
A Study of Combinatorial
Optimization

Anil Kumar Jhingonia
MS09015

A dissertation submitted for the partial fulfilment of

BS-MS dual degree in Science

Indian Institute of Science Education and Research Mohali

April 2014

Certificate of Examination

This is to certify that the dissertation titled “A Study of Combinatorial

Optimization ” submitted by Mr. Anil Kumar Jhingonia (Reg. No.

MS09015) for the partial fulfillment of BS-MS dual degree programme of

the Institute, has been examined by the thesis committee duly appointed

by the Institute. The committee finds the work done by the candidate

satisfactory and recommends that the report be accepted.

Yashonidhi Pandey Kapil H. Paranjape K. Gongopadhyay

(Supervisor)

Dated: April 25, 2014

ii

Declaration

The work presented in this dissertation has been carried out by me under

the guidance of Yashonidhi Pandey at the Indian Institute of Science

Education and Research Mohali.

This work has not been submitted in part or in full for a degree, a diploma,

or a fellowship to any other university or institute. Whenever contributions

of others are involved, every effort is made to indicate this clearly, with due

acknowledgement of collaborative research and discussions. This thesis is a

bonafide record of original work done by me and all sources listed within

have been detailed in the bibliography.

Anil Kumar Jhingonia

(Candidate)

Dated: April 25, 2014

In my capacity as the supervisor of the candidate’s project work, I certify

that the above statements by the candidate are true to the best of my knowl-

edge.

Yashonidhi Pandey

(Supervisor)

iii

Acknowledgement

I would like to express my gratitude to Yashonidhi Pandey, my project su-

pervisor for his kind supervision and guidance in completing my dissertation.

I would also like to thank IISER Mohali for their support.

I would like to thank David P. Williamson and R. Ravi for their valuable

online notes on primal dual method, Jim Anderson whose lectures ppt on

max flow problem helped me a lot in understanding the concepts. I would

also like to thank Michel X. Goemans whose online lectures on combinatorial

optimization helped me in understanding this subject.

Finally, I am grateful to my friends and family for giving me all the non-

technical support and encouragement because of which I got the opportunity

to learn mathematics.

Anil Kumar Jhingonia

MS09015

IISER Mohali

iv

Contents

Abstract 2

Introduction 3

1 Computational complexity of Matrix Multiplication and Inversion 5

1.1 Introduction . 5

1.2 Asymptotic notation . 7

1.3 Matrix multiplication is no harder than inversion 7

1.4 Symmetric and Positive definite matrix 8

1.4.1 Properties of Symmetric and Positive definite matrix 8

1.4.2 Schur complement . 9

1.5 Inversion is no harder than multiplication 9

1.6 Solving systems of linear equations 12

1.6.1 Computing an LU decomposition 13

1.6.2 Computing an LUP-decomposition 15

2 Ellipsoid Algorithm 16

2.1 Definitions . 16

2.2 The Basic Ellipsoid Algorithm . 18

2.3 Basic Ellipsoid Iterations . 19

2.4 Separation Oracle . 20

2.5 Correctness of the algorithm . 20

2.6 Time complexity . 24

3 Primal Dual Algorithm 25

3.1 Introduction: . 25

3.2 Duality . 26

3.2.1 Relationships between the primal and the dual problems 26

v

3.3 Economic interpretation of dual problem 27

3.3.1 Production problem . 27

3.3.2 Pricing problem . 28

3.3.3 For 1× 2 matrices(one resource and two products) 29

3.3.4 For 2× 1 matrices (2 resource and 1 product) 31

3.4 Dual problem derived algebraically . 32

3.5 Weak Duality theorem . 33

3.6 Complementary Slackness . 34

3.6.1 Complementary Slackness Theorem 35

3.7 Strong Duality theorem . 35

4 Strong Duality and Max-Flow Min-Cut Problem 36

4.1 The Primal-Dual Method Applied to Max-Flow Min-Cut Problem . . . 36

4.1.1 Max-Flow Problem . 37

4.1.2 Min-Cut Problem . 39

4.2 Strong Duality . 46

4.3 Max-flow Min-cut Theorem . 47

Bibliography 48

1

Abstract

The primal-dual method is a standard tool in the design of algorithms for combinato-

rial optimization problems. It is a very powerful method. This method can be used to

obtain a good approximation algorithm from which we can get a good combinatorial

algorithm. It can also be used to prove good performance for combinatorial algo-

rithms. Max-flow Min-cut is a very nice example of primal dual method. we would

like to interpret its primal, then obtain its dual, interpret the dual and then prove the

max-flow min-cut theorem using the strong duality.

2

Introduction

In this thesis, I would like to focus on some topics in combinatorial optimization. I

have studied about the primal dual algorithm, strong duality, weak duality, max-flow

min-cut problem, ellipsoid algorithm etc.. I have tried my best to describe these topics

in a good manner.

In the first chapter we will talk about the complexity of matrix multiplication

and inversion. The time complexity of matrix multiplication and inversion is equal.

Usually, by the ordinary method we require 2n3 − n2 = O(n3) scalar operations to

compute the matrix product C = AB (n3 multiplications and n3−n2 additions). Then

V. Strassen showed in his paper [1] that we can compute the matrix multiplication of

two n× n in O(nlog27) ≈ n2.807 time which is less than O(n3). Currently the best one

is due to Coppersmith and Winograd and it works in O(n2.376).[2]

In the second chapter ellipsoid algorithm is described. It is the first polynomial

time algorithm on the feasibility problem of a system of linear inequalities. Leonid

Khachyan showed that LP is solvable in polynomial time by a method of shrinking

ellipsoids. This method is a modification of an algorithm introduced by Shor for

non-linear optimization problems. Ellipsoid method reduces one combinatorial op-

timization problem to the other which is called the separation problem. Since this

is the first polynomial time algorithm to solve the linear programming problems in

worst case and its theoretical base is very strong, makes this method very important

in combinatorial optimization.

Third chapter is on the primal dual algorithms. Primal dual method is a very

important concept in combinatorial optimization. This method is very important as

a means of devising algorithms for problems in combinatorial optimization. Some

problems are easy to solve in their dual form in comparison to their primal (original)

form. Weak duality gives an upper bound on the primal solution. And by strong

3

duality we can say that if there is an optimal solution for primal then so for the dual

and vice versa, and these optimal solutions for the primal and dual would be equal

and unique. Strong duality is very main concept in combinatorial optimization by

which we can solve many optimization problems.

Chapter 4 is an application of strong duality. Max-flow min-cut problem is a very

good example of primal dual method which can be solved by applying the strong

duality on it. Max-flow min-cut theorem is a special case of strong duality.

4

Chapter 1

Computational complexity of

Matrix Multiplication and

Inversion

In this chapter we discuss about the computational complexity of matrix multiplica-

tion and inversion. Matrix multiplication and inversion are considered as equally hard

problems. They are equally hard in the sense that if we can multiply two n×n matri-

ces in Mult(n) time, then we can invert a non-singular n× n matrix in O(Mult(n))

time and similarly if we can invert a non-singular n× n matrix in I(n) time then we

can multiply two n× n matrices in time O(I(n)). At the end we briefly discuss LUP

decomposition of a matrix.

