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Abstract

Effective potentials are calculated for different values of J, the rotational angular

momentum quantum number, from accurate potential energy curves of the X 2Σ+
u state

of the molecular hydrogen anion (H–
2 ). The bound states of these effective potentials

are determined numerically. Autodetachment in H–
2 is studied from a Franck-Condon

perspective. The states with maximum probability of transition from H–
2 to H2 are

identified. The photodetachment cross section of H–
2 is calculated as a function of

photon energy.
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Chapter 1

Introduction

This work is focused on studying autodetachment in H–
2 from a Franck-Condon point

of view. The hydrogen molecular anion H–
2 is perhaps the smallest molecular anion.

This chapter reflects on the available literature on H–
2 and the relevance of this prob-

lem. Chapter 2 focuses on the theoretical aspects of the problem and methods. The

results are discussed in Chapter 3.

1.1 The hydrogen molecular anion H–
2

The hydrogen molecular anion (H–
2 ) is perhaps the simplest molecular anion with two

nuclei and three electrons. It is thought to play an important role in the formation

of molecular hydrogen in the universe. In the associative detachment (AD) of H

and H– , H–
2 acts as an intermediate : H– + H −−→ H–

2 −−→ H2 + e– . H–
2 was

encountered for the first time experimentally by Khovestenko and Dukel’skii using

mass spectrometry1 in 1958 and later by Hurley2 in 1974. Aberth et al. confirmed

the isotopes detecting HD– and D–
2 in 1975. Experiments and theories have proven

to be inadequate in explaining the energy dependence of rate coefficients in AD.3,4

Rather than being an unstable transient species, the existence of metastable states of

H–
2 manifests its stability towards autodetachment and spontaneous dissociation.5 In

recent studies, these states are found to be stable in higher angular momentum. H–
2
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and D–
2 were proved to be existent experimentally by Golser et al.6 Lifetimes of the

three isotopologs of the molecular hydrogen anion were measured using electrostatic

ion-beam trap by Heber et al.7 and the long lived states of H–
2 were investigated

within the non-local resonance model by Č́ıžek et al.8

The electronic structure calculations of the potential energy curve (PEC) of the

excited states of H–
2 calculated using the MRCI method results in variational collapse.9

This results in a wavefunction comprising a neutral molecule and a free electron

(NMFE) state. In this direction, Srivastava et al. calculated accurate PEC for the

X2Σ+
u state of H–

2 .10 They concluded that, at a Full CI level, the correlation-consistent

basis sets are the best possible to obtain the complete basis set (CBS) limit for this

system. Diffuse basis functions like the augmented basis sets result in variational

collapse. They fitted an analytical function to the accurate CBS potential, calculated

the vibrational bound states and compared them with those of the ground electronic

state of H2.

1.2 Open-shell species

Molecules are formed by attraction between atoms forming a chemical bond. A chem-

ical bond is formed from electronic interaction (ionic bond) or by sharing of electrons

(covalent bond). Homolytic cleavage of covalent bonds leads to the formation of rad-

icals. Open-shell species are atoms or molecules with one or more unpaired electrons.

Open-shell species are transient intermediates in many chemical reactions. It is

essential to understand the electronic structure of open-shell species to discern mech-

anisms of reactions. These reactions are observed in processes like photosynthesis,

vision, drug activity, aging process, enzyme catalysis, combustion, atmospheric chem-

istry, astrochemistry, etc.

Extensive studies of organic, inorganic, metal-organic, and cluster anions have

bolstered the field of anion spectroscopy. Photodetachment experiments help in de-

termining structures of unstable and excited states, in ultrafast dynamics, anion re-

activity and intermolecular interactions.
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Photoelectron spectroscopy can provide an insight into the electronic structure

of molecules and ions, and their interaction with light. A measurement of kinetic

energy of ejected electrons gives information on the electronic and vibrational levels

of ionized molecules, which are dependent on the potential energy surfaces (PESs) of

species involved. Information about initial and final state electronic wave functions

can be determined by measuring the angular distribution of photoelectrons.
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Chapter 2

Methods

This chapter provides an introduction to basic concepts and theory. The one-dimensional

Schrödinger equation, Born-Oppenheimer approximation, Franck-Condon Factors,

Equation-of-Motion Coupled Cluster Formalism, Dyson orbitals and Scattering cross-

section are discussed.

