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Abstract

by Lakshmi Bhai N V

Understanding the mechanism of polarization transfer in NMR spectroscopy is an

active area of research both from an experimental as well as theoretical perspective.

In this regard, an analytic theory based on the reduced density matrix formalism is

proposed to develop models for quantifying the polarization transfer among spins

in the solid-state. We believe that the analytic results could be quite handful

in quantifying the polarization transfer in band-selective and relayed polarization

experiments in solid-state NMR.



Chapter 1

Introduction

The phenomenon of nuclear magnetic resonance (NMR) arises from a quantum

property called ’spin’. Being a quantum mechanical property, the spin of a nu-

cleus is characterized through a label, I (commonly referred to an spin quantum

number). In NMR spectroscopy, each nucleus with a given spin quantum number

is characterized through the presence of 2I+1 spin states and is detected through

spectroscopy by inducing transitions between the nuclear spin states. To induce

appreciable transitions between the nuclear spin states, intense static magnetic

fields are applied to lift the degeneracy of the nuclear spin states. Subsequently,

employing oscillating magnetic fields, transitions are induced between the nuclear

spin states through a resonance matching between the frequency of the oscillating

field and the frequency separation between the participating nuclear spin states

[1]. A schematic depiction of the resonance phenomenon in a spin I=1/2 system

is indicated in Figure 1.1

ω0 = γB0 (1.1)

In accord with other forms of spectroscopy, the sensitivity of NMR transitions

depends on the population difference between the nuclear spin states. From a

1
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Figure 1.1: Scematic depiction of the resonance phenomenonin NMR spec-
troscopy (spin I=1

2)

classical perspective, this in turn depends on the transition probability ampli-

tudes. In NMR spectroscopy, the transition probability amplitude depends on an

intrinsic property a particular nucleus and is commonly referred to as the ’nu-

clear gyromagnetic ratio’. The gyromagnetic ratio is inversely proportional to the

mass of the nucleus and plays an important role in the sensitivity of a given NMR

transition. In addition to the nuclear gyromagnetic ratio, the sensitivity in NMR

also depends on the strength of the external magnetic field. Nevertheless, the cost

factor involved in the design of high field magnets has been the main motivation

behind the development of alternate strategies for improving the sensitivity in

NMR spectroscopy. Besides these properties, the sensitivity also depends on the

natural abundance of a particular isotope. Although, isotopic enrichment seems

to be a viable alternative to compensate for the ”natural abundance” factor, the

dependence on the nuclear gyromagnetic ratio remains the major stumbling block.

In particular, NMR studies involving less abundant nuclei such as, 13C, 15N nuclei

remain severely hampered by their lower gyromagnetic ratios. To overcome this

inherent limitation, alternate strategies in the form of cross-polarization (CP), dy-

namic nuclear polarization (DNP) and other sensitivity enhancement techniques
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have emerged in magnetic resonance. The common strategy in such techniques

involves the transfer of polarization from nuclei with higher gyromagnetic ratio to

lesser sensitive nuclei. In the case of CP experiments, the abundant polarization

from protons is transferred to the less-abundant nuclei (such as 13C, 15N) through

double resonance experiments. In a similar vein, the polarization from electrons

is transferred to nuclear spins in DNP experiments. In addition to improving

the sensitivity, the above techniques have a profound effect on the spin-lattice re-

laxation time (lower the spin-lattice relaxation time) and have facilitated in the

implementation of multi-dimensional experiments involving both less abundant

and less sensitive nuclei.

In this thesis, we make an attempt to explain the mechanism of polarization trans-

fer in such experiments. In chapter-2, the general methodology, transformations

of spin Hamiltonians and conventions employed in the description of NMR ex-

periments is discussed using the density operator formalism. The mechanism of

polarization transfer in heteronuclear and homonuclear systems is discussed in

chapter-3 and chapter-4 respectively. Employing effective Hamiltonians and the

density operator formalism, analytic expressions depicting polarization transfer

polarization transfer in isolated spin pair is discussed through suitable model sys-

tems and Hamiltonians that resemble to the ones employed in NMR (both solids

and liquids). In chapter-5, the calculations presented in chapter-3 are extended to

multiple-spin systems is discussed along with a brief note on the possible exten-

sions of the present work.



Chapter 2

Understanding Transformation in

NMR Through Density Operator

Formalism

In quantum mechanics, the state of a system at a given instant of time, t is

completely specified by a function Ψ(r, t), where r is representative of the spatial

degrees of the system. The function Ψ(r, t) is commonly referred to as the wave

function or state function and plays a central role in calculating the observable

associated with the system. Based on Borns interpretation, the wave function

represents the probability amplitude (or label) and the product Ψ(r, t) ∗ Ψ(r, t)

the probability density. The probability of locating a particle in a given region of

space, say volume element dτ is evaluated by multiplying the probability density

with the volume element, dτ . For operational convenience, the wave function is

normalized through the following condition,

∫ ∞
−∞

Ψ∗(r, t)Ψ(r, t)dτ = 1 (2.1)

In the Schrodinger formulation of Quantum Mechanics, the time-evolution of the

system is a given state psi(r,t) is calculated by evaluating a first order differential

4
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equation given below

i~
d

dt
Ψ(t) = HΨ(t) (2.2)

The formal solution to the above equation is represented below

Ψ(t) = e
−i
~ HtΨ(0) (2.3)

The constant of integration Ψ(0) is the state of the system at time t = 0 and e
−i
~ Ht

is called the Evolution operator

When the Hamiltonian is time dependent, (H is H(t)), in the Evolution oper-

ator has a complicated form as illustrated below

Ψ′(t) = e
−i
~

∫ t
0 H
′
1(t)dt′Ψ(0) (2.4)

2.1 Interaction Frame Transformation

In NMR spectroscopy, the evolution of a system is governed by both the exter-

nal and internal Hamiltonians. The external interactions mainly result from the

interaction between the nuclear spin magnetic moment and the magnetic fields (in-

clusive of static and oscillating magnetic fields). These interactions are depicted

through the Zeeman and radio frequency (RF) pulse Hamiltonians, respectively.

The internal interactions are represented through the chemical shift, scalar and

dipolar interactions. A detailed description of these interactions is discussed in

standard literature and has consciously been omitted in this thesis to avoid rep-

etition. Since important molecular constraints are contained in the internal spin

interactions, a framework that presents the time-evolution of the system under

the internal Hamiltonian is desired. From a theoretical viewpoint, this is accom-

plished through a set of transformations, wherein the contributions from the dom-

inant interactions (say external Hamiltonians) are approximately removed from

the description.
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2.1.1 Wave Function Approach

Let us consider a system governed by the Hamiltonian

H = H0 +H1 (2.5)

In the above equation H0 represents the dominant Hamiltonian and H1 the weak

interaction. Substituting this Hamiltonian in time dependent Schrödinger equation

(Equation(2.2))

i~
d

dt
Ψ(t) = (H0 +H1)Ψ(t) (2.6)

Equation(2.6) gives time dependent Schrödinger equation in the lab frame. To

eliminate the role of the role of the dominant terms/interactions, the description

in the lab frame is abandoned in favour of a representation in the interaction frame.

The state of the system in the interaction frame, Ψ′(t), can be represented as

Ψ′(t) = e
i
~HtΨ(t) (2.7)

Differentiating the Equation(2.8) with respect to time and multiplying through

out with i~ gives the Schrödinger equation in the interaction frame

i~
d

dt
Ψ′(t) = −H0e

i
~H0tΨ′(t) + e

i
~H0ti~

d

dt
Ψ(t) (2.8)

Substituting Equation(2.7)

i~
d

dt
Ψ′(t) = −H0e

i
~H0tΨ′(t) + e

i
~H0t(H0 +H1)Ψ(t) (2.9)

and the time evolution in the interaction frame is derived and described below

i~
d

dt
Ψ′(t) = H ′1(t)Ψ′(t) (2.10)

where H ′1(t) denotes the modulated Hamiltonian, represented by

H ′1(t) = e
i
~H0tH1e

−i
~ H0t (2.11)



Chapter 2 Methodology and Phase Cycling 7

The Hamiltonian in the interaction frame,obtained by the unitary transformation

UHU † is time dependent. Subsequently the time evolution of the system in the

interaction frame is represented by

Ψ′(t) = e
−i
~

∫ t
0 H
′
1(t)dtΨ′(0) (2.12)

with Ψ′(0) = Ψ(0), i.e., the initial state of the system.