1.1 Introduction

To understand this we talk about the procedure to compute the running time of ma-

trix multiplication, addition, subtraction, division, inversion etc. Running time of an

algorithm on a particular input is proportional the number of primitive operations

executed. For simplicity we shall assume that the time taken to execute a particular

operation is a fixed constant.

So, let A be a n ×m matrix, B be a m × n matrix and C be their product. To get

an element of product matrix(C) we have to multiply a row of matrix A to a column

of matrix B that means that for any i,j, to compute the entry Cij of C one needs m

multiplications and some additions. Since there are n2 entries in C, so the time taken

to compute matrix C will be O(mn2). Hence to obtain the matrix C ,the computa-

5

tional cost is O(mn2).

So, for special case where m = n ,the computational cost of multiplication of two

matrix is O(n3).

Similarly for addition of two n × n matrices, we will have to perform n2 addition

operations. So addition of two matrices takes time O(n2).

These are the estimated worst case running times of standard algorithms for ma-

trix multiplications and additions. We will wonder if we get an efficient algorithm

which can compute the matrix multiplication in less than O(n3) time. In the late

1960s, Strassen discovered an algorithm for multiplying 2 × 2 matrices using only 7

essential multiplications instead of 8. He then used this algorithm recursively to de-

rive an algorithm for multiplying n× n matrices with O(nlog27) = O(n2.808).

Strassen’s matrix multiplication algorithm :[3] Let A and B be n× n matrices and

C be their product, where n is a power of 2. Then we write their product as −

[
a11 a12

a21 a22

][
b11 b12

b21 b22

]
=

[
c11 c12

c21 c22.

]
(1.1)

To compute this product, first compute the following products -

m1 = (a12 − a22)(b21 + b22),

m2 = (a11 + a22)(b11 + b22),

m3 = (a11 − a21)(b11 + b12),

m4 = (a11 + a12)b22,

m5 = a11(b12 − b22),
m6 = a22)(b21 − b11),
m7 = (a21 + a22)b11.

Then compute the cij’s, using the formulas

c11 = m1 +m2 −m4 +m6,

c12 = m4 +m5,

cij = m6 +m7,

cij = m2 −m3 +m5 −m7.

Hence, Strassen had given this algorithm using only 7 multiplication and 18 addi-

tions/subtractions.

6

1.2 Asymptotic notation

We shall use three notations to describe the asymptotic running time. These are [4]:-

1. Θ notation :- This gives us an upper bound and a lower bound for the running

time, which shows the worst case and best case running time. For a given func-

tion g(n), we denote by Θ(g(n)) the set of functions,

Θ(g(n)) = {f(n) : there exist positive constants c1, c2 and n0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}.

2. O notation :- This gives us an upper bound for running time which implies that

the algorithm would not take more than this time. We denote by O(g(n)) the

set of functions,

O(g(n)) = {f(n) : there exist positive constants c and n0 such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.

3. Ω notation :- This gives us lower bound for the running time of an algorithm.

We denote by Ω(g(n)) the set of functions,

Ω(g(n)) = {f(n) : there exist positive constants c and n0 such that

0 ≤ cg(n) ≤ f(n) for all n ≥ n0}.

1.3 Matrix multiplication is no harder than inver-

sion

Theorem 1.3.1. : If we can invert an n×n matrix in time I(n), where I(n) = Ω(n2)

and I(n) satisfies the regularity condition I(3n) = O(I(n)), then we can multiply two

n× n matrices in time O(I(n)).

Proof. : Here we want to compute the matrix C which is the product of the two n×n
matrices A and B. Let D be a 3n× 3n matrix defined by,

D =

I(n) A 0

0 I(n) B

0 0 I(n)

then we can find the inverse of D which is given by,

7

D−1 =

I(n) −A AB

0 I(n) −B
0 0 I(n)

and hence, we can compute the product AB by taking the upper right n× n sub-

matrix of D−1. Here we take the matrix D as triangular because it is easy to handle

the triangular matrices while doing a matrix multiplication or finding the inverse of

a matrix. We can construct matrix D in Θ(n2) time (we have to put 3n × 3n =

9n2 elements in the matrix and for that we have to perform n2 operations), which

is O(I(n)) because we assume that I(n) = Ω(n2), and we can invert D in O(I(3n))

= O(I(n)) time, by the regularity condition on I(n). We thus have Mult(n) =

O(I(n))[4].

In the Proof of the next theorem we use symmetric positive definite matrices, so

first we shall define the symmetric positive definite matrices and their properties.

1.4 Symmetric and Positive definite matrix

Matrix ’A’ is called symmetric if A = AT .

Matrix ’A’ is called real positive definite if and only if for all x 6= 0, xTAx > 0.

These matrices are invertible , and LU decomposition can be performed on them

without worrying about dividing by zero.

1.4.1 Properties of Symmetric and Positive definite matrix

1. Any positive definite matrix is nonsingular.

2. If A is symmetric positive definite matrix, then every leading sub-matrix of A

is symmetric and positive definite.

We will use Schur complement lemma in this proof. So, we are stating the lemma

here (without giving the proof).

8

1.4.2 Schur complement

Let A be a matrix, given by

A =

[
E F

G H

]
then S = H −GE−1F is called the Schur complement of A with respect to E.

Lemma 1.4.1. If A is a symmetric positive definite matrix and Ak is a leading k× k
sub-matrix of A, then the Schur complement S of A with respect to Ak is symmetric

and positive definite.

1.5 Inversion is no harder than multiplication

Theorem 1.5.1. : If we can multiply two n×n matrices in time Mult(n), and Mult(n)

= Ω(n2) and Mult(n) satisfies two regularity conditions, which are as follows : −

1. Mult(n+ k) = O(Mult(n)) for 0 ≤ k ≤ n

2. Mult(n/2) ≤ cMult(n) for some constant c < 1/2.

Then we can compute the inverse of any real non-singular n × n matrix in time

O(Mult(n)).

Proof. : − we are going to prove this theorem only for real matrices. If n is not a

power of 2, then since there exists a power of 2, say 2k, where k is a natural number,

between n and 2n, we may embed the given matrix into one of size 2k. By the first

regularity condition we can say that this embedding only augments the running time

by only a constant factor. Hence, without loss of generality, we may suppose that n

is a power of 2. Thus we have to prove our claim only for the case, when n is a power

of 2. Now to prove this, we have to consider two cases-

1. When the n× n matrix A is symmetric and positive definite, or

2. when the n× n matrix A is invertible but not symmetric and positive definite.

