3). Then by

Theorem 4.1.3 and Proposition 4.1.7 we can choose an appropriate an and construct

a differential equation that has a transcendental liouvillian solution, and ri are the

only algebraic solutions.

Corollary 4.1.9. For any f ∈ C(x), there are uncountably many first order

nonlinear differential equations over C(x) that have a transcendental liouvillian

solution and f as an algebraic solution.

Proof. Note that if f = 0 then by Corollary 3.1.4 the differential equation y′ =

cy(y− 1), where c ∈ C \ {0}, has transcendental solution in a exponential extension

of C(x). So we may assume that f is a nonzero rational function. Since C is an

algebraically closed field of characteristic zero, there are uncountably many elements

in C. Then by Proposition 2.3.4, there are uncountably many c ∈ C \ {0} such that

cf 6= γ′/γ, for any nonzero γ ∈ C(x). Consider the differential equation

y′ = c(y)(y − f) +
f ′

f
y. (4.17)

Note that f and zero are algebraic solutions of the differential equation. Let a2 = c,

α1 = 0, α2 = f , m1 = 1 and m2 = −1. Now m1+m2 = 0 and a2(m1α1+m2α2) = cf .
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Therefore by the converse part of Theorem 4.1.3 and Proposition 4.1.7, differential

equation (4.17) has a transcendental liouvillian solution such that zero and f are

the algebraic solutions. The liouvillian tower is given by C(x) ⊆ C(x, z), where

z′ = (cf)z and y lies in C(x, z) such that y − (y − f)z = 0.

Corollary 4.1.10. Let α be a nonzero element of C(x) such that αl = h ∈ C(x),

for some positive integer l. Then there is a first order nonlinear differential equation

over C(x) that has a transcendental liouvillian solution such that α is an algebraic

solution.

Proof. Let α1, . . . , αl be the roots of the polynomial Y l−h = 0, where h ∈ C(x)\{0}.

Let αl+1 = 0, m1 = 1,m2 = 1, . . . ,ml = 1 and ml+1 = −l. Observe that

l+1∑
i=1

mi = 0,
l+1∑
i=1

miαi = 0, . . . ,
l+1∑
i=1

miα
l−1
i = 0,

l+1∑
i=1

miα
l
i = lh.

By Proposition 2.3.4, we can choose a nonzero al+1 ∈ C(x) such that al+1

∑l+1
i=1miα

l
i 6=

γ′/γ, for any nonzero γ ∈ C(x). In particular, we may choose al+1 = 1/h. Now

consider the following differential equation:

y′ = al+1

l+1∏
i=1

(y − αi) +
l+1∑
i=1

(
l+1∏

j=1,j 6=i

y − αj
αi − αj

)
α′i. (4.18)

Note that bj :=
∑l+1

i=1miα
j
i ∈ C(x), for j = 0, . . . , l + 1. Therefore, it follows from

Equations (4.8), (4.9) and (4.13) that the coefficients of yi in Equation (4.18) are

elements of C(x). By Theorem 4.1.3 and Proposition 4.1.7, Equation (4.18) has a

transcendental liouvillian solution and α1, . . . , αl+1 are the algebraic solutions.
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4.1.1 Method of finding transcendental liouvillian solution

of differential equation (4.2)

Suppose that the minimal polynomial of all the algebraic solutions of differential

equation (4.2) are known. We give a step-by-step procedure to determine whether

differential equation (4.2) has a transcendental liouvillian solution y such that there

is an element z ∈ C(x, y) \ C(x) satisfying z′ = az, for some nonzero a ∈ C(x).

Suppose that differential equation (4.2) has a transcendental liouvillian solution

satisfying the above conditions. Then by Theorem 4.1.3 (ii), z can be written as

z =
∏l

i=1(y − αi)mi , where α1, . . . , αl are the algebraic solutions of the differential

equation and m1, . . . ,ml are nonzero integers. Therefore if all the algebraic solutions

of a differential equation are known, then by the converse part of Theorem 4.1.3 one

has to find suitable m1, . . . ,ml to determine the existence of such transcendental

liouvillian solution.

Let {Gi ∈ C(x)[y]|i = 1, . . . , r} be the set of minimal polynomial of α1, . . . , αl, where

0 < r ≤ l. Let Gi be the minimal polynomial of αi1, αi2, . . . , αili , after renaming the

αi, where li are positive integers such that
∑r

i=1 li = l. Let Gi =
∏li

j=1(y − αij) =∑li
j=0 fi,jy

li−j, where fi,j ∈ C(x) and fi,0 = 1. Then using Girard–Newton formula,

we obtain

hi,t :=

li∑
j=1

αtij =

−tfi,t −
∑t−1

j=1 fi,t−j hi,j if 1 6 t 6 li

−
∑li

j=1 fi,j hi,t−j otherwise.

(4.19)

Note that hi,t ∈ C(x) for all i and t. By Proposition 4.1.5, z =
∏r

i=1G
mi
i =∏r

i=1

(∏li
j=1(y − αij)mi

)
and Equations (4.3) can be written as

r∑
i=1

mili = 0,
r∑
i=1

mihi,1 = 0, . . . ,
r∑
i=1

mi hi,n−2 = 0, an

r∑
i=1

mi hi,n−1 = a. (4.20)
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We solve the above equations for mi. If suitable mi exist, then we can find a.

Following are the steps:

(i) Substitute m1 = 1
l1

∑r
i=2−mili in

∑r
i=1mihi,1 = 0, . . . ,

∑r
i=1mi hi,n−2 = 0 to

obtain the following equations:

r∑
i=2

mi (l1hi,1 − lih1,1) = 0, . . . ,
r∑
i=2

mi (l1hi,n−2 − lih1,n−2) = 0. (4.21)

(ii) The coefficients of m2,m3, . . . ,mr in Equations (4.21) lie in C(x). After

multiplying by a suitable factor, we may assume that the coefficients lie in

C[x]. Note that the coefficients of powers of x in Equations (4.21) are C

linear combinations of m2,m3, . . . ,mr. Then we can obtain m2,m3, . . . ,mr

by equating the coefficients of powers of x to zero. Obtain m1 from m1 =

1
l1

∑r
i=2−mili.

(iii) Let m1,m2, . . .mr be a solution of Equations (4.21). Then each mi must be

nonzero and mi/m1 must be a nonzero rational number. Multiply the tuple

(m1, . . . ,mr) by a suitable nonzero constant, if required, so that each mi is a

nonzero integer. If m11,m12, . . . ,m1r be another solution of (4.21) satisfying

the above conditions, then by Remark 4.1.4,

m1i

m11

=
mi

m1

, ∀ i = 2, 3, . . . , r.

If the above conditions are not met, then there is no solution. Else, define

a = an
∑r

i=1mi hi,n−1. Use Proposition 2.3.4 to check if there exists a nonzero

γ ∈ C(x) such that γ′ = aγ. If no such γ exists, then by Theorem 4.1.3, the

required solution exists.
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4.2 Application to Abel’s differential equation of

the first kind

The following differential equations are called Abel’s differential equations of the

first and second kind respectively:

y′ = a3y
3 + a2y

2 + a1y + a0 (4.22)

(g + y)y′ = f2y
2 + f1y + f0, (4.23)

where ai, g, fi ∈ C(x), g 6= 0 and a3 6= 0. The well known substitution g + y = 1/u

transforms Equation (4.23) into an Abel’s differential equation of the first kind:

u′ + (f0 − f1g + f2g
2)u3 + (f1 − 2f2g + g′)u2 + f2u = 0. (4.24)

We note that the coefficients of ui lie in C(x) for all i. If y1 and u1 are transcendental

solutions of Equations (4.23) and (4.24), respectively, then the differential fields

k(x, y1) and k(x, u1) are isomorphic and the number of algebraic solutions of the

two equations is equal.

In this section, we will give a method of finding transcendental solutions of

differential equation (4.22) and, by extension, of differential equation (4.23) in an

exponential extension of k(x) using the results from Section 4.1 and the following

propositions.

Proposition 4.2.1. Let K be any field of characteristic zero and α1, α2, α3 be three

pairwise distinct elements of K. Then there exist nonzero integers m1,m2,m3 such

that
∑3

i=1mi = 0 and
∑3

i=1miαi = 0 if and only if (α1 − α3)/(α2 − α1) ∈ Q \ {0} .

Proof. Let (α1 − α3)/(α2 − α1) = p/q ∈ Q \ {0}, then define m2 = p, m3 = q and

m1 = −(m2 +m3). Note that m1 6= 0 otherwise,

m2 +m3 = 0 =⇒ p+ q = 0 =⇒ α1 − α3 = α1 − α2 =⇒ α3 = α2.
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We have arrived at a contradiction as αi are pairwise distinct elements of K.

Therefore mi are nonzero integers. It can be easily shown that
∑3

i=1 mi = 0 and∑3
i=1 miαi = 0. The converse part is obvious.

Proposition 4.2.2. Let y be a transcendental liouvillian solution of Equation (4.22)

such that there exists z1 ∈ C(x)(y) \ C(x) satisfying z′1/z1 ∈ C(x) \ {0}. Suppose

that the differential equation has exactly three distinct algebraic solutions β1, β2 and

β3. Then the following statements hold:

(i) Either each βi ∈ C(x) or β1 ∈ C(x) and β2, β3 lie in a quadratic extension

of C(x). In both the cases, there exists z ∈ C(x, y) \ C(x) such that z′/z ∈

C(x) \ {0}.

(ii) In the latter case, β1 = −a2/(3a3), β2 = β1 + β and β3 = β1 − β, where

β2 ∈ C(x) but β /∈ C(x). Moreover, z = ((y − β1)2 − β2) /(y − β1)2 and

z′ = (2a3β
2)z.

Proof. If α ∈ C(x) is an algebraic solution of Equation (4.22), then all the roots

of the minimal polynomial of α are solutions of the differential equation. Since the

differential equation has precisely three distinct algebraic solutions, the degree of the

minimal polynomial of α is at most three. Now we show that [C(x, α) : C(x)] ≤ 2.

Suppose that β1, β2 and β3 are the roots of an irreducible cubic polynomial over

C(x). Let G(y) = b3y
3 +b2y

2 +b1y+b0, where bi ∈ C(x), be the minimal polynomial

of βi. Then by Cardano’s formula, βi = B1 +Dξi + B2

Dξi
, where ξ is a primitive third

root of unity, B1, B2 ∈ C(x) and D ∈ C(x) such that D2, D /∈ C(x). By Theorem

4.1.3, there exist nonzero integers m1, m2, m3 such that
∑3

i=1mi = 0,
∑3

i=1miβi =

0. Substituting the value of βi and
∑3

i=1mi = 0 in
∑3

i=1miβi = 0, we get

D
3∑
i=1

miξ
i +

B2

D

3∑
i=1

miξ
−i = 0 =⇒ D2

3∑
i=1

miξ
i +B2

3∑
i=1

miξ
−i = 0.

62



SinceD2 /∈ C(x), we obtain
∑3

i=1miξ
i = 0. Note that

∑3
i=1 mi = 0 and

∑3
i=1miξ

i =

0, therefore by Proposition 4.2.1 we obtain ξ2−1
ξ−1
∈ Q, which is not possible. Therefore

either each βi ∈ C(x) or β1 ∈ C(x) and β2, β3 lie in a quadratic extension of C(x).

Suppose that β1 ∈ C(x) and β2, β3 lie in a quadratic extension of C(x). Then we

may write β2 = r+β and β3 = r−β, where r ∈ C(x), β /∈ C(x) and β2 ∈ C(x). By

Theorem 4.1.3, there exists nonzero integers m1,m2,m3 such that m1 +m2 +m3 = 0

and m1β1 +m2(r+β) +m3(r−β) = 0. This gives us m1 (β1 − r) +β(m2−m3) = 0.

Now β lies in a quadratic extension of C(x) and β1 − r lies in C(x). Therefore

m2 = m3,m1 = −2m2, r = β1. We may assume that m2 = m3 = 1, and m1 = −2.

Then by Theorem 4.1.3 (ii),

z =
3∏
i=1

(y − βi)mi =
(y − β1)2 − β2

(y − β1)2
(4.25)

a = a3

3∑
i=1

miβ
2
i = a3

(
−2r2 + (r + β)2 + (r − β)2

)
= 2a3β

2, (4.26)

where 2a3β
2 6= γ′/γ, for any nonzero γ ∈ C(x). Observe that z ∈ C(x, y)\C(x) and

a ∈ C(x). This proves the second part. By Proposition 4.1.7, differential equation

(4.22) is of the form

y′ = a3

3∏
i=1

(y − βi) +
3∑
i=1

(
3∏

j=1,j 6=i

y − βj
βi − βj

)
β′i.

Substituting β1 = r, β2 = r + β and β3 = r − β in the above equation, we get

y′ =a3y
3 − 3a3ry

2 +

(
3a3r

2 +
β′

β
− a3β

2

)
y +

(
r′ − a3r

3 − r β
′

β
+ a3 r β

2

)
.

