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Introduction

Quadratic forms over fields F with char(F ) 6= 2 are degree two homogeneous
polynomials in finite number of variables. A linear change in these variables
produces an equivalent quadratic form. In general, over an arbitrary field,
or when the number of variables is too large, identifying invariants which
classify quadratic forms, up to equivalence, is a difficult task. However, the
classification is much easier when the underlying field is a local field. In this
case, very few invariants, namely dimension, discriminant and Hasse invari-
ant are enough to make this classification. This, in view of a local-global
principle called Hasse-Minkowski theorem, leads to the study of quadratic
forms over number fields. In this expository thesis, we aim to study these
topics. We also aim to classify small dimensional quadratic forms over arbi-
trary fields.

Since quadratic forms can be used to construct involutions on matrix
algebras, an attempt is also made to study invariants over central simple
algebras, and to use them for classification of involutions of first type.

ii



Chapter 1

Quadratic Forms

1.1 Introduction

Throughout this chapter F denote a field of characteristic 6= 2 and F ∗ will
denote the multiplicative group of F .

Definition 1.1.1 An (n-ary) quadratic form over a field F is a polynomial
in n variables over F that is homogeneous of degree 2.
Matrix Notation: By definition, a quadratic form f is of the type

f(X1, ..., Xn) =
n∑

i,j=1

aijXiXj ∈ F [X1, ..., Xn] = F [X].

To make the coefficients symmetric, it is wonted to rewrite f as

f(X) =
∑
i,j

1

2
(aij + aji)XiXj =

∑
i,j

a′ijXiXj,

where a′ij = 1
2
(aij + aji). In this way, f ascertains uniquely a symmetric

matrix (a′ij), which we shall denote by Mf . In terms of matrix notations, we
have

f(X) = (X1, ..., Xn).Mf .


X1

.

.

.
Xn

 = X t.Mf .X

where t is transpose and X is viewed as a column vector.
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Definition 1.1.2 Let f and g be two n-ary quadratic forms. We say f
is equivalent to g (denoted as f ∼= g) if there exists an invertible matrix
C ∈ GLn(F ) such that f(X) = g(C.X); i.e., Mf = Ct.Mg.C.

Apparently, ∼= is an equivalence relation.

Example 1.1.3 The quadratic forms g(X1, X2) = X1X2 and f(X1, X2) =
X2

1 −X2
2 are equivalent because

Mf =

(
1 0
0 −1

)
=

(
1 1
1 −1

)(
0 1/2

1/2 0

)(
1 1
1 −1

)
= Ct.Mg.C

Definition 1.1.4 Let f be an n-ary quadratic form over F . Then the
induced map Qf : F n → F defined as Qf (x) := xt.Mf .x ∈ F where x ∈ F n

is called the quadratic map defined by f .

Observations 1.1.5

1. The quadratic map Qf determines uniquely the quadratic form f since
char(F) 6= 2.

2. The map Qf is quadratic as Qf (ax) = a2Qf (x) for all x ∈ F n and
a ∈ F .

3. If we polarize Qf by defining

Bf (x, y) = (Qf (x+ y)−Qf (x)−Qf (y))/2,

then Bf : F n × F n → F is a symmetric bilinear pairing (i.e. Bf is
linear in both variables and Bf (x, y) = Bf (y, x) for all x, y ∈ F n).

4. If Bf is the symmetric bilinear pairing, then by depolarization we can
recapture the quadratic map Qf ; i.e., Qf (x) = Bf (x, x) for any x ∈ F n.

If V is an n-dimensional vector space over F and B : V × V → F is
a symmetric bilinear pairing on V , then we call the pair (V,B) a quadratic
space . We can associate a quadratic map q : V → F to the quadratic space
(V,B) which is defined as q(x) = B(x, x) for every x ∈ V .

Since q and B determine each other, it is logical to write (V, q) to represent
the quadratic space (V,B). If we fix a basis {e1, e2, ..., en} of V over F , then
the quadratic space (V,B) induces a quadratic form

f(X1, ..., Xn) =
∑
i,j

B(ei, ej)XiXj with Mf = (B(ei, ej))ij; 1 ≤ i, j ≤ n
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The quadratic space (V,B) uniquely determines an equivalence class of quadratic
forms.

Definition 1.1.6 Two quadratic spaces (V,B) and (V ′, B′) are said to be
isometric (∼=) if there exists a linear isomorphism τ : V → V ′ such that

B′(τ(x), τ(y)) = B(x, y) for all x, y ∈ V.

Such a τ is called an isometry .

Example 1.1.7 Let V be a two dimensional F -vector space and B1, B2 be
two symmetric bilinear pairing defined as below

B1(x, y) = d1x1y1 + d2x2y2

B2(x, y) = d1x1y1 + d2a
2x2y2

where x = (x1, x2)
t, y = (y1, y2)

t and d1, d2 ∈ F ; a ∈ F ∗.
Then τ : V → V defined as (x1, x2) 7→ (x1, ax2) is an isometry; i.e., (V,B1) ∼=
(V,B2).

Remark 1.1.8 There is a one to one correspondence between the equiva-
lence classes of n-ary quadratic forms and the isometry classes of n-dimensional
quadratic spaces.

Proposition 1.1.1. Let (V,B) be a quadratic space and M be a symmetric
matrix associated with B. Let V ∗ be the vector space dual of V . Then the
following are equivalent:

1. M is a non singular matrix.

2. x 7→ B( , x) is an isomorphism of V → V ∗.

Proof: For a proof we refer to ([Lam05], page 4).

If (V,B) satisfies either of the above conditions then it is called a regular
or non-singular quadratic space.

Definition 1.1.9 Let (V,B) be a quadratic space and W be a F -vector
subspace of V . Then the orthogonal complement of W (denoted by W⊥) is
defined as

W⊥ = {x ∈ V | B(x,W ) = 0}.

The orthogonal complement of V itself is called the radical of (V,B) and
we denote it by rad(V). One can observe that (V,B) is regular if and only if
rad(V) = 0.

3



1.2 Diagonalisation of a Quadratic Form

Definition 1.2.1 The orthogonal sum of two quadratic spaces (V1, B1) and
(V2, B2) is a quadratic space (V,B) where V = V1 ⊕ V2 and B is the pairing
V × V → F given by

B((x1, x2), (y1, y2)) = B1(x1, y1) +B2(x2, y2)

where x1, y1 ∈ V1 and x2, y2 ∈ V2. We shall denote it by V1 ⊥ V2.
Equivalently, in terms of quadratic map, we can define orthogonal sum as

q((v1, v2)) = q1(v1) + q2(v2) where vi ∈ Vi; i = 1, 2 (1.1)

where q, q1, q2 are the quadratic maps associated to the quadratic spaces
(V,B), (V1, B1), (V2, B2) respectively and q is denoted by q1 ⊥ q2.

Example 1.2.2 Let V1 = V2 = R2 and q1(x, y) = x2+y2, q2(x, y) = x2+xy.
Then, the orthogonal sum of (V1, q1) and (V2, q2) is the quadratic space (V, q)
where V = R4 and q(x, y, u, v) = x2 + y2 + u2 + uv.

Definition 1.2.3 Let (V1, q1) and (V2, q2) be two quadratic spaces over F .
The tensor product of these quadratic spaces is a quadratic space (V, q) where
V = V1 ⊗ V2 and q is the quadratic map V → F given by

q(v1 ⊗ v2) = q1(v1).q2(v2).

We denote q by q1 ⊗ q2.

Observation 1.2.4

1. q1 ⊗ q2 ∼= q2 ⊗ q1.

2. (q1 ⊗ q2)⊗ q3 = q1 ⊗ (q2 ⊗ q3).

3. q ⊗ (q1 ⊥ q2) ∼= (q ⊗ q1) ⊥ (q ⊗ q2).

4. 〈a1, ..., am〉 ⊗ 〈b1, ..., bn〉 ∼= 〈a1b1, ..., aibj, ..., ambn〉.

Definition 1.2.5 Let (V, q) be a quadratic space over F and d ∈ F ∗. Then
q is said to represent an element d if there exist 0 6= v ∈ V such that q(v) = d.
Notation: Let (V, q) be any quadratic space, then

1. D(V ) = {d ∈ F ∗ | ∃v ∈ V such that q(v) = d}.
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2. 〈d〉 denotes the one dimensional quadratic space (F, q) where the quadratic
form is given by q(x) = dx2.

3. A quadratic form of the type 〈d1〉 ⊥ 〈d2〉 ⊥ ... ⊥ 〈dn〉; di ∈ F ; 1 ≤ i ≤ n
is denoted by 〈d1, d2, ..., dn〉. Such a form is called diagonal form .

Proposition 1.2.1. Let (V, q) be any quadratic space and d ∈ F ∗. Then
d ∈ D(V ) if and only if there exists another quadratic space (V ′, q′) together
with an isometry q ∼= 〈d〉 ⊥ q′.

Proof: “Only if” part: d ∈ D(V ) ⇒ ∃v ∈ V such that q(v) = d. If V is
not regular, then we can write V as V = rad(V) ⊥ V1 where V1 is a regular
subspace of V . Therefore by equation (1.1), we have D(V ) = D(V1). Thus,
we may assume that V is regular. 〈d〉 is isometric to the quadratic subspace
F.v and (F.v) ∩ (F.v)⊥ = 0 (otherwise v ∈ rad(V) = 0). Thus,

q ∼= 〈d〉 ⊥ q′

where q′ is the quadratic map defined on (F.v)⊥ as dim(F.v) + dim(F.v)⊥ =
dim(V).
“If” part: Clearly, d is represented by 〈d〉 ⊥ q′ and hence d ∈ D(V ).

Corollary 1.2.1. Any n-ary quadratic form q is isometric to a diagonal
form; i.e., q ∼= 〈d1, d2, ..., dn〉 where di ∈ F ; 1 ≤ i ≤ n.

Proof: If q = 0 then q is represented by the diagonal form 〈0, 0, ..., 0〉. If there
exists d ∈ F ∗ which is represented by q, then by proposition (1.2.1) we have
a quadratic space (V ′, q′) such that q ∼= 〈d〉 ⊥ q′. Since dimF(V′) < dimF(V),
by induction on dim(V) we are done.

1.3 Hyperbolic Spaces and Witt’s Theorems

Definition 1.3.1

1. Let (V, q) be a quadratic space. A non-zero vector v ∈ V is said to be
an isotropic if q(v) = 0, otherwise we say that v is anisotropic .

2. The quadratic space (V, q) is said to be isotropic if it contains an
isotropic vector and is said to be anisotropic otherwise.

3. The quadratic space (V, q) is said to be totally isotropic if all non-zero
vectors in V are isotropic.
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Example 1.3.2

1. The quadratic form q = x21 − x22 is isotropic over any field F .

2. The quadratic form q = x21 + x22 is anisotropic over R.

3. The 1-dimensional quadratic space (V, q) generated by an isotopic vec-
tor 0 6= v ∈ V is a trivial example of totally isotropic space.

Definition 1.3.3 A two dimensional form which is isometric to the diago-
nal form 〈1,−1〉 is called a hyperbolic plane . An orthogonal sum of hyperbolic
planes is called a hyperbolic space .

Definition 1.3.4 A quadratic space (V, q) is said to be universal if q rep-
resents all the non-zero elements of F .

Example 1.3.5 Hyperbolic plane is an example of universal quadratic
space because, for all a ∈ F ,

a =
(a+ 1

2

)2
−
(a− 1

2

)2
.

Proposition 1.3.1. A regular two dimensional quadratic space (V, q) is
isotropic if and only if q ∼= 〈1,−1〉 .