So,

Case-1 :When the n× n matrix A is symmetric and positive definite:

9

Partition A and A−1 into four n/2× n/2 sub-matrices,

A =

[
B CT

C D

]
and

A−1 =

[
R T

U V

]
S = D − CB−1CT is the Schur complement of A with respect to B we can

write A−1 as-

A−1 =

[
B−1 +B−1CTS−1CB−1 −B−1CTS−1

−S−1CB−1 S−1

]
(1.2)

and because A is symmetric and positive definite, B and S are also symmetric and

positive definite matrices and so by the definition of a symmetric and positive definite

matrix B and S are invertible ,so B−1 and S−1 exists and are symmetric as well. So,

(B−1)T = B−1 and (S−1)T = S−1

Now , we can compute the elements of A−1 as follows-

1. Compute B−1 from B.

2. Compute the product W = CB−1 and then compute its transpose W T = B−1CT .

3. Compute the product X = WCT = CB−1CT and then compute the Schur com-

plement of A, S = D - X = D - CB−1CT .

4. Now compute S−1 and set V to S−1.

5. Compute the product Y = S−1W and then compute its transpose Y T = W TS−1,

set T to -Y T and U to -Y.

6. Compute the product Z = W TY and set R to B−1 + Z.

Hence, the total time to compute the inverse of an n× n matrix A is −

I(n) ≤ 2I(n/2) + 4Mult(n/2) +O(n2)

where, 2I(n/2) is the cost of inverting two n/2× n/2 sub-matrices, 4Mult(n/2) is the

cost of multiplying four n/2×n/2 sub-matrices and O(n2) is the cost of performing a

constant number of additions, subtractions and transpose on n/2×n/2 sub-matrices.

10

By the second regularity condition of Mult(n),

I(n) = 2I(n/2) + Θ(Mult(n)) = O(Mult(n))

Hence we are done with case-1.

Case-2 :When the n × n matrix A is invertible but not symmetric and

positive definite.

Because A is non-singular, the matrix ATA is symmetric and positive definite (by

the properties of non-singular matrix). So, instead of inverting A, we will invert the

matrix ATA. Again we are assuming that n is a exact power of 2. We can write A−1

as-

A−1 = (ATA)−1AT (1.3)

since,

((ATA)−1AT)A = (ATA)−1(ATA) = In (1.4)

and we know that every matrix has a unique inverse, therefore we compute the

A−1 using following steps-

1. Multiply AT by A to get ATA.

2. Compute the inverse of ATA using the above divide and conquer algorithm.

3. Multiply the result by AT .

We can see that each of these three steps takes O(Mult(n)) time, and hence we

can invert any non-singular real matrix in O(Mult(n)) time.

Thus we are done with case-2 also.

Proof of equation(3) [3]:-

A−1 =

[
B−1 +B−1CTS−1CB−1 −B−1CTS−1

−S−1CB−1 S−1

]

We can write A as -

11

A =

[
B CT

C D

]
=

[
I 0

CB−1 I

][
B 0

0 S

][
I B−1CT

0 I

]
(1.5)

where S is the Schur complement of A with respect to B.

Hence,

A−1 =

[
I −B−1CT

0 I

][
B−1 0

0 S−1

][
I 0

−CB−1 I

]
, (1.6)

A−1 =

[
B−1 +B−1CTS−1CB−1 −B−1CTS−1

−S−1CB−1 S−1

]
. �

1.6 Solving systems of linear equations

In this we discuss the LUP-decomposition method to solve the systems of the linear

equations. We call the three matrices L,U and P, the LUP-decomposition of a matrix

A, such that

PA = LU (1.7)

where, L represents a unit lower triangular matrix, U represents an upper triangular

matrix and P represents a permutation matrix.

We use this method because one can solve the linear systems easily when they are

triangular. Any n×m matrix A, over any field can be written as a product, LUP, of

three matrices, where L, U and P are as mentioned above.

Now we talk about how we use these triangular matrices to solve the systems of linear

equations. Once we have the LUP decomposition of a matrix A, we can solve the

equation Ax = b, where A is an n× n matrix and x, b are n-vectors, by solving only

triangular linear systems, as follows [4]: −

1. We multiply both sides of equation Ax = b by permutation matrix P, which

yields

PAx = Pb (1.8)

12

2. By equation (1.7),

LUx = Pb (1.9)

This equation can be solved by solving two triangular linear systems.

3. Define Ux = y, where x is the desired solution vector. Then equation (1.9)

becomes,

Ly = Pb (1.10)

We solve this lower triangular system firstly for the unknown vector y by the

method called ”forward substitution”.

4. We then solve the upper triangular system

Ux = y (1.11)

for the unknown vector x by the method called “back substitution”.

Since the permutation matrix P is invertible, multiplying both sides of equation (1.7)

by P−1 gives P−1PA = P−1LU , so that

A = P−1LU (1.12)

Hence, the vector x is the solution to Ax = b.

Ax = P−1LUx (by equation (1.12))

= P−1Ly (by equation (1.11))

= P−1Pb (by equation (1.10))

= b

1.6.1 Computing an LU decomposition

This is the special case of LUP decomposition where P is absent or P = In (identity

matrix). So, by eq. (1.7)

A = LU (1.13)

Therefore, the two matrices L and U are called the LU decomposition of the matrix

A. Rest of the procedure is same to find the unknown vector x. We use Gaussian elim-

ination method to produce the LU decomposition. In this method we subtract the

first equation from the second equation to remove the variables of the first equation

from the second equation. Similarly, we subtract the second equation from the third

13

equation to remove the variables of the second equation. We repeat this procedure

until the remaining system is in an upper triangular form. This upper triangular ma-

trix is the matrix U and the matrix L is comprised of the row multipliers that cause

variables to be eliminated.

Now suppose we have an n× n matrix A, we divide this matrix into four parts to

compute its LU decomposition.[4]

A =

[
a11 wT

v A
′

]
where, v is a column (n-1) vector, wT is a row (n-1) vector, and A

′
is an (n− 1)×

(n− 1) matrix. We can factor A as

A =

[
a11 wT

v A
′

]
=

[
1 0

v/a11 In−1

][
a11 wT

0 A
′ − vwT/a11

]
(1.14)

The (n− 1)× (n− 1) matrix A
′ − vwT/a11 is the schur complement of A with

respect to a11. Because schur complement is non-singular, so we can now recursively

find an LU decomposition for it. Let us say that

A
′ − vwT/a11 = L

′
U
′

where L
′

is unit lower triangular matrix and U
′

= upper triangular matrix. Then,

using matrix algebra we have

A =

[
1 0

v/a11 In−1

][
a11 wT

0 A
′ − vwT/a11

]
(1.15)

=

[
1 0

v/a11 In−1

][
a11 wT

0 L
′
U ′

]
(1.16)

=

[
1 0

v/a11 L
′

][
a11 wT

0 U
′

]
(1.17)

= LU (1.18)

thereby rendering our LU decomposition. Since L
′

is a unit lower triangular matrix,

so is L, and because U
′
is upper triangular, so is U.