When the Hamiltonian H1 commutes with H0, the Hamiltonian ins reduced to

a much simpler form

H ′1(t) = H1 (2.13)

Then the state of the system at time, t, is

Ψ(t) = e
−i
~ H

′
1tΨ(0) (2.14)

As depicted in Equation(2.12), the Hamiltonian in the interaction frame is time-

dependent due to the frame transformation. To derive the solution, both numerical

and analytic methods have been employed in the past. In the numerical methods,

the total time duration is divided into shorter time intervals, wherein, the time-

dependent Hamiltonian is approximated by a time independent Hamiltonian.

For example consider the evolution of a system from 0 to t, with initial state Ψ(0).

The total time from 0 to t is divided in to N parts with duration ti, (i = 1, 2, ..., N),

such that the evolution of the system during these intervals is described by a time-

independent Hamiltonian,Hi. The evolution of the system at time t is obtained

by taking the product over all such durations.

ψ(t) = e
−i
~ HN tNψ(t− tN) (2.15)

ψ(t) = e
−i
~ HN tN e

−i
~ HN−1tN−1 ...e

−i
~ H1t1ψ(0) (2.16)
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When the Hamiltonians at different times commute, the above equation reduces

to a much simpler form.

ψ(t) = e
−i
~

∑N
i=1Hitiψ(0) (2.17)

As an alternate to numerical methods, in the analytic approach, the time-evolution

of the system is described through time-averaged or effective Hamiltonians. A

brief description of this method would be given in the following sections through

appropriate examples.

ψ(t) = e
−i
~ Heff tψ(0) (2.18)

2.1.2 Density Matrix Approach

When the state of system is not describable by a single wave function, then such

a system is said to exist in a mixed state. In such cases, the state of a system is

described by the density operator, ρ(t). Analogous to the description in the wave

function approach, the time-evolution of the system is described by the Quantum

Liouville (QL)theorem.

i~
d

dt
ρ(t) = [H, ρ(t)] (2.19)

where H = H0 +H1.

i~
d

dt
ρ(t) = [H0 +H1, ρ(t)] (2.20)

The formal solution to the above equation is expressed by the unitary transforma-

tion ρ(t) = U †ρ(0)U .The unitary operator U = e
i
~Ht is the evolution operator

ρ(t) = e
−i
~ Htρ(0)e

i
~Ht (2.21)

To describe the evolution of the system in terms of H1, let us define

ρ̃(t) = e
i
~H0tρ(t)e

−i
~ H0t (2.22)
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Substituting ρ̃(t) in the L.H.S. of Equation(2.19), ie., taking derivative with respect

to time and multiplying by i~,

i~
d

dt
ρ̃(t) = H0e

i
~H0ρ(t)e

−i
~ H0t + i~e

i
~H0t

d

dt
ρ(t)e

−i
~ H0t − e

i
~H0tρ(t)H0e

−i
~ H0t (2.23)

Substitute Equation(2.20) the QL equation in the interaction frame reduces to a

much simpler form

i~
d

dt
ρ̃(t) = [H ′1(t), ρ̃(t)] (2.24)

where

H ′1(t) = e
i
~H0tH1e

−i
~ H0t (2.25)

and the solution of differential equation in Equation(2.26), the density operator

at time in the interaction frame is

ρ̃(t) = e
−i
~

∫ t
0 H
′
1(t)dtρ̃(0)e

i
~
∫ t
0 H
′
1(t)dt (2.26)

but the initial state of the system in both the frames are equal,ρ̃(0) = ρ(0)

2.2 Application of Interaction frame Transfor-

mation in NMR

We have two kinds of external magnetic fields used in NMR experiments,Static

magnetic field, B0, along the Z axis which shifts degeneracy of the spin states and

create a net magnetization long the Z direction

−→
B 0 = B0ẑ (2.27)

and an Oscillating magnetic field,B1(t), along a direction perpendicular to the

applied static field. It enables excitation from one state to the other. So we are

interested in the effect of the RF pulse alone. The RF field below is along X axis

−→
B 1(t) = 2B1 cos(ωt)x̂ (2.28)
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Zeeman energy, E, of interaction between the magnetic field and spin equals to

dot product of the magnetic field,
−→
B , with the magnetic dipole moment, −→µ , of

the spin.

E = −−→µ .
−→
B (2.29)

The magnetic dipole moment of the spin is γ~ times the total spin angular mo-

mentum where γ is the Gyromagnetic ratio.

µ = γ~Î (2.30)

Since static magnetic field is along Z axis only Z component of the the dipole

moment contribute to the Zeeman interaction energy

Ez = −−→µ .
−→
B 0 (2.31)

Ez = −~γB0Iz (2.32)

Ez = −~ω0Iz = H0 (2.33)

where ω0 = γB0 is isotropic part of chemical shift.Likewise the interaction due to

Oscillating magnetic field is

Ex = −−→µ .
−→
B 1(t) (2.34)

Ex = −2~γB1 cos(ωt)Ix (2.35)

Ex = −2~ω1 cosωtIx = H1(t) (2.36)

where ω1 = γB1 is the amplitude of RF interaction. Thus the total Zeeman Hamil-

tonian is given by the sum of static and oscillating magnetic field interactions.

H(t) = −~ω0Iz − 2~ω1 cos(ωt)Ix (2.37)
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2.2.1 Effect of pulse on the system.

Consider the single pulse sequence depicted in FIGURE 2.1 during the time in-

terval 0 to tp (A strong intense RFV pulse of duration tp is applied along the

transverse plane).The static field applied to the system induces a net magnetisa-

tion along Z direction.

Figure 2.1: Schematic representation of a single pulse experiment with pulse
duration tp.

In addition to the static magnetic field , the system also experiences an oscillating

magnetic field during the time interval 0 to tp. The Hamiltonian of the system is

represented by

H(t) = −~ω0Iz − 2~ω1 cos(ωt)Ix (2.38)

To describe the effect of the RF pulse the Hamiltonian defined in the lab frame

is transformed in to an interaction frame defined by the unitary transformation

U = eiω0tIz .

H ′1(t) = −2~ω1 cos(ωt)e−iω0tIzIxe
iω0tIz (2.39)

H ′1(t) = −~ω1Ix[cos(ω0 + ω)t+ cos(ω0 − ω)t]− ~ω1Iy[sin(ω0 + ω)t+ sin(ω0 − ω)t]

(2.40)

On resonance, we have ω = ω0. Then,

H ′1(t) = −~ω1Ix − ~ω1Ix cos(2ω0t)− ~ω1Iy sin(2ω0t) (2.41)
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In the Zeeman interaction frame the RF Hamiltonian is explicitly time dependent

and the solution for the Time dependent Schrödinger equation (Equation(2.10))

is not analytically solvable. Therefore, to calculate the state of the system in the

interaction frame, we have to approximate the time dependent Hamiltonian to a

time independent effective Hamiltonian ( Heff ).

Invoking secular approximation, the high frequency oscillating terms in Equa-

tion(2.41)are neglected and the Hamiltonian is approximated to a time indepen-

dent effective Hamiltonian.

H ′1(t) ' −~ω1Ix = H ′1eff (2.42)

2.2.2 Wave Function Approach

The state of the system in the interaction frame is given by wave function,

Ψ′(tp) = eiω1tIxΨ(0) (2.43)

where Ψ(0) depicts the state at time zero, ie before applying the pulse.Accordingly,

the expectation value of any operator Op(t) is evaluated using the standard ex-

pression

〈Op(t)〉 =
〈Ψ(t)|Op|Ψ(t)〉
〈Ψ(t)|Ψ(t)〉

(2.44)

Employing this formula the expectation values of the spin angular momentum

along X,Y and Z directions are evaluated.

〈Iz〉 =
〈ψ′(0)e−iθIx|Iz|eiθIxψ′(0)〉

〈ψ′(0)|ψ′(0)〉
=
〈Ψ(0)| cos(ω1t)Iz − sin(ω1t)Iy|Ψ(0)〉

〈Ψ(0)|Ψ(0)〉
(2.45)

〈Ix〉 =
〈ψ′(tp)|Ix|ψ′(tp)〉
〈ψ′(tp)|ψ′(tp)〉

=
〈Ψ(0)|Ix|Ψ(0)〉
〈Ψ(0)|Ψ(0)〉

(2.46)

〈Iy〉 =
〈ψ′(0)e−iθIx|Iy|eiθIxψ′(0)〉

〈ψ′(0)|ψ′(0)〉
=
〈Ψ(0)|Iy cos(ω1t) + Ix sin(ω1t)|Ψ(0)〉

〈Ψ(0)|Ψ(0)〉
(2.47)

That is when pulse is applied along X axis, there is no change in the net mag-

netisation along X axis. and change in the magnetization happens in Z and Y
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directions

As illustrated above, the expectation value depends on the initial state of the

system.Below we illustrate this with few examples.