(4.27)

Note that in the above equation the coefficients of yi lie in C(x). Comparing

Equations (4.22) and (4.27), we obtain β1 = r = −a2/(3a3).
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4.2.1 Method of solving Abel’s differential equation of the

first kind

Following are the steps to determine whether differential equation (4.22) has a

transcendental liouvillian solution satisfying the hypotheses of Proposition 4.2.2.

By Proposition 4.2.2, one of the following can occur:

(i) One rational and two algebraic solutions:

(a) If r := −a2/(3a3) is not a solution of the differential equation, then go to

step (ii). Else take the transformation y → y − r. This would transform

Equation (4.22) into an equation of the form

y′ = a3y
3 + A1y, where A1 ∈ C(x). (4.28)

(b) Taking the well known substitution t = 1/y2 in Equation (4.28), we get

t′ = (−2) (A1 t+ a3) . (4.29)

If Equation (4.29) has infinitely many algebraic solutions, then by The-

orem 4.1.1, Equation (4.22) does not have any transcendental liouvillian

solution y. If the above differential equation has exactly one rational

solution r1, then ±1/(
√
r1) are algebraic solutions of Equation (4.28) as

t = 1/y2. Note that r1 6= 0 as a3 6= 0. Therefore r, r ± 1/(
√
r1) are

algebraic solutions of Equation (4.22). From Equation (4.26) we obtain

a = (2a3)/r1. If (2a3/r1) = γ′/γ, for some nonzero γ ∈ C(x), then there

is no solution (by Theorem 4.1.3). Else we can obtain the transcendental

liouvillian solution by solving Equation (4.29).

(ii) Three rational solutions: Find all the rational solutions of the differential

equation using Algorithm 2 of [41]. If the differential equation has more than
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three rational solutions, then there is no solution of the desired type. Else, let

r1, r2, r3 be the only rational solutions. Then by Theorem 4.1.3 and Proposition

4.2.1, the differential equation has a transcendental liouvillian solution and

exactly three distinct rational solutions if and only if (r1−r3)/(r2−r1) ∈ Q\{0}

and a3

∑3
i=1mir

2
i 6= γ′/γ, where mi are obtained using Proposition 4.2.1 and

γ is any nonzero element of C(x). In this case, the liouvillian tower is given by

C(x) ⊆ C(x, z) ⊆ C(x, z, y), where z′ =
(
a3

∑3
i=1 mir

2
i

)
z and y is an algebraic

over C(x, z) such that
∏3

i=1(y − ri)mi − z = 0.

Note that we can check whether there exists a nonzero γ ∈ C(x) such that γ′ = aγ by

using Proposition 2.3.4. Next, we apply our method to solve differential equations.

Example 4.2.3. The following example appears in [25, p-1405].

y′ =
x3

9
y3 − xy2. (4.30)

Here a3 = x3/9, a2 = −x and a1 = 0 = a0. Observe that r := −a2/(3a3) = 3/x2 is a

rational solution of the differential equation. We take the transformation y → y− r

and the differential equation reduces to

y′ =
x3

9
y3 +

−3

x
y. (4.31)

One can show that roots of the polynomial Pc(Y ) := Y 2 − 9/(x4(1 + cx2)), where

c is a constant, are algebraic solutions of Equation (4.31). Since c is an arbitrary

constant, the differential equation has infinitely many algebraic solutions. Thus by

Theorem 4.1.1, it does not have any transcendental liouvillian solution y.

Example 4.2.4. Consider the differential equation

y′ = y3 +

(
1

2x
− x
)
y. (4.32)
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Here a3 = 1, a1 = 1/(2x) − x and a2 = 0 = a0. Substituting t = 1/y2, Equation

(4.32) reduces to

t′ +

(
1

x
− 2x

)
t = −2 (4.33)

Equation (4.33) is a first order linear differential equation and its solutions are given

by t = (1/x) (1 + c exp(−x2)), where c is a constant. The only rational solution of

Equation (4.33) is r1 := 1/x. Note that (2a3)/r1 = 2a3x = 2x 6= (γ′/γ), for any

nonzero γ ∈ C(x) (using Proposition 2.3.4). Thus the given differential equation

has a transcendental liouvillian solution. The liouvillian tower is given by C(x) ⊆

C(x, z) ⊆ C(x, z, y) where z = exp(x2) and y is algebraic over C(x, z) given by

(y2 − x) = zy2. Note that 0, ±
√
x are the only algebraic solutions.

Example 4.2.5. Consider the differential equation

y′ = y3 − 3y2 +
3− 3x2 − x3

x+ 1
y + x2 + 2x− 1

x+ 1
. (4.34)

We determine that 1,−x, x+2 are the rational solutions of the differential equation.

Let r1 = 1, r2 = −x, r3 = x+2, then (r1−r3)/(r2−r1) ∈ Q\{0}. Using Proposition

4.2.1, we get m1 = −2,m2 = 1,m3 = 1 . Now a3

∑3
i=1mir

2
i = 2x2 + 4x + 2 6=

γ′/γ, for any nonzero γ ∈ C(x). Thus by Theorem 4.1.3, the differential equation

has a transcendental liouvillian solution. The liouvillian tower is given by C(x) ⊆

C(x, z) ⊆ C(x, y), where z′ = (2x2 + 4x + 2)z and y is algebraic over C(x, z) given

by (y + x)(y − x− 2) = z(y − 1)2.

Few remarks:

Note that Theorems 4.1.1 and 4.1.3 hold if we replace C(x) by any differential field

K of characteristic zero such that CK is algebraically closed.
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As noted in the proof of Theorem 4.1.1, if Equation (4.1) has a transcendental

liouvillian solution y, then the number of algebraic solutions is finite. It is an open

problem to find the exact number of algebraic solutions.

In Proposition 4.1.7, we have given the structure of the differential equation in terms

of its algebraic solutions. For any α ∈ C(x), it is natural to ask whether there exists

a first order nonlinear differential equation over C(x) that has a transcendental

liouvillian solution y such that and α is an algebraic solution.
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Chapter 5

Differential subfields of liouvillian

Picard-Vessiot extensions

This chapter is based on the author’s work in [34]. First we recall the definition of

Picard-Vessiot extension. Let k[∂] be the ring of differential operators over k and

L ∈ k[∂] be a monic operator of order n. A Picard-Vessiot extension E of k for

L is a differential field extension of k having the same field of constants as k and

satisfying the following conditions:

(a) The C−vector space V of all solutions of L (Y ) = 0 in E is of dimension n.

(b) E = k〈V 〉, that is, the smallest differential field containing k and V is E.

We had given another definition of Picard-Vessiot extensions in Chapter 2. One

can show that both these definitions are equivalent ([40, Proposition 1.22]). Let

E be a Picard-Vessiot extension of k, K be an intermediate differential subfield

and T (K|k) be the set of all elements of K which are zeros of homogeneous linear

differential equations over k. It is known that T (E|k) is a finitely generated simple
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differential k−algebra whose field of fractions Q(T (E|k)) equals the differential

field E. However, the quotient field of T (K|k) need not be K. We show that

Q(T (K|k)) = K for every intermediate differential field if and only if G (E|k)0

is solvable. Using this characterization we provide the structure of intermediate

differential fields of a Picard-Vessiot extension E whose differential Galois group is

connected solvable. The main result can also be proved using the article [1]. We

also show this derivation.

5.1 The differential k−algebra T (E|k)

Let E be a Picard-Vessiot extension of k with differential Galois group G (E|k). In

this section, we will discuss the differential k−algebra T (E|k) where T (E|k) is the

differential subalgebra of E consisting of all solutions in E of linear homogeneous

differential equations over k. From Corollary 1.38 of [40], T (E|k) is the Picard-

Vessiot ring. It plays a crucial role in Picard-Vessiot theory and is well understood.

Let us list few known facts about T (E|k) (see [23, 24]).

(i) T (E|k) is a finitely generated simple differential k−algebra whose field of

fractions Q(T (E|k)) equals the differential field E.

(ii) G (E|k) stabilizes T (E|k). The G (E|k) orbit set of an element y ∈ E spans a

finite dimensional C vector space if and only if y ∈ T (E|k).

(iii) T (E|k) can be described in terms of the coordinate ring of G (E|k) ([24],

Theorem 5.12): If k is an algebraic closure of k then there is an k−algebra

isomorphism

k ⊗k T (E/k) −→ k ⊗C C[G (E|k)].

70



The G (E|k) action is respected by the above isomorphism. Note that G (E|k)

acts trivially on k and acts as right translations on the coordinate ring

C[G (E|k)] of G (E|k).

(iv) When G (E|k) is a connected solvable group, it is also known that

T (E|k) ' k ⊗C C[G (E|k)]. (5.1)

Again, the G (E|k) action is respected by the above isomorphism ([24, Corollary

5.29]).

Let H be a closed subgroup of G (E|k). Then by the fundamental theorem H =

G (E|K) for some intermediate differential field K. Note that T (K|k) = T (E|k) ∩

K = T (E|k)H . The following proposition will be used to prove our main result.

Proposition 5.1.1. ([34, Proposition 2.1]) Let E be a Picard-Vessiot extension of k

and k(x) be the algebraic closure of k in E. Let K be a differential field intermediate

to k and E. Then the following holds.

(a) T (K(x)|k(x)) = T (K(x)|k).

(b) T (K(x)|k) is an integral extension of T (K|k).

Proof. Every differential equation over k is also a differential equation k(x). There-

fore T (K(x)|k) ⊆ T (K(x)|k(x)). For any y ∈ k(x), there is a nonnegative integer

m such that y, y′, . . . , y(m) are k−linearly dependent as k(x) is finite dimensional k

vector space. This implies that k(x) ⊆ T (K(x)|k). Let y ∈ T (K(x)|k(x))\k(x) and

L = ∂(n) + an−1∂
(n−1) + · · ·+ a0 ∈ k(x)[∂] be a monic operator of order n ≥ 1 such

that L (y) = 0. Let V be the set of all solutions of L in E and for any σ ∈ G (E|k),

let Vσ be the set of all solutions of Lσ = ∂n+σ(an−1)∂(n−1) + · · ·+σ(a0) in E. Note
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that σ(V ) = Vσ. Now ai ∈ k(x) for each i and EG (E|k)0 = k(x). Therefore the set

Si := {σ(ai)| σ ∈ G (E|k)} is finite set for each i. Thus, there are only finitely many

Lσ. Let σ0 ∈ G (E|k) be the identity and L = Lσ0 ,Lσ1 , . . . ,Lσl be the distinct

operators. Let W = Vσ0 + Vσ1 + · · ·+ Vσl . Then, W is a finite dimensional C vector

space. For any σ ∈ G (E|k) and y ∈ Vσi , we have σ(y) ∈ Vσσi = Vσj ⊆ W . This

implies that W is a G (E|k)−module. Thus, any element of W must be a solution

of some operator in k[∂]. In particular, y ∈ T (K(x)|k). This proves the first part.

Taking K = E, we have

T (E|k) = T (E|k(x)). (5.2)

Let s ∈ T (K(x)|k). Since k(x) is a finite Galois extension of k, so is K(x) over

K. In this case, G (K(x)|K) is same as the ordinary Galois group Aut(K(x)|K)

([40], Exercise 1.24). Let {s = s1, s2, . . . , sm} = {σ(s) | σ ∈ G (K(x)|K)}. Then for

σ ∈ G (K(x)|K), we have σ(s) ∈ T (K(x)|k) and thus si ∈ T (K(x)|k) for all i. The

coefficients of the minimal polynomial of s over K are symmetric polynomials in

s1, . . . , sm. Therefore the coefficients of the minimal polynomial lie in T (K(x)|k) ∩

K = T (K|k). This shows that T (K(x)|k) is an integral extension of T (K|k).

5.2 Liouvillian Picard-Vessiot extensions

In this section, we will prove our main result which provides a characterization for

liouvillian Picard-Vessiot extensions. First, we recall a few definitions. A Picard-

Vessiot extension E of k is called a liouvillian Picard-Vessiot extension if E is a

liouvillian extension as well as a Picard-Vessiot extension. In this case, the identity

component of G (E|k) is solvable. Let G be a linear algebraic group defined over

an algebraically closed field. A closed subgroup H of G is called observable if the

quotient variety G/H is quasi affine.
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Theorem 5.2.1. ([34, Theorem 3.1]) A differential field E is a liouvillian Picard-

Vessiot extension of k if and only if Q(T (K|k)) = K for any differential field

K intermediate to E and k. In this case, T (K|k) is a finitely generated simple

differential k−algebra.

Proof. Let E be a liouvillian Picard-Vessiot extension of k, K be an intermediate

differential subfield and H := G (E|K). Let us first assume that G (E|k) is

connected. Then since G (E|k) is solvable, we have T (E|k) ' k ⊗C C[G (E|k)] =

k[G (E|k)]. From [7, Theorem 4.3], we have that every closed subgroup of G (E|k) is

observable. Now from [3, Theorem 3], we have Q(k[G (E|k)]H ) = Q(k[G (E|k)])H .