14

”Here a11 cannot be zero otherwise this method doesn’t work. Similarly, the upper

left most entry of the schur complement A
′ − vwT/a11 is also cannot be zero, since

we divide by it in the next step of the recursion. The elements by which we divide

during LU decomposition are called pivots, and they occupy the diagonal elements

of the matrix U. The reason we include a permutation matrix P during LUP decom-

position is that it allows us to avoid dividing by zero. When we use permutations

to avoid division by zero (or by small numbers, which would contribute to numerical

instability), we are pivoting.”[4]

1.6.2 Computing an LUP-decomposition

The procedure to compute the LUP decomposition of a matrix is almost same as LU

decomposition. The only difference is that in LU decomposition, in solving a system

of linear equation Ax = b, we pivot on off diagonal elements of A to avoid dividing

by zero but in LUP decomposition, we also use to avoid dividing by a small number,

even if A is nonsingular, because numerical stabilities can result. We therefore pivot

on a large value. To do this, we interchange the rows with the rows whose first

element has largest absolute value in each step. Rest of the procedure is same as the

LU-decomposition

15

Chapter 2

Ellipsoid Algorithm

The ellipsoid algorithm is the first polynomial time algorithm discovered for linear

programming. It was proposed by Russian mathematicians D. B. Yudin and A. S.

Nemirovskii and then clarified by N. Z. Shor in 1977 for general convex optimization

problems and applied to linear programming by Khachyan in 1979. Khachyan modi-

fied the method to obtain a polynomial time algorithm for the feasibility problem for

a system of linear inequalities[5]. He proved that LP is solvable in polynomial time

by a method of shrinking ellipsoids.

The problem being considered by the ellipsoid algorithm is[6] −
“Given a bounded convex set P ∈ Rn, find x ∈ P”.

The input for the ellipsoid algorithm is a convex set and the output is a point from

the set, provided it is nonempty (we return empty if the set is empty). It is possible

to determine feasibility or infeasibility of a system of linear inequalities in polynomial

time with this algorithm. Formally, the ellipsoid algorithm checks if a given convex

set P ⊆ Rn is empty.

To understand the ellipsoid method, we need some definitions that will be useful

throughout the chapter −

2.1 Definitions

• Linear Programming : − It can be described by the following (Primal) opti-

mization problem

16

maximize cTx

subject to Ax ≤ b

and x ≥ 0

In words we can describe this as ”The process of maximizing a linear objective

function, subject to a finite number of linear equality and inequality constraints”.

• Convex Set : − A convex set[7] P ⊆ Rn is a set of points such that ∀x, y ∈ P
λx + (1 − λ)y ∈ P , where λ ∈ [0, 1]. A convex body is a closed and bounded

convex set. The whole space Rn is trivially an infinite convex set.

• Ellipsoid : − An ellipsoid E(a,A) is defined as

E(a,A) = {x ∈ Rn : (x− a)TA−1(x− a) ≤ 1}

where ’a’ is a center and ’A’ is a positive definite matrix.

-one important fact about a positive definite matrix A, is that there exists B,

such that A = BTB and hence A−1 = B−1(B−1)T and xTAx > 0 for all nonzero

x ∈ Rn.

• Ball : − A (closed) ball B(a,r) (in Rn) centered at a ∈ Rn with radius r is the

set

B(a, r) = {x ∈ Rn : xTx ≤ r2}.

The set B(0,1) is called the unit ball. The unit sphere is the set

Sn = {x ∈ Rn : xTx ≤ 1}.

• Hyperplane : − A hyperplane is defined to be the set of points satisfying the

linear equation

ax = b

where a, x, b ∈ Rn. A hyperplane of an n-dimensional space, is a flat subset with

dimension n-1. Hyperplane separates the space into two half spaces.

• Affine Transformation : − The transformation T : Rn −→ Rn defined as

T (x) = t+Q.x

17

for each x ∈ Rn, is called an affine transformation, where Q is an ′n × n′

nonsingular matrix and t is an n vector.

∗ If T is an affine transformation, then T (Sn) is called an ellipsoid. Alternatively

T (Sn) = {y ∈ Rn : (y − t)TB−1(y − t) ≤ 1}

where B is a positive definite matrix such that B = QQT and xTBx > 0 for all

nonzero x ∈ Rn. So, we can say that ellipsoids are just the affine transformations

of unit spheres.

Lemma 2.1.1. Ellipsoids are the affine transformations of unit spheres.

Proof. E = T (Sn)

= {T (x) | x ∈ Sn}
= {t+Q.x | ‖x‖ ≤ 1}
= {y | ‖Q−1(y − t)‖ ≤ 1}
= {y | (y − t)T (Q−1)TQ−1(y − t) ≤ 1}
= {y | (y − t)TB−1(y − t) ≤ 1}, where B = QQT

Lemma 2.1.2. If S ⊆ S
′
, then T (S) ⊆ T (S

′
).[8]

Lemma 2.1.3. Suppose that a subset S of Rn has volume V. Then T(S) has volume

V.|det(Q)|.[8]

Before going further we should know that in this algorithm why we use only ellip-

soids as the fundamental geometric object of our investigation. Ellipsoids comprise

the simplest class of n-dimensional convex sets which is closed under non-singular

affine maps. if we replace ellipsoid by some other geometric object then this makes

the formulas and the analysis of the algorithm substantially more unpleasant than

those for the ellipsoids.

2.2 The Basic Ellipsoid Algorithm

It is an iterative method for minimizing convex function. This method finds an optimal

solution of a linear optimization problem, in a finite number of steps. This method

generates a sequence of ellipsoids whose volume uniformly decreases at every step,

thus enclosing a minimizer of a convex function.

18

1. The idea behind the ellipsoid algorithm is that we start with an initial big

ellipsoid that ensures P is contained in it, i.e. the solution set of Ax ≤ b.

2. In each step, the center of the ellipsoid is a candidate for a feasible point of the

problem. We then check, if the center of the ellipsoid is in P. If it is, we are

done, we found a point in P. If the center ak of Ek is not in P, we get a violated

inequality Ax > b, satisfied by ak, not satisfied by P (if P is nonempty).

3. Because of the inequality violation we construct another ellipsoid of smaller

volume which has a different center. Let Ek+1 be the minimum volume ellipsoid

containing Ek ∩ {x : cTx ≤ cTak}, where cTx ≤ cTak be the half space through

ak that contains the convex set P. Apparently each of the constraints in a linear

program defines half spaces (which are parts of Rn bounded on one side by

hyperplanes) and the solution lies in the intersection of these half spaces.[7]

4. We repeat the procedure until either a feasible point is found or a maximum

number of iterations is reached. This means that after enough iterations either

a solution must be found or it is certain that the ellipsoid has become too

small to contain a solution through successive shrinkings and we report that the

inequality set has no feasible point.

Thus we can observe that in each step of the ellipsoid algorithm the new ellipsoid

shrinks in volume. This implies that if the convex set P has positive volume, we will

finally find a point in P. So, now we are in a situation to deal with the case when

volume of the convex set P is zero i.e. when P has just a single point. On the other

hand it is also very important to discuss when we can stop and be ensure that either

we have a point in P or we certain that P is empty[6].