Proof: “Only if” part: Let {e1, e2} be an orthogonal basis of V over F .Since
V is regular, q(ei) = di 6= 0 ; i = 1, 2. Let ae1 + be2 be an isotropic vector,
with (say) a 6= 0. Then

0 = q(ae1 + be2) = a2d1 + b2d2

⇒ d2 = −(ab−1)2d1

which implies that q ∼= 〈d1, d2〉 ∼= 〈d1,−(ab−1)2d1〉 ∼= 〈d1,−d1〉 and the last
isometry can be easily observed by example (1.1.7). From example (1.1.3),
it follows that d1x

2
1 − d1x

2
2 is equivalent to d1x1x2 and apparently, d1x1x2

represents 1. By proposition (1.2.1), we conclude that q ∼= 〈1,−1〉 and
converse of this proposition is obvious (as in example (1.3.2)(1)).

The group of isometries of the quadratic space (V, q) is called an orthog-
onal group which is denoted by O(V ).
For an anisotropic vector y ∈ V , the map τy : V → V given by

τy(x) = x− 2B(x, y)

q(y)
y for every x ∈ V

is an isometry. The determinant of τy is −1.
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Theorem 1.3.6. (Witt’s Decomposition Theorem) Any quadratic space
(V, q) splits into an orthogonal sum

(V, q) ∼= (Vt, qt) ⊥ (Vh, qh) ⊥ (Va, qa)

where (Vt, qt) is totally isotropic, (Vh, qh) is hyperbolic and (Va, qa) is anisotropic.
Moreover, the isometry classes of Vt, Vh, Va are all uniquely determined.

Proof: For a proof we refer to ([Lam05], page 12).

Definition 1.3.7 Let (V, q) be a quadratic space and (V, q) ∼= (Vt, qt) ⊥
(Vh, qh) ⊥ (Va, qa) where (Vt, qt), (Vh, qh) and (Va, qa) have the same meaning
as they have in the previous theorem. Then the integer m = 1

2
dim(Vh) is

called the Witt index .

Proposition 1.3.2. Let (V, q) be a quadratic space and x, y ∈ V be such that
q(x) = q(y) 6= 0. Then there exists τ ∈ O(V ) such that τ(x) = y.

Proof: For a proof we refer to ([Lam05], page 14).

Theorem 1.3.8. (Witt’s Cancellation Theorem) If q, q1, q2 are arbi-
trary quadratic forms over F such that q ⊥ q1 ∼= q ⊥ q2, then q1 ∼= q2.

Proof: For a proof we refer to ([Lam05], page 12).

Now, we will introduce the notion of chain equivalence for the diagonal
quadratic forms and we will see how isometry and chain equivalence of two
quadratic forms are related.

Definition 1.3.9 Let q = 〈a1, ..., an〉 and q′ = 〈b1, ..., bn〉 be two quadratic
forms. Then

1. q and q′ are said to be simply equivalent if ∃ two indices i and j, such
that

(a) 〈ai, aj〉 ∼= 〈bi, bj〉 and

(b) ak = bk for all k 6= i, j.

2. q and q′ are said to be chain equivalent (denoted as q ≈ q′) if ∃ a
sequence of diagonal quadratic forms q0, q1, ..., qm such that q0 = q,
qm = q′ and qi is simply equivalent to qi+1 for all 0 ≤ i ≤ m− 1.

Theorem 1.3.10. Let q = 〈a1, ..., an〉 and q′ = 〈b1, ..., bn〉 be two quadratic
forms. Then q ∼= q′ ⇔ q ≈ q′.

Proof: For a proof we refer to ([Lam05], page 16).
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Chapter 2

Classification of Quadratic
Forms

2.1 Invariants of Quadratic Form

Let (V, q) denotes a quadratic space over a field F with char(F) 6= 2 and F ∗

denotes the multiplicative group of F .

Definition 2.1.1 The dimension of a quadratic form q (denoted by dim(q))
is defined as the dimension of the underlying vector space V over F ; i.e.,
dim(q) = dimF(V).

Proposition 2.1.1. Let r be any positive integer. Then the following state-
ments are equivalent:

1. Any quadratic form of dimension r + 1 over F is isotropic.

2. Any regular quadratic form of dimension r over F is universal.

Proof: For a proof we refer to ([Lam05], page 11).

Definition 2.1.2 The determinant of a quadratic form q (denoted by det(q))
is defined as the square class of the determinant of the symmetric matrix as-
sociated with q; i.e.,

det(q) = det(Mq)× F∗2 ∈ F∗/F∗2.

8



Observation 2.1.3

1. Determinant of a quadratic form q does not depend on the choice of
representative of the isometry class because if we choose two different
quadratic forms which belong to the same isometry class then determi-
nant of the associated matrices differ by a square.

2. det(q1 ⊥ q2) = det(q1).det(q2).

Definition 2.1.4 The discriminant of a quadratic form q (denoted by
disc(q)) is defined as the signed determinant; i.e., disc(q) = (−1)n(n−1)/2det(q).

2.2 Witt Ring

Let M be a commutative cancellation monoid under addition.Then we can
define a relation ∼ on M ×M as (x, y) ∼ (x′, y′) ⇔ x + y′ = x′ + y where
x, x′, y, y′ ∈M .

Clearly, this is an equivalence relation on M ×M .

Definition 2.2.1 Let M be a commutative cancellation monoid. Then
Grothendieck group of M (denoted by Groth(M)) is defined as Groth(M) =
M×M/ ∼ with addition operation on M×M as (x, y)+(x′, y′) = (x+x′, y+
y′).

It is easy to check that Groth(M) is a commutative group with the above
well defined addition operation. Identity element of Groth(M) is the equiv-
alence class of (x, x); x ∈ M and inverse of the equivalence class of (x, y) is
the equivalence class of (y, x); x, y ∈M .

We can define an injective map i : M → Groth(M) which maps x 7→
(x, 0).Thus, M ⊆ Groth(M). We can view an element of Groth(M) as (x, y) =
i(x)− i(y) = x− y.

Let f : M → G be a monoid homomorphism where G is an abelian
group. Then it induces a group homomorphism f̃ : Groth(M)→ G given by
f̃(x − y) = f(x) − f(y) ∈ G; and it is known as the universal property of
Groth(M).

Let M be a commutative cancellation monoid under addition and it has
a commutative multiplication (i.e., M is a commutative semiring). Then we
can define multiplication on Groth(M) as (x, y)(x′, y′) = (xx′+yy′, xy′+yx′).
This multiplication makes Groth(M) a commutative ring.
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Let M(F ) be the set of all isometry classes of regular quadratic forms
over F and binary operations ⊥ and ⊗ are the corresponding addition and
multiplication operation on M(F ) which makes M(F ) into a commutative
semiring.

Definition 2.2.2 Ŵ (F ) = Groth(M(F)) is called the Witt Grothendieck
ring of quadratic forms over F .

Consider the dimension map dim : M(F) → Z which is a semiring ho-
momorphism. Then by “universal property” we can extend this dimen-
sion map to a ring homomorphism d̃im : Ŵ (F ) → Z which is defined as

d̃im(q1 − q2) = dim(q1) − dim(q2). Kernel of d̃im is called the fundamental

ideal of Ŵ (F ) and it is denoted by ÎF .

Definition 2.2.3 W (F ) = Ŵ (F )/Z.H is called the Witt ring of F ; where
H denotes the hyperbolic plane.

Consider the natural projection map Ŵ (F )→ W (F ). Then image of ÎF
under this map is called the fundamental ideal of W (F ) and it is denoted by
IF .

Proposition 2.2.1. A quadratic form q represents an element in IF if and
only if dim(q) is even.

Proof: “If” part: If dim(q) is even, then we can assume that q is a binary
form 〈a, b〉. Clearly, q is the image of 〈a〉 − 〈−b〉 ∈ ÎF under the natural

projection Ŵ (F ) → W (F ) and therefore, q represents an element in IF ⊆
W (F ).
“Only if” part: If q represents an element in IF , then q = q1 − q2 + mH
where m ∈ Z and dim(q1) = dim(q2). This implies that d̃im(q) = dim(q1)−
dim(q2) + 2m = 2m.

Corollary 2.2.1. W (F )/IF ∼= Z/2Z.

Proof: We know that d̃im : Ŵ (F )→ Z is a ring epimorphism which induces
another ring epimorphism dim0 : W(F)→ Z/2Z and ker(dim0) = IF by the
proposition (2.2.1).

In the previous section, we have given a monoid homomorphism, namely
determinant, det : M(F) → F∗/F∗2 defined as q 7→ det(q). By “universal

property”, the map det can be extended to (̃det) : Ŵ (F )→ F ∗/F ∗2 as

d̃et(q1 − q2) = det(q1)det(q2)
−1 = det(q1)det(q2) ∈ F∗/F∗2

10



which is a group homomorphism. We can not factor (̃det) homomorphism

through W (F ) as (̃det)(H) = (−1).F ∗2.
We can rectify this, using discriminant map because disc(H) = 1.F∗2, but

discriminant map is not a homomorphism on W (F ). To avoid this, we look
at discriminant map together with dim0 and construct a new group which is
a Z/2Z extension of F ∗/F ∗2, namely,

Q(F ) = Z/2Z× (F ∗/F ∗2).

On Q(F ), we can define a binary operation as

(e, d).(e′, d′) = (e+ e′, (−1)ee
′
dd′)

It is easy to check that Q(F ) is a group with identity element (0, 1) and
inverse of (e, d) is (e, (−1)ed).

Proposition 2.2.2. (dim0, disc) : M(F) → Q(F) defines a monoid epimor-

phism. This can be extended to a group epimorphism Ŵ (F ) → Q(F ). The
latter induces a group isomorphism f : W (F )/I2F ∼= Q(F ).

Proof: For a proof we refer to ([Lam05], page 31).

Proposition 2.2.3. Every regular 2-dimensional quadratic form over a finite
field F is universal.

Proof: We know that F ∗/F ∗2 = {1, s}; where s is a non-square.
Claim: s is a sum of two squares.
Case 1: −1 ∈ F ∗2.
Then 〈1, 1〉 ∼= 〈1,−1〉, and therefore 〈1, 1〉 is universal. So, 〈1, 1〉 represents
s. Hence s is sum of two squares.
Case 2: −1 /∈ F ∗2.
Consider the two sets F ∗2 and 1 + F ∗2, which are subsets of F with same
cardinality. Since 1 ∈ F ∗2 and 1 /∈ 1 + F ∗2, therefore F ∗2 6= 1 + F ∗2 as sets.
So ∃ an element 1 + z2 /∈ F ∗2. Thus by taking s to be 1 + z2, the claim
follows.
Since 1 and s are the only square classes, therefore there can be at most three
nonequivalent 2-dimensional quadratic forms, which are:

q1 = 〈1, 1〉, q2 = 〈1, s〉, q1 = 〈s, s〉.

Using the previous claim, we have D(q1) = F ∗, D(q3) = F ∗, and apparently,
D(q2) = F ∗. Hence we are through.
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2.3 Brauer Group

2.3.1 Central Simple Algebras

Definition 2.3.1 An algebra A over a field F is defined as an F -vector
space equipped with associative F -linear multiplication; i.e., λ(ab) = (λa)b =
a(λb); where a, b ∈ A and λ ∈ F .

If A as an F -vector space is finite dimensional then we say that A is a
finite dimensional algebra over F .

Definition 2.3.2 Let A be an algebra over F . Then

1. It is said to be central if center of A is F ; i.e., Z(A) = F .

2. It is said to be simple if A has no two sided ideal other than 0 and A.

3. It is said to be central simple if it is both central and simple.

Example 2.3.3 Matrix algebra Mn(F ) is a central simple algebra.

Definition 2.3.4 Let A and B are two F - algebras. Then their tensor
product (denoted by A⊗B) is an F - algebra together with F -algebra homo-
morphisms iA and iB

A iA−→ A⊗ B iB←− B
where iA(a) = a⊗ 1 and iB(b) = 1⊗ b; satisfy the following conditions:

1. iA(a)iB(b) = iB(b)iA(a) for all a ∈ A and b ∈ B.