Thus

Q(T (E|k)H ) = Q(T (E|k))H =⇒ Q(T (K|k)) = K.

Now suppose that G (E|k) is not connected. Since EG (E|k)0 = k(x) ⊆ K(x) ⊆

E, we have Q(T (K(x)|k(x)) = K(x). From Proposition 5.1.1, T (K(x)|k(x)) =

T (K(x)|k) and thus K(x) = Q(T (K(x)|k). We have also shown that T (K(x)|k)

is an integral extension of T (K|k). Let S = T (K|k) \ {0}. Then S−1T (K(x)|k)

is also an integral extension of S−1T (K|k). Observe that the latter is a field; so is

the former. Since K(x) = Q(T (K(x)|k)) is the smallest field containing T (K(x)|k),

S−1T (K(x)|k) = K(x). Now for any t ∈ K, we have t = f/g, where f ∈ T (K(x)|k)

and g ∈ S = T (K|k) \ {0}. Therefore, f = gt ∈ T (K(x)|k) ∩K = T (K|k) and this

proves that Q(T (K|k)) = K.

Now we will prove the converse part. Suppose that E is not a liouvillian extension

of k. Then the identity component G (E|k)0 is not solvable and therefore it contains

a nontrivial Borel subgroup B. Let K = EB and k(x) be the algebraic closure of

k in E. Let s ∈ T (E|k(x))B and Os = {σ(s) ∈ G (E|k)0}. Clearly, Os is contained

in a G (E|k)0 stable finite dimensional C vector space V , say. Since B is a Borel
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subgroup of G (E|k)0, G (E|k)0/B is a projective variety. Therefore, the induced

map φ : G (E|k)0/B → V , given by φ(σ̄) = σ(s) for σ ∈ G (E|k)0, is a morphism

from a projective variety into some affine space containing Os. Thus φ must be a

constant. That is, s ∈ T (E|k(x))G (E|k)0 = k(x) and thus k(x) = T (E|k(x))B. Then

Q(T (K|k)) = Q(T (E|k)B) = Q(T (E|k(x))B) = k(x) 6= K.

This proves the converse.

Next, we will show that T (K|k) is a finitely generated differential k−algebra. First,

assume that G (E|k) is a connected solvable group. Let H be a closed subgroup of

G (E|k) and K := EH . We have T (E|k) ' k ⊗C C[G (E|k)] and therefore

T (K|k) = T (E|k)H ' (k ⊗C C[G (E|k)])H = k ⊗C C[G (E|k)]H .

Since G (E|k) is solvable, the homogeneous space G (E|k)/H is affine ([7], Theorem

4.3 and Corollary 4.6) and we obtain C[G (E|k)]H = C[G (E|k)/H ] is a finitely

generated C−algebra. This in turn implies T (K|k) ' k ⊗C C[G (E|k)]H is a

finitely generated k−algebra. Now assume that only G (E|k)0 is solvable. Let

k(x) = EG (E|k)0 and observe that G (E|k(x)) = G (E|k)0 is connected. Then we know

T (K(x)|k(x)) is a finitely generated k(x)−algebra and it follows that T (K(x)|k(x))

is a finitely generated k−algebra as well. Since T (K(x)|k(x)) = T (K(x)|k) is an

integral extension of T (K|k), by Artin-Tate Theorem ([9], p.143) we obtain that

T (K|k) is a finitely generated k−algebra.

Now it only remains to show that T (K|k) is a simple differential k−algebra. As

done earlier, we will first prove simplicity when G (E|k) is connected. Let I be a

nonzero differential ideal of T (K|k) and choose 0 6= y ∈ I so that L (y) = 0 for

some L ∈ k[∂] of smallest positive order n. Since the Galois group is connected

and solvable, L = Ln−1L1 for Ln−1,L1 ∈ k[∂] of orders n − 1 and 1 ([16], p.38).

Let L1 = ∂ − a for a ∈ k and observe that L1(y) = y′ − ay ∈ I. Now since
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0 = L (y) = Ln−1(L1(y)), from the choice of n, we obtain that y′ − ay = b ∈ k.

Thus b = L1(y) ∈ I. If b 6= 0 then I = T (K|k). On the other hand if b = 0 then

y′ = ay and therefore (1/y)′ = −a(1/y). Thus 1/y ∈ T (K|k) and we again obtain

I = T (K|k). This completes the proof when G (E|k) is connected. For an arbitrary

liouvillian Picard-Vessiot extension E of k, we have T (K(x)|k(x)) = T (K(x)|k) to

be a finitely generated simple differential k−algebra, where k(x) is the algebraic

closure of k in E. Suppose that T (K|k) is not simple and let I 6= T (K|k) be a

differential ideal that is maximal among all differential ideals not intersecting {1}.

Then I is known to be a prime ideal. Let Ie be the extension ideal in T (K(x)|k).

It is easy to see that Ie is a differential ideal and therefore Ie = T (K(x)|k). Since

T (K(x)|k) is integral over T (K|k) and that I is prime, there must exist a prime

ideal of T (K(x)|k) that contracts to I. But any such prime ideal must contain

Ie = T (K(x)|k), a contradiction.

Let E be a liouvillian Picard-Vessiot extension E of k and k(x) be the algebraic

closure of k in E. Then G (E|k)0 is connected solvable group. Therefore G (E|k)0 =

U o T , where U is the unipotent radical of G (E|k) and T is a maximal torus

of G (E|k)0. Using this one can show that E has the following structure ([24],

Proposition 6.7):

(a) E = EU (η1, . . . , ηn), where η1, . . . , ηn ∈ E are algebraically independent over

EU and η′i ∈ EU (η1, . . . , ηi−1),

(b) EU = k(x)(ξ1, . . . , ξm), where ξ1, . . . , ξm ∈ EU are algebraically independent

over k(x) such that ξ′i/ξi ∈ k(x)(ξ1, . . . , ξi−1). Moreover, EU is a Picard-Vessiot

extension of k(x) with a differential Galois group isomorphic to a maximal torus

of G (E|k)0.
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From the inverse problem for tori ([24], p.99 or [40], Exercise 1.41), we can further

assume that the k(x)−algebraically independent ξi are chosen so that ξ′i/ξi ∈ k(x)

(as opposed to ξ′i/ξi ∈ k(x)(ξ1, . . . , ξi−1)). With this description of E, in the next

corollary, we will decompose K into a tower of differential fields in the following

manner: each differential field in the tower is obtained from its predecessor by

adjoining the solution of a first order linear differential equation of a certain form.

Corollary 5.2.2. ([34, Corollary 3.3]) Let E be a liouvillian Picard-Vessiot

extension of k and G (E|k) be connected. Let K be a differential field intermediate

to E and k. Then K = k(t1, . . . , tn), where for each i, ti ∈ T (K|k), t′i = aiti + bi

for ai ∈ k and bi ∈ k(t1, . . . , ti−1). Furthermore,

1. if G (E|k) is unipotent then each ai can be taken to be zero for each i and that

t1, . . . , tn are algebraically independent.

2. if G (E|k) is a torus then each bi can be taken to be zero.

Proof. Let us assume that k ( K ( E. Let M be any differential field such that

k ⊆M ( K. We will show that there is a y ∈ T (K|k) \M such that y′ = ay+ b for

some a ∈ k and b ∈ M and that a can be taken to be zero if G (E|k) is unipotent

and that b can be taken to be zero if G (E|k) is a torus.

Note that that T (K|k) \ M 6= ∅ (by Theorem 5.2.1). Choose y ∈ T (K|k) \ M

and L ∈ k[∂] of smallest positive degree m such that L (y) = 0. Since G (E|k) is

connected and solvable, L = Lm−1L1, where Lm−1,L1 ∈ k[∂] are of order m − 1

and 1 respectively. Let L1 = ∂ − a, a ∈ k. Observe that L1(y) ∈ T (K|k) and

Lm−1(L1(y)) = 0. Observe that L1(y) ∈ T (M |k) ⊂ M due to our choice of m. As

a result, we have identified an element y ∈ T (K|k) \M such that y′ = ay+ b, where

a ∈ k and b ∈M .
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If G (E|k) is unipotent then E = k(η1, . . . , ηs), where η′i ∈ k(η1, . . . , ηi−1). By [38,

Proposition 2.2], L has a nonzero solution α ∈ k . Thus, in this case, we may choose

L1 = ∂− (α′/α) and obtain an element y/α ∈ T (K|k) such that (y/α)′ = b/α ∈M .

Finally, suppose that G (E|k) is a torus. Then E = k(ξ1, . . . , ξs), where ξ′i/ξi ∈ k for

each i. If b 6= 0 then we apply Proposition 2.2 of [38] to the extension M(ξ1, . . . , ξs)

of M with L1(y) = y′ − ay = b. Therefore there is an element α ∈ M such that

α′ − aα = b. Now y − α ∈ T (K|k) \M and (y − α)′/(y − α) = a ∈ k.

Taking M = k, first we obtain t1 and taking M = k(t1, . . . , ti−1), we obtain ti ∈

T (K|k) \M , with the desired properties. Since K is finitely generated over k, there

is an n such that K = k(t1, . . . , tn).

In the above corollary, the hypothesis that G (E|k) is connected and solvable allowed

us to factor the differential operator L over k[∂], which was a crucial step in the

proof. One cannot drop the assumption that G (E|k) is connected. For example,

consider the extension E = C(x)(
√
x, e

√
x). Then E is a liouvillian Picard-Vessiot

extension of C(x) for the differential equation L (Y ) = Y ′′+(1/2x)Y ′−(1/4x)Y = 0.

The set V := spanC{e
√
x, e−

√
x} is the set of all solutions of L (Y ) = 0 in E. Since E

contains the algebraic extension C(x)(
√
x), G (E|k) is not connected. The differential

Galois group G (E|C(x)) is isomorphic to Gm o Z2. Being one dimensional it is

solvable. One can show that the intermediate differential fieldK := C(x)(e
√
x+e−

√
x)

contains no elements satisfying a first order linear differential equation over C(x)

other than the elements of C(x) itself ([38], p.376).
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5.3 Intermediate differential subfields of Picard-

Vessiot extensions

Let (C(x), d/dx) be the ordinary differential field of complex rational functions with

derivation ′ := d/dx. Let E be a Picard-Vessiot extension of the Airy differential

equation L (Y ) := Y ′′ − xY = 0. Then the differential Galois group is isomorphic

to SL(2,C). Let K be the fixed field of upper triangular matrices in SL(2,C). Then

K = C(x)(w), where w is transcendental over C(x) and w is a solution of the Ricatti

equation w′ = x−w2. Also, T (K|C(x)) = T (E|C(x))∩K = C(x) ([24], pp. 86-87).

Now we will show that the differential ring C(x)[w] is a finitely generated simple

differential k−algebra whose field of fractions is K. It is enough to show that the

differential ring C(x)[w] is simple. Let I be a maximal differential ideal of C(x)[w].

Then I is a prime ideal. Since C(c)[w] is a P.I.D., I = (v) for some monic irreducible

polynomial v ∈ C(x)[w]. Let v =
∏m

i=1w − αi, where αi are distinct elements of

C(x). Now,

v′ =
m∑
j

(w′ − α′j)
m∏
i 6=j

(w − αi).

Since v′ ∈ I, v divides v′. Then w−αi must divide w′−α′i and it follows that α′i = x−

α2
i . This contradicts the fact that the Ricatti equation w′ = x−w2 has no solutions

in C(x). Thus C(x)[w] is a (finitely generated) simple differential k−algebra. This

example prompts us to consider whether an intermediate differential field K of any

arbitrary Picard-Vessiot extensions may be constructed as a field of fractions of

a finitely generated simple differential k−subalgebras of K. Using the following

propositions, we will provide a positive answer to this question in Theorem 5.3.3.

Proposition 5.3.1. ([34, Proposition 4.1]) Let K be a finitely generated differential

field extension of k. Then K contains a finitely generated differential k−algebra

whose field of fractions is K.
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Proof. Let K = k(y1, . . . , yt−1)[yt], where y1, . . . , yt−1 is a transcendence base of K

over k and yt is algebraic over k(y1, . . . , yt−1). For each yi, we will construct a finitely

generated differential k−algebra Ri whose field of fractions is k〈yi〉 = k(yi, y
′
i, . . . ).

Then the smallest k−algebra R containing R1, . . . , Rt will be a finitely generated

differential k−algebra whose field of fractions is K.

Let y ∈ {y1, . . . , yt}. Consider the differential field k〈y〉. Let n be the smallest

positive integer such that y, y′, . . . , y(n−1) are algebraically independent over k and

that y(n) be algebraic over the subalgebra k[y, y′, . . . , y(n−1)] of K. Let

P (X) :=
m∑
i=0

aiX
i ∈ k[y, y′, . . . , y(n−1)][X]

be a minimal polynomial of y(n) with am 6= 0. Differentiating P (y(n)) = 0 we get

m∑
i=0

a′i(y
(n))i +

(
m∑
i=0

iai(y
(n))i−1

)
y(n+1) = 0.