2.3 Basic Ellipsoid Iterations

Let E0,E1,E2,......,Ej,..... be the sequence of ellipsoids generated by the ellipsoid

algorithm. Each of the ellipsoid contains a point which satisfies the constraint equation

ATx ≤ b, if one exists. Let Ej be defined as follows[9, 8] :

Ej = {x ∈ Rn : (x− tj)TBj
−1(x− tj) ≤ 1}

19

. Then we can obtain the variables for the next iteration by using the following

formulas.

tj+1 = tj −
ρ.Bj.a√
aTBja

,

Bj+1 = η(Bj −
γ(Bja)(Bja)T

aTBja
)

where, ρ =
1

n+ 1
, γ =

2

n+ 1
and η =

n2

n2 − 1
. ρ is defined as the step parameter,

while γ and η are the dilation and expansion parameters respectively.

Lemma 2.3.1. Let a ∈ Rn be a vector of length ‖a‖. There is a rotation R such that

[8]

Ra = (‖a‖,0,.....,0).

If P ⊆ Rn is a convex set and x ∈ Rn is a point, then one of the following

holds[7] −

1. x ∈ P

2. There exists a hyperplane that separates x from P.

This motivates the following definition of a polynomial time separating oracle.

2.4 Separation Oracle

To make the ellipsoid method executable, we need to be able to decide, given x ∈ Rn

whether x ∈ P or find a inequality. To do this, we require a separation oracle for P.

A polynomial time separating oracle for a convex set P is a procedure which given x

either decide x is a feasible point for LP i.e. x ∈ P or returns a hyperplane separating

x from P .

2.5 Correctness of the algorithm

The correctness of the ellipsoid algorithm follows from the next theorem.[8]

Theorem 2.5.1. Let Bj be a positive definite matrix. Let tj ∈ Rn and let ’a’ be any

nonzero n-vector. Let Bj+1 and tj+1 be as in step-3 (after jth iteration) of the ellipsoid

algorithm. Then the following holds : −[8]

20

1. Bj+1 is positive definite (or equivalently Ej+1 = {x ∈ Rn : (x−tj+1)
TBj+1

−1(x−
tj+1) ≤ 1} is an ellipsoid.)

2. The semiellipsoid 1
2
Ej[a] = {x ∈ Rn : (x− tj)TBj

−1(x− tj) ≤ 1, aT (x− tj) ≤ 0}
is a subset of Ej+1.

3. The volume of Ej and Ej+1 satisfy

vol(Ej+1)

vol(Ej)
< e

−1
2(n+1)

To prove this theorem we need two auxiliary lemmas.

Lemma 2.5.2. Consider the sphere Sn and the set E = {x ∈ Rn : (x−t)′B−1(x−t) ≤
1}, where t = (−1/(n+1), 0,, 0)

′
and B = diag(n2/(n+1)2, n2/(n2−1),, n2/(n2−

1)).[8]

1. B is positive definite (and hence E is an ellipsoid).

2. The hemisphere 1
2
Sn = {x ∈ Rn : x

′
x ≤ 1 and x1 ≤ 0} is a subset of E.

3. The volumes of Sn and E satisfy

vol(Ej+1)

vol(Sn)
< e

−1
2(n+1)

Proof. 1. We can write B as, B = QQT ,where[8]

Q = diag

(
n

(n+ 1)
), c,,

n√
n2 − 1

)
2. Suppose that x ∈ 1

2
Sn. Then

(x− t)′B−1(x− t) =
(n+ 1)2

n2

(
x1 +

1

(n+ 1)

)2

+
n2 − 1

n2

∑n
i=2 xi

2

=
n2 − 1

n2
x
′
x+

2n+ 2

n2
x1

2 +
2n+ 2

n2
x1 +

1

n2

≤ 1 +
2n+ 2

n2
x1

2 + x1 (because x ∈ Sn)

≤ 1 (because x ∈ 1

2
Sn)

21

3. By lemma (2.1.3), where Q is as in part (1).

Since Q is diagonal, det Q =
n

n+ 1

(
n2

n2 − 1

)(n−1)/2

.

Since ∀x > 0, 1 + x ≤ ex, 1− x ≤ e−x

so,
n

n+ 1
= 1− 1

n+ 1
≤ e−1/(n+1)

⇒ n2

n2 − 1
= 1 +

1

n2 − 1
≤ e1/(n

2−1).

Hence, detQ < exp

(
n− 1

2(n2 − 1)
− 1

n+ 1

)
< 2−1/2(n+1)

Lemma 2.5.3. Let Bj be a positive definite matrix, tj ∈ Rn, and let ’a’ be any nonzero

n-vector. Let Bj+1 and tj+1 be obtained as in step-3 of the ellipsoid algorithm. Let
1
2
Sn and E be as in previous lemma. Then there exist an affine transformation T such

that[8]

1. T (Sn) = {x ∈ Rn : (x− tj)
′
Bj
−1(x− tj) ≤ 1};

2. T (E) = {x ∈ Rn : (x− tj+1)
′
Bj+1

−1(x− tj+1) ≤ 1};

3. T (1
2
Sn) = {x ∈ Rn : (x− tj)

′
Bj
−1(x− tj) ≤ 1, a

′
(x− tj) ≤ 0}

Proof. By hypothesis, Bj is positive definite and hence Bj = QQT for some nonsin-

gular matrix Q. Also by lemma (2.3.1) there exists a rotation RT such that RTQTa

= (‖QTa‖,0,.....,0)’. The transformation T is defined thus T (x) = tj +QRx. Now, we

shall check the three conditions.[8]

1. T (Sn) = {T (x) : x
′
x ≤ 1}

= {x : (T−1(x))
′
T−1(x) ≤ 1}

= {x : (x− tj)
′
(Q−1)TRRTQ−1(x− tj) ≤ 1}

= {x : (x− tj)
′
Bj
−1(x− tj) ≤ 1}

2. First notice that

Bj+1 =
n2

n2 − 1

[
Bj −

2

n+ 1

Bjaa
′
Bj

T

a′Bja

]
22

=
n2

n2 − 1

[
Bj −

2

n+ 1

QRRTQTaa
′
QRRTQT

a′QRRTQTa

]

=
n2

n2 − 1

[
Bj −

2

n+ 1

QR(‖QTa‖2, 0,, 0)RTQT

‖QTa‖2

]
(Because RTQTa = (‖QTa‖, 0,, 0)

′
)

=
n2

n2 − 1

[
Bj −

2

n+ 1
QRdiag(1, 0,, 0)RTQT

]

=
n2

n2 − 1
QR diag

(
n− 1

n+ 1
, 1,, 1

)
RTQT

= QRBRTQT

where B is as in lemma (2.5.2). Also,

(x− tj+1) =

(
x− tj +

QRRTQTa

(n+ 1)
√
a′QRRTQTa

)

=

(
x− tj +

QR(‖QTa‖, 0,, 0)
′

(n+ 1)‖QTa‖

)
= QR(T−1(x)− t)

Therefore,

T (E) = {T (x) : (x− t)′B−1(x− t) ≤ 1}
= {x : (T−1(x)− t)′B−1(T−1(x)− t) ≤ 1}
= {x : (x− tj+1)

′
(Q−1)TRB−1RTQ−1(x− tj+1) ≤ 1}

= {x : (x− tj+1)
′
Bj+1

−1(x− tj+1) ≤ 1}

3. The condition in (3) now follows easily from the condition in (1) and lemma

(2.1.2) by observing that

T ({x ∈ Rn : x1 ≤ 0}) = {x ∈ Rn : a
′
(x− tj ≤ 0)}.