The wave function of the system is always a linear combination of the basis state

{|α〉, |β〉}, which is orthonormal.

Case 1: Ψ(0) = |α〉

Suppose the system is initially in the pure state Ψ(0) = |α〉. The components of

the magnetization in the longitudinal and transverse plane are represented by,

〈Iz〉 = 〈α| cos(ω1t)Iz − sin(ω1t)Iy|α〉 =
cos(ω1t)

2
(2.48)

〈Ix〉 = 〈α|Ix|α〉 = 0 (2.49)

〈Iy〉 = 〈α| cos(ω1t)Iy + sin(ω1t)Iz|α〉 =
sin(ω1t)

2
(2.50)

Thus the magnetization of the system along Z axis is modulated by cosine func-

tion, while along Y axis it is mog=dulated by the sin function.

At t = 0,before the pulse is applied, the total magnetization is along the Z axis

with no magnetization in the X or Y axes.

(2.51)

〈Iz〉 =
1

2
(2.52)

〈Ix〉 = 0 (2.53)

〈Iy〉 = 0 (2.54)
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If we have a 900 X pulse ω1tp = Π
2

after the pulse total magnetization flipped to

Y direction from Z by a positive rotation along the direction of the pulse

(2.55)

〈Iz〉 = 0 (2.56)

〈Ix〉 = 0 (2.57)

〈Iy〉 =
1

2
(2.58)

The net magnetisation along X direction is always zero through out the application

of pulse. After a 900 pulse along X axis there will be no net magnetisation along

Z direction.

Case 2: Ψ(0) = |β〉

Considering the system initially in the pure state Ψ(0) = |β〉. In a Similar fashion

magnetization has the following components of angular momentum

〈Iz〉 = 〈β| cos(ω1t)Iz − sin(ω1t)Iy|β〉 =
− cos(ω1t)

2
(2.59)

〈Ix〉 = 〈β|Ix|β〉 = 0 (2.60)

〈Iy〉 = 〈β| cos(ω1t)Iy + sin(ω1t)Iz|β〉 =
− sin(ω1t)

2
(2.61)

Before the pulse, t = 0, total magnetization is along -Z axis with no magnetization

in X or Y directions.

(2.62)

〈Iz〉 =
−1

2
(2.63)

〈Ix〉 = 0 (2.64)

〈Iy〉 = 0 (2.65)

Gradually it rotates clockwise along X axis, flipping total magnetization along -Y

axis after a 900 X pulse.

〈Iz〉 = 0 (2.66)
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〈Ix〉 = 0 (2.67)

〈Iy〉 =
−1

2
(2.68)

Case 3:Ψ(0) = Cα|α〉+ Cβ|β〉

Consider the system initially in a state which is linear combination of the basis

states Ψ(0) = Cα|α〉+ Cβ|β〉.Accordingly, the expectation values are evaluated

〈Iz〉 =
cos(ω1t)(C

∗
αCα − C∗βCβ)− i sin(ω1t)(C

∗
βCα − C∗αCβ)

2(C∗αCα + C∗βCβ)
(2.69)

〈Ix〉 =
C∗βCα + C∗αCβ

2(C∗αCα + C∗βCβ)
(2.70)

〈Iy〉 =
sin(ω1t)(C

∗
αCα − C∗βCβ) + i cos(ω1t)(C

∗
βCα − C∗αCβ)

2(C∗αCα + C∗βCβ)
(2.71)

Before the pulse,

〈Iz〉 =
1

2

C∗αCα − C∗βCβ
C∗αCα + C∗βCβ

(2.72)

〈Ix〉 =
1

2

C∗βCα + C∗αCβ

C∗αCα + C∗βCβ
(2.73)

〈Iy〉 =
i

2

C∗βCα − C∗αCβ
(C∗αCα + C∗βCβ

(2.74)

and after the 900 X pulse,

〈Iz〉 =
i

2

C∗βCα − C∗αCβ
(C∗αCα + C∗βCβ

(2.75)

〈Ix〉 =
1

2

C∗βCα + C∗αCβ

C∗αCα + C∗βCβ
(2.76)

〈Iy〉 =
1

2

C∗αCα − C∗βCβ
C∗αCα + C∗βCβ

(2.77)

The net magnetisation along X direction is always constant through out the appli-

cation of pulse. After a 900 pulse along X axis,implies after a pulse along X axis

for a time tp = Π
2ω1

the net magnetisation along Z flipped to Y direction and along

Y flipped to Z direction by a positive rotation along the direction of the pulse.
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2.2.3 Density Matrix Approach

When state of the system is described by density operator the time evolution of

a desity operator follows the QL theorem and the effective Hamiltonian in the

Zeeman interaction frame is described by

H ′1eff = −~ω1Ix (2.78)

The state of the system at t = 0 is represented by

ρ̃(0) = Iz (2.79)

the evolution under the effective Hamiltonian is described as

ρ̃(t) = eiω1tIxIze
−iω1tIx = cos(ω1t)Iz + sin(ω1t)Iy (2.80)

The expectation value of any operator,Op is obtained by the standard formula

〈Op(t)〉 = Trace(Op(t).ρ̃(t)) (2.81)

Accordingly the expectation value of angular momentum operators during pulse

are given by the following formula

〈I(t)〉 = Trace


1
4
cos(ω1t)

−i
4
sin(ω1t)

i
4
sin(ω1t)

−1
4

(ω1t)

 = 0 (2.82)

〈Ix(t)〉 = Trace


i
4
sin(ω1t)

−1
4
cos(ω1t)

1
4
cos(ω1t)

−i
4
sin(ω1t)

 = 0 (2.83)

〈Iy(t)〉 = Trace


1
4
sin(ω1t)

i
4
cos(ω1t)

i
4
cos(ω1t)

1
4
sin(ω1t)

 =
1

2
sin(ω1t) (2.84)
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〈Iz(t)〉 = Trace


1
4
cos(ω1t)

−i
4
sin(ω1t)

−i
4
sin(ω1t)

1
4
cos(ω1t)

 =
1

2
cos(ω1t) (2.85)

Thus at t = 0 the expectation values of only Z component of angular momentum

ws non-zero

〈Iz(0)〉 =
1

2
(2.86)

〈Ix(0)〉 = 0 (2.87)

〈Iy(0)〉 = 0 (2.88)

after a Π
2

X pulse the Z component became zero and the spin got flipped to Y

direction

〈Iz(tp)〉 = 0 (2.89)

〈Ix(tp)〉 = 0 (2.90)

〈Iy(tp)〉 =
1

2
(2.91)

After the pulse duration,tp, The system evolve under the static magnetic field and

Hamiltonian describing the evolution is H0.

ρ(tp + t) = e
i
~Hztρ(tp)e

−i
~ Hzt (2.92)

Transformation to the interaction frame depicts the state of the system after the

pulse as

ρ̃(tp + t) = e
i
~Hz(tp+t)ρ(tp + t)e

−i
~ Hz(tp+t)

= e
i
~Hz(tp+t)e

−i
~ Hztρ(tp)e

i
~Hzte

−i
~ Hz(tp+t)

= e
i
~Hztpρ(tp)e

−i
~ Hztp

ρ̃(tp + t) = ρ̃(tp) (2.93)
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State of the system does not change in the interaction frame because the in the

interaction frame H0 has no effect. But the actual signal gives an oscillating signal.