2. If α : A→ C, β : B → C are F -algebra homomorphisms so that

α(a)β(b) = β(b)α(a) for all a ∈ A, b ∈ B,
then there is a unique F -algebra homomorphism ψ : A⊗ B → C such
that α = ψiA and β = ψiB.

Proposition 2.3.1. Let A and B are two F -algebras. Then there is a map
i : A×B → A⊗B which is bilinear multiplicative and satisfies the following
“universal property”:
If C is an F -algebra and ϕ : A × B → C is a bilinear multiplicative map,
then there exists a unique F -algebra homomorphism ψ : A⊗B → C such that
ϕ = ψ ◦ i.
Proof: For a proof we refer to ([Sch85], page 286).

By a map i (as in the above proposition) to be multiplicative, we mean

i(aa′, bb′) = i(a, b)i(a′, b′).
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Definition 2.3.5 Let B be a subset of a central simple algebra A. Then
centralizer of B in A is defined as:

ZA(B) = {a ∈ A : ab = ba for all b ∈ B}

Proposition 2.3.2. 1. Let A′ and B′ be subalgebras of A and B respec-
tively. Then

ZA⊗A(A′ ⊗ B′) = ZA(A′)⊗ ZB(B′)

2. If A is a central simple algebra over F and B is a simple F -algebra,
then A⊗ B is simple.

3. If A and B are both central simple algebras, then A⊗B is also a central
simple algebra.

Proof: For a proof we refer to ([Lam05], page 80).

Theorem 2.3.6. (Wedderburn’s Theorem) Let A be a finite dimensional
central simple algebra over F . Then there exists A ∼= Mn(D) for a suitable
division algebra D over F . Moreover, n and D are uniquely determined upto
isomorphism.

Proof: For a proof we refer to ([Sch85], page 282).

Theorem 2.3.7. (Skolem Noether Theorem) Let A be a finite dimen-
sional central simple F -algebra and B be a finite dimensional simple F -
algebra. If f, g : A → B are two F -algebra homomorphisms, then ∃u ∈ B
such that f = Int(u) ◦ g.

Proof: For a proof we refer to ([Sch85], page 291).

Corollary 2.3.1. Every F -algebra automorphism of a central simple algebra
A is inner.

2.3.2 Brauer Group of a Field

Definition 2.3.8 Let A and B be two central simple F -algebras. Then
A and B are said to be Brauer equivalent if there exists a central division
algebra D such that A ∼= Mm(D) and B ∼= Mn(D) for m,n ∈ N.

Let C denotes the set of all finite dimensional central simple algebras over
F . Then it is easy to check that Brauer equivalence defines an equivalence
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relation on C. The set of equivalence classes of C will be denoted by Br(F).
For A ∈ C, the equivalence class of A in Br(F) will be denoted by [A].

Define a binary operation on Br(F) as follows:

[A]⊗ [B] = [A⊗ B] ∈ C.

It is easy to check that the above defined binary operation is well defined on
Br(F).

Definition 2.3.9 The opposite ring of a ring A (denoted by Aop) is itself
A as an additive group but multiplication on Aop is defined as aop ◦ bop = b.a;
where a, b ∈ A and (·)op is just a way to represent elements of opposite ring.

Observations 2.3.10

1. (Aop)op = A.

2. Aop is a central simple algebra if and only if A is so.

Theorem 2.3.11. Let A be an n dimensional central simple F -algebra. Then
A⊗Aop ∼= Mn(F ).

Now one can easily check that the binary operation ⊗ defines a group
structure on Br(F) with identity element Mm(F ) and inverse of A is Aop.

Definition 2.3.12 The set Br(F) is called the Brauer group of F with ⊗
as its binary operation.

Example 2.3.13 If F is an algebraically closed field, then there does not
exist any proper finite dimensional division algebra D over F because oth-
erwise F (d) for d ∈ D \ F will be a non trivial algebraic extension of F .
Therefore, Brauer group of an algebraically closed field is trivial.

2.4 Quaternion Algebra

Definition 2.4.1 Let a, b ∈ F ∗. Then the quaternion algebra (denoted
by (a, b)F ) is defined as an F -algebra generated by i, j with the following
defining relations:

i2 = a, j2 = b, ij = −ji.

It can be easily seen that (a, b)F is a four dimensional vector space over
F with basis {1, i, j, ij}.
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Observation 2.4.2 Let a, b ∈ F ∗.
1. (a, b)F ∼= (λ2a, µ2b)F ∀λ, µ ∈ F ∗.

2. (a, b)F ∼= (b, a)F .

One can easily check that (a, b)F is a central simple algebra over F .

Definition 2.4.3 Let x = x0 + x1i + x2j + x3ij be an element of the
quaternion algebra (a, b)F ; xi ∈ F . Then conjugate of x is defined as x =
x0 − x1i− x2j − x3ij.

Observation 2.4.4 Let x, y ∈ (a, b)F . Then

1. x+y = x+ y.

2. x.y = y.x.

3. x = x.

Definition 2.4.5 Let x = x0 + x1i + x2j + x3ij be an element of the
quaternion algebra (a, b)F ; xi ∈ F . Then norm of x is defined as N(x) =
x.x = x20− x21a− x22b+ x23ab. The quadratic form 〈1,−a,−b, ab〉 is called the
norm form of the quaternion algebra (a, b)F .

Example 2.4.6 (−1,−1)R is an example of a quaternion algebra. It is
known as Hamiltonian quaternion . Let x = x0+x1i+x2j+x3ij ∈ (−1,−1)R;
where xi ∈ R. Then

N(x) = x.x = x20 + x21 + x22 + x23 ≥ 0.

If x is a non zero element of (−1,−1)R, then N(x) > 0 and hence

x−1 =
x0 − x1i− x2j − x3ij
x20 + x21 + x22 + x23

.

Thus (−1,−1)R is division ring as every non zero element of (−1,−1)R is
invertible.

Theorem 2.4.7. Let A = (a, b)F , A′ = (a′, b′)F be two quaternion algebras.
Then the following statements are equivalent:

1. A and A′ are isomorphic as F -algebras.

2. Their corresponding norm forms are isometric; i.e.,

〈1,−a,−b, ab〉 ∼= 〈1,−a′,−b′, a′b′〉.

Proof: For a proof we refer to ([Lam05], page 57).
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Definition 2.4.8 An algebra A = (a, b)F is said to be split if A ∼= M2(F ).

Theorem 2.4.9. Let A = (a, b)F . Then the following statements are equiv-
alent:

1. A splits.

2. A is not a division algebra.

3. The binary form 〈a, b〉 represents 1.

4. a ∈ NF (
√
b)/F (F (

√
b)); where N is the norm form of A.

Proof: For a proof we refer to ([Lam05], page 58).

Corollary 2.4.1. For any a ∈ F ∗, quaternion algebras (1, a)F and (a,−a)F
are both split algebras.

Proof: Clearly, binary form 〈1, a〉 represents 1 and hence (1, a)F splits.
Since binary form 〈a,−a〉 is isotropic, therefore 〈a,−a〉 ∼= 〈1,−1〉 (using
proposition (1.3.1)). Thus 〈a,−a〉 represents 1 and hence (a,−a)F splits.

Proposition 2.4.1. (Classification of Binary Forms) Let q = 〈a, b〉
and q′ = 〈a′, b′〉. Then q ∼= q′ if and only if det(q) = det(q′) and (a, b)F ∼=
(a′, b′)F .

Proof: “Only if” part: Assume that q ∼= q′; i.e., 〈a, b〉 ∼= 〈a′, b′〉. Then
det(q) = det(q′). This implies that ab = a′b′.F ∗2.Therefore, it follows that

〈1,−a,−b, ab〉 ∼= 〈1,−a′,−b′, a′b′〉.

Hence (a, b)F ∼= (a′, b′)F (by theorem (2.4.7)).
“If” part: If (a, b)F ∼= (a′, b′)F , then 〈1,−a,−b, ab〉 ∼= 〈1,−a′,−b′, a′b′〉 (using
theorem (2.4.7)). Further, det(q) = det(q′) implies that ab = a′b′F ∗2. Then
by Witt’s Cancellation theorem we have 〈a, b〉 ∼= 〈a′, b′〉; i.e., q ∼= q′.

Theorem 2.4.10. Let a, b, c ∈ F ∗. Then,

(a, b)F ⊗ (a, c)F ∼= (a, bc)F ⊗M2(F ).

Proof: For a proof we refer to ([Lam05], page 60).
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2.5 Clifford Algebra

Let (V, q) be a quadratic space. Then tensor algebra of V (denoted by T (V ))
is defined as

T (V ) = ⊕∞r=0T
r(V )

where T r(V ) denotes the r-fold tensor product. Now, we can define multi-
plication on T (V ) as follows:

(x1⊗x2⊗...⊗xi).(y1⊗y2⊗...⊗yj) = (x1⊗x2⊗...⊗xi⊗y1⊗y2⊗...⊗yj) ∈ T i+j(V )

Thus, we have a Z-gradation on T (V ) because if x ∈ T i(V ) and y ∈
T j(V ), then x.y ∈ T i+j(V ).We can write, T (V ) as

T (V ) = Teven(V )⊕ Todd(V )

where Teven(V ) = T 2r(V ) and Todd(V ) = T 2r−1(V ); r ≥ 0. Observe that, the
subspace Teven(V ) is a subalgebra of T (V ).

Definition 2.5.1 Let (V, q) be a quadratic space, T (V ) be the tensor alge-
bra of V and I(q) be the two sided ideal of T (V ) generated by the elements
v ⊗ v − q(v).1 for all v ∈ V . Then Clifford algebra of q (denoted by C(V, q))

is defined as the quotient algebra of T (V ) by I(q); i.e., C(V, q) = T (V )
I(q)

.

Let (V, q) be a quadratic space. Then Clifford algebra C(V, q) satisfies
the following universal property
Let A be an F -algebra containing V such that v2 = q(v).1 for all v ∈ V .
Then there exists a unique F -algebra homomorphism ϕ : C(V, q) → A such
that ϕ(v) = v; for all v ∈ V .

Let ϕ : T (V )→ C(V, q) be the canonical epimorphism. Then C(V, q) has
a Z/2Z-graded structure because ker(ϕ) lies in the subalgebra Teven(V ); i.e.,
we can write

C(V, q) = C0(V, q)⊕ C1(V, q)

where C0(V, q) denotes the image of Teven(V ) under ϕ and C1(V, q) denotes
the image of Todd(V ) under ϕ. It is easy to check that C0(V, q) is an F -
subalgebra of C(V, q) and we call it the even Clifford algebra .

Proposition 2.5.1. Let (V, q) be an n-dimensional quadratic space and C(V, q)
be the Clifford algebra of q. If n is even, then C(V, q) is a central simple al-
gebra over F and if n is odd, then C0(V, q) is a central simple algebra over
F .

Proof: For a proof we refer to ([La73], page 111).
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2.6 Some more Invariants

Definition 2.6.1 Let (V, q) be a quadratic space. Then the Witt invariant
of q (denoted by c(q)) is defined as:

c(q) =

{
C0(V, q) ∈ Br(F) if dim(V) is odd

C1(V, q) ∈ Br(F) if dim(V) is even

Definition 2.6.2 Let (V, q) be a quadratic space and 〈a1, ..., an〉 is a diag-
onalisation of q. Then Hasse invariant of q (denoted by s(q)) is defined to
be the class of ⊗

i<j
(ai, aj)F in Br(F). (If n = 1, then we take s(q) to be 1.)

Proposition 2.6.1. The Hasse invariant is well defined; i.e., if q ∼= q′ then
s(q) = s(q′).