Note that r :=
∑m

i=0 iai(y
(n))i−1 6= 0 and therefore

y(n+1) =
−
∑m

i=0 a
′
i(y

(n))i

r
∈ k[y, y′, . . . , y(n)][r−1]. (5.3)

Let Ry := k[y, y′, . . . , y(n), r−1]. Then (1/r)′ = −r′/r2 ∈ Ry and y(i) ∈ Ry for all i.

Therefore Ry is a finitely generated differential k−algebra whose field of fractions is

k〈y〉.

Proposition 5.3.2. ([34, Proposition 4.2]) Let E be a Picard-Vessiot extension of

k and S be a differential k−subalgebra of E such that T (E|k) ⊆ S. Then S is a

simple differential k−algebra.

Proof. Let I be a nonzero differential ideal of S and a be a nonzero element of I.

Since E is the fraction field of T (E|k), a = f/g for f, g ∈ T (E|k) \ {0}. Therefore

(0 6=) ga = f ∈ Ic = T (E|k)∩ I. Since the contraction ideal Ic is a differential ideal
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and that T (E|k) is a simple differential ring, we have 1 ∈ Ic ⊆ I. This implies that

S is a simple differential ring.

Theorem 5.3.3. ([34, Theorem 4.3]) Let E be a Picard-Vessiot extension of k and

let k ⊆ K ⊆ E be an intermediate differential field. Then K contains a finitely

generated simple differential k−algebra whose field of fractions is K.

Proof. Since Picard-Vessiot extensions are finitely generated field extensions, we

apply Proposition 5.3.1 and obtain a finitely generated differential k−algebra R,

whose field of fractions is K. Let R := k[x1
y1
, x2
y2
, . . . , xn

yn
], where xi, yi ∈ T (E

/
k). We

will find an element s ∈ R so that R[1/s] is a simple differential k−algebra and this

would complete the proof.

Let S be the subalgebra generated by the T (E|k) and the set { 1
yi
| 1 ≤ i ≤ n}. Then

S ⊇ T (E|k) is a finitely generated differential k−algebra. By Proposition 5.3.2, S

is also simple.

Next, we will find a suitable candidate for s. Let E be the algebraic closure of E

and k ⊆ E be the algebraic closure of k in E. Clearly, k is an algebraically closed

field. Let R and S be the rings generated by R and S over k, respectively. Note that

R ⊆ S and R and S are integral extensions of R and S respectively. The domains

R and S are finitely generated k−algebras and therefore they are coordinate rings

of some irreducible affine varieties X and Y .

Let ψ : Y → X be the morphism induced by the inclusion R ⊆ S. Then ψ is

dominant and therefore ψ(Y ) must contain an open set U of X. Choose f ∈ R so

that Xf := {x ∈ X | f(x) 6= 0} ⊆ U . Since f must be integral over the domain

R, there is a monic polynomial P (X) = Xn + sn−1X
n−1 + · · · + s ∈ R[X] such

that P (f) = 0 and s 6= 0. Then (fn−1 + sn−1f
n−2 + · · · + s1)f = −s and we have

Xs ⊆ Xf ⊆ U ⊆ ψ(Y ). Thus ψ naturally restricts to a surjective morphism from
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Ys to Xs. Observe that V (I) is a non-empty subset of Xs for any proper ideal I of

R[1/s]. Since Xs ⊂ ψ(Y ), we obtain that ψ−1(V (I)) is a non-empty subset of Ys.

Then ψ−1(V (I)) ⊆ V (Ie), where Ie is the extension of I in S[1/s] and therefore Ie

is also a proper ideal of S[1/s].

Now we will show thatR[1/s] is a simple differential ring. Suppose that a is a nonzero

proper differential ideal of R[1/s]. Since every differential ideal is contained in a

maximal differential ideal and since maximal differential ideals are prime, we have a

nonzero prime differential ideal p containing a. But R[1/s] is an integral extension

of R[1/s] and therefore there is a prime ideal q in R[1/s] such that q ∩ R[1/s] = p.

Let pe be the extension ideal of p in R[1/s]. Clearly pe ⊆ q and therefore pe is a

proper ideal of R[1/s]. Let b be the extension ideal of pe in S[1/s]. Then from

our earlier observation, b is a proper ideal. Since p is a differential ideal, so is b.

Now the contraction bc := S[1/s] ∩ b must be a proper differential ideal of S[1/s].

Furthermore, 0 6= p ⊆ R[1/s] ⊆ S[1/s] implies p ⊆ bc and thus bc must be a proper

nonzero differential ideal of S[1/s]. This contradicts Proposition 5.3.2.

5.4 Solution algebras and solution fields

In this section, we will prove Theorem 5.2.1 using results from the article [1]. The

contents of this section are part of the author’s work in [22, Section 4]. First we will

discuss the relevant definitions and results.

Let k[∂] be the usual ring of differential operators. Note that any differential module

M over k is also a k[∂]−module such that dimkM is finite. Recall that finitely

generated k[∂] modules are isomorphic to a finite direct sum
⊕

Mi, where each Mi

is isomorphic to either k[∂] or k[∂]/k[∂]Li for some Li ∈ k[∂] with deg Li > 0. Let

M be a differential k−module of dimension n. A no new constant extension E of k
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is called a solution field for M if there is a morphism ψ : M → E of k[∂]−modules

such that ψ(M) generates E; in which case, E is said to be generated by a solution

ψ. Let S be a differential k−algebra and an integral domain such that the field

of constants of Q (S) is C. Then S is called a solution algebra for M if there is a

morphism ψ : M → S of k[∂]−modules such that ψ(M) generates S.

Proposition 5.4.1. Let S ⊇ k be a differential integral domain such that the field

of constants of the field of fractions of S is C. Let E be a no new constant extension

of k. Then S (respectively, E) is a solution algebra (respectively, solution field)

if and only if S (respectively, E) is generated by a finite set of solutions of linear

differential equations over k.

Proof. Suppose that S is generated by solutions {y1, . . . , yn} of linear differential

equations over k. Let Li(yi) = 0 for Li ∈ k[∂]. Consider the k[∂]−morphism

⊕ni=1ψi :
⊕n

i=1 k[∂]/k[∂]Li → S defined by ψi(1) = yi. Therefore S is a solution

algebra. Conversely, let S be a solution algebra generated by a solution ψ. Then

we have a map ψ : M → S of k[∂]−modules such that ψ(M) generates S as a

k−algebra. Note that ψ(M) is a (finite dimensional) differential k−module. Let

y1, . . . , yn be a k−basis of ψ(M). Then each yi must satisfy a linear homogeneous

differential equation over k.

Similarly, if E is a no new constant extension of k, then E is a solution field if and

only if E is generated by solutions of linear differential equation over k.

Let M∨ be the dual of M . A differential field E is called a Picard-Vessiot field if it

has the same field of constants as k and the C−modules Sol(M,E) := Homk[∂](M,E)

and Sol(M∨, E) := Homk[∂](M
∨, E) are of dimension n over C and E is minimal

with respect to these properties. We have seen in Section 2.5 that M and M∨ have

the same Picard-Vessiot extension. As a result the concept of Picard-Vessiot field
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for M and Picard-Vessiot extension for M are the same. Note that E is a solution

field of Mn if it is a Picard-Vessiot field of a differential k−module M of dimension

n.

Theorem 5.4.2. ([1, Lemma 4.2.2, Theorem 1.2.2]) Let M be a differential

k−module.

(i) The quotient field of a solution algebra S for M is a solution field for M .

(ii) Conversely, any solution field K for M is the quotient field of (non unique)

solution algebra S for M .

(iii) Any solution field for M embeds as differential subfield of a Picard-Vessiot field

for M .

(iv) Let E be the Picard-Vessiot field for M with differential Galois group G, then

an intermediate differential field k ⊆ K ⊆ E is a solution field if and only if

the corresponding subgroup H ⊂ G is observable.

Now we are ready to state and prove Theorem 5.2.1 in terms of solution fields.

Theorem 5.4.3. ([22, Proposition 4.3]) Let E be a Picard-Vessiot extension of k

with differential Galois group G . Then E is a liouvillian extension of k if and only

if every differential field K intermediate to E and k is a solution field.

Proof. Let E be a liouvillian extension of k, K be an intermediate differential

subfield and H := G (E|K). We know that G 0, the connected component of G ,

is a solvable linear algebraic group. From [13, Pages 6, 12], we have

(i) A closed subgroup H of an algebraic group G is observable if and only if

H ∩ G 0 is observable in G 0.
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(ii) If G is a solvable algebraic group then any closed subgroup H of G is

observable.

Since G 0 is solvable, every closed subgroup of G 0 is observable. Thus in particular

H ∩G 0 is observable in G 0. This now implies our closed subgroup H is observable.

Now by Theorem 5.4.2, K must be a solution field. To prove the converse, we

suppose that E is not a liouvillian Picard-Vessiot extension of k. Then G 0 is not

solvable and therefore it contains a non-trivial Borel subgroup B. Since G /B is

a projective variety, we obtain from Theorem 5.4.2 that the differential field K

corresponding to H is not a solution field.
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Chapter 6

Solutions of first order differential

equations in iterated strongly

normal extensions

This chapter is based on the author’s work in [22]. In this chapter our aim is

to classify the transcendental solutions of a first order differential equation in an

iterated strongly normal extension of k. If t is a transcendental solution of a

first order differential equation in an iterated strongly normal extension of k then

k(t, t′) is a transcendence degree one differential subfield of an iterated strongly

normal extension. Thus we find the structure of transcendence degree one subfields

of a strongly normal extension. We also discuss the algebraic dependence of

transcendental solutions of first order differential equations and give a large class

of differential equations that do not have transcendental solutions in any iterated

strongly normal extension of k.
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6.1 Transcendence degree one subfields of strongly

normal extensions

In this section, we will classify transcendence degree one subfields of strongly normal

extensions. First, a strongly normal extension is decomposed into a well-known

tower of differential subfields. Then we use the structure of liouvillian Picard-Vessiot

extensions and Theorem 2.6.7 to derive our structure theorem.

Proposition 6.1.1. Let E be a no new constant extension of k. Let L be a

differential field intermediate to E and k. Suppose that there are two elements

y, t ∈ E, each transcendental over L, such that L(t) = L(y). Then t satisfies a

Riccati equation over L if and only if y satisfies a Riccati equation over L.

Proof. From Lüroth’s theorem, we know that there are elements a, b, c, d ∈ L such

that ad− bc 6= 0 and that

y =
at+ b

ct+ d
.

Taking derivative of the above equation, we obtain

y′(ct+ d)2 = ca′t2 + (a′d+ b′c)t+ db′ −
(
c′at2 + (bc′ + ad′)t+ bd′

)
+ (ad− bc)t′.

If y′ = f(y) is a polynomial of degree ≤ 2 then we see that y′(ct+d)2 is a polynomial

of degree ≤ 2. Since 0 6= ad− bc ∈ L, we will solve for t′ and obtain t′ = g(t), where

g is a polynomial in one variable over L of degree at most 2.

Let E be a strongly normal extension of k. Since G := G (E|k) is an algebraic group,

there is a chain of subgroups (see Theorem 2.6.6)

G ⊇ G 0 ⊇H ⊇ {1} ,
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where G 0 is the identity component of G , H is a closed normal subgroup of G 0 as

well as a connected linear algebraic group such that G 0/H is an abelian variety.

The fundamental theorem of strongly normal extensions gives us the following tower

of differential fields:

k ⊆ E0 ⊆ F ⊆ E, (6.1)

where E0 is a finite Galois extension of k with Galois group G /G 0, F is an abelian

extension of E0, that is G (F |E0) ∼= G 0/H is an abelian variety and E is a Picard-

Vessiot extension of F with H ∼= G (E|F ).

Theorem 6.1.2. ([22, Theorem 5.2]) Let E be a strongly normal extension of k

and K be a differential field intermediate to E and k. If tr.deg(K|k) = 1 then there

is a finite algebraic extension k̃ of k and an element t ∈ k̃K such that one of the

following holds:

(i) k̃K = k̃(t) and t is a solution of a Riccati equation over k̃.

(ii) k̃K = k̃(t, t′) and t is a solution of a Weierstrass differential equation over k̃.

Proof. We decompose E into a tower of differential fields as in Equation (6.1). Then

we have the following cases to consider.

Case (i): Suppose that KF ) F . We take a finite algebraic extension k̃ (inside the

algebraic closure of E) so that there is a nonsingular projective curve Γ defined over

k̃ satisfying the following properties: the function field k̃(Γ) ∼= k̃K, k̃ is algebraically

closed in k̃K and that Γ has a k̃−point. We first claim that Γ is a rational curve,

that is, k̃K = k̃(t).