This contradiction raised because even though we are working in the interaction

frame the detection operators are all in the lab frame .In order to evaluate the

signal in the interaction frame we need to transform the detection operators also

to the interaction frame. Any operator Op(t) is transformed into the interaction

frame by

Õp = e
i
~Heff tOpe

−i
~ Heff t (2.94)

Thus in this frame the components of angular momentum are

Ĩz(t) = e−iω0tIzIze
iω0tIz = Iz (2.95)

Ĩy(t) = e−iω0tIzIye
iω0tIz = cosθ0Iy − sinθ0Ix (2.96)

Ĩx(t) = e−iω0tIzIxe
iω0tIz = cosθ0Ix + sinθ0Iy (2.97)

Accordingly the expectation value of angular momentum are evaluated by Equa-

tion(2.81)

〈Ĩz(t)〉 =
1

2
cos(ω1t) (2.98)

〈Ĩy(t)〉 =
1

2
cosθ0sin(ω1t) (2.99)

〈Ĩx(t)〉 =
1

2
sinθ0sin(ω1t) (2.100)

Subsequently at t = 0

〈Ĩz(0)〉 =
1

2
(2.101)

〈Ĩx(0)〉 = 0 (2.102)

〈Ĩy(0)〉 = 0 (2.103)

and after the Π
2

pulse

〈Ĩz(tp + t)〉 = 0 (2.104)

〈Ĩx(tp + t)〉 =
1

2
sin(ω0t) (2.105)
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〈Ĩy(tp + t)〉 =
1

2
cos(ω0t) (2.106)

After the pulse the magnetization along Z fliped to X-Y plane (transverse plane),

and it osillates in both X and Y direction.But the actual FID is damping. Con-

sidering exponential damping

ρ̃(t) = e
−i
~ H

′
1eff tρ̃(0)e

i
~H
′
1eff te

−t
T2 (2.107)

Where T2 is the damping constant.Corresponding angular momentum values also

will be having the dampping term.

〈Ĩz〉 =
1

2
cosθ1e

−t
T2 〈Ĩy〉 =

1

2
cosθ0sinθ1e

−t
T2 〈Ĩx〉 =

1

2
sinθ0sinθ1e

−t
T2 (2.108)

When the RF pulse applied have a phase φ 6= 0 The RF interaction Hamiltonian

is depicted as

HRF = −2~ω1cos(ωt− φ)Ix (2.109)

and in the interaction frame it is represented by the following formula by employing

secular approximation

H ′1 ' H ′1eff = −~ω1[Ixcosφ+ Iysinφ] (2.110)
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The expectation value of components of angular momentum for different φ value

are given in table below

φ = 0 φ =
π

2
φ = π φ =

3π

2

〈Ĩz〉 0 0 0 0

〈Ĩx〉
1

2
sin(ω0t)

−1

2
cos(ω0t)

−1

2
sin(ω0t)

1

2
cos(ω0t)

〈Ĩy〉
1

2
cos(ω0t)

1

2
sin(ω0t)

−1

2
cos(ω0t)

−1

2
sin(ω0t)

〈Ĩ+〉
i

2
e−iω0t

−1

2
e−iω0t

i

2
e−iω0t

1

2
e−iω0t

〈Ĩ+〉
i

2
eiω0t

−1

2
eiω0t

i

2
eiω0t

1

2
eiω0t

2.2.4 Effect of Pulse on the System in Rotating Frame

In the rotating frame,we have the state of the system at tp,

˜ρ(tp) = e(−iωref tIz)ρ(tp)e
(iωref tIz) (2.111)

i~
dρ̃(t)

dt
= [−~(ω0 − ωref )Iz, ρ̃(t)] + [H ′1, ρ̃(t)] (2.112)

(ω0 − ωref ) = ∆ω . ie, the chemical shift.

[i~
dρ̃

dt
(t) = [−~∆ωIz, ρ̃(t)] + [H ′1, ρ̃(t)] (2.113)

Where,

H ′1 = −2~ω1 cos(ωt−φ)e−iωref tIzIxe
iωref tIz = −2~ω1cos(ωt−φ)[cosθrefIx+sinθrefIy]

(2.114)

On resonance, ω = ωref =⇒ θ = θref by implementing secular approximation, we

omit the high frequency oscillating terms, Total hamiltonian in the new frame is,

H̃ = −~∆ωIz − ~ω1[Ixcosφ+ Iysinφ]
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During the pulse since ω1 >> ∆ω, the Hamiltonian can be approximated as if

only pulse is acting and there is no effect of B0 .ie,

H̃ ∼ −~ω1[Ixcosφ+ Iysinφ]

After pulse , the system evolve under ,

H̃ = −~∆ωIz

ie,in rotating lab frame the system evolve under −~ω1[cosφIx+sinφIy] during the

pulse and −~δωIz

An operator Â in rotating frame becomes,

Ã = e(−iωref tIz)Ae(iωref tIz)

We know ωref t = θref

Ĩz = Iz

Ĩx = cosθrefIx + sinθrefIy

Ĩy = cosθrefIy − sin θrefIx

State of the system just after pulse, ie, at time tp,

ρ̃(tp) = e
−i
~ H̃tρ̃(0)e

i
~ H̃t

ρ̃(0) = ρ(0)

H̃ = −~ω1[Ixcosφ+ Iy sin phi]

State of system at time tp + t,

ρ̃(tp + t) = e
−i
~ H̃tρ(tp)e

−i
~ H̃t

H̃ = −~∆ωIz
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Find the magnetization along different directions for different phase of pulse (φ)

.We use the identities,

Tr[Ii, Ij] =


1
2

i = j

0 i 6= j

Where i, j ∈ {x, y, z} Case 1: φ = 0

ρ̃(tp) = eiω1IxtIze
−iω1Ixt

= cosθ1Iz + sinθ1Iy

Where ω1tp = θ1

If we adjust ω1 such that,

θ1 =
π

2

ρ̃(tp) = Iy

Now after pulse, system evolve under H̃ = −~∆ωIz

ρ̃(tp + t) = e
−i
~ H̃tρ̃(tp)e

i
~ H̃t

= ei∆ωtIzIye
−i∆ωtIz

= cos∆θIy + sin∆θ1Ix

Where,∆θ = ∆ωt

Using the identities, we have

< Ĩz >= 0 < Ĩy > = < cosθrefIy − sinθrefIx >

=
1

2
[cos∆θcos(θref )− sin∆θsinθref ]

=
1

2
cos(ω0t)

< Ĩx > = < cosθrefIx + sinθrefIy >

=
1

2
[sin∆θcos(θref ) + cos∆θsinθref ]

=
1

2
sin(ω0t)
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Case 2:φ = π
2

H̃ = −~ω1Iy

ρ̃(tp) = eiω1tIyIze
−iω1tIy

= cosθ1Iz − sinθ1Ix

When θ1 = ω1tp = π
2
,

ρ̃(tp) = −Ix

ρ̃(tp + t) = ei∆ωtIz(−Ix)e−i∆ωtIz

= sin∆θIy − cos∆θIx

< Ĩz > = 0

< Ĩy > = < cosθrefIy − sinθrefIx >

=
1

2
[sin∆θcos(θref ) + cos∆θsinθref ]

=
1

2
sin(ω0t)

< Ĩx > = < cosθrefIx + sinθrefIy >

=
−1

2
[cos∆θcos(θref )− sin∆θsin(θref )]

=
−1

2
sin(ω0t)

Case 3:φ = π

ρ̃(tp) = e−iω1tpIxIze
iω1tpIx

= cosθ1Iz − sinθ1Iy
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when θ=ω1tp = π
2
,

ρ̃(tp) = −Iy

ρ̃(tp + t) = ei∆ωtIz(−Iy)e−i∆ωtIz

= −[cos ∆θIy + sin ∆θIx]

< Ĩz > = 0

< Ĩy > = < cosθrefIy − sinθrefIx >

=
−1

2
cos(ω0t)

< Ĩx > = < cosθrefIx + sinθrefIy >

=
−1

2
sin(ω0t)

Case 4:φ = 3π
2

ρ̃(tp) = e−iω1tpIyIze
iω1tpIy

= cosθ1Iz + sinθ1Ix

When θ1 = ω1tp = π
2

=⇒ ρ̃(tp) = Ix

ρ̃(tp + t) = ei∆ωtIz(Ix)e
−i∆ωtIz

= [cos∆θIx − sin∆θIy]

< Ĩz > = 0

< Ĩy > = < cosθrefIy − sinθrefIx >

=
−1

2
sin(ω0t)

< Ĩx > = < cosθrefIx + sinθrefIy >

=
1

2
cos(ω0t)
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The results in both the frames are the same.And can be summarised as, Magne-

tization along different direction after pluse,

φ = 0 φ =
π

2
φ = π φ =

3π

2

〈Ĩz〉 0 0 0 0

〈Ĩx〉
1

2
sin(ω0t)

−1

2
cos(ω0t)

−1

2
sin(ω0t)

1

2
cos(ω0t)

〈Ĩy〉
1

2
cos(ω0t)

1

2
sin(ω0t)

−1

2
cos(ω0t)

−1

2
sin(ω0t)

〈Ĩ+〉
i

2
e−iω0t

−i
2
e
iπ
2 e−iω0t

i

2
eiπe−iω0t

i

2
e
i3π
2 e−iω0t

〈Ĩ+〉
−i
2
eiω0t

−i
2
e
iπ
2 eiω0t

−i
2
eiπeiω0t

−i
2
e
i3π
2 eiω0t

The results got in the interaction frame and rotating lab frame are exactly same.

