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Abstract

A1-homotopy theory is a homotopy theory for schemes in which the affine line

A1 plays the role of the unit interval. The main objects of study are simplicial

sheaves on the Nisnevich site of smooth schemes of finite type over a field. For

these objects, one constructs analogues of various devices from the classical ho-

motopy theory of topological spaces. One such device is the sheaf of A1-connected

components of a simplicial sheaves.

For a general simplicial sheaf X , the sheaf πA1

0 (X ) of A1-connected components

of X is generally hard to compute. However, one can attempt to study it by means

of the sheaf of naively A1-connected components, denoted by S(X ). The sheaf

S(X ) may be viewed as a crude approximation to πA1

0 (X ), but it is easier to define

and compute, at least when X is a sheaf of sets. The functor S is the main object

of study in this thesis.

When X is a sheaf of sets, the direct limit of the sheaves Sn(X ), which we

denote by L(X ) can be proved to be A1-invariant. In fact, this is the universal

A1-homotopic quotient of X . When πA1

0 (X ) is A1-invariant, it can be proved to

be isomorphic to L(X ). A recent example of Ayoub has shown that πA1

0 (X ) is not

always A1-invariant. However, we show that there is a natural bijection between

field valued points of the sheaves L(X ) and πA1

0 (X ) for any sheaf of sets X .

The sheaf L(X ) is obtained by iterating S on a the sheaf X infinitely many

times. Our second main result is to show that the infinitely many iterations are

indeed necessary. We achieve this by constructing a family of sheaves {Xn}n,

indexed by the positive integers, such that S i(Xn) ̸= S i+1(Xn) for any i < n.

The third main result of this thesis is regarding retract rational varieties over

an infinite field k. A result of Kahn and Sujatha shows that for a retract rational

variety X, the sheaf πA1

0 (X) is the point sheaf. We strengthen this result by

showing that S(X) is the point sheaf.
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Notations

MorC(X, Y ) Morphisms from an object X to an object Y of a category C.

κ(x) Residue field at a point x of a scheme

OX,x Local ring at a point x of a scheme X

Rh Henselization of a ring with respect a specified ideal.

OhX,x Henselization of the ring OX,x with respect to its maximal ideal

Xx SpecOhX,x where x is a point on a scheme X

Z(I) Closed subscheme associated to an ideal (or ideal sheaf) I
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Chapter 1

Introduction

1.1 A1-homotopy theory

Much of the development of algebraic geometry has involved adopting techniques

from algebraic topology. In the context of topological spaces, certain invariants

of interest, such as the fundamental group, are observed to be preserved under

homotopy equivalences. This has led to the development of homotopy theory. The

homotopy category of topological spaces provides us with the natural framework

to study functors that are homotopy invariant, i.e. functors F on the category of

topological spaces such that the morphism F(X)→ F(X× [0, 1]), induced by the

projectionX×[0, 1]→ X, is an isomorphism. In the context of algebraic geometry,

the analogous notion is that of A1-invariance. We say that a contravariant functor

G, defined on some suitable category of schemes, is A1-invariant if for any object

X of the category, the morphism G(X)→ G(X × A1), induced by the projection

morphism X × A1 → X, is an isomorphism. Many interesting functors, such

as Chow groups, motivic cohomology, étale cohomology, K-theory, etc. exhibit

the property of A1-invariance. This has led to the development of A1-homotopy

theory, which is a homotopy theory for algebraic varieties where the affine line A1

plays the role of the unit interval.

The foundations of this theory were laid by Morel and Voevodsky in [24].

1



2 CHAPTER 1. INTRODUCTION

For a finite-dimensional noetherian scheme S, they constructed the A1-homotopy

category H(S) which provides an appropriate framework for homotopy-theoretic

constructions for schemes over S.

Let Sm/S denote the Nisnevich site of smooth schemes of finite type over S.

Let ∆opShv(Sm/S) denote the category of simplicial sheaves over this site. A sim-

plicial version of the Yoneda lemma allows us to embed Sm/S into ∆opShv(Sm/S).

The category ∆opShv(Sm/S) has a model structure, called the locally injective

model structure. The A1-model structure on this category is obtained by perform-

ing an appropriate process of localization of this model structure with respect to

the set of all projection morphisms of the form X×A1 → X where X is a simplicial

sheaf.

One can construct analogues of many concepts from classical homotopy theory

in this context. For example, given any simplicial sheaf X , we can associate to it

the sheaf πA1

0 (X ), called the sheaf of A1-connected components of X . This is the

A1-homotopic analogue of the set of connected components of a topological space.

Similarly, given a pointed sheaf (X , x) and any integer i ≥ 1, we can associate to

it the group sheaf πA1

i (X , x).

1.2 Sheaf of naively A1-connected components

In [23], Morel establishes analogues of several results from classical homotopy

theory under the assumption that S is the spectrum of a perfect field.

For instance, if X is a topological space, we may interpret its set of con-

nected components and its homotopy groups as discrete topological spaces. A

CW-complex X is discrete if and only if any morphism from a space of the form

U × [0, 1] factors through the projection U × [0, 1] → U . Thus, we see that an

A1-invariant space may be seen as the A1-homotopic analogue of the notion of a

discrete space. Thus, the following result of Morel can be seen as the A1-homotopic

analogue of the statement that the homotopy groups of a pointed topological space
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are discrete topological spaces.

Fact 1.1 ([23, Theorem 1.9]). Let k be a perfect field and let (X , x) be a pointed

simplicial sheaf over Sm/k. Then the sheaves πA1

i (X , x) are A1-invariant for any

i > 0.

Morel conjectured that for any simplicial sheaf X , the sheaf πA1

0 (X ) should

also be A1-invariant. Some evidence for this conjecture was provided by verifying

the A1-invariance in special cases. For instance, it was proved in [10] that πA1

0 (X )

is A1-invariant if X is an H-group. In [3] and[7], it is proved that if X is a

smooth projective curve over an algebraically closed field of characteristic zero,

then πA1

0 (X) is A1-invariant. However, a counter-example to Morel’s conjecture

was found by Ayoub (see [2]).

The sheaf πA1

0 (X ) is hard to compute for a general simplicial sheaf X . However,

one can attempt to understand it through the related notion of the sheaf of naively

A1-connected components, which we denote by S(X ). When X is a sheaf of sets,

S(X ) has a rather simple, geometric interpretation. It is simply the Nisnevich

sheafification of the presheaf U 7→ X (U)/ ∼, where ∼ denotes the equivalence

relation on X (U) generated by A1-homotopy. (See Section 2.3 for a detailed

definition.) There is a canonical sequence of epimorphisms morphism

X → S(X )→ πA1

0 (X ).

This sheaf S(X ) was first defined in [1, Definition 2.2.4] where it was denoted

by πch0 (X )). Asok and Morel refer to this as the sheaf of A1-chain connected

components of X . However, they define (see [1, 2.2.2]) a variety X to be A1-chain

connected if πA1

0 (X)(L) = ∗ for any finitely generated, separable field extension

L/k. This is weaker than the notion of naive A1-connectedness that we wish to

study. Hence, in order to avoid confusion, we will refer to S(X ) as the sheaf of

naively A1-connected components of X . We will say that X is naively A1-connected

if S(X ) = ∗.
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The following result of Asok and Morel is the first example of how the sheaf

S(X ) may be used to study the sheaf πA1

0 (X ).

Fact 1.2 (see [1, 2.4.3]). Let X be a proper variety over a field k. Then, for any

finitely generated separable field extension L/k, the map S(X)(L) → πA1

0 (X)(L)

is a bijection.

Asok and Morel conjectured that S(X) → πA1

0 (X) should be an isomorphism

of sheaves for any proper variety X over k. A counter-example in [3] shows that

this need not be so. However, one still has the following relationship between the

functors S and πA1

0 in general.

Fact 1.3 (see [3, Theorem 1]). Let X be a sheaf of sets over Sm/k. Let L(X )

denote the direct limit lim−→S
n(X ). Then, L(X ) is an A1-invariant sheaf and we

have a canonical factorization

X → πA1

0 (X )→ L(X ).

The canonical morphism πA1

0 (X )→ L(X ) is an isomorphism if and only if πA1

0 (X )

is A1-invariant.

The sheaf L(X ) is the universal A1-homotopic quotient of X in the sense that

the morphism X → L(X ) is the initial object in the category of all morphisms of

the form X → Z where Z is an A1-invariant sheaf of sets.

As we noted above, Ayoub’s counter-example shows that πA1

0 (X ) need not al-

ways be A1-invariat and thus πA1

0 (X )→ L(X ) need not always be an isomorphism.

However, we will prove the following result:

Theorem 1.4 (see 3.3). Let X be a sheaf of sets on Sm/k. For any finitely

generated, separable field extension L/k, the natural map πA1

0 (X )(L) → L(X )(L)

is a bijection.

Theorem 1.4 may be seen as a generalization of Fact 1.2 to arbitrary sheaves of

sets, but where the functor S has to be replaced by lim−→S
n. (IfX is a proper variety
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over a field k, we have a bijection S(X)(L)→ L(X)(L) for any separable, finitely

generated field extension L/k – see [3, Theorem 3.9].) We show, by constructing a

sequence of examples that the iterations of S in Theorem 1.4 is indeed necessary.

Theorem 1.5. Let k be a field. There exists a sequence Xn of A1-connected

sheaves of sets over Sm/k such that Sn+1(Xn) = πA1

0 (Xn) is the trivial one-point

sheaf, but S i(Xn) ̸= S i+1(Xn), for every i < n+ 1.

1.3 Near-rationality properties

Let X be a variety over a field k. We say that two points x, y ∈ X(k) are

elementarily R-equivalent if there exists a rational map ϕ : A1
k 99K X such that ϕ

is defined at 0 and 1, and satisfies ϕ(0) = x and ϕ(1) = y.

The relation of being elementarily R-equivalent generates an equivalence rela-

tion on X(k) which we call as R-equivalence. The set of R-equivalence classes of

X(k) will be denoted by X(k)/R. We say that a variety X is R-trivial over k if

X(k)/R = ∗. We say that X is universally R-trivial if for any finitely generated,

separable field extension L/k, the variety XL := X ×Spec k SpecL is R-trivial over

L.

If X is a proper variety over k, a rational map A1
k 99K X actually extends to

a morphism A1
k → X. Thus, in this case, to say that X is R-trivial over k is

equivalent to the condition S(X)(k) = ∗. Thus, X is universally R-trivial if and

only if S(X)(L) = ∗ for any finitely generated, separable field extension L/k. By

Fact 1.2, this condition is equivalent to saying that πA1

0 (X)(L) = ∗ for any finitely

generated, separable field extension L/k. A result of Morel (see [21, Lemma 3.3.6]

and [22, Lemma 6.1.3]) shows that this is equivalent to saying that πA1

0 (X) = ∗.

Thus, we see that a proper variety over a field k is universally R-trivial if and only

if it is A1-connected.

Thus, for proper varieties, A1-connectedness has a very simple algebro-geometric

characterization. Since smooth, proper rational varieties are easily seen to be A1-
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connected, it is natural to compare the notion of A1-connectedness to the notion

of rationality as well as its weaker variants (such as stable rationality, retract ra-

tionality, unirationality, etc.). Note that, for such a comparison, it is important to

assume that the variety is smooth, and not just proper over k. Indeed a singular

rational variety need not be A1-connected in general. (Consider, for instance, the

curve cut out by the homogeneous polynomial Y 2Z −X3 +X2Z in P2
R, which is

rational but not A1-connected over R (see [4, Remark 2.3]).

It was proved by Asok and Morel (see [1, Theorem 2.3.6]) that if k is a field

of characteristic 0, then retract rational varieties are A1-connected. This result

was proved for arbitrary fields by Kahn and Sujatha (see [17, Theorems 8.5.1 and

8.6.2]). In the case when k is an infinite field, we have the following improvement

of this result:

Theorem 1.6. Let k be an infinite field. Let X be a smooth, proper, retract

rational variety over k. Then S(X) = ∗.

Thus, if X is a smooth, proper variety over an infinite field k, we have the

following implications:

retract rational =⇒ naively A1-connected =⇒ A1-connected

It is not known whether either of the above implications is strict.

The following result of Sawant provides a little more context for the second

implication in the above diagram:

Fact 1.7 (see [28, Theorem 3.2]). Let k be an infinite field and let X be a simplicial

sheaf over Sm/k such that S(X )(L) = ∗ for any finitely generated, separable field

extension L/k. Then S2(X ) = ∗.

Thus, if X is any A1-connected, smooth proper variety over an infinite field k,

we see that S2(X) = ∗. However, it is not clear whether such a variety is naively

A1-connected. It is easy to construct an example of a singular, proper variety X



1.3. NEAR-RATIONALITY PROPERTIES 7

which is A1-connected, but not naively A1-connected. However, no example of a

smooth, proper variety with this property is known.

For a variety X, one might ask for necessary and sufficient conditions for the

morphism S(X) → L(X) (or the morphism S(X) → πA1

0 (X)) to be an isomor-

phism. Theorem 1.6 says that ifX is a smooth, proper, retract rational variety over

an infinite field, then S(X)→ L(X) (which can be identified with S(X)→ πA1

0 (X)

in this case) is an isomorphism. This should be contrasted with the results in [7]

and [8] which says that if X is a smooth, proper surface that is birationally ruled

over a curve of genus > 0, then the morphism S(X) → L(X) is an isomorphism

if and only if X is minimal.
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Chapter 2

Preliminaries on A1-homotopy

theory

In this chapter, we will review the construction of the A1-homotopy category. Our

treatment of this subject is far from comprehensive since we focus only on the

notion of A1-connectedness and the related notion of naive A1-connectedness.

2.1 The A1-homotopy category

Let k be a field. Let Sm/k denote the category of smooth schemes of finite type

over k, equipped with the Nisnevich topology (see Appendix B). We consider

the category ∆opShv(Sm/k), of (Nisnevich) sheaves of simplicial sets on Sm/k.

(We refer to the appendix, Section A.2 for some details regarding the category of

simplicial sets.) We will refer to the objects of this category as spaces.

The category ∆opShv(Sm/k) has a model structure, called the injective local

model structure (see the Appendix, Section A.4). The weak equivalences for this

model structure are the morphism X → Y of spaces which induce weak equiva-

lences on stalks. We will refer to these as simplicial weak equivalences. The cofibra-

tions for this model structure are the monomorphisms. In particular, every space is

cofibrant. Fibrations are defined to be those having the right lifting property with

9
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respect to cofibrations which are also weak equivalences. We will denote the ho-

motopy category associated with this model structure as the simplicial homotopy

category and denote it by Hs(k). Let Ex : ∆opShv(Sm/k)→∆opShv(Sm/k) be

a fibrant approximation functor for this model structure.

