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Abstract

In this report we study hyperbolic groups and some of their properties. We also

study growth of groups, in particular, Grigorchuk’s example of group of intermediate

growth.

ii



Introduction

In this THESIS we study two topics in Geometric Group Theory namely, Hyperbolic

Groups and Growth of Groups.

A geodesic metric space is defined to be hyperbolic if all geodesic triangles in it are

thin in a particular sense. A group is defined to be hyperbolic if its Cayley graph

is a hyperbolic metric space. In Chapter 1 we study the algorithm, known as Dehn

algorithm which efficiently solves the word problem for groups and discuss the result

that hyperbolic groups have a solvable word problem.

In Chapter 2 we study the growth of groups, in particular, Grigorchuk’s example of

a group whose growth is intermediate, i.e., neither polynomial nor exponential.
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Chapter 1

Hyperbolic groups

1.1 Cayley graph

Definition 1.1 (Cayley graph) . Let G be a group and let S ⊂ G be a generating

set of G. Then the Cayley graph of G with respect to the generating set S is the graph

Cay(G,S) whose

• set of vertices is G, and whose

• set of edges is

{{g, g · s} | g ∈ G, s ∈ S \ {e}} (1.1)

i.e., two vertices in a Cayley graph are adjacent if and only if they differ by an

element of the generating set in question. Here e denotes the identity element of G.

Example 1.2 (Cayley graphs).

• The Cayley graphs of the additive group Z with respect to the generating sets

{1} and {2, 3} respectively are illustrated in Figure 1.1. Notice that, when

looking at these two graphs from far away, they seem to have the same global

structure, namely they look like the real line; in more technical terms, these

graphs are quasi-isometric with respect to the corresponding word metrics .
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• The Cayley graph of the additive group Z2 with respect to the generating set

{(1, 0 ), (0, 1)} looks like the integer lattice in R2, see Figure 1.2; When viewed

from far away, this Cayley graph looks like the Euclidean plane.

• The Cayley graph of a free group F with respect to a free generating set S is

a tree.

Figure 1.1: Cayley graph of the additive group Z.

Figure 1.2: Cayley graph of Z× Z
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1.2 Quasi-isometry

Definition 1.3 (Quasi-isometry) Let f : X −→ Y be a map between metric

spaces (X, dX) and (Y, dY ). The map f is a quasi-isometric embedding if there are

constants c ∈ R>0, b ∈ R≥0 such that

1

c
dX(x, x

′
)− b ≤ dY (f(x), f(x

′
)) ≤ cdX(x, x′) + b ∀ x, x′ ∈ X.

A map f ′ : X −→ Y has a finite distance from f if there is a constant c ∈ R≥0 with

dX(f(x), f
′
(x)) ≤ c ∀ x ∈ X.

The map f is a quasi-isometry if there is a quasi-isometric embedding for which there

is a quasi-inverse i.e., a quasi isometric embedding g : X −→ Y such that gof and

fog have finite distance from the identity maps IdY and IdX respectively.

Two metric spaces X and Y are quasi isometric if there exists a quasi-isometry

X −→ Y ; in this case we write X ∼QI Y.

Definition 1.4 (Metric on a graph) Let G(V,E) be a connected graph. Then

the map V × V 7−→ R≥0
(v, w) −→ min{m ∈ N | there is a path of length m connecting v and w }
is a metric on V .

Definition 1.5 (Word metric) Let G be a group and let S ⊂ G be a generating

set. The word metric dS on G with respect to S is the metric on G associated with

the Cayley graph Cay(G,S). In other words

dS(g, h) = min{n ∈ N | ∃ s1, ..., sn ∈ S ∪ S−1, g−1h = s1...sn}, g, h ∈ G.

Definition 1.6 (Quasi-isometry type of finitely generated groups) The group

G is quasi-isometric to a metric space X if for some (and hence all) finite generating

sets S of G the metric space (G, dS) and X are quasi-isometric. We write G ∼QI X
if G and X are quasi-isometric.
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Example 1.7 If n ∈ N, then Zn is quasi-isometric to the euclidean space Rn

because the inclusion Zn −→ Rn is a quasi-isometric embedding with quasi-dense

image.

Remark Let G be a group and let S ⊂ G be a generating set. Then S is finite

if and only if the word metric dS on G is proper in the sense that all balls of finite

radius in (G, dS) are finite.