Also, in each case, the < I+ > and < I− > are complex conjugate of each

other.From the table, the results can be generalized as follows,

〈Ĩz〉 = 0

〈Ĩx〉 =
1

2
sin(ω0t− φ)

< Ĩy > =
1

2
cos(ω0t− φ)

< Ĩ+ > =
i

2
e−i(ω0t−φ)

< Ĩ− > =
−i
2
ei(ω0t−φ)

In order to get rid of the phase factor eiφ the detector phase has to be adjested to

e−iφ



Chapter 3

Polarization Transfer in Zero

Quantum (ZQ) and Double

Quantum (DQ) Experiments

3.1 Effective Hamiltonian For Two Spin Heteronu-

clear System

To describe the mechanism of polarization transfer in heteronuclear spin systems a

model system comprising of two spins I and S was employed in the present study.

The standard cross polarization(CP) experiment was employed as a case study.

The Hamiltonian for an isolated heteronuclear spin pair is represented by,

H(t) = HCS +HRF (t) +HD (3.1)

In the above equation Hz denotes the chemical shift (Zeeman) interaction

HCS = −ωIIz − ωSSz (3.2)

26
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Figure 3.1: Schematic representation of pulse sequence for heteronuclear po-
larization transfer experiment (Cross Polarization experiments). The system
consists of dipolar coupled heteronuclear spins I and S. Polarization is trans-

ferred from I spin to S spin

and HRF the interaction due to RF field.

HRF (t) = −2ω1I cos(ωrf,It)Iy − 2ω1S cos(ωrf,St)Sy (3.3)

The dipolar interaction between the spins is represented by

HD = 2ωdIzSz (3.4)

In equation (3.2) ωi (i = I, S) are the isotropic component of the chemical shield-

ing interaction.(The anisotropic component of the chemical shielding interaction

(CSA) is neglected). ω1I and ω1S in equation (3.3) are the amplitudes of the

RF field in the I channel and the S channel respectively. The frequencies of the

oscillating RF fields in I and S channels are respectively ωrf,I and ωrf,S. ωd in

equation(3.4) is the dipolar coupling constant.

To know polarization transfer we want to know the effect of the dipolar inter-

action in the system, which is a minor interaction. An on resonance Zeeman

interaction frame is introduced. The Hamiltonian is transformed by the unitary
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transformation H̃ = U †HU where U = e−i(−ωIIz−ωSSz)t

H̃ = −ω1IIx − ω1SSx + 2ωdIzSz (3.5)

In the Zeeman frame RF interaction which is the dominant interaction is along

X axis. Introducing a tilted coordinate system the RF part of the Hamiltonian is

quantized along the Z-direction to further simplify the calculation.This transfor-

mation H̃T = U †T H̃UT is performed using the unitary operator UT = ei
π
2
Iyei

π
2
Sy

H̃T = ω1IIz + ω1SSz + 2ωdIxSx (3.6)

In the tilted frame the heteronuclear dipolar interaction comprises of double quan-

tum(DQ) and zero quantum (ZQ) operators.

H̃T = ω1IIz + ω1SSz +
ωd
2

(I+S+ + I−S−) +
ωd
2

(I+S− + I−S+) (3.7)

However the effective dipolar coupling constants for DQ and ZQ are equal and it

is half of the coupling constant between the two spins.

Cd =
ωd
2

(3.8)

Next to Isolate different recoupling conditions the system is transformed to the

RF interaction frame using the unitary operator U = e−i(ω1IIz+ω1SSz)t Hamiltonian

in the interaction frame is given by

˜̃HT = Cd{I+S+e
−i(ω1I+ω1S)t+I−S−e

i(ω1I+ω1S)t+I+S−e
−i(ω1I−ω1S)t+I−S+e

i(ω1I−ω1S)t}

(3.9)

Thus recoupling occurs in DQ and ZQ terms.ZQ transfer occurs when the differ-

ence in RF field applied on both channels is Zero.

∆rf = ωI − ωS = 0 (3.10)

Heff = Cd(I+S− + I−S+) (3.11)
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Likewise DQ transfer happens when the RF in the two channels have π phase

difference. ∑
RF

= ωI + ωS = 0 (3.12)

Heff = Cd(I+S+ + I−S−) (3.13)

The ZQ and DQ recoupling conditions are called the Hartmann-Hahn Matching

conditions. These conditions are used in cross polarization experiments.

3.2 Effective Hamiltonian For Two Spin Homonu-

clear System

An analytical model of the polarization transfer in broadband dipolar experiments

can be used to measure homonuclear distances such as 13C-13C in a sample.The

Polarization from an abundant nuclei like 1H is transferred to the I spin by het-

eronuclear polarization transfer experiment say in this case a CP experiment (FIG-

URE 4.1). The homonuclear polarization transfer in HORROR experiment occurs

when ωrf = ωr
2

in the I channel between the two 900 Y pulse. This is the part of

the pulse that we are considering.

For this we consider dipolar coupled N spin homonuclear system {Si} (i = 1, 2, 3, ..., N

with a Hamiltonian, H(t), that is time dependent due to sample spinning.

H(t) = HCS +HCSA(t) +HD(t) +HRF (3.14)

The different parts of the Hamiltonian are the resonance offset,

HCS =
N∑
i=1

ΩiIiz (3.15)
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Figure 3.2: Schematic representation of pulse sequence for homonuclear po-
larization transfer experiment (HORROR experiments). The system consists of
dipolar coupled homonuclear spins Ii. Polarization is transferred from one spin
to other spin during the mixing time depicted between the two 900 Y pulses in

the I channel.

chemical shift anisotropic part

HCSA(t) =
N∑
i=1

ωmi e
imωrtIiz (3.16)

homonuclear dipolar coupling given by

HD(t) =
∑
i,j,i6=j

ωij{2IizIjz − (IixIjx + IiyIjy)}eimωrt (3.17)

and the RF interaction

HRF = −ωrf
N∑
i=1

Iix (3.18)

In equation(4.3) resonance offset, Ωi, (i = 1, 2, ..., N), are given by the difference

of the isotropic chemical shift and the Zeeman interaction.Resonance offset goes

to zero in an on-resonance Zeeman frame.

Ωi = 0 (3.19)

The effect of CSA is negligible compared to other parts of the Hamiltonian. In

usual broad band dipolar experiments the amplitudes of the RF fields, ωrf , are
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much higher than CSA

ωrf >> ωmi (3.20)

Therefore CSA is approximated to zero. ωij,i 6= j are the dipolar coupling constant

between spin i and j. The time dependent parts of the Hamiltonian oscillate at

ωrand 2ωr because m can have values from -2 to +2 but m 6= 0. Thus the

Hamiltonian in the on-resonance Zeeman Frame contains the dipolar and the RF

frame.

H(t) =
∑
i,j,i6=j

ωij{2IizIjz − (IixIjx + IiyIjy)}eimωrt − ωrf
N∑
i=1

Iix (3.21)

The Hamiltonian is transformed in to a 900 tilted frame along Y axis using the

the unitary transformation HT = U †HU where U = e
−i
π

2
∑N
i=1 Iiy

, so that we have

the dominant RF interaction is along Z axis.

HT (t) = ωrf

N∑
i=1

Iiz +
∑
i,j,i6=j

ωij{2IixIjx − (IizIjz + IiyIjy)}eimωrt (3.22)

Homonuclear dipolar interaction can be decomposed in to DQ and ZQ operators.