Proof: Since we know that diagonalisation of isometric quadratic spaces are
chain equivalent, therefore it suffices to check the result for q ∼= 〈a, b, a3, ..., an〉
and q′ ∼= 〈c, d, a3, ..., an〉.
Now

s(q) = (a, b)F ⊗
i≥3

(a, ai)F ⊗
3≤i<j≤n

(ai, aj)F ⊗
i≥3

(b, ai)F

and
s(q′) = (c, d)F ⊗

i≥3
(c, ai)F ⊗

3≤i<j≤n
(ai, aj)F ⊗

i≥3
(d, ai)F .

Using theorem (2.4.10), we have

s(q) = (a, b)F ⊗ (ab, a1a2...an)F ⊗
3≤i<j≤n

(ai, aj)F in Br(F)

and
s(q′) = (c, d)F ⊗ (cd, a1a2...an)F ⊗

3≤i<j≤n
(ai, aj)F in Br(F).

Since q ∼= q′, therefore s(q) = s(q′).

Observation 2.6.3 It can be easily verified that s(q ⊥ q′) = s(q)s(q′)(det(q), det(q′))F.

Proposition 2.6.2. Let (V, q) be an n-dimensional quadratic space. Then

c(q) = s(q).((−1, det(q))F)ε.((−1,−1)F)δ

where ε = (n− 1)(n− 2)/2 and δ = (n− 2)(n− 1)n(n+ 1)/24.
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Proof: For a proof we refer to ([Lam05], page 116).

Theorem 2.6.4. Let (V, q) and (V, q′) be two quadratic spaces such that
dim(q) = dim(q′) = n ≤ 3. Then the following statements are equivalent:

1. q ∼= q′.

2. det(q) = det(q′) and c(q) = c(q′).

3. det(q) = det(q′) and s(q) = s(q′).

Proof: We split up the proof in three different cases.
Case 1: n = 1
There is nothing to prove.
Case 2: n = 2
(1)⇒ (2) is trivial.
(2) ⇒ (3) From proposition (2.6.2), we have c(q) = s(q) and c(q′) = s(q′)
and we are through.
(3)⇒ (1) This part of the proof we have already done in proposition (2.4.1).
Case 3: n = 3
(1)⇒ (2) is trivial.
(2)⇒ (3) From proposition (2.6.2), we have
c(q) = s(q).(−1,−det(q))F and c(q′) = s(q′).(−1,−det(q′))F.
Since det(q) = det(q′) and c(q) = c(q′), therefore s(q) = s(q′).
(3)⇒ (1) Let det(q) = det(q′) = d. Observe that det(〈−d〉⊗q) = −1. Then
by elementary computation, we have

s(〈−d〉 ⊗ q) = s(q)⊗ (−1,−d)F and s(〈−d〉 ⊗ q′) = s(q′)⊗ (−1,−d)F .

Now we can replace q and q′ by 〈−d〉⊗q and 〈−d〉⊗q′ respectively, if required.
We can assume that det(q) = det(q′) = −1. We can write

q = 〈x, y,−xy〉, q′ = 〈x′, y′,−x′y′〉.

Now s(q) = (x, y)F and s(q′) = (x′, y′)F . Since s(q) = s(q′), therefore by
theorem (2.4.7), we have

〈1,−x,−y, xy〉 ∼= 〈1,−x′,−y′, x′y′〉.

By Witt’s cancellation theorem (1.3.8), (on cancelling 1) we get q ∼= q′.

Proposition 2.6.3. Suppose that every 5-dimensional form is isotropic.
Then two quadratic forms q and q′ are isometric if and only if dim(q) =
dim(q′), det(q) = det(q′) and s(q) = s(q′).
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Proof: “If” part: If dim(q) = dim(q′) = n ≤ 3, the result has been already
proved in theorem (2.6.4). Now, we have to prove the result for dim(q) =
dim(q′) = n ≥ 4. Since every 5-dimensional form is isotropic, therefore the
quadratic forms q and q′ represents 1 (using proposition (2.1.1)); i.e.,

q ∼= 〈1〉 ⊥ ϕ and q′ ∼= 〈1〉 ⊥ ϕ′.

Apparently, dim(ϕ) = dim(ϕ′) = n − 1, det(ϕ) = det(ϕ′) and s(ϕ) = s(ϕ′).
By induction hypothesis, we have ϕ ∼= ϕ′ and hence q ∼= q′. “Only if” part:
There is nothing to prove.

2.7 Hasse Minkowski Theorem

Definition 2.7.1 Let F be any field. Then a discrete valuation ν on F is
defined as a map ν : F ∗ → Z such that

1. ν is surjective.

2. ν(xy) = ν(x) + ν(y).

3. ν(x+ y) ≥ min{ν(x), ν(y)}

Convention: ν(0) =∞.

Definition 2.7.2 The discrete valuation ring of F (denoted by A) w.r.t. ν
is defined as

A = {x ∈ F ∗|ν(x) ≥ 0}.

Observation 2.7.3 The discrete valuation ring A has the unique maximal
ideal
p = {x ∈ F ∗|ν(x) ≥ 1}. The ideal p is generated by an element π ∈ A such
that ν(π) = 1. We call π as a uniformising element and this π is unique upto
units of A.

Definition 2.7.4 Let A be the discrete valuation ring of F w.r.t. ν. Then
A/p is called the residue class field of F .
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Definition 2.7.5 Let 0 < λ < 1 be any real number and x ∈ F . Then
non-archimedian value of x (denoted by |x|ν) is defined as |x|ν = λν(x).

Now we can define a metric d on F as d(x−y) = |x−y|ν . If we choose an-
other value of 0 < λ < 1, then it gives an equivalent metric on F . Completion
of the metric space (F, d) is denoted by Fν .

Now, let us define addition and multiplication operation on Fν as follows:
Let {x}, {y} ∈ Fν , then there exist sequences {xn}n∈N and {yn}n∈N; xn, yn ∈
F such that limn→∞xn = {x} and limn→∞yn = {y}. Then

{x}+ {y} = limn→∞(xn + yn),

{x}.{y} = limn→∞(xn.yn).

Fν is a field with the above defined binary operations.
From now onwards Fν will denote the completion of F w.r.t. | |ν with the
above defined structure of field.

Definition 2.7.6 A map | | : F → R is said to be archimedian if it satisfies
the following properties:

1. |x| ≥ 0 for all x ∈ F and |x| = 0 iff x = 0.

2. |xy| = |x||y| for all x, y ∈ F .

3. |x+ y| ≤ |x|+ |y| for all x, y ∈ F .

Definition 2.7.7 Let | |1 and | |2 be two absolute values. If ∃ a real number
α such that |x|1 = |x|α2 for all x ∈ F , then we say that | |1 and | |2 are
equivalent .

It can be easily seen that the notion defined above is an equivalence rela-
tion. The set of equivalence classes is denoted by Ω. Elements of Ω are called
places . Those elements of Ω which correspond to a non-archimedian absolute
value are called finite places and those which correspond to an archimedian
absolute value are called infinite places .

Definition 2.7.8 Local field is defined as the completion of a number field
(finite field extension of Q) w.r.t. a non-archimedian absolute value. It is
also known as p-adic field.

Let F be a number field and R be its ring of integers. Then every finite
place over F uniquely correspond to prime ideal of R. In particular, every
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finite place over Q correspond to prime integer.
Let p ∈ Z be a prime number. Then we have a p-adic valuation on Q which
is given as follows:

x 7→

{
p−ordp(x) ;x 6= 0

0 ; x = 0

where

ordp(x) =

{
m if x ∈ Z and x = pmn; p - n
ordp(a)− ordp(b) if x = a/b, a, b ∈ Z, b 6= 0

is the p-adic order of x.

Definition 2.7.9 Let F be a local field or complete archimedian field with
valuation ν and a, b ∈ F ∗. Then the Hilbert symbol (denoted by (a, b)ν) is
defined as:

(a, b)ν =

{
1 if ax2 + by2 = 1 is solvable in F

−1 otherwise .

We can simply denote the Hilbert symbol by (a, b).

Example 2.7.10

1. Let F = C. Then (a, b) = 1 for all a, b ∈ C∗.

2. Let F = R. Then (a, b) =

{
1 if either a or b > 0

−1 otherwise
.

Theorem 2.7.11. (Hilbert’s Reciprocity Law) Let Qp be a p-adic field
and a, b ∈ Q∗. Then (a, b)p = 1 for almost all p, and

∏
p

(a, b)p = 1.

Proof: For a proof we refer to ([Ger08], page 98).

Theorem 2.7.12. (Hensel’s Lemma) Let ν be a complete discrete valu-
ation on F .Let A be the associated valuation ring. For a polynomial f(x) ∈
A[x], suppose there is an element α ∈ A such that

|f(α)|ν < |f ′(α)|2ν .

Then there exists an element β ∈ F such that f(β) = 0.
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Proof: For a proof we refer to ([Ger08], page 69).

Theorem 2.7.13. (Local Square Theorem) Let ν be a complete discrete
valuation on F . Then every element of the form 1 + 4πα, with π prime and
|α|ν ≤ 1, is a square in F .

Proof: Let λ = 1 + 4πα, with α ∈ A and π is prime in A. Consider
f(x) = πx2 + x − α ∈ A[x]. Using Hensel’s lemma (2.7.12), f has a root

β ∈ F and β is of the form −1±
√
1+λ

2π
. Therefore,

√
1 + λ ∈ F ; i.e., 1 + 4πα is

a square in F .

Theorem 2.7.14. (Weak Approximation Theorem) Let T be a set
which contains finitely many primes, possibly including ∞. Let αp ∈ Qp

for each p ∈ T . Then for a given real number ε ≥ 0, there exists α ∈ Q such
that |α− αp|p < ε for all p ∈ T .

Proof: Let T = {p1, p2, ..., pt}. We can assume that t ≥ 2, because Q is
dense in Qp for each p.
Claim: There exists an element β ∈ Q such that |β|p1 ≥ 1 and |β|pi ≤ 1; for
2 ≤ i ≤ t.

If ∞ /∈ T , then β =
p2...pt
p1

will do the job.

If ∞ ∈ T and ∞ = p1, then choose β = p2...pt.

Lastly, if ∞ ∈ T − p1 and say, ∞ = p2, then put β =
p3...pt
Kp1

, where K is any

integer relatively prime to p3...pt with K ≥ p3...pt
p1

.

By previous claim, we have for each j ∈ {1, ..., t}, there exists an element
βj ∈ Q such that |βj|pj ≥ 1 and |βj|pi ≤ 1; for i 6= j. Then

lim
n→∞

βnj
1 + βnj

=

{
1 w.r.t. | |pj ,
0 w.r.t. | |pi , for i 6= j.

Define

cn =
t∑

j=1

αjβ
n
j

1 + βnj
.

Thus, we get lim
n→∞

cn = αj w.r.t. | |pj ; for 1 ≤ j ≤ t. For sufficiently large

value of n, the job will be done by α = cn.

Theorem 2.7.15. (Strong Approximation Theorem) Let T be a set
which contains finitely many primes not including ∞. Let zp ∈ Zp for each
p ∈ T . Then for a given real number ε ≥ 0, there exists z ∈ Z such that
|z − zp|p < ε for all p ∈ T .
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Proof: Since for each p ∈ T , Z is dense in Zp, therefore, ∃z′p ∈ Z such that

|z′p − zp|p <
ε

2
. Now choose ν ∈ N sufficiently large so that

1

pν
<
ε

2
for all

p ∈ T . Now using the Chinese Remainder Theorem, there exists z ∈ Z such

that z ≡ z′p(modpν) for all p ∈ T . Thus we have |z − z′p|p <
ε

2
for all p ∈ T .

Therefore,
|z − zp|p = |z − z′p + z′p − zp|p

≤ |z − z′p|p + |z′p − zp|p
<
ε

2
+
ε

2
= ε

for all p ∈ T .