Since the compositum k̃E remains a strongly normal extension of k̃ (see [17, Theorem

5]), for convenience of notation, we replace k̃ by k. Let z ∈ KF \ F . Since G (E|F )
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is a connected linear algebraic group and since a connected linear algebraic group is

a union of its Borel subgroups, by the fundamental theorem, we obtain that⋂
B, Borel subgroups

EB = F.

Therefore z does not lie in every Borel subgroups of G (E|F ). So there is a Borel

subgroup B such that z ∈ E \ EB. Since B is a connected solvable group, B =

U o T , where U is the unipotent radical and T is a maximal torus. As a result,

E can be further decomposed as follows:

E ⊇ EU ⊇ EB ⊇ F, where

(i) E is a Picard-Vessiot extension of EU with a unipotent differential Galois

group U .

(ii) EU is a Picard-Vessiot extension of EB with G (EU |EB) ∼= B/U ∼= T .

Therefore there are two possibilities, either EU ( EUK or EUK = EU . We will

discuss each of these cases in details.

Let us first consider the case where EUK properly contains EU . Then since U is

connected, EU is algebraically closed in EUK and we obtain that tr.deg(EUK|EU ) =

1. Applying Corollary 5.2.2, we obtain EUK = EU (y), where y′ ∈ EU . Since

EUK = EU (Γ), the (geometric) genus of Γ over EU is 0. By Theorem 2.3.1, the

geometric genus remains invariant under base change by separable fields. Also, k is

algebraically closed in K. Thus, the genus of K over k is zero. Since Γ has k−point,

we obtain that K = k(t).

Therefore we have EUK = EU (t) = EU (y), where y′ ∈ EU . It follows from

Proposition 6.1.1 that t is a solution of a Riccati equation over EU . Say, t′ = g(t),

where g is a polynomial over EU of degree ≤ 2. Since K = k(t) is a differential field,
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t′ ∈ k(t) \ {0}. Let t′ = h1(t)/h2(t), where h1 and h2 are nonzero relatively prime

polynomials in k[t]. We may assume that h2 is a monic polynomial. Therefore

g(t) = t′ =
h1(t)

h2(t)
=⇒ g(t)h2(t) = h1(t).

Note that h1 and h2 remain relatively prime over any field extension of k. Thus

h2 = 1 and we obtain that the coefficients of g are in k.

Now we consider the case where EUK = EU , that is K ⊆ EU . Since T is a

connected, commutative linear algebraic group, KEB is a Picard-Vessiot extension

of EB such that EB is algebraically closed in EU . Therefore EB is also algebraically

closed in KEB. Since tr.deg(KEB|EB) = 1, G (KEB|EB) ∼= Gm. From [23,

Example 5.24] we have EBK = EB(y), where y′/y ∈ EB. This shows that Γ is

a genus zero curve in this case as well. Therefore EBK = EB(t) = EB(y) with

y′/y ∈ EB. We come to the conclusion that t satisfies a Riccati equation over k by

making the same argument as in the preceding paragraph.

Case (ii). Suppose that K ⊆ F . Note that every intermediate differential subfield is

strongly normal over E0 as F is an abelian extension of E0. In particular, KE0 is

strongly normal over E0. Since E0 is algebraically closed in F , tr.deg(KE0|E0) = 1.

It follows from Theorem 2.6.7 that either KE0 = E0(y), where y′ ∈ E0 or y′/y ∈ E0\

{0} or that k̄K = k̄(t, t′), where t is a solution of a Weierstrass differential equation

over k̄. If KE0 = E0(y) with y′ ∈ E0 or y′/y ∈ E0 \ {0} then G (KE0|E0) ∼= Ga(C)

or Gm(C) and we would get a surjective morphism from the abelian variety G (F |E0)

to the linear algebraic group G (KE0|E0), which is not possible. Therefore, k̄K =

k̄(t, t′), where t is a transcendental solution of a Weierstrass differential equation

over k̄. Now K is a finitely generated differential field over k. Therefore there is a

finite algebraic extension k̃ of k such that k̃K = k̃(t, t′).

Remark 6.1.3. If E is a Picard-Vessiot extension of k then only case (i) of the
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above theorem can occur. Moreover, one can show that KE0 is a rational field

generated by a solution of a Riccati differential equation. To see this, we consider

the connected group G (E|E0) and its codimension one closed subgroup G (E|KE0).

Then, the function field of the homogeneous space G (E|E0)/G (E|KE0) is known to

be rational; for example, see [6, Theorem 4.4]. Since KE0 is isomorphic (as fields)

to E0(G (E|E0)/G (E|KE0)) = E0(x), we obtain that KE0 = E0(y) [23, p. 87]. As

in the proof of the previous theorem, there is a Borel subgroup of G (E|E0) such

that either KEU = EU (t) = EU (y), where t′ ∈ EU or KEB = EB(t) = EB(y),

where t′/t ∈ EB. Again, arguing as above, one can show that y satisfies a Riccati

differential equation over E0.

6.2 Transcendence degree one subfields of iter-

ated strongly normal extensions

In this section, our aim is to classify transcendence degree one subfields of an iterated

strongly normal extension. Recall that E is called an iterated strongly normal

extension of k if there is a tower of differential subfields k =: E0 ⊆ E1 ⊆ E2 ⊆

· · · ⊆ En+1 = E, where Ei is a strongly normal extension of Ei−1. Since each Ei is

strongly normal over Ei−1, Ei is finitely generated over Ei−1 such that CEi
= CEi−1

.

Thus E is finitely generated over k such that CE = C. Let K be a differential field

intermediate to k and E. Then K is also finitely generated over k. Suppose that

Ei−1 ( Ei−1K ⊆ Ei−1. Then by Theorem 6.1.2, there is an element t ∈ Ei−1K such

that t is transcendental over Ei−1 and satisfies a Riccati or a Weierstrass differential

equation over an algebraic extension of Ei−1. In the next proposition and lemma

we will devise techniques to find an element v satisfying a Riccati or a Weierstrass

differential equation over an algebraic extension of k.
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Proposition 6.2.1. Let E be a strongly normal extension of k with differential

Galois group G and Ẽ be an algebraic extension of E. Suppose that K is a differential

field intermediate to k and Ẽ such that tr.deg(K|k) = 1. Then tr.deg(K ∩E|k) = 1

and there is an algebraic extension k̃ of k such that one of the following holds:

(i) k̃(K ∩ E) = k̃(y), where y satisfies a Riccati differential equation over k̃.

(ii) k̃(K ∩ E) = k̃(y, y′), where y satisfies a Weierstrass differential equation over

k̃.

Proof. Since E is a strongly normal extension of k, KE is a strongly normal

extension of K and the natural restriction map from the differential Galois group

G (KE|K) to G is an isomorphism onto the subgroup G (E|K ∩ E) of G (see

[17, Theorem 5]). Let tr.deg(E|k) = n. Then n ≥ 1 as tr.deg(K|k) = 1

and k ⊆ K ⊆ Ẽ, where Ẽ is algebraic over E. Now tr.deg(E|K ∩ E) =

dim(G (E|K∩E)) = tr.deg(KE|K) = n−1. Thus, tr.deg((K∩E)|k) = tr.deg(E|k)−

tr.deg(E|(K ∩ E)) = 1. The remainder of the proof is derived from Theorem

6.1.2.

Lemma 6.2.2. ([22, Lemma 6.2]) Let L be a no new constant extension of

k̄. Suppose that K and E are differential subfields intermediate to L and k̄

having the following properties: K is finitely generated over k̄, tr.deg(K|k̄) = 1,

tr.deg(EK|E) = 1, E is algebraically closed, EK is weakly normal extension of K

and that the group of differential automorphisms G (EK|K) stabilises E.

(i) If there is a Riccati equation over E having a solution t ∈ EK \ E then there

is Riccati equation over k̄ having a solution v ∈ K \ k̄.
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(ii) If there is a Weierstrass differential equation over E having a solution t ∈

EK\E then there is a Weierstrass differential equation over k̄ having a solution

v ∈ K \ k̄.

Proof. Since K is finitely generated over k̄, EK is also finitely generated over E

such that EK is a finite algebraic extension of E(t, t′). Therefore there are finitely

many fields intermediate to E(t, t′) and EK. Consider the set

S = {σ ∈ G (EK|K)| E(t, t′) ( E(t, t′, σ(t), σ(t)′)} ∪ {id} .

Thus there are finitely many automorphisms σ1, . . . , σn ∈ G (EK|K), where

σ1 is the identity, such that G (EK|K) stabilizes the differential field E∗ :=

E(σ1(t), σ1(t)′, . . . , σn(t), σn(t)′).

We claim that (E∗\E)∩K 6= ∅. Since tr.deg(K|k̄) = tr.deg(EK|E) = 1, there is an

element u ∈ K \ k̄ such that u is transcendental over E. Let Xm+αm−1X
m−1 + · · ·+

α0 ∈ E∗[X] be the minimal polynomial of u over E∗. Then for any σ ∈ G (EK|K),

we have σ(u) = u, therefore um + σ(αm−1)um−1 + · · ·+ σ(α0) = 0 and thus

(σ(αm−1)− αm−1)um−1 + · · ·+ σ(α0)− α0 = 0.

Therefore σ(αi) = αi for all i = 0, . . . ,m − 1. This implies that αi ∈ K as EK

is assumed to be weakly normal over K. Thus αi ∈ E∗ ∩ K for all i. Since u is

transcendental over E, there is at least one i such that s := αi ∈ E∗\E. This proves

our claim.
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EK E

E∗

K E(s, s′)

E

k̄(s, s′)

k̄

G (EK|K)

Now we are ready to prove the lemma. First, consider the case where t ∈ EK \ E

satisfies a Riccati equation over E. Let t′ = P (t). Note that for any σ ∈ G (EK|K),

σ(t)′ = Pσ(σ(t)) is also a Riccati equation, where Pσ ∈ E[X] is the polynomial

obtained by applying σ to the coefficients of P . Since each of σ1(t), . . . , σn(t) is

a solution of some Riccati equation over E, there is a Picard-Vessiot extension E

of E containing σ1(t), . . . , σn(t). Now E(s, s′) is a differential subfield of E with

tr.deg(E(s, s′)|E) = 1. We apply Theorem 6.1.2 and we get that E(s, s′) = E(y),

where y satisfies a Riccati differential equation over E. Using the fact that the genus

of a field remains invariant under base change by separable extensions, we conclude

that k̄(s, s′) has genus 0 and thus k̄(s, s′) = k̄(v). By Proposition 6.1.1, we obtain

that v satisfies a Riccati equation over k̄. This proves (i).

Now we consider that case where t is a transcendental solution of a Weierstrass

differential equation over E; t′2 = α2(4t3 − g2t − g3) with g2, g3 ∈ C. Note that

σ(t)′2 = σ(α)2(4σ(t)3− g2σ(t)− g3) for σ ∈ G (EK|K). Since E∗ is the compositum

of finitely many strongly normal extensions E(σi(t), σi(t)
′) of E, E∗ is a strongly

normal extension of E. Also, E ⊆ E∗ ⊆ EK and therefore tr.deg(E∗|E) = 1.

Now genus(E(t, t′)|E) = 1 and E(t, t′) ⊆ E∗, therefore genus(E∗|E) ≥ 1. It follows

from Theorem 2.6.7 that E∗ is a genus one abelian extension of E. By case (ii) of

Theorem 6.1.2, E(s, s′) is a genus one abelian extension of E. Thus k̄(s, s′) is also
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a genus one field extension of k̄.

Let C1 be a nonsingular projective model for k̄(s, s′). Then C1 is also a model for

E(s, s′). By Theorem 2.6.7, the group G (E(s, s′)|E) is the C−points of a Weierstrass

elliptic curve C2 defined over C :

C2 = X2
2X0 − 4X3

1 + h2X
2
0X1 + h3X

3
0 ,

where h2, h3 ∈ C. Furthermore, E(s, s′) = E(x, x′), where (1 : x : x′/α) is a point of

C2 for some α ∈ E. Therefore C2 is also a nonsingular projective model for E(s, s′).

Then, C1 and C2 are isomorphic over E. Since both the curves are defined over k̄

and the j− invariants j(C1) = j(C2) ∈ C ⊆ k̄, the curves are isomorphic over k̄

as well [35, Proposition 1.4]. Thus, there is a k̄(s, s′)−point (1 : ω : ρ) of C2 such

that k̄(s, s′) = k̄(ω, ρ). Then, as in the proof of [15, Theorem 3], we can show that

k̄(s, s′) = k̄(ω, ω′) and that (1 : ω : ω′/β) is a point on C2 for some β ∈ k. This

implies ω′2 = β2(4ω3 − h2ω − h3).

Now we are ready to prove our main result.