HT (t) = ωrf

N∑
i=1

Iiz +
∑
i,j,i6=j

ωij{
3

4
(I+
i I

+
j + I−i I

−
j ) +

1

4
(I+
i I
−
j + I−i I

+
j )− IizIjz}eimωrt

(3.23)

Transforming to the RF interaction frame will isolate the recoupling condition the

system and finds the time independent effective Hamiltonian. The transformation

H̃T = U †HTU is done by the unitary operator U = e−iωrf t
∑N
i=1 Iiz

H̃T =
∑
i,j,i6=j

ωij{
3

4
(I+
i I

+
j e
−i2ωrf t + I−i I

−
j e

i2ωrf t) +
1

4
(I+
i I
−
j + I−i I

+
j )− IizIjz}eimωrt

(3.24)

The Hamiltonian becomes time dependent when

2ωrf = mωr (3.25)

m = ±2,±1
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Recoupling in homonuclear spin systems occurs in DQ term with effective dipolar

coupling constant is three by forth of dipolar coupling between spin i and spin j .

Cij =
3

4
ωij (3.26)

Heff =
∑
i,j,i6=j

Cij(I
+
i I

+
j + I−i I

−
j ) (3.27)

Considering a two spin homonuclear spin system consisting of spins I1 and I2 The

time independent effective Hamiltonian is given by the DQ operator

Heff = Cd(I
+
1 I

+
j + I−i I

−
j ) (3.28)

with effective dipolar coupling Cd = 3
4
ωd where ωd is the dipolar coupling con-

stant.The Effective Hamiltonian in equation (4.15) is same as equation(3.13) that

is effective Hamiltonian for heteronuclear two spin DQ polarization transfer.

3.2.1 ZQ Polarization Transfer,(ω1I = ω1S)

ZQ recoupling occurs when the on both the channels RF are set to the Hartmann-

Hahn conditions ω1I = ω1S. As described above, in the case of ZQ experiments the

effective Hamiltonian during the dipolar mixing time period in the RF interaction

frame comprises of ZQ operator

Heff = Cd(I+S− + I−S+) (3.29)

The evolution of the system under the effective hamiltonian (section 3.1) follows

the QL Theorem. The state of the system at time, t, is given by

ρ(t) = e−iHeff tρ(0)eiHeff t (3.30)
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The density operator under the effective Hamiltonian is derived using the BCH

expansion

ρ(t) = ρ(0)+(−it)[Heff , ρ(0)]+
1

2!
(−it)2[Heff , [Heff , ρ(0)]]+

1

3!
(−it)3[Heff , [Heff , [Heff , ρ(0)]]]+...

(3.31)

The Static magnetic field(B0) makes the spin’s magnetic field align along the Z

axis ie., the direction of B0. The 900 Y pulse in the I channel tilts the I spin

magnetization to the X direction and in the tilted frame it is along Z direction.

The state of the system can be described by the density operator.In the tilted

frame the state of the system at time t = 0 is given by Iz operator.

ρ(0) = Iz (3.32)

Thus the initial (t = 0) polarization in the I spin is along Z direction and there is

no S spin polarization.

< Iz >= 1 (3.33)

< Sz >= 0 (3.34)

The system evolves under the ZQ Hamiltonian from the initial state ρ(0) = Izto

the final state which can be decomposed to a ZQ operator, Iz operator and Sz

operator

ρ(t) = Iz − i
sin(2Cdt)

2
(I−S+ − I+S−)− sin2(Cdt)(Iz − Sz) (3.35)

From the above density operator the expectation value of angular momentum in

different directions for the I spin and the S spin are estimated by trace of the

product of operator and the density operator

〈Iz〉 = Trace(Iz.ρ(t)) (3.36)

〈Sz〉 = Trace(Sz.ρ(t)) (3.37)
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Among the different parts of the density operator only the Iz and Sz operator

contributes to the expectation values.

〈Iz〉 = 1− sin2(Cdt) (3.38)

〈Sz〉 = sin2(Cdt) (3.39)

Figure 3.3: Asparagine Molecule

The Z magnetization of the I spin got reduced and there is an increase in that of

the S spin.The increase in the magnetization of the S spin is equal to the decrease

in the magnetization in the I spin. The magnetization in the I and the S spin

are oscillating with a frequency that is half the dipolar coupling constant. The

magnetization in the I spin reduced by sin2(Cdt). Initially the magnetization was

along Iz only. The polarization got transfered from the I spin to S spin.

As depicted in Equation(3.38) and Equation(3.39), the polarization transfer profile

resembles to the Rabi Oscillations. This result is confirmed through numerical

simulation depicted in FIGURE 3.4.

3.2.2 DQ Polarization Transfer,(ω1I = −ω1S)

The effective Hamiltonian is Heff = Cd(I+S+ + I−S−) when RF pulse in both

channel are according to the Hartmann-Hahn matching condition ω1I = −ω1S.
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Figure 3.4: numerical simulation by SIPMSON for ZQ polarization transfer in
heteronuclear spin system:The figure shows the polarization transfer from 15N
to 13C in Asparagine. The polarization in the 15N starts from the maximum and
there is no Z magnetization in the S spin. Gradually the S spin magnetization
increases along with a decrease in the I spin magnetization. The magnetization
in the I and S spin are oscillating with a frequency that is half the dipolar

coupling constant.

Initial state of the system, ρ(0) = Iz evolve under the DQ effective Hamiltonian

to a density operator which has a DQ, Iz and Sz parts.

ρ(t) = Iz −
i

2
sin(2Cdt)(I−S− − I+S+)− sin2(Cdt)(Iz + Sz) (3.40)

The angular momentum Z component terms in the above equation contributes to

the magnetization of both spins.

〈Iz〉 = 1− sin2(Cdt) (3.41)

〈Sz〉 = − sin2(Cdt) (3.42)

The I spin Magnetization begin with the maximum value whereas the S spin

started with zero magnetization. The magnetization gained by the S spin is equal

to the the change in magnetization in I spin. The gain in the S spin magnetization

is negative due π phase change. Thus the gain is due to DQ polarization transfer.
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Figure 3.5: numerical simulation by SIPMSON for DQ polarization transfer in
heteronuclear spin system:The figure shows the polarization transfer from 15N
to 13C in Asparagine. The polarization in the 15N starts from the maximum
and there is no Z magnetization in the S spin. Gradually the S spin magne-
tization increases in the negative direction along with a decrease in the I spin
magnetization. The magnetization in the I and S spin are oscillating with a

frequency that is half the dipolar coupling constant

Initially the magnetization was along Iz only. The polarization got transferred

from the I spin to S spin

3.2.3 Effect of RF interaction in Polarization Transfer

Under Hartmann-Hahn matching conditions the effective Hamiltonians does not

depend on RF amplitudes. To know the effect of RF amplitudes, the effective

Hamiltonian is chosen to be the Hamiltonian in the tilted frame (Equation(3.7)).

Heff = ω1IIz + ω1SSz + Cd(I+S+ + I−S−) + Cd(I+S− + I−S+) (3.43)

Hamiltonian before changing in to the RF interaction frame, depends the RF

amplitude. The Hamiltonian has both ZQ and DQ as well as RF terms. The

state of the system evolved under Heff has the terms representing DQ and ZQ
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recoupling

ρ(t) = Iz −
iCd

(4C2
d + (ω1I − ω1S)2)

1
2

(sin((4C2
d + (ω1I − ω1S)2)

1
2 t))(I−S+ − I+S−)

− iCd

(4C2
d + (ω1I + ω1S)2)

1
2

sin((4C2
d + (ω1I + ω1S)2)

1
2 t)(I−S− − I+S+)

+
2Cd(ω1I − ω1S)

(4C2
d + (ω1I − ω1S)2)

sin2 (4C2
d + (ω1I − ω1S)2)

1
2 t

2
(I+S− + I−S+)

+
2Cd(ω1I + ω1S)

(4C2
d + (ω1I + ω1S)2)

sin2 (4C2
d + (ω1I + ω1S)2)

1
2 t

2
(I+S+ + I−S−)

+
4C2

d

(4C2
d + (ω1I − ω1S)2)

sin2 (4C2
d + (ω1I − ω1S)2)

1
2 t

2
(Iz − Sz)

+
4C2

d

(4C2
d + (ω1I + ω1S)2)

sin2 (4C2
d + (ω1I + ω1S)2)

1
2 t

2
(Iz + Sz) (3.44)

The magnetization evolving under this Hamiltonian is given by the expectation

value of Szand Iz,

〈Iz〉 = 1− C2
d

C2
d + (ω1I−ω1S

2
)2

sin2

√
C2
d + (

ω1I − ω1S

2
)2t− C2

d

C2
d + (ω1I+ω1S

2
)2

sin2

√
C2
d + (

ω1I + ω1S

2
)2t

(3.45)

〈Sz〉 =
C2
d

C2
d + (ω1I−ω1S

2
)2

sin2

√
C2
d + (

ω1I − ω1S

2
)2t− C2

d

C2
d + (ω1I+ω1S

2
)2

sin2

√
C2
d + (

ω1I + ω1S

2
)2t

(3.46)



Chapter 4

Polarization Transfer in

Multi-spin Systems

The next stage in our study was to extend the calculations to a system comprising

of strongly coupled spins. In a strongly coupled spin system, polarization transfre

among spins takes place through a) band selective transfer b) Relay transfer c)

both band selective and relay transfer. Here in this chapter, we make a modest

attempt to describe the polyatomic transfer in amulti-spin system

4.1 Band Selective Polarization Transfer

In band selective experiments, polarization from a single spin (say I1) is trans-

ferred to a group of spins Ii,i = 1, 2, 3, ..., N through dipolar interaction. All

the spins are coupled to a a single spin, I1, and no other couplings are there.