Lemma 2.7.1. Let T be a set which contains finitely many primes, possibly
including ∞. Let tp ∈ Qp for each p ∈ T . Then there exists t ∈ Q such that

1. t ∈ tpQ∗2p for each p ∈ T ;

2. |t|p = 1 for all other finite primes, but for at most one exceptional
prime p0.

Proof: Let νp = ordptp for each finite prime p ∈ T . Now define,

β = ±
∏

p∈T−∞

pνp ∈ Q,

where sign of β is same as the sign of t∞ if ∞ ∈ T , otherwise we can choose
sign of β arbitrarily. Therefore,

|β|p =

{
|tp|p for all finite p ∈ T,
1 for all finite p /∈ T.

Thus, we have β = εptp for some εp ∈ Z∗p; for all p ∈ T −∞. Now using the
Strong Approximation Theorem (2.7.15), ∃z ∈ Z such that z ≡ εp(mod8p)
for all p ∈ T −∞.

⇒ zε−1p ≡ 1(mod8p)

⇒ zε−1p = 1 + 8pα
where α ∈ Z∗p (and hence |2α|p ≤ 1). By Local Square Theorem (2.7.13),
z ∈ εpQ∗2p for all p ∈ T −∞.
Since z and 8

∏
p∈T−∞ p are relatively prime integers, therefore we can use

Dirichlet’s theorem on primes in an arithmetic progression, according to
which there exists a prime number p0 which satisfies p0 ≡ z(mod8

∏
p∈T−∞ p).

Since p0 is a unit w.r.t. | |∏
p∈T−∞ p, therefore, by again use of Local Square

Theorem (2.7.13), we get p0 ∈ zQ∗2p for all p ∈ T −∞. Thus our job will be
done by t = p0β.
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Lemma 2.7.2. Let F be a p-adic field whose residue class field has char-
acteristic 6= 2. Let U = A − p; where p is the unique maximal ideal of the
discrete valuation ring A. If a, b, c ∈ U , then the quadratic form 〈a, b, c〉 is
isotropic.

Proof: By Hensel’s lemma (2.7.12), we know that a diagonal quadratic
form 〈a1, a2, ..., ar〉; ai ∈ U , is isotropic if and only if the quadratic form
〈a1, a2, ..., ar〉 is isotropic over the residue class field A/p of characteristic
6= 2. Here ai denotes the image of ai in A/p.

Since for a p-adic field, the residue class field is finite and every 3-
dimensional form over a finite field is isotropic. Hence the result follows.

Theorem 2.7.16. For any finite prime integer p, every five dimensional
quadratic form f over Qp is isotropic. Two quadratic forms q and q′ over
Qp are isometric if and only if dim(q) = dim(q′), det(q) = det(q′) and
s(q) = s(q′).

Proof: We can write, f = f1 ⊥ pf2; where either dim(f1) ≥ 3 or dim(f2) ≥ 3
with the property that, after diagonalisation, all the diagonal elements of
f1 and f2 are units in Qp. Using lemma (2.7.2), we get that either f1 or
f2 is isotropic and therefore so is f . The last statement of the theorem
immediately follows from proposition (2.6.3).

Theorem 2.7.17. (Hasse Minkowski Theorem) Let q be a regular quadratic
form over the field of rational numbers. Then q is isotropic over Q if and
only if q is isotropic over Qp for all prime integers p, including ∞.

Proof: “Only if” part: If q is isotropic over Q then it is isotropic over all
the field extensions of Q. In particular, q is isotropic over Qp for all p.
“If” part: We will prove this part using induction on dim(q) = n.
Case 1: n = 1
This case does not make any sense because 1-dimensional quadratic form can
be either regular or isotropic but not both.
Case 2: n = 2
Scaling q by an element that it represents, we may assume that q = 〈1, α〉;
where α ∈ Q∗p. Since q is isotropic over Qp, therefore α ∈ −Q∗2p for all p.
Thus we have α < 0 and ordpα ≡ 0(mod2) for all p 6= ∞. Hence α ∈ −Q∗2
and therefore q is isotropic over Q.
Case 3: n = 3
Without loss of generality, we can assume that q ∼= 〈1,−a,−b〉 where a, b are
square free integers and |a| ≤ |b|. We will solve this case by using induction
on m = |a|+ |b|.
For m = 2, we get q ∼= 〈1,±1,±1〉. Since q is isotropic over Q∞, therefore
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q 6≡ 〈1, 1, 1〉. Hence the result holds.
Now we can assume that m ≥ 3 and that the result is true for 〈1,−c,−d〉
with |c| + |d| < m. Consider q ∼= 〈1,−a,−b〉 with |a| ≤ |b| and |b| ≥ 2.
Suppose b = ±p1...pk where all the pi’s are distinct primes.
Claim: For each p ∈ {p1, ..., pk}, a ≡ s2(modp) is solvable for some integer
s.
If p divides a, then s = 0 is the desired integer.
If p does not divide a, then a ∈ Z∗p. Since q is isotropic over Qp for all
p, therefore there exists a primitive element (x, y, z) ∈ Z3

p such that x2 −
ay2 − bz2 = 0. We are given that p divides b and so p divides x2 − ay2.
If p divides y then it will contradict the fact that (x, y, z) is a primitive
element. Thus we have y ∈ Z∗p and so ay2 ≡ x2(modp), which further
implies a ≡ (y−1x)2(modp). Since T ′ = {0, 1, ..., p − 1} is a complete set of
representatives for the residue class field Zp/pZp. Therefore we can choose
s ∈ T ′ such that s ≡ y−1x(modp) which will give a ≡ s2(modp), establishing
the claim.

Using Chinese Remainder Theorem for rings, we have

Z
bZ
'

k∏
i=1

Z
piZ

By previous claim, we have that a ≡ t2(modb) is solvable for some integer t.
Therefore, we can write a+ bb′ = t2 with t, b′ ∈ Z and |t| ≤ |b/2|.

⇒ b′ = b.
( 1

b2
(t2 − a)

)
⇒ b′ = bN

(t+
√
a

b

)
;

where N : Q(
√
a) → Q is the norm mapping. Since every square is a

norm, therefore b′ is a norm if and only if so is b. By theorem (2.4.9),
we know that a quadratic form 〈1,−a,−b〉 is isotropic over F if and only if
b ∈ NF (

√
a)/F (F (

√
a))∗. Now combining the above two statements, we have

q ∼= 〈1,−a,−b〉 is isotropic over F if and only if so is q′ ∼= 〈1,−a,−b′〉. Also,

|b′| =
∣∣∣t2 − a

b

∣∣∣ ≤ ∣∣∣t2
b

∣∣∣+
∣∣∣a
b

∣∣∣ ≤ |b|
4

+ 1 < |b|.

From the hypothesis, we have q is isotropic over Qp for all prime integers
p, which implies that q′ is isotropic over Qp for all prime integers p. Using
the induction hypothesis on m, we get q′ is isotropic over Q and hence q is
isotropic over Q.
Case 4: n = 4
Let q ∼= 〈a1, a2, a3, a4〉; where all the ai’s are square free integers. Let

T = {∞} ∪ {p : p divides 2a1a2a3a4}
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Thus for all p /∈ T , we have a1, a2, a3, a4 ∈ Z∗p and hence (ai, aj)p = 1;
1 ≤ i, j ≤ 4.

Since q is isotropic over Qp, therefore there exists an element tp ∈ Q∗p such
that 〈a1, a2〉 represents tp and 〈a3, a4〉 represents −tp over Qp. Using lemma
(2.7.1), there exists t ∈ Q and a prime p0 such that the quadratic forms
〈a1, a2,−t〉 and 〈a3, a4, t〉 are isotropic over Qp for all p ∈ T . Moreover,
〈a1, a2,−t〉 and 〈a3, a4, t〉 are isotropic over Qp for all p /∈ T ∪ {p0} as |ai|p =
|t|p = 1 for all such p. Now combining the above two statements, we get
that the quadratic forms 〈a1, a2,−t〉 and 〈a3, a4, t〉 are isotropic over Qp for
all p 6= p0. From Hilbert’s Reciprocity Law (2.7.11), it follows that these
quadratic forms are isotropic over Qp0 as well. Therefore these quadratic
forms are isotropic over Q by the case n = 3. Hence q is isotropic over Q.
Case 5: n ≥ 5
Let q = q1 ⊥ q2 where q1 = 〈a, b〉 and q2 = 〈a1, a2, ..., ar〉; r = dim(q2) ≥ 3
and ai ∈ Q. We consider ai’s as elements of Qp for all p. We can assume that
all ai’s belong to Zp (because we can clear their denominators by multiplying
with a suitable square in Q).

Let S = {p : q2 is anisotropic over Qp}. S is a finite set because the set of
primes at which the quadratic form q2 is possibly anisotropic contains p =∞,
p = 2 and those primes 6= 2 at which no three ai’s; 1 ≤ i ≤ r are units in the
valuation ring of Qp (because of lemma (2.7.2)). Since q = q1 ⊥ q2 is isotropic
for all prime integers p and hence for all p ∈ S. Thus ∃tp ∈ Q∗p such that q1
and q2 represents tp and −tp respectively. Therefore, ∃β1p, β2p ∈ Q∗p such that
aβ2

1p+bβ2
2p = tp. Now using Weak Approximation Theorem (2.7.14) with the

Local Square Theorem (2.7.13), we can choose β1, β2 ∈ Q sufficiently close to
β1p, β2p so that t = aβ2

1+bβ2
2 belong to the same square class as of tp in Qp/Q∗2p

for all p ∈ S. Now consider the sub-quadratic form q′ = 〈t〉 ⊥ q2 of q. For
p ∈ S, the quadratic form q2 represents −t by the choice of β1, β2 ∈ Q. Thus
q′ is isotropic for p ∈ S. For p /∈ S, the quadratic form q2 is isotropic, then so
is q′. Thus, q′ is isotropic for all prime integers p and dim(q′) = dim(q)− 1.
Hence, by induction hypothesis we are done.

Corollary 2.7.1. Let q be quadratic form with dim(q) ≥ 5. Then q is
isotropic over Q if and only if it is isotropic over R.

Proof: “If” part: Since dim(q) ≥ 5, therefore q is isotropic over Qp; for all
finite primes p not including ∞ (using theorem (2.7.16)). Since it is given
that q is isotropic over R, therefore, by Hasse Minkowski theorem (2.7.17),
we get that q is isotropic over Q. Converse part is trivial.
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Chapter 3

Involution on Central Simple
Algebras

Throughout this chapter F denote a field of characteristic 6= 2 and F ∗ will
denote the multiplicative group of F .

3.1 Introduction

Definition 3.1.1 Let A be a central simple simple algebra over a field F .
Then involution on A is a map σ : A → A such that

1. σ(x+ y) = σ(x) + σ(y)

2. σ(xy) = σ(y)σ(x)

3. σ2(x) = x

for all x, y ∈ A. We will denote this pair by (A, σ).

Example 3.1.2

1. Let (A, σ) = (Mn(F ), t); where t denote the transpose map on Mn(F );
i.e., the map t : Mn(F )→ Mn(F ) is given by A 7→ At. Then it is easy
to check that the map t is an involution on Mn(F ).

2. Let (V, q) be a non singular quadratic space and let M be a symmetric
matrix associated with q. Then we can define a map σq on Mn(F ) as :
σq : Mn(F ) → Mn(F ) such that σq(A) = (MAM−1)t. This map
satisfies the following properties:
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(a) σq(A1 + A2) = (M(A1 + A2)M
−1)t

= (M(A1)M
−1)t + (M(A2)M

−1)t

= σq(A1) + σq(A2).

(b) σq(A1A2) = (M(A1A2)M
−1)t

= (MA1M
−1MA2M

−1)t

= (MA2M
−1)t(MA1M

−1)t

= σq(A2)σq(A1).

