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3.0.5 Poincaré Polyhedron Theorem . . . . . . . . . . . . . . . . . . 20

4 Non Separating Disjoint Circle Groups 26

4.0.6 Half Turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.0.7 Boundary of NSDC group . . . . . . . . . . . . . . . . . . . . 29

4.0.8 Pull Back Angle . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.0.9 Discreteness Criterion . . . . . . . . . . . . . . . . . . . . . . 46

5 Classical T-Schottky Groups 49

5.0.10 Change of Generators . . . . . . . . . . . . . . . . . . . . . . . 50

5.0.11 Geometry of marked two parabolic generator T-Schottky groups 54

5.1 A Visual Representation of Schottky Groups . . . . . . . . . . . . . . 62

5



Chapter 1

Introduction

Consider G, a marked group with two parabolic generators, S and T , then upto

PSL(2,C) conjugation, G = Gλ = < S, T > where

S =

(
1 0

1 1

)

and

T = Tλ =

(
1 2λ

0 1

)

for some λ = |λ|eiω ∈ C. We take λ 6= 0.

We will find conditions on λ for which Gλ is NSDC and Classical T-Schottky. It can

be graphically depicted as in the figure: Superimposed Boundary Parabolas.

In the figure each point λ ∈ C corresponds to a two-generator group. The brighter

colored subset of the classical T-Schottky groups comprises the non-separating dis-

joint circle groups (NSDC groups).
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Superimposed Boundary Parabola ,(Ref: Gilman-Waterman [5] p. 13)

The white region consists of additional non-classical T-Schottky groups together with

degenerate groups, isolated discrete groups and non-discrete groups. Points inside

the Jørgensen circle (|λ| < 1/2) are non-discrete groups. In the thesis we will discuss

only about the NSDC group and classical T-Schottky group.

The main results are discussed in chapters 4 and 5. The proofs of these results

were given by Gilman and Waterman [5]. The results are:

Theorem 1.1 ([5]) Let G be a subgroup of the Möbius group generated by two parabolic

elements and is parametrized by the complex number λ = x+ iy. Then the boundary

of the NSDC space is ∂(NSDC) = {(x, y) : y2 = 16− 8|x|}.
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Theorem 1.2 ([5]) Assume that G =< S, T > with tr(S) = tr(T)=2. Then

|tr(ST )− 2|+ |Re[tr(ST )− 2]| ≥ 8

⇒ G is discrete.

Theorem 1.3 ([5]) Gλ lies on the boundary of classical T-Schottky space ⇔

λ = (2eιω)/(1 + | sinω|)

and thus eliminating ω ⇔

λ = x+ ιy with |y| = 1− x2/4.

However before that we shall in chapters 2 and 3, discuss some preliminary

material which shall be needed in understanding our main results.
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Chapter 2

Möbius Transformations

In this section, we will start with the formal definitions of Möbius transformations

first in full generality in Rn and then we will restrict it to the complex plane. We

will determine the general properties of these transformations and see how can we

extend the action of a transformation in Rn to Rn+1. After this we will classify

the transformations on the complex plane by two equivalent (conjugation invariant)

ways: firstly by the squares of traces of the matrices they determine and secondly by

their action on the upper half space of R3.We will further study the fixed points for

these classes of transformations and determine their normal forms as matrices and

prove the properties necessary for reaching our main results.

The material in this section has been referred from Beardon [2] and Maskit [7].

2.0.1 Möbius Transformations on Rn

The sphere S(a, r) in Rn is given by

S(a, r) = {x ∈ Rn : |x− a| = r}

where a ∈ Rn and r > 0.

Definition 2.1 The reflection (or inversion) in S(a, r) is the function φ defined by

φ(x) = a+

(
r2

|x− a|2

)
(x− a). (2.1)
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In the special case of S(0, 1)(= Sn−1), this reduces to

φ(x) = x
|x|2

and it is convenient to denote this by x 7→ x∗ where x∗ = x
|x|2 . The general reflection

(2.1) may now be rewritten as

φ(x) = a+ r2(x− a)∗.

The reflection in S(a, r) is not defined when x = a and this is overcome by adjoining

an extra point to Rn. We select any point not in Rn (for any n), label it∞ and form

the union

R̂n = Rn ∪ {∞}.

As |φ(x)| → ∞ when x→ a we define φ(a) =∞: likewise, we define φ(∞) = a.

The reflection φ now acts on R̂n and φ2(x) = x for all x in R̂n.Thus φ is a bijective

map on R̂n to itself. Also, φ(x) = x if and only if x ∈ S(a, r).

Definition 2.2 (Plane) We define a set P (a, t) to be a plane in R̂n if it is of the form

P (a, t) = x ∈ Rn|(x.a) = t ∪ {∞}

where a ∈ Rn, a 6= 0, (x.a) is the usual scalar product and t is real.

Note that by definition, ∞ lies in every plane.

Definition 2.3 The reflection φ in P(a, t) (or, in (x . a) = t) is defined as

φ(x) = x+ λa,

where the real parameter λ is chosen so that 1
2
(x+ φ(x)) is on P (a, t) . The explicit

formula is

φ(x) = x− 2[(x.a)− t]a∗, (2.2)

when x ∈ Rn and φ(∞) =∞.

Now we have, φ acts on R̂n with φ2(x) = x for all x in R̂n and so φ is a 1-1 onto

map of R̂n to itself. Also, φ(x) = x if and only if x ∈ P (a, t).
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Definition 2.4 A Möbius transformation acting in Rn is a finite composition of re-

flections (in spheres or planes).

Note that each Möbius transformation is a homeomorphism of R̂n onto itself.

The composition of two Möbius transformations is again a Möbius transformation

and so is the inverse of a Möbius transformation for if φ = φ1 . . . φn (where the φj

are reflections) then φ−1 = φn . . . φ1. Finally, for any reflection φ say, φ2(x) = x and

so the identity map is a Möbius transformation.

Definition 2.5 The group of Möbius transformations acting in Rn is called the General

Möbius group and is denoted by GM(R̂n).

Definition 2.6 The Möbius group M(R̂n) acting in R̂n is the subgroup of GM(R̂n)

consisting of all orientation-preserving Möbius transformations in GM(R̂n).

2.0.2 Poincaré Extensions

Now, we will see how to extend the action of a Möbius transformation to a higher

dimensional space. Each Möbius transformation φ acting in R̂n has a natural ex-

tension to a Möbius transformation φ̃ acting in R̂n+1 and with this one may regard

GM(R̂n) as a subgroup of GM(R̂n+1).

This extension depends on the embedding

x 7→ x̃ = (x1, . . . , xn, 0), x = (x1, . . . , xn),

of R̂n into R̂n+1.

For each reflection φ acting in R̂n, we define a reflection φ̃ acting in R̂n+1 as

follows.

If φ is the reflection in S(a, r), a ∈ R̂n, then φ̃ is the reflection in S(ã, r): if φ is

the reflection in P (a, t), then φ̃ is the reflection in P (ã, t).
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If x ∈ R̂n and y = φ(x), then from (2.1) and (2.2)

φ̃(x1, . . . , xn, 0) = (y1, . . . , yn, 0) = φ̃(x), (2.3)

and in this sense we regard φ̃ as an extension of φ. Alternatively, we can identify

Rn+1 with Rn × R and write the above formula as

φ̃(x, 0) = (φ(x), 0).

Note that φ̃ leaves invariant the plane xn+1 = 0 (R̂n and each of the half-spaces

xn+1 > 0 and xn+1 < 0: these facts follow directly from (2.1) and (2.2).

As each Möbius transformation φ acting in R̂n is a finite composition of reflections

φj, say φ = φ1 . . . φm, there is at least one Möbius transformation φ̃, namely φ̃1 . . . φ̃m,

which extends the action of φ to Rn+1 and which preserves

Hn+1 = {(x1, . . . , xn+1) : xn+1 > 0}

In fact, there can be at most one extension for if ψ1 and ψ2 are two such extensions,

then ψ−1
2 ψ1 fixes each point of the plane xn+1 = 0 and preserves φ. Thus ψ1 = ψ2.

Definition 2.7 The Poincaré extension of φ in GM(R̂n)is the transformation φ̃ in

GM(R̂n+1) .

Observe that if φ and ψ are in GM(R̂n) with say φ = φ1 . . . φm and ψ = ψ1 . . . ψk,

then the Poincaré extension of φψ is given by

(̃φψ) = ˜(φ1 . . . φmψ1 . . . ψk)

= φ̃1 . . . φ̃mψ̃1 . . . ψ̃k

= φ̃ψ̃

so the map φ 7→ φ̃ is an injective homomorphism of GM(R̂n) into GM(R̂n+1).
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We shall now see the action of the Poincaré extension φ̃ in Hn+1. First, if φ̃ is

the reflection in the sphere S(ã, r), a ∈ Rn, then by (2.7),

|φ̃(y)− φ̃(x)|
|y − x|

=
r2

|x− ã||y − ã|
For the moment, let [φ̃(x)]j denote the jth component of φ̃(x). As

φ̃(x) = ã+ r2(x− ã)∗,

we find that

[φ̃(x)]n+1 = 0 +
r2xn+1

|x− ã|2
(2.4)

and this shows that
|y − x|2

yn+1xn+1

(2.5)

is invariant under φ̃.

The reflection φ̃ in the plane P (ã, t), a ∈ Rn is a Euclidean isometry and moreover,

[φ̃(x)]n+1 = xn+1 :

thus (2.16) is also invariant under this reflection.

We conclude that (2.16) is invariant under all Poincaré extensions. It is a direct

consequence of this invariance that the Poincaré extension of any φ in GM(R̂n) is

an isometry of the space Hn+1 endowed with the Riemannian metric ρ given by

ds =
|dx|
xn+1

2.0.3 Möbius Transformation on Complex Plane

In this section we shall examine the action of Möbius transformations in R̂2 and

their extensions to R̂3. We identify R̂2 with the complex plane C and the alge-

braic structure of C then allows us to express the action of Möbius transformations

algebraically. We shall also identify (x, y, t) with the quaternion

x+ yi+ tj (2.6)
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: this enables us to express the Poincaré extension of a Möbius transformation in

terms of the algebra of quaternions. The extended complex plane Ĉ is C∪ {∞} and

this is identified with R̂2. In terms of quaternions,

H3 = {z + tj : z ∈ C, t > 0}

and the boundary of H3 in R̂3 is Ĉ.

Definition 2.8 (Möbius Transformation/ Fractional Linear Transformations on C) : Möbius

transformation is a map from C , the set of complex numbers, to C of the form

g(z) = az+b
cz+d

, where a,b,c and d are complex numbers with ad− bc 6= 0.