Such interactions are quite common in both homonuclear and heteronuclear spin

systems and are frequently employed in spectral——— experiments.Depending

on the Experimental conditions both zero-quantum (ZQ) and double quantum

(DQ) band selective transfer of polarization is possible. A brief description of this

phenomenon is illustrated in the following section

38
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4.1.1 ZQ Experiments

ZQ polarization as mentioned already happens only in heteronuclear spin systems.

ZQ Band Selective polarization transfer happens when the RF amplitude in all

the spins are equal. The Hamiltonian for this system in the doubly rotating frame

is the sum of the ZQ operators for all spin with spin Ii.

Heff =
∑
i,j,i6=j

Cij(I
+
i I
−
j + I−i I

+
j ) (4.1)

the Hamiltonian in Equation(5.1) causes polarization transfer from spin I1 to other

spins.

In this selection polarization transfer in a three spin heteronuclear spin, I1, I2

and I3, is described. The Hamiltonian for this system is

Heff = C12(I+
1 I
−
2 + I−1 I

+
2 ) + C13(I+

1 I
−
3 + I−1 I

+
3 ) (4.2)

RF amplitudes of spin channels I1, I2 and I3 are equal, ω1I1 = ω1I2 = ω1I3 . the

initial state of the system is assumed to be

ρ(0) =
1

2
I1z (4.3)

Hence at t = 0 only I1 spin was polarized. The Z magnetization of I2 and I3 is

zero

〈I1z〉 = 1 (4.4)

〈I2z〉 = 0 (4.5)

〈I3z〉 = 0 (4.6)

Due to the evolution under effective Hamiltonian in Equation(5.2) the state of the

system at any time t is given by unitary transformation ρ(t) = U †ρ(0)U where the
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evolution operator U = e−iHeff t

ρ(t) =
1

2
I1z −

iC12

4(C2
12 + C2

13)
1
2

sin(2(C2
12 + C2

13)
1
2 t)(I−1 I

+
2 − I+

1 I
−
2 )

− iC13

4(C2
12 + C2

13)
1
2

sin(2(C2
12 + C2

13)
1
2 t)(I−1 I

+
3 − I+

1 I
−
3 )

− C2
12

2(C2
12 + C2

13)
sin2((C2

12 + C2
13)

1
2 t)(I1z − I2z)

− C2
13

2(C2
12 + C2

13)
sin2((C2

12 + C2
13)

1
2 t)(I1z − I3z)

− C12C13

2(C2
12 + C2

13)
sin2((C2

12 + C2
13)

1
2 t)

×



0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0



(4.7)

The polarization in different spins changes during the pulse. Polarization in spin I1

decreased by sin2((C2
12 +C2

13)
1
2 t) and that of spin I2 and I3 increased in proportion

to its coupling constant with I1.

〈I1z〉 = 1− sin2((C2
12 + C2

13)
1
2 t) (4.8)

〈I2z〉 =
C2

12

(C2
12 + C2

13)
sin2((C2

12 + C2
13)

1
2 t) (4.9)

〈I3z〉 =
C2

13

(C2
12 + C2

13)
sin2((C2

12 + C2
13)

1
2 t) (4.10)

Polarization in each spin is a sin2 function with frequency of oscillation given by

the square root of sum of squares of the dipolar coupling constant. The intensity of
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Figure 4.1: schematic representation of ZQ band selective polarization transfer
from asparagine 15N to 13Cα and 13Cβ

polarization transfer is directly proportional to the square of the dipolar coupling

and also it depends inversely sum squares of all the dipolar coupling constant. The

reduction in the polarization of I1 spin is sum of polarization transferred to both

the spins.

Polarization transfer in FIGURE 5.1 shows the ZQ band selective polarization

transfer from amine 15N to 13Cα and 13Cβ in Asparagine molecule FIGURE 3.2.

The dipolar constant for the 15N - 13Cα is almost four times the dipolar constant

for 15N - 13Cβ

. Therefore the transfer to 13Cα is 16 times the transfer to 13Cβ.

The polarization transfer to each spin is dependent on the transfer to other spin.

When one of the coupling constant is very high the polarization transfer to the

other spin reduces considerably. In the spin system I1, I2 and I3, if C12 >> C13 ,

C12 + C13
∼= C12 thus polarization is given by

〈I1z〉 = 1− sin2C12t (4.11)

〈I2z〉 = sin2C12t (4.12)
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〈I3z〉 =
C2

13

C2
12

sin2C12t (4.13)

When the magnitude of one of the dipolar coupling exceeds the other pair,polarization

transfer from the first spin pair is reduced (or truncated) due to the presence of the

stronger coupling between the second pair. This phenomenon is termed as Dipo-

lar Truncation and is substituted through both analytic theory and numerical

simulation.

Figure 4.2: schematic representation of ZQ dipolar truncation:a) band selec-
tive polarization transfer from asparagine 15N to13Cβ b) truncation of polar-

ization transfer to 13Cβ due to introduction of13Cα



Chapter 5 Polarization Transfer in Multi-spin Systems 43

FIGURE 5.2a shows polarization transfer from 15N to 13Cβ. The polarization

transfer obeys Equation(3.24) which has an intensity of 1. But when a more

stronger coupling is introduced say 13Cα the polarization transfer to 13Cβ reduced

to almost 1
17

.

Extending the above calculation to a model four spin system the effective Hamil-

tonian describing the polarization transfer is represented below

Heff = C12(I+
1 I
−
2 + I−1 I

+
2 ) + C13(I+

1 I
−
3 + I−1 I

+
3 ) + C14(I+

1 I
−
4 + I−1 I

+
4 ) (4.14)

Accordingly, the polarization transfer from spin I1 to the remaining spins are

described through the following equations

〈I1z〉 = 1− sin2((C2
12 + C2

13 + C2
14)

1
2 t) (4.15)

〈I2z〉 =
C2

12

(C2
12 + C2

13 + C2
14)

sin2((C2
12 + C2

13 + C2
14)

1
2 t) (4.16)

〈I3z〉 =
C2

13

(C2
12 + C2

13 + C2
14)

sin2((C2
12 + C2

13 + C2
14)

1
2 t) (4.17)

〈I4z〉 =
C2

14

(C2
12 + C2

13 + C2
14)

sin2((C2
12 + C2

13 + C2
14)

1
2 t) (4.18)

Based on the present study, the calculations to N -spin is described through the

following equation

Heff =
N∑
i=2

C1i(I
+
1 I
−
i + I−1 I

+
i ) (4.19)

ρ(0) =
1

2N−2
I1z (4.20)

The expectation value of angular momentum along different directions are given

by

〈I1z〉 = 1− sin2((
N∑
i=2

C2
1i)

1
2 t) (4.21)
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〈Iiz〉 =
C2

1i∑N
i=2C

2
1i

sin2((
N∑
i=2

C2
1i)

1
2 t) (4.22)

4.1.2 DQ Experiments

DQ polarization transfer happens in both heteronuclear as well as homonuclear

nuclear spin systems. The Hamiltonian for this system in the doubly rotating

frame is the sum of the DQ operators.