Proof of theorem (2.5.1)[8]

Proof. 1. By (2) of lemma (2.5.3) T (E) = Ej+1, also by (1) of lemma (2.5.2) E =

T
′
(Sn) for some affine transformation T

′
. Hence Ej+1 = T.T

′
(Sn) is an ellipsoid

(the comparison of two affine transformations is also an affine transformation).

23

2. Ej[a] = T

(
1

2
Sn

)
by (3) of lemma (2.5.3) and

1

2
Sn ⊆ E. Hence Ej[a] ⊆ T (E) =

Ej+1.

3. By lemma (2.1.3) and by (3) of lemma (2.5.2)

V ol(Ej+1)

V ol(Ej)
=

V ol(T (E))

V ol(T (Sn))
=

det(QR)V ol(E)

det(QR)V ol(Sn)
< 2−1/2(n+1)

2.6 Time complexity

The time complexity of the ellipsoid algorithm depends on the time taken by the

separation oracle, time required to find Ej+1 and the ratio Vu
Vl

, where Vu is the upper

bound on the volume of the convex set P and Vl is the lower bound on Vol(P).

For linear programming, time taken by the separation oracle is O(mn) as all we

have to do is check whether the convex set P satisfies all the constraints and returns

a hyperplane (if it exists).

Lemma 2.6.1. The minimum volume ellipsoid surrounding a half ellipsoid can be

calculated in polynomial time and

V ol(Ej+1) ≤ (1− 1

2n
)V ol(Ei)

.

If the while loop iterates t times , then (1− 1
2n

)t ≤ Vu
Vl
⇒ t = O(nlog(Vu

Vl
)). Suppose

we need L bits to represent our input, we can choose[7] Vl = 2−c1nL and Vu = 2c2nL

for some constants c1, c2. This gives us the time t = O(n2L). Hence, the ellipsoid

algorithm terminates after O(n2L) iterations where each iteration taking polynomial

time.

The ellipsoid algorithm is theoretically very important and valuable tool to

”analyzing the complexity of optimization problems” but in practice, it is not very

useful. This method is very slow, compared to the other methods like simplex method,

interior point method, karmakars method etc. But since it was the first polynomial

time algorithm and its theoretical base is very strong, makes this method incredibly

useful.

24

Chapter 3

Primal Dual Algorithm

The Primal dual method is a standard tool to understand the combinatorial opti-

mization problems that can be formulated as linear programmes and to design the

algorithms. This method was proposed by Dantzig, Ford and Fulkerson.

3.1 Introduction:

Linear programming (LP or linear optimization) is a technique for find out a way

to achieve the best outcome (such as maximum profit or lowest cost) in a given

mathematical model for some list of requirements represented as linear relationships.

More formally, it is a technique for the optimization of a linear objective function,

subject to linear equality and linear inequality constraints.

A generic LP can be expressed as:

maximize cTx

subject to Ax ≤ b

and x ≥ 0

where, x is a vector of variables, c and b are vectors of coefficients, and A is a matrix

of coefficients.

The expression cTx is called the objective function which we have to maximize or

minimize. The constraints are represented by the inequalities Ax ≤ b and x ≥ 0, over

which the objective function is to be optimized.

25

3.2 Duality

We may view the optimization problems in either of two aspects - the Primal problem

or the dual problem .

Every primal problem can be converted into a dual problem. The solution of the

dual problem provides an upper bound to the optimal value of the primal problem.

However, in general the optimal values of the primal and dual problems need not be

equal.

In matrix form, primal problem can be expressed as -

maximize cTx

subject to Ax ≤ b

and x ≥ 0

and the corresponding symmetric dual problem can be expressed as -

minimize bTy

subject to ATy ≥ c

and y ≥ 0

3.2.1 Relationships between the primal and the dual prob-

lems

[10]

1. Dual of a dual problem is the original primal problem.

Proof. : Let the primal problem is

maximize cTx

subject to Ax ≤ b

and x ≥ 0

and its dual is

minimize yT b

subject to ATy ≥ c

and y ≥ 0

26

We can rewrite the dual as a maximization problem

maximize −yT b
subject to −ATy ≤ −c

and y ≥ 0

take its dual-

minimize −cT z
subject to −(AT)T z ≥ −b

and z ≥ 0

2. Every feasible solution for a primal problem gives a bound on the optimal value

of the objective function of its dual.

3. Primal problem has an optimal solution if and only if its dual problem has an

optimal solution.

Now, to understand the primal and the dual LP problems, we first take an example

called Production problem as our primal problem and then we will go through its

dual, called Pricing problem.

3.3 Economic interpretation of dual problem

3.3.1 Production problem

Suppose a firm produces chairs and tables. We know that a generic Primal LP can

be expressed as:

maximize cTx

subject to Ax ≤ b

and x ≥ 0

27

Let’s assume that

c = Per unit price of a chair or a table

b = Total amount of resource (woods or metal)

x = Production of chairs or tables

aij = Units of resource i used in making per unit of product j, and

rj $ = Per unit profit for product j

j ∈ {C(chair), T (table)}
i ∈ {w(wood),m(metal)}

We define the matrices as-

A =

[
wC wT

mC mT

]
, x =

[
C

T

]
, b =

[
bw

bm

]
, c =

[
cC

cT

]
(3.1)

where,

wC = wood in chair, mC = metal in chair, wT = wood in table, mT = metal in table,

bw = total amount of woods, bm = total amount of metal, cC = price of a chair, cT =

price of a table.

Therefore, by the inequality

Ax ≤ b

[
wC wT

mC mT

][
C

T

]
≤

[
bw

bm

]
(3.2)

Production problem : How much of tables or chairs should be produce that yields

the maximum profit ? or in other words determine an allocation of resources to

products that yields the maximum profit.

3.3.2 Pricing problem

Suppose there is an another firm who wants to buy all the resources which is in

our case, woods and metal. Should the first firm sell all its resources or in which

proportion should the first firm sell its resources or should the firm continue to be

28

with making chairs and tables ? All depends on by which way the firm can get the

more profit.

On the other hand the second firm would like to buy all the resources at the minimum

price so that they could sell it in market at some higher price and can get more profit.

Suppose yi denotes the per unit price for resource i offered by the buyer then when is

such price acceptable to the first firm ?

If the first firm accept the prices yi, then all the resource will be sold off for
∑

i biyi

dollar.

Hence, the dual of production problem which is the point of view of the buyer -

minimum yT b

subject to ATy ≥ c

and y ≥ 0

Pricing problem : Find equilibrium price at which the deal can be closed.

yi, is called the shadow price for the resource i.

Objective imposed by buyer’s view point : Minimize total price paid

p∗ = min
∑
i

biyi.

Constraints imposed by seller’s present performance : For each product j,

total price paid for resources used per unit ≥ unit profit for product j:

wCyw +mCym ≥ cC ,

wTyw +mTym ≥ cT .

