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Abstract

by AUTHOR NAME

Ever since its inception in 1992, Rotational Echo Double Resonance (REDOR)

technique remains the most widely employed pulse sequence to date for measuring

heteronulear dipolar interactions in solid-state NMR. In this thesis, our objective

is to develop an analytic framework based on Average Hamiltonian Theory to

understand its implementation at faster spinning frequencies.



Chapter 1

Introduction

Ever since the discovery of magic angle spinning (MAS)technique in 1958, the field

of Solid State Nuclear Magnetic Resonance (SSNMR) has become an integral part

for determining molecular structure in wide range of systems of Chemical, Physical

and Biological relevance. In contrast to Solution State NMR the spectrum in Solid

State NMR is broad and featureless. Consequently the number of constraints es-

timated is also limited in the solid state. Due to inherent rapid molecular motion,

the spin interactions in the solution state are isotropic and results in a narrow

spectrum. The broadening effects resulting from the dipolar and quadrupolar in-

teractions are averaged by the molecular motion inherently present in the solution

state. By contrast, the restricted mobility in the solid state renders the spin inter-

action anisotropy. To overcome this inherent limitation due to restricted mobility,

the sample is physically rotated (in a rotor) along an axis inclined at magic angle

(θ = 54.740) with respect to the external magnetic field. Recent advances in tech-

nology and availability of faster spinning probes (spinning frequency ≈ 100 KHz),

the resolution of the spectra in the solid state NMR has increased dramatically

recent years. Interestingly the improvements in spectral resolution in MAS is ac-

companied by loss of structural information. In Solid State NMR the important

structural constraints such as internuclear distances (13C −13 C,13C −13 O) and

torsion angles are obtain only through the presence of dipolar interaction. To

overcome their drawback imposed by MAS, the special class of experiment termed

1



Chapter 1 Introduction 2

as ’recoupling sequences’ have emerged in the last two decades. In recoupling ex-

periments the desired anisotropic interactions are reintroduced only during certain

period without compromising spectral resolution afforded by MAS. Especially the

spacial averaging effect of MAS is compensated (at certain time period) through

application of designed multi-pulse sequence. In particular the emergence of dipo-

lar recoupling experiments has been quite

In general the dipolar coupling experiments are classified into broadband and

selective. Depending on the nature of applications, the choice of dipolar recou-

pling experiments are differ. For example, in spectral assignment experiments

presence of all the dipolar couplings in the system is essential to establish local

connectivity. Hence in such cases broadband dipolar recoupling experiments are

derived. Alternatively, in the case of experiments involving distance measurement,

the dipolar interactions are reintroduced in a controlled (or selective) fashion in

’selective recoupling’ experiments. In the initial stages of distance measurements,

the dipolar interactions were quantified using spin-pair labeled samples. Since

multiple distance constraints are required for structure determination, selectively

labeled spin-pair were abandoned in favour of uniformly uniformly 13C,15N la-

beled samples.

To minimize multi-spin effects in uniformly labeled samples, selective recoupling

experiments integrated with two-dimensional NMR has been employed for mea-

suring internuclear distances in Homonuclear spin systems. Here in this thesis

we confine our discussion to Heteronuclear recouplings experiments in Solid State

NMR. Specifically, we confine our attention to rotational echo double resonance

(REDOR) experiments in Solid State. In REDOR experiments, the dipolar in-

teraction between Heteronuclear spins are reintroduced through the application

of π pulses. To account for other spin interactions and relaxation effects, ref-

erence experiments along with the standard REDOR experiments are employed

for quantifying the dephasing trajectories obtained in REDOR experiments. our

bjective in this thesis is to reexamine the REDOR experiments and develop a
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theoretical framework for understanding its implementation at faster spinning fre-

quencies. Specifically the effect of finite pulse at faster spinning frequencies will be

discussed using analytic methods based on Average Hamiltonian Theory (AHT).



Chapter 2

Average Hamiltonian Theory

In the Schrodinger picture, the state of a system is described by the wave function,

ψ(t). The H(t) is the Hamiltonian operator contain the internal spin interactions

of the system. The evolution of system under a time independent Hamiltonian is

given by the Schrodinger equation.

i}
d

dt
ψ(t) = Hψ(t) (2.1)

ψ(t) = e

−iHt
} ψ(t) (2.2)

When the Hamiltonian is time dependent the evolution of the system is described

by a complicated expression

ψ(t) = e
−i

∫
t
0

H(t)dt

} ψ(t) (2.3)

In the case were the system (comprising of many subsystems) is described by more

than one wave functions, the state of the system is represent using density matrix.

The density operator ρ(t) is the weighted average over the possible spin states that

in the sample.

ρ(t) = |ψ(t) >< ψ(t)| (2.4)

4



Chapter 3 Average Hamiltonian Theory 5

where the bar represent the weighted average over the spin degrees of freedom

present in the system.

Subsequently, the time evolution of the system is described by quantum Liouville

equation.

i}
d

dt
ρ(t) = [H(t), ρ(t)] (2.5)

When the Hamiltonian is time independent the final solution of above equation

reduces to a simple form.

ρ(t) = e

−iHt
} ρ(0)e

iHt

} (2.6)

where ρ(0) is the initial state of the system. The evolution of system under a time

dependent Hamiltonian has a complicated form

ρ(t) = e
−i

∫ t
0

H(t)dt

} ρ(0)e
i
∫ t
0

H(t)dt

} (2.7)

Since Hamiltonian in the Magic Angle Spinning (MAS) experiments are time de-

pendent analytic description in terms of Average Hamiltonian Theory (AHT)have

extensively been employed to describe the system. In AHT framework the time

evolution of the system is described through a time-averaged effective/average

Hamiltonian.

ρ(t) = e
−i
H̃avet

} ρ(0)e
i
H̃avet

} (2.8)
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Employing Magnus expansion the time-averaged Hamiltonian is expressed in a

series of terms of decreasing magnitude.

H̃ave = H̃0 + H̃1 + H̃2 + H̃3... (2.9)

H̃0 =
1

t

∫ t

0

H̃(t′)dt′ (2.10)

H̃1 = − i

2t

∫ t

0

dt′
∫ t′

0

dt′′[H̃(t′), H̃(t′′)] (2.11)

H̃1 =
1

6t

∫ t

0

dt′
∫ t′

0

dt′′
∫ t′′

0

dt′′([H̃(t′), H̃(t′′)], H̃(t′′′)] + [H̃(t′′′), H̃(t′′)], H̃(t′)](2.12)

In the past Average Hamiltonian Theory (AHT) has been extensively employed

to describe and design experiments in Solid State NMR. A brief demonstration

of this procedure in the description of RF pulse is presented in the following section.

The nuclear spin Hamiltonian under the magic angle spinning condition is rep-

resented by

H(t) = HD(t) +HCSA(t) +HICS(t) +Hrf (t) (2.13)

In the above equation the Hamiltonian HD(t),HCSA(t),HICS(t) and Hrf (t) cor-

respond to dipolar, chemical shift anisotropic, isptropic chemical shift and RF

pulse respectively. In the interaction representation defined by the RF field, the

Hamiltonian H(t) acquires additional time dependence. The transformation to RF

interaction frame is given below

H̃(t) = U−1
rf H(t)Urf (2.14)

where Urf is the propagator due to the RF pulse.
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The Average Hamiltonian theory for the effective Hamiltonian is based Magnus

expansion. The Magnus expansion is a perturbative solution to exponential of

a time varying operator. According to AHT, the evolution of the spin system

under the time dependent Hamiltonian represent in the form of time independent

effective Hamiltonian.

ρ(t) = e
−i

∫ t
0

H̃dt

} ρ(0)e
i
∫ t
0

H̃dt

} (2.15)

ρ(t) = e
−i
H̃avet

} ρ(0)e
i
H̃avet

} (2.16)

H̃ave =
1

t

∫ t

0

H̃dt (2.17)

The effective Hamiltonian H̃ave derived in AHT is based on Magnus expansion.

e
−i

∫ t
0

H̃t

} = e
−i
H̃avet

}

The effective time independent Hamiltonian H̃ave can be expanded in a series of

terms of increasing order of time by Magnus expansion

H̃ave = H̃0 + H̃1 + H̃2 + H̃3...

e
−i
H̃avet

} = e
−it
H̃0 + H̃1 + H̃2 + H̃3...

}

H̃0 =
1

t

∫ t

0

H̃(t′)dt′ (2.18)

H̃1 = − i

2t

∫ t

0

dt′
∫ t′

0

dt′′[H̃(t′), H̃(t′′)] (2.19)

H̃1 =
1

6t

∫ t

0

dt′
∫ t′

0

dt′′
∫ t′′

0

dt′′([H̃(t′), H̃(t′′)], H̃(t′′′)] + [H̃(t′′′), H̃(t′′)], H̃(t′)](2.20)

The AHT applicable in pulse sequence that consist block of RF irradiation that is
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repeated many times as in case of recoupling experiments of SSNMR.The following

condition should met for the application of AHT to the pulse sequence with cycle

time tc.

Hrf (tc + t) = Hrf (t) (2.21)

HD(tc + t) = HD(t) (2.22)

HCSA(tc + t) = HCSA(t) (2.23)

The convergence of Magnus expansion ensured only when ‖H‖tc � 1

2.0.1 Effect of Finite Pulse

The response of a nuclear spin system in NMR spectroscopy is determined through

the application of radio frequency (RF) pulses.A typical pulse sequence ranges from

a single pulse experiment to a complicated pulse sequence for extracting specific

interactions. Depending on the duration of the pulse and relative magnitude of the

amplitude of the pulse with respect to internal spin interactions, the RF pulses

are classified to (a) hard (b) soft pulses.In the hard pulse limit, the amplitude

of RF pulse exceeds the magnitude of internal spin interactions. Consequently

during a pulse, the evolution of system is solely governed by RF Hamiltonian (it

is independent of the internal interactions).By contrast, in the soft pulse limit

the evolution of the system depends on both the RF Hamiltonian and internal

spin Hamiltonian. The important characteristic of a soft pulse includes its shape,

amplitude and duration. The pulse shape is correlated with shape of the excitation

profile, the pulse amplitude with flip angle and pulse duration with the selectivity.