We note that the category ∆opShv(Sm/k) is actually a simplicial model cat-

egory. This means that given any objects X and Y , we can associate to it a

simplicial set, denoted by Map(X ,Y), called the simplicial mapping space from

X to Y such that the set Map(X ,Y)0 of 0-simplices in this simplicial set is equal

to Mor∆opShv(Sm/k)(X ,Y). Also, the association (X ,Y) 7→ Map(X ,Y) satisfies

certain properties that make it compatible with the model structure. We refer to

the Appendix, Sections A.3 and A.4 for details.

The A1-model structure on ∆opShv(Sm/k) is defined to be the left Bousfield

localization with respect the set A, of all the projection morphisms of the form

X ×A1 → X . (We refer to the Appendix, Section A.5 for further details regarding

left Bousfield localizations.) We say that an object X ∈ ∆opShv(Sm/k), or its

image in Hs(k), is A1-local, if it is A-local in the sense of Section A.5. In other

words, a space X is A1-local if and only if the map

MorHs(k)(X ,Y)→MorHs(k)(X ,Y × A1)

is a bijection for any space Y . The weak equivalences in this model structure

are called as A1-weak equivalences. The homotopy category corresponding to this

model structure is called the A1-homotopy category over k and is denoted byH(k).

We note the cofibrations in this model structure are the same as the ones in the

locally injective model structure, i.e. the are precisely all the cofibrations. In

particular, every space X is a cofibrant object in the A1-model structure as well.

Let LA1 denote a fibrant replacement functor for the A1-model structure. Recall

that it comes equipped with a natural transformation η : Id → LA1 such that

ηX : X → LA1(X ) is an A1-equivalence for any space X . We define the following:

1. For any space X , let πA1

0 (X ) := π0(LA1(X )).
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2. For any integer i > 0 and any pointed space (X , x) (i.e. a space X , along with

a morphism x : Spec (k)→ X ), we define πA1

i (X , x) := πi(LA1(X ), ηX (x)).

In general, it is quite difficult to compute the sheaves πA1

0 (X ) and πA1

i (X , x).

This is because it is not easy to do explicit computations involving an fibrant

replacement functor for the A1-model structure. Morel and Voevodsky provide an

explicit description of an A1-fibrant replacement functor, which we recall briefly

in the next section.

2.2 A1-fibrant replacement functor

We begin by recalling the construction of the Morel-Voevodsky Sing∗ construction.

This is the A1-homotopic analogue of the singular complex in classical algebraic

topology.

In Appendix A.2, we construct the cosimplicial object ∆ in the category of

simplicial set, which mapped the object [n] in the cosimplicial indexing category

∆ to the standard n-simplex ∆n. Similarly, we constructed the cosimplicial object

|∆| in Top which mapped [n] to the standard topological n-simplex. We perform

an analogous construction in the category of smooth schemes.

In the affine An+1, we use the coordinate functions t0, . . . , tn, so that

An+1 = Spec k[t0, . . . , tn].

(Thus, we are labelling the coordinates from 0 to n instead of 1 to n + 1.) For

0 ≤ i ≤ n, let eni denote the point (0, . . . , 1, . . . , 0) (having 1 in the i-th coordinate

and 0 elsewhere). Then, we define ∆n
A1 to be the n-dimensional linear variety

passing through en0 , . . . , e
n
n. Thus,

∆n
A1 := Spec

(
k[t0, . . . , tn]∑n

i=1 ti = 1

)
.

If f : [m] → [n] is a morphism in the cosimplicial indexing category ∆, the

corresponding morphism ∆A1(f) : ∆m
A1 → ∆n

A1 maps ∆n
A1 to the variety spanned

by the points enf(0), . . . , e
n
f(m) so that emi is mapped to the point enf(i).
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Definition 2.1. Let X be a simplicial sheaf on Sm/k. Then, we define Sing∗(X )

to be the diagonal of the bisimplicial sheaf Hom(∆n
A1 ,X ) (where Hom denotes the

internal Hom in the category of sheaves). Thus, for a smooth scheme U over k,

we have

(Sing(X ))n(U) =MorShv(Sm/k)(U ×∆n
A1 ,Xn).

For every non-negative integer n and smooth scheme U , the projection mor-

phism U ×∆n
A1 → U induces a map Xn(U ×∆n

A1)→ Xn(U). These maps give us

a morphism X → Sing∗(X ), which is an A1-weak equivalence (see [24, page 89,

Corollary 3.8]).

Let Ex denote a fibrant replacement functor for the locally injective model

structure on ∆opShv(Sm/k). An explicit example of such a functor is provided by

Morel and Voevodsky in [24, page 70, Theorem 1.66]. Then Morel and Voevodsky

have the following result.

Lemma 2.2 (see [24, page 107, Lemma 2.6]). Let LA1 : ∆opShv(Sm/k) →

∆opShv(Sm/k) denote the functor

LA1 = Ex ◦ (Ex ◦ Sing∗)N ◦ Ex.

Then, for any simplicial sheaf X , the simplicial sheaf LA1(X ) is A1-fibrant. The

canonical morphism X → LA1(X ) is a trivial cofibration for the A1-model struc-

ture.

2.3 Naively A1-connected components

Definition 2.3. Let X be a simplicial sheaf on Sm/k. Then, we define S(X ) to

be the sheaf π0(Sing∗(X )).

We will only be interested in this functor in the case when X is a sheaf of sets.

In this situation, S(X ) has a somewhat simpler description. For any scheme U ,

we have two morphisms σ0, σ1 : U → U×A1 which map U isomorphically onto the
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closed subschemes U × {0} and U × {1} of U ×A1 respectively. Correspondingly,

we have the two restriction morphisms σ∗
0, σ

∗
1 : X (U × A1) → X (U). We say

that two elements f and g of X (U) are A1-homotopic if there exists an element

h ∈ X (U × A1) such that σ∗
0(h) = f and σ∗

1(h) = g. This is a symmetric and

reflexive relation on X (U), but fails to be transitive in general. The equivalence

relation on X (U) generated by this relation is called A1-chain homotopy. Let

us denote this equivalence relation by ∼U . It is easy to check that S(X ) is the

Nisnevich sheaf associated to the presheaf U 7→ X (U)/ ∼U .

Using the description of the A1-fibrant approximation functor in Lemma 2.2,

we see that there exists a natural transformation Sing∗ → LA1 . For any object

X , the morphism Sing∗(X ) → LA1(X ) is an A1-weak equivalence. Applying

the functor π0(−), we obtain a natural transformation S(−) → πA1

0 (−) which is

generally not an isomorphism. However, if Sing∗(X ) is A1-local then the morphism

Sing∗(X ) → LA1(X ) is a simplicial weak equivalence. (IfM is a model category

and A is a set of morphisms in M such that the left Bousfield localization with

respect to A exists, it is easy to prove that a morphism between A-local objects is

an A-local equivalence if and only if it is a weak equivalence.) It follows that the

canonical morphism S(X ) → πA1

0 (X ) is an isomorphism if Sing∗(X ) is A1-local.

(This argument was used in [3], [6] and [7] to show that Sing∗ of certain varieties

is not A1-local.)
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Chapter 3

Universal A1-homotopic quotient

In this chapter, we prove that for any sheaf of sets F , the morphism πA1

0 (F) →

L(F) induces a bijection on L-valued points where L/k is any finitely generated,

separable field extension. In Section 3.1, we prove that any Nisnevich cover of a

smooth curve can be refined by an elementary Nisnevich cover. In Section 3.2, we

explain how sections of a simplicial sheaf over an elementary Nisnevich cover of

a smooth variety X may be glued to obtain a section over X. In Section 3.3, we

present the proof of Theorem 1.4.

3.1 Nisnevich covers of curves

As discussed in Appendix B, it is easier to construct sections of a Nisnevich sheaf

over an elementary Nisnevich cover. In this section, we will see that if we want to

construct sections over a curve, we can always reduce the situation to that of an

elementary Nisnevich cover.

Lemma 3.1. Let C be a smooth curve and let p : V → C be a Nisnevich cover.

Then, there exists an elementary Nisnevich cover (p1 : V1 → C, p2 : V2 → C)

refining the cover p, in the sense that there exists an open immersion V1∏V2 → V

such that the composition V1∏V2 → V
p−→ C is equal to p1∏ p2.

15
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Proof. Let η : SpecL → C be the generic point of C. Then, η lifts to V and

thus there exists an open immersion U ↪→ C which lifts to V . In fact, the lifting

morphism maps U into one of the components of V , which we denote by V1. Then

p|V1 : V1 → C is a birational étale map, and so it is an open immersion. We write

V = V1∏V ′
2 and denote the morphism p|V1 by p1.

The set Z := C\p1(V1) consists of a finite number of closed points of C. Each

of those points can be lifted to V ′
2 . Suppose Z = {z1, . . . , zm}. For 1 ≤ i ≤ m, we

pick a point yi ∈ V2 lifting zi. We define

V2 =

[
V ′
2\

(
m⋃
i=1

p−1(zi)

)]
∪ {y1, . . . , ym}.

Denote the morphism p|V2 by p2. Then, we see that the pair (p1 : V1 → C, p2 :

V2 → C) is an elementary Nisnevich cover refining the given cover p : V → C.

Lemma 3.2. Let C be a smooth curve and let (p1 : V1 → C, p2 : V2 → C) be an

elementary Nisnevich cover of C. Let W be a dense open subscheme of V1 ×C V2.

Then, there exists an open subscheme V ′
2 of V2 such that (p1 : V1 → C, p2|V ′

2
: V ′

2 →

C) is an elementary Nisnevich cover of C and the morphism V1×C V ′
2 → V1×C V2

induced by the inclusion V ′
2 ↪→ V2 maps V1 ×C V ′

2 isomorphically onto W .

Proof. We may assume that C is irreducible since the result can be proved for

each component of C.

Let π2 : V1 ×C V2 → V2 be the projection on the second factor. Since p1 is an

open immersion, π2 is an open immersion. We have

π2(V1 ×C V2) = {v ∈ V2 | p2(v) ∈ p1(V1)}.

Since p1(V1) is dense in C and p2 : V2 → C is etale, it is easy to check that

π2(V1×C V2) is dense in V2. Let Z be the complement of π2(V1×C V2) in V2. Thus,

we have

Z = {v ∈ V2|p2(v) /∈ p1(V1)}.

As V2 is 1-dimensional, Z is a finite set, each point of which is closed.
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We define V ′
2 = π2(W ) ∪ Z. From the above description of Z, it is easy to see

that (p1 : V1 → C, p2|V ′
2
: V ′

2 → C) is an elementary Nisnevich cover of C with the

required property.

3.2 Extending homotopies

A key idea in the proof of Theorem 1.4 is to use the homotopy extension property

to glue morphisms. In this section, we will briefly explain this idea.

Let F be a simplicial sheaf over Sm/k. Let X be a smooth scheme over k

and let (p1 : U → X, p2 : V → X) be an elementary Nisnevich cover of X (see

B.2). Thus, p1 is an open immersion and p2 is an étale morphism such that if

Z = X\p1(U), the morphism V ×X Z → Z induced by p2 is an isomorphism.

Let W denote the scheme U ×X V . Observe that the projection morphism W =

U ×X V → V is an open immersion.

Suppose we want to construct a morphism of X into F using this cover. So,

we have a morphism f : U → F and a morphism g : V → F . By the discussion

following the statement of Fact B.3, we see that if the restrictions of f and g to

W are equal, then f and g can be glued to give a morphism h : X → F .

However, suppose that the morphisms f and g which we have chosen do not

satisfy this property. Then, we would like to modify them so that they can be glued

together. Suppose that the morphisms f |W and g|W are simplicially homotopic,

i.e. there exists a morphism h : W ×∆1 → F such that if i0, i1 : ∆0 → ∆1 are the

endpoint morphisms (see the appendix, Section A.2), then we have h◦(idW×i0) =

f |W and h ◦ (idW × i1) = g|W . Also assume that we can extend h to a morphism

H : V ×∆1 → F such that H ◦ (idW ◦ i0) = f . Then, if f ′ = H ◦ (idW ◦ i1), we

see that f ′ and g can be glued together to obtain a morphism from X to F .

This is a “homotopy extension” problem, which one sees often in the classical

homotopy theory of topological spaces. In this situation, the existence of the

homotopy extension H can be guaranteed by assuming that F is a fibrant sheaf.
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Indeed, the morphism i0 : ∆
0 → ∆1 is a trivial cofibration and the morphism

F → ∗ is a fibration. Thus by Lemma A.14, the induced morphism i∗0 : F∆1 →

F∆0 ∼= F induced by i0 is a trivial fibration. The morphism h : W × ∆1 →

F induces (by adjointness relations) a morphism h̃ : W → F∆1
such that the

following square commutes

W //

��

F∆1

��
V

f
// F .

Since the left vertical map is a monomorphism, it is a cofibration. Thus, there

exists a morphism H̃ : V → F∆1
making the diagram commutative. This map

corresponds (via adjointness relations) to a morphism H : V ×∆1 → F , which is

the homotopy extension morphism we require.

3.3 Field valued points of L(X )

Theorem 3.3. Let F be a sheaf of sets. For any finitely generated, separable field

extension K/k, the natural map πA1

0 (F)(K)→ L(F)(K) is a bijection.

Proof. If x1, x2 ∈ F(K) map to the same element in L(F)(K), we want to prove

that they map to the same element in πA1

0 (F)(K). The hypothesis implies that

there exists some non-negative integer n such that x1 and x2 map to the same

element in Sn+1(F)(K). We will prove by induction on n that this implies that

they map to the same element in πA1

0 (F)(K). The case n = 0 is obvious. So we

now assume that the claim is known to be true for n < r for some positive integer

r and now suppose that x1, x2 map to the same element in Sr+1(F)(K).

The images of x1 and x2 in Sr(F)(K) are connected by a chain of A1-homotopies.

In other words, there is a sequence of elements y0 = x1, y1, . . . , ym = x2 in

Sr(F)(K) such that for 0 ≤ i ≤ m−1, yi is connected to yi+1 by an A1-homotopy

A1
K → F . We claim that all the yi’s map to the same element of πA1

0 (F)(K). It
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will suffice to prove the result in the case when m = 1, i.e. we may assume that

there is a single A1-homotopy h̃ : A1
K → Sr(F) connecting x1 and x2.

Since the morphism F → Sr(F) is an epimorphism, there exists a Nisnevich

cover p : V → A1
K and a morphism h : V → F such that the diagram

V
h //

p
��

F

��
A1
K

h̃ // Sr(F)

commutes. Using Lemma 3.1, we may assume that V is of the form V = V1∏V2

such that if pi = p|Vi for i = 1, 2, then (p1 : V1 → A1
K , p2 : V2 → A1

K) is an

elementary Nisnevich cover. Let hi = h|Vi .