3.3.3 For 1× 2 matrices(one resource and two products)

Suppose the firm produces tables and chairs and use only woods as resource. Then

our primal problem would be :

maximize PtT + PcC

subject to WtT +WcC ≤ W

and T,C ≥ 0

where,

T = total number of tables, C = total number of chairs, Pt = price per unit of table,

29

Pc = price per unit of chair, W = total amount of wood, Wt = wood used in per unit

of table, Wc = wood used in per unit of chair.

Then the dual of this primal problem according to the pricing problem would be :

minimize WPW

subject to PW ≥ {Pc/Wc, Pt/Wt}
and PW ≥ 0

where PW is the per unit price of the wood.

Dual problem says that the suppose an another firm want to buy all the resources

which is, in our case, wood. Then the buyer would like to buy all the resources at

the minimum price. From the point of view of the seller, the selling price of wood,

used in per chair or table should be greater or equal to the per unit price of a chair

or table. So,

WcPW ≥ Pc (3.3)

or

WtPW ≥ Pt (3.4)

then

PW ≥ Pc/Wc

and

PW ≥ Pt/Wt

Suppose the seller gets more profit in making chairs, but because of customers he has

to make tables also. So, when he will sell his resource he would like to maximize his

profit. So,

PW ≥ max(Pc/Wc, Pt/Wt) (3.5)

Therefore, when he will make only chairs

PW = Pc/Wc ⇒ WcPW = Pc

So, max PcC = min WPW . Hence it is satisfying the complementary slackness and it

is also satisfying the strong duality.

30

3.3.4 For 2× 1 matrices (2 resource and 1 product)

Suppose a shop of sweets makes mishty dahi. Milk and sugar are used as resources to

make the mishty dahi. So our primal problem is −

maximize PdQ = PdS/ds = PdM/dm

subject to dsQ ≤ S

dmQ ≤M

and Q ≥ 0

where,

ds = amount of sugar used in per unit of mishty dahi, dm = milk used in per unit

of mishty dahi, Pd = price per unit of mishty dahi, S = total amount of sugar, M =

total quantity of milk and Q = min{S/ds, M/dm} = maximum no. of times, we can

make mishty dahi.

The dual of this problem would be -

minimize OsS +OmM

subject to Osds +Omdm ≥ Pd

and Os, Om ≥ 0

where,

Os = per unit price of sugar, Om = per unit price of milk.

Then, using the equation of constraints-

Os ≥ (Pd −Omdm)/ds (3.6)

⇒,

min(S(Pd −Omdm)/ds +OmM) = SPd/ds +Omdm(M/dm − S/ds) (3.7)

If the amount of sugar is less than the milk means that after making maximum

units of mishty dahi, if we do not have the sugar in an amount so that we can make

one more unit of mishty dahi then the equation (3.7) becomes −

min(S(Pd −Omdm)/ds +OmM) = SPd/ds (3.8)

31

which is equal to the objective function of our primal problem. Similarly, using the

constraint equation we can write-

Om ≥ (Pd −Osds)/dm (3.9)

⇒,

min(SOs +M(Pd −Osds)/dm) = Osds(S/ds −M/dm) +MPd/dm (3.10)

Now, if the quantity of milk is less than the sugar then equation (3.10) becomes -

min(SOs +M(Pd −Osds)/dm) = MPd/dm (3.11)

which is equal to the objective function of our primal problem.

Hence, for the optimal solution -

min (OsS +OmM) = max PdQ, where Q = min{S/ds, M/dm}

3.4 Dual problem derived algebraically

We write the primal problem as

maximize cTx

subject to Ax ≤ b

and x ≥ 0

where, cTx = c1x1 + c2x2 + + cnxn, Ax =
∑

i,j aijxj and b = bi ,i,j =

1,2,.....n.

In general, we can write the problem in the form of linear equations. So, the

system of linear equations is -

a11x1 + a12x2 ++ a1nxn ≤ b1

a21x1 + a22x2 ++ a2nxn ≤ b2

....

....

an1x1 + an2x2 ++ annxn ≤ bn

32

Now multiply all the linear equations by the corresponding yi and add them. Then

we get the equation

C1x1 + C2x2 ++ Cnxn ≤
∑
i

biyi (3.12)

where i = 1,2,....,n and

C1 ≤
∑

i ai1yi

C2 ≤
∑

i ai2yi

....

....

Cn ≤
∑

i ainyi

Therefore, ∑
j

Cjxj ≤
∑
i,j≤n

(
∑
i,j

aijyi)xj (3.13)

for j = 1,2,.....,n. We can write it as∑
j

Cjxj ≤
∑
i,j

(
∑
i,j≤n

aijxj)yi (3.14)

and we know that ∑
i,j≤n

aijxj ≤ bi

Hence, ∑
j

Cjxj ≤
∑
i

biyi (3.15)

3.5 Weak Duality theorem

Theorem 3.5.1. The objective function value of the dual at any feasible solution is

always greater than or equal to the objective function value of the primal at any feasible

solution.

Proof. : Let xj = {x1, x2,, xn} be the primal feasible solutions and yi = {y1, y2,, ym}
be the dual feasible solutions. Then we have to prove that[11]∑

j cjxj ≤
∑

i biyi

33

⇒

∑
j

cjxj ≤
∑
j

(
∑
i

aijyi)xj

=
∑
ij

aijyixj

=
∑
i

(
∑
j

aijxj)yi

≤
∑
i

biyi

3.6 Complementary Slackness

In general, given a problem

maximize
∑n

j=1cjxj

subject to
∑n

j=1aijxj ≤ bi (i = 1, 2,,m)

and xj ≥ 0 (j = 1, 2,, n)

We define the slack variables xn+1, xn+2,, xn+m by

xn+1 = bi−
n∑
j=1

aijxj (i = 1, 2,,m)

and the objective function, z by

z =
n∑
j=1

cjxj

From the weak duality theorem , let us denote

4(x, y) = yT (b− Ax) + (yTA− cT)x = 0

then either

yT (b− Ax) = 0

or

(yTA− cT)x = 0

34

Let yT (b − Ax) = 0. If yT = 0 then (b − Ax) > 0. If (b − Ax) = 0 then yT > 0 and

hence, b = Ax. Similarly Let (yTA − cT)x = 0. If x = 0 =⇒ (yTA − cT) > 0 and if

x > 0 =⇒ (yTA− cT) = 0 and hence yTA = cT .

So, If the ith slack variable of the primal is not zero, then the ith variable of the

dual is equal to zero. Similarly if the jth slack variable of the dual is not zero then

the jth variable of the primal is equal to zero.

3.6.1 Complementary Slackness Theorem

Theorem 3.6.1. A primal feasible solution {x∗1, x∗2, x∗3,, x∗n} and a dual feasible

solution {y∗1, y∗2, y∗3,, y∗m} are both optimal if and only if [12]

x∗j > 0 ⇒
∑
i=1

aijy
∗
i = cj ∀j ∈ [n]

and

y∗i > 0 ⇒
∑
i=1

aijx
∗
j = bi ∀i ∈ [m]

Proof of this follows from the above definition of Complementary Slackness.