The latter condition ensures that g is invertible: it also ensures that c and d are

not both zero and the algebra of C then guarantees that g is defined on C if c = 0

or on C−−d/c if c 6= 0. Now define g(∞) =∞ if c = 0 and

g(−d/c) =∞, g(∞) = a/c

if c 6= 0. With these definitions, g is a 1-1 map of Ĉ onto itself. In addition, g−1 is

of the same form.

Definition 2.9 (GL(2,C)) The non-singular 2×2 matrices with complex entries form

a group under matrix multiplication called the General Linear Group of matrices. It

is denoted by GL(2,C).

Definition 2.10 (SL(2,C)) The subgroup of GL(2,C) which contains matrices with

determinant 1 is known as the Special Linear group of 2× 2 matrices. It is denoted

by SL(2,C).

Definition 2.11 (PSL(2,C)) PSL(2,C) ∼= SL(2,C)/{+I,−I} , where SL(2,C) is

the special linear group of 2 × 2 matrices with complex entries and I is the identity

matrix.
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We can represent a Möbius transformation g(z) = az+b
cz+d

by a non-singular matrix

as (
a b

c d

)
,

which acts on the sphere at infinity , Ĉ. Since the matrices(
a b

c d

)

and (
ta tb

tc td

)
have the same action on Ĉ the above representation determines a group isomorphism

between the group of Möbius transformation and PSL(2,C). Unless otherwise

stated, we take pull backs of elements of SL(2,C) to have positive trace. In particular

for a two generator group, once the signs of the traces of the (pull backs) of the

generators are chosen, the signs of the traces of all other elements of the group are

determined.

Every orientation reversing conformal homeomorphism of C is of the form g(z) =
az̄+b
cz̄+d

, ad − bc 6= 0 and these are called fractional reflections. We denote by M the

group of all fractional linear transformations and by M̃ the group of all fractional

linear transformations and fractional reflection.

We classify the elements of PSL(2,C) by the squares of their traces or equiva-

lently by their action on Ĉ which can be extended to an action on the upper half

space of R3. Let tr2(A) denote (tr(A))2.

Definition 2.12 (upper half plane : H) The upper half space H3 = {(x, y, t)|x, y, t ∈
R, t > 0}. This space is called the hyperbolic three− space when equipped with

the metric

ds =

√
dx2 + dy2 + dt2

t
. (2.7)
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The boundary of the upper half space is the sphere at infinity denoted by Ĉ ,the

set of complex numbers union infinity (C ∪∞).

The action of M on Ĉ is triply transitive; i.e., given any three distinct points

z1, z2, z3 on Ĉ and any three other distinct points w1, w2, w3, there is an element g in

M with g(zm) = wm.This transformation g is unique, for if we also have a fractional

linear transformation f , with f(zm) = wm, then f−1 ◦ g has at least three fixed

points, and so is the identity. To prove the above statement, it suffices to consider

the case that w1 = 0, w2 = 1, and w3 =∞. In this case

g(z) =
z2 − z3

z2 − z1

z − z1

z − z3

(2.8)

We come now to the representation of g in terms of quaternions. The quaternion

is z + tj where z = x+ iy and the Poincaré extension of g is given by

g(z + tj) =
(az + b) ¯(cz + d) + ac̄t2 + |ad− bc|tj

|cz + d|2 + |c|2t2
(2.9)

We now come to classification of Möbius transformation on the basis of fixed

points in Ĉ.

Definition 2.13 (parabolic) A Möbius transformation g is parabolic if it has exatly one

fixed point in Ĉ.

The transformation z 7→ z + 1 is a parabolic tranformation.

In the next few proposition we will prove certain properties of parabolic transforma-

tions and derive its normal form.

Proposition 2.14 Every parabolic element of M is conjugate to the translation z 7→
z + 1.

Proof Let z1 be the fixed point of the parabolic element g. Let z2 be some other

point, and let z3 = g(z2). Let f ∈ M map this triple of points onto ∞, 0, and 1,

respectively. Then h = f ◦ g ◦ f−1 has its only fixed point at ∞, and maps 0 to 1.
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One sees that a transformation of the form z 7→ az + 1 has no finite fixed point if

and only if a = 1.

If g is parabolic, then tr2(g) = 4. In fact, we can choose matrices for parabolic

elements so that tr(g) = 2, by taking the positive pullback. If g has its fixed point

at x, then the matrix representation for it will be:

g =

(
1 a

0 1

)
.

The following result gives us the normal form for a parabolic transformation:

Proposition 2.15 If g is parabolic with fixed point x 6= ∞ , then there is a unique

complex number p 6= 0 so that

g =

(
1 + px −px2

p 1− px

)
.

Proof We know that there is a unique matrix with determinant 1 and trace 2

representing g. We write the diagonal terms as 1 + px and 1 − px, and note that

these determine p. We can then write

g =

(
1 + px b

c 1− px

)

Now, as the determinant is 1, we will have bc = −p2x2. The equation for the

fixed points z(cz + 1− px) = (1 + px)z + b, has x as its only solution; hence c = p,

and b = −px2.

Every fractional linear transformation with two fixed points is conjugate to one

with fixed points at 0 and ∞, such a transformation necessarily has the form z 7→
k2z, k ∈ C. There are two special types of such transformations; the rotations of the

form z 7→ eiθz, θ real, eiθ 6= 1 , and the dilations of the form z 7→ λz, λ > 0, λ 6= 1.

Definition 2.16 (elliptic) Elliptic transformation is the Möbius transformation which

is conjugate to a rotation.
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Definition 2.17 (loxodromic) A non-elliptic tranfromation which has exactly two fixed

points in Ĉ is called a loxodromic transformation.

Definition 2.18 (hyperbolic) Hyperbolic transformation is the Möbius transformation

which is conjugate to a dilation.

When we extend the action of the group of Möbius transformation to the upper

half space of R3 , we can define loxodromic elements by the fixed points on this

space, and we will subclassify them into purely loxodromic and strictly loxodromic

transformation. We use the term loxodromic to include both purely hyperbolic and

strictly loxodromic transformations.

Now we determine normal forms for the transformations with two fixed points.

We temporarily set aside the involution, or half-turn, where k = ±i. For all the

other transformations with two fixed points, we can distinguish between the fixed

points; call one of them x and the other y. We conjugate x to 0, and y to ∞; then

we can write g in the form:
g(z)− x
g(z)− y

= k2 z − x
z − y

(2.10)

We choose a square root k; this is well defined up to multiplication by −1. Write

k2 = k
k−1 and solve the above equation for g(z) to obtain the normal form

g =
1

x− y

(
xk−1 − yk xy(k − k−1)

(k − k−1) xk − yk−1

)
(2.11)

if x and y are both 6=∞. If x =∞, then

g =

(
k−1 y(k − k−1)

0 k

)
(2.12)

and if y =∞, then

g =

(
k x(k − k−1)

0 k−1

)
(2.13)

If k2 = −1, and x and y are both 6=∞, choose k = i, to obtain the normal form

in this case:
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g =
1

x− y

(
−i(x+ y) 2ixy

−2i i(x+ y)

)
(2.14)

which, up to multiplication by −1, is symmetric in x and y. If one of the fixed

points is at ∞, we call the other one x; in this case the normal form is

g =

(
i −2ix

0 −i

)
(2.15)

Now we discuss about the fixed points of Möbius transformation in R̂3.

In its action on Ĉ, a Möbius transformation g has exactly one fixed point, exactly

two fixed points or is the identity. This provides a rather primitive classification

which we had seen above and we now obtain a finer classification based on the fixed

points in R̂3. This new classification is invariant under conjugation and so there

is a still finer classification, namely the classification into conjugacy classes. One

of our main results is that the function tr2 defined below actually parametrizes the

conjugacy classes.

Definition 2.19

tr2(g) =
tr2(A)

det(A)

where A is the matrix corresponding to the transformation g.

It is convenient to introduce certain normalized Möbius transformations. For

each non-zero k in C we define mk by

mk(z) = kz (ifk 6= 1)

and

m1(z) = z + 1 :

we call these the standard forms. For future use, note that for all k (including k =

1),

tr2(mk) = k +
1

k
+ 2. (2.16)

14



If g(6= I) is any Möbius transformation then either g has exactly two fixed points

α and β in Ĉ or g has a unique fixed point α in Ĉ (in this case, we choose β to be

some point other than α). Now let h be any Möbius transformation with

h(α) =∞, h(β) = 0, h(g(β)) = 1 if g(β) 6= β,

and observe that

hgh−1(∞) =∞,

hgh−1(0) =

{
0 if g(β) = β ,

1 if g(β) 6= β .

If g fixes α and β, then hgh−1 fixes 0 and ∞ and so for some k (k 6= 1), we

have hgh−1 = mk. If g fixes ∞ only then hgh−1 fixes ∞ only and hgh−1(0) = 1:

thus hgh−1 = m1,. This shows that any Möbius transformation g is conjugate to

one of the standard forms mk and this provides us a simple proof of of the following

theorem.

Theorem 2.20 Let f and g be Möbius transformations, neither the identity. Then f

and g are conjugate if and only if tr2(f) = tr2(g).

Proof From the definition of tr2(g) we note that if f conjugate to g then tr2(f) =

tr2(g). Now assume that tr2(f) = tr2(g). We know that f and g are each conjugate

to some standard form, say f conjugate to mp and g conjugate to mq. Thus

tr2(mp) = tr2(f) = tr2(g) = tr2(mq)

and using (2.32), this shows that p = q or p = 1/q. We note thatmp conjugate to m1/p:

this is trivial if p = 1 while if p 6= 1, we have

hmph
−1 = m1/p, h(z) =

−1

z
.

We now have f conjugate to mp, g conjugate to mq and (as p = q or p = 1/q)

mp conjugate to mq. As conjugacy is an equivalence relation, this shows that

f conjugate to g and the proof is complete.
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We now study the fixed points of the standard forms in R̂3. The action of mk in

R̂3 as given by (2.14) is

mk(z + tj) = kz + |k|tj (k 6= 1)

m1(z + tj) = z + 1 + tj,

and this enables one to find the fixed points of each mk. Note that we are writing

the upper half space in terms of quaternions x+ iy + tj as discussed above in (2.6).

Clearly:

1. m1 fixes ∞ but no other point in R̂3

2. if |k| 6= 1, then mk fixes 0 and ∞ but no other points in R̂3;

3. if |k| = 1, k 6= 1, then the set of fixed points of mk is

{tj|t ∈ R} ∪ {∞}

The following definition is the extension of the definitions we had in previous part.