Such pulses are known as soft pulses or selective pulses which specifically shaped

in order to tailor their excitation profile.

The pulse sequence like REDOR contain a train of pulse cycles which consumes

an appreciable part of the entire pulse sequence. Comparing the duration of pulse

with respect to duration of pulse sequence the pulses can be classified to delta

pulse and finite pulse.
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Figure 2.1: Delta pulse
(Schematic depiction of Delta Pulse:tw and tr are the duration of pulse

and pulse sequence respectively)

In the case a of delta pulse the duration of pulse (tw) is very short when compared

to the duration of the entire pulse sequence such the ratio of
tw
tr
≈ 0. The duration

of pulse is negligible such that the evolution of the system in this small interval

is insignificant. By contrast, the finite pulse are the pulses which occupy an

appreciable amount of time in the pulse sequence. The approximation
tw
tr
≈ 0 is

no more valid in such cases. The system evolves during the duration of the pulse.

The schematic representation is given in figure 2.2.

Figure 2.2: Schematic depiction of Finite Pulse

tw and tr are the duration of pulse and pulse sequence respectively.
tw
tr
6= 0

SSNMR experiments routinely used for the analysis of weak coupling interaction

between the spins which in important for the structural changes like tertiary and
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quarternery structure of proteins. The analysis of signal using appropriate mathe-

matical expression have high impact. The small errors can effect the experimental

results drastically. As part of methodological development the figuring out the

suitable conditions for the experiment also equally important. The analysis of

effects of finite pulse in large pulse sequence like REDOR always exciting. The

AHT gives a platforms to figure out the effects of finite pulse in the signal. Before

describing the finite pulse effect in REDOR pulse sequence let’s try to find the

effect of the finite pulse in chemical shift Hamiltonian of pulse sequence given in

Figure 3.3 using AHT.

Figure 2.3: The pulse sequence contain
π

2
X and

π

2
X pulses with pulse dura-

tion tw = 2α. The cycle time of this sequence tc = 4τ

Consider the following pulse two sequence comprising of
π

2
X and

π

2
X finite pulses.

The duration of each pulse is tw = 2α and the cycle time of the sequence is tc = 4τ .

The general transformation over the cycle from 0 to tn is given by the propagator

U(tn, 0).

U(tn, 0) = U(tn, tn−1)U(tn−1, tn−2)...U(t1, t0) (2.24)

To simplify the description, let the pulse sequence be applied to to an isolated spin

system, the internal Hamiltonian consist of Chemical Shift Interaction.

H = ∆ωIz (2.25)
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In the RF interaction frame the chemical shift Hamiltonian is time dependent.

Employing Average Hamiltonian Theory (AHT) the effect of the finite pulses on

the chemical shift Hamiltonian is derived,

Îz(τ + α) = U †(τ + α, 0)IzU(τ + α, 0) (2.26)

U †(τ + α, 0) = U †(τ − α, 0)U †(τ + α, τ − α) (2.27)

U(τ + α, 0) = U(τ + α, 0)U(τ − α, 0) (2.28)

There is no RF pulse from 0 to τ−α so the propagator U(τ−α, 0) and U †(τ−α, 0)

is one in this case.

U(τ − α, 0) = 1 (2.29)

U †(τ − α, 0)) = 1 (2.30)

The
π

2
X pulse applied for the time interval from τ − α to τ + α. The propagator

correspond the time interval is U †(τ + α) = exp(−iθ(t)Ix) where the θ(t) is zero

when time t = τ −α and it is
π

2
at time t = τ +α. From the above conditions the

functional form of θ(t) is derived

θ(t) =
π

4
(
t− (τ − α)

α
)

Subsequently, the Iz(τ + α) will transform to Îz(τ + α) in the toggling frame by

the action of the propagator defined for the time interval.

Îz(τ + α) = U †(τ − α, 0)U †(τ + α, τ − α)IzU(τ + α, τ − α)U(τ − α, 0)(2.31)

= Iz cos θ(t)− Iy sin θ(t) (2.32)
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For the time interval from τ + α to 3τ − α the Îz(3τ − α) given by the following

transformation.

Îz(3τ−α) = U †(τ−α, 0)U †(τ+α, τ−α)U †(3τ−α, τ+α)IzU(3τ−α, τ+α)U(τ+α, τ−α)U(τ−α, 0)

Where U †(τ −α, 0) and U †(3τ −α, τ +α) is one because no pulse applied applied

during the given time interval. The θ(t) of the propagator U †(τ + α, τ − α) is
π

2
at time t = τ + α.

Îz(3τ − α) = exp(−iπ
2
Ix)Izexp(i

π

2
Ix) = −Iy

For an interval from 3τ − α to 3τ + α a
π

2
pulse applied in -X direction.

Îz(3τ + α) = U †(τ − α, 0)...U †(3τ + α, 3τ − α)IzU(3τ + α, 3τ − α)...U(τ − α, 0)

= exp(−iπ
2
Ix)exp(iθ(t)Ix)Izexp(−iθ(t)Ix)exp(i

π

2
Ix)

= −Iy cos θ(t) + Iz sin θ(t)

where the θ(t) =
π

4
(
t− (3τ − α)

α
)

There is no pulse applied during the time interval from 3τ − α to 4τ .

Îz(3τ − α) = U †(τ − α, 0)...U †(4τ, 3τ + α)IzU(4τ, 3τ + α)...U(τ − α, 0) = Iz

The effective Hamiltonian for the pulse sequence in figure 2.3 is calculated using

Average Hamiltonian Theory. To zeroth order

H
0

0 =
1

tc

∫ tc

0

H̃0(t)dt
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tc is the cycle time of the pulse sequence. The effective Hamiltonian of the pulse

sequence is the sum of effective Hamiltonians of the the intervals in pulse sequence.

H
0

0 =
∆ω

tc
[

∫ τ−α

0

Izdt+

∫ τ+α

τ−α
(Iz cos θ(t)− Iy sin θ(t))dt+

∫ 3τ−α

τ+α

(−Iy)dt+

∫ 3τ+α

3τ−α
(Iz(sin θ(t)− Iy cos θ(t))dt+

∫ 4τ

3τ+α

(−Iz)dt]

H
0

0 =
∆ω

2
[Iz − Iy] +

2tw
tc

(
4

π
− 1)[Iz − Iy]

In the next chapter, the effect of finite pulses in REDOR experiment will be

discussed.



Chapter 3

The Effect of Finite pulses in

REDOR Experiment

From a theoretical perspective, the spin interactions under MAS conditions are

time-dependent and periodic. As described earlier, important structural con-

straints are encoded in the anisotropic interactions and are often averaged un-

der MAS. To recover anisotropic interactions (or part of it), periodic modulations

in the form of multiple-pulse schemes are introduced to compensate the periodic

time modulation imposed by MAS. Here in this chapter, we confine our discus-

sion to heteronuclear dipolar recoupling of dipolar interactions through REDOR

experiments. The REDOR experiment is essentially derived from SEDOR experi-

ment. A detailed description of those pulse sequences in the Average Hamiltonian

framework described in the following section.

3.1 Spin Echo Double Resonance-SEDOR

In 1968, Kaplan and Hahn introduced the SEDOR (Spin Echo Double Resonance)

technique to reintroduce heteronuclear dipolar interactions in static solids. The

Hamiltonian in NMR is generally expressed as product of spacial and spin parts.

Since SEDOR is a stationary experiment, the spacial part of the Hamiltonian is

14
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constant through out the experiment. Hence SEDOR sequence is designed to re-

couple heteronuclear dipolar interaction using pulses that affect only the spin part

of the Hamiltonian. Consider a model system comprising of an isolated heteronu-

clear spin pair I and S.

The basic SEDOR experiment comprises of two pulse sequences, commonly re-

ferred to as reference and dephasing experiments.The schematic depiction of the

pulse schemes corresponding to dephasing and reference experiments are depicted.

Figure 3.1: Schematic depiction of dephasing experiment of SEDOR:
The spin echo pulse sequence consist of π

2 pulse applied along Y direction to S
spin. A π pulse applied at exactly middle of the pulse sequence to both spins

along X direction. signal collected from S spin at time 2τr.

Dephasing pulse experiment begins with a (π
2
)y pulse on the S channel. After

time τr a π pulse (X-direction) is applied on both the channels.Subsequently the

signal on S channel is detected after a time 2τr Since it is a dipolar recoupling

sequence, all the other spin interactions are refocused. The dipolar Hamiltonian

for a stationary samples is represented by,

HIS
D = 2ωDIzSz (3.1)
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The initial π
2

Y pulse on S-channel,converts the initial density operator ρ(0) = Sz

to Sx

ρ(tp) = e−i
π
2
SySze

iπ
2
Sy = Sx (3.2)

After the pulse the system evolves under the dipolar Hamiltonian from time 0 to

τr. The state of the system after time τr represented by

ρ(tp + τr)e
−iωDIzSzSxe

iωDIzSz = cos(ωDτr)Sx + sin(ωDτr)2SyIz (3.3)

At time t = τr, a (π)X pulse is applied on both channels. The effect of π pulses is

calculated and represented below,

e−iπSxe−iπIx(cos(ωDτr)Sx+sin(ωDτr)2SyIz)e
iπSxeiπIx = cos(ωDτr)Sx+sin(ωDτr)2SyIz

(3.4)

From the time t = τr to t = 2τr the system evolves under dipolar Hamiltonian.

Final state of the system is represented by

e−iωDIzSz(cos(ωDτr)Sx+sin(ωDτr)2SyIz)e
iωDIzSz = cos(2ωDτr)Sx+sin(2ωDτr)2SyIz

(3.5)

The signal after time t = 2τr along the S-channel is represented through the given

expression

Sr(2τr) = Si cos(2ωDτr)e
−2τr
T (3.6)

In the above expression the term e
−2τr
T relaxation and other indirect effects. To get

rid of all other factors responsible for dephasing of the signal reference experiments

are performed.