For i = 1, 2, let πi : V1 × V2 → Vi be the projection morphism. Then, the two

compositions

V1 ×A1
K
V2

πi−→ Vi
hi−→ F → Sr(F)

for i = 1, 2 are equal. Thus, there exists a Nisnevich cover U → V1 ×A1
K
V2 such

that the two compositions

U → V1 ×A1
K
V2

πi−→ Vi
hi−→ F → Sr−1(F)

for i = 1, 2 are connected by a chain of A1-homotopies. There exists a scheme

W , which is a union of some components of U such that the composition W ↪→

U → V1×A1
K
V2 is a dense open immersion. Using Lemma 3.2, we can shrink V2 to

reduce to the situation where W → V1×A1
K
V2 is an isomorphism. So, now we will

actually denote the scheme V1 ×A1
K
V2 by W (for typographical reasons). Thus,

the two compositions

W = V1 ×A1
K
V2

πi−→ Vi
hi−→ F → Sr−1(F)

for i = 1, 2 are connected by a chain of A1-homotopies, which we denote by

H. Thus, H is an ordered sequence (h1, . . . , hm) where each hi is a a morphism

W × A1
K → Sr−1(F). Also, for each 1 ≤ i < m, the morphisms hi|W×{1} and

hi+1|W×{0} are the same. (Here we identify both W × {1} and W × {0} with W .)
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Let W = ∏p
j=1Wj be the decomposition of W into irreducible components.

Let ηj : SpecLj → Wj be the generic point of Wj. Then the restriction of H to

SpecLj×A1
K is a chain of A1-homotopies of SpecLj in Sr−1(F). By the induction

hypothesis, we can conclude that for every j, the two compositions

SpecLj → W
πi−→ Vi

hi−→ F → πA1

0 (F)

for i = 1, 2 are equal.

Let X = LA1(F). Thus, X is simplicially fibrant and also A1-local. Also, we

have by definition π0(X ) = πA1

0 (F). Thus, the two compositions

SpecLj → W
πi−→ Vi

hi−→ F → πA1

0 (X )

for i = 1, 2 are connected by a chain of simplicial homotopies of the form SpecLj×

∆1 → X . (Actually, they can be connected by a single simplicial homotopy using

[14, Proposition 9.5.24(2)], but we do not really need this detail.) These simplicial

homotopies extend to an open subset W ′
j of Wj for each j. Thus, if W

′ = ∪pj=1W
′
j ,

then we see that the compositions

W ′ ↪→ W
πi−→ Vi

hi−→ F → πA1

0 (X )

for i = 1, 2 are connected by a chain of simplicial homotopies of the form W ′ ×

∆1 → X .

Now, by using Lemma 3.2 to further shrink V2, we may assume that W ′ = W .

Thus, we have reduced to the situation where the two compositions

W
πi−→ Vi

hi−→ F → πA1

0 (F)

for i = 1, 2 are connected by a chain of simplicial homotopies of the formW×∆1 →

X .

Now, we may use the discussion in Section 3.2 to extend these homotopies

to V2. Thus, we obtain a morphism h′2 : V2 → X such that the composition
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V2
h2−→ F → X is connected to h′2 by a chain of simplicial homotopies, and the

compositions

W
π1−→ V1

h1−→ F → X

and

W
π2−→ V2

h′2−→ X

are equal. These two homomorphisms may be glued together to give an A1-

homotopy A1
K → X connecting the image of the point x1 in X (K) to a point x′2

where x′2 is simplicially homotopic to the image of x2 in X (K). Since X is A1-local,

the images of the points x1 and x′2 in X (K) are actually simplicially homotopic.

Thus, we see that the images of x1 and x2 in X (K) are simplicially homotopic.

Hence, the images of x1 and x2 in π
A1

0 (X )(K) are equal. This completes the proof

by induction.
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Chapter 4

Iterations of the S functor

In this chapter, we construct a family of examples to show that the term L(X )

in the statement of Theorem 1.4 cannot be replaced by Sn(X ) for any positive

integer. In other words, the infinitely many iterations of S are indeed necessary

in general.

4.1 Closed embeddings of sheaves

Definition 4.1. Let F and G be Nisnevich sheaves of sets on Smk and let i :

F → G be a monomorphism. We say that i is a closed embedding of sheaves if it

has the right lifting property with respect to any dense open immersion U ↪→ X,

where X is a smooth variety over k.

Observe that if X is a smooth variety over k and η : SpecK → X is the

inclusion of the generic point of X, then any closed embedding of schemes has the

right lifting property with respect to η. The analogue of this fact for Nisnevich

sheaves is as follows.

Lemma 4.2. A monomorphism i : F → G is a closed embedding of sheaves if and

only if for any smooth henselian local scheme X with generic point η : SpecK →

X, the morphism i has the right lifting property with respect to η.

23
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Proof. Let X be a smooth variety over k and let U be an open subset of X.

Suppose that we have a diagram

U //

��

F

��
X // G.

For any point x of X, let Xx denote the scheme SpecOhX,x and let ηx : SpecKx →

Xx denote the generic point of Xx. Then, in the diagram

SpecKx
//

ηx
��

U //

��

F

��
Xx

//

66

X // G.

we obtain a morphism Xx → F (indicated by the dashed arrow) making the

diagram commute. This means that there exists a smooth variety X ′(x) with an

étale morphism π : X̃x → X, which is an isomorphism on π−1(x) and such that

we have a morphism X̃x → F making the diagram

U //

��

F

��
X̃x //

77

X // G

commute. (Note: The superscript x in X̃x is only intended to indicate the depen-

dence on x and has no other meaning.)

Thus, we see that there exists a Nisnevich cover X̃ → X and a morphism

X̃ → F such that the diagram

U //

��

F

��
X̃ //

77

X // G

commutes. The morphism X̃ → F → G descends to a morphism X → G. Since

F → G is a monomorphism, we see that the morphism X̃ → F also descends to
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a morphism X → F making the lower triangle in the diagram

U //

��

F

��
X //

>>

G.

commute, which in turn, makes the upper triangle commute.

Lemma 4.3. Let F , G and H be Nisnevich sheaves of sets on Smk.

(a) If F → G is a closed embedding of sheaves, then for any morphism H → G,

the morphism F ×G H → G is a closed embedding of sheaves.

(b) Let p : F → G be an epimorphism and let i : H → G be a monomorphism of

sheaves. If i′ : F ×G H → F is a closed embedding, then so is i.

Proof. Part (a) is obvious; we prove part (b). Let p′ : F ×G H → H be the

projection on the second factor. Let X be a smooth henselian local scheme with

generic point η : SpecK → X. Let α : X → G such that α ◦ η factors through

i. As p is an epimorphism, there exists β : X → F such that p ◦ β = α. Since

p ◦ β ◦ η = α ◦ η factors through i, the morphism β ◦ η factors through i′. As i′ is

a closed embedding, β factors through i′. Thus, β = i′ ◦ β′ and we have

α = p ◦ β = p ◦ i′ ◦ β′ = i ◦ p′ ◦ β′.

Hence, α factors through i. This proves that i is a closed embedding.

4.2 Construction of examples

Consider the Zariski cover of A1
k given by V1 = A1

k \ {1} and V2 = A1
k \ {0}. Let

p1 : V1 → A1
k and p2 : V2 → A1

k be the inclusion morphisms. Let W := V1×A1
k
V2 =

A1 \ {0, 1}. For i = 1, 2, let πi : V1 ×A1
k
V2 → Vi be the projection (which is an

open immersion).
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We will now inductively construct a sequence of sheaves {Xn}n∈Z≥−1
on Smk

and morphisms αn, βn : Spec k → Xn. Set X−1 := Spec k and let α−1, β−1 :

Spec k → Spec k be the identity maps.

If Xn−1, αn−1, βn−1 are defined, we define Xn to be the pushout of the diagram

W ∏W
ϕn //

ψn

��

V1∏V2

ψ′
n

��
W ×Xn−1

ϕ′n

// Xn

where ϕn = π1∏ π2 and ψn is the composition

W∏W
∼→ W × (Spec k∏ Spec k)

idW×(αn−1 ∏βn−1)−−−−−−−−−−−−→ W ×Xn−1.

We define αn : Spec k → Xn to be the composition of Spec k
0→ V1 → Xn and

βn : Spec k → Xn to be the composition of Spec k
1→ V2 → Xn. Clearly, X0 = A1

and α0, β0 are the morphisms Spec k → A1 corresponding to the points 0 and 1.

Lemma 4.4. The morphism αn∏ βn : Spec k∏ Spec k → Xn is a closed embed-

ding.

Proof. For n = 0, the conclusion of lemma is clear. Now, assume that n > 0. Let

P = Spec k∏ Spec k and let γn : P → Xn denote the morphism αn∏ βn. Let

Q := P×γn,Xn,ψ′
n
(V1∏V2), and let pr1 and pr2 denote the projections of this fiber

product to the first and second factors respectively. As ψ′
n is a monomorphism,

the projection pr1 is also a monomorphism.

The composition P 0∏ 1→ V1∏V2 and the identity morphism idP : P → P

induce a morphism P → Q such that the composition P → Q pr1→ P is equal to

idP . Thus, we see that pr1 is an epimorphism. Thus, pr1 is an isomorphism.

If we identifyQ with P using pr1, then pr2 may be identified with the morphism

0∏ 1, which is a closed embedding of P into V1∏V2. Thus, by apply Lemma

4.3(b) to disjoint union of ϕ′
n and ψ′

n, we see that γn is a closed embedding.

In what follows, the following simple observation will be useful.
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Lemma 4.5. Let f : X → Y be a monomorphism of Nisnevich sheaves. Let τ be a

Grothendieck topology on Smk which is finer than the Nisnevich topology. Suppose

that X is a sheaf for τ . Then, f has the right lifting property with respect to any

τ -cover V → U where U is an essentially smooth scheme over k.

Proof. Suppose we have a diagram

V
α //

��

X
f
��

U
β
// Y .

Since X is a sheaf for the topology τ , it suffices to prove that the two morphisms

V ×U V ⇒ V
α→ X

are equal. However, we see that the compositions of these morphisms with f

are equal since f ◦ α factors through β. Thus, the result follows since f is a

monomorphism.

Define Yn := (W × Xn−1)∏V1∏V2 and let pn : Yn → Xn be the morphism

induced by ϕ′
n : W ×Xn−1 → Xn and ψ′

n : V1∏V2 → Xn. Let ϕ′′
n : W ×Xn−1 → Yn

and ψ′′
n : V1∏V2 → Yn be the obvious (inclusion) maps. Thus, ϕ′

n = pn ◦ ϕ′′
n and

ψ′
n = pn ◦ ψ′′

n.

Lemma 4.6. Let n ≥ 1 be an integer. For any essentially smooth irreducible

scheme Z, any morphism α : Z → Xn factors through pn.

Proof. Clearly, pn is an epiomorphism of sheaves. Thus, for any scheme Z and any

morphism α : Z → Xn, there exists a Nisnevich cover {γi : Zi → Z}i∈I such that

for each i, the morphism α|Zi
:= α ◦ γi is equal to pn ◦ βi for some βi : Zi → Yn.

Let us assume that each Zi is irreducible and let ηi : SpecKi → Zi be the generic

points. Note that I may be taken to be a finite set.

Each βi factors through ϕ′′
n or ψ′′

n. Suppose that all the βi factor through

ϕ′′
n. Then, as ϕ′

n is a monomorphism, by Lemma 4.5 we see that there exists a
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morphism β : Z → W × Xn−1 such that α = ϕ′
n ◦ β. Similarly, if all the βi factor

through ψ′′
n, then there exists a morphism β : Z → V1∏V2 such that α = ψ′

n ◦ β.

We claim that neither of these conditions hold, then we can change some of the

βi’s to reduce to the situation where they all factor through ψ′′
n.

Thus, now let us assume that we can find two indices i, j ∈ I such that βi

factors through ψ′′
n and βj factors through ϕ′′

n. Thus, there exists a morphism

β′
i : Zi → V1∏V2 such that βi = ψ′′

n ◦ β′
i and a morphism β′

j : Zj → W × Xn−1

such that βj = ϕ′′
n ◦ β′

j.

Let P be a component of Zi ×Z Zj and let SpecL → P be the generic point.

Let ρi denote the composition

SpecL→ SpecKi
ηi→ Zi

β′
i→ V1∏V2

ψ′′
n→ Yn

and let ρj denote the composition

SpecL→ SpecKj
ηj→ Zj

β′
j→ W ×Xn−1

ϕ′′n→ Yn.

Then, pn ◦ ρi = pn ◦ ρj. Thus, ρi factors through ϕn : W ∏W → V1∏V2 and ρj

factors through ψn : W ∏W → W ×Xn−1.

Since L/Kj is a separable field extension and since W ∏W is a scheme (and

hence, an étale sheaf), by Lemma 4.5, the morphism β′
j ◦ ηj factors through ψn.

By Lemma 4.3(a) and Lemma 4.5, ψn is a closed embedding. Thus, we see that

β′
j factors through ψn. Let β′′

j : Zj → W ∏W be such that β′
j = ψn ◦ β′′

j . Let

β̃j : Zi → Yn be the composition

Zj
β′′
j→ W∏W

ϕn→ V1∏V2 → Yn.

Observe that pn ◦ β̃j = pn ◦ βj. Thus, we may now replace βj by β̃j.

We now repeat this process until we come to a situation where all the βi’s

factor through ψ′′
n. This completes the proof.
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Lemma 4.7. Let n ≥ 1 be an integer. The square

W ∏W //

��

V1∏V2

��

W × SingA
1

∗ Xn−1
// SingA

1

∗ Xn

is a pushout square.

Proof. We will prove that for any essentially smooth irreducible scheme Z over k,

the square

(W ∏W )(Z)

(ψn)Z
��

(ϕn)Z // (V1∏V2)(Z)

(ψ′
n)Z

��
(W ×Xn−1)(Z)

(ϕ′n)Z

// Xn(Z)

is a pushout square. Once this is proved, we take Z = U × Am for m ≥ 0 where

U is a smooth henselian local scheme over k. Now, using the fact that V1, V2 and

W are A1-rigid, the result follows.

By Lemma 4.6, the function

(W ×Xn−1)(Z)∏(V1∏V2)(Z)→ Xn(Z)

is a surjection. Also, the pushouts of cofibrations are cofibrations, so the functions

(ϕn)Z , (ψn)Z , (ϕ′
n)Z and (ψ′

n)Z are injective. Thus, it suffices to show that if

α ∈ (V1∏V2)(Z) and β ∈ (W × Xn−1)(Z) are such that (ψ′
n)Z(α) = (ϕ′

n)Z(β),

then there exists γ ∈ (W ∏W )(Z) such that (ϕn)Z(γ) = α and (ψn)Z(γ) = β.