Definition 2.21 Let g be any Möbius transformation. We say

1. g is parabolic if and only if g has a unique fixed point in Ĉ (equivalently,

g conjugate to m1);

2. g is loxodromic if and only if g has exactly two fixed points in R̂3 (equivalently,

g conjugate to mk for some k satisfying |k| 6= 1);

3. g is elliptic if and only if g has infinitely many fixed points in R̂3 (equivalently,

g conjugate to mk for some k satisfying |k| = 1, k 6= 1).

It is convenient to subdivide the loxodromic class by reference to invariant discs

rather than invariant (fixed) points.
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Definition 2.22 Let g be a loxodromic transformation. We say that g is hyperbolic

if g(D) = D for some open disc (or half-plane) D in Ĉ: otherwise g is said to be

strictly loxodromic.

Since the classification of transformation is a conjugation invariant, we relate the

type of transformation with another conjuagation invariant property , the trace , in

the following proposition:

Proposition 2.23 Let g(6= I) be any Möbius transformation. Then

(i) g is parabolic if and only if tr2(g) = 4;

(ii) g is elliptic if and only if tr2(g) ∈ [0, 4);

(iii) g is hyperbolic if and only if tr2(g) ∈ (4,+∞);

(iv) g is strictly loxodromic if and only if tr2(g) /∈ [0,+∞).
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Chapter 3

Fundamental Domains

This section has been referred from Maskit [7].

Definition 3.1 (Kleinian group ) If a subgroup G of PSL(2,C) is discrete, it is called

a Kleinain group.

Definition 3.2 We call z ∈ Ĉ an ordinary point if it has a neighborhood U such that

g(U) ∩ U 6= ø for at most finitely many g ∈ G.

The set of ordinary points is denoted by Ω(G) and is also known as the regular

set or the set of discontinuities.

3.0.4 Fundamental Domains

While trying to visualize a Kleinian group, the closest we can come , in general, is to

draw a picture of Ω/G which somehow illustrates the action of G. The usual picture

is given by a fundamental set or fundamental domain, which, roughly speaking,

contains one point from each equivalence class in Qy and which, in some sense,

illustrates the topology of Ω/G.

Definition 3.3 A fundamental domain D for the Kleinian group (or discontinuous

subgroup of M) G is an open subset of Ω satisfying the following.

1. D is precisely invariant under the identity in G.
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2. For every z ∈ Ω, there is a g ∈ G, with g(z) ∈ D.

3. The boundary of D consists of limit points of G, and a finite or countable

collection of curves; each curve lies, except perhaps for one or both of its

endpoints, in Ω; the intersection of the curve with Ω is called a side of D.

4. The sides are paired by G; that is, if s is a side of D, then there is a side s′ not

necessarily distinct from s, and there is a non-trivial element g ∈ G, called a

side pairing transformation, with g(s) = s′. Also (s′)′ = s, and the side pairing

transformation, from s′ to s, is g−1.

5. If {sm} is a sequence of sides of D, then the spherical diameter, dia(sm)→ 0;

the sides of D accumulate only at limit points.

6. Only finitely many translates of D meet any compact subset of Ω.

We make the following observations from the definition above:

The first condition says that D is disjoint from all its translates, or, equivalently,

that no two points of D are G-equivalent.

The second condition says that Ω ⊂
⋃
g(D̄), where the union is taken over all

elements of G.

We note that if there is a side s, and side pairing transformation g, with g(s) = s,

then since the side pairing transformation from s′ to s is g−1, g−1 = g; that is, g2 = 1.

Let D̃ = D̄ ∩ Ω. The identifications of the sides induce an equivalence relation

on D̃. An interior point is equivalent only to itself; if x and y lie on sides of D, and

there is a side pairing transformation g, with g(x) = y, then x and y are equivalent.

Let D∗ be D̃ factored by this equivalence relation.

Observe that x and y are equivalent points of D̄ if and only if there is an element

g ∈ G, with g(x) = y. Hence the projection p provides a natural map ofD∗ into Ω/G .
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The endpoints of the sides that lie in Ω are called vertices. The sides of D are also

paired at the vertices. For each vertex x, and side s ending at x, there is a unique

other side s̄, where s and s̄ both lie on the boundary of the same local component

of D near x.

The next lemma is a consequence of property 6.

Lemma 3.4 If x is a point of D, then there are at most finitely many points of D

equivalent to x.

3.0.5 Poincaré Polyhedron Theorem

We assume that , X is one of the spaces Hn, BnorSn, and G is the group of isometries

of X. We also assume that n ≥ 2.

Assume that we are given a polyhedron D, where the sides of D are pairwise

identified by elements of G; our goal is to write down conditions on D to guarantee

that the group G, generated by the identifications of the sides of D, is discrete, and

that D is a fundamental polyhedron for G.

The first condition is that the sides of D are paired by elements of G. That is,

we assume that for each side s of D, there is a side s′ not necessarily distinct from

s, and there is an element, gs ∈ G, satisfying the following conditions.

(i) gs(s) = s′.

(ii) gs′ = g−1
s

The isometries gs are called the side pairing transformations.

Since s and s′ are both sides of D, gs(D) and D either both lie on the same

side of s′, or they lie on opposite sides. If they lie on the same side, then of course,

gs(D) ∩D 6= 0; this gives us our third condition:
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(iii) gs(D) ∩D = Ø.

Let G be the group generated by the side pairing transformations. Observe that

if there is a side s, with s′ = s, then condition (ii) implies that g2
s = 1. If this occurs,

the relation g2
s = 1, is called a reflection relation.

The side pairing transformations induce an equivalence relation on D̄, where each

point of D is equivalent only to itself. Let D∗ be the space of equivalence classes,

with the usual topology, so that the projection p : D̄ → D∗ is continuous and open.

If D is to be a fundamental polyhedron for G, then there can be only finitely many

points in each equivalence class of points of D̄.

(iv) For every point z ∈ D∗, p−1(z) is a finite set.

Our next two conditions are related to the edges.The edges come in cycles; the

condition above guarantees that each cycle is finite. For each edge e = e1, let

e1, . . . , ek be the ordered set of edges in the cycle containing e , and let g1, . . . , gk

be the corresponding side pairing transformations. Then the cycle transformation

h = h(e) = gk◦ . . .◦g1 keeps e invariant. h depends on a choice of a side abutting e; if

we choose the other side to start with, then we obtain h−1 as the cycle transformation.

(v) For each edge e, there is a positive integer t so that ht = 1.

The relations in G, of the form ht = 1, are called the cycle relations. There

is essentially only one cycle relation for each equivalence class of cycles. If e′ is

equivalent to e, then h(e′) is a conjugate of (h(e))±1.

We let α(e) be the angle, measured from inside D, at the edge e. We require

(vi)
k∑

m=1

α(em) = 2π/t. (3.1)

The conditions listed so far are sufficient to guarantee that if we look only at

D, and those translates of D that we know to about D, then the closures of these
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fit together without overlap, except along the translates of the sides, to fill out a

neighborhood of D.

To state the last condition, we need the following construction.

We first form the group G∗, defined to be the abstract group generated by the

side pairing transformations, and satisfying the reflection and cycle relations; we

also endow G∗ with the discrete topology. There is an obvious homomorphism

σ : G∗ → G.

We next consider the equivalence relation on G∗× D̄ generated by the following.

The pairs (g∗1, x1) and (g∗2, x2) are equivalent if there is a side pairing transformation

f with f(x1) = x2, and if, as elements of G∗, g∗2 = g∗1 ◦ f−1. Let X∗ be G∗ × D̄,

factored by this equivalence relation. We endow X∗ with the usual identification

topology, so that the natural projection from G∗ × D̄ to X∗ is continuous.

We remark that it is not at this point clear that this equivalence relation is

locallyjinite. That is, there might be infinitely many points of the form (g∗m, x) in

G∗ × D̄ which are all identified in X∗.

There is a natural map q : X∗ → D∗, defined by projection on the second factor

of G∗ × D̄ followed by the projection p from D to D∗. It is easy to see that q is well

defined and continuous.

There is also a map r : X∗ → X, defined by r(g∗, x) = σ(g∗)(x). It is easy to

see that r is well defined and continuous; our eventual goal is to prove that r is a

homeomorphism, and incidentally, that σ is an isomorphism.

One should view X∗ as the set of translates of D̄ under G∗, where these different

translates have been sewn together at the sides so that, the map r is well defined.

We should also think of X∗ as the set of translates of D̄ under the group G, where

we regard overlapping, other than that given by the identifications of the sides, and

the known relations of G (i.e., the relations of G∗), as lying on different sheets over
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X; then r is the projection from this covering to X.

In the lemma below, we prove that r is a local homeomorphism. Once we have

established this, we can use r to lift the local differential metric from X to X∗; then

the distance between points of X∗ is the infimum of the lengths of smooth paths

joining them. We use this distance on X∗ and the projection q to define a distance

on D∗; the distance d(z, z′) between points of D∗ is the infimum of the distances

d(x, x′), where q(x) = z, and q(x′) = z′.

It is easy to see that this is the natural notion of distance on D∗; that is,

d(z, z′) = inf
∑
d(xm, x

′
m), where the infimum is taken over all finite sets of points

{x1, x
′
1, . . . , xk, x

′
k}, in D, with p(x1) = z, p(x′m) = p(xm+1) and p(x′k) = z′ .

Our last condition is

(vii) D* is complete.

Theorem 3.5 Let D be a polyhedron with side pairing transformations satisfying con-

ditions (i) through (vii). Then G, the group generated by the side pairing transfor-

mations is discrete, D is a fundamental polyhedron for G, and the reflection relations

and cycle relations form a complete set of relations for G.

Lemma 3.6 Let D be a polyhedron with side pairing transformations satisfying con-

ditions (i) through (vi). Then every point z∗ ∈ D∗ has a neighborhood U so that

q−1(U) is a disjoint union of relatively compact open sets Uα, where for each α, r|Uα
is a homeomorphism onto a convex set.

Proof Notice first that G∗ acts as a group of homeomorphisms on X∗, and that I×D
is a fundamental domain for this action; that is, no non-trivial translate under G∗

of I ×D intersects it, and the union of the translates of the closure covers all of X∗.

We also remark that this lemma asserts that the translates of D, under those side

pairing transformations that are known to abut D, precisely fill out a neighborhood

of D.
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If x is an interior point of D, then let δ be the distance from x to the nearest side,

and let V be the ball of radius δ about x. Set U = p(V ). Since every point of V is

equivalent only to itself, the preimages of V in X∗ are precisely the sets of the form

Uα = g∗ × V these are disjoint open sets, and for each α, r|Uα is a homeomorphism

onto a ball of radius δ.