The reference experiment begins with a π
2

Y pulse on S-channel.After time τr a

(π)x pulse applied on the S spin channel and signal is collected from S-channel

at 2τr. The sequence refocus all interactions a gives back initial magnetization
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produced exactly after the π
2
y pulse. The important steps are illustrated below.

ρ(tp1) = e−i
π
2
SySze

iπ
2
Sy = Sx (3.7)

ρ(tp1 + τr) = e−iωDIzSzSxe
iωDIzSz = cos(ωDτr)Sx + sin(ωDτr)2SyIz (3.8)

At time τr a π pulse applied at exactly middle of the pulse sequence to S spins

along X direction . The effect of the pulses on the state of spins found by

ρ(tp1 + τr + tp2) = e−iπSx(cos(ωDτr)Sx + sin(ωDτr)2SyIz)e
iπSx (3.9)

= cos(ωDτr)Sx − sin(ωDτr)2SyIz (3.10)

The system evolves under the dipolar Hamiltonian from time τr to 2τr. The final

state of the system given by

ρ(2τr) = e−iωDIzSz(cos(ωDτr)Sx+sin(ωDτr)2SyIz)e
iωDIzSz = cos(ωDτr) cos(ωDτr)Sx

+ sin(ωDτr) sin(ωDτr)Sy+cos(ωDτr) sin(ωDτr)IzSy+cos(ωDτr) sin(ωDτr)IzSy = Sx

The signal of the reference experiment is represented by

S0(2τr) = Sie
−2τr
T (3.11)

The ratio of the signal from dephasing and reference experiment gives an expression

that describes the dephasing purely resulting from dipolar interaction.

Sr
S0

= cos(2τrωD) (3.12)

The ratio only depend upon dipolar coupling and dipolar evolution time. Thus

by simply measuring signal amplitudes it is possible to obtain dipolar coupling

between I and S spin.
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3.2 Rotational Echo Double Resonance NMR -

REDOR

The REDOR experiment was introduced in 1989 by J.Shaefer and T. Gullion to

recouple heteronuclear dipolar interactions under MAS condition. As described

in the previous section, REDOR experiment is an extension of SEDOR experi-

ment.The dipolar Hamiltonian under MAS condition is time-dependent

HIS
D (t) =

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz (3.13)

Here ωr represents the spinning frequency of sample.The average value of dipolar

interaction over a rotor period is zero due to magic angle spinning. The RF pulses

are designed to compensate the averaging effect of MAS in such a way that the

dipolar interactions are recovered. As in case of SEDOR experiments, REDOR

also contain reference and dephasing experiments. The reference experiment re-

focuses all the interactions, while dephasing experiment recouple only the dipolar

interaction between heteronuclear spin pair. A schematic depiction of the pulse

sequence depicted below.

The REDOR pulse sequence begins with a π
2

pulse applied along Y direction on

the S-channel. The (π)x pulses are applied at τr
2

and 3τr
2

on I channel. At τr a (π)x

pulse is applied on S channel. AS described in SEDOR experiment the dephasing

sequence recouple dipolar interaction at the end. The signal collected from S spin

can express as Sr(2τr),

Sr(2τr) = Si cos(2ωDτr)e
−2τr
T



Chapter 3 The effect of finite pulse in REDOR sequences 19

Figure 3.2: Pulse sequence for dephasing experiment of REDOR: The pulse
sequence start with a π

2 pulse applied along Y direction to S spin. The π pulses
applied at τr

2 and 3τr
2 to S spin along X direction. One π pulse applied at τr on

S spin. The signal collected from S spin at time 2τr.

As in case of SEDOR experiments dephasing the signal is proportional to the dipo-

lar coupling and evolution time. The referance sequence refocus all interactions as

shown SEDOR experiment. The pulse sequence for the reference is given below,

Figure 3.3: Pulse sequence for reference experiment of REDOR: The spin echo
pulse sequence start with a π

2 pulse applied along Y direction to S spin. One π
pulse applied at τr on S spin. The signal acquisition begins at 2τr from S spin.

The signal from the reference experiment along the S-channel is described by,

S0(2τr) = Sie
−2τr
T (3.14)
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Similar to the SEDOR experiment, the ratio of the signal from dephasing and

reference experiment
Sr
S0

= cos(2τrωD)

The ratio only depend upon dipolar coupling and dipolar evolution time. The

ratio independent on T, the relaxation constant and all other interactions.

In the above description the pulses has been considered to be ideal, that is the

duration of the pulse is extremely short (Delta pulse approximation). However in

real MAS experiments the duration of pulses is significant and the explicit evolu-

tion under MAS conditions have to considered.To compensate pulse imperfections

and other errors, REDOR XX-4 is commonly employed in SSNMR.The detailed

analysis of this pulse sequence within the Average Hamiltonian framework is pre-

sented in the following sections.

Following the description in chapter-2 the dipolar Hamiltonian in the toggling

frame is derived through the description presented below

In the interval from α to τ
2
−α,there is no pulse. The propagator corresponding to

the interval is U( τ
2
− α, α) is 1. The Hamiltonian in toggling frame is represented

by,

U †(
τ

2
− α, α)HD(t)ISU(

τ

2
− α, α) =

2∑
m6=0,m=−2

ωm exp(imωrt)IzSz

The Hamiltonian in toggling frame is time dependent. The effective Hamiltonian

is given by the integration over the interval α to τ
2
− α.

2∑
m 6=0,m=−2

∫ τ
2
−α

α

ωm exp(imωrt)dtIzSz = IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[ω−1 − ω1]

iωr
2 cosωrα}
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A π pulse applied along X axis for finite duration from τ
2
−α to τ

2
+α.Subsequently,

the Hamiltonian in toggling frame get altered

U †(
τ

2
+α,

τ

2
−α)HIS

D U(
τ

2
+α,

τ

2
−α) =

2∑
m 6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)−Iy sin θ(t))Sz

Where θ(t) =
π

2
[
t− τ

2
+α

α
]

the Hamiltonian for the the same duration given by

2∑
m6=0,m=−2

∫ τ
2

+α

τ
2
−α

ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= −iIzSz{
ωr(ω

−2 − ω2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

4 cosωrα}

−IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

2 cos 2ωrα +
π
α

(−ω1 − ω−1)

ω2
r − ( π

2α
)2

cosωrα}

For the time interval from τ
2

+ α to τ − α the propagator U( τ
2

+ α, τ − α) is one.

The Hamiltonian under transformation is represented by

U †(
τ

2
+ α, τ − α)HIS

D (t)U(
τ

2
+ α, τ − α) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz

2∑
m 6=0,m=−2

∫ τ−α

τ
2

+α

ωm exp(imωrt)dtIzSz = −IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[−ω−1 + ω1]

iωr
2 cosωrα}

For duration τ − α to τ + α a π pulse applied along X axis. The Hamiltonian

corresponding to above duration is represented

U †(τ+α, τ−α)HIS
D (t)U((τ+α, τ−α)) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)−Iy sin θ(t))Sz
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Where θ(t) =
π

2
[ t−τ+α

α
]

−
2∑

m 6=0,m=−2

∫ τ+α

τ−α
ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= iIzSz{
ωr(ω

−2 − ω2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(−ω1 + ω−1)

ω2
r − ( π

2α
)2

2 cosωrα}

IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

For the duration of τ + α to 3τ
2
− α no pulses applied. The transformation to

toggling frame results

U †(
3τ

2
− α, τ + α)HIS

D (t)U(
3τ

2
− α, τ + α) =

2∑
m6=0,m=−2

ωm exp(imωrt)IzSz

the Hamiltonian corresponding to the interval is

2∑
m 6=0,m=−2

∫ 3τ
2
−α

τ+α

ωm exp(imωrt)dtIzSz = IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[ω−1 − ω1]

iωr
2 cosωrα}

A π pulse along X direction consists in interval 3τ
2
−α to 3τ

2
+α. The Hamiltonian

in toggling frame is calculated to be

U †(
3τ

2
+α,

3τ

2
−α)HIS

D (t)U((
3τ

2
−α, 3τ

2
−α)) =

2∑
m 6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)−Iy sin θ(t))Sz

θ(t) =
π

2
[
t− 3τ

2
+ α

α
]

The effective Hamiltonian for the same interval given by
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2∑
m 6=0,m=−2

∫ 3τ
2

+α

3τ
2
−α

ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= iIzSz{
ωr(−ω2 + ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

4 cosωrα}

−IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(−ω1 − ω−1)

ω2
r − ( π

2α
)2

cosωrα}

There is no RF pulse applied during the interval 3τ
2

+α to 2τ−α. The Hamiltonian

in toggling frame is represented by

U †(2τ − α, 3τ

2
+ α)HIS

D (t)U(2τ − α, 3τ

2
+ α) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz

2∑
m 6=0,m=−2

∫ 2τ−α

3τ
2

+α

ωm exp(imωrt)dtIzSz = −IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[−ω−1 + ω1]

iωr
2 cosωrα}

The interval 2τ − α to 2τ + α consist a π pulse along X direction. The transfor-

mation of Hamiltonian to toggling frame results

U †(2τ+α, 2τ−α)HIS
D (t)U((2τ+α, 2τ−α)) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)−Iy sin θ(t))Sz

Where θ(t) =
π

2
[
t− 2τ + α

α
]

the Hamiltonian for the interval given by

−
2∑

m 6=0,m=−2

∫ 2τ+α

2τ−α
ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= −iIzSz{
ωr(−ω2 + ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(−ω1 + ω−1)

ω2
r − ( π

2α
)2

2 cosωrα}
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IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

The interval 2τ + α to 3τ − α consist no pulse. The Hamiltonian corresponding

this interval is

U †(3τ − α, 2τ + α)HIS
D (t)U(3τ − α, 2τ + α) =

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz

2∑
m 6=0,m=−2

∫ 3τ−α

2τ+α

ωm exp(imωrt)dtIzSz = IzSz{
−[ω−2 − ω2]

ωr
sin 2ωrα+

[−ω−1 − ω1]