(c) σ2
q (A) = σq((MAM−1)t)

= (M(MAM−1)tM−1)t

= (MM−1AtMM−1)t

= A

for all A,A1, A2 ∈ Mn(F ). Hence, σq is an involution and it is known
as the adjoint involution to the quadratic form q.

Observation 3.1.3 Let σ be an involution on a central simple F -algebra
A. Then

1. σ(1) = 1.

2. σ(a−1) = σ(a)−1 for all a ∈ A.

3. The map σ is not necessarily an F -linear map.

4. The center F is preserved by σ; i.e., σ(F ) = F .

Definition 3.1.4

1. An involution σ is said to be of first kind if it is F -linear. Equivalently,
σ(λ) = λ for all λ ∈ F .

2. If restriction of involution σ to the center F is an automorphism of
order 2, then it is said to be an involution of second kind.

Definition 3.1.5 Let σ be an involution on a central simple F -algebra A.
Then the fixed field of σ (denoted by F σ) is defined as :

F σ := {λ ∈ F |σ(λ) = λ}.
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Observation 3.1.6

1. If σ is an involution of first kind, then F σ = F .

2. If σ is an involution of second kind, then F is a separable quadratic
extension over F σ.

Theorem 3.1.7. (Albert’s Theorem) Let A be a central simple F -algebra.
Then A has an involution of first kind if and only if A⊗A splits.

Proof: For a proof we refer to ([KMRT98], page 31).

Theorem 3.1.8. Let A be a central simple F -algebra and σ is an involution
of first kind on A.

1. The map σa : A → A defined by x 7→ aσ(x)a−1 is an involution on A;
for a ∈ A such that a = λσ(a); λ ∈ F ∗ with λσ(λ) = 1.

2. If τ is any other involution of first kind on A, then there exists an
invertible element a ∈ A with σ(a) = ±a such that τ = σa where σa is
same as in (1).

3. If σ and τ are two involutions of first kind on A, then one can uniquely
determine a ∈ A (as in (2)) upto a scalar factor µ ∈ F ∗.

Proof:

1. To show that σa is an involution on A, we have to verify the three
conditions as given in definition (3.1.1). For x, y ∈ A and λ ∈ F ∗, we
have

(a) σa(x+ y) = aσ(x+ y)a−1

= a(σ(x) + σ(y))a−1

= aσ(x)a−1 + aσ(y)a−1

= σa(x) + σa(y).

(b) σa(xy) = aσ(xy)a−1

= a(σ(y)σ(x))a−1

= aσ(y)a−1aσ(x)a−1

= σa(y)σa(x).

(c) σ2
a(x) = σa(aσ(x)a−1)

= aσ(aσ(x)a−1)a−1

= aσ(a−1)σ2(x)σ(a)a−1

= λxλ−1

= x.
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Thus σa is an involution on A.

2. Let τ be any other involution on A. Then σ ◦ τ is an automorphism
of A and hence an inner automorphism (by Skolem Noether Theorem
(2.3.7)); i.e., there exists an element a ∈ A such that σ ◦ τ(x) = axa−1

⇒ τ(x) = σ(a)−1σ(x)σ(a)
⇒ τ 2(x) = σ(a)−1σ(τ(x))σ(a)
⇒ x = σ(a)−1axa−1σ(a)
Hence the inner automorphism induced by σ(a)−1a is identity, which is
possible only if σ(a)−1a ∈ F ∗; i.e., σ(a)−1a = λ(say). Then a = σ(a)λ
⇒ σ(a) = aσ(λ)
⇒ σ(a) = σ(a)λσ(λ)
⇒ λσ(λ) = 1
Since σ is an involution of first kind, therefore, λ2 = 1; i.e., λ = ±1
and hence σ(a) = ±a

3. Let σ and τ are as in (2) and σa = τ = σb for a, b ∈ F ∗. Then, for all
x ∈ A,
a−1σ(x)a = b−1σ(x)b ⇒ σ(x) = ab−1σ(x)ba−1

⇒ ab−1 ∈ F ∗
i.e., ab−1 = µ (say) ⇒ a = µb and we are through.

3.2 Adjoint Algebra

In §3.1, we have defined the adjoint involution to a given quadratic form q.
Now, we want to define an equivalent notion on EndF(V) = Mn(F).

Definition 3.2.1 Let (V,B) be a non-singular bilinear space. Then B̂ :
V → V ∗ defined by

B̂(x)(y) = B(x, y) for x, y ∈ V.

is an isomorphism of vector spaces. We may then define adjoint involution
on EndF(V) (denoted by σB) as follows:

σB : EndF(V)→ EndF(V)

f 7→ B̂−1 ◦ f t ◦ B̂

where f t ∈ EndF(V∗) denotes the transpose of f , which is defined by ϕ 7→
ϕ ◦ f for ϕ ∈ V ∗.
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Observation 3.2.2

1. Equivalently, we can define σB(f) by the following property:

B(x, f(y)) = B(σB(f)(x), y) for x, y ∈ V,

because for x, y ∈ V , we have

σB(f) = B̂−1 ◦ f t ◦ B̂

⇔ B̂ ◦ σB(f) = f t ◦ B̂

⇔ B(x, f(y)) = B(σB(f)(x), y)

2. If B is symmetric or skew symmetric, then σB is an involution, as it
satisfies all the three conditions given in definition (3.1.1). For f, g ∈
EndF(V), we have

(a) σB(f + g) = B̂−1 ◦ (f + g)t ◦ B̂
= B̂−1 ◦ (f t + gt) ◦ B̂
= B̂−1 ◦ f t ◦ B̂ + B̂−1 ◦ gt ◦ B̂
= σB(f) + σB(g).

(b) σB(f ◦ g) = B̂−1 ◦ (f ◦ g)t ◦ B̂
= B̂−1 ◦ (gt ◦ f t) ◦ B̂
= B̂−1 ◦ gt ◦ B̂ ◦ B̂−1 ◦ f t ◦ B̂
= σB(g) ◦ σB(f).

(c) σ2
B(f) = B̂−1 ◦ (B̂−1 ◦ f t ◦ B̂)t ◦ B̂

= B̂−1 ◦ B̂ ◦ f ◦ B̂−1 ◦ B̂
= f .

Thus σB is an involution on EndF(V).

Definition 3.2.3 Let σB be the adjoint involution on EndF(V). Then we
call (EndF(V), σB) as the adjoint algebra .

Theorem 3.2.4. The map which associates to each non-singular bilinear
space (V,B) its adjoint algebra (EndF(V), σB) induces a one-to-one corre-
spondence between equivalence classes of non-singular bilinear forms on V
modulo multiplication by a factor in F ∗ and involutions of EndF(V). In par-
ticular, involutions of first kind correspond to non-singular bilinear forms
which are either symmetric or skew-symmetric.
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Proof: Firstly, we want to show that the map is well defined. From the
equivalent definition of adjoint involution as given in observation (3.2.2)(1),
we have

B(x, f(y)) = B(σB(f)(x), y);

where f ∈ EndF(V) and x, y ∈ V .
For α ∈ F ∗, we have

αB(x, f(y)) = αB(σαB(f)(x), y)

⇒ B(x, f(y)) = B(σαB(f)(x), y);

i.e., σB = σαB. Thus the map B 7→ σB from non-singular bilinear forms on
V to the set of involutions on EndF(V) is well defined upto a scalar factor.

Now, we will show that this map is one-one. If B and B′ are two non-
singular bilinear forms on V such that σB = σB′ , then

B̂−1 ◦ f t ◦ B̂ = B̂′
−1
◦ f t ◦ B̂′

⇒ B̂′ ◦ B̂−1 ◦ f t ◦ B̂ ◦ B̂′
−1

= f t;

where f ∈ EndF(V) is arbitrary. Therefore, we get B̂′◦B̂−1 = β ∈ F ∗. Thus,
B and B′ are scalar multiples of each other.

If B is a fixed non-singular bilinear form on V with adjoint involution
σB, then for any involution σ of EndF(V), the composition σB ◦ σ−1 is an
F -linear automorphism of EndF(V). By Skolem Noether theorem (2.3.7),
this automorphism is an inner automorphism; i.e., there exist an invertible
element u ∈ EndF(V) such that σB ◦ σ−1 = Int(u). Thus we have,

Int(u−1) ◦ σB = σ

⇒ u−1σB(f)u = σ(f)

⇒ σB(f)u = uσ(f).

Hence σ is the adjoint involution w.r.t. the bilinear form B′ defined by

B′(x, y) = B(u(x), y).

Thus we have proved the first part of the theorem.
Let B be a non-singular bilinear form on V with adjoint involution σB. Then
the bilinear form B′ defined by

B′(x, y) = B(y, x) for x, y ∈ V
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has adjoint involution σB′ = σ−1B . Therefore, σ2
B is identity if and only if

σ′B = σB; i.e., B′ = εB where ε2 = 1 and this is true if and only if B is
symmetric or skew-symmetric.

Let A be a central simple F -algebra with deg(A) = n and K be an
algebraic closure of F . If we extend the scalars to K, then A ∼= Mn(K).
We can view every element a ∈ A as a matrix in Mn(K). Characteristic
polynomial of that matrix has coefficients in F and it is called the reduced
characteristic polynomial of A which is denoted by

PrdA,a(X) = Xn − s1(a)Xn−1 + ...+ (−1)nsn(a).

Now, define TrdA(a) = s1(a) and NrdA(a) = sn(a). We call TrdA(a) and
NrdA(a) as reduced trace and reduced norm of a respectively.

Types of Involutions

Notation: Let σ be an involution of first kind on a central simple F -algebra
A. Then

1. Sym(A, σ) = {a ∈ A|σ(a) = a} denotes the set of symmetric elements
in A.

2. Skew(A, σ) = {a ∈ A|σ(a) = −a} denotes the set of skew-symmetric
elements in A.

3. Symd(A, σ) = {a + σ(a)|a ∈ A} denotes the set of symmetrized ele-
ments in A.

4. Alt(A, σ) = {a − σ(a)|a ∈ A} denotes the set of alternating elements
in A.

Observation 3.2.5 Since char(F) 6= 2, therefore Sym(A, σ) = Symd(A, σ)
and Skew(A, σ) = Alt(A, σ). Moreover, A = Sym(A, σ)⊕ Skew(A, σ).

If σ is an involution of first kind on a central simple F -algebra A and L
is any field which contains F , then we can extend σ to an involution of first
kind σL = σ ⊗ IdL on AL = A ⊗F L. In particular, if L is a splitting field
of F , then AL = EndL(V); where V is an n-dimensional vector space over L
and n = deg(A).

As we have observed in theorem (3.2.4), the involution σL is the adjoint
involution σB w.r.t. some non-singular symmetric or skew-symmetric bilinear
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form b on V . We know that End(V)L ∼= Mn(L). Let M denotes the associated
matrix with B w.r.t. a fixed basis of V . Then

B(x, y) = xt.M.y;

where x and y are considered as column vectors and M t = M if B is sym-
metric, M t = −M if B is skew-symmetric. Thus, the involution σL can be
identified with the involution σM , which is defined as:

σM(A) = M−1.At.M ; where A ∈Mn(L).

Now we can sum up our conclusions by giving the following proposition.

Proposition 3.2.1. Let σ be an involution of first kind on a central simple
F -algebra A with deg(A) = n. Let L be any splitting field of F . Let V
be an n-dimensional vector space over L. Then there exists a non-singular
symmetric or skew symmetric bilinear form B on V and an invertible matrix
M ∈ GLn(L) such that M t = M if B is symmetric, M t = −M if B is
skew-symmetric, and

(AL, σL) ∼= (EndL(V), σB) ∼= (Mn(L), σM).

Definition 3.2.6 Let σ be an involution of first kind on a central simple
F -algebra A. Let L be any splitting field of F .