If x is an interior point of a side s of D, then there is another side s′, and there is

a side pairing transformation g with g(s) = s′; set x′ = g(x). If x 6= x′, let δ be the

minimum of the distance from x to x′, the distance from x to any side of D other

than s, and the distance from x′ to any side of D other than s′. Let V (V ′) be the

intersection of the ball of radius δ/2 about x(x′), with D. Note that V and V ′ are

disjoint. Set U = p(V )Up(V ′).

If x = x′ let δ be the minimum distance from x to any side of D other than s, let

V be the intersection of the ball of radius δ/2 about x with D̄, and let U = p(V ).

Each connected component Uα of q−1(U) consists of the union of two half balls.

If x 6= x′ then near (1, x), these are the half balls 1 × V and g−1 × V ′. If x = x′,

these are 1× V and g−1 × V ′. Since x′ is the only other point of D equivalent to x,

each Uα is a neighborhood of a point of the form (g∗, x) in X∗;it is clear that r|Uα is

a homeomorphism onto a ball of radius δ/2.

Next let x = x1 be an interior point of an edge e1. Let {e1, . . . , ek} be the cycle

of edges containing e1, let h = gk ◦ . . . g1 be the cycle transformation at e1, and let t

be the order of h. Define the tk elements of G∗, j1, . . . , jtk, by

j1 = g1,

j2 = g2 ◦ g1,

...

jk = h,

jk+1 = g1 ◦ h,
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jtk−1 = gk−1 ◦ . . . ◦ ht−1,

jtk = 1,

Let xm+1 = jm(x1).

Each of the points xm lies in the intersection of two sides; let δm be the minimum

of the distance from xm to any other side of D, and of the distance from xm to any

point x 6= xm.

Let δ = 1/2min(δm), and let Vm be the intersection of the ball of radius δ about

xm with D̄; observe that the sets Vm are all disjoint. Set U =
⋃
p(Vm). Each

component Uα of q−1(U) is a union of tk ”wedges”. Near (1, x), these wedges are the

sets (1× V1), . . . , (j−1
tk−1 × Vtk).

Each edge lies in the intersection of exactly two sides, and each side uniquely

determines its side pairing transformation. It follows from condition (v) that

(1, x1), (j−1
1 , x2), . . . , (jtk−1) is a complete set of equivalent points of G∗× D̄. Condi-

tion (v) also implies that the set of the form Uα near (1, x) is a neighborhood of (1, x).

Condition (vi) asserts that, in the 2-plane orthogonal to e1, these tk translates

of D fit together without overlap, and fill out a neighborhood of x in that plane. It

follows that r|Uα is a homeomorphism onto a ball of radius δ.

Using the action of G∗ on X∗, we see that the same statement is true for an

arbitrary point of the form (g∗, x).

There are no translates of 1× x on 1×D in X∗, other than the obvious ones. It

follows that each component Ûα is relatively compact in X∗.

We know that for each α, r|Ûα is a homeomorphism. Set U = Ûα×Ûα, and observe

that for each α, Uα is relatively compact in X∗ and r|Uα is a homeomorphism onto

a product of discs, which is convex.
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Chapter 4

Non Separating Disjoint Circle

Groups

In this section we will prove two main results about the boundary of the NSDC

space.

Theorem 4.1 ([5]) Let G be a subgroup of the Möbius group generated by two parabolic

elements and is parametrized by the complex number λ = x+ iy. Then the boundary

of the NSDC space is ∂(NSDC) = (x, y) : y2 = 16− 8|x|.

Theorem 4.2 ([5]) If trace(A) = 2, trace(B) = 2 and trace(AB) − 2 = 2.4d/2 − d,

where d lies exterior to the NSDC teardrop, then G =< A,B > is discrete.

We begin by noting the definition of marked group.

Definition 4.3 (Marked Group) A group with a choice of an ordered set of generators

is called a marked group.

4.0.6 Half Turn

Definition 4.4 (Half Turn) An elliptic element of PSL(2,C) of order two is called a

half turn.

If a ∈M has exactly two fixed points on C, then the hyperbolic line in H3 joining

these points is the axis of a. If a is elliptic, then every point on the axis Aa is fixed
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by a; we also say that a is the half-turn about Aa.

Proposition 4.5 Let g be a parabolic element of M , with fixed point z, and let A be a

hyperbolic line with one end point at z. Then there is a hyperbolic line B 6= A, where

B also has one endpoint at z, so that g = b◦a, where a is the half turn about A, and

b is the half-turn about B.

Proof We can assume that g(z) = z + 1, and that A has its other endpoint at 0;

i.e., a(z) = −z. Then g ◦ a(z) = −z + 1, which is a half-turn about the line with

endpoints at 1/2 and ∞.

Proposition 4.6 Let A and B be hyperbolic lines in (H)3 that do not have a common

endpoint. Then there is a unique hyperbolic line C orthogonal to both A and B.

Proof Normalize so that the half-turn a about A is the transformation a(z) = −z.

Let b be the half-turn about B write b in the form

b =
1

x− y

(
−i(x+ y) 2ixy

−2i i(x+ y)

)

Interpret the matrix

g = ab− ba =
1

x− y

(
0 −4xy

−4 0

)

as an element of M , and observe that g is a half-turn that interchanges the endpoints

of both A and B. It follows that g preserves both A and B, so the axis of g is

orthogonal to both.

To prove uniqueness, suppose C and C ′ are hyperbolic lines orthogonal to both

A and B. Let g, g′ be the half-turns about C, C ′, respectively. Then h = g ◦ g′

preserves the endpoints of both A and B. Since h has four fixed points on the sphere

at infinity, h = 1.
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If c and d are any points in H3 the upper half plane, or C∞, the sphere at infinity,

we let [c, d] denote the hyperbolic lne in H3 connecting them. The ends of [c, d] are

the points where the line intersects C∞.

For a and a’ in C∞ we let H[a,a′] be the half-turn about the line [a, a’]. The hyperbolic

line, [a, a’], is the axis of the half-turn and we call a and a’ the ends of the half-turn.

When neither a nor a’ is ∞, the isometric circle of H[a,a′] is a circle in C∞ with

center a+ a′/2 and radius |a − a′|/2. We let ISO H[a,a′] denote the isometric circle

and ISO P[a,a′] the hyperbolic plane whose horizon is ISO H[a,a′]. We call ISO P[a,a′]

the isometric plane of the half turn. It is the hemisphere obtained by intersecting

the isometric sphere of H[a,a′] with H3.

We observe that

H[a,a′]([a, a
′]) = [a, a′],

H[a,a′](ISOH[a,a′]) = ISOH[a,a′],

H[a,a′](ISOP[a,a′]) = ISOP[a,a′].

More generally, whether or not a or a′ is ∞, we have

Theorem 4.7 ([3]) A half-turn fixes every plane whose horizon passes through its ends.

Proof Let Ca,a′ be any circle on the sphere at infinity passing through the improper

points a and a′. Let Pa,a′ be the plane whose horizon is Ca,a′ . Then [a, a′] lies in

Pa,a′ . Let x be any point in Pa,a′ , x does not belong to[a, a′], and let lx be the

perpendicular from x to [a, a′] with px = lx∩ [a, a′]. Then lx is contained in Pa,a′ and

H[a, a′](lx) = lx. H[a,a′] sends x to the point on lX whose hyperbolic distance from

px is the same as that of x from px. Since lx is contained Paa′,and px belongs to

Paa′. Hence H[aa′](Paa′) = Paa′ .

Finally, we note that the matrix representing H[a,a′] is given by

1

i(a− a′)

(
−(a+ a′) 2aa′

−2 (a+ a′)

)
(4.1)
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when neither a nor a′ is ∞ and that a matrix for H[a,∞] is given by(
i −2ia

0 −i

)
(4.2)

4.0.7 Boundary of NSDC group

Terms and Definitions Used

If G is a marked group with two parabolic generators, S and T , then up to PSL(2,C)

conjugation, G = Gλ =< S, T > ,where

S =

(
1 0

1 1

)

and

T = Tλ =

(
1 2λ

0 1

)
for some λ = |λ|eιω ∈ C. We assume that λ 6= 0.

We note that since trS = 2, trT = 2 and λ 6= 0,

tr[S, T ]− 2 = trSTS−1T−1 − 2 = 4λ2;

trST−1 = trTS−1 = 2− 2λ.

and

trST = tr(TS)−1 = 2 + 2λ.

Definition 4.8 We now define the space of groups:

1. NSDC-space

NSDC = {λ ∈ C|Gλ is NSDC}

2. Two-parabolic classical T-Schottky space

CS = {λ ∈ C|Gλ is Classical T − Schottky}
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3. Marked two parabolic classical T-Schottky

CSPP = {λ ∈ C|Gλ =

〈(
1 0

1 1

)
,

(
1 2λ

0 1

)〉
is marked Classical T−Schottky}

If a ∈ PSL(2,C) has exactly two fixed points on Ĉ, then the hyperbolic line in

H joining these points is the axis of a. For a hyperbolic line [x, y] with x 6= y,i.e

distinct end points, let H[x,y] be the half turn about the line with ends x and y.

Let G =< A,B > be a group so that L = [n, n′], the common perpendicular to

the axis of A and B, is a proper line, then there are unique hyperbolic lines LA and

LB satisfying A = HLA
HL and B = HLB

HL. Let a and a′ be the ends of LA so that

LA = [a, a′] and b and b′ be those of LB so that LB = [b, b′].

If the common perpendicular to the axes of A and B is a proper line, then we

have a natural construction that associates an ordered six-tuple of complex numbers

(a, a′, n, n′, b, b′) to the ordered pair of transformations. On the other hand, an

ordered six-tuple in Ĉ, (a, a′, n, n′, b, b′) satisfying a 6= a′, b 6= b′, n 6= n′ determines

an ordered pair of transformations.

Definition 4.9 (Ortho end) The ortho end of the marked group G =< A,B > is the

six tuple of complex numbers (a, a′, n, n′, b, b′).

Definition 4.10 (non-separating disjoint circle property) Six points in (a, a′, n, n′, b, b′) ∈
Ĉ6 with a 6= a′, b 6= b′ and n 6= n′ have the non− separating disjoint circle

property (NSDC) if there exist pairwise disjoint or tangent circles CA, CD and CB

(respectively) on C, passing through a and a′, n and n′, and b and b′ (respectively)

and no one circle separates the other two.