Heff =
N∑
i=2

Cij(I
+
i I

+
j + I−i I

−
j ) (4.23)

This Hamiltonian causes polarization transfer from I1 to all other spin. The RF

pulse amplitude in all the spins are negative of that in I1.The Hamiltonian for DQ

Band selective polarization transfer in a three spin heteronuclear spin,I1, I2 and

I3, is described as

Heff = C12(I+
1 I

+
2 + I−1 I

−
2 ) + C13(I+

1 I
+
3 + I−1 I

−
3 ) (4.24)

State of the system at t = 0 is given by Equation(5.3) and that during the pulse

is

ρ(t) =
1

2
I1z −

iC12

4(C2
12 + C2

13)
1
2

sin(2(C2
12 + C2

13)
1
2 t)(I−1 I

−
2 − I+

1 I
+
2 )

− iC13

4(C2
12 + C2

13)
1
2

sin(2(C2
12 + C2

13)
1
2 t)(I−1 I

−
3 − I+

1 I
+
3 )

− C2
12

2(C2
12 + C2

13)
sin2((C2

12 + C2
13)

1
2 t)(I1z + I2z)

− C2
13

2(C2
12 + C2

13)
sin2((C2

12 + C2
13)

1
2 t)(I1z + I3z)

− C12C13

2(C2
12 + C2

13)
sin2((C2

12 + C2
13)

1
2 t)
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×



0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0



(4.25)

Polarization in both the spins I2 and I3 increased from zero to an oscillating

modulated function but the there is a phase change of π, making the polarization

in these spins to be negative.

〈I1z〉 = 1− sin2((C2
12 + C2

13)
1
2 t) (4.26)

〈I2z〉 =
−C2

12

(C2
12 + C2

13)
sin2((C2

12 + C2
13)

1
2 t) (4.27)

〈I3z〉 =
−C2

13

(C2
12 + C2

13)
sin2((C2

12 + C2
13)

1
2 t) (4.28)

Similar to the case in ZQ, polarization in each spin is a modulated function with

frequency of oscillation given by the square root of sum of squares of the dipolar

coupling constant. The intensity of polarization transfer is directly proportional

to the square of the dipolar coupling and also it depends inversely sum squares of

all the dipolar coupling constant. The reduction in the polarization of I1 spin is

sum of polarization transferred to both the spins.

Dependence of polarization transfer on other couplings involved in the system is

there in the DQ band selective transfer also like in case of ZQ. As the dipolar

constant between I1 and I2 is much greater than that between I1 and I3, the

transfer approaches the transfer in a two spin system

〈I1z〉 = 1− sin2C12t (4.29)
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Figure 4.3: schematic representation of DQ band selective polarization trans-
fer from asparagine 15N to 13Cα and 13Cβ

〈I2z〉 = − sin2C12t (4.30)

〈I3z〉 =
−C2

13

C2
12

sin2C12t (4.31)

As the coupling to second spin increases the transfer to third spin goes to zero.

Due higher dipolar constant between 15N and 13Cα the initial transfer to 13Cα

(FIGURE5.4a)reduces to zero (FIGURE5.4b).

Extending the above to four spin system the time independent effective Hamilto-

nian is

Heff = C12(I+
1 I

+
2 + I−1 I

−
2 ) + C13(I+

1 I
+
3 + I−1 I

−
3 ) + C14(I+

1 I
+
4 + I−1 I

−
4 ) (4.32)

The polarization transfer from I1 to remaining spins is described by

〈I1z〉 = 1− sin2((C2
12 + C2

13 + C2
14)

1
2 t) (4.33)

〈I2z〉 =
−C2

12

(C2
12 + C2

13 + C2
14)

sin2((C2
12 + C2

13 + C2
14)

1
2 t) (4.34)
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Figure 4.4: schematic representation of DQ dipolar truncation:a) band selec-
tive polarization transfer from asparagine 15N to13Cβ b) truncation of polar-

ization transfer to 13Cβ due to introduction of13Cα

〈I3z〉 =
−C2

13

(C2
12 + C2

13 + C2
14)

sin2((C2
12 + C2

13 + C2
14)

1
2 t) (4.35)

〈I4z〉 =
−C2

14

(C2
12 + C2

13 + C2
14)

sin2((C2
12 + C2

13 + C2
14)

1
2 t) (4.36)

Based on the study in Section(5.1.2) the expressions for N spin systems are

Heff =
N∑
i=2

C1i(I
+
1 I

+
i + I−1 I

−
i ) (4.37)
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ρ(0) =
1

2N−2
I1z (4.38)

The expectation value of angular momentum along different directions are given

by

〈I1z〉 = 1− sin2((
N∑
i=2

C2
1i)

1
2 t) (4.39)

〈Iiz〉 =
−C2

1i∑N
i=2C

2
1i

sin2((
N∑
i=2

C2
1i)

1
2 t) (4.40)

4.2 Relayed Polarization Transfer

In systems where both stronger and weaker coupling exist,direct transfer of po-

larization between spins that are spatially apart is less efficient. In such cases,

polarization transfer takes place through intermediate couplings. Such transfer of

polarization is termed as Relayed Transfer of polarization in NMR. Employing a

model three spin system, an analytic description of relayed transfer is presented

in the following sections

4.2.1 ZQ Experiments

Let us consider a model three spin system, where the coupling between I1 and

I3 are weak and ignoed in the present discussion. In an appropriate interaction

frame, the effective Hamiltonian describing such a system is represented below

Heff = C12(I+
1 I
−
2 + I−1 I

+
2 ) + C13(I+

2 I
−
3 + I−2 I

+
3 ) (4.41)

ρ(0) =
1

2
I1z (4.42)
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ρ(t) =
1

2
I1z + { −iC12

4(C2
12 + C2

23)
1
2

sin(2(C2
12 + C2

23)
1
2 t)
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23
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23)
3
2
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23)
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23)
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23)
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23)
1
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(C2
12 + C2

23)
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2
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2 I
−
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23)
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23)
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12C
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23
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23)
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+
C2

12C
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23
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12 + C2

23)2
sin4(

(C2
12 + C2

23)
1
2

2
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0 0 0 0 0 0 0 0



(4.43)

Expectation values of angular momentum in different directions
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2
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(4.44)

〈I2z〉 =
C2

12

2(C2
12 + C2

23)
sin2((C2

12 + C2
23)

1
2 t) (4.45)

〈I3z〉 =
C2

12C
2
23

2(C2
12 + C2

23)2
sin4(

(C2
12 + C2

23)
1
2

2
t) (4.46)

Although, no direct coupling between spin I1 and I3 exist, the expectation value

or polarization transfer to spin I3 is non-zero. The simulation validate the above

analytic expressions. Hence, in a strongly coupled spin network, indirect transferof

polarization is always possible.
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Figure 4.5: Schematic depiction of ZQ Relay polarization transfer from 13Cα

to 13Cβthough 15N in Asparagine molecule

4.2.2 DQ Experiments

Analogous to the description presented in the ZQ experiments,a model Hamil-

tonian comprising of two dipolar coupling constants is employed for describing

relayed transfer of polarization

Heff = C12(I+
1 I

+
2 + I−1 I

−
2 ) + C13(I+

2 I
+
3 + I−2 I

−
3 ) (4.47)

ρ(0) =
1

2
I1z (4.48)



Chapter 5 Polarization Transfer in Multi-spin Systems 51
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(4.49)

Expectation values of angular momentum in different directions
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(4.50)

〈I2z〉 =
−C2

12

2(C2
12 + C2

23)
sin2((C2

12 + C2
23)

1
2 t) (4.51)

〈I3z〉 =
C2

12C
2
23

2(C2
12 + C2

23)2
sin4(

(C2
12 + C2

23)
1
2

2
t) (4.52)

In contrast to Polarization transfer in ZQ Experiments the sign of polarization

transfer differ in DQ experiment. In DQ experiments involving direct transfer of

polarization the polarization transfer profile has a negative sign. By contrast, in
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Figure 4.6: Schematic depiction of DQ Relay polarization transfer from 13Cα

to 13Cβthough 15N in Asparagine molecule

cases of indirect transfer, the polarization transfer has positive sign. This pre-

diction emerging from the analytic theory is well substituted in the numerical

simulations depicted.

4.3 Conclusion and Perspectives

In summary, the model Hamiltonians employed for describing band selective and

relayed transfer presents an attractive framework for quantifying polarization

transfer in multi-spin systems. The model Hamiltonians employed in the the-

sis resembles to those employed in Solid state NMR experiments and the analytic

expressions presented could be employed for quantifying distance measurement ex-

periments in SSNMR. The description presented in this thesis could be extended

for quantifying polarization transfer in strongly coupled network of spins in solids
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