ωr
2 cosωrα}

A π pulse applied along X direction at exactly half of the cycle to S spin. The

duration of the pulse is 3τ −α to 3τ +α. The transformation to toggling frame is

U †(3τ+α, 3τ−α)HIS
D (t)U((3τ+α, 3τ−α)) =

2∑
m 6=0,m=−2

ωm exp(imωrt)(Sz cos θ(t)−Sy sin θ(t))Iz

Where θ(t) =
π

2
[
t− 3τ + α

α
]

2∑
m 6=0,m=−2

∫ 3τ+α

3τ−α
ωm exp(imωrt)(Sz cos θ(t)− Sy sin θ(t))Izdt

= iIzSz{
ωr(ω

2 − ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

4 cosωrα}

−SyIz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

From the interval from 3τ + α to 4τ − α no pulses applied. The Hamiltonian in

toggling is represented by
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U †(4τ − α, 3τ + α)HIS
D (t)U(4τ − α, 3τ + α) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz

2∑
m6=0,m=−2

∫ 4τ−α

3τ+α

ωm exp(imωrt)dtIzSz = −IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[−ω−1 − ω1]

ωr
2 cosωrα}

The π pulse applied along X direction for the duration of 4τ − α to 4τ + α to I

spin. The Hamiltonian corresponding to interval is

U †(4τ+α, 4τ−α)HIS
D (t)U(4τ+α, 4τ−α) = −

2∑
m6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)−Iy sin θ(t))Sz

Where θ(t) = π
2
[ t−4τ+α

α
]

−
2∑

m 6=0,m=−2

∫ 4τ+α

4τ−α
ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= iIzSz{
ωr(ω

2 − ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

2 cosωrα}

IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

The interval from 4τ + α to 9τ
2
− α consist no pulse. The Hamiltonian in toggling

frame is

U †(
9τ

2
− α, 4τ + α)HIS

D (t)U(
9τ

2
− α, 4τ + α) =

2∑
m6=0,m=−2

ωm exp(imωrt)IzSz

the effective Hamiltonian is
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2∑
m 6=0,m=−2

∫ 9τ
2
−α

4τ+α

ωm exp(imωrt)dtIzSz = IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[ω−1 − ω1]

iωr
2 cosωrα}

The interval 9τ
2
− α to 9τ

2
+ α contain a pi pulse in X direction. The Hamiltonian

in toggling frame and effective Hamiltonian given below

U †(
9τ

2
+α,

9τ

2
−α)HIS

D (t)U(
9τ

2
+α,

9τ

2
−α) =

2∑
m6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)−Iy sin θ(t))Sz

Where θ(t) = π
2
[
t− 9τ

2
+α

α
]

2∑
m 6=0,m=−2

∫ 9τ
2

+α

9τ
2
−α

ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= −iIzSz{
ωr(ω

2 − ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

2 cosωrα}

−IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(−ω1 − ω−1)

ω2
r − ( π

2α
)2

cosωrα}

The effective Hamiltonian for the duration 9τ
2

+ α to 5τ − α

U †(5τ − α, 9τ

2
+ α)HIS

D (t)U(5τ − α, 9τ

2
+ α) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz

the effective Hamiltonian is

2∑
m 6=0,m=−2

∫ 5τ−α

9τ
2

+α

ωm exp(imωrt)dtIzSz = −IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[−ω−1 + ω1]

iωr
2 cosωrα}
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There is a π pulse applied along X direction on I spin.The duration of the pulse

is from 5τ − α to 5τ + α. The effective Hamiltonian described as

U †(5τ+α, 5τ−α)HIS
D (t)U(5τ+α, 5τ−α) = −

2∑
m6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)−Iy sin θ(t))Sz

Where θ(t) = π
2
[ t−5τ+α

α
]

−
2∑

m 6=0,m=−2

∫ 5τ+α

5τ−α
ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= iIzSz{
ωr(−ω2ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(−ω1 + ω−1)

ω2
r − ( π

2α
)2

2 cosωrα}

IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

For the interval of 5τ + α to 11τ
2
− α consist no pulse. The effective Hamiltonian

can found as

U †(
11τ

2
− α, 5τ + α)HIS

D (t)U(
11τ

2
− α, 5τ + α) =

2∑
m6=0,m=−2

ωm exp(imωrt)IzSz

2∑
m 6=0,m=−2

∫ 11τ
2
−α

5τ+α

ωm exp(imωrt)dtIzSz = IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[ω−1 − ω1]

iωr
2 cosωrα}

A π pulse applied along X direction on I spin for a duration of 11τ
2
−α to 11τ

2
+α.

The effective Hamiltonian is

U †(
11τ

2
+α,

11τ

2
−α)HIS

D (t)U(
11τ

2
+α,

11τ

2
−α) =

2∑
m6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)−Iy sin θ(t))Sz
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Where θ(t) = π
2
[
t− 11τ

2
+α

α
]

2∑
m6=0,m=−2

∫ 11τ
2

+α

11τ
2
−α

ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= −iIzSz{
ωr(−ω2 + ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

2 cosωrα}

−IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

The effective Hamiltonian for the interval 11τ
2

+ α to 6τ − α is represented as

U †(6τ − α, 11τ

2
+ α)HIS

D (t)U(6τ − α, 11τ

2
+ α) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz

2∑
m 6=0,m=−2

∫ 6τ−α

11τ
2

+α

ωm exp(imωrt)dtIzSz = −IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[−ω−1 + ω1]

iωr
2 cosωrα}

The effective Hamiltonian for REDOR XX-4 pulse sequence is derived by sub-

tracting the effective Hamiltonian obtained from dephasing experiment from the

reference experiment. The pulse sequence for the reference experiment consist a π

pulse along X direction at exactly middle of the sequence on S spin and no pulses

applied on I spin. A π
2

Y pulse applied at the starting of the pulse sequence on S

spin and Signal collected at the end of the cycle time from S spin.

The detailed description REDOR - XX4 pulse sequence is given below

The effective Hamiltonian for the reference experiment is derived using Average

Hamiltonian Theory (AHT).The important steps involved in the calculation are

summarized below
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Figure 3.4: Schematic depiction ofreference experiment of REDOR
XX-4 The pulse sequence for the reference experiment of REDOR XX-4 as

follows.The sequence starting with a
π

2
y pulse on S spin. A πx pulse apply

exactly middle of the pulse cycle. The cycle time of the sequence is 6τ and the
duration of the π pulse is tw where the tw = 2α. The spin echo signal is collected

at S spin at 6τ − α.

U †(3τ+α, 3τ−α)HIS
D (t)U((3τ+α, 3τ−α)) =

2∑
m 6=0,m=−2

ωm exp(imωrt)(Sz cos θ(t)−Sy sin θ(t))Iz

Where θ(t) =
π

2
[
t− 3τ + α

α
]

2∑
m 6=0,m=−2

∫ 3τ+α

3τ−α
ωm exp(imωrt)(Sz cos θ(t)− Sy sin θ(t))Izdt

= iIzSz{
ωr(ω

2 − ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

4 cosωrα}

−SyIz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

Employing the Magnus formula, average Hamiltonian is calculated as the average

of interaction frame Hamiltonian over the cycle time tc of the pulse sequence.
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Ĥ
1

IS =
1

tc

∫ to+tc

t0

ĤIS(t)dt

Calculation of the first-order Average Hamiltonian for REDOR XX-4 with finite

pulse results,

Ĥ
1

IS = −
cos π

2
φ

3π(1− φ2)
i(ω−1 − ω1)IzSz − 8φ(ω−1 − ω1)IySz

Where φ = 2tw
τ

is the fraction of rotor period occupied by RF pulses defined range

of o ≤ φ ≤ 1 ,tw is the time duration of π pulse and τ is the rotor period.

Ĥ
1

IS can be rewrite as

Ĥ
1

IS = −CIzSz −DIySz

, Where C =
cos π

2
φ

3π(1−φ2)
i(ω−1 − ω1) and D = 8φ(ω−1 − ω1)

The finite pulse inclusion in effective Hamiltonian calculation leads to a conclusion

that the finite pulse plays some role in the experiment. Since tw is considerably

large such that φ = 2tw
τ
6= 0, the terms correspond to IySz comes to picture. The

next task is find the effect of finite pulse in the signal.

In REDOR XX-4 the signal is collected from S spin. The signal 〈Sx〉 defined as

Trace 〈Sxρ(t)〉.

S(τ) = Trace〈Sxρ(t)〉

ρ(t) = e

−iĤ
1

ISt

} ρ(0)e

iĤ
1

ISt

}

The ρ(0) is initial density matrix which is Sx in REDOR XX-4. The ρ(t) found

from BCH expansion.
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ρ(t) = Sx(cos

√
C2 +D2

2
τ) +

2√
C2 +D2

(cos

√
C2 +D2

2
τ)(CIzSz +DIySz)

The signal S(t) = Trace〈Sxρ(t)〉

S(τ) = cos(

√
C2 +D2

2
)τ

The effect of finite pulse is clearly visible from the expression of signal. The

frequency of the signal is
√
C2+D2

2
. The C and D are depend on nature of the pulse

by the variable φ. If the pulse is delta that is φ = 0, the term D will be zero. As φ

increases contribution from D also increases. The similar dependence also appears

in C. The φ dependence in C is coming from cos π
2
φ term. The analytic expression

of the signal compared with numerical simulations using Simpson. The of signal

REDOR XX-4 pulse sequence from simpson is given below,

Figure 3.5: The numerically simulated signal for REDOR XX-4 pulse sequence
is obtained from Simpson. The pulses in this sequence approximated as Delta
pulse. The signal behaves as expected from the calculations.The signal starting

from maximum amplitude and decays to zero.
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The finite pulse effect in REDOR XX-4 pulse sequence is visualized by comparing

signals from pulse sequences by varying magnitude of φ. As changing φ resulted

The numerical simulation for different φ values implies that the signal depend on

the ratio of pulse length to cycle time. The numerical simulations are given below,

Figure 3.6: The numerically simulated signal of REDOR XX-4 pulse sequence
for different φ values.The φ is 2tw

tr
, where tw is duration of the pulse and τr is

the cycle time. The purple, green and blue graphs correspond to φ = 0.32, 0.6
and 0.4 respectively

The numerically simulated signal for REDOR XX-4 pulse sequence for different

φ.The φ is the ratio 2tw
tr

, where tw is duration of the pulse and τr is the cycle

time. The purple, green and blue correspond to φ = 0.32, 0.6 and 0.4 respectively.