If (ψ′
n)Z(α) = (ϕ′

n)Z(β), there exists a Nisnevich cover Z ′ → Z such that there

exists γ′ ∈ (W ∏W )(Z ′) such that (ϕn)Z′(γ′) = α|Z′ and (ψn)Z′(γ′) = β|Z′ . By

Lemma 4.5, γ′ factors through a morphism γ : Z → W ∏W . This completes the

proof.

Theorem 4.8. Let n ≥ 0 be an integer.

(1) SingA
1

∗ Xn is simplicially equivalent to Xn−1.

(2) S(Xn) ∼= Xn−1.
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Proof. We prove this theorem by induction on n. Since X0 = A1, the result is

easily seen to be true for n = 0.

Suppose the result is known to be true for n ≤ m where m ≥ 0. In the diagram

W × SingA
1

∗ Xm

��

W ∏W //oo

��

V1∏V2

��
W ×Xm−1 W ∏W //oo V1∏V2

the vertical arrows are simplicial equivalences and the horizontal arrows are cofi-

brations. Thus, for n = m + 1 we see that the pushouts of these diagrams are

simplicially equivalent. Thus, SingA
1

∗ Xn is simplicial equivalent to Xn−1. This

proves (1). Since S(Xn) = π0(Sing
A1

∗ Xn) = π0(Xn−1) = Xn−1 by definition, this

proves (2).

Finally, we are able to prove Theorem 1.5, which we restate here:

Theorem 4.9. Let k be a field. There exists a sequence Xn of A1-connected

sheaves of sets over Sm/k such that Sn+1(Xn) = πA1

0 (Xn) is the trivial one-point

sheaf, but S i(Xn) ̸= S i+1(Xn), for every i < n+ 1.

Proof. A repeated application of Theorem 4.8 shows that Sn+1(Xn) is the trivial

one point sheaf. It also shows that Xn is A1-connected. It is clear from the

construction of Xn that S i(Xn) ̸= S i+1(Xn), for every i < n+ 1.



Chapter 5

Naive A1-connectedness of retract

rational varieties

In this chapter, we will prove that smooth, proper, retract rational varieties over an

infinite field k are naively A1-connected. Section 5.1 shows how one can construct

the germ of a homotopy, which we call as an infinitesimal homotopy, on any smooth

variety. In a rational variety, one can use an infinitesimal homotopy to construct

A1-homotopy by the simple process of truncating power series. The main idea

behind our proof is to execute a more sophisticated version of this idea by using

the Weierstrass preparation theorem for henselian rings.

5.1 Infinitesimal homotopies

Notation 5.1. If X is a scheme and x is a point on X, the local scheme SpecOhX,x
will be denoted by Xx. (We have already used this notation in the proof of Lemma

4.2.) The canonical morphism Xx → X will be denoted by ωx.

For any ring R, an infinitesimal homotopy of SpecR in a scheme X is a mor-

phism h : SpecR{t} → X (Recall ( Appendix C.2) the meaning of notation

R{t}). Let σ̂0 : SpecR → SpecR{t} be the morphism induced by the quotient

31
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homomorphism R{t} → R{t}/tR{t} ∼= R (see Appendix C.2). We say that this

infinitesimal homotopy starts from the morphism h ◦ σ̂0 : SpecR→ X.

The following lemma shows that for a smooth variety X and a point x ∈ X,

one can easily construct the germ of a homotopy of Xx in X starting from the

canonical morphism ωx : Xx → X.

Lemma 5.2. Let X be a smooth d-dimensional variety over k. Let x be a point of

X. Let U be an open subset of X. Let R = OhX,x and let ωx : Spec (R) =: Xx → X

be the canonical morphism. Then, there exists a morphism h : SpecR{t} → X

starting from ωx such that

Specκ(x){t} → SpecR{t} h→ X

maps the generic point of Specκ(x){t} into U .

Proof. If x ∈ U , we may take h to be the composition

SpecR{t} → SpecR
ωx→ X

where the first morphism is induced by the inclusion R ↪→ R{t}. Thus, we will

now assume that x /∈ U . Let Z = X\U .

For any non-negative integer n, consider the functor

U 7→MorSch/k(U × Spec k[t]/⟨tn+1⟩, X)

on the category of k-schemes. This functor is known to be representable by a k-

scheme of finite type (see [13]), which we denote by Jn(X). Let J(X) = lim←− Jn(X),

where the inverse limit is computed in the category of k-schemes. The quotient

homomorphism k[[t]] → k[t]/⟨tn+1⟩ induces the morphism πXn : J(X) → Jn(X).

For n ≥ m, let πXn,m : Jn(X) → Jm(X) denotes the morphism induced by the

quotient homomorphism k[t]/⟨tn+1⟩ → k[t]/⟨tm+1⟩.

Choose a morphism γ : Specκ(x)[[t]] → X which maps the closed point of

Specκ(x)[[t]] to x and the generic point into U . For any n ≥ 0, let γn denote the

composition

Specκ(x)[t]/⟨tn+1⟩ → Specκ(x)[[t]]
γ−→ X.
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We identify γn with a κ(x)-valued point of Jn(X), which we denote by γ̃n. We

define g̃0 : SpecR → J0(X) = X to be the morphism ωx. For n ≥ 1, we will

inductively construct a morphism g̃n : SpecR→ Jn(X) such that:

(i) the composition Specκ(x)→ SpecR
g̃n−→ Jn(X) is equal to γ̃n, and

(ii) the composition πXn+1,n ◦ g̃n+1 equals g̃n.

Suppose g̃n has been chosen for some non-negative integer n. Since X is smooth,

Jn+1(X) → Jn(X) is smooth. (In fact, it is an affine bundle for all n — see [20,

Lemma 9.1]). So we can choose a morphism g̃n+1 : SpecR → Jn+1(X) satisfying

the conditions (i) and (ii) (see [12, Corollary 17.16.3, (ii)]).

The collection {g̃n}n≥0 defines a morphism g̃ : SpecR → J(X), which corre-

sponds to a morphism g : SpecR[[t]]→ X. The restriction of g to κ(x)[[t]] is equal

to γ.

There exists an integer n such that if γ′ : Specκ(x)[[t]]→ X satisfies

πn,Specκ(x)(γ) = πn,Specκ(x)(γ
′),

then γ′ maps the generic point of Specκ(x)[[t]] into U . (Indeed, if there is no

such n, then since J(Z) = lim←− Jn(X), it will follow that γ ∈ J(Z), which is not

true.) By Facts C.6 and C.7, there exists a morphism h : SpecR{t} → X such

that πXn (h) = πXn (g). This proves the lemma.

Remark 5.3. As we see in the above proof, it is very easy to construct a mor-

phism SpecR[[t]] → X. We could have used this as our notion of “infinitesimal

homotopy”, if we had an analogue of Fact C.4 for the ring R[[t]], at least when

R is regular. (Such a result was proved in characteristic 0 by Lafon in [19].) The

proof of the preparation theorem for R{t} in [9] crucially uses the fact that the

functor R{t} is a colimit of finite type R-algebras and we do not know if it can

be adapted to give an analogous result for R[[t]]. So we choose to work with the

ring R{t} instead.
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5.2 Rational curves in projective space

Let us fix a base field k. Let L be any field containing k. We will use T0 and T1 as

homogeneous coordinates on P1
L. In other words, we will write P1

L = ProjL[T0, T1].

We will identify A1
L = SpecL[t] with the open subscheme P1

L\Z(T1) by identifying

t with T0/T1. We will denote the point (0 : 1) of P1
L by 0L and the point (1 : 0)

by ∞L. Thus, t is a parameter at 0L and 1/t is a parameter at ∞L. To avoid

making the notation cumbersome, we will write 0 and ∞ instead of 0L and ∞L

in the following discussion.

A morphism ϕ : P1
L → PNk can be represented by an (N +1)-tuple (P0, . . . , PN)

of homogeneous polynomials of a fixed degree d, such that Pi ̸= 0 for some i. (Of

course, some of the Pi’s may be equal to 0. The zero polynomial can be assigned

any degree.) Such a representation is not unique, but if we require the polynomials

to be coprime, it is unique up to multiplication by a unit. Dehomogenizing this

(N +1)-tuple with respect to T1 gives an (N +1)-tuple of polynomials in t, which

describes the restriction of ϕ to the open subscheme D(T1).

Recall that given a morphism from P1
L\Z(T1) to PNk , it can be uniquely ex-

tended to a morphism P1
L → PNk . A morphism from P1

L\Z(T1) to PNk is given by

an (N + 1)-tuple of polynomials in L[t], such that at least one of the polynomials

is non-zero. Thus, we see that a morphism P1
k → PNk can be represented in three

ways — using (N + 1)-tuples of homogeneous polynomials of a same degree in

(T0, T1) or by using (N + 1)-tuples of polynomials in either t or 1/t. (Again, note

that these representations are unique up to multiplication by a unit if we require

the polynomials to be coprime.)

Given a morphism ϕ : P1
k → PNk , we choose a representation of ϕ by an (N+1)-

tuple of polynomials (P0, . . . , PN) in k[t] which are coprime. Let m ≥ 0 be any

integer. For 0 ≤ i ≤ N , let P ′
i be the polynomial obtained by truncating Pi to

degree m. Then, the (N + 1)-tuple (P ′
0, . . . , P

′
N) is called the m-jet of ϕ at 0.

Similarly, we can define the m-jet of ϕ at ∞. Note that these are well-defined up
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to multiplication by a unit.

The following lemma shows that given a closed subscheme W of PNk of codi-

mension ≥ 2, and non-negative integers m1 and m2, there exists a morphism

ϕ : P1
k → PNk such that it maps P1

k\{0,∞} into PNk \W , has a prescribed m1-jet at

0 and a prescribed m2-jet at ∞.

Lemma 5.4. Let k be an infinite field and let L be a field containing k. Let N

be a positive integer. Let W be a closed subscheme of PNk of codimension ≥ 2.

Let P = (P0, . . . , PN) and (Q0, . . . , QN) be (N + 1)-tuples of polynomials in L[t].

Assume that Pi ̸= 0 and Qj ̸= 0 for some indices i, j. Let m1 be an integer such

that m1 ≥ maxi degPi. Assume that Pi(0) ̸= 0 for some i. Then, there exists an

(N + 1)-tuple (c0, . . . , cN) ∈ kN+1 such that the following conditions hold:

(a) For 0 ≤ i ≤ N , let Ri(t) = Pi(t) + tm1+1ci + tm1+2Qi(t). Then, the polyno-

mials R0, . . . , RN are coprime.

(c) Let ϕ : P1
L → PNk be the morphism represented by the (N+1)-tuple (R0, . . . , RN).

Then ϕ(P1
L\{0,∞}) ⊂ PNk \W .

Note that if ϕ is as described in the lemma, them1-jet of ϕ at 0 is (P0(t), . . . , PN(t))

and if m2 = maxi degQj, then the m2-jet of ϕ at ∞ is (Q0(1/t), . . . QN(1/t)).

Proof. For any point x = (x0, . . . , xN) of AN+1
k and 0 ≤ i ≤ N , we define

Rx
i (t) = Pi(t) + xit

m1+1 +Qi(t)t
m1+2.

Let ϕx : A1
κ(x) → AN+1

k be the morphism defined by

ϕx(s) = (Rx
0(s), . . . , R

x
N(s))

for any s ∈ A1
κ(x). Let C(W ) ⊂ AN+1

k be the cone over W .

We define

B := {(x, s, z)|ϕx(s) = z} ⊂ AN+1
k × (A1

k\{0})× C(W ).
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This is a closed subset of AN+1
k × (A1

k\{0})× C(W ). Let pr1 : B → AN+1
k be the

projection map onto the first factor. We need to show that the complement of the

image of pr1 contains some k-rational point.

Let pr23 : AN+1
k ×(A1

k\{0})×C(W )→ (A1
k\{0})×C(W ) by the projection map

onto the product of the second and third factors. We would like to estimate the

dimension of the fibre pr−1
23 (γ) where γ = (s, z) ∈ A1

k\{0} × C(W ). The equation

ϕx(s) = z imposes N+1 linear conditions on AN+1
k . Thus, the fibre has dimension

0. Thus, it follows that dim(B) ≤ 0 + 1 + dim(C(W )) ≤ N .

It follows that the closure of pr1(B) is of dimension ≤ N . The result follows

since k is an infinite field.

Remark 5.5. This lemma is one of the main reasons for requiring the field k to

be infinite in Theorem 1.6. The lemma need not hold if k is a finite field since all

the k-rational points of PNk may be contained in W .

5.3 Retract rational varieties

We first set up some notation.

Notation 5.6. Given a scheme X (resp. an affine scheme X = SpecR), and an

ideal sheaf I (resp. an ideal I ⊂ R), we will denote by Z(I) (resp. Z(I)) the

closed subscheme of X associated to the ideal sheaf I (resp. the ideal I). If L is

a line bundle on X and S is a set of sections of L, we may also write Z(S) for the

closed subschemes defined by the vanishing of the elements of S.

Theorem 5.7. Let k be an infinite field. Let X be a smooth, proper, retract

rational variety over k. Then S(X) = ∗.

Proof. Since X is retract rational, there exists a positive integer N ≥ 1, and

rational maps ϕ : X 99K PNk and ψ : PNk 99K X such that ψ ◦ϕ is the identity map

onX. Since k is infinite, this implies thatX(k) is non-empty. SinceX is a smooth,

proper, retract rational variety, we have πA1

0 (X) = ∗, and so S(X)(k) = ∗. Thus,
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to prove that X is naively A1-connected, it suffices to prove that for any point x,

there exists a chain of A1-homotopies of Xx (see Notation 5.1) in X connecting

the canonical morphism ωx : Xx → X to a morphism that factors through some

morphism Spec k → X.

Let us fix a point x ∈ X. We will denote the ring OhX,x by R. We now set up

some notation for working with the scheme P1
R.

We use the notation in Section 5.2, so that 0 and ∞ denote the points (0 : 1)

and (1 : 0) of P1
k = Proj k[T0, T1] respectively. Let σ0 and σ∞ be the sections of the

projection morphism P1
R
∼= P1

k×SpecR→ SpecR, mapping SpecR isomorphically

onto the closed subschemes Z(T0) = {0} × SpecR and Z(T1) = {∞} × SpecR,

respectively. We will denote the rational function T0/T1 by t and thus identify the

open subscheme P1
R\Z(T1) with SpecR[t].