Theorem 6.2.3. ([22, Theorem 6.3]) Let E be an iterated strongly normal extension

of k and K be an intermediate differential field such that tr.deg(K|k) = 1. Then,

there is a finite algebraic extension k̃ of k such that k̃K = k̃(y, z), where z is

algebraic over k̃(y), y is transcendental over k̃ and either y is a solution of a Riccati

differential equation or a Weierstrass differential equation over k̃.

Proof. Let k =: E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ En+1 = E be a tower of strongly normal

extensions, where we may assume that En+1 is an algebraic extension of En and

that En is a transcendental extension of En−1. Let E be the algebraic closure of E.

Consider the following tower of algebraically closed differential fields

E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ En = E.
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Since En−1En is strongly normal over En−1 and En−1K is contained in E, by

Proposition 6.2.1, we obtain an element y ∈ En−1K transcendental over En−1 such

that y satisfies either a Riccati or a Weierstrass differential equation over En−1.

Let us assume that the following statement holds.

(C1) For all i = 1, . . . , n− 1, EiK is a weakly normal extension of Ei−1K and that

the group G (EiK|Ei−1K) stabilises Ei.

The differential field K is finitely generated over k as it is a subfield of an iterated

strongly normal extension of k. Consequently, EiK is also finitely generated over Ei.

We apply Lemma 6.2.2 repeatedly to obtain an element y ∈ k̄K\k̄ having the desired

properties. Since K is finitely generated over k, we only need a finite algebraic

extension k̃ so that the differential field k̃K contains both y and the coefficients of

the differential equation of y. Therefore we have proved the theorem assuming that

(C1) holds.

Now we will verify (C1). Since Ei−1Ei is strongly normal over Ei−1, L∗ := Ei−1KEi

is a strongly normal extension of L := KEi−1. Note that the field of constants of E

and k are the same, therefore the group G (L∗|L) stabilizes the strongly normal

extensions Ei of Ei−1 and Ei−1Ei of Ei−1. Let I be the set of all irreducible

polynomials over Ei. Observe that the group G (L∗|L) acts on I via the map P 7→ Pσ,

where the automorphism σ is applied to the coefficients of P to obtain Pσ. Let

L∗(I) ⊆ E be the splitting field of I. Observe that L∗(I) = L∗Ei = KEi. Because

the fixed field of the group G (KEi|L∗) is the field L∗ and that the fixed field of

G (L∗|L) is L = Ei−1K, we deduce that the fixed field of G (EiK|Ei−1K) is Ei−1K.

Therefore EiK is weakly normal over Ei−1K. Since G (EiK|Ei−1K) stabilizes the

strongly normal extension Ei of Ei−1 as well as the set I of polynomials over Ei,

G (EiK|Ei−1K) stabilises Ei as well. This proves (C1).

95



Corollary 6.2.4. If E is an iterated strongly normal extension of the field of

constants C then every intermediate differential field K with tr.deg(K|C) = 1 is

of the form K = C(y, z), where z is algebraic over C(y) and that either y′ = 1

or y′ = cy for some nonzero c ∈ C or y is a solution of a Weierstrass differential

equation over C.

Proof. We only need to take into account the case where there is an element t ∈ K\C

such that t′ = at2+bt+c for a, b, c ∈ C. Since t satisfies a Riccati differential equation

over C, the differential field C(t) can be embedded in a Picard-Vessiot extension of

C. We know that the Picard-Vessiot extensions of C have connected, commutative

differential Galois group. Therefore C(t) itself is a Picard-Vessiot extension of C

with G (C(t)|C) isomorphic to either Ga(C) or Gm(C). Thus, C(t) = C(y), where

either y′ = 1 or y′ = cy for some nonzero constant c.

To summarise, we have the following theorem.

Theorem 6.2.5. Let E be a no new constant extension of k. Suppose that E

contains a differential field K having transcendence degree, tr.deg(K|k) = 1.

1. If E is a strongly normal extension of k then there is a finite algebraic extension

k̃ of k such that k̃K = k̃(y, y′), where y is transcendental over k̃ and one of

the following holds.

(a) y is a solution of a Riccati differential equation over k̃; y′ = a2y
2 +a1y+a0

for some a0, a1, a2 ∈ k̃

(b) y is a solution of a Weierstrass differential equation over k̃; (y′)2 =

α2(4y3 − g2y − g3) for constants g2, g3 such that 27g2
3 − g3

2 6= 0 and α ∈ k̃.
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2. If E is an iterated strongly normal extension then there is a finite algebraic

extension k̃ of k such that k̃K is a finite algebraic extension of k̃(y, y′), where

y is transcendental over k̃ and either (1a) or (1b) holds.

If we restrict Theorem 6.2.5 to the case when k = C then (1a) can be replaced with

(1a)∗ y′ = 1 or y′ = cy for some nonzero constant c or

As a consequence of the theorem, we obtain a classification of first order differential

equations f(y, y′) = 0 over k into the following types:

Algebraic type All solutions of f(y, y′) = 0 are algebraic over k.

Riccati type The differential equation f(y, y′) = 0 has a transcendental solution y

such that there is a finite algebraic extension k̃ of k and an element t ∈ k̃(y, y′)

such that k̃(y, y′) is a finite algebraic extension of k̃(t) and that t is a solution

of a Riccati differential equation:

t′ = a2t
2 + a1t+ a0, with a0, a1, a2 ∈ k̃, not all zero.

Weierstrass type The differential equation f(y, y′) = 0 has a transcendental

solution y such that there is a finite algebraic extension k̃ of k and an element

t ∈ k̃(y, y′) such that k̃(y, y′) is a finite algebraic extension of k̃(t, t′) and that

t is a solution of a Weierstrass differential equation:

(t′)2 = α2(4t3 − g2t− g3), g2, g3 ∈ C, α ∈ k̃ and 27g2
3 − g3

2 6= 0.

General type The differential equation f(y, y′) = 0 is not of the above types.

Here we will not be concerned with differential equations of algebraic type. Such

differential equations are discussed in [27]. In Proposition 3.1.3 we have listed a
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known class of differential equations of algebraic type. With this classification,

Theorem 6.2.5 can be stated as follows:

Theorem 6.2.6. ([14, Theorem 1.1]) Let k be a differential field with an alge-

braically closed field of constants C and f(y, y′) = 0 be a differential equation over

k. Suppose that f(y, y′) = 0 has a transcendental solution y in an iterated strongly

normal extension E of k. Then the following statements hold.

(i) The differential equation f(y, y′) = 0 is of either Riccati or Weierstrass type.

(ii) If k = C and f(y, y′) = 0 is of Riccati type then there is an element t ∈ C(y, y′)

such that either t′ = 1 or t′ = ct for some nonzero c ∈ C.

(iii) If E is a strongly normal extension of k and f(y, y′) = 0 is of Riccati

type (respectively, Weierstrass type) then the finite algebraic extension k̃ and

the element t ∈ k̃(y, y′), as in the definition of a Riccati type (respectively,

Weierstrass type), can be chosen so that k̃(y, y′) = k̃(t) (respectively, k̃(y, y′) =

k̃(t, t′)).

The papers [39], [26] and [27] are also pertinent to the aforementioned theorem. In

the next subsections we shall briefly discuss how they are related to our theorem.

6.2.1 First order autonomous differential equations, [39].

Let f ∈ C[X, Y ] be irreducible and y be a transcendental solution of the autonomous

differential equation f(y, y′) = 0. Let Γ be the nonsingular projective model whose

function field C(Γ) is isomorphic to C(y, y′). The natural isomorphism between

C(y, y′) and C(Γ) makes the latter a differential field. Let DerC(C(Γ)) be the

C(Γ)−module of C−derivations on C(Γ). Then, there is a natural C(Γ)−module
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isomorphism between DerC(C(Γ)) and HomC(Γ)

(
Ω1
C(Γ)|C , C(Γ)

)
given by (a 7→

a′) 7→ z, where z is the differential such that Φ(z) = 1. In this way, the tuple

(Γ, z) can be associated to an autonomous differential equation. This identification

allowed for the classification of autonomous equations into four categories.

1. z = dg for some g ∈ C(Γ) or equivalently, there is an element t ∈ C(Γ) such

that t′ = 1; in this case the equations are of exact type.

2. z = dg/cg for some g ∈ C(Γ) and nonzero constant c or equivalently, there

is a t ∈ C(Γ) such that t′ = ct for some nonzero constant c; in this case the

equations are of exponential type.

3. z = dg/h for h, g ∈ C(Γ) and h2 = g3 + ag + b with 4a3 + 27b2 6= 0 or

equivalently, there is an element t ∈ C(Γ) such that t′2 = t3 + at + b for

a, b ∈ C with 4a3 + 27b2 6= 0; in this case the equations are of Weierstrass

type.

4. If the equation is not of the above three types then the it is of general type.

Furthermore, an autonomous equation (Γ, z) is called new if (Γ, z) is not a proper

pull back. An autonomous equation of general and new type has the following

interesting property [39, Theorem 2.1]: Any number of distinct transcendental

solutions are C−algebraically independent. The authors used this property

to demonstrate that no iterated Picard-Vessiot extension yields transcendental

solutions to equations of general type ([39, Proposition 7.1]). In fact, by extending

their reasoning, it is possible to demonstrate that autonomous differential equations

of general type have no transcendental solutions in any iterated strongly normal

extension. So we define a differential equation f(y, y′) ∈ k[y, y′] to be of general

type if it has no transcendental solution in any strongly normal extension of k.
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Thus, when k = C, Theorem 6.2.5 can be recovered from their work. Since C

is an algebraically closed field of constants, every nonconstant solution must be

transcendental and every autonomous differential equation has a transcendental

solution, the above classification of differential equations coincides with ours.

6.2.2 Painlevé property and transcendence degree 1 sub-

fields of a strongly normal extension ([26, 27]):

Let k be a finite algebraic extension of the ordinary differential field C(x) of rational

functions over complex numbers with x′ = 1. A differential equation f(y, y′) = 0

over k is said to have the Painlevé property if the set of all branch points and the

set of all essential singularities of the solutions form a discrete set. Suppose that a

differential equation f(y, y′) = 0 has a transcendental solution y ∈ K, where K is

a no new constant extension of k such that tr.deg(K|k) = 1. In [26, Theorem 4.5],

the authors have shown that f has PP if and only if there exists a finite algebraic

extension k̃ of k and an element u ∈ k̃(y, y′) such that k̃(u, u′) = k̃(y, y′) and that u

is a solution of either a Riccati or a Weierstrass differential equation over k̃. Thus,

we can conclude the following from Theorem 6.2.5.

Let k be the algebraic closure of C(x) with the derivation that restricts to the

derivation d/dx on C(x). Let K = k(y, y′) be a no new constant extension of

k such that tr.deg(K|k) = 1. Let f ∈ k[X, Y ] be an irreducible polynomial

involving the variable Y such that f(y, y′) = 0. Then K is a differential

subfield of a strongly normal extension of k if and only if f has the Painlevé

property.
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6.3 Transcendental solutions of first order differ-

ential equations

In this section, we use Theorem 6.2.5 to deduce a few properties of differential

equations of nongeneral type. We also give a large class of differential equations of

the general type. Then we will discuss rational autonomous differential equations.

6.3.1 Differential equations of general type

In the previous chapters, we have given examples of differential equations that have

transcendental solutions in a liouvillian extension of k. By Proposition 2.3.2, we

may assume that the field of constants of the liouvillian extension is C. Such a

liouvillian extension is an iterated Picard-Vessiot extension of K. Therefore we

have ample examples of differential equations of the nongeneral type. Now, we will

give a method to generate a large class of differential equations of general type.

Theorem 6.3.1. ([22, Theorem 7.6]) Let f ∈ k̄[Y, Z] be an irreducible polynomial

having the following properties:

(i) p := (0, 0) is a simple point of f and Z is the tangent line at p.

(ii) With respect to the uniformizing parameter Y , both the coefficients λ2 and λ3 of

the Y−adic expansion Z = λ2Y
2 +λ3Y

3 + · · · do not have any antiderivatives

in k̄.

Then the differential equation f(y, y′) = 0 has a transcendental solution and the

equation is of general type.
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Proof. Let k̄(y, z) be the function field of f . We extend the derivation of k̄ to k̄(y, z)

dy defining ′ : k̄(y, z)→ k̄(y, z), where y′ = z. We need to demonstrate that k(y, y′)

is a no new constant extension of k in order to show that the differential equation

f(y, y′) = 0 has a transcendental solution. Note that k̄(y, y′) embeds as a differential

field in k̄((y)).

Therefore any element v ∈ k̄(y, y′)\ k̄, can be written as v =
∑∞

i=r aiy
i, where ai ∈ k̄

and ar 6= 0. Taking derivative we get

v′ = a′ry
r + a′r+1y

r+1 + · · ·+ rary
r−1(λ2y

2 + · · · ) + (r + 1)ar+1y
r(λ2y

2 + · · · ) + · · ·

= a′ry
r + (a′r+1 + rarλ2)yr+1 + (a′r+2 + rarλ3 + (r + 1)ar+1λ2)yr+2 + · · · . (6.2)

For a moment, let us assume the following statements.