2.1 The one-dimensional Schrödinger equation

The nuclear motion of diatomic molecules is described within Born-Oppenheimer ap-

proximation (discussed in section 2.2). The radial one-dimensional Schrödinger equa-

tion for a diatomic system is given by11 :

− ~2

2µ

d2Ψv,J

dr2
+ Veff (r)Ψv,J(r) = Ev,JΨv,J(r), (2.1)

where

Veff (r) = V (r) + J(J + 1)
~2

2µr2

In this equation, ~ is Planck’s constant divided by 2π, µ is the redued mass of the

diatomic system, J is the rotational quantum number and r is the distance between

the nuclei. The effective one-dimensional potential is the sum of the centrifugal term

and rotationless elecrtonic potential V(r).
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2.2 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation is used for finding approximate solutions of the

time-independent non-relativistic Schrödinger equation: H|Φ〉 = E|Φ〉. The Hamilto-

nian H for a system of M nuclei and N electrons is given by:12

H = −
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

(2.2)

The nuclei in an atom or a molecule are heavier than electrons; hence they move

slowly relative to the electrons. It is a reasonable approximation to consider the elec-

trons moving in a field of fixed nuclear configuration. Within the Born-Oppenheimer

approximation, the kinetic energy of nuclear motion (second term in eq. 2.2 can be

neglected and the nuclear-nuclear repulsion can be considered constant. The modified

equation is a Hamiltonian describing the motion of N electrons in the field of M point

charges. This is called the electronic Hamiltonian. It is given by:

Hele = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
(2.3)

The solution to the electronic Hamiltonian is the electronic wave function given

by Φele, which describes the electronic motion.

Φele = Φele(Ri; RA)

Φele is explicitly dependent on electronic coordinates. Also, Φele and Eele depend

parametrically on nuclear coordinates. The total energy Etot includes the constant

repulsion between the nuclei.

Etot = Eele +
M∑
A=1

M∑
B>A

ZAZB
RAB

(2.4)

The motion of the nuclei can be studied by invoking the Born-Oppenheimer approx-

imation. The electrons are lighter than the nuclei, hence they move faster than the

nuclei. This can be used to average the electronic co-ordinates and generate a nuclear

6



Hamiltonian for the motion of the nuclei in the average field of electrons.

Hnuc =
M∑
A=1

1

2MA

∇2
A + Eele +

M∑
A=1

M∑
B>A

ZAZB
RAB

(2.5)

Hnuc =
M∑
A=1

1

2MA

∇2
A + Etot (2.6)

Thus, the potential for nuclear motion is provided by the total energy Etot. To

conclude, within the Born-Oppenheimer approximation, the nuclei move on a surface

generated by solving the electronic problem.

2.3 Reduced potential-energy curve (RPC)

Potential energy curves of a diatomic molecule and its cation are nearly identical in

reduced variables.13 This is a manifestation of the fact that the force constant in

reduced variables is nearly the same for a diatomic molecule and its cation.

2.4 Bound states

Bound states of diatomic species can be calculated from the potential energy curves

using the Numerov mothod 14. Equation 2.1 is an eigenvalue problem and we find the

solutions that vanish at r = ±∞. A suitable method for solving such an equation

is the Numerov method. The method for calculating eigenvalues and corresponding

eigenfunctions and its implemnetation is presented by Cooley.14 The Schrödinger

equation can be written as a second order equation that is linear in ψ and does not

have a first order term,
d2ψ(x)

dx2
+ k2(x)ψ(x) = 0 (2.7)

In the Numerov method, ψ(x+ h) is expanded in a Taylor series:

ψ(x+ h) = ψ(x) + hψ′(x) +
h2

2
ψ(2)(x) +

h3

6
ψ(3)(x) +

h4

24
ψ(4)(x) + ... (2.8)

7



Similarly, the Taylor expansion of ψ(x− h) gives:

ψ(x− h) = ψ(x)− hψ′(x) +
h2

2
ψ(2)(x)− h3

6
ψ(3)(x) +

h4

24
ψ(4)(x) + ... (2.9)