We will construct a morphism H : P1
R → X such that H ◦σ0 = ωx and H ◦σ∞

factors through some morphism Spec k → X. Clearly, this will prove the result.

There exists an ideal sheaf K on PNk such that if π : Y → PNk is the blowup of

PNk at K, the map χ := ψ ◦ π is a morphism from Y to X. The sheaf K can be

chosen so that W := Z(K) is a variety (possibly reducible) of codimension ≥ 2.

Let V = PNk \W . Let U ⊂ X be an open subset on which ϕ is defined and such that

ϕ(U) ⊂ V . The ideal sheaf K corresponds to a homogeneous ideal of k[X0, . . . , XN ]

generated by homogeneous polynomials p1, . . . , pr. We may assume, without loss

of generality, that the polynomials p1, . . . , pr are all of the same degree l. Note

that r ≥ 2.

The polynomials p1, . . . , pr define global sections of K(l), which generate K(l).

Thus, we obtain a surjective morphism OrPN → K(l). Thus, we have the following

sequence of homomorphisms of sheaves of graded OPN -rings

Sym(OrPN )→ Sym(K(l))→
∞⊕
j=0

Kj(l).

This gives us a closed embedding of Y into PNk × Pr−1
k .

Using Lemma 5.2, we choose an infinitesimal homotopy h : SpecR{t} → X
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starting at ωx such that h maps the point η0 of SpecR{t}, corresponding to the

ideal mR{t}, into U . This gives us a rational map ϕ◦h : SpecR{t} 99K PNk , which

can be represented by an (N + 1)-tuple f := (f0, . . . , fN) where fi ∈ R{t}. We

choose the fi to be coprime in the unique factorization domain R{t}. Let I denote

the ideal ⟨f0, . . . , fN⟩. The rational map ϕ ◦ h is a morphism if and only if this

ideal is principal. Let J denote the ideal ⟨p1(f), . . . , pr(f)⟩.

Recall that we have chosen h in such a way that the point η0 of SpecR{t},

corresponding to the ideal mR{t}, is mapped into U . Thus, the rational map ϕ◦h

is well-defined on η0. Since we have chosen the fi to be coprime elements of the

unique factorization domain R{t}, it follows that at least one of the fi does not

vanish on η0. By performing a change of coordinates on PNk , we may reduce to

the situation where none of the fi vanishes on η0. (Such a change of coordinates

exists since k is an infinite field.) Thus, for each i, we have fi = uif̃i where ui is

a unit in R{t} and f̃i is a Weierstrass polynomial.

Recall that ϕ◦h maps the point η0 into V . The zero set of the ideal ⟨p1, . . . , pr⟩

is contained in the complement of V . Thus, at least one of the polynomials pi does

not vanish on η0. We may assume that all the pi’s are of the same degree. Suppose

p1 does not vanish on η0. Then, for each i ̸= 1, we can replace pi by pi + ϵip1

where ϵi is 0 if pi does not vanish at η0 and is equal to 1 otherwise. Thus, we may

assume that none of the polynomials pi vanishes at η0.

Thus, pi(f) = vi · Pi where vi is a unit in R{t} and Pi is a Weierstrass polyno-

mial. Let p := t ·
(∏

i f̃i

)2
·
(∏

j Pj

)2
. Then, p is an element of the ideal IJ and

it is a Weierstrass polynomial with degt(p) ≥ 1.

For 0 ≤ i ≤ N , we can express fi in the form

fi = αi + pβi

where αi ∈ R[t] with degt(αi) < degt(p) and βi ∈ R{t}.

For 0 ≤ i ≤ N , let αi(t) ∈ κ(x)[t] be the image of αi(t) under the quotient

homomorphism R[t] → R[t]/mR[t] = κ(x)[t]. Let d be the largest non-negative
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integer such that td divides αi(t) for all i. Let (λ0, . . . , λN) ∈ kN+1 such that

(λ0 : . . . : λN) ∈ V (k). (The existence of such an (N + 1)-tuple (λ0, . . . , λN)

follows from the assumption that k is infinite.) We apply Lemma 5.4 to the two

(N + 1)-tuples

(α0(t)/t
d, α1(t)/t

d, . . . , αN(t)/t
d) and (λ0, . . . , λN)

of polynomials in κ(x)[t]. We see that there exists an (N+1)-tuple (µ0, . . . , µN) ∈

kN+1 such that the (N+1) polynomials R0(t), . . . , RN(t) in κ(x)[t] the polynomials

defined by

Ri(t) = αi(t)/t
d + (µi + λit) · tdegt(p)−d,

are coprime and define a morphism u : P1
κ(x) → PNk mapping P1

κ(x)\{0,∞} into

PNk \W .

Let g = (g0, . . . , gN) where gi(t) = αi(t) + (µi + λit) · p(t) for 0 ≤ i ≤ N .

Then, if gi(t) ∈ κ(x)[t] is the image of gi(t) under the quotient homomorphism

R[t]→ κ(x)[t], we see that gi(t) = tdRi(t) for all i. Thus, the following conditions

hold:

(A) The polynomials g0(t), . . . , gN(t) have no common zeros in A1
κ(x)\{0}.

(B) If g denotes the (N+1)-tuple (g0, . . . , gN), then the collection of polynomials

p1(g), . . . , pr(g) in κ(x)[t] has no common zero in A1
κ(x)\{0}.

Let Ĩ and J̃ be the ideals ⟨g0, . . . , gN⟩ and ⟨p1(g), . . . , pr(g)⟩ of R[t] respectively.

For 0 ≤ i ≤ N ,

gi = fi + p · (µi + λit− βi) = fi[1 + (p/fi) · (µi + λit− βi)]. (5.3.1)

As t divides p/fi, it is a non-unit in R{t}, and so gi is a unit multiple of fi in

R{t}, for each i . In particular, we have ĨR{t} = I.

Similarly, for 1 ≤ i ≤ r,

pi(g)− pi(f) =
∑
j

(gj − fj) ·Qij



40 CHAPTER 5. RETRACT RATIONAL VARIETIES

where Qij is some element of R{t}. Thus,

pi(g) = pi(f)[1 + (p/pi(f)) ·Q′
i] (5.3.2)

for some Q′
i ∈ R{t}. As t divides p/pi(f), it is a non-unit in R{t}, and so pi(g) is

a unit multiple of pi(f) in R{t}. This proves that J̃R{t} = J .

We would now like to show that the R-algebra homomorphism R[t]/(Ĩ J̃) →

R{t}/(IJ) is an isomorphism. This statement is trivially true if Ĩ J̃ is the unit

ideal. Thus, let us assume, for now, that Ĩ J̃ is not the unit ideal. We would like

to apply Lemma C.5, and so we verify that Ĩ J̃ satisfies the hypothesis of that

lemma.

Condition (A), which was imposed on the (N + 1)-tuple g, implies that if Ĩ

is not the unit ideal, then the only prime ideal containing Ĩ and mR[t] is ⟨m, t⟩.

Condition (B) implies the same for J̃ . Since at least one of the ideals Ĩ and J̃ is

not the unit ideal, it follows that Ĩ J̃ satisfies condition (2) of Lemma C.5.

Now, we verify that the homomorphism R → R[t]/(Ĩ J̃) is a finite extension.

For this, it suffices to find an element of Ĩ J̃ such that its leading coefficient (as a

polynomial in t) is an invertible element of R.

First, we note that there exists an index i0, 0 ≤ i0 ≤ N such that λi0 ̸=

0. Thus, gi0 is a polynomial in t with a leading coefficient that is a unit in

R. Secondly, we observe that for 1 ≤ j ≤ r, pj(g) is a polynomial in t with

degree ≤ deg(pj) · (degt(p) + 1). The coefficient of tdeg(pj)·(degt(p)+1) is equal to

pj(λ0, . . . , λN). Since (λ0 : . . . , λN) is in V , there exists an index j0 such that

pj0(λ0, . . . , λN) ̸= 0. Thus, pj0(g) is a polynomial in t with a leading coefficient

that is an invertible element in R. Thus, gi0 · pj0(g) ∈ Ĩ J̃ is a polynomial in t

with a leading coefficient that is an invertible element of R. Thus, we see that the

homomorphism R→ R[t]/(Ĩ J̃) is a finite extension.

Thus, if Ĩ J̃ is not the unit ideal, we may now apply Lemma C.5 to conclude

that the morphism

θ : SpecR{t} → SpecR[t]
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induces an isomorphism of the closed subscheme Z(IJ) ⊂ SpecR{t} with the

closed subscheme Z(Ĩ J̃) ⊂ SpecR[t]. Of course, as we noted above, if Ĩ J̃ happens

to be the unit ideal, Z(IJ)→ Z(Ĩ J̃) is trivially an isomorphism.

Let τ : B → SpecR{t} denote the blowup of SpecR{t} at the ideal IJ and

let τ̃ : B̃ → SpecR[t] denote the blowup of SpecR[t] at the ideal Ĩ J̃ . Since

Ĩ J̃R{t} = IJ , we see that

B ∼= B̃ ×SpecR[t] SpecR{t}.

Let us denote the projection morphism B → B̃ by θ′. Since θ maps Z(IJ)

isomorphically onto the closed subscheme Z(Ĩ J̃) of SpecR[t], it follows that θ′

maps τ−1(Z(IJ)) isomorphically onto τ̃−1(Z(Ĩ J̃)).

Since the ideal sheaf τ−1(I)·OB is invertible, the rational map h′ : SpecR{t} →

PNk defined by the (N+1)-tuple (f0, . . . , fN) lifts to a morphism B → PN . Since the

ideal sheaf τ−1(J) ·OB is also invertible, it further lifts to a morphism h′′ : B → Y .

Thus, the diagram

B
h′′ //

τ
��

Y

χ

��
SpecR{t} h // X

commutes.

Similarly, the rational map h̃′ : SpecR[t] 99K PNk , defined by the (N +1)-tuple

(g0, . . . , gN) lifts to a morphism h̃′′ : B̃ → Y . Thus, the diagram

B
θ′ //

τ

��

B̃
h̃′′ //

τ̃
��

Y

χ

��
SpecR{t} θ // SpecR[t] X

commutes. Notice that, in the above diagram, we do not yet have a morphism

from SpecR[t] to X making the diagram commute. We will prove that such a

morphism exists.

We have the two morphisms h′′ and h̃′′ ◦ θ′ from B to Y . These need not be

equal. However we will show that they agree on τ−1(Z(IJ)). This claim is trivial

if IJ is the unit ideal. Thus, we now assume that IJ is not the unit ideal.
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Let z be any point of τ−1(Z(IJ)). We want to prove that that h′′(z) =

h̃′′ ◦ θ′(z). Recall that we have fixed an embedding of Y into PNk × Pr−1
k . Let

pr1 : PNk × Pr−1
k → PNk and pr2 : PNk × Pr−1

k → Pr−1
k be the projection morphisms.

It will suffice to prove that pri ◦ h′′(z) = pri ◦ h̃′′ ◦ θ′(z) for i = 1, 2.

For any element r ∈ R{t}, we will denote its image in OB,z by r as well. Let nz
denote the maximal ideal of the local ring OB,z. Since τ(z) ∈ Z(IJ), there exists

at least one element in the set {f0, . . . , fN , p1(f), . . . , pr(f)} which is a non-unit

in OB,z. Let us pick one such element and denote it by qz. Recall that we had

chosen p to be equal to t ·
(∏

i f̃i

)2
·
(∏

j Pj

)2
. Thus, it follows that, in the ring

OB,z, the non-unit element qz divides p/fi for every i and p/pj(f) for every j. We

will use this observation in the following discussion.

The restriction of pr1◦h′′ to SpecOB,z is given by the (N+1)-tuple (f0, . . . , fN).

We know that the ideal I · OB,z is principal. Thus, there exists an index iz such

that fi/fiz ∈ OB,z for all i. Let f ′
i = fi/fiz for 0 ≤ i ≤ N . If f ′

i is the image of f ′
i

in OB,z/nz =: κ(z), the composition

Specκ(z)
z→ B

pr1◦h′′−−−−→ PNk

is given by the (N + 1)-tuple (f ′
0, f

′
1, · · · , f ′

N). of elements in κ(z). Note that

f ′
iz
= 1.

Recall (see equation (5.3.1)) that gi = fi(1 + (p/fi)(µi + λit − βi)). Let g′i =

f ′
i(1 + (p/fi)(µi + λit− βi)) for every i. Thus, we have gi = fizg

′
i for every i.

Let g′i denote the image of g′i in κ(z). As we observed above, p/fi is in nz.

Thus, we see that f ′
i = g′i for every i.

The composition

Specκ(z)
z→ B

pr1◦h̃′′◦θ′−−−−−→ PNk

is given by the (N + 1)-tuple (g′0, g
′
1, · · · , g′N). Since g′i = f ′

i for every i, we see

that pr1 ◦ h′′(z) = pr1 ◦ h̃′′ ◦ θ′(z).

Similarly, using equation (5.3.2), we can show that pr2 ◦h′′(z) = pr2 ◦ h̃′′ ◦ θ′(z)

for any point z ∈ τ−1(Z(IJ)). Thus, we conclude that h′′(z) = h̃′′ ◦ θ′(z) for any
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z ∈ τ−1(Z(IJ)).

Now, suppose z1 and z2 are two distinct points of B̃ such that τ̃(z1) = τ̃(z2) =

z. Then, as τ̃ is an isomorphism on the complement of Z(Ĩ J̃), we see that z ∈

Z(Ĩ J̃). Recall that θ maps θ−1(Z(Ĩ J̃)) = Z(IJ) isomorphically onto Z(Ĩ J̃) and

that θ′ maps τ−1(Z(IJ)) maps isomorphically onto τ̃−1(Z(Ĩ J̃)). Thus, there exist

unique points y1 and y2 in ψ−1(Z(IJ)) such that θ′(yi) = zi for i = 1, 2. Also,

τ̃ ◦ θ′ = θ ◦ τ , and since θ is an injective on Z(IJ), we see that τ(y1) = τ(y2).

Since χ ◦ h′′ = h ◦ τ , we see that χ ◦ h′′(y1) = χ ◦ h′′(y2). Thus,

χ ◦ h̃′′(z1) = χ ◦ h̃′′ ◦ θ′(y1)

= χ ◦ h′′(y1)

= χ ◦ h′′(y2)

= χ ◦ h̃′′ ◦ θ′(y2) = χ ◦ h̃′′(z2).

Note that τ̃ is a proper, birational morphism. Also, as SpecR[t] is normal, we

have τ∗(OB̃) ∼= OSpecR[t]. Thus, we may apply [30, Lemma 8.11.1] and [11, chapter

III Cor. 11.4] to conclude that there exists a morphism h̃ : SpecR[t] → X such

that χ ◦ h̃′′ = h̃ ◦ τ̃ .