1. If for any isomorphism (AL, σL) ∼= (EndL(V), σB), the bilinear form B
is symmetric, then we call σ to be an involution of orthogonal type .

2. If for any isomorphism (AL, σL) ∼= (EndL(V), σB), the bilinear form B
is skew-symmetric, then we call σ to be an involution of symplectic type
.

Remark 3.2.7 In view of the theorem (3.2.4), one can see that involutions
of first kind are either of orthogonal type or of symplectic type.

Proposition 3.2.2. Let σ be an involution of first kind on a central simple
F -algebra A and degree of A is n.

1. If σ is of orthogonal type, then dimF(Sym(A, σ)) =
n(n + 1)

2
.

2. If σ is of symplectic type, then dimF(Skew(A, σ)) =
n(n + 1)

2
.
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Proof: We identify (A, σ) with (Mn(F ), σM); where M ∈ GLn(L) such that
M t = M if B is symmetric and M t = −M if B is skew-symmetric (by
theorem (3.2.1)). For A ∈ Mn(F ), the relation MA = (MA)t is equivalent
to σM(A) = A if M t = M and to σM(A) = −A if M t = −M . Therefore,

g−1.Sym(Mn(F), t) =

{
Sym(A, σ) if B is symmetric

Skew(A, σ) if B is skew- symmetric

As dimF(Sym(Mn(F), t)) = n(n+1)
2

, hence the result follows.

Proposition 3.2.3. Let σ be an involution of first kind on a central simple
F -algebra A. Let σ′ = Int(u)◦σ (existence of u follows from theorem (3.1.8))
be any other involution of first kind on A with σ(u) = ±u; u ∈ A∗. Then

1. Sym(A, σ′) = Symd(A, σ′) =

{
u.Sym(A, σ) if σ(u) = u

u.Skew(A, σ) if σ(u) = −u.

2. Skew(A, σ′) = Alt(A, σ′) =

{
u.Skew(A, σ) if σ(u) = u

u.Sym(A, σ) if σ(u) = −u.

3. σ and σ′ are of the same type if and only if σ(u) = −u.

Proof:

1. For all x ∈ A, we have

x+ σ′(x) = u(u−1x+ σ(x)u−1) = u(u−1x+ σ(u−1x)) if σ(u) = u

and

x+ σ′(x) = u(u−1x+ σ(x)u−1) = u(u−1x− σ(u−1x)) if σ(u) = −u.

2. For all x ∈ A, we have

x− σ′(x) = u(u−1x− σ(x)u−1) = u(u−1x− σ(u−1x)) if σ(u) = u

and

x− σ′(x) = u(u−1x− σ(x)u−1) = u(u−1x+ σ(u−1x)) if σ(u) = −u.

3. The involutions σ and σ′ are of the same type if and only if dimF(Sym(A, σ)) =
dimF(Sym(A, σ′)) (by proposition (3.2.2)) and this condition is true if
and only if σ(u) = u (using part 1).
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Proposition 3.2.4. Let σ be an involution of first kind and symplectic type
on a central simple F -algebra A. Then NrdA(s) is a square in F for all
s ∈ Sym(A, σ).

Proof: For a proof we refer to ([KMRT98], page 19).

Let Q = (a, b)F be a quaternion algebra over F . Then the conjuga-
tion map on Q (denoted by γ) is an involution in view of the observation
(2.4.4). It is an involution of first kind (because γ(a) = a for all a ∈ F ).
Since dimF(Sym(Q, γ)) = 1, therefore it is a symplectic involution (because
of proposition (3.2.2) and remark (3.2.7)). We call this involution as the
canonical involution on Q.

Proposition 3.2.5. Let Q be a quaternion algebra over F and γ be the
canonical involution on Q. Then γ is the unique symplectic involution on
Q and every orthogonal involution σ on Q is of the form Int(u) ◦ γ; where
u ∈ Q∗ is uniquely determined by σ upto a factor in F ∗.

Proof: By theorem (3.1.8), It falls out that if σ is an involution of first kind
on Q, then σ = Int(u) ◦ γ; where u ∈ Q∗ with γ(u) = ±u. If σ is symplectic,
then γ(u) = u which implies that σ = γ. If σ is orthogonal, then γ(u) = −u
with u ∈ Q∗.

3.3 Isotropy and Hyperbolicity of Adjoint Al-

gebra

Definition 3.3.1 Let I be a left ideal of a central simple algebra A over a
field F . Then the annihilator of I (denoted by I◦) is defined as

I◦ = {x ∈ A|Ix = 0}.

In the similar manner, we can define annihilator of a right ideal. Clearly, I◦

is a right ideal of A if I is a left ideal of A and vice-versa.

Definition 3.3.2 Let σ be an involution on a central simple F -algebra A
and I be a right ideal of A. Then the orthogonal ideal of I (denoted by I⊥)
w.r.t. σ is defined as

I⊥ = {x ∈ A : σ(x).I = 0}.

It can be clearly seen that I⊥ is a right ideal of A.
One can observe that if I is a right ideal of A, then σ(I) is a left ideal and

σ(I)◦ = {x ∈ A : σ(I).x = 0} = {x ∈ A : σ(x).I = 0} = I⊥.
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Definition 3.3.3 Let σ be an involution on a central simple F -algebra A
and I be a right ideal of A. Then the ideal I is said to be isotropic w.r.t. σ
if I ⊆ I⊥.

Definition 3.3.4 Let σ be an involution on a central simple F -algebra A.
Then A is said to be isotropic if there exist a non zero isotropic ideal of A.

Observation 3.3.5 Let σ be an involution of first kind on a central simple
F -algebra A. Then ∃a ∈ A such that σ(a).a = 0 if and only if there exists a
non zero isotropic ideal of A.

Definition 3.3.6 A central simple algebra A with involution σ is said
to be hyperbolic if there exists a non zero isotropic ideal I of A such that

dimF(I) =
1

2
dimF(A).

Proposition 3.3.1. A central simple algebra A with involution σ. Then the
following statements are equivalent:

1. A is hyperbolic.

2. There exists an idempotent element e ∈ A such that σ(e) = 1− e.

Proof: For a proof we refer to ([KMRT98], page 74).

Example 3.3.7 The quaternion algebra Q with canonical involution γ is
hyperbolic as

e =

(
1/2 1/2
1/2 1/2

)
is the required idempotent element as mentioned in proposition (3.3.1).

Now, we want to find relation between the isotropy and hyperbolicity of
the bilinear space (V,B) and the split algebra with orthogonal involution
(EndF(V), σB). Let U be a subspace of an n-dimensional vector space V .
Then one can easily check that

HomF(V,U) = {f ∈ EndF(V) : f(V) ⊆ U}.

is a right ideal of the ring EndF(V) and dimF(HomF(V,U)) = dimF(V).dimF(U).

Proposition 3.3.2. There is a one-to-one correspondence between vector
subspaces of V and the right ideals I of the the ring EndF(V) defined by the
map U 7→ HomF(V,U).
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Proof: The map U 7→ HomF(V,U) is a well defined map from the collection
of subspaces of V to the collection of right ideals of the ring EndF(V). Now
it suffices to show that every right ideal I of the ring EndF(V) is of the form
HomF(V,U); for some subspace U of V . Let S be the collection of all subsets
W of V such that f(V ) ⊆ W ; for all f ∈ I. S is a non empty collection as
V ∈ S. Thus, by Zorn’s lemma, S has the minimal element, say, U . Now,
therefore, it is enough to show that U is a subspace of V .

For this, firstly, we will show that for u ∈ U , there exist a f ∈ I such
that f(v) = u, for all v ∈ V . Since U is the minimal element of S, therefore,
there exist atleast one g ∈ I such that g(w) = u for some w ∈ V . Now fix w
and define the map h : V → V as h(v) = w for all v ∈ V . Thus f = g ◦ h is
the required map because I is a right ideal of the ring EndF(V).

Now let f1, f2 ∈ I be two maps corresponding to u1, u2 ∈ U as defined
in the previous paragraph. Since I is a ideal, therefore, (f1 + f2) ∈ I and
hence (f1 + f2)(V ) = u1 + u2 ∈ U . It is clear that 0 ∈ U . Let λ ∈ F , u ∈ U
and f be the same as defined earlier. Then λf(V ) = λu ∈ U . Hence U is a
subspace of V and we are through.

Proposition 3.3.3. Let (EndF(V), σB) be the adjoint algebra for the bilinear
space (V,B) and I = HomF(V,W) for some subspace W of V . Then

I⊥ = HomF(V,W⊥).

Proof: If I = HomF(V,W) for some subspace W of V , then for g ∈ EndF(V),
f ∈ HomF(V,W) and x, y ∈ V , we have

B(f(x), g(y)) = B(σB(g) ◦ f(x), y).

Thus, σB(g) ◦ f = 0 if and only if g(y) ∈ W⊥ i.e., g ∈ HomF(V,W⊥). Hence,
I⊥ = HomF(V,W⊥).

Theorem 3.3.8. Let (EndF(V), σq) be the adjoint algebra of the quadratic
space (V, q). Then the algebra (EndF(V), σq) is isotropic if and only if the
quadratic space (V, q) is isotropic.

Proof: “If” part: If (V, q) is an isotropic quadratic space, then there exists
a non zero isotopic vector v ∈ V . Consider I = HomF(V,W) where W is
the subspace generated by v. Then I is a non-zero ideal of EndF(V). Now
v ∈ W⊥ as v is an isotropic vector of V . Therefore,

I = HomF(V,W) ⊆ HomF(V,W⊥) = I⊥;

i.e., I is a non zero isotropic ideal of EndF(V) and hence the adjoint algebra
(EndF(V), σq) is isotropic.
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“Only if” part: Let I be a non zero isotropic ideal of EndF(V). Then I =
HomF(V,U), for some subspace U of V (by proposition (3.3.2)). Since I is
isotropic, therefore, I ⊆ I⊥; i.e., HomF(V,U) ⊆ HomF(V,U⊥) which implies
that U ⊆ U⊥. Since U is a non zero subspace of V , therefore, ∃0 6= v ∈ U
such that q(v) = 0. Hence, (V, q) is an isotropic quadratic space.

Theorem 3.3.9. Let (EndF(V), σq) be the adjoint algebra of a 2n-dimensional
quadratic space (V, q). Then the algebra (EndF(V), σq) is hyperbolic if and
only if the quadratic space (V, q) is hyperbolic.

Proof: “If” part: If (V, q) is a hyperbolic quadratic space, then ∃ an n-
dimensional totally isotropic subspace W of V . Consider I = HomF(V,W).
Then I is a non zero isotropic ideal of EndF(V) and dimF(I) = dimF(V).dimF(W) =
2n2 = 1

2
dimF(EndF(V)). Thus the adjoint algebra (EndF(V), σq) is hyper-

bolic.
“Only if” part: Let I be a non zero isotropic ideal of EndF(V) with dimF(I) =
1
2
dimF(EndF(V)). Then I = HomF(V,U), for some subspace U of V (by

proposition (3.3.2)) with dimF(U) = 1
2
dimF(V). Since I is isotropic, there-

fore, I ⊆ I⊥; i.e., HomF(V,U) ⊆ HomF(V,U⊥) which implies that U ⊆ U⊥;
i.e., U is a totally isotropic subspace of V with dimF(U) = 1

2
dimF(V). Thus,

the quadratic space (V, q) is hyperbolic.

3.4 Hermitian Forms

In this section, we want to generalize some results of §2 for arbitrary central
simple algebra with involution.

Definition 3.4.1 Let A be a central simple F -algebra and M be a left
A-module. Then reduced dimension of M (denoted by rdim(M)) is defined
as:

rdim(M) =
dimF(M)

degA
.