Definition 4.11 (marked non-separating disjoint circle group) A marked group G =<

A,B > is a marked non separating disjoint circle group (a marked NSDC group)

if the ortho-end of A and B has the non-separating disjoint circle property.
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Definition 4.12 G is a non-separating disjoint circle group, if some pair of generators

for G has the non-separating disjoint circle property.

One can consider the space of NSDC groups as the set of ordered six-tuples in Ĉ6

such that (a, a′, n, n′, b, b′) is the ortho end of an NSDC group. Now consider a group

G which is NSDC for the ortho end (a, a′, n, n′, b, b′). We will write the matrices for

A and B, the generators of G, in terms of the six tuple of complex numbers. The

final conditions will be derived in terms of the traces of A, B and [A,B]. Since trace

is conjugacy invariant, these conditions will give us the conditions on parameters for

NSDC groups.

We determine the effect, a change of generators has on the non-separating disjoint

circles.

Lemma 4.13 For a non-abelian two generator subgroup G of PSL(2,C), the following

are equivalent:

1. G =< A,B > is marked NSDC.

2. G =< B,A > is marked NSDC

3. G =< A−1, B−1 > is marked NSDC

4. G =< A−1, AB > is marked NSDC

5. G =< A−1, BA > is marked NSDC

6. G =< A,A−1B−1 > is marked NSDC

7. G =< A,B−1A−1 > is marked NSDC

Proof 1⇔ 2

G =< A,B >
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A = HLA
HL

B = HLB
HL

Let L = [n, n′] be the common perpendicular to the axes of A and B.

1⇒ 2

Let a and a′ be the ends of LA and b and b′ be the ends of LB.

Claim: The ortho end of B and A have NSDC property.

This follows from the fact that the ortho end of A and B have NSDC property as

Ortho end of A and B is (a, a′, n, n′, b, b′)

Ortho end of B and A is (b, b′, n, n′, a, a′)

Clearly this has NSDC property as we can have the same pairwise disjoint circles

on Ĉ, CA, CD and CB passing through (a, a′), (n, n′), (b, b′) respectively and no circle

separates the other two.They exist because A and B are NSDC. In place of CD we

take C ′D the circle of opposite orientation passing through n′ and n.

Thus G =< B,A > is marked NSDC. We can prove 2 ⇒ 1 by interchanging the

roles of A and B.

Similarly other parts can also be shown.

Lemma 4.14 For a non-abelian two-generator subgroup G of PSL(2,C), the following

are equivalent:

1. G =< A,AB > is marked NSDC

2. G =< A,BA > is marked NSDC

3. G =< A−1, A−1B−1 > is marked NSDC

4. G =< A−1, B−1A−1 > is marked NSDC
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Proof 1⇔ 4

From the above lemma we have

G =< A,B > is marked NSDC ⇔ G =< A−1, B−1 > is marked NSDC. Thus,

G =< A,AB > is marked NSDC ⇔ G =< A−1, B−1A−1 > is marked NSDC.

Similarly, 2⇔ 3.

1⇔ 2

G =< A,AB > is marked NSDC ⇔ G =< A,A−1B−1A−1 > is marked NSDC.

(Using the (6)th part of the above lemma.)

⇔ G =< A−1, A1B−1A−1A > is marked NSDC.

(Using the (5)th part of the above lemma.)

⇔ G =< A−1, A1B−1 > is marked NSDC.

Lemma 4.15 ([5]) If G =< A,AB > is marked NSDC with A parabolic, then B is

loxodromic.

Proof Let A = HA.HN and AB = HN .HAB. If CA, CN and CAB have the NSDC

property, then one can write B = HNHAHN .HAB . Therefore, CAB and B(CAB)

are strictly disjoint, and B maps the exterior of the first circle to the interior of the

second. This gives us that B is neither parabolic nor elliptic. Thus B is loxodromic.

Theorem 4.16 If S and T are parabolic, then G =< S, T > is a non-separating

disjoint circle group if and only if either < S, T > or < S, T−1 > is marked NSDC.

Proof ⇐ If < S, T > or < S, T−1 > is marked NSDC. then G =< S, T > is NSDC

from the definition of NSDC group.
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⇒ If G =< S, T > is NSDC then say, there are two transformations A and B

∈ G such that G =< A,B > is marked NSDC. Then A = SαT β..... B = Sα
′
T β
′
....

Using the change of generators formula and the above lemma we, get that the only

possibilities are A = S B = T or A = S B = ST or A = S B = T−1 but second case

is not possible as it would imply that T is loxodromic.

Since we can obtain the entries of matrices A and B from the six-tuple using the

relation A = HLA
HL and B = HLB

HL conditions on the six tuple give us conditions

on the matrices. In particular, the imposition of certain geometric configurations on

the six points give us discreteness conditions.

Corresponding to a marked group with two parabolic generators, we look at

the boundary of NSDC space when two pairs of points coalesce. In the six tuple

σ = (a, a′, b, b′, d, d′) assume that a′ = b, and b′ = d and then call it a four point.

Clearly, if σ is a four point NSDC, then CB is tangent to CA at a′ = b and to CD at

b′ = d. A six tuple of the form as described together with the circles CA, CB, and

CD is termed a four point configuration.

Definition 4.17 A four point configuration corresponding to a six tuple σ is called

extreme if the configuration is NSDC but in any deleted neighbourhood of σ, there

exists a four-point σ0 which is not NSDC and σ′0 which is NSDC.

MOTIVATION :

An NSDC group generated by two parabolics involves one free parameter d =

x + iy. The six-tuple of points are (−2, 0, 2, d, 0, 2). The circles CA and CB are

tangent at the point 0 and, therefore, determine an angle θ . This is the angle that

the line connecting their centers makes with the positive x-axis moving in a counter-

clockwise direction. Conversely, any angle θ between π/4 and −π/4 determines

such a pair of tangent circles. Any circle CD passing through 2 and d will have a

center with coordinates (M,N) and radius r. If CD is tangent to CA at a point T ,

then the coordinates of the point (M,N) can be computed as explicit functions of

θ as can the radius r. Points on the circle CD, known as the θ -circle are given by
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(x, y) = (M(θ) + rθ. cos t, N(θ) + rθ sin t), for some real parameter t, 0 ≤ t ≤ 2π.

We want to find out the extreme configurations which constitute the boundary

configuration of the NSDC space. We observe that the boundary configurations are

those extreme configuration which have maximal tangencies.

If CD is not required to be tangent to CA but only to pass through d and be

tangent to CB , then it is clear that for d = (x, y) in a small circular neighborhood

of d = (x, y) there are circles through (x, y) so that (−2, 0, 2, d, 0, 2) are still NSDC.

This shows that non-tangent CDs correspond to interior points of NSDC- space.

If CD is required to be tangent to CA, we have that for some d near the point on

d = (x, y) on the θ -circle, CD, this may or may not be the case.

35



We consider all points on the θ -circle. One has x = x(θ, t) = M(θ) + rθ cos t and

y = y(θ, t) = N(θ) + rθ sin t.

Thus one has a map from R2 to itself: (θ, t) 7→ (x, y).

Now we look at the Möbius of this map:

If Jacobian is not zero, then f is an invertible one-one onto map from a small

neighborhood V of d to a small neighborhood W of (M(θ), N(θ)) and thus for any

point d′ ∈ V we can find a θ′ − circle with θ′ ∈ W .

Thereby making the configuration nsdc for (−2, 0, 0, 2, 2, d′).

Thus, the point d where Jacobian of f is not zero is an interior point of the nsdc

space.

Therefore the boundary points are those where the Jacobian is zero.
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(Ref: Gilman-Waterman [5] p. 17)

When one can calculate the Jacobian of this map to show that (x0, y0) is a

boundary point of NSDC space precisely when x0 = 2− 4 sin2 θ
1+sin2 θ

and y0 = 8 sin3 θ cos θ
1+sin2 θ

,

using the inverse function theorem. The plot of this boundary is the tear drop.

Points d = x+ iy in the interior of the tear drop corresponds to (marked) groups

Gd that are not NSDC and points in the exterior to Gd that are NSDC groups. A

change of parameters maps the tear drop into a parabola and replaces the parameter

d by λ = 4d
d−2

. Taking marked and non-marked NSDC groups into account yields the

region bounded by the two parabolas pictured in figure of superimposed parabolas

as NSDC -space, that is {Gλ|Gλ or G−λ is an NSDC group}
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4.0.8 Pull Back Angle

The center of isometric circle of H[x,x′] is at (x + x′)/2 and radius is |(x − x′)/2|.
We note that any other circle passing through x and x′ will have its centre on the

perpendicular bisector of x and x′. Thus the centre is ct = (x+ x′)/2 + it(x− x′)/2
for real number t.

θt, the angle made by the radius connecting ct to x or x′ with the line segment

connecting x and x′, is called the pull back angle of the circle.

Pull Back Angle,(Ref: Gilman-Waterman [5] p. 17)

Since our main results involve only conjugacy invariants, we can conjugate the

six tuple so that a = −2, a′ = b = 0 and b′ = d′ = 2. To reach our results we proceed

first by finding three tangent circles and then determining which configurations of

tangent circles are extreme. Thus we need to determine circles CA, CB and CD such

that CA and CB are tangent at (0, 0), CB and CD are tangent at (2, 0) and CD and

CA are tangent at some point say T .

We note that if CA and CB are tangent at (0, 0), then their pull back angles must

be the same but with opposite sign and thus their radii are equal.

Proposition 4.18 ([5])
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1. Let CA and CB be pull back circles with common pull back angle θ, −π/4 <

θ < π/4, there exists a unique circle called θ circle which is tangent to CA at

(2, 0) and tangent to CB.

2. When θ 6= ±π/4 and θ 6= 0, the θ circle is given by

x(θ, t) = M(θ) +R(θ). cos θ

y(θ, t) = N(θ) +R(θ). sin θ

where

M(θ) =
(2. tan θ)

(tan θ − (tan θ)−1)

N(θ) =
2

(tanθ − (tan θ)−1)

R(θ) =
2.
√

(1 + tan−2 θ)

(tanθ − (tan θ)−1)

3. When θ = 0, the circle is (x(θ, t), y(θ, t)) = (2. cos t, 2. sin t) and when θ =

±π/4, the circle is y = ∓(x− 2).

Proof (Gilman, Waterman) Assume the points are A = (−2, 0), A′ = B′ = (0, 0),

B′ = D′ = (2, 0) and D = (x, y). We construct a line L through (2, 0) with slope

tan θ and LD the line through D and (0, 0). The cases for θ = 0 and θ = ±π/4 are

shown in the figure below.
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We will find formulas for the center and radius of the θ-circle for D. In the figure

D = d.