Definition 1.8 (Geodesic (respectively Quasi-geodesic)) Let (X,d) be a met-

ric space and let c, b ∈ R>0

• then a geodesic (resp. quasi-geodesic) in X is a isometric (resp. quasi-isometric)

embedding γ : I −→ R, where I = [t, t′] ⊂ R is some closed interval. The point

γ(t) is the starting point of γ and γ(t′) is the end point of γ.

• The space X is geodesic (respectively (c, b) quasi-geodesic if for all x, x′ ∈ X
there exists a (c,b) quasi geodesic in X with start point x and end point x′.

Example 1.9 If G = (V, E) is a connected graph, then the associated metric on

V turns V into a (1,1) geodesic space because the distance between two vertices is

realised as the length of some path in the graph G, and any path in the graph G of

shortest distance between two vertices is a (1,1) quasi-geodesic.

In particular, if G is a group and S is a generating set of G then (G, dS) is (1,1)

quasi-geodesic space.

1.3 Hyperbolic spaces

Definition 1.10 (δ-slim geodesic triangle) Let (X,d) be a metric space. A geodesic

triangle in X is a triple (γ0, γ1, γ2) consisting of geodesics γj : [0, lj]→ X in X such

that

γ0(l0) = γ1(0), γ1(l1) = γ2(0), γ2(l2) = γ0(0).

A geodesic triangle (γ0, γ1, γ2) is δ-slim if
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imγ0 ⊂ BX,d
δ (imγ1 ∪ imγ2),

imγ1 ⊂ BX,d
δ (imγ0 ∪ imγ2),

imγ2 ⊂ BX,d
δ (imγ0 ∪ imγ1).

Definition 1.11 (δ Hyperbolic space) Let X be a metric space and let δ ∈ R≥0.

We say that X is δ- Hyperbolic if X is geodesic and if all geodesic triangles in X are

δ- slim. The space X is hyperbolic if there exists a δ ∈ R≥0 such that X is δ

hyperbolic.

Example 1.12 (i) Any geodesic metric space X of finite diameter is diam(X)-

hyperbolic.

(ii) R is a 0-hyperbolic.

Example 1.13 R2 is not hyperbolic because for any δ ∈ Rg≥0, the Euclidean

triangle with vertices (0, 0), (0, 3δ) and (3δ, 0) is not δ- slim

1.4 Quasi-hyperbolic space

Definition 1.14 (δ -slim quasi-geodesic triangle) Let (X, d) be a metric space,

and let c, b ∈ R≥0. A quasi-geodesic triangle in X is a triple (γ0, γ1, γ2) consisting of

quasi-geodesics γj : [0, Lj]→ X in X such that

γ0(l0) = γ1(0), γ1(l1) = γ2(0), γ2(l2) = γ0(0).

A (c, b)-quasi-geodesic triangle (γ0, γ1, γ2) consists of (c,b)-quasi-geodesicis γj :

[0, Lj]→ X such that

γ0(l0) = γ1(0), γ1(l1) = γ2(0), γ2(l2) = γ0(0)

A quasi-geodesic triangle (γ0, γ1, γ2) is δ-slim if

imγ0 ⊂ BX,d
δ (imγ1 ∪ imγ2),
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imγ1 ⊂ BX,d
δ (imγ0 ∪ imγ2),

imγ2 ⊂ BX,d
δ (imγ1 ∪ imγ1).

Definition 1.15 (δ quasi-hyperbolic space) Let X be a metric space. Let δ ∈
R≥0. We say that X is δ quasi-hyperbolic if X is quasi-geodesic and if all quasi-

geodesic triangles in X are δ-slim. The space X is quasi-hyperbolic if there exists a

δ ∈ R≥0 such that X is δ quasi-hyperbolic.

Proposition 1.16 (see [6, CL]) (Quasi-isometry invariance of quasi-hyperbolicity).

Let (X, dX) and (Y, dY ) be two metric spaces.

1. If Y is quasi-geodesic and if there exists a quasi-isometric embedding X → Y ,

then X is also quasi-geodesic.

2. If Y is quasi-hyperbolic and if there exists a quasi-isometric embedding

X → Y , then X is also quasi-hyperbolic.

3. In particular, if X and Y are quasi-isometric, then X is quasi-hyperbolic if

and only if Y is quasi-hyperbolic.