The numerical simulation for different φ values clearly indicate that the signal is

varying with φ. When φ increases the frequency of evolution also increase, the

frequency of evolution is higher in case of φ= 0.6( green line) where frequency is

lower for φ = 0.32 (blue). The signal decays fast in case of higher φ values.

The analysis of effects of finite pulse in REDOR XX-4 sequences conclude that
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the φ (2tw
τr

) depend on signal. The analytic expression and numerical simulations

hold the same result. The calculation extending to REDOR XX − 4 to conclude

the effect finite pulse.

3.3 REDOR XX − 4

The effect of finite pulse on REDOR XX−4 calculated using Average Hamiltonian

theory. Compared to REDOR XX-4 pulse sequence REDOR XX − 4 is much

more robust. The π pulses applied alternatively from X and X to S spin which

reduces experimental errors. The motivation of this calculation is to compare the

result with REDOR XX-4 and generalize the effect of finite pulse on REDOR

experiments.

Figure 3.7: Reference experiment of REDOR XX−4 The pulse sequence
for the dephasing experiment of REDOR XX−4 as follows.The sequence start-

ing with a
π

2
y pulse on S spin. A πx pulses applied exactly middle of the pulse

cycle.The π applied to I spin from X and -X directions alternatively. The cy-
cle time of the sequence is 6τ and the duration of the π pulse is tw where the
tw = 2α.The πx pulses applied on I spin which creates spin echo. The spin echo

signal is collected at S spin at 6τ − α.
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The dipolar Hamiltonian under Magic angle spinning conditions can be represented

as

HIS
D (t) =

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz

Average Hamiltonian Theory provide suitable framework for effective Hamiltonian.

The effective time independent Hamiltonian H̃ave can be expanded in a series of

terms of increasing order of time by Magnus expansion

H̃ave = H̃0 + H̃1 + H̃2 + H̃3...

e
−i
H̃avet

} = e
−it
H̃0 + H̃1 + H̃2 + H̃3...

}

The Hamiltonians for small intervals were calculated and added to get the effective

Hamiltonian. The Hamiltonian become time dependent because of magic angle

spinning and RF pulse irradiation.The Hamiltonian HIS
D (t) in toggling frame or

interaction frame is given by the following transformation

ĤIS
D (t) = U †(t)HIS

D U(t)

The U(t) is the propagator corresponding to the interval t.

There is no RF pulse applied during interval from α to τ
2
− α. The propagator

corresponding to the interval is U( τ
2
− α, α) is 1. The Hamiltonian in toggling

frame given by the frame transformation

U †(
τ

2
− α, α)HD(t)ISU(

τ

2
− α, α) =

2∑
m6=0,m=−2

ωm exp(imωrt)IzSz

The Hamiltonian in toggling frame is time dependent. The effective Hamiltonian

is given by the integration over the interval α to τ
2
− α.

2∑
m 6=0,m=−2

∫ τ
2
−α

α

ωm exp(imωrt)dtIzSz = IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[ω−1 − ω1]

iωr
2 cosωrα}
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A π pulse applied along X axis on I spin for finite duration from τ
2
− α to τ

2
+ α.

The Hamiltonian in toggling frame can be written as

U †(
τ

2
+α,

τ

2
−α)HIS

D U(
τ

2
+α,

τ

2
−α) =

2∑
m 6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)−Iy sin θ(t))Sz

Where θ(t) =
π

2
[
t− τ

2
+α

α
]

the Hamiltonian for the the same duration given by

2∑
m6=0,m=−2

∫ τ
2

+α

τ
2
−α

ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= −iIzSz{
ωr(ω

−2 − ω2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

4 cosωrα}

−IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

2 cos 2ωrα +
π
α

(−ω1 − ω−1)

ω2
r − ( π

2α
)2

cosωrα}

For a time interval τ
2

+ α to τ − α the propagator U( τ
2

+ α, τ − α) is one. The

Hamiltonian under transformation can be represent as

U †(
τ

2
+ α, τ − α)HIS

D (t)U(
τ

2
+ α, τ − α) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz

2∑
m 6=0,m=−2

∫ τ−α

τ
2

+α

ωm exp(imωrt)dtIzSz = −IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[−ω−1 + ω1]

iωr
2 cosωrα}

For duration τ − α to τ + α a π pulse applied along -X axis. The Hamiltonian

corresponding to above duration is represented as
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U †(τ+α, τ−α)HIS
D (t)U((τ+α, τ−α)) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)+Iy sin θ(t))Sz

Where θ(t) =
π

2
[ t−τ+α

α
]

−
2∑

m 6=0,m=−2

∫ τ+α

τ−α
ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= iIzSz{
ωr(ω

−2 − ω2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(−ω1 + ω−1)

ω2
r − ( π

2α
)2

2 cosωrα}

−IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

For the duration of τ + α to 3τ
2
− α no pulses applied. The transformation to

toggling frame results

U †(
3τ

2
− α, τ + α)HIS

D (t)U(
3τ

2
− α, τ + α) =

2∑
m6=0,m=−2

ωm exp(imωrt)IzSz

the Hamiltonian corresponding to the interval is

2∑
m 6=0,m=−2

∫ 3τ
2
−α

τ+α

ωm exp(imωrt)dtIzSz = IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[ω−1 − ω1]

iωr
2 cosωrα}

A π pulse along X direction consists in interval 3τ
2
−α to 3τ

2
+α. The Hamiltonian

in interaction frame is calculated to be

U †(
3τ

2
+α,

3τ

2
−α)HIS

D (t)U((
3τ

2
−α, 3τ

2
−α)) =

2∑
m 6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)−Iy sin θ(t))Sz
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θ(t) =
π

2
[
t− 3τ

2
+ α

α
]

The effective Hamiltonian for the same interval represented as

2∑
m 6=0,m=−2

∫ 3τ
2

+α

3τ
2
−α

ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= iIzSz{
ωr(−ω2 + ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

4 cosωrα}

−IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(−ω1 − ω−1)

ω2
r − ( π

2α
)2

cosωrα}

There is no RF pulse applied during the interval 3τ
2

+α to 2τ−α. The Hamiltonian

in toggling frame can be represent as

U †(2τ − α, 3τ

2
+ α)HIS

D (t)U(2τ − α, 3τ

2
+ α) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz

2∑
m 6=0,m=−2

∫ 2τ−α

3τ
2

+α

ωm exp(imωrt)dtIzSz = −IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[−ω−1 + ω1]

iωr
2 cosωrα}

The interval 2τ − α to 2τ + α consist a π pulse along -X direction on I spin. The

transformation of Hamiltonian to toggling frame results

U †(2τ+α, 2τ−α)HIS
D (t)U((2τ+α, 2τ−α)) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)−Iy sin θ(t))Sz

Where θ(t) =
π

2
[
t− 2τ + α

α
]

the Hamiltonian for the interval represented as
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2∑
m6=0,m=−2

∫ 2τ+α

2τ−α
ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= −iIzSz{
ωr(−ω2 + ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(−ω1 + ω−1)

ω2
r − ( π

2α
)2

2 cosωrα}

−IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

The interval 2τ + α to 3τ − α consist no pulse. The Hamiltonian corresponding

this interval is

U †(3τ − α, 2τ + α)HIS
D (t)U(3τ − α, 2τ + α) =

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz

2∑
m 6=0,m=−2

∫ 3τ−α

2τ+α

ωm exp(imωrt)dtIzSz = IzSz{
−[ω−2 − ω2]

ωr
sin 2ωrα+

[−ω−1 − ω1]

ωr
2 cosωrα}

A π pulse applied along X direction at exactly half of the cycle to S spin. The

duration of the pulse is 3τ −α to 3τ +α. The transformation to toggling frame is

U †(3τ+α, 3τ−α)HIS
D (t)U((3τ+α, 3τ−α)) =

2∑
m 6=0,m=−2

ωm exp(imωrt)(Sz cos θ(t)−Sy sin θ(t))Iz

Where θ(t) =
π

2
[
t− 3τ + α

α
]

2∑
m 6=0,m=−2

∫ 3τ+α

3τ−α
ωm exp(imωrt)(Sz cos θ(t)− Sy sin θ(t))Izdt

= iIzSz{
ωr(ω

2 − ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

4 cosωrα}
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−SyIz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

The interval from 3τ +α to 4τ −α consist no pulses. The Hamiltonian in toggling

is

U †(4τ − α, 3τ + α)HIS
D (t)U(4τ − α, 3τ + α) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz

The Hamiltonian corresponding to this interval

2∑
m6=0,m=−2

∫ 4τ−α

3τ+α

ωm exp(imωrt)dtIzSz = −IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[−ω−1 − ω1]

ωr
2 cosωrα}

The π pulse applied along X direction for the duration of 4τ − α to 4τ + α to I

spin. The Hamiltonian corresponding to interval is

U †(4τ+α, 4τ−α)HIS
D (t)U(4τ+α, 4τ−α) = −

2∑
m6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)−Iy sin θ(t))Sz

Where θ(t) = π
2
[ t−4τ+α

α
]

−
2∑

m 6=0,m=−2

∫ 4τ+α

4τ−α
ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= iIzSz{
ωr(ω

2 − ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

2 cosωrα}

IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

The interval from 4τ + α to 9τ
2
− α consist no pulse. The Hamiltonian in toggling

frame is
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U †(
9τ

2
− α, 4τ + α)HIS

D (t)U(
9τ

2
− α, 4τ + α) =

2∑
m6=0,m=−2

ωm exp(imωrt)IzSz

the effective Hamiltonian is

2∑
m 6=0,m=−2

∫ 9τ
2
−α

4τ+α

ωm exp(imωrt)dtIzSz = IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[ω−1 − ω1]

iωr
2 cosωrα}

The interval 9τ
2
− α to 9τ

2
+ α contain a pi pulse in -X direction on I spin. The

Hamiltonian in toggling frame and effective Hamiltonian represented as

U †(
9τ

2
+α,

9τ

2
−α)HIS

D (t)U(
9τ

2
+α,

9τ

2
−α) =

2∑
m6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)+Iy sin θ(t))Sz

Where θ(t) = π
2
[
t− 9τ

2
+α

α
]