Take P to be the perpendicular bisector of the line segment connecting D and (2, 0).

If L is not parallel to P then we replace D by another point D′ on LD.

Take (M, N) to be the point of intersection of L and P. Thus (M, N) is the center

of a circle passing through (2, 0) and D, and this circle will have the prescribed

tangencies. We term this circle as the θ circle. We observe that the pull-back angle

-θ is the same as the pull-back angle θ + π/2.

(Ref: Gilman-Waterman [5] p. 17)

Claim : M(θ) = (2. tan θ)
(tan θ−(tan θ)−1)

and N(θ) = 2
(tanθ−(tan θ)−1)

We take cA to be the center of the circle CA and cB that of CB. Then the slope

of the line passing through (M, N) and (2, 0) is

1. N/(M − 2) = tan θ.

2. cA = (−1, tan θ).

3. cB = (1,− tan θ).
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4. Slope of the line connecting D′ and D = (x, y) is y/(x− 2).

Now for x 6= 2 , y 6= 0, the perpendicular bisector passes through (M,N) and

((x+ 2)/2, y/2) and its slope is −(x− 2)/y. This yields

5. y − 2N = −(x− 2)(x+ 2− 2M)/y

6. The distance: Dist [(M,N), cB] + RB = RD = Dist[(M,N), cA] + RA, where

RA, RB and RD are the radii of the circles, CA, CB, CD.

7. As RA =RB = sec θ, we have Dist[(M,N), cA] = Dist [(M,N), cB].

8. (M + 1)2 + (N − tan θ)2 = (M − 1)2 + (N + tan θ)2, whence

9. M = N tan θ.

One infers from from M/N = tan θ and N/(M − 2) = tan θ that

10. M = M(θ) = −2.tan θ2/1− tan θ2 = − tan 2.θ.tanθ and

11. N = N(θ) = − tan 2.θ.

We write R = RD, R = Rθ =
√

(M − 2)2 +N2, we get

12. R(θ) = |N/sin θ|

so that any point on the θ -circle has coordinates given by

13. (x, y) = (x(θ, t), y(θ, t)) = (x, y) = (M +R cos t, N +R sin t)

This proves our claim and hence our proposition.

Definition 4.19 A configuration of three tangent circles in Ĉ is said to be extreme at

d if the three circles CA, CB and CD are all tangent ( so that d is an NSDC point)

and if every neighbourhood of d contains points which are NSDC and points which

are not NSDC.
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Proposition 4.20 ([5]) The points in C where the Jacobian is zero are the extreme

boundary points; there is one such point for each θ . All other points either have

totally NSDC neighborhood or totally non-NSDC neighborhood. The Jacobian is

non-zero except at the point z0 = (x0, y0) where x0 = 2−4 sin2 θ
1+sin2 θ

and y0 = 8 sin3 θ cos θ
1+sin2 θ

.

Proof We compute the partial derivatives as follows:

1. xθ = Mθ +Rθ cos t , xt = −R sin t and Yθ = Nθ +R− θ sin t, Yt = R cos t.

NSDC Teardrop, (Ref: Gilman-Waterman [5] p. 20)

We now compute the Jacobian and set it equal to zero which gives

2. RRθ +RMθ cos t+RNθ sin t = 0.
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From RRθ = Mθ(M − 2) + NNθ, cos t = (x −M)/R and sin t = (y − N)/R,

we get the Jacobian to satisfy the following relation

3. The Jacobian is 0 if and only if y/(x− 2) = −(Mθ/Nθ).

4. We determine these partial derivatives to infer that the critical points of the

Jacobian are the points that satisfy: y/(x− 2) = − sin 2θ.

Thus from M = −tan2θ. tan θ ,we have Mθ = −(2sec 2θ2 tan θ + sec θ2 tan 2θ).

Hence −Mθ/Nθ = 2 sec2 2θ tan θ + sec2 θ tan 2θ/− 2 sec2 θ = − sin 2θ

5. We use the fact that the distance from (x, y) to (M, N) is R and y/(x− 2) =

−sin2θ to obtain the coordinates for extreme points .

6. If (xθ, yθ) are as given in the proposition, one can calculate that y0/(x0 − 2) =

− sin 2θ, thus (x0, y0) is extreme.

Now consider the map f(z) = 4.z/z−2. This map sends the six tuple (−2, 0, 0, 2, 2, d)

to the six tuple (2, 0, 0,∞,∞, λ) where λ = 4.d/d− 2.

Extreme Four Point Configuration via (2, 0, 0,∞,∞, λ).

We observe that S = H[2,0]H[0,∞] = (
1 0

1 1

)

T = H[0,∞]H[∞,λ]= (
1 −2λ

0 1

)
Hence G =< S, T >= G−λ

Definition 4.21 We term the marked group Gλ of NSDC− type if the six tuple (2, 0, 0,∞,∞, λ)

is NSDC. We term it of NSDC+ type if the six tuple (2, 0, 0,∞,∞,−λ) is NSDC.

Gλ is NSDC if and only if the marked is either NSDC− or NSDC+
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The four point configuration for (2, 0, 0,∞,∞, λ) is a circle C1 through 0 and 2

along with a line L2 which is tangent to C1 at 0 and a line L3 through λ. C1 is

parameterized by specifying the angle φ made by the x-axis and the radial vector

through 0, which is measured in the anti-clockwise direction. Thus (−π/2) < φ <

(π/2).

(Ref: Gilman-Waterman [5] p. 23)

The radius of C1 is given by R(φ) = 1/cosφ.

Once we have specified C1 ,the lines L2 and L3 are determined. Take DL(φ) to

be the signed distance between L2 and L3, the positive direction is taken to be the

radial vector from 0 to the center of C1. Now the condition that the configuration

be an NSDC configuration for this six tuple reduces to the condition that L2 and L3

be sufficiently far apart so as to contain C1 and C1 actually lies between these two

lines.

Lemma 4.22 C1, L2, and L3 form an NSDC configuration for (2, 0, 0,∞,∞, λ)

⇔ DL(φ) ≥ 2R(φ)
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⇔ |λ| cos(ω − φ) cos(φ) ≥ 2.

Proof The condition |DL(φ)| ≥ 2R(φ) guarantees that L2 and L3 are sufficiently

far apart to contain C1, and DL(φ) > 0 ensures that C1 lies between L2 and L3. The

equivalent condition follows from

DL(φ) = λ.eιφ and R(φ) = 1/ cos(φ)

⇒ DL(φ) = |λ|(cosω cosφ+ sinω sinφ) and R(φ) = 1/ cos(φ).

Theorem 4.23 ([5]) Gλ is NSDC− ⇔ |λ|[1 + cosω] ≥ 4

Gλ is NSDC+ ⇔ |λ|[1− cosω] ≥ 4.

Proof

Gλ is NSDC− ⇔ |λ|[cosω + cos(ω − 2φ)] ≥ 4.

We maximize the left hand side as a function of φ to get the desired result; the

maximum occurs when φ = ω/2.

Thus we get our main result

Corollary 4.24 ([5]) Gλ is NSDC ⇔ |λ|[1 + | cosω|] >= 4 The boundary curve |λ|[1 +

| cosω|] = 4 gives the boundary of NSDC space in the polar coordinates (|λ|, ω),

and this boundary curve is the piecewise-parabola whose Euclidean coordinates (x, y)

satisfy y2 = 16− 8|x|.

Proof We take x = |λ| cosω and y = |λ| sinω.

Theorem 4.25 ([5]) Assume that G =< S, T > with tr(S) = tr(T) = 2. Then G is

NSDC if and only if

|tr(ST )− 2|+ |Re[tr(ST )− 2]| ≥ 8.
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We get the above result by substituting λ = 1/2[tr(ST )− 2].

From the normal form for transformations with two fixed points, we get the

following lemma.

Lemma 4.26 If α 6= β, α 6=∞, and β 6=∞ then,

Hα,β =
ι

α− β

(
(α + β) −2αβ

2 −(α + β)

)
.

4.0.9 Discreteness Criterion

Given any two generator subgroup G =< A,B > of PSL(2,C), one can naturally

associate it to a three generator subgroup of PSL(2,C), denoted 3G, in which G

sits as a normal subgroup of index two. Since a group and a subgroup of finite

index are either simultaneously discrete or simultaneously non-discrete, one can study

discreteness criteria for G or for 3G. The three- generator group, 3G, is constructed

as follows:

We define a hyperbolic line N as follows. If A and B are both parabolic, then N

is the line whose ends are fixed points of A and B; if neither A nor B is parabolic,

we let N be the common perpendicular to the axes of A and B; if A is parabolic

and B is not, N is perpendicular to the axis B through the fixed point of A; and

if B is parabolic and A is not, N is the perpendicular to the axis of A through the

fixed point of B.We let HN be the half turn about N . If the ends of N are n and n′,

then HN = H[n,n′]. Then A can be factored as A = LA.HN where LA is a half turn

and B can be factored as B = HN .LB where LB is a half turn. We define the three

generator group, 3G =< LA, HN , LB >.

We let a, a′ be the ends of LA and b, b′ be the ends of LB.

The isometric circles of HN , LA and LB pass through n and n′, a and a′, and

b and b′ respectively. If the isometric circles are disjoint, then one can apply the

Poincaré Polyhedron theorem to the region bounded by the isometric spheres with

side-pairings LA, LB, and HN to conclude that 3G is discrete.
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We note that (a, a′, b, b′, c, c′) an ordered six-tuple in Ĉ6 with a 6= a′, b 6= b′, c 6= c′

determines an ordered pair of generators A = H[a,a′].H[c,c′] and B = H[c,c′].H[b,b′]

and both a two generator group G(a, a′, b, b′, c, c′) =< A,B > and a three generator

group 3G(a, a′, b, b′, c, c′) =< H[a,a′], H[c,c′], H[b,b′] >.

Theorem 4.27 If (a, a′, b, b′, c, c′) has the NSDC property, then

< H[a,a′], H[b,b′], H[c,c′] > is discrete.

Proof Let CA, CB and CC be the circles containing respectively a and a′, b and b′,

and c and c′. Apply the Poincaré Polyhedron theorem to the region bounded by PA,

PB and PC , the planes whose horizons are CA, CB and CC respectively with the side

pairing transformations H[a,a′], H[b,b′], and H[c,c′] to conclude discreteness using the

theorem which shows that half-turns fix the corresponding planes.

Corollary 4.28 If (a, a′, b, b′, c, c′) has the NSDC property, then

< H[a,a′].H[c,c′], H[c,c′].H[b,b′] > is discrete.