If (X, d) be a geodesic space, thenX is hyperbolic if and only ifX is quasi-hyperbolic.

It turns out that hyperbolicity is a quasi-isometry invariant in the class of geodesic

spaces (see [6, CL]).

1.5 Hyperbolic groups

Definition 1.17 (Hyperbolic group) A finitely generated group G is said to be

hyperbolic group if for some (and hence any) finite generating set S of G, the Cayley

graph Cay(G,S) is hyperbolic.

Example 1.18 (Hyperbolic groups)

• All finite groups are hyperbolic because the associated metric spaces have finite

diameter.
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• The group Z is hyperbolic.

• Any free group of rank n is hyperbolic.

Example 1.19 (Non hyperbolic groups)

• Z2 is not hyperbolic.

It is known that hyperbolic groups are finitely presented.

Definition 1.20 A group is said to have solvable word problem if there exists an

algorithm that can decide in finite no. of steps whether a given word in the set of

generators represents the identity element of the group.

Gromov ([5, MGro]) has shown that hyperbolic groups have solvable word prob-

lem.
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Chapter 2

Growth of Groups

Let G be a finitely generated group, generated by x1, · · · , xd, say. Each element

x ∈ G can be written as a word in the generators, i.e., as a product y1 · · · yn, where

each yi is either one of the generators or its inverse. The number n is called the

length of the word. The identity element is represented by the empty word, which

has length zero. In general, a given element x ∈ G can be represented by many

words. Out of all of these, we choose one of minimal length (this word is not

necessarily unique) and call this the length l(x) of x. For an integer n ≥ 0, we write

aG(n) for the number of elements x ∈ G of length n, and sG(n) for the number

of words of length at most n, i.e., sG(n) =
∑n

i=0 aG(i). We term aG(n) and sG(n)

the growth functions of G. More specifically, aG(n) is the strict growth function and

sG(n) is the cumulative growth function of G. Our interest is in these two functions,

their properties, and their relationship with the structure and properties of G. The

subscript G will be often omitted, if it is clear from the context which group is

meant.

Definition 2.1 A growth function is a non decreasing function f : R≥0 → R≥0

Definition 2.2 (Dominance) A growth function f2 dominates a growth function

f1, written f1 ≺ f2, if there exist constants d ≥ 1, c ≥ 0 such that

f1(k) ≤ df2(ck) ∀ k
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We say that two growth functions f1 and f2 are equivalent, written f1 ∼ f2 if f1 ≺ f2

and f2 ≺ f1.

Proposition 2.3 Let G be a finitely generated group. If S and T are two finite gen-

erating sets for G,then the growth functions with respect to S and T are equivalent.

That is, aG(n, S) ∼ aG(n, T ).

So for each group G, the growth type, defined to be the equivalence class of one

of its growth functions is distinct and independent of any generating set. A word of

length m+ n can be written as a product of two words one of length m and one of

length n, so that aG(m+ n, S) ≤ aG(m,S)aG(n, S). Therefore,

ω(G,S) := limn→∞ sup aG(n, S)1/n exists and is finite. For the same reasons, φ(G,S)

:= limn→∞ sup sG(n, S)1/n exists, and it is clear that φ(G,S) ≥ ω(G,S). Suppose

that the group G is infinite, then a(n, S) ≥ 1 for all n, and hence ω(G,S) ≥ 1.

For any given ε > 0, we have a(n, S) ≥ (ω(G,S) + ε)n , if n is large enough.

therefore s(n, S) ≥ A + n(ω(G,S) + ε)n, for some constant A, and it follows that

φ(G,S) ≤ ω(G,S). Thus ω(G,S) = φ(G,S).

We must consider how ω(G,S) depends on S. Since aG(n, S) ∼ aG(n, T ). for two

finite generating sets S and T , then aG(n, S) ≺ aG(n, T ) and aG(n, T ) ≺ aG(n, S)

so that

ω(G,S) = limn→∞ sup aG(n, S)1/n ≤ limn→∞ sup aG(n, T )1/n = ω(G, T ),

ω(G, T ) = limn→∞ sup aG(n, T )1/n ≤ limn→∞ sup aG(n, S)1/n = ω(G,S).