2∑
m 6=0,m=−2

∫ 9τ
2

+α

9τ
2
−α

ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= −iIzSz{
ωr(ω

2 − ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

2 cosωrα}

+IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(−ω1 − ω−1)

ω2
r − ( π

2α
)2

cosωrα}

The effective Hamiltonian for the duration 9τ
2

+ α to 5τ − α

U †(5τ − α, 9τ

2
+ α)HIS

D (t)U(5τ − α, 9τ

2
+ α) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz

the effective Hamiltonian is
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2∑
m 6=0,m=−2

∫ 5τ−α

9τ
2

+α

ωm exp(imωrt)dtIzSz = −IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[−ω−1 + ω1]

iωr
2 cosωrα}

There is a π pulse applied along X direction on I spin.The duration of the pulse

is from 5τ − α to 5τ + α. The effective Hamiltonian described as

U †(5τ+α, 5τ−α)HIS
D (t)U(5τ+α, 5τ−α) = −

2∑
m6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)−Iy sin θ(t))Sz

Where θ(t) = π
2
[ t−5τ+α

α
]

−
2∑

m 6=0,m=−2

∫ 5τ+α

5τ−α
ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= iIzSz{
ωr(−ω2ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(−ω1 + ω−1)

ω2
r − ( π

2α
)2

2 cosωrα}

IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

For the interval of 5τ + α to 11τ
2
− α consist no pulse. The effective Hamiltonian

can found as

U †(
11τ

2
− α, 5τ + α)HIS

D (t)U(
11τ

2
− α, 5τ + α) =

2∑
m6=0,m=−2

ωm exp(imωrt)IzSz

2∑
m 6=0,m=−2

∫ 11τ
2
−α

5τ+α

ωm exp(imωrt)dtIzSz = IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[ω−1 − ω1]

iωr
2 cosωrα}
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A π pulse applied along -X direction on I spin for a duration of 11τ
2
−α to 11τ

2
+α.

The effective Hamiltonian is

U †(
11τ

2
+α,

11τ

2
−α)HIS

D (t)U(
11τ

2
+α,

11τ

2
−α) =

2∑
m6=0,m=−2

ωm exp(imωrt)(Iz cos θ(t)+Iy sin θ(t))Sz

Where θ(t) = π
2
[
t− 11τ

2
+α

α
]

2∑
m6=0,m=−2

∫ 11τ
2

+α

11τ
2
−α

ωm exp(imωrt)(Iz cos θ(t)− Iy sin θ(t))Szdt

= −iIzSz{
ωr(−ω2 + ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

2 cosωrα}

IySz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

The effective Hamiltonian for the interval 11τ
2

+ α to 6τ − α is given as

U †(6τ − α, 11τ

2
+ α)HIS

D (t)U(6τ − α, 11τ

2
+ α) = −

2∑
m 6=0,m=−2

ωm exp(imωrt)IzSz

2∑
m 6=0,m=−2

∫ 6τ−α

11τ
2

+α

ωm exp(imωrt)dtIzSz = −IzSz{
[−ω−2 − ω2]

ωr
sin 2ωrα+

[−ω−1 + ω1]

iωr
2 cosωrα}

The effective Hamiltonian for REDOR XX − 4 pulse sequence is found by sub-

tracting the effective Hamiltonian of dephasing experiment from the reference

experiment as did in REDOR XX-4. The pulse sequence for the reference exper-

iment consist a π pulse along X direction at exactly middle of the sequence on S

spin and no pulses applied on I spin. A π
2

Y pulse applied at the starting of the
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pulse sequence on S spin and Signal collected at the end of the cycle time from S

spin.

The detailed description REDOR - XX4 pulse sequence is given below

Figure 3.8: Reference experiment of REDOR XX−4 The pulse sequence
for the reference experiment of REDOR XX−4-4 as follows.The sequence start-

ing with a
π

2
y pulse on S spin. A πx pulse apply exactly middle of the pulse

cycle. The cycle time of the sequence is 6τ and the duration of the π pulse is
tw where the tw = 2α. The spin echo signal is collected at S spin at 6τ − α.

The effective Hamiltonian for the reference pulse sequence found using Average

Hamiltonian Theory (AHT). The magic angle spinning will average out all second

order interactions. Application of finite pulse contribute on effective Hamiltonian

of reference experiment.

U †(3τ+α, 3τ−α)HIS
D (t)U((3τ+α, 3τ−α)) =

2∑
m 6=0,m=−2

ωm exp(imωrt)(Sz cos θ(t)−Sy sin θ(t))Iz

Where θ(t) =
π

2
[
t− 3τ + α

α
]
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2∑
m 6=0,m=−2

∫ 3τ+α

3τ−α
ωm exp(imωrt)(Sz cos θ(t)− Sy sin θ(t))Izdt

= iIzSz{
ωr(ω

2 − ω−2)

4ω2
r − ( π

2α
)2

4 cos 2ωrα +
ωr(ω

1 − ω−1)

ω2
r − ( π

2α
)2

4 cosωrα}

−SyIz{
π
α

(ω2 + ω−2)

4ω2
r − ( π

2α
)2

cos 2ωrα +
π
α

(ω1 + ω−1)

ω2
r − ( π

2α
)2

cosωrα}

The first-order average Hamiltonian is calculated as the average of interaction

frame Hamiltonian over the cycle time tc of the pulse sequence.

Ĥ
1

IS =
1

tc

∫ to+tc

t0

ĤIS(t)dt

Calculation of the first-order Average Hamiltonian for REDOR XX−4 with finite

pulse yields,

Ĥ
1

IS =
4

3π
cos(

π

2
φ)
i(ω1 − ω−1)

2(1− φ2)
IzSz +

(ω2 − ω−2)φ

1− 4φ2
cos(πφ)IySz

Where φ = 2tw
τ

is the fraction of rotor period occupied by RF pulses defined range

of o ≤ φ ≤ 1 ,tw is the time duration of π pulse and τ is the rotor period.

Ĥ
1

IS can be rewrite as

Ĥ
1

IS = −CIzSz −DIySz

, Where C = 4
3π

cos(π
2
φ) i(ω

1−ω−1)
2(1−φ2)

and D = (ω2−ω−2)φ
1−4φ2

cos(πφ)

The finite pulse inclusion in effective Hamiltonian calculation leads to a conclusion

that the finite pulse plays important role in the experiment. Since tw is consider-

ably large such that φ = 2tw
τ
6= 0, the terms correspond to IySz comes to picture.

The next task is find the effect of finite pulse in signal.

In REDOR XX − 4 the signal is collected from S spin. The signal 〈Sx〉 defined as

Trace 〈Sxρ(t)〉.
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S(τ) = Trace〈Sxρ(t)〉

ρ(t) = e

−iĤ
1

ISt

} ρ(0)e

iĤ
1

ISt

}

The ρ(0) is initial density matrix which is Sx in REDOR XX−4 . The ρ(t) found

from BCH expansion.

ρ(t) = Sx(cos

√
C2 +D2

2
τ) +

2√
C2 +D2

(cos

√
C2 +D2

2
τ)(CIzSz +DIySz)

The signal S(t) = Trace〈Sxρ(t)〉

S(τ) = cos(

√
C2 +D2

2
)τ

Where C = 4
3π

cos(π
2
φ) i(ω

1−ω−1)
2(1−φ2)

and D = (ω2−ω−2)φ
1−4φ2

cos(πφ)

The effect of finite pulse is clearly visible from the expression of signal. The

frequency of the signal is
√
C2+D2

2
. The C and D are depend on nature of the pulse

by the variable φ. If the pulse is delta that is φ = 0, the term D will be zero. As φ

increases contribution from D also increases. The similar dependence also appears

in C. The φ dependence in C is coming from cos π
2
φ term. The analytic expression

of the signal compared with numerical simulations. The numerical simulations are

given by Simpson. The of signal REDOR XX − 4 pulse sequence from simpson is

given below,

The numerical simulation qualitatively matching with analytic expression of the

signal. When signal acquisition starts with maximum amplitude and decays to zero
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Figure 3.9: The numerically simulated signal for REDOR XX − 4 pulse se-
quence is obtained from Simpson. The pulses in this sequence approximated as
Delta pulse. The signal behaves as expected from the calculations.The signal

starting from maximum amplitude and decays to zero.

as time increases. The decaying nature of the signal is because of spin relaxation.

The signal has functional form of cos and the frequency of the evolution changes

according to change in spin parameters. The numerical simulation for different φ

values implies that the signal depend on the ratio of pulse length to cycle time.

The numerical simulations are given below,

The numerically simulated signal for REDOR XX−4 pulse sequence for different

φ.The φ is the ratio 2tw
tr

, where tw is duration of the pulse and τr is the cycle time.

The purple, green and blue correspond to φ = 0.32, 0.5 and 0.25 respectively.

The numerical simulation for different φ values clearly indicate that the signal is

varying with φ. When φ increases the frequency of evolution also increase, the

frequency of evolution is higher in case of φ= 0.5( green line) where frequency is

lower for φ = 0.25 (blue). The signal decays fast in case of higher φ values.

The ratio (2tw
τr

) can be change two ways, by changing the pulse duration tw and

by changing rotor period τr
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Figure 3.10: The numerically simulated signal of REDOR XX − 4 pulse
sequence for different φ values.The φ is 2tw

tr
, where tw is duration of the pulse

and τr is the cycle time. The purple, green and blue graphs correspond to φ =
0.32, 0.5 and 0.25 respectively

. The figure at left side correspond to for different φ values such that rotor period

(τ) put constant and pulse duration (tw) changed. the figure on right side cor-

respond to signal for different φ such that pulse duration (tw) put constant and

rotor period (τr) varied. The purple, green and blue graphs correspond to φ =

0.32, 0.5 and 0.25 respectively. The conclusion is the nature of the signal depend

on the the ratio φ. The φ can change in two ways, but the signal only depend on

magnitude of φ.