Definition 3.4.2 Let σ be an involution of first kind on a central simple
F -algebra A and M be a right A-module. Then hermitian form on M is
defined as a map h : M ×M → A which satisfies the following properties:

1. h is A-linear in second variable; i.e., h(x, yα+zβ) = h(x, y)α+h(x, z)β.

2. h(x, y) = σ(h(y, x));

where α, β ∈ A and x, y, z ∈M .
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Definition 3.4.3 A hermitian form h : M ×M → A is called non-singular
if the map M → HomA(M,A) defined as x 7→ h( , x) is bijective.

Proposition 3.4.1. Let E ∼= EndA(V) for some central division algebra A
over F and some finite dimensional vector space V over A. Let I be a right
ideal of E. Then

I = HomA(V,W)

where W is a subspace of V . Furthermore, ∃ an idempotent element e ∈ E
such that I = eE.

Proof: For a proof we refer to ([KMRT98], page 7).

Theorem 3.4.4. Let A be a central simple algebra over a field F with in-
volution τ and M be a right A-module. Let h be a non singular hermitian
or skew-hermitian form on M . Then there exists a unique involution σh on
EndA(M) which satisfies the following conditions:

1. σh(α) = τ(α) for all α ∈ F .

2. h(x, f(y)) = h(σh(f)(x), y) for x, y ∈M .

Proof: For a proof we refer to ([KMRT98], page 42).

The involution σh as defined in the above theorem is called the adjoint
involution w.r.t. h.

Theorem 3.4.5. Let E = EndA(M) be a central simple F -algebra and τ be
an involution of first kind on A. Then the map h 7→ σh defines a one-to-one
correspondence between non singular hermitian and skew-hermitian forms on
M w.r.t. τ modulo a scalar factor in F ∗ and involutions of the first kind on
E. Moreover, the involutions σh and τ are of the same type if h is hermitian
and of opposite types if h is skew-hermitian.

Proof: For a proof we refer to ([KMRT98], page 43).

Theorem 3.4.6. Let σ be an involution of first kind on a central simple
F -algebra A and L = F (

√
a) be a quadratic extension of F such that the

extended algebra AL with involution σL is hyperbolic. Then ∃α ∈ A such
that α2 = a and σ(α) = −α.

Proof: Since σL is hyperbolic, therefore there exists an idempotent e ∈ AL
such that σL(e) = 1−e. We can write e = e1⊗1+e2⊗

√
a; where e1, e2 ∈ A.

Thus
σL(e) = σL(e1 ⊗ 1 + e2 ⊗

√
a)
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= σL(e1 ⊗ 1) + σL(e2 ⊗
√
a)

= σ(e1)⊗ id(1) + σ(e2)⊗ id(
√
a)

= σ(e1)⊗ 1 + σ(e2)⊗
√
a

Since σL(e) = 1− e, therefore

σ(e1)⊗ 1 + σ(e2)⊗
√
a = 1⊗ 1− (e1 ⊗ 1 + e2 ⊗

√
a)

which implies that σ(e1) = 1− e1 and σ(e2) = −e2.
Idempotency of e (i.e., e2 = e ) implies that

(e21 + ae22)⊗ 1 + (e1e2 + e2e1)⊗
√
a = e1 ⊗ 1 + e2 ⊗

√
a

which implies that e21 + ae22 = e1 and e1e2 + e2e1 = e2.
Let I = e2A be a right ideal of A. Then

I⊥ = (σI)◦ = {x ∈ A : σ(I).x = 0}
= {x ∈ A : e2x = 0}

Let x be any element of I⊥. Then we have

e2e1x = 0

e21x = e1x.

Thus e1x ∈ I⊥ for x ∈ I⊥. Hence from the above equations, we get

e1σ(x)σ(e1σ(x)) = 0

xe1σ(xe1) = 0

We know that if σ is anisotropic, then for all x ∈ A, σ(x)x = 0⇔ x = 0.
Therefore, xe1 = 0 = e1σ(x). Thus

0 = σ(xe1) = σ(e1)σ(x) = (1− e1)σ(x) = σ(x)

and hence I⊥ = 0. Since e2x 6= 0 for all 0 6= x ∈ A, therefore, e2 is invertible.
Now e1e

−1
2 is the desired element, say, α; i.e., α2 = a and σ(α) = −α.

Theorem 3.4.7. Let σ be an involution of first kind on a central simple
F -algebra A and L = F (

√
a) be a quadratic extension of F . If there exists

α ∈ A such that α2 = a and σ(α) = −α, then the extended algebra AL with
involution σL is hyperbolic. Conversely, if σ is an involution of first kind and
orthogonal type on a non split central simple F -algebra A and Witt index of
A is odd, then ∃α ∈ A such that α2 = a and σ(α) = −α and the extended
algebra AL with involution σL is hyperbolic.

Proof: For a proof we refer to ([BFST93], Theorem 3.3).

42



Theorem 3.4.8. Let A be a central simple F -algebra with involution σ and
let A is Brauer equivalent to a quaternion division algebra Q. If σ is an
involution of first kind and orthogonal type then A contains a subalgebra
which is isomorphic to Q if and only if σ is hyperbolic over a quadratic field
extension F (

√
a) such that Q splits over F (

√
a).

Proof: For a proof we refer to ([BFST93], Theorem 3.4).

3.5 The Discriminant

The notion of discriminant is related to involutions of orthogonal type. In
this section, our aim is to define discriminant of an orthogonal involution σb
in such a way that the discriminant of σb is same as the discriminant of the
associated symmetric bilinear form b.

Recall that if (V, b) is a non-singular bilinear space over F and dimF(V) = n,
then

1. determinant of b is the square class of the determinant of the matrix of
b w.r.t. an arbitrary basis (e1, e2, ..., en) of V ; i.e.,

det(b) = det(b(ei, ej))1≤i,j≤n.F
∗2 ∈ F∗/F∗2.

2. discriminant of b is the signed determinant; i.e.,

disc(b) = (−1)n(n−1)/2det(b) ∈ F∗/F∗2.

Observation 3.5.1 The discriminant of an orthogonal involution is defined
only for central simple algebras of even degree. We know that there is a
bijection between involutions of first kind on EndF(V) and equivalence classes
of non singular symmetric or skew-symmetric bilinear forms on V modulo
multiplication by a factor in F ∗. If dim(V) is odd, then for α ∈ F ∗ we have
disc(αb) = αdisc(b). Therefore, the discriminant of an orthogonal involution
is invariant (and hence well defined) if and only if the dim(V) is even.

The definition of the discriminant of an orthogonal involution depends on
the following proposition:

Proposition 3.5.1. Let σ be an orthogonal involution on a central simple
F -algebra A. If deg(A) is even, then

NrdA(a) ≡ NrdA(b).F∗2,

where a, b ∈ Alt(A, σ) ∩ A∗.
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Proof: Fix a, b ∈ Alt(A, σ) ∩ A∗. The involution σ′ = Int(a) ◦ σ is sym-
plectic (by proposition (3.2.3)(3)) and ab ∈ Sym(A, σ′) (using proposition
(3.2.3)(1)). Therefore, NrdA(ab) ∈ F∗2 (using proposition (3.2.4)) and hence
the result follows.

Definition 3.5.2 Let σ be an orthogonal involution on a central simple
algebra A of even degree n = 2m over a field F .

1. The determinant of σ (denoted by det(σ)) is defined as the square class
of the reduced norm of any alternating unit, i.e.,

det(σ) = NrdA(a).F∗2 ∈ F∗/F∗2 for a ∈ Alt(A, σ) ∩ A∗.

2. The discriminant of σ (denoted by disc(σ)) is defined as the signed
determinant, i.e.,

disc(σ) = (−1)mdet(σ) ∈ F∗/F∗2.

Proposition 3.5.2. Let A be a central simple algebra of even degree over a
field F .

1. Suppose σ is an orthogonal involution on A and let u ∈ A∗. If Int(u)◦σ
is an orthogonal involution on A, then

disc(Int(u) ◦ σ) = NrdA(u).disc(σ).

2. Suppose σ is a symplectic involution on A and let u ∈ A∗. If Int(u) ◦σ
is an orthogonal involution on A, then disc(Int(u) ◦ σ) = NrdA(u).

Proof:

1. Since both σ and Int(u)◦σ are orthogonal involutions, therefore σ(u) =
u which implies that Alt(A, Int(u)◦σ) = u.Alt(A, σ) by (by proposition
(3.2.3)(2)) and hence the result follows.

2. Since σ is symplectic and Int(u) ◦σ is orthogonal, therefore σ(u) = −u
which implies that u ∈ Alt(A, Int(u) ◦ σ) and hence the result follows.

Proposition 3.5.3. Let A = EndF(V) be a central simple F -algebra of even
degree and σb is the adjoint involution on A w.r.t. some non singular sym-
metric bilinear form b on V , then

disc(σb) = disc(b).
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Proof: Let dim(V) = n = 2m and {e1, e2, ..., en} be a basis of V which
identifies A with Mn(F ) and let M be the symmetric matrix of b w.r.t. the
chosen basis. Then, by definition, the involution σb is given by

σb = Int(M−1) ◦ t

where t denotes the transpose involution. Since there exists an alternating
matrix of determinant 1, therefore disc(t) = (−1)m and hence

disc(σb) = (−1)mdet(M−1).F∗2 = disc(b).

Proposition 3.5.4. Let σ be an orthogonal involution on a central simple
algebra A of even degree n = 2m over a field F . If σ is hyperbolic, then
disc(σ) = 1.

Proof: Let e ∈ A be an idempotent element such that σ(e) = 1− e. Over a
splitting field of A, we can represent e by a diagonal matrix

e = diag(1, ..., 1, 0, ..., 0),

because rdim(eA) = m. Since σ(e) = 1− e, therefore 2e− 1 ∈ Alt(A, σ). We
can write 2e− 1, over a splitting field, as

2e− 1 = diag(1, ..., 1︸ ︷︷ ︸
m

,−1, ...,−1︸ ︷︷ ︸
m

).

Thus we have NrdA(2e− 1) = (−1)m and hence disc(σ) = 1.

Proposition 3.5.5. Let Q be a quaternion algebra over F . Then orthogonal
involutions on Q can be classified upto conjugation by their discriminant.

Proof: Let σ and σ′ be two orthogonal involutions on Q having the same
discriminant and let γ be the canonical involution on Q. Every orthogonal
involution on Q is of the form Int(s) ◦ γ; for some s ∈ Skew(Q, γ)\F (by
proposition (3.2.5)). Thus, we can write σ = Int(s) ◦ γ and σ′ = Int(s′) ◦ γ;
for some s, s′ ∈ Skew(Q, γ)\F. By proposition (3.5.2)(2), we have disc(σ) =
NrdQ(s).F∗2 and disc(σ′) = NrdQ(s′).F∗2. Thus, we can assume that s and
s′ have the same reduced norm. Therefore s and s′ have the same reduced
characteristic polynomial (because TrdQ(s) = 0 = TrdQ(s′)). Thus, we get

s′ = xsx−1 = xsx.x−1x−1 = NrdQ(x)−1xsγ(x),

for some x ∈ Q∗. Therefore, for all y ∈ Q∗, we have

σ′(y) = Int(s′) ◦ γ(y)

= s′γ(y)s′−1

= xsγ(x)γ(y)γ(x)−1s−1x−1

= xsγ(x−1yx)s−1x−1

= Int(x) ◦ σ ◦ Int(x−1)(y)
and we are done.
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totally isotropic quadratic space, 5

uniformising element, 20

universal property of Clifford algebras,
17

universal property of Grothendieck group,
9

universal quadratic space, 6

Weak Approximation Theorem, 23
Wedderburn’s Theorem, 13
Witt Grothendieck ring, 10
Witt index, 7
Witt invariant, 18
Witt ring, 10
Witt’s Cancellation Theorem, 7
Witt’s Decomposition Theorem, 7
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