Adding these two equations 2.8 and 2.9, we obtain

ψ(x+ h) + ψ(x− h) = 2ψ(x) + h2ψ(2)(x) +
h4

12
ψ(4)(x) + ... (2.10)

The second derivative from Equation 2.7 can be written as:

ψ(2)(x) =
ψ(x+ h) + ψ(x− h)− 2ψ(x)

h2
− h2

12
ψ(4)(x) + ... (2.11)

Acting 1 + h2

12
d2

dx2
on Equation 2.7 gives:

ψ(2)(x) +
h2

12
ψ(4)(x) + k2(x)ψ(x) +

h2

12

d2

dx2
[k2(x)ψ(x)] = 0 (2.12)

From Equations 2.11 and 2.12, we obtain

ψ(x+ h) + ψ(x− h)− 2ψ(x) + h2k2(x)ψ(x)
h4

12

d2

dx2
[k2(x)ψ(x)] = 0 (2.13)

Using elementary difference formula:

d2

dx2
[k2(x)ψ(x)] ' k2(x+ h)ψ(x+ h) + k2(x− h)ψ(x− h)− 2k2(x)ψ(x)

h2
(2.14)

Substituting Eq. 2.14 into 2.13, the Numerov algorithm for a single step is obtained:

ψ(x+ h) =
2(1− 5

12
h2k2(x))ψ(x)− (1 + 1

12
h2k2(x− h))ψ(x− h)

1 + 1
12
h2k2(x+ h)

(2.15)

Now, we set x = xn ≡ x0 + nh and kn ≡ k(xn), and the final result is:

ψn+1 =
2(1− 5

12
h2k2n)ψn − (1 + 1

12
h2k2n−1)ψn−1

1 + 1
12
h2k2n+1

(2.16)

Thus, given ψ0 and ψ1, ψn can be determined for n = 2, 3, 4, 5, ... using the Numerov

method.15
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2.5 Franck-Condon factors

Franck-Condon factor is an overlap integral between the wave functions for the vibro-

tational states of the ground electronic state and an excited electronic state. They

are given by:

| 〈Ψv’,J’|Ψv”,J”〉 |2

The electronic transitions occur on shorter time scales compared to the nuclear motion.

This is called the Condon approximation.

2.6 Equation-of-motion coupled-cluster (EOM-CC)

formalism

Theoretical modelling of open-shell and electronically excited species is challenging

because of electronic degeneracies resulting in interacting electronic states and multi-

configurational wave functions. Thus, the Hartree-Fock method fails and the ground-

state methods that describe the wave function as a single Slater determinant become

inadequate. With EOM, many multi-configurational wave functions can be described

within the single reference formalism. EOM-CC methods can be used to describe

ionization from open-shell species and electronically excited states.16 Formal aspects

of the theory and application of the EOM-CC method to open-shell ground and excited

electronic states is reviewed by Krylov.17

The EOM approach is analogous to the configuration interaction (CI) method.

Diagonalization of the similarity transformed Hamiltonian yields target EOM states.

The similarity transformed Hamiltonian H̄ is

H̄ ≡ e−THeT ,

where T is a cluster operator given by:

T = T1 + T2 + T3 + ...

with T1 =
∑

i

∑
a t

i
aa

+i and T2 =
∑

i,j

∑
a,b t

ij
aba

+b+ji. Also,

9



H̄R = ER

LH̄ = EL

LIRJ = δIJ

Here, R and L are excitation and de-excitation operators, respectively, with respect

to the reference |Ψ◦〉. These operators are not electron conserving in case of electron

detached/attached EOM models giving rise to EOM-ionization potential (IP) or EOM-

electron affinity (EA) models. For instance, R in EOM-IP is given by:

RIP =
∑
i

rii+
1

2

∑
ija

raija
+ji+ ...,

where a+is a creation operator and j and i are annihilation operators. Unlike single ref-

erence methods, EOM-IP yields accurate PESs, diabatic couplings for charge-transfer

processes and explains charge localization.