Analysis of finite pulse effect in REDOR XX-4 and REDOR XX − 4 states that

the ratio of pulse duration with cycle time (2tw
tr

) has inevitable dependency on

signal. The analytic expression for the signal indicate that as increase in φ values

the frequency of the signal also increases. The same conclusion shown in numer-

ical simulations. The effect of finite pulse inclusion is very important in REDOR

experiments. Since the φ values are depend on frequency of acquired signal,finite
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Figure 3.11: The numerically simulated signal of REDOR XX-4 . The figure
at left side correspond to for different φ values such that rotor period (τ) put
constant and pulse duration (tw) changed. the figure on right side correspond
to signal for different φ such that pulse duration (tw) put constant and rotor
period (τr) varied. The purple, green and blue graphs correspond to φ = 0.32,

0.5 and 0.25 respectively

pulse effects can change the accuracy of measurements. REDOR is used to mea-

sure weak dipolar intercation which causes tertiary and quaternary structure of

proteins. The internuclear distance accuracy has great significance in structure

determination. So effect of finite pulse should include in signal analysis.



Chapter 4

REDOR in Multispin System

Dipolar coupling measurements using solid state NMR is very important to struc-

tural determination of complex system such as membrane proteins, large enzymes

and photochemical reaction intermediates. The accurate internuclear distance

measurement is useful to three dimensional structural determination. The resolu-

tion and sensitivity of the SSNMR experiment optimized by the implementation of

magic angle spinning condition. The recoupling sequences like REDOR are used

to reintroduce dipolar interaction under spinning conditions.

REDOR commonly called rotational echo double resonance NMR used to recouple

heteronuclear interactions between isolated spin pair. REDOR provides accurate

internulear distance between isolated low γ spin pairs. So extending REDOR ex-

periments to larger spin systems has high significance. Before going to extension of

REDOR into larger spin systems, it is very important to understand about signal

analysis in REDOR experiment. REDOR signal from multispin system contains

frequencies correspond to multiple dipolar coupling. The Fourier transformation

is the general method used in all kind of spectroscopy to extract individual fre-

quencies from time domain signal. In the Fourier transformation enDiτr used as

the Kernal to transform time domain signal to frequency domain.

49
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∫ ∞
0

AiS(nDiτr)e
nDiτr = Aiδ(D −Di)

Figure 4.1: The Fourier transformation of time domain REDOR signal to
frequency domain domain shown in the figure. Fourier transformation lead

spectrum with spectral width proportional to the dipolar coupling.

The width of the peak in frequency domain spectrum is proportional to the dipo-

lar coupling. The accurate measurement of dipolar coupling is not possible with

Fourier transformation because peaks are not sharp enough to give exact value

of dipolar coupling. The accurate measurement of internuclear distance is very

important in structural determination.

The Fourier transformed spectrum of multispin system shown below. The multi-

spin system has more than one dipolar coupling frequencies.

The Fourier transformed spectrum of REDOR in multispin system is very broad.

The individual frequency determination from this broad spectrum is impossible.

This is the major disadvantage of Fourier transformation method in REDOR ex-

periments. The another drawback is frequency determination of weak interactions.

when dipolar interaction is weak the Fourier transformed spectrum become very

broad. Accurate determination of dipolar frequency in such cases are impossible.
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Figure 4.2: The Fourier transformation of time domain REDOR signal from
a multispin sytem to frequency domain domain shown in the figure. Fourier
transformation lead spectrum with spectral width proportional to the dipolar

coupling.

In this cases numerical simulations gives better results. But numerical method is

not applicable in multispin systems.

The REDOR transform replaces Fourier transformation in REDOR.

4.0.1 REDOR Transfrom

The REDOR Transform is the method of direct calculation of internuclear cou-

pling from dipolar-dephasing NMR data, proposed by K.T Mueller in 1995. The

REDOR signal for a particular crystal orientation without including finite pulse

effect is given by the expression,

Sr
S0

= cos(2τrωD)

Where the ωD is the dipolar frequency for that specific orientation can be represent

as

ωD(α, β, t) = ∓πD[sin2 β cos 2(α + ωrt)−
√

2 sin 2β cos(α + ωrt)]

The angles α and β are the azimuthal and polar angles describing orientation

of internuclear vector. The spinning frequency is ωr. The is dipolar coupling

constant,

D =
γIγS
r3
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where the γI and γS are the gyromagnetic ratio of spins I and S.

The signal of the powder sample is given by integrating over all possible orienta-

tions. The reduced signal Sr
S0

is,

Sr
S0

=
1

4π

∫ 2π

0

dα

∫ π

0

sin βdβ cos(∆φn)

The ∆φn is the dephasing angle which depend on number of rotor cycles

∆φn = 4
√

2nDτr sin β cos β sin{α +
2πt1
τr
}

The reduced signal can be rewrite by substituting ∆φn

Sr
S0

=
1

4π

∫ 2π

0

dα

∫ π

0

sin βdβ cos(4
√

2nDτr sin β cos β sin{α +
2πt1
τr
})

The above integrals usually evaluated numerically to get dipolar coupling constant.

The difficulty to obtain analytic solution to the integrals lies in the functional

morass of trigonometric functions of trigonometric functions. The analytic solution

of above integrals can be represented as Bessel functions.

Bessel functions (Jk) of first kind are solutions to Bessel equation

x2d
2Jk(x)

dx2
+ x

dJk(x)

dx
+ (x2 − k2)Jk(x) = 0

The trigonometric functions can be rewrite using Bessel functions

cos(x sin θ) = J0(x) + 2
∞∑
k=1

J2k(x) cos(2kθ)

sin(x sin θ) = 2
∞∑
k=1

J2k−1(x) sin((2k − 1)θ)
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cos(x cos θ) = J0(x) + 2
∞∑
k=1

(−1)kJ2k(x) cos(2kθ)

sin(x cos θ) = 2
∞∑
k=1

(−1)k−1J2k−1(x) cos(2k − 1)θ)

The analytic expression of the signal is found using Bessel functions,

S(nDiτi) =

√
2pi

4
J 1

4
(
√

2nDiτi)J−1
4

(
√

2nDiτi)

The next task is finding appropriate Kernal (K(nDiτi)) to transfer time domain

signal to frequency domain. A general formula is available for the inverse function

of the product of two spherical Bessel functions such that

∫ ∞
0

jl(
√

2nDiτi)jl+m(
√

2nDiτi)gl,m(
√

2nDiτi)djl(
√

2nτi) = δ(D −Di)

The Kernal or inverse function gl,m(x) defined as

gl,m(x) =
8x2

π

d

dx2
[x2yl(x)jl+m(x)]

The Kernal in form form cylindrical Bessel functions of first and second kind is

given below.

K(nDiτi) = 8nDiτi{J 1
4
(
√

2nDiτi)Y−1
4

(
√

2nDiτi)}

+8
√

2(nDiτi)
2{J−3

4
(
√

2nDiτi)Y−1
4

(
√

2nDiτi) + J 1
4
(
√

2nDiτi)Y 5
4
(
√

2nDiτi)}

The exact analytic solution of REDOR signal found using Bessel functions. Ker-

nal for the REDOR transformation also available in literature as inverse Bessel

function. The introduction of REDOR transform in analysis has significant role in

calculating accurate internuclear distances. The accurate distance measurement
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popularized REDOR over other Solid State NMR techniques. The comparison of

Fourier transformation with REDOR transformation given below,

Figure 4.3: The Fourier transformation and REDOR transform of time do-
main REDOR signal.The figure (a) correspond to the inverted REDOR de-
phasing curve. Figure (b) correspond to Fourier transformation of REDOR
siganl.The Fourier transformation results spectrum with spectral width propor-
tional to the dipolar coupling. Figure (c) correspond to REDOR transformation
of REDOR siganl.The REDOR transformation results spectrum with a single

line at dipolar coupling frequency.

The Fourier transformation of the REDOR signal resulted a spectrum with broad

peaks. the width of the peak correspond to the dipolar frequency. The drawback of

Fourier transformation is that the accurate determination of the dipolar frequecy is

not possible sue to broad nature of the peaks. The REDOR transform of the same

signal is given in (c), In REDOR transformation a sharp line at interested dipolar

frequency. The determination of dipolar coupling frequency is very accurate in

this kind of spectrum. This example clearly indicate that REDOR transformation

gives highly resolved spectrum.

The analysis of REDOR signal for multispin system which contain three dipo-

lar coupling. The figure (a) is the inverted REDOR signal which conatain three

dipolar couplings. The Fourier transformation of inverted signal resulted a broad
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Figure 4.4: REDOR analysis in multispin system. Figure (a) is the inverted
REDOR curve with three dipolar couplings.The figure (2)is Fourier transfor-
mation of time domain inverted REDOR curve to frequency domain. Fourier
transformation lead spectrum with spectral width proportional to the dipolar
coupling. The figure (c) is REDOR transformation of the same inverted RE-

DOR curve.

peak. The individual determination of dipolar frequencies are impossible in Fourier

transform spectrum. The REDOR transformation of the same inverted signal is

given in figure (c). The REDOR transformation results the spectrum with three

individual sharp peaks. The peaks are no longer broad and frequency determina-

tion of all three couplings are possible.

The Fourier transformation of REDOR signal results broad peaks. The accu-

rate determination of the frequencies are not possible with Fourier transformation.