Now, we will show that h̃ can be extended to a morphism H : P1
R → X. (Recall

that P1
R = ProjR[T0, T1] contains SpecR[t] as the open subscheme P1

R\(SpecR×

{∞}), via the identification t = T0/T1.)

For 0 ≤ i ≤ N , let Gi(T0, T1) ∈ R[T0, T1] be defined by

Gi(T0, T1) = T
degt(p)+1
1 · gi(T0/T1).

Thus, each Gi is a homogeneous polynomial of degree degt(p) + 1 in R[T0, T1].

The coefficient of T
degt(p)+1
0 in Gi(T0, T1) is λi. Recall that there exists an index

i0 such that λi0 is a non-zero element of k. Thus, Gi0 has no zero in the closed

subscheme Z(T1) of P1
R. Thus, the rational map H ′ : P1

R 99K PNk defined by the

(N +1)-tuple (G0, . . . , GN) is defined on an open subscheme of P1
R containing the

closed subscheme Z(T1). The restriction of H ′ to the open subscheme P1
R\Z(T1) =
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SpecR[t] is given by the (N + 1)-tuple (g0(t), . . . , gN(t)). Thus, it is the same as

the rational map h̃′. Thus, H ′ is defined on the open subscheme P1
R\Z(Ĩ). (Note

that the morphism Z(Ĩ) ↪→ SpecR[t] ↪→ P1
R is closed since Z(Ĩ) is finite over

SpecR. The same is true for the closed subschemes Z(J̃) and Z(Ĩ J̃) of SpecR[t].

So, we view Z(Ĩ), Z(J̃) and Z(Ĩ J̃) as closed subschemes of P1
R.)

On the open subscheme SpecR[t]\Z(Ĩ J̃) of SpecR[t], where ψ ◦ h̃′ is well-

defined, it agrees with the restriction of the morphism h̃. Thus, we see that ψ ◦H ′

agrees with h̃ on P1
R\(Z(Ĩ J̃) ∪ Z(T1)). Since P1

R\Z(T1) (where h̃ is defined) and

P1
R\Z(Ĩ J̃) (where ψ ◦ H ′ is defined) form a Zariski open cover of P1

R, we see

that there exists a morphism H : P1
R → X extending h̃. Now we compute the

morphisms H ◦ σ0 and H ◦ σ∞ from SpecR to X.

The morphism H ◦ σ0 is the same as h̃ ◦ σ0. So we will now compute h̃ ◦ σ0.

We will prove that it is the same as the canonical morphism ωx. Note that h ◦

σ̂0 = ωx. (Recall from Section 5.1 that σ̂0 is the morphism SpecR → SpecR{t}

corresponding to the quotient homomorphism R{t} → R{t}/tR{t} ∼= R.) Thus,

it is enough to prove that h̃ ◦ σ0 = h ◦ σ̂0. For this, it will suffice to show that if η

denotes the generic point of SpecR, then the two compositions

Specκ(η) // SpecR
h̃◦σ0

//
h◦σ̂0 // X

are equal.

The rational map h′ : SpecR{t} 99K PNk is defined on the open subscheme

SpecR{t}\V(Ĩ) of SpecR{t} and it is represented by the (N+1)-tuple (f0, . . . , fN).

Since t divides p, the image of fi under the quotient homomorphism R{t} →

R{t}/tR{t} ∼= R is αi(0), i.e. the constant term in the polynomial αi(t) ∈ R[t].

Since the fi were chosen to be coprime, we see that at least one of the elements

α0(0), . . . , αN(0) is non-zero. Thus, the morphism h′ ◦ σ̂ ◦ η : Specκ(η) → PN

is represented by the (N + 1)-tuple (α0(0), . . . , αN(0)). Similarly, the morphism

h̃′ ◦ σ0 ◦ η : Specκ(η)→ PN is also represented by the same (N + 1)-tuple. Com-

posing with ψ, we obtain the desired conclusion that the morphism h ◦ σ̂0 ◦ η is
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equal to h̃ ◦ σ0 ◦ η. Thus, it follows that h̃ ◦ σ0 is equal to ωx.

The restriction of H ′ to the closed subscheme Z(T1) of P1
R maps Z(T1) to

the point (λ0 : . . . : λN) of PNk . The morphism H agrees with H ′ on an open

subscheme of P1
R containing Z(T1). Thus H ◦ σ∞ maps SpecR to the k-valued

point ψ((λ0 : . . . : λN)) of X. This completes the proof.
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Appendix A

Model categories

The theory of model categories provides a framework for doing computations in the

localization of a category with respect to a class of morphisms. The prototypical

example is that of the category of topological space, which one localizes with

respect to the class of weak equivalences to obtain the homotopy category. The

theory of model categories axiomatizes the machinery of classical homotopy theory.

Model categories were introduced by Quillen in [25]. We will use [14] and [15] as

our main references for this material.

A.1 Basic definitions

Before we define a model category, we fix two pieces of terminology. Firstly, recall

that if C is a category and X and Y are objects of C, we say that X is a retract of

Y if there exist morphisms f : X → Y and g : Y → X such that g ◦ f = 1X . This

notion is easily extended to morphisms as well. Recall that the morphisms in a

category C also form a category, which we denote by MorC. Given two morphisms

f : X → Y and g : U → V in C, a morphism from f to g in the category MorC is

47
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a commutative square of the form

X
p //

f
��

U

g
��

Y
q // V .

Thus, we say that f is a retract of g if we have a commutative diagram of the

form

X
p //

f
��

U

g
��

p′ // X

f
��

Y
q // V

q′ // Y

such that p′ ◦ p = 1X and q′ ◦ q = 1Y .

The second piece of terminology we recall is that of right/left lifting properties

of morphisms. Given morphisms i : A → B and p : X → Y , we say that (i, p) is

a lifting pair if given any commutative square of the form

A //

i
��

X

p

��
B // Y ,

there exists a morphism B → X making the resulting diagram commute. In this

case, we will also say that i has the left-lifting property with respect to p, and that

p has the right-lifting property with respect to i.

Definition A.1. A model category is a categoryM equipped with three distin-

guished classes of morphisms, called weak equivalences, cofibrations and fibrations,

satisfying the axioms (1)-(5) given below. A cofibration (resp. fibration) that is

also a weak equivalence is called a trivial cofibration (resp. trivial fibration).

1. M is closed under small limits and colimits.

2. Weak equivalences, cofibrations and fibrations are closed under retracts.

3. Let f and g be two composable morphisms. Then if any two out of f , g and

g ◦ f is a weak equivalence, so is the third.
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4. Cofibrations have the left lifting property with respect to all trivial fibra-

tions and trivial cofibrations have the left lifting property with respect to all

fibrations.

5. Every morphism f : X → Y has two functorial factorizations as follows:

(i) f = q ◦ i where i is a cofibration and q is a trivial fibration, and

(ii) f = p ◦ j where j is a trivial cofibration and p is a fibration.

The three distinguished classes of morphisms are said to define a model structure

on the categoryM.

The object of interest in such a situation is the localization of M with re-

spect to the class of weak equivalences. Fibrations and cofibrations constitute the

machinery that makes it possible to compute morphisms in the localization.

Definition A.2. LetM be a model category. The localization ofM with respect

to the class of weak equivalences is called the homotopy category ofM. We denote

it by Ho(M).

Remark A.3. It can be proved that a morphism is a trivial cofibration if and

only if it has the left-lifting property with respect to all fibrations. Analogous

characterizations of cofibrations, fibrations and trivial fibrations in terms of lifting

properties also hold. Thus, we see that any two of the three distinguished classes

mentioned in Definition A.1 determine the third.

Remark A.4. Observe that the axioms for a model category are self-dual. In

other words, a given model structure on M defines a model structure on the

opposite category Mop where the weak equivalences are the opposites of weak

equivalences inM, the cofibrations are the opposites of fibrations inM and the

fibrations are the opposites of cofibrations inM.

Thus, given a statement about model categories, one can write the dual of

the statement by reversing the directions of all morphisms and interchanging the
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role of fibrations and cofibrations, and of limits and colimits. The proof of any

statement can also be a dualized to obtain a proof of the dual. This is the principle

of duality in model categories.

Since a model categoryM admits all small colimits and limits, it has an initial

object, which we denote by ∅, and a final object, which we denote by ∗. (It is

possible that ∅ and ∗ are isomorphic, in which case the model category is said to

be pointed.) An object X is said to be cofibrant (resp. fibrant) if the canonical

morphism ∅ → X (resp. X → ∗) is a cofibration (resp. fibration). An object is

said to be cofibrant-fibrant if it is both, cofibrant as well as fibrant.

A fibrant approximation functor on the model category M is a functor F :

M → M equipped with a natural transformation Id → F such that for any

object X of M, the object F (X) is fibrant and the morphism X → F (X) is a

weak equivalence. We can similarly define the notion of cofibrant approximation

functors. The existence of both, fibrant and cofibrant approximation functors, is

guaranteed by condition (5) in Definition A.1.

We mention a few classical examples.

Example A.5. Let Top denote the category of topological spaces. We now

describe the classical model structure on this category. See [15, Section 2.4] for

the proof.

A continuous map f : X → Y is said to be a weak equivalence if it induces a

bijection π0(X)
∼→ π0(Y ) and group isomorphisms πi(X, x)

∼→ πi(Y, f(x)) for any

x ∈ X.

For n ≥ 0, let Dn denote the closed unit ball in Rn. A continuous map is said

to be a fibration if it has the right lifting property with respect to morphisms of

the form Dn ↪→ Dn× [0, 1], x 7→ (x, 0) for all non-negative integers n. (Such maps

are also called Serre fibrations.) It can be proved that every topological space is

a fibrant object.

The cofibrations are the maps which have the left lifting property with respect
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to maps which are fibrations as well as weak equivalences.

Example A.6. The category of simplicial sets is an important example which we

will discuss in some detail in Section A.2.

Example A.7. Let R be a ring and let Ch(R) denote the category of chain com-

plexes of (left) R-modules. A morphism f : X• → Y• between chain complexes is

said to be a weak equivalence if the induced homomorphism Hn(f) : Hn(X) →

Hn(Y ) between homology modules is an isomorphism for all n. We define a mor-

phism to be a cofibration if it is an injection. The fibrations are defined to be the

morphisms having the right lifting property with respect to cofibrations which are

also weak equivalences. (See [15, Theorem 2.3.13] for the proof.)

Now we briefly explain how cofibrations and fibrations provide the machinery

to compute the morphisms in the homotopy category.

Let Mcf denote the full subcategory of cofibrant-fibrant objects of M. Let

Ho(Mcf ) denote the localization ofMcf with respect to the class of weak equiv-

alences in Mcf . Then, we have an obvious functor Ho(Mcf ) → Ho(M). Since

every object ofM is weakly equivalent to an object ofMcf (which can actually

be functorially chosen), it is easy to prove that Ho(Mcf )→ Ho(M) is an equiv-

alence of categories. (See [15, Proposition 1.2.3].) However, it is possible to get a

much more elegant description of morphisms in Ho(Mcf ).

Definition A.8. LetM be a model category.

1. Let X be an object ofM. A cylinder object forM is a factorization

X∏X
i→ Cyl(X)

p→ X

of the morphism 1X∏ 1X : X∏X → X, where i is a cofibration and p

is a weak equivalence. (Such a factorization exists due to condition (5) in

Definition A.1.) The morphism i can be written in the form i = i0∏ i1

where i0 and i1 are morphisms from X to Cyl(X). (Cylinder objects for a

given object X are not unique.)
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2. Let f, g : X → Y be a pair of morphisms in M. A left homotopy from f

to g consists of a choice of a cylinder object X as in (1), and a morphism

H : Cyl(X)→ Y such that H ◦ i0 = f and H ◦ i1 = g. If such a homotopy

exists, we say that f is left homotopic to g.

3. By dualizing (1), we obtain the notion of a path object for any given object

ofM.

4. By dualizing (2), we obtain the notion of a right homotopy between two

morphisms inM.

5. If a pair of maps is both left and right homotopic, we say that it is homotopic.

6. A morphism f : X → Y inM is said to be a homotopy equivalence if there

exists a morphism g : Y → X such that g ◦ f is homotopic to 1X and f ◦ g

is homotopic to 1Y .

Proposition A.9. Let M be a model category. Let X be a cofibrant object and

Y be a fibrant object. Then, a pair of maps f, g : X → Y is left homotopic if and

only if it is right homotopic. Moreover, in this case, being left (and hence right)

homotopic is an equivalence relation on MorM(X, Y ).

The above result tells us that for any two objects X and Y ofMcf , homotopy

is an equivalence relation on the set MorM(X, Y ). Let us denote the set of equiv-

alence classes by MorM(X, Y )/ ∼. Then, it is easy to check homotopy classes

of morphisms are well-behaved under composition. Indeed, we can construct a

categoryMcf/ ∼, the objects of which are the cofibrant-fibrant objects ofM and

the set of morphisms from an object X to an object Y is the setMorM(X, Y )/ ∼.

Clearly, the image of f ∈MorM(X, Y ) maps to an isomorphism inMcf/ ∼ if and

only if it is an homotopy equivalence.

It is easy to see that any homotopy equivalence is a weak equivalence. Thus,

the functorMcf → Ho(Mcf ) factors asMcf →Mcf/ ∼→ Ho(Mcf ).
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Theorem A.10 (See [15, Prop. 1.2.8 and Cor. 1.2.9]). LetM be a model category.

Let X and Y be cofibrant-fibrant objects of M. Then a morphism f : X → Y

is a weak equivalence if and only if it is a homotopy equivalence. The functor

Mcf → Ho(Mcf ) is an isomorphism of categories.

The above result is a generalization of the classical result of Whitehead, which

states that a continuous map between CW-complexes is a weak equivalence if and

only if it is homotopy equivalence.

We end this section by describing the appropriate notion of functors between

model categories. To require functors between model categories to preserve the

model structure is too restrictive in practice. Instead, it is more appropriate to

consider adjoint pairs such that the left adjoint preserves “half” of the model

structure and the right adjoint preserves the other half.

Definition A.11. Let M and N be model categories. We say that a functor

F :M→N is a left Quillen functor if it is a left adjoint and preserves cofibrations

and trivial cofibrations. Similarly, we say that a functor G : N → M is a right

Quillen functor if it is a right adjoint and preserves fibrations and trivial fibrations.

It is easy to verify that if F is a left Quillen functor, its right adjoint is a right

Quillen fucntor and vice versa. If F is a left Quillen functor and G is its adjoint,

we say that the pair (F,G) is a Quillen pair.