2.7 Dyson orbitals

Dyson orbitals describe the overlap between the N -electron wave function of the neu-

tral and the N -1 electron wave function of the corresponding ionized system. They are

required for calculating Compton profiles, electron momentum spectra, cross sections

and angular distribution of photoelectrons during photodetachment. Dyson orbitals

are implemented for equation-of-motion coupled-cluster wave function by Oana and

Krylov.18

2.8 Description of the ejected electron

The ejected electrons are described using a simple plane wave in spherical basis. In

the absence of interaction between the core and the ejected electron, the plane wave

is an exact eigenstate of a free electron. The interaction is neglected since the core

is small relative to continuous states of the electron. If photodetachment results in a

neutral core (in the case of anions), there is no long range Coulombic potential.

10



For a correct threshold behaviour, a strong orthogonality condition is imposed

making the plane wave orthogonal to the Dyson orbital. The expression for a free

electron is given by:

Ψel
k = |k〉 =

(
k

(2π)3

) 1
2

eikr

2.9 Cross-section calculation

2.9.1 The photodetachment cross section

The differential cross section for ionizing or detaching a photoelectron in a solid angle

dΩk = sinθdθdφ is
dσ

dΩk

=
4π2

c
E|DIF

k (θ, φ)|2

where E is the energy of the ionizing radiation, k denotes the momentum and the

direction of the ejected electron, DIF
k is the photoelectron matrix element. This is

valid within dipole and sudden ionization approximations. A strong orthogonality

condition is also imposed to ensure no interaction between the ejected electron and

the electron core. These approximations are justified by the small core size relative

to the free electron wave function.

For molecular systems, vibrational wave functions of initial and final states are

included in dipole matrix element and the above equation becomes:

dσ

dΩk

=
4π2

c
E
∑
nn′

Pn|Dnn′k|2

where n and n′ describe initial and final vibrational levels and Pn denotes the pop-

ulation of the vibrational states of the initial system.Dnn′k includes contributions from

electronic and vibrational wave functions. The dependence of the electronic dipole

matrix element on nuclear coordinates is neglected within the Condon approximation.

On averaging over all molecular orientations, we obtain

dσ

dΩk

=
4π2

c
E|Dnn′k|2

11



The total cross section (σ) after averaging over laser polarization and orientation

of photoelectrons is obtained from

σ =
8π2

3c
E

∫
dΩk|DIF

k |2 =
8π2

3c
E

∫
sin(θ)dθdφ|DIF (θ, φ)|2

2.9.2 Oscillations in the photodetachment spectrum of H–
2

The experimental measurement of the photodetachment cross section of H–
2 was per-

formed by Rudnev et al.19 The same group reported the first experimental photode-

tachment cross section spectrum of H–
2 .20 They calculated the absolute cross section

in the laser excitation range Ehν= 17600-17750 cm–1 (2.1820 - 2.2007 eV). The cross

section exhibited an oscillatory behaviour with a period of about 25 cm–1. They fitted

a cosine function to the data points. They interpreted the oscillatory behaviour in

terms of the interaction between rotationally hot hydrogen molecule and the detached

electron after photodetachment.

12



Chapter 3

Results and Discussion

This chapter comprises results obtained from all the calculations. The effective po-

tentials for H2 and H–
2 are plotted as a function of internuclear distance. The reduced

potential energy curves (RPC) are also plotted. The results from bound state calcu-

lation and Franck-Condon factors are discussed.

3.1 Potential-energy curves for H–
2 and H2

The potential energy curves (PECs) for H2 and H–
2 were calculated using the MOL-

PRO suite of programs. The resulting ab iniitio data were reproduced using the

analytic function by Srivastava et al.10 The PECs for the excited states of H2 (b3Σ+
u

and B1Σ+
u ) are from Barca et al.21 The plots are shown in Figure 3.1.

For photo-excitation of H–
2 , Rudnev et al. used light with a wavelength of 563 - 568

nm (2.20216 - 2.18277 eV).20 The B1Σ+
u state of H2 is higher in energy than where

the light with a wavelength of 563 - 568 nm can take H–
2 . Therefore, it is safe to

assume that the B1Σ+
u state of H2 has no role to play in the photodetachment of H–

2 .

3.2 Effective potential

Effective potentials were calculated for J ranging from 0 to 30 of H–
2 and H2 . Figure

3.2 and Figure 3.3 show the PECs for H2 and H–
2 , respectively for different values of

13



J. These curves were used to calculate the bound and quasi-bound states and their

line widths.