The description of multiapin systems even difficult using Fourier transformation,

since determination of individual frequencies are not possible. The way to solve

these difficulties is the finding of appropriate mathematical method to analysis

inverted REDOR. The Bessel finction are used to describe analytic form of in-

verted REDOR signal. The Kernal for the transformation selected from inverse

Bessel functions. The REDOR transform gives high resolved spectrum compared

to Fourier transformation method. The individual determination of frequencies

are possible in case of multiple spin systems. The weak couplings also clearly

observable in REDOR transformation.
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4.0.1.1 Analysis of IS2 spin system

Consider a IS2 spin system, The dipolar Hamiltonian correspond to the spin sys-

tem is

HD = ωD1SzIz1 + ωD2SzIz2

The magnitude of dipolar coupling between Sz and Iz1 spins is ωD1 and between Sz

and Iz2 spins is ωD2. The REDOR pulse sequence recouples Homonuclear dipolar

interaction between Sz1 and Sz2. During the REDOR pulse sequence the system

evolve under the Heteronulear dipolar Hamiltonian. The signal collected from S

spin by taking Sx as initial state. The REDOR signal for a individual orientation

is given by

S(2nτr) = cos(2nωD1τr) cos(2nωD2τr)

As expected signal expression contains terms ωD1 and ωD2 correspond to dipolar

interaction between spin pairs. The observed signal is the integral of all signals

corresponding to possible all possible orientation.

S(2nτr : D1, D2) =

∫
dΓ1

∫
dΓ2 cos(2nωD1[Γ1]τr) cos(2nωD2[Γ2]τr)dΓ1dΓ2

The Γ1 and Γ2 correspond to the angle sets of dipole vectors. The integral over

molecular orientation involves one set of unconstrained angular parameters. The

two sets of angles Γ1 and Γ2 are related by via a single set of Euler angles. The

REDOR transformation of the observed signal gives dipolar couplings between the

spin pairs. But to extract dipolar coupling information by REDOR transformation

one have know relative orientation between doplar vectors. predetermined struc-

ture can provide relative orientation.The conclusion is REDOR transformation on

multispin system works only if relative orientation between doples has predeter-

mined.This need is difficult to meet and comes as the major limitation of REDOR
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experiments in multispin system. The one method to solve this difficulty is by

labeling the spins selectively. All nuclei are not NMR active so selective labeling is

possible by introducing NMR active nucleus. Preparation of multiple specifically

labeled samples is the straight way to apply REDOR in multispin systems. In

specific labeling at a time single pair of heteronuclear system will NMR active and

rest of them will be inactive. Next time other pair of spins will be NMR active.The

drawback of this kind of experiment is preparation of sample in a selective manner

is time consuming and laborious.

4.0.1.2 Θ-REDOR

Inspection of REDOR experiments on multispin system reveals that the signal

analysis using REDOR transformation is impossible such cases where relative ori-

entation between dipole vectors are unknown. But it is possible to extract dipolar

coupling using REDOR transformation if signal represented by sum of two dipolar

couplings.

S(2nτr : D1, D2) =

∫
cos(2nωD1[Γ1]τr)dΓ1 +

∫
cos(2nωD2[Γ2]τr)dΓ2

Here the dipole-dipole coupling is evolving as sum of two separate dipolar coupling

instead of product of dipolar couplings. The constraints from relative orientation

is no more present in this situation. The idea to extract dipolar coupling from

multispin system can be achieved by expressing REDOR signal as sum of dipole-

dipole coupling. This is the basic idea of Θ-REDOR.The dipolar couplings from

multispin system found using Θ-REDOR. Before going to description Θ−REDOR

in detail, here explains how the REDOR signal varies with pulse applied on S Spin.

The REDOR signal from multispin system can be written as

SΘ(2nτr) = C2
1C

2
2 + cos ΘS2

1C
2
2 + cos ΘC2

1S
2
2 + cos ΘS2

1S
2
2
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C1 = cos(nωD1τR), C2 = cos(nωD2τR)

S1 = sin(nωD1τR), S2 = sin(nωD2τR)

The Θ is pulse angle applied to S Spin. There is no pulse applied on to S spin

during reference pulse sequence of REDOR experiment. The angle Θ is zero in

case of reference pulse sequence. The signal acquired from S spin during reference

experiment is,

SΘ(2nτr) = C2
1C

2
2 + cos ΘS2

1C
2
2 + cos ΘC2

1S
2
2 + cos ΘS2

1S
2
2

No pulse applied to S spin, the Θ is zero in reference pulse sequence and cos(Θ)

is one in this case,

SΘ(2nτr) = C2
1C

2
2 + S2

1C
2
2 + C2

1S
2
2 + S2

1S
2
2 = 1

the as expected dipolar interactions refocused in reference sequence. Let’s consider

dephasing sequence of REDOR pulse sequence. A π pulse applied to S spin in

dephasing Sequence, here Θ is π (cos Θ = −1). The signal from the dephasing

pulse sequence is

S(2nτr : D1, D2) = cos(2nωD1τr) cos(2nωD2τr)

The REDOR transformation requires relative orientation to extract dipolar fre-

quencies in this signal expression. The Θ - REDOR ultimately provides a signal

expression that contain sum of dipolar frequency terms instead of product.

The Θ-REDOR introduced by Pennington and Gullion in 1998. The experiment
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achieves desired deconvolution by breaking ISn spin networks down into collec-

tion of IS spin system. As compared to standard REDOR experiments Θ-REDOR

contains a Θ (Θ � π) pulse on S spin rather than a standard π pulse. If Θ is

sufficiently small there is a high probability that only single S spin is flipped and

dephasing signal contain dipolar coupling frequency of flipped spin to the I spin.

In other words at this condition phase accumulation due to HD is associated with

only a single coupling at a time.The schematic depiction of the pulse sequence for

the Θ− REDOR is given below,

Figure 4.5: Schematic depiction of Θ−REDOR XX-4 pulse sequence.
As in standard REDOR XX-4 pulse sequence Θ−REDOR XX-4 contains refer-
ence and dephasing pulse sequence. The difference from the standard REDOR
pulse sequence is that Θ-REDOR pulse sequence consist a Θ pulse on S spin at

middle of reference and dephaing pulse sequence.

when Θ 6 1 then the cos Θ ≈ 1− Θ2

2
+ Θ4

24
and cos2 Θ ≈ 1−Θ2 + Θ4

3
. Substituting

this approximation to the general equation for the signal

SΘ(2nτr) = C2
1C

2
2 + cos ΘS2

1C
2
2 + cos ΘC2

1S
2
2 + cos ΘS2

1S
2
2

gives the analytic expression for Θ-REDOR signal.

SΘ(2nτr) = (1− Θ2

2
+

Θ4

24
)[C2

1C
2
2 + S2

1C
2
2 + C2

1S
2
2 + S2

1S
2
2 ]



Chapter 1 REDOR in Multispin System 60

+(
Θ2

2
− Θ4

6
)[C2

1C
2
2 − S2

1S
2
2 ] +

Θ6

16
[C2

1C
2
2 − S2

1C
2
2 − C2

1S
2
2 + S2

1S
2
2 ]

the final expression of the signal SΘ(2nτr) is

SΘ(2nτr) = {1− Θ2

2
+

5Θ4

48
}

+{Θ2

2
− Θ4

6
}[cos(nωD1τR) + cos(nωD2τR)] +

Θ4

16
cos(nωD1τR) cos(nωD2τR)

The signal expression of REDOR contains three terms, the first and largest term is

(1−Θ2

2
+ 5Θ4

48
) contain no dipolar dephasing part. This term arising from molecules

that have no spin flip during application of Θ pulse on S spin. The second term of

the signal is desired signal function (Θ2

2
− Θ4

6
[cos(nωD1τR) + cos(nωD2τR)]). This

term correspond to the case were only S spin flipped during the Θ pulse and dipo-

lar coupling arises as the sum of individual dipolar coupling frequencies. The last

term is Θ4

16
cos(nωD1τR) cos(nωD2τR) contains errors where the signal function ap-

pears in the same form as found in the standard REDOR experiments. The the

magnitude of third term is very small because Θ is small and Θ4 will be negligible.

While the leading term in the dipolar evolution under Θ-REDOR correspond to

signals of the form [cos(nωD1τR) + cos(nωD2τR)]. this simplification comes about

at the cost of a large fraction of unused signal (1− Θ2

2
+ 5Θ4

48
). The important fact

is Θ - REDOR yields the desired simplified analysis in ISn system at the price of

a overall signal to noise ratio. The extension of this sequence to uniformly labeled

peptides is not straightforward. Accurate measurements of weak dipolar couplings

gives no satisfactory results using Θ-REDOR.

4.0.2 Frequency selective REDOR

The REDOR in multi-spin system is challenging because REDOR transforma-

tion depend on relative orientation of doplar vectors .Several modified versions of

REDOR have been developed to overcome the dependence of dipolar dephasing
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curves in coupled spin clusters on multiple coupling and their relative orientations.

The frequency selective REDOR (FS-REDOR) is a modified REDOR sequence to

encodes dipolar coupling frequencies from ISn spin system.The basic priciple of

frequency REDOR experiment is to retain certain interactions while refocusing

other by using frequency selective pulses. The RF pulses used in NMR can clas-

sify to two classes, hard pulse and soft pulse. The hard pulses are the common

class of pulses used in NMR. The hard pulse excite the entire spectral width uni-

formly. The soft pulse excite selective regions. The factors determine the nature of

the pulse are shape, amplitude and length of the pulse. Pulse shape is correlated

with shape of the excitation profile, the amplitude proportional to the flip angle

and pulse length gives the selectivity. The schematic depiction of pulse sequence

for dephasing frequency selective REDOR is given below

Figure 4.6: Schematic depiction of frequency selective REDOR pulse
sequence: FS-REDOR pulse sequence start with a π

2 y pulse on S spin. The
signal acquired from spin ant the end of the pulse sequence as in case of standard
REDOR experiment. At the middle of the pulse sequence a Gaussian π pulse

applied to both of the spins which recouple selective spin pairs

The FS-REDOR contain Gaussian pulses at exactly half of the pulse cycle on S

and I spins rest of the pulse sequence is exactly same as the standard REDOR
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sequence.The Gaussian pulse falls of quickly. There is no side lobes in frequency

domain help to fulfill high degree of accuracy. The Gaussian used such a way that

maxima of the Gaussian coincide with midpoint. A frequency selective spin echo

generated by the application of simultaneous rotor synchronized selective π pulses

on S and I spin. The selective irradiation accomplishes refocusing of selected spin

pairs.
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