Let Q : M → M is a cofibrant approximation functor. Then, if (F,G) are

as above, it can be proved that F takes weak equivalences between cofibrant

objects into weak equivalences. Thus, the functor F ◦Q takes weak equivalences

to weak equivalences, and hence induces a functor LF : Ho(M)→ Ho(N ), which

we call as the left derived functor of F . Similarly, if R : N → N is a fibrant

approximation functor, G ◦ R induces a functor RG : Ho(N ) → Ho(M). One

can show that (LF,RG) is an adjoint pair (see [15, Lemma 1.3.10]). If this pair

actually gives an equivalence between Ho(M) and Ho(N ), we say that (F,G) is

a Quillen equivalence.
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A.2 Simplicial sets

We first define the cosimplicial indexing category ∆.

• For any non-negative integer n, let [n] denote the ordered set {0 < 1 < . . . <

n}. The set of objects of ∆ is {[n]|n ∈ Z≥0}.

• The morphisms from [m] to [n] in ∆ are the order-preserving maps.

The opposite category ∆op is called as the simplicial indexing category.

Definition A.12. Let C be any category.

1. A cosimplicial object in C is a functor ∆→ C. The category of cosimplicial

objects in C is denoted by ∆C. Given a cosimplicial object X : ∆→ C, the

object X([n]) will be written as Xn.

2. A simplicial object in C is a functor ∆op → C. The category of simplicial

objects in C is denoted by ∆opC. Given a simplicial object X : ∆op → C,

the object X([n]) will be written as Xn.

To begin with, we are particularly interested in the case C = Set. A simplicial

object in Set is called a simplicial set. If X is a simplicial set, the set Xn is called

the set of n-simplices of X.

For any non-negative integer n, we define the standard n-simplex ∆n ∈ Obj(∆opSet)

be the functor Mor∆(−, [n]), which is a contravariant functor from ∆ to Set and

hence may be interpreted as a covariant functor from ∆op to Set. The func-

tor [n] 7→ ∆n is a covariant functor from ∆ to ∆opSet and so is a cosimplicial

object in ∆opSet. We denote this cosimplicial object by ∆. Using Yoneda’s

lemma, it is easy to see that for any simplicial set X, there is a natural bijection

Xn
∼→Mor∆opSet(∆

n, X).

Note that there are precisely two morphisms from [0] to [1] = {0 < 1}, one

which carries 0 to 0 and the other which carries 0 to 1. The corresponding mor-
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phisms ∆0 → ∆1 will be denoted by i0 and i1 respectively and called the endpoints

of ∆1.

In order to define a model structure on ∆opSet, we first want to define what

are the We now wish to define a functor from ∆op to Top, called the geometric

realization functor. For this, we first need to define a cosimplicial object in Top,

which we will denote by |∆|.

Let en0 be the element (0, . . . , 0) ∈ Rn. For 1 ≤ i ≤ n, let eni be the element of

Rn having i-th coordinate equal to 1 and all other coordinates equal to 0. Let

|∆|n := {
n∑
i=0

tie
n
i |0 ≤ ti ≤ 1 and

n∑
i=0

ti = 1}.

Thus, |∆|n is the convex hull of en0 , . . . , e
n
n. If f : [m] → [n] is a morphism in ∆,

we define |∆|(f) : |∆|m → |∆|n by

|∆|(f)(
m∑
i=0

tie
m
i =

n∑
i=0

tie
n
f(i)).

It is easy to see that |∆|(g◦f) = |∆|(g)◦|∆|(f). Thus, |∆| is a cosimplicial object

in Top.

For any topological spaceX, we define Sing(X) to be a simplicial set by setting

by Sing(X)n = MorTop(|∆|n, X). For any f : [m] → [n], the corresponding map

Sing(X)(f) : MorTop(|∆|n, X) → MorTop(|∆|m, X) is given by precomposing

with |∆|(f) : |∆|m → |∆|n. This gives a functor Sing : Top → ∆opSet. It can

be proved that this functor has a left adjoint, which we write as X 7→ |X| for any

simplicial set X. One can verify that |∆n| = |∆|n. The functor X 7→ |X| is called

the geometric realization functor.

As an example, observe that |∆0| is just a point, |∆1| is actually isomorphic

to the interval [0, 1] and the geometric realizations of the endpoint morphisms

i0, i1 : ∆
0 → ∆1 correspond to the endpoints of the interval |∆1|.

Given any simplicial set X, we define π0(X) to be equal to π0(|X|), i.e. the set

of path connected components of the topological space |X|. Given any x ∈ X0, we

view it as a morphism x : ∆0 → X. Applying the geometric realization functor,
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we get |x| : |∆0| → |X|. Since |∆0| ∼= ∗ (a point), we may identify |x| with a

point of the space |X|. For any integer i > 0, we define πi(X, x) to be equal to

the group πi(|X|, |x|).

A morphism f : X → Y of simplicial sets is said to be a weak equivalence

if and only if it induces a bijection π0(X) → π0(Y ) and a group isomorphisms

πi(X, x) → πi(Y, f(x)) for any x ∈ X0. In other words, f is a weak equivalence

if and only if |f | : |X| → |Y | is a weak equivalence in the model category of

topological spaces.

A morphism f : X → Y of simplicial sets is a cofibration if and only if it is

a monomorphism, i.e. fn : Xn → Yn is an injection for every n. Thus, every

simplicial set is a cofibrant object.

A fibration of simplicial sets is a morphism that has the right lifting property

with respect to every morphism that is both a cofibration as well as a weak equiv-

alence. Fibrations of simplicial sets are also called as Kan fibrations and fibrant

simplicial sets are called as Kan complexes.

It can be proved that this gives a model structure on Top (see [15, Chapter

3]). Also, the pair (| − |, Sing(−)) gives a Quillen equivalence between ∆opSet

and Top.

A.3 Simplicial model categories

We will restrict ourselves to a very brief sketch of the notion of simplicial model

categories. A precise discussion may be found in [14, Section 9.1]. We also refer the

reader to a more general discussion in [15, Section 4.2] regarding model categories

enriched over monoidal model categories.

A simplicial category is a category C, equipped with a rule that associates to

each pair of objects X and Y , a simplicial set Map(X, Y ), called the simplicial

mapping space from X to Y . This is required to satisfy the following requirements:

• The association (X, Y ) 7→ Map(X, Y ) is required satisfy all the properties
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satisfied by sets of morphisms. In other words, there exists an associative

composition rule for mapping spaces, an identity map iX : ∆0 →Map(X,X)

and the analogues of the left and right unit laws hold.

• For every pair of objects (X, Y ), we have a bijectionMap(X, Y )0 ∼= MorC(X, Y )

which is compatible with the composition rules.

Example A.13. A basic example is the category of simplicial sets. For simpli-

cial sets X and Y , we define the simplicial set Map(X, Y ) by Map(X, Y )n =

Map(X ×∆n, Y ). Given a morphism f : [m]→ [n] in ∆, the corresponding map

Map(X, Y )n → Map(X, Y )m is induced by the map ∆(f) : ∆m → ∆n. Given

simplicial sets K and L, we define K ⊗ L := K × L and KL :=Map(L,K).

A simplicial model category is a model categoryM that is also equipped with

the structure of a simplicial category, along with bifunctors

M×∆opSet→M, (Z,K) 7→ Z ×K

and

(∆opSet)op ×M→M, (K,Z) 7→ ZK

satisfying the following axioms:

1. There are natural isomorphisms

Map(X ⊗K,Y ) ∼= Map(K,Map(X, Y )) ∼= Map(X, Y K).

Note that the mapping space in the center is from the simplicial category

structure on the category of simplicial sets while the mapping spaces on the

left and right are from the simplicial category structure onM.

2. Given a cofibration i : A→ B and a fibration p : X → Y inM, the map of

simplicial sets

Map(B,X)→Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration. It is a trivial fibration if either i or p is a weak equivalence.
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The second condition above can viewed as an enhanced version of the lifting axiom

in the definition of a model category (condition (4) in Definition A.1). Indeed, it

can be interpreted to mean that in a diagram of the form

A //

i
��

X

p
��

B // Y

where i is a cofibration, p is a fibration and at least one of i or p is a weak

equivalence, a lifting morphism B → Y not only exists but is also unique up to

homotopy equivalence (see [14, Prop. 9.6.1]).

We note a consequence of the second condition and the adjointness relation in

the first condition.

Lemma A.14 ((see [14, Proposition 9.3.8])). If j : L → K is an inclusion (i.e.

cofibration) of simplicial sets and p : X → Y is a fibration in M, then the mor-

phism XK → XL ×Y L Y K is a fibration in M. It is a trivial fibration if either j

or p is a weak equivalence.

A.4 Simplicial sheaves

Let T be a Grothendieck site and let Shv(T ) denote the category of sheaves of sets

on T . A simplicial sheaf on T is a sheaf taking values in the category of simplicial

sets. It is easy to see that such a sheaf may also be viewed as a simplicial object

in the category Shv(T ). Thus, we will denote the category of simplicial sheaves

by ∆opShv(T ). We will describe a model structure on this category, called the

locally injective model structure.

Let X denote an object of ∆opShv(T ). Let π0(X ) denote the sheafification of

the presheaf U 7→ π0(X (U)). This is called the sheaf of (simplicially) connected

components of X .

Let V be any object of T and let x be any element of X (V ). Then, for any

positive integer i, let πi(X|V , x) denote the sheafification of the presheaf (U 7→
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V ) 7→ πi(X (U), x|U) on the site T/V .

We say that a morphism f : X → Y is a weak equivalence if the following two

conditions hold:

• The induced morphism π0(f) : π0(X )→ π0(Y) is an isomorphism.

• For any object V of T , any element x ∈ X (V ), and any integer i > 0,

the induced morphism πi(X|V , x)→ πi(Y , f(x)) is an isomorphism of group

sheaves on the site T/V .

If T is a site with enough points, it can be easily seen that f : X → Y is a weak

equivalence if and only if f induces a weak equivalence between the stalks of X

and Y at all points of T .

A morphism in ∆opShv(T ) is said to be a cofibration if it is a monomorphism.

A morphism is said to be a fibration if it has the right lifting property with

respect to all cofibrations that are also weak equivalences. It can be proved that

this defines a model structure on ∆opShv(T ). We refer to [16, Cor. 2.7] for the

proof.

In fact, ∆opShv(T ) has the structure of a simplicial model category. For any

simplicial set K, the sheaf associated to K will also be denoted by K. Then, for

any two simplicial sheaves X and Y , we define Map(X ,Y) to be the simplicial set

such that its set of n-simplicies is given by

Map(X ,Y)n :=Mor∆opShv(T )(X ×∆,Y).

If K is a simplicial set and X is a simplicial sheaf, K ⊗ X is just the product

K × X of the constant sheaf associated to K with X . The object XK is simply

Map(K,X ).

A.5 Left Bousfield localizations

LetM be a model category and let A be a class of morphisms inM. We would

like to modify the model structure onM in such a way that the morphisms in A
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also become weak equivalences. This is analogous to the notion of localization of

categories. However, depending on whether we require the “localization functor”

to be a left or right Quillen functor, we obtain two different notions of localization.

Given a model categoryM and a class of maps A, a left localization ofM with

respect to A is a model category L along with a left Quillen functor j :M→ L

such that the following properties hold:

(a) The left derived functor of j maps the images of the elements of A in Ho(M)

to isomorphisms in Ho(L).

(b) If ϕ :M→N is a left Quillen functor fromM into any other model category

N such that the left derived functor of ϕ maps the images of elements of A

in Ho(M) to isomorphisms in Ho(N ), then ϕ factors uniquely as ϕ = ϕ̃ ◦ j

where ϕ̃ is a left Quillen functor.

A right localization ofM with respect to Amay be defined in an analogous manner.

We focus on a specific kind of left localization, called the left Bousfield local-

ization. This notion and the related results that we quote below make sense in a

very general setting (see [14, Chapter 3]). However, we restrict ourselves to the

case of a simplicial model category since that is sufficient for our requirements.

Let M be a simplicial model category and let A be a class of morphisms in

M. Let C :M→M be a cofibrant approximation functor and let F :M→M

a fibrant approximation functor.

We say that an object Z is A-local if for any morphism f : U → V in

A, the morphism of simplicial sets Map(C(V ), F (Z)) → Map(C(U), F (Z)) is

a weak equivalence. This is equivalent to saying that the map MorHo(M)(V, Z)→

MorHo(M)(U,Z) is a bijection for any morphism f : U → V in A.

A morphism h : X → Y inM is said to be an A-local equivalence if for any A-

local object Z the morphism of simplicial setsMap(C(Y ), F (Z))→Map(C(X), F (Z))

is a weak equivalence. This is equivalent to saying that the mapMorHo(M)(Y, Z)→
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MorHo(M)(X,Z) is a bijection for any A-local object Z. It follows from the defi-

nition that the elements of A are all A-local equivalences.

A left Bousfield localization ofM with respect to A is a model category struc-

ture LAM on the underlying category of M such that the following conditions

hold:

(a) The weak equivalences in LAM are precisely the A-local equivalences.

(b) The cofibrations of LA(M) are precisely the cofibrations ofM.

(c) The fibrations of LA(M) are the morphisms which have the right lifting

property with respect to cofibrations that are A-local equivalences.

A left Bousfield localization ofM with respect to A, if it exists, is actually a left

localization ofM with respect to A (see [14, Prop. 3.3.18]).

If a left Bousfield localization LA(M) ofM with respect to A exists, then the

identity functor of the underlying category of M is a left Quillen functor from

the model category M to the model category LA(M). The right adjoint of this

functor, which is the identity functor itself, is a right Quillen functor from LA(M)

toM. It follows immediately from this that if an object X is fibrant in LA(M),

then it is an A-local object which is fibrant inM. The converse of this statement

requires a small technical condition.

A model categoryM is left proper if every pushout of a weak equivalence along

a cofibration is a weak equivalence.

Fact A.15. Let M be a left proper simplicial model category. Let A be a class

of morphisms inM such that the left Bousfield localization LA(M) exists. Then,

an object Z is fibrant in LA(M) model structure if and only if it is A-local and

fibrant inM (see [14, Prop. 3.4.1].

To prove the existence of a Bousfield localization requires us to impose certain

technical conditions on the model categoryM. Since we do not need the general



62 APPENDIX A. MODEL CATEGORIES

result for our purposes, we will not discuss this question. (See [14, Chapter 4] for

one such existence theorem.) We restrict ourselves to quoting the following:

Fact A.16 (see [24, Theorem 2.5, page 71]). Let T be a small Grothendieck site

and let A be a set of morphisms in ∆opShv(T ). Then the left Bousfield localization

of ∆opShv(T ) exists.