Hence if ω(G,S) > 1 for one finite generating set, then it will be for any other. This

shows that ω is well defined globally for each group

Definition 2.4 1. If ω(G) > 1, then G has exponential growth, and if ω(G) = 1

then subexponential growth, of G (rather, of (G,X), where X is the relevant

generating set of G).

2. A group G has polynomial growth, if there exist numbers c and s such that

sG(n) ≤ cns , for all n.
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3. If a group G has polynomial growth, its degree is defined by d(G) = inf(s|
such that sG(n) ≤ cns).

4. A group G has intermediate growth, if its growth is neither exponential nor

polynomial.

The first Grigorchuk group is a finitely generated group which provided the

first example of a finitely generated group of intermediate growth. The group was

originally constructed by Grigorchuk in a 1980 paper and he then proved in 1984 that

this group has intermediate growth, thus providing an answer to an important open

problem which was posed by John Milnor in 1968 about the existence of a finitely

generated group of intermediate growth. Originally, Grigorchuk’s has constructed a

group G of Lebesgue-measure-preserving transformations on the unit interval, later

on a simpler descriptions of G were found and now it is usually presented as a group

of automorphisms of the infinite regular binary rooted tree. We will try to describe

this example in both way.

Rostislav Grigorchuk construction [2, Grigorchuk],[1, Mann] Let us con-

sider transformations of the open unit interval (0, 1). We remove from this interval

all points whose coordinate is rational with denominator a power of 2. Let E denote

the identity transformation, and let P denote the transformation which interchange

the two halves (0, 1/2) and (1/2, 1) with each other, which means that a point x is

mapped either to x+1/2 or to x−1/2. We can write the unit interval as the disjoint

union of countably many subintervals (1− 1/2n−1, 1− 1/2n), (n = 1, 2, · · · ). Group

Γ is generated by four transformations a, b, c and d. Here a is just the interchange

of interval i.e; is P is applied to the full interval. The other three generators will

apply to each of the subintervals above by either E or P , as follows: b applies P to

each of the first two subintervals and then E to the third one, and again repeats the

pattern PPE periodically. The generator c applies similarly the periodic pattern

PEP , and d applies the pattern EPP .

Although initially the Grigorchuk group was defined as a group of Lebesgue

measure-preserving transformations of the unit interval, at present this group is

usually given by its realization as a group of automorphisms of the infinite regular

binary rooted tree T2. The tree T2 is realized as the set Σ∗ of all (including the
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empty string) finite strings in the alphabet Σ = {0, 1}. The empty string φ is the

root vertex of T2 and for a vertex x of T2 the string x0 is the left child of x and

the string x1 is the right child of x in T2. The group of all automorphisms Aut(T2)

can thus be thought of as the group of all length-preserving permutations σ of Σ∗

that also respect the initial segment relation, that is such that whenever a string

x is an initial segment of a string y then σ(x) is an initial segment of σ(y). The

Grigorchuk group G is then defined as the subgroup of Aut(T2) generated by four

specific elements a, b, c, d of Aut(T2), that is G =< a, b, c, d >≤ Aut(T2), where the

automorphisms a, b, c, d of T2 are defined recursively as follows:

• a(0x) = 1x, a(1x) = 0x for every x in Σ∗;

• b(0x) = 0a(x), b(1x) = 1c(x) for every x in Σ∗;

• c(0x) = 0a(x), c(1x) = 1d(x) for every x in Σ∗;

• d(0x) = 0x, d(1x) = 1b(x) for every x in Σ∗.

Thus a swaps the right and left branch trees TL = 0Σ∗ and TR = 1Σ∗ below the

root vertex φ and the elements b, c, d can be represented as: b = (a, c), c = (a, d),

d = (1, b). Here b = (a, c) means that b fixes the first level of T2 (that is, it fixes the

strings 0 and 1) and that b acts on TL exactly as the automorphism a does on T2 and

that b acts on TR exactly as the automorphism c does on T2. The notation c = (a, d)

and d = (1, b) is interpreted similarly, where 1 in d = (1, b) means that d acts on TL

as the identity map does on T2. Of the four elements a, b, c, d of Aut(T2) only the

element a is defined explicitly and the elements b, c, d are defined inductively (by

induction on the length |x| of a string x in Σ∗ ), that is, level by level.
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Theorem 2.5 [1, page no 96 Mann],[2, Grigorchuk] Γ has intermediate growth.
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