3.3 Reduced potential energy curve

The reduced potential energy curves (RPC) are plotted for H–
2 and H2 on the same

plot in Figure 3.4. Contrary to the observations of Abrol et al.,13 the RPCs of the

neutral (H2) and its anion (H–
2 ) are significantly different.

3.4 Bound state calculations

Using the effective potentials generated as mentioned in section 3.1, the bound states

of H2 and H–
2 were calculated using the computer code LEVEL8.2.11 The number of

bound states of both H2 and H–
2 decrease with an increase in J value. The number

of bound states for all effective potentials and their energy eigenvalues are given in

tables 4.2 and 4.1 for H2 and H–
2 , respectively.

3.5 Franck-Condon factors

The Franck-Condon Factors (FCFs) for the transition between different vibrational

levels of J = 26 of H–
2 to J = 26 of H2 are plotted in Figure 3.11. From the plot, it

can be seen that the transition between the lowest level of H–
2 (v′ = 0) to the highest

level of H2 (v” = 5) is the strongest.

3.6 Photodetachment cross section

The total cross section of photodetachment of H–
2 as a function of photon energy was

calculated using the ezDyson program.22 ezDyson is a C++ program that calculates

the absolute photodetachment cross sections using Dyson orbitals computed by an ab

initio program. The result is plotted in Figure 3.12.

14



3.7 Outlook

While calculating the photodetachment cross section, a strong orthogonality condi-

tion is imposed between the wave function of the ejected electron and the daughter

molecule. This is a bold assumption ignoring the J-S coupling that might result in

the oscillatory behaviour in the photodetachment spectrum. J-S coupling needs to

be accounted for while calculating the cross-section.

Moreover, long range interaction needs to be studied for H–
2 . The co-efficient of r−4

term in the analytic function used to fit the ab initio data of H–
2 is absent. This

co-efficient accounts for the charge - polarizability interaction in the potential and

thus needs to be accounted for.

Figure 3.1: Potential energy curves of different states of H–
2 and H2 . The excited

states of H2 are plotted from the work of Barca et al.
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Figure 3.2: Effective potentials of H2 plotted for different values of the rotational

quantum number J

Figure 3.3: Effective potentials of H–
2 plotted for different values of the rotational

quantum number J
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Figure 3.4: RPC plotted from the analytic PEC of H–
2 and H2

Figure 3.5: Bound states of H–
2 and H2 calculated for J = 0.
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Figure 3.6: Bound states of H–
2 and H2 calculated for J = 5 and 10.
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Figure 3.7: Bound states of H–
2 and H2 calculated for J = 15 and 20.
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Figure 3.8: Bound states of H–
2 and H2 calculated for J = 25 and 26.
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Figure 3.9: Bound states of H–
2 and H2 calculated for J = 27 and 28.
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Figure 3.10: Bound states of H–
2 and H2 calculated for J = 29 and 30.
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Figure 3.11: Franck-Condon Factors calculated between all vibrational states of J =26

of H–
2 and H2

Figure 3.12: The photodetachment cross section of H–
2 plotted as a function of photon

energy.
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Chapter 4

Appendix

All the computed results of bound and quasibound states of H2 and H–
2 are reported in

Table 4.1 and 4.2. The asymptote is adjusted to correct the electron affinity (0.75eV)

of the hydrogen atom.
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v \J 0 5 10 15 20