Appendix B

The Nisnevich topology

The Nisnevich topology is a Grothendieck topology for schemes. We review some

basic properties of this topology. The main reference for this material is [24].

B.1 Nisnevich coverings

Definition B.1. Let X be a scheme. A Nisnevich covering of X is a family of

étale morphisms {pi : Ui → X}i such that for any point x of X, there exists an

index j and a point u ∈ Uj such that pj(u) = x and the induced homomorphism

κ(x)→ κ(u) is an isomorphism of fields.

We now fix a base scheme S which is noetherian and of finite dimension. We

consider the category Sm/S of smooth schemes of finite type over S. It is easy to

check that Nisnevich coverings constitute a Grothendieck pretopology on Sm/S.

The corresponding Grothendieck topology is called the Nisnevich topology. This

topology is strictly finer than the Zariski topology and strictly coarser than the

étale topology.

Recall that for any scheme X over S, the presheaf hX(−) := MorSm/S(−, X)

represented by X is a sheaf for the étale topology. As the étale topology is finer

than the Nisnevich topology, it follows that hX is a Nisnevich sheaf. This gives us

a fully faithful embedding Sm/S → Shv(Sm/S), X 7→ hX .

63
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B.2 Points for the Nisnevich topology

Let X be a smooth scheme of finite type over S and let x be a point of X.

A Nisnevich neighbourhood of x in X is an étale morphism of pointed schemes

p : (U, u) → (X, x) such that the induced morphism κ(x) → κ(u) is a field iso-

morphism. If p : (U, u) → (X, x) and q : (V, v) → (X, x) are two Nisnevich

neighbourhoods of x in X, a morphism from p to q is defined to be a morphism

ϕ : (U, u)→ (V, v) of pointed schemes, such that p = q ◦ ϕ. The Nisnevich neigh-

bourhood of x in X form a cofiltered category. Given any Nisnevich sheaf F ,

we define Fx = lim−→F(U) where the direct limit is over all Nisnevich neighbour-

hoods (U, u)→ (X, x) of x in X. We call Fx as the stalk of F at x. The functor

Shv(Sm/S) → Set is a point of the topos Shv(Sm/S). This topos has enough

points.

The above construction of stalks is a special case of a more general definition,

which extends any presheaf on Sm/S to essentially smooth schemes. A scheme

over S is said to be essentially smooth if it is the inverse limit of a cofiltered system

of smooth schemes S-schemes with transition maps that are étale and affine. In

general, an essentially smooth S-scheme is not on object of Sm/S. However,

given a presheaf F on Sm/S, we define its value on an essentially smooth scheme

X = lim←−Xα (where (Xα)α is a cofiltered system of smooth S-schemes as described

above), we define F(X) := lim−→F(Xα).

Given a smooth scheme X over S and a point x of X, it is easy to see that

the inverse limit of all the Nisnevich neighbourhoods of x in X is an essentially

smooth scheme. In fact, as we see in Appendix C, it is precisely the henselian

local scheme SpecOhX,x. Thus, the ring OhX,x, which is the henselization of the

usual local ring OX,x, is the appropriate notion of the “local ring at a point” for

the Nisnevich topology.
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B.3 Nisnevich sheaves

An important property of the Nisnevich topology is that Nisnevich sheaves can be

described in terms of a special class of coverings.

Definition B.2. Let X be a scheme. An elementary Nisnevich cover of X is a

pair of morphisms (p1 : U → X, p2 : V → X) such that

(a) p1 is an open immersion,

(b) p2 is an étale morphism, and

(c) if Z = X\p1(U), the morphism V ×X Z → Z induced by p2 is an isomor-

phism.

It is clear that the pair of maps in an elementary Nisnevich cover actually do

constitute a Nisnevich covering of X. For an elementary Nisnevich cover of X as

above, the square

U ×X V //

��

V

p2
��

U p1
// X

is called an elementary distinguished square.

Fact B.3 (see [24, Prop. 1.4, page 96]). A presheaf F on Sm/S is a Nisnevich

sheaf if and only if for any elementary Nisnevich cover (p1 : U → X, p2 : V → X),

the square

F(X) //

��

F(U)

��
F(V ) // F(U ×X V )

is cartesian.

If F is a Nisnevich sheaf, the fact that the above square is cartesian follows

from the definition of a sheaf. The converse, however, is non-trivial.
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We will use the above fact to construct sections of Nisnevich sheaves. Suppose

F is a Nisnevich sheaf and (p1 : U → X, p2 : V → X) are a pair of morphisms

which constitute a Nisnevich covering of X. To construct a section of F over

X, we need to pick a section σ ∈ F(U) and a section τ ∈ F(V ) such that the

following three conditions hold:

(a) The images of σ under restriction along two projection morphisms F(U) ⇒

F(U ×X U) are the same.

(b) The images of τ under restriction along two projection morphisms F(V ) ⇒

F(V ×X V ) are the same.

(c) The image of σ under F(U)→ F(U ×X V ) is equal to the image of τ under

F(V )→ F(U ×X V ).

However, if (p1, p2) is an elementary Nisnevich cover as in Definition B.2, we are

only required to check (c). This makes it very easy to construct sections in such

situations.



Appendix C

Henselization

Given a variety X and a point x on X, a Zariski neighbourhood of x in X is an

open subset of X containing x. These neighbourhoods form a cofiltered system

(where the morphisms are just inclusions) and the inverse limit of this system is

the spectrum of the local ring OX,x. As we discussed in B.2, we can perform an

analogous construction using Nisnevich neighbourhoods of a point and thus obtain

the notion of an “infinitesimal neighbourhood of x at X”, which happens to be

the spectrum of the henselization of the local ring OX,x.

More generally, we can talk about the infinitesimal neighbourhood of a Z in

X, where Z is a closed subscheme of X. In the context of the Zariski topology,

this gives us the notion of Zariski pairs. In the context of the Nisnevich topology,

we have the corresponding notion of henselian pairs.

C.1 Henselian pairs

In this section, a pair will mean an ordered pair of the form (R, I) where R is a ring

and I is an ideal in R. A morphism of pairs (R, I) → (S, J) is a homomorphism

ϕ : R→ S such that ϕ(I) ⊂ J .

Given a pair (R, I), an étale R-algebra R → S is said to be a Nisnevich

neighbourhood of (R, I) if R/I → S/IS is an isomorphism. (This is called as

67
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an étale neighbourhood of (R, I) in [27].) The category of such R-algebras is a a

filtered subcategory of the category of all R-algebras. Let Rh denote the direct

limit of the Nisnevich neighbourhoods of (R, I) (computed in the category of all

R-algebras). We say that Rh is the henselization of R at I. If Ih denote the ideal

IRh, we will also say that (Rh, Ih) is the henselization of (R, I).

We say that a pair (R, I) is a henselian pair if the canonical morphism (R, I)→

(Rh, Ih) is an isomorphism of pairs. It can be proved that henselization is a functor

from the category of all pairs into the full subcategory of henselian pairs. It is the

left adjoint of the inclusion functor from the category of henselian pairs into the

category of pairs ([29, Lemma 15.12.1]). In particular, for a fixed pair (R, I), the

morphism (R, I) → (Rh, Ih) is an initial object in the category of all morphisms

(R, I)→ (S, J) from (R, I) into a henselian pair (S, J).

For a pair (R, I), let R̂ denote the I-adic completion of R and let Î denote

the ideal IR̂. Then the pair (R̂, Î) is henselian. Thus, the canonical morphism

(R, I)→ (R̂, Î) factors as (R, I)→ (Rh, Ih)→ (R̂, Î).

Fact C.1. The canonical morphism (R, I) → (Rh, Ih) induces an isomorphism

R̂ → R̂h (see [29, Lemma 15.12.2]). Here R̂h is the I-adic (or equivalently Ih-

adic) completion of Rh.

A little more can be said in the noetherian case:

Fact C.2 (see [29, 15.12.4]). Let (R, I) be a pair such that R is noetherian. Then

if Rh is the henselization of R at I, the canonical homomorphism R → Rh is a

flat extension. Also, Rh is noetherian and Rh → R̂ is a faithfully flat extension.

If R is a local ring with maximal ideal m, the henselization of R at m will be

called as the henselization of R. If the pair (R,m) is a henselian pair, we say that

R is a henselian local ring. In this special case, Fact C.3 implies the following:

Fact C.3 (See [12, Theorem 18.5.11, (c)]). Let U = SpecR where R is a henselian

local ring. Let u be the closed point of U . Let f : V → U be a finite morphism.
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Then, V is the disjoint union of the schemes SpecOV,v where v ranges over all

the points of f−1(u).

C.2 Henselian power series

Let R be a commutative ring and let R[t] denote the polynomial ring in one

variable with coefficients in R. Then, the henselization of R[t] at the ideal ⟨t⟩ will

be called as the ring of henselian power series and will be denoted by R{t}.

First, let us take R to be a noetherian ring. Then, Fact C.2 implies that

R{t} injects into R[[t]] and we will identify R{t} with its image in R[[t]]. Since

R{t} → R[[t]] is faithfully flat, it is easy to see that an element f ∈ R{t} is a unit

if and only if it is a unit in R[[t]], i.e. if and only if its image under the quotient

map R[[t]]→ R[[t]]/⟨t⟩ ∼= R is a unit in R.

The results stated in the previous paragraph continue to hold even when R is

not noetherian. Indeed, the functor R → R{t} commutes with filtered colimits.

So one can express R as a filtered colimit of its finitely generated Z-algebras and

generalize the above statements to the non-noetherian setting. ( See [9, Subsection

2.1.2].)

If (R,m) is a local ring, a polynomial f(t) ∈ R[t] is said to be a Weierstrass

polynomial if it is of the form f(t) = td+ad−1t
d−1+ . . .+a0 where ai ∈ m for all i.

Fact C.4 ([9, Proposition 3.1.2]). Let (R,m) be a henselian local ring. Let

f ∈ R{t}\mR{t}. Then f can be uniquely factored as f = P · u where P is a

Weierstrass polynomial and u is a unit in R{t}. Also, the natural homomorphism

R[t]/⟨P ⟩ → R{t}/⟨f⟩ is an isomorphism.

We will require the following easy consequence of this result.

Lemma C.5. Let R be a henselian local ring with maximal ideal m. Let I be a

proper ideal of R[t] such that the following conditions hold:

1. The homomorphism R→ R[t]/I is a finite extension.
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2. The only prime ideal of R[t] containing I and mR[t] is ⟨m, t⟩.

Then, the homomorphism R[t]/I → R{t}/IR{t} is an isomorphism.

Proof. Let Z = SpecR[t]/I, which we view as a closed subscheme of SpecR[t]. Let

x0 be the closed point of SpecR and let y0 be the point of SpecR[t] corresponding

to the ideal ⟨m, t⟩.

Let π : Z → SpecR be the morphism corresponding to the R-algebra homo-

morphism R→ R[t]/I. According to condition (1), π is a finite morphism. Thus,

if z ∈ Z is any point, there exists a point z0 in its closure such that π(z0) = x0.

By (2), the closed subscheme Z and the fibre π−1(x0) have only the point y0 in

common. Thus, we see that every point of Z lies in the closure of y0.

By Fact C.3, we see that Z is isomorphic to SpecOZ,y0 . Thus, we see that if

S = R[t]⟨m,t⟩, then the homomorphism R[t]/I → S/IS is an isomorphism.

The ring R{t} is a local ring with maximal ideal ⟨m, t⟩. Thus, the canonical ho-

momorphism R[t]→ R{t} induces a local homomorphism S → R{t}. This homo-

morphism is flat, and since it is a local homomorphism, it is faithfully flat. Thus,

as IS ̸⊂ mS, we see that IR{t} ̸⊂ mR{t}. Let f be an element of IR{t}\mR{t}.

Then, by Fact C.4 f = u · p where u is a unit in R{t} and p is a Weierstrass

polynomial. Since S → R{t} is a faithfully flat extension, IS = S ∩ IR{t}. Thus,

p ∈ IS.

By Fact C.4, the ring homomorphism R[t]/pR[t]→ R{t}/pR{t} is an isomor-

phism. Thus, it follows that the homomorphism S/pS → R{t}/pR{t} is surjective.

It is also injective since it is a faithfully flat extension. Thus, it is an isomorphism.

As pS ⊂ IS and pR{t} ⊂ IR{t}, it follows that S/IS → R{t}/IR{t} is an

isomorphism. This completes the proof.

C.3 The approximation property

Henselization and completion are two different notions of an “infinitesimal neigh-

bourhood” of a closed subscheme. “Approximation theorems” allow us to solve
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problems in the completion of a ring, and then use it to obtain a solution in the

henselization.

A noetherian local ring (R,m) is said to be an approximation ring if for any

finite system of polynomial equations with coefficients in R, the set of solutions

in R is dense, with respect to the m-adic topology, in the set of solutions in the

m-adic completion R̂.

We note the following two results of Popescu.

Fact C.6 (See [26, Theorem 1.3]). Excellent henselian local rings are approxima-

tion rings.

Fact C.7 (See [[26, Corollary 3.5]). Let (R,m) be an approximation ring. Then

R{t} is an approximation ring.

In order to apply these results to the henselizations of local rings at points of

varieties, we recall the following:

Fact C.8 (See [12, Corollary 18.7.6]). Let k be a field. Let X be a variety over k

and let x be a point of X. Then, the ring OhX,x is an excellent ring.
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[9] A. Bouthier and K. Česnavičius: Torsors on loop groups and the Hitchin
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des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci.

Publ. Math. No. 32 (1967) 33, 68, 71

[13] M. Greenberg: Schemata over local rings, Ann. Math. 73 (1961), 624–648

32

[14] P. S. Hirschhorn, Model categories and their localizations, Math. Surveys

Monogr., 99, American Mathematical Society, Providence, RI, 2003. 20,

47, 56, 58, 60, 61, 62

[15] M. Hovey, Model categories, Math. Surveys Monogr., 63 American Math-

ematical Society, Providence, RI, 1999. 47, 50, 51, 53, 56

[16] J.F. Jardine. Simplicial presheaves, J. Pure Appl. Algebra 47 (1987),

35-87. 59

[17] B. Kahn, R. Sujatha: Birational geometry and localisation of categories.

With appendices by Jean-Louis Colliot-Thélène and Ofer Gabber, Doc.

Math. 2015, Extra vol.: Alexander S. Merkurjev’s sixtieth birthday, 277–

334. 6



BIBLIOGRAPHY 75

[18] G. Lachaud, R. Rolland: On the number of points of algebraic sets over

finite fields, Journal of Pure and Applied Algebra, Volume 219, Issue 11,

November 2015, Pages 5117-5136.
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