(C2) There is no element v ∈ k̄(y, y′) \ k̄ such that v′ = αv + β for any α, β ∈ k̄.

(C3) There is no element in v ∈ k̄(y, y′) \ k̄ satisfying a Riccati or a Weierstrass

differential equation.

If we take α = 0 and β = 0, then from (C1) we conclude that the differential

equation has a transcendental solution. By Theorem 6.2.5, the differential equation

is of general type. Now, we will prove (C1) and (C2).

Suppose (C2) does not hold, then substituting v =
∑∞

i=r ary
r in v′ = av+ b we have

to consider the following cases.

Case (i). ordp(v) = 0. Here we have a′0 = αa0 + β and if m ≥ 1 is the least positive

integer such that am 6= 0 then we have a′m = αam and that a′m+1 +mamλ2 = αam+1.

Note that such a m exists as v ∈ k̄(y, y′) \ k̄. Thus, we obtain(
−am+1

mam

)′
= λ2,
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a contradiction to our assumption on λ2.

Case (ii). ordp(v) ≥ 1 or ordp(v) ≤ −2. Then a′r = αar and that a′r+1 + rarλ2 =

αar+1. This implies (
−ar+1

rar

)′
= λ2

and as before we obtain a contradiction.

Case (iii). ordp(v) = −1. Then a′−1 = αa−1 and a′1 = αa1 + λ3a−1. This implies(
a1

a−1

)′
= λ3,

which contradicts our assumption on λ3. This proves (C2).

Now we will show that there is no element in k̄(y, y′) \ k̄ that satisfies a Riccati

equation over k̄. Suppose not. Let v ∈ k̄(y, y′) such that v′ = b2v
2 + b1v + b0 for

b2, b1, b0 ∈ k̄. Then from (C2), we must have b2 6= 0.

Case (i). If ordp(v) ≤ −1 then from Equation (6.2) we obtain ordp(v
′) ≥ ordp(v).

But b2 6= 0 and ordp(v) ≤ −1 implies ordp(v
′) = ordp(b2v

2 + b1v + b0) = 2 ordp(v).

Thus we have obtained ordp(v) ≤ ordp(v
′) = 2 ordp(v), a contradiction.

Case (ii). If ordp(v) ≥ 1 then b0 = 0 and we obtain that (1/v)′ = −b1(1/v) − b2,

which contradicts (C2).

Case (iii). If ordp(v) = 0 then a0 ∈ k̄ is a solution of the Riccati equation a′0 =

b2a
2
0 + b1a0 + b0. One can easily show that(

1

v − a0

)′
=
−2b2a0 − b1

v − a0

− b2

and this again contradicts (C2). This proves our claim.

Now we suppose that there is a transcendental element v ∈ k̄(y, y′) satisfying a

Weierstrass differential equation: v′2 = α2(4v3 − g2v − g3) for g2, g3 ∈ C and α ∈ k̄.
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Then from the y−adic expansion of v and from Equation (6.2), we have v′2 =

a′2r y
2r + · · · and thus

2 ordp(v) ≤ ordp(v
′2) = ordp(α

2(4v3 − g2v − g3)).

Case (i). If ordp(v) < 0 then ordp(α
2(4v3 − g2v − g3)) = 3 ordp(v) and we obtain 2

ordp(v) ≤ 3 ordp(v), a contradiction.

Case (ii). If ordp(v) > 0 then ordp(α
2(4v3 − g2v − g3)) ≤ ordp(v), and we obtain

2 ordp(v) ≤ ordp(v), again a contradiction.

Case (iii). If ordp(v) = 0 and in the y−adic expansion of v, let m be the least

positive integer such that am 6= 0. Then from Equation (6.2), we have the following

equations

v′2 = α2(4v3 − g2v − g3)

a′20 = α2(4a3
0 − g2a0 − g3)

2a′0a
′
m = α2

(
12a2

0am − g2am
)
. (6.3)

We assume for the moment that a0 is a constant. Then a0 must be one of the

distinct roots of the polynomial 4Y 3 − g2Y − g3 and in particular, a0 is not a root

of 12Y 2 − g2. Now Equation (6.3) becomes

α2(12a2
0 − g2)am = 0,

which is absurd. Thus there is no element in k̄(t, t′) \ k̄ satisfying a Weierstrass

differential equation over k̄.

Now we will show that a0 is indeed a constant. Assume otherwise and consider the

nonsingular projective curve

X2
2X0 − 4X3

1 + g2X
2
0X1 + g3X

3
0 . (6.4)
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We have two nonconstant points of this curve, namely, (1 : v : v′/α) and (1 : a0 :

a′0/α). If (1 : η : ξ) := (1 : v : v′/α)(1 : a0 : a′0/α) then

η = −v − a0 +
1

4α2

(
v′ − a′0
v − a0

)2

and thus η ∈ k̄(y, y′)\ k̄. Now we apply [17, Lemma 2] for the Weierstrass equations

v′2 = α2(4v3 − g2v − g3) and a′20 = (−α)2(4a3
0 − g2a0 − g3) and obtain that η′ = 0.

This contradicts the fact that field of constants of k̄(y, y′) is the same as the field of

constants of k̄. Thus we have proved (C3).

Remark 6.3.2. Given an irreducible affine curve of the form Z−F2−F3−· · ·−Fn,

where Fi are forms of degree i, one can find the coefficients λ2 and λ3 of the Y−adic

expansion of z as follows: Let F2 = x20Y
2 + x11ZY + x02Z

2 and F3 = x30Y
3 + R3.

Then, on the curve, the value of Z equals

x20Y
2 + x11ZY + x02Z

2 + x30Y
3 +R3 + F4 + · · ·+ Fn.

In the above expression we substitute back for Z and obtain

x20Y
2 + x11

(
x20Y

2 + x11ZY + · · ·
)
Y + x02

(
x20Y

2 + · · ·
)2

+ x30Y
3 + · · · .

Continuing this process one actually obtains the Y−adic expansion of Z;

Z = x20Y
2 + (x11x20 + x30)Y 3 + · · · .

Example 6.3.3. The following differential equation over C(x) is of the general type.

y′ − 1

x
y2 − xyy′ − 1

x+ 1
y3 + y(y′)2 = 0

as 1/x and x(1/x) + 1/(x+ 1) = 1 + 1/(x+ 1) have no antiderivatives in C(x).

Example 6.3.4. The following differential equation

y′ = any
n + · · ·+ a3y

3 + a2y
2, (6.5)
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where both a2 and a3 having no antiderivatives in k, is easily seen to be of general

type. The autonomous differential equation y′ = y3−y2 is therefore of general type.

Thus any autonomous equation of the form (6.5), with a2 and a3 nonzero, is of

general type.

In the following proposition, we will demonstrate an interesting property of

differential equation (6.5) that it can have infinitely many algebraically independent

transcendental solutions. Therefore by [11], any m distinct transcendental solutions

are algebraically dependent. We note that this property is also satisfied by first

order autonomous differential equations of general and new type.

Proposition 6.3.5. Let k(t) be a differential field extension of k such that t is

transcendental over k and t′ = ant
n + · · ·+ a2t

2, where ai ∈ k, an 6= 0, n ≥ 3 and a2

does not have an antiderivative in k. Then the following holds:

1. k(t) is a no new constant extension of k.

2. If both a2 and a3 have no antiderivatives in k then both a2 and a3 do not have

any antiderivative in k(t).

Proof. Suppose that u ∈ k(t) \ k such that u′ = 0. Let the t−adic expansion of u

be u =
∑∞

i=p bit
i, where bi ∈ k and bp 6= 0. Let us first assume that p 6= 0. Then

0 = u′ = b′pt
p + b′p+1t

p+1 + · · ·+ pbp(a2t
p+1 + a3t

p+2 + · · · ) + · · ·

= b′pt
p + (b′p+1 + pbpa2)tp+1 + · · · .

Note that Ck = Ck as Ck is algebraically closed. Therefore comparing the coefficients

of tp and tp+1 we get that bp ∈ Ck and b′p+1 = −pbpa2. Note that a2 does not have

an antiderivative in k as it does not have any antiderivative in k. Therefore we have
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a contradiction. So let us assume that p = 0. Then u can be written as follows:

u = b0 + b1t+ b2t
2 + · · ·

Taking the derivative, we have

0 = u′ = b′0 + b′1t+ b′2t
2 + · · ·

+ b1(a2t
2 + · · ·+ ant

n) + 2b2(a2t
3 + · · ·+ ant

n+1) + · · · .

Therefore comparing the coefficients of t0 and t we get b′0 = 0, b′1 = 0 and for i ≥ 2

we obtain the following:

b′i + (i− 1)bi−1a2 + (i− 2)bi−2a3 + · · ·+ b1ai = 0, if i ≤ n and

b′i + (i− 1)bi−1a2 + (i− 2)bi−2a3 + · · ·+ (i− n+ 1)bi−n+1an = 0, if i > n.

Since b0, b1 ∈ Ck and a2 does not have an antiderivative in k, we can successively

show that bi = 0 and b′i+1 = 0 for i ≥ 1. Thus u = b0 ∈ Ck. This proves the first

part.

Now we will prove the second part. Suppose that there is an element η ∈ k(t) \ k

such that η′ = a2. Let the t−adic expansion of η be η =
∑∞

i=p dit
i, where di ∈ k

and dp 6= 0. Differentiating η we obtain

a2 = η′ =
∞∑
i=p

d′it
i +

∞∑
i=p

idi
(
a2t

i+1 + a3t
i+2 + · · ·+ ant

i+n−1
)
. (6.6)

If p = 0, then d′p = a2, which contradicts our hypothesis. If p > 0 then comparing

the coefficient of t0 we obtain a2 = 0, which again contradicts our hypothesis that

a2 does not have an antiderivative in k. So let us assume that p < 0. We will show

that p = −1.

Suppose that p < −1. Then p + 1 < 0 and comparing the coefficient of tp and tp+1

we get that d′p = 0 and d′p+1 + pdpa2 = 0 respectively. Note that dp ∈ Ck \ {0}.
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This contradicts the fact that a2 has no antiderivative in k. Therefore p = −1.

Substituting p = −1 in Equation (6.6) we get that

a2 = η′ = d′−1t
−1 + d′0 + d′1t+ · · ·+

− d−1(a2 + a3t+ · · ·+ ant
n−2) + d1(a2t

2 + a3t
2 + · · ·+ ant

n) + · · · .

Comparing the coefficient of t−1, t0 and t we get

d′−1 = 0, d′0 = (d−1 + 1)a2, d′1 = d−1a3.

This contradicts our hypothesis that both a2 and a3 do not have antiderivatives in

k. Similarly, if η′ were a3, we would get a contradiction.

Therefore if we adjoin indeterminates t1, t2, . . . to k and define t′i = ant
n
i + · · · +

a2t
2
i , where both a2 and a3 have no antiderivatives in k, then k(t1, t2, . . . ) is an

no new constant extension of k. Thus the differential equation has infinitely many

algebraically independent transcendental solutions.

6.3.2 Differential equations of nongeneral type

In this section we will study the algebraic dependence of first order differential

equations of nongeneral type. We will show that a differential equation of nongeneral

type can have only finitely many algebraically independent transcendental solutions,

unlike differential equation (6.5). Let L be a no new constant extension of k.

Suppose that L contains a transcendental solution y of the equation y′ = by, where

0 6= b ∈ k. Then the solution set of the differential equation is V = spanC {y}. Thus

all the solutions are C−linearly dependent.

Suppose that L contains transcendental solutions of the differential equation y′ =

by + c for b, c ∈ k and c 6= 0. Let E be a Picard-Vessiot extension of L for M =
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k[∂]/k[∂]L , where L = ∂2− (b+ (c′/c))∂+ b(c′/c)− b′ is obtained by homogenizing

y′ = by + c. Let V ⊂ E be the set of all solutions of L (y) = 0. Then dimCV = 2.

The differential field E := k〈V 〉 is a Picard-Vessiot extension of k (for M). For any

y ∈ L such that y′ = by + c, we see that L (y) = 0 and therefore y ∈ V ⊂ E .

Moreover, for any automorphism σ ∈ G (E|k), we have L (σ(y)) = σ (L (y)) = 0

and that (σ(y)− y)′ = b(σ(y)− y). Let τ ∈ G (E|k) be an automorphism such that

τ(y) 6= y. Then since L (τ(y)−y) = L (τ(y))−L (y) = 0, {τ(y)−y, y} is a C−basis

of V . Therefore E = k(τ(y), y), where the fields k(τ(y)− y) and k(y) are differential

fields. This gives us tr.deg(E|k) ≤ 2 and thus any three solutions in L of y′ = by+ c,

where b, c ∈ k and c 6= 0, must be k−algebraically dependent.