0 -1.843463134 -1.733610262 -1.517206787 -1.301811975 -1.099243156

1 -1.707387378 -1.623433564 -1.436432549 -1.225871632 -1.032938221

2 -1.59609677 -1.522668401 -1.354881034 -1.154621739 -0.9723940424

3 -1.493694557 -1.427911113 -1.275505267 -1.088063635 -0.9182854621

4 -1.398676251 -1.339013852 -1.19983296 -1.026652169 -0.8703063331

5 -1.310303209 -1.255916873 -1.128929967 -0.9707170709 -0.8275583115

6 -1.228394454 -1.178876295 -1.06358776 -0.920112761 -0.789480791

7 -1.153126673 -1.108256798 -1.004145812 -0.8743385038 -0.7563824849

8 -1.08466972 -1.044200798 -0.950389165 -0.8330370717 -0.7297596002

9 -1.022872065 -0.9864178692 -0.9017955349 -0.7963659954

10 -0.9671948602 -0.9343027599 -0.8580008257 -0.7651572641

11 -0.9169921631 -0.887330409 -0.8191015568 -0.7413560583

12 -0.8718938893 -0.8453788188 -0.7857615616

13 -0.832001158 -0.8088386544 -0.7593999055

14 -0.7979351404 -0.7786797475 -0.7433595347

15 -0.7709332447 -0.7567190323

16 -0.7532503568

v \J 26 27 28 29 30

0 -0.8767537346 -0.8427164063 -0.8098010347 -0.7781424 -0.7144659938

1 -0.8278995578 -0.7975561914 -0.7685131042 -0.7408101437 -0.6855768914

2 -0.7863215357 -0.7592730726 -0.7334190086 -0.7088097172 -0.6632403143

3 -0.7500813318 -0.7258956598 -0.7030317529 -0.6818301257

4 -0.7186694199 -0.6978285041 -0.679451333 -0.7478949333

5 -0.6940527268

Table 4.1: Vib-rotational levels of H–
2 in eV units, computed in present work.
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v \J 0 5 10 15 20

0 -4.477804452 -4.262122027 -3.730418995 -2.975634072 -2.097572359

1 -3.962640257 -3.757873175 -3.253587574 -2.538972777 -1.710139901

2 -3.476293008 -3.282097516 -2.804489116 -2.12941554 -1.350104702

3 -3.01802866 -2.834194834 -2.382884686 -1.747312977 -1.018674305

4 -2.587493382 -2.413947566 -1.988921511 -1.393418203 -0.7175731769

5 -2.184700182 -2.021507464 -1.623126338 -1.068911989 -0.4491993285

6 -1.81002099 -1.657390962 -1.286415972 -0.7754689284 -0.2169581551

7 -1.464190309 -1.32248926 -0.9801342098 -0.515393027 -0.0260772305

8 -1.148326822 -1.018100779 -0.7061294638 -0.2918913477 0.1133672464

9 -0.863981016 -0.7459968905 -0.4669017559 -0.1096901086

10 -0.6132222502 -0.5085407768 -0.2658854065 0.0230608885

11 -0.398789347 -0.3088993681 -0.1080611674

12 -0.2243510755 -0.1514420889 -0.0018119501

13 -0.094973561 -0.0426094228

14 -0.0179616476

15

16

v \J 26 27 28 29 30

0 -0.9967998309 -0.8156489369 -0.6363513904 -0.4593331664 -0.2850257447

1 -0.6786816692 -0.5104380509 -0.3445845695 -0.1816500552 -0.0222075497

2 -0.3913164834 -0.2371443626 -0.0862010506 0.0607721186 0.2028727592

3 -0.1379696072 0.0002528227 0.1338012554 0.2613433006 0.3806968247

4 0.0763568208 0.1951654221 0.3059071033 0.4031547671

5 0.2421612799 0.3307321098

Table 4.2: Vib-rotational levels of H2 in eV units, computed in present work.
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Lett. 2015, 639, 41 – 46.

[21] Barca, G. M. J.; Gilbert, A. T. B.; Gill, P. M. W. J. Chem. Phys. 2014, 141 .

[22] Gozem, S.; Krylov, A. I. ezDyson. http://iopenshell.usc.edu/downloads/

ezdyson.

30

physics.ucsc.edu/~peter/242/numerov.pdf
http://iopenshell.usc.edu/downloads/ezdyson
http://iopenshell.usc.edu/downloads/ezdyson

	List of Figures
	List of Tables
	Acronyms
	Abstract
	Introduction
	The hydrogen molecular anion H-2
	Open-shell species

	Methods
	The one-dimensional Schrödinger equation
	The Born-Oppenheimer approximation
	Reduced potential-energy curve (RPC)
	Bound states
	Franck-Condon factors
	Equation-of-motion coupled-cluster (EOM-CC) formalism
	Dyson orbitals
	Description of the ejected electron
	Cross-section calculation
	The photodetachment cross section
	Oscillations in the photodetachment spectrum of H-2 


	Results and Discussion
	Potential-energy curves for H-2 and H2
	Effective potential
	Reduced potential energy curve
	Bound state calculations
	Franck-Condon factors
	Photodetachment cross section
	Outlook

	Appendix
	Bibliography