Corollary 4.29 If the ortho end of < A,B > has the NSDC property, then < A,B >

is discrete.

The above result and the following computations give us the next proposition on

discreteness.

By the normal form of half turn we get,

H[−2,0] =

(
−ι 0

ι ι

)
,

H[0,2] =

(
−ι 0

−ι ι

)
,

H[2,d] =
ι

2− d

(
(d+ 2) −4d

2 −(d+ 2)

)
and hence
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A = H[−2,0]H[0,2] =

(
1 0

−2 1

)
,

B = H[0,2]H[2,d] =
1

2− d

(
(d+ 2) −4d

d (−3d+ 2)

)
and

tr(A) = tr(B) = 2

and

tr(AB) = 2 + 8d/(2− d).

We have shown

Proposition 4.30 ([3]) If tr(A) = 2, tr(B) = 2, and tr(AB)− 2 = 2 4d
2−d , where d lies

exterior to the NSDC teardrop,then G =< A,B > is discrete.

Theorem 4.31 ([5]) Assume that G =< S, T > with tr(S) = tr(T)=2. Then

|tr(ST )− 2|+ |Re[tr(ST )− 2]| ≥ 8

⇒ G is discrete.
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Chapter 5

Classical T-Schottky Groups

In this chapter we will prove the following main theorem:

Theorem 5.1 ([5]) Gλ lies on the boundary of classical T-Schottky space ⇔

λ = (2eιω)/(1 + | sinω|)

and thus eliminating ω ⇔

λ = x+ ιy with |y| = 1− x2/4.

Definition 5.2 Let Ci, C
′
i, i = 1 , . . . , n be a set of 2n circles in Ĉ such that the

interiors of the 2n circles are all pairwise disjoint. Let F be the intersection of the

exteriors of these circles.

1. F is called a classical T-Schottky domain.

2. A classical T-Schottky pairing is a set of n Möbius transformations, g1,......,

gn , the side pairings, where each gi maps the exterior of Ci onto the interior

of C ′i.

3. The set of circles together with the side pairings is called a classical T-Schottky

configuration.

4. The group generated by the side-pairing is called a marked classical T-Schottky

group on the generators g1,.......,gn.
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5. A group of Möbius transformations is a classical T-Schottky group if it is a

classical marked T-Schottky group on some set of generators.

We begin by describing the effects of marking generators.

5.0.10 Change of Generators

In this subsection, we begin by proving some lemmas, which will eventually lead

us to the proof of Theorem 5.10 which gives us the relation between classical T-

Schottky groups and marked classical T-Schottky groups for groups generated by

two-parabolics.

Lemma 5.3 For a subgroup G of PSL(2,C) ,the following are equivalent:

1. G =< A,B > is marked classical T-Schottky;

2. G =< B,A > is marked classical T-Schottky;

3. G =< A,B−1 > is marked classical T-Schottky.

Proof G =< A,B > is marked classical T- Schottky

⇔ A, B are side pairings for a set of circles C1, C ′1 and C2, C ′2.

⇔ B, A are side pairings for the set of circles C2, C ′2 and C1, C ′1
⇔ G =< B,A > is marked classical T- Schottky.

⇔ A, B−1 are side pairings for the set of circles C1, C ′1 and C ′2, C2.

⇔ G =< A,B−1 > is marked classical T- Schottky.

Definition 5.4 We say that a fixed point of a parabolic transformation is represented

on the boundary of a T-Schottky domain if there is an element of the group that maps

the parabolic fixed point to a point on the boundary of the domain.

Lemma 5.5 ([5]) If G is a classical T-Schottky group containing a parabolic T and F

is a classical T-Schottky domain for G, then the fixed point of T is represented on

the boundary of F and two sides of F are tangent at that point.
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Proof We normalize T to get the fixed point of T to be infinity and assume that

infinity is not represented on the boundary of F . Since ∞ is a fixed point of T ,

∞ cannot be an interior point of F (follows as F is a T-SCHOTTKY Domain).

Therefore, there will be a boundary circle C separating infinity from the other

boundary circles.

We take C ′ to be the boundary circle paired with this C and take gC to be the

side-pairing. We specify gC ∈ G to be the transformation which maps the exterior

of C ′ to the interior of C. Now consider gC(F ). If ∞ is on the boundary of gC(F ),

we are done.

If not, then we note that gC(F ) is also a T-Schottky domain for G with ∞ lying

exterior to it. We repeat the above process. The nested images of F accumulate at

∞, as it is a limit point. As G contains the translation T , thus at some stage the

image of F will overlap itself.

Renormalize such that infinity lies on the boundary and notice that if only one

boundary circle passes through infinity, then there is an element g ∈ G which is

non-trivial with g(F ) ∩ F 6= φ.

Definition 5.6 If F is a classical T-Schottky domain for a group G, then for any

g ∈ G, either g(F )∩F = φ or g(F ) = F . F and g(F ) are tangent if there are circles

C and D bounding F with C and g(D) tangent.

Lemma 5.7 ([5]) Let F be a classical T-Schottky domain and S a side pairing trans-

formation. If F and SN(F ) are tangent at η for some N with |N | ≥ 2 , then S fixes

η.

Proof As F is a classical T-Schottky domain, we have circles C and C ′ on the

boundary of F with S(C) = C ′, where S is a side pairing for the circles C and C ′. If

η is inside F , then S(η) is inside C ′, but F and SN(F ) are disjoint. Then we must

have η ∈ C ∩ C ′. As |N | > 2, all Sn(F̄ ) are tangent at η for all integers n. The S

orbit of a circle through η accumulates at a fixed point of S, so η is such a fixed point.
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Lemma 5.8 ([5]) Suppose G =< S, T > is marked classical T-Schottky. Then SNT

and (ST )NT are loxodromic for |N | >= 2.

Proof Take F to be a classical T-Schottky domain for the marked group G. Let T

pair sides C and C ′. Then we note that SNT sends the exterior of C to the interior

of SNT (C), thus the region bounded by these two circles forms a T-Schottky domain

for the cyclic group generated by SNT . Therefore, if we take SNT to be parabolic,

the two circles C and SNT (C) will become tangent at η. Hence F̄ and SN(F̄ ) are

tangent at η. But then by above lemma (Lemma 5.6), η is fixed by S. Thus, both

C and the sides of F paired by S are tangent at η. But as the group has no elliptic

elements, such a configuration is not possible. Therefore, SNT is loxodromic.

Similarly, if (ST )NT is parabolic, then C and (ST )NT (C) are tangent at ζ.

Applying above lemma(Lemma 5.6) to the classical T-Schottky domain(for< S, T >)

bounded by C and ST (C), < ST >, ST fixes ζ. Thus C, T (C) and ST (C) are

tangent at ζ, but this is not possible. Therefore (ST )NT must be loxodromic.

Theorem 5.9 ([5]) Suppose that G =< A,B > is a marked classical T-Schottky group.

If G can also be generated by parabolic elements S and T then, up to conjugacy,

interchange of generators and replacing a generator by its inverse, we have either (i)

S = A and T = B or (ii) S = A and T = AB.

Proof Let F be a classical T-Schottky domain for the marked group G. Observe

that F can have at most six points of tangency; that is, the four circles that bound

F can have a total of at most six points of tangency. If any two circles are tangent at

a point, none of the other four circles can be tangent at that point, and each circle

can be tangent to at most two others. Since the fixed points of both S and T are

represented on the boundary of F as points of tangency, there are words W1(A,B)

and W2(A,B) with fixed points on the boundary of F that are conjugate to S and T

respectively. However, there may not necessarily be a single element of the group that

conjugates W1(A,B) to S and W2(A,B) to T . Interchanging S and T if necessary,

we may conjugate so that the fixed point of S lies on the boundary of F and is fixed

by the shortest possible word in A and B. Elements of the group send points of
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tangency of F to points of tangency of the image of F and parabolic fixed points to

parabolic fixed points. We observe that the generators A and B must each permute

the parabolic fixed points on the boundary of F : if A identifies L and M and B

identifies C and D, we assume p is a parabolic fixed lying on L and consider the

possibilities for its images. Since A(L) = M if A(p) lies on M , L is either tangent

to C , D or M at p; and M is tangent at A(p) to one of L, C or D. Considering all

possible cases of tangency points under the action of the group, we conclude that it

suffices to consider the three cases in which the length of S is at most three. Now if U

and V are associated primitive elements of the free group on two generators, then the

only primitive dements associated to U are of the form UαV εUβ where α, β = 0, ±1,

±2, ... and ε = ±1. We apply this to the cases where the length of S is at most three.

Length 1. S is a word of length one in A and B. We may assume that S = A

and note that, up to conjugacy by a power of A, we get T = AnB±1. Then, either

n = 0 or n = ±1. The theorem follows after a re-normalization.

Length 2. S is a word of length two in A and B. We may assume that S = AB

and T = (AB)nB. Either n = 0 or n = ±1. If n = 0 or n = −1, then up to

conjugacy, T has length one. If n = 1, then T is loxodromic. Both cases are contrary

to assumption.

Length 3. S is a word of length three in A and B. We may assume that S = A2B.

However, S is then loxodromic, contrary to assumption.

Lemma 5.10 ([5]) If < T,B > is marked classical T-Schottky with T and TB parabolic,

then < T, TB > is marked classical T-Schottky.

Proof Normalize so that T (∞) = ∞ and TB(0) = 0 and hence B(0) = T−1(0). A

T-Schottky domain F for < T,B > is then bounded by L, M, C and D, where T

pairs sides L and M that meet at infinity and B pairs circles C and D inside the

domain bounded by L and M. 0 lies on the boundary of F. There are the following

three cases.
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1. 0 on L, T(0) on M. Since the Euclidean line L separates T−1(L) and M, we

must have B(0) 6= 0

2. 0 is interior to the domain bounded by L and M with C and D tangent at 0.

In this case, T−1(0) is interior to the region bounded by T−1(L) and L, and

B(0) is on D. Again, B(0) 6= T−1(0).

3. C is tangent to M at 0, and D is tangent to L at T−1(0).

We have B(0) = T−1(0).

In case (3), we let L1 be a line orthogonal to the line joining the centers of C

and D and separating the interiors C and D. Such a line exists, since C and D are

at worst tangent. If M1 = T (L1) and D1 = T (D), then T pairs L1 and M1 and TB

pairs C and D1. Thus < T, TB > is marked classical T-Schottky.

Theorem 5.11 If S and T are parabolic, then G =< S, T > is marked classical T-

Schottky if and only if G is classical T-Schottky.