Suppose that the Riccati equation

y′ = ay2 + by + c for a, b, c ∈ k with a 6= 0 (6.7)

has a transcendental solution in L. Let

L = ∂2 −
(
a′

a
+ b

)
∂ + ac

and E be a Picard-Vessiot extension of L for M = k[∂]/k[∂]L . Let V ⊂ E be the

set of all solutions of L (Y ) = 0. Then v ∈ V \{0} if and only if −v′/av is a solution

of the Riccati equation (6.7). Note that E := k〈V 〉 is a Picard-Vessiot extension of

k for M . We will show that that every solution in L of (6.7) lies in E .

Let u ∈ L be a solution of the Riccati equation (6.7). Let L∗ be a Picard-Vessiot

extension of E for the differential equation Y ′ = −auY . Then L∗ = E(z) for

some nonzero z such that z′ = −auz. Note that V ⊂ E ⊆ L∗ and that V is a

two dimensional vector space over C. Since C is the field of constants of L∗ and

L (z) = 0, we must have z ∈ V ⊂ E . Consequently, u = −z′/(az) ∈ E .

Let Γ ⊂ E be the set of all transcendental solutions of Equation (6.7). Now we will

show that tr.deg(k(Γ)|k) ≤ 3. Since dimCV = 2, G (E|k) is a closed subgroup of the
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algebraic group GL(V ). Now dim GL(V ) = 4, therefore if G (E|k) is a proper closed

subgroup then dim G (E|k) ≤ 3. In which case, tr.deg(k(Γ)|k) ≤ tr.deg(E|k) = dim

G (E|k) ≤ 3. Now we consider the case where G (E|k) = GL(V ). Let {y1, y2} be a

C−basis of V . We identify G (E|k) with GL(2, C). Consider the differential field

K = EZ , where Z is the center of GL(2, C). Observe that for any nonzero solution

v = c1y1 + c2y2 ∈ V and any automorphism τ ∈ Z, we have τ(v) = cτv. Therefore

v′/v ∈ K and Γ ⊂ K. Since Z is normal, K is a Picard-Vessiot extension of k with

Galois group

G (K|k) ∼= G (E|k)/Z ∼= PGL(2, C).

Thus tr.deg(k(Γ)|k) ≤ tr.deg(K|k) = dim PGL(2, C) = 3. This implies that any

four distinct elements in Γ must be algebraically dependent over k. We would like

to point out that the Riccati equation y′ = −y2 + x over the differential field C(x)

has exactly three C(x)−algebraically independent solutions in any Picard-Vessiot

extension of C(x) (see [23, Example 4.29]).

Suppose that L has a transcendental element y satisfying a Weierstrass differential

equation; y′2 = α2(4y3 − g2y − g3). Then since L is a no new constant extension

of k, from [17, Lemma 2], any other transcendental element z such that z′2 =

α2(4z3 − g2z − g3) must belong to the field k(y, y′). We summarize the above

discussions in the following theorem.

Theorem 6.3.6. Let L be a no new constant extension of k.

(i) If an autonomous differential equation over C is not of general type then there

is at most one C−algebraically independent solution of the equation in L.

(ii) If a first order differential equation over k is not of general type then there are

at most three k−algebraically independent solutions of the equation in L.
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Proof. Let f(y, y′) be a differential equation of nongeneral type. If the differential

equation is of algebraic type then all the solutions are algebraic and the theorem

holds. Suppose that t is a transcendental solution in an iterated strongly normal

extension of k. Let s1, s2, s3, s4 ∈ L be distinct transcendental solutions. If necessary,

we substitute k with a finite algebraic extension of k to ensure that k(t, t′) contains

a transcendental solution of a Riccati or Weierstrass differential equation over k.

Now for i = 1, 2, 3, 4, consider the natural differential embeddings

ψi : k(t, t′)→ L, where ψi|k = id and ψi(t) = si.

Let us first consider the case where there is a transcendental solution y ∈ k(t, t′) \ k

of a Riccati differential equation over k, say y′ = a2y
2 + a1y + a0. Then

ψi(y)′ = a2ψi(y)2 + a1ψi(y) + a0 for each i = 1, 2, 3, 4. Then as noted earlier,

tr.deg(k(ψ1(y), . . . , ψ4(y))|k) ≤ 3. Since ψi(y) ∈ k(si), each si is algebraic over

k(ψi(y)) ⊆ k(ψ1(y), . . . , ψ4(y)). Therefore s1, . . . , s4 are k−algebraically dependent.

Now consider the case where y ∈ k(t, t′) \ k is a transcendental solution of a

Weierstrass differential equation, say y′2 = α2(4t3 − g2t
2 − g3), where α ∈ k. For

i = 1, 2, we have (ψi(y))′2 = α2(4(ψi(y))3 − g2ψi(y) − g3). Again from [17, Lemma

2], we have

(1 : ψ1(y) : ψ1(y)′/α) = (1 : ψ2(y) : ψ2(y)′/α)(1 : c1 : c2), where c1, c2 ∈ C.

This implies ψ1(k(y, y′)) = ψ2(k(y, y′)) and we conclude that s1 and s2 are

algebraically dependent over k. Consequently, in this case, any two transcendental

solutions of f(y, y′) = 0 are k−algebraically dependent.

Now we will verify (i). Only the case when there is an element in y ∈ C(t, t′) such

that y′ = 1 or y′ = cy for some nonzero constant c needs to be taken into account.

Then, ψi(y)′ = 1 or ψi(y)′ = cψi(y). Thus, ψ1(y) = ψ2(y) + e for some e ∈ C or
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ψ1(y) = eψ2(y) for some nonzero e ∈ C. Therefore ψ1(C(y)) = ψ2(C(y)) and we

obtain that s1 and s2 are algebraically dependent over C.

6.3.3 Rational autonomous differential equations

In this section, we will discuss about rational autonomous differential equations:

y′ = f(y), where f(y) ∈ C(y) \ {0} .

First, we note that the differential field C(y), where y is transcendental over C and

y′ = f(y), is a no new constant extension of C (by Lemma 2.2.1 (ii)). Therefore the

differential equation y′ = f(y) always has a transcendental solution over C. Since

C(y) is a genus zero extension of C, there is no weierstrassian element in C(y) \ C.

In the following proposition, we completely classify the type of a rational autonomous

differential equation.

Proposition 6.3.7. The following statements are equivalent.

(i) An autonomous differential equation over C of the form y′ = f(y) has a

transcendental solution in an iterated strongly normal extension of C, that

is the equation is of nongeneral type.

(ii) There is a nonzero element z ∈ C(y) such that either z′ = 1 or z′ = cz for

some c ∈ C \ {0}, that is,

1

f(y)
=
∂z

∂y
or

1

f(y)
=

1

cz

∂z

∂y
.

Proof. Follws from Theorem 6.2.5 and Proposition 2.2.7.

Therefore the rational autonomous equation y′ = f(y) is of nongeneral type if and

only if either 1/f(y) has no residues at any element of C, that is, the partial fraction
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decomposition of 1/f(y) is of the form

h(y) +
n∑
i=1

ni∑
j=2

dij
(y − ci)j

, (6.8)

where h(y) ∈ C[y], dij are constants and ci are distinct constants, or 1/f(y) is of

the form

c
n∑
i=1

mi

(y − ci)
, (6.9)

where mi are nonzero integers and c is a nonzero constant.

Example 6.3.8. The equations y′ = y3 − y2 and y′ =
y

y + 1
were heavily discussed

in [32] and [39], are now easily seen to be of general type.

Example 6.3.9. The differential equation y′ = yn− 1, for n ≥ 3 is of general type.

To see this, let ξ ∈ C be a primitive n − th root of unity and consider the partial

fraction expansion of 1/(yn − 1) :

n−1∑
i=0

αi
y − ξi

, where αi =
1∏n−1

j=1,j 6=i(ξ
i − ξj)

.

If the differential equation admits a non-constant solution in a strongly normal

extension, then αi/αj must be a nonzero rational number for all i, j. However,

α1

α0

=

∏n−1
i=1 (1− ξi)∏n−1

i=0,i 6=1(ξ − ξi)
=

1− ξn−1

(ξ − 1)ξn−2
= ξ,

which is not a rational number.

The following conjecture is stated in the introduction. Now we will verify it for

the class of rational autonomous differential equations. In the other direction, we

have seen that a differential equation of general type may have infinitely many

transcendental solutions (Proposition 6.3.5).
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Conjecture A first order differential equation (respectively, An autonomous

differential equation) over k (respectively, over C) is not of general type if and

only if it has at most three (respectively, one) k−algebraically independent

(respectively, C−algebraically independent) solutions in any given no new

constant extension of k (respectively, C).

Let us first consider the case where f has no zero in C. Then 1/f is a polynomial

over C and has the form (6.8). Thus if C(y) is a transcendental extension of C with

y′ = f(y), where 1/f(y) ∈ C[y], then by the above proposition, C(y) has a nonzero

element z such that z′ = 1. Therefore rational autonomous equations; y′ = f(y)

with f having no zeros in C, are of nongeneral type.

Suppose that α ∈ C is a zero of f . Consider the rational function g ∈ C(y) defined

by f(y) := g(y − α). Then, we have

(y − α)′ = y′ = f(y) = g(y − α).

Thus, given a nonzero rational autonomous differential equation y′ = f(y) with f

having a zero in C, we may assume that f has a zero at y = 0. The conjecture is

therefore proved true by Theorem 6.3.6 provided we establish the following: If an

autonomous differential equation

y′ = f(y), f 6= 0 and f(0) = 0

has at most one transcendental solution in any given no new constant L of C then

the equation is not of general type.

Consider the purely transcendental differential field extension C(t, y) of C, where

t′ = f(t) and y′ = f(y). From our hypothesis, there is an element u ∈ C(t, y) \C(t)

such that u′ = 0. Then we have following equations

y′ = f(y) =
∞∑
i=m

ciy
i and u =

∞∑
i=p

biy
i,
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where m ≥ 1, ci ∈ C for all i ≥ m and cm 6= 0, p is an integer and bi ∈ C(t) for all

i ≥ p and bp 6= 0. Taking derivatives, we obtain

0 = u′ =
∞∑
i=p

b′iy
i +

(
∞∑
i=m

ciy
i

)(
∞∑
i=p

ibiy
i−1

)
.

We observe that

(i) If p = 0 and m ≥ 2 then letting l be the least positive integer such that bl 6= 0,

we get b′l = 0 and that b′l+m−1 = −lcmbl ∈ C \ {0}.

(ii) If p 6= 0 and m ≥ 2 then b′p = 0 and b′p+m−1 = −pbpcm ∈ C \ {0}.

(iii) If p = 0 and m = 1 then letting l be the least positive integer such that bl 6= 0,

we get b′l/bl = −lc1 ∈ C \ {0}.

(iv) If p 6= 0 and m = 1 then b′p/bp = −pc1 ∈ C \ {0}.

Thus, in the event that (i) or (ii) holds, we obtain an element z ∈ C(t) such that

z′ = 1 and in the event that (iii) or (iv) holds, we obtain an element z ∈ C(t) \ {0}

such that z′ = cz for some c ∈ C \ {0}. Now from Proposition 6.3.7, the equation

y′ = f(y) is not of general type. Thus, we have verified the conjecture for the class

of rational autonomous differential equations.
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47:449–467, 2014. 5, 23, 70, 81, 83

[2] J. Aroca, J. Cano, R. Feng, and X.-S. Gao. Algebraic general solutions

of algebraic ordinary differential equations. In Proceedings of the 2005

international symposium on Symbolic and algebraic computation, pages 29–36,

2005. 2, 21

[3] A. Bia l ynicki Birula, G. Hochschild, and G. D. Mostow. Extensions of

representations of algebraic linear groups. Amer. J. Math., 85:131–144, 1963.

73

[4] A. Chambert-Loir. A field guide to algebra, volume 1. Springer, 2005. 12, 13

[5] C. Chevalley. Introduction to the theory of algebraic functions of one variable.

Number 6. American Mathematical Soc., 1951. 16

[6] C. Chin and D.-Q. Zhang. Rationality of homogeneous varieties. Transactions

of the American Mathematical Society, 369(4):2651–2673, 2017. 90

[7] E. Cline, B. Parshall, and L. Scott. Induced modules and affine quotients.

Math. Ann., 230(1):1–14, 1977. 73, 74

117



[8] N. T. Dat and N. L. X. Chau. Rational liouvillian solutions of algebraic ordinary

differential equations of order one. Acta Mathematica Vietnamica, 46(4):689–

700, 2021. 2

[9] D. Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathe-

matics. Springer-Verlag, New York, 1995. 74

[10] R. Feng and X.-S. Gao. A polynomial time algorithm for finding rational general

solutions of first order autonomous odes. Journal of Symbolic computation,

41(7):739–762, 2006. 2

[11] J. Freitag, R. Jaoui, and R. Moosa. When any three solutions are independent.

Inventiones mathematicae, 230(3):1249–1265, 2022. 7, 106

[12] L. Fuchs. Uber differentialgleichungen deren intégrale feste verzweigungspunkte
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