Proof If G =< S, T > is marked classical T-Schottky then clearly G is classical

T-Schottky.

For the other way, we note that G is classical T-Schottky if G =< A,B > is

marked classical T-Schottky for some generators A,B in G. Using we get that either

(i) S = A and T = B or (ii) S = A and T = AB. If Case (i) holds, then we are done.

If case (ii) holds then, we get that G =< S, T >=< A,AB > is classical T-Schottky.

5.0.11 Geometry of marked two parabolic generator T-Schottky

groups

Here we consider a marked group G with two parabolic generators, S and T, and

parameter λ ∈ C. Let G = Gλ with λ = |λ|eιω .

Let S be a side pairing for the circles C1 and C2 , and T be a translation pairing

distinct lines L1 to L2. As S and T are parabolic, C1 will be tangent to C2 at 0,
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which is fixed by S. Similarly L1 is tangent to L2 at infinity, which is fixed by T .

The configuration C1, C2, L1 and L2 will determine a classical T-Schottky domain

if and only if C1 and C2 lie in the region bounded by L1 and L2 thereby making

G =< S, T > a classical T-Schottky group. Assume 0 lies in the region bounded by

L1 and L2.

Definition 5.12 A classical T-Schottky group Gλ along with its classical T-Schottky

configuration is called extreme if every neighborhood of λ contains points for which

the group is classical T-Schottky and points for which it is not classical T-Schottky.

If one of L1 or L2 is not tangent to either circle, then the configuration is not

extreme. If λ0 is sufficiently close to λ, one can easily find L′1 paired to L′2 by

T (z) = z + 2λ0 such that C1, C2 lie in the region bounded by L′1 and L′2.

(Ref: Gilman-Waterman [5] p. 29)
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The parameters t, φ and ψ

We want to assign geometric parameters to the set of four circles.

Before proceeding ahead we will state the following lemmas:

Lemma 5.13

S =

(
ν 0

ν−1 ν−1

)
maps the circle C1 : |z − a| = r to the circle C2: |z − b| = ρ if and only if

β = ν2(r2 − α− |α|2)/r2 − |1 + α|2

and

ρ = r|ν|2/|r2 − |1 + α|2|.

Further, S maps the exterior of C1 to the interior of C2 ⇔ |a+ 1| < r.

Let the two circles C1 and C2 be tangent at 0 and assume that the line connecting

their centers makes an angle φ with the x-axis. Let τ = teιφ and assume that the

center of C1 is α = −τ . Applying above to this situation with ν = 1 so that S is

parabolic, we obtain

Corollary 5.14 If the center of C1 is at −τ , the center of C2 is at τ/(τ + τ̄ − 1). The

exterior of C1 is mapped to the interior of C2 if and only if τ + τ̄ − 1 > 0.

Observe that by above corollary in order for the exterior of C1 to be mapped to

the interior of C2 it is necessary that |φ| ≤ π/2.

Assume that the perpendicular to L1 and L2 makes an angle φ + ψ with the

x-axis, |ψ| ≤ π/2.

Definition 5.15 Let DL = DL(φ, ψ) denote the Euclidean distance between L1 and L2.
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Definition 5.16 Let DC = DC(t, φ, ψ) be the distance between the parallel lines L′1 and

L′2, where L′1 is tangent to C1 and parallel to L1 and L′2 is tangent to C2, with L′1
and L′2 chosen so that C1 and C2 lie between L′1 and L′2.

We emphasize that the condition that we have a T-Schottky configuration is thus

precisely that DC ≤ DL.

In what follows, we progressively describe how best to choose the geometric

parameters t, φ, ψ. Essentially, we minimize DC − DL as a function of t, then

φ, and then ψ.

Lemma 5.17 DC = t[1 + 1/(2t cosφ− 1)][1 + cosψ] ,DL = |2λ.eι(φ+ψ)|.

Proof DL can be determined by the inner product of the vector 2λ with the per-

pendicular line joining the lines l1 and l2 that is |2λ.ei(φ+ψ)|.

Definition 5.18 t0 = 1/ cosφ.

Lemma 5.19 For fixed φ and ψ there is a T-Schottky configuration if and only if

DC(t0, φ, ψ) ≤ DL(φ, ψ), where t0 = 1/ cosφ. When t = t0, DC(t0φψ) = 2(1 +

cosψ)/ cosφ , this value of DC is a minimum, and the circles have the same radius.

Proof By above lemma

DC = t

[
1 +

1

(2t cosφ− 1)

]
(1 + cosψ)

= 2 cosφ

[
t+

t

(2t cosφ− 1)

](
1 + cosψ

2 cosφ

)
=

[
2t cosφ+

2t cosφ

(2t cosφ− 1)

](
1 + cosψ

2 cosφ

)
=

[
2t cosφ− 1 +

2t cosφ

(2t cosφ− 1)
+ 2

](
1 + cosψ

2 cosφ

)
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We minimize DC with respect to t

∂DC

∂φ
=
[
2 cosφ− 2 cosφ/(2t cosφ− 1)2] (1 + cosψ)

2 cosφ

For minimum we put

∂DC

∂φ
= 0

⇒ 2 cosφ− 2 cosφ

(2t cosφ− 1)2 = 0

⇒ (2t cosφ− 1)2 = 1

⇒ 2t cosφ− 1 = 1

⇒ t cosφ = 1

⇒ t = 1/ cosφ

Thus the result follows with

DC(t0, φ, ψ) =
2(1 + cosψ)

cosφ
.

Definition 5.20

φ0 =

1
2
(ω − ψ) when |ω − ψ| ≤ π/2

1
2
(ω − ψ − π) when ω − ψ ≥ π/2 .

In both cases,

|φ0| ≤
π

4
.

Lemma 5.21 For fixed ψ, there is a T-Schottky configuration if and only if DL(φ0, ψ) ≥
DC(t0, φ0, ψ) , where φ0 satisfies the above definition.
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Proof By above lemma , there is a T-Schottky configuration if and only if

|2λ.eı(φ+ψ)| ≥ 2(1 + cosψ)/ cosφ

Further,

|2λ.eι(φ+ψ)| ≥ 2(1 + cosψ)/ cosφ

if and only if

|λ|| cos(ω − ψ) + cos(ω − ψ − 2φ)| ≥ 2(1 + cosψ)

Now maximizing the left hand side as a function of φ, we get

|λ|2|sin(ω − ψ − 2φ)| = 0

This gives us the following as |φ| ≤ π/2,

φ =

1
2
(ω − ψ) when |ω − ψ| ≤ π/2

1
2
(ω − ψ − π) when ω − ψ ≥ π/2 .

and the result follows.

Utilizing the above, we explicitly characterize classical T-Schottky groups on two

parabolic generators.

Theorem 5.22 ([5]) Gλ, 0 ≤ ω < π, is marked classical T-Schottky if and only if

|λ|(1 + sinω) ≥ 2.

If the above inequality holds, then a T-Schottky configuration may be obtained by

choosing

ψ = ±(π/2)

φ = ω/2− π/4

and

t = |1 + ι tan(ω/2− π/4)|.
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Further, the two choices of triples above, (π/2, φ, t) and (−π/2, φ, t), are the only

choices of parameters (ψφt) guaranteed to give a classical T-Schottky configuration

for every ω(0 ≤ ω < π),

If ω = 0, then every classical T-Schottky configuration can be obtained by choosing

some ψ, then setting φ = ψ0.

Proof From the proof of above lemma, Gλ, is marked classical T-Schottky if and

only if

|λ|[1 + | cos(ω − ψ)|] ≥ 2(1 + cosψ)

But

|λ|[1 + | cos(ω − ψ)|] ≥ 2(1 + cosψ)

⇔


|λ| cos2(ω/2− ψ/2) ≥ 2 cos2(ψ/2) −π/2 ≤ ω − ψ ≤ π/2 ;

or

|λ| sin2(ω/2− ψ/2) ≥ 2 cos2(ψ/2) π/2 ≤ ω − ψ ≤ 3π/2 .

⇔


|λ|[cos(ω/2) + sin(ω/2)tan(ψ/2)]2 ≥ 2 −π/2 ≤ ω − ψ ≤ π/2 ;

or

|λ|[sin(ω/2)− cos(ω/2)tan(ψ/2)]2 ≥ 2 π/2 ≤ ω − ψ ≤ 3π/2 .

Provided ω 6= 0, the maximum of the left hand side as a function of ψ occurs

precisely when ψ = ±(π/2).

If ω = 0 then the left hand side is independent of ψ so any ψ may be chosen.

As a consequence, we can explicitly describe the boundary of classical T-Schottky

space with two parabolic generators simply as a portion of a parabola We have

x+ ιy = |λ|eιω.

Theorem 5.23 ([5]) Gλ lies on the boundary of classical T-Schottky space ⇔

λ = (2eιω)/(1 + | sinω|)
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and thus eliminating ω ⇔

λ = x+ ιy with |y| = 1− x2/4.

Finally, we put above theorem into a conjugacy invariant form,

Theorem 5.24 ([5]) If G =< S, T > with tr(S) = tr(T) = 2, then G is classical

T-Schottky if and only if

|tr(ST )− 2|+ |Im[tr(ST )]| ≥ 4.

Proof The result follows by recalling that λ = (1/2)[tr(ST )− 2].

This translates to the following sufficient condition for discreteness.

Corollary 5.25 ([5]) If G =< S, T > with tr(S) = tr(T ) = 2,

|tr(ST )− 2|+ |Im[tr(ST )]| ≥ 4

implies that G is discrete.
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5.1 A Visual Representation of Schottky Groups

Let us take a pair of disks DA and Da such that the Möbius transformation a maps

the exterior of DA to the inside of Da. Similarly we take another pair of disks DB

and Db and a transformation b.

Transformations a and b.

Now we apply the transformations a b a−1 b−1 to get this beautiful picture. The

wonderful feature of this picture is that no matter how much we zoom in the essentials

of this pattern repeat.
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Reference: Indra’s Pearls, [6]

Now we bring about a small variation. We bring the Schottky Circles together

so that they touch or kiss.

Inside each circle there are three further circles tangent to each other so that we get

a succession of chains each contained within the other. The chain at a given level is

like a bead necklace. The limiting curve is named Indra’s Necklace.
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INDRA’S NECKLACE, Reference: Indra’s Pearls, [6]
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Conclusion

We have described in this thesis the boundary of the space of non-separating disjoint

circle groups and of Classical T-Schottky groups having two parabolic generators.

As a result of this description we have also derived a criterion for discreteness of

groups generated by two parabolic generators seen as a subgroup of PSL(2, C).
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