3.7 Strong Duality theorem

Theorem 3.7.1. If the primal has an optimal solution (x1
∗, x2

∗,, xn
∗), then the

dual also has an optimal solution, (y1
∗, y2

∗,, ym
∗) such that[12]

cTx∗ = bTy∗

or
n∑
j=1

cjxj
∗ =

n∑
j=1

biyi
∗

The proof of this theorem is very tedious and not very insightful. So, we are not

going to prove this theorem here.

Strong duality is a very powerful tool to solve many optimization problems. It is very

hard to solve some problems in their primal form in compare to their dual form, so

solving the dual can be far quicker than solving the primal. If we know that dual

solution is optimal, then we can say that the primal solution is also optimal and both

optimal solutions would be equal and unique by strong duality.

35

Chapter 4

Strong Duality and Max-Flow

Min-Cut Problem

In this chapter we discuss about the max-flow and the min-cut problem. Min-cut

problem is the dual of the max-flow problem. So, this chapter is all about to explain

how to get the dual from the primal for the network flow problem. At the end of the

chapter we prove the max-flow min-cut theorem using the strong duality.

4.1 The Primal-Dual Method Applied to Max-Flow

Min-Cut Problem

The first recorded application of max-flow min-cut Problems came into existence in

the mid-1950s. A report on the rail networks that linked the soviet union to its satellite

countries in eastern europe, was published by the air-force researchers T. E. Harris

and F. S. Ross. The network was modeled as a graph of 44 vertices and 105 edges.

Vertices represents the geographic regions and edges represents links between those

regions in the rail network. The rate at which material could be shipped from one

region to the next was represented by the weight given to each edge. They determined

both the maximum amount of the stuff that could be moved from Russia into Europe,

essentially by trial and error, as well as the cheapest way to disrupt the network by

removing the links or in other words by blowing up the train tracks.[13]

For both problems, the input is a directed graph G = (V,E) along with a source s and

target t. u → v denote the directed edge from vertex u to vertex v. The maximum

flow problem is to find the maximum amount of material that can be transported

from one vertex to another; the minimum cut problem asks for the minimum damage

36

needed to separate two vertices.

4.1.1 Max-Flow Problem

A flow network is a directed graph G with two special nodes denoted by s,t, where s

is a source node out which flow leaves and t is a sink node in which flow arrives. E is

the set of edges of the network which represent pipes that carry flow and V is the set

of vertices. c(u,v) represents the maximum capacity of each edge (u,v).

To understand the maximum flow problem we use a graph to model material that

flows through pipes. Each edge represents a pipe and has a capacity which is an

upper-bound on the flow rate in units/time. The pipes can be of different sizes. So,

our problem is to compute maximum rate that we can ship material from a designated

source to a designated sink.

Figure 4.1:

In a flow network each edge (u,v) has a non-negative capacity c(u,v). If (u,v) is not

in E, we assume that c(u,v) = 0. We assume that every vertex v in V is on some path

from s to t.

e.g. c(s, v1) = 16, c(v1, s) = 0, c(v2, v3) = 0

For each edge (u,v), the flow f(u,v) is a real valued function that must satisfy three

conditions :

1. Capacity constraint : ∀ u,v ∈ V, f(u,v) ≤ c(u,v)

2. Skew symmetry : ∀ u,v ∈ V, f(u,v) ≤ −f(v,u)

3. Flow conservation : ∀u ∈ V − {s, t},
∑

v∈V f(u,v) = 0

37

Note : - The skew symmetry condition implies that f(u,u) = 0.

-We show only the positive flows in the network.

Example of a Flow

Figure 4.2:

f(v2, v1) = 1, c(v2, v1) = 4

f(v1, v2) = −1, c(v1, v2) = 10 and

f(v3, s) + f(v3, v1) + f(v3, v2) + f(v3, v4) + f(v3, t) = 0 + (−12) + 4 + (−7) + 15 = 0.

The value of a flow is given by

|f | =
∑
v∈V

f(s, v) =
∑
v∈V

f(v, t)

This is the total flow leaving s = The total flow arriving in t.

Example

|f | = f(s, v1) + f(s, v2) + f(s, v3) + f(s, v4) + f(s, t) = 11 + 8 + 0 + 0 + 0 = 19

|f | = f(s, t) + f(v1, t) + f(v2, t) + f(v3, t) + f(v4, t) = 0 + 0 + 0 + 15 + 4 = 19

We assume that there is only flow in one direction at a time. If we have several

sources and several targets and we want to maximize the total flow from all sources

to all targets, we reduce to max-flow by creating a supersource and a supersink.

38

Figure 4.3:

4.1.2 Min-Cut Problem

Dual of maximum flow problem known as minimum cut problem. A cut may be

defined as a set of directed arcs such that if we remove the arcs of the cut, no directed

path from the source to the sink will be left. A cut (S,T) of a flow network is a

partition of V into S and T = V - S, such that s ∈ S and t ∈ T .

The net flow through a cut (S,T) -

Figure 4.4:

f(S, T) =
∑

u∈S,v∈T f(u, v)

f(S,T) = 12 - 4 + 11 = 19

The capacity of a cut (S,T) -

c(S, T) =
∑

u∈S,v∈T c(u, v)

39

c(S,T) = 12 + 0 + 14 = 26

The value of any flow f in a flow network G is bounded from above by the capacity of

any cut of G.

Generalizing the Concept of Cut

S is called the S-side of the cut and V - S is the T side of the cut.

Figure 4.5:

Cut-1 = {V1 → V3, V2 → V3, V2 → V4} with S-side = {s, V1, V2} and T-side =

{V3, V4, t}.
Cut-2 = {s→ V1, s→ V2} with S-side = {s} and T-side = {V1, V2, V3, V4, t}.
The arcs going from T-side to S-side don’t count in the cut.

Cap(Cut-1) = 12 + 9 + 14 = 35

Cap(Cut-2) = 16 + 3 = 19

The cut defined by S-side = {s, V1, V3} doesn’t include arc V2 → V3

Cut-3 = {s→ V2, V3 → t} with Cap(Cut-3) = 3 + 20 = 23

To understand the concept of an st-flow, we define some notations :-

σ+(u) = {e ∈ E : e = (u, v)for some v}: arcs leaving u.

σ−(x) = {e ∈ E : e = (v, u)for some v}: arcs entering u.

where ’e’ represents an edge from u to v. A function f : E → R+ is called an st-flow

if the following holds : ∑
σ+(u)

fe −
∑
σ−(u)

fe = 0

40

for all u ∈ V − {s, t}.
0 ≤ fe ≤ ce ∀ e ∈ E.

In maximum flow problem we assume that no arc enters in ’s’ and no arcs leaves

from ’t’. We define the value val f of an st-flow f as the amount of flow leaving s, i.e.,

val f =
∑
σ+(s)

fe

The maximum flow problem is to find “an st-flow f with maximum value val(f)”.

The primal for the network flow, called the max-flow, is given in an LP as follows :-

Max
∑

(s→v)∈E

fs→v

subject to

fu→v ≤ c(u→ v) ∀(u→ v) ∈ E∑
(u→v)∈E

fu→v −
∑

(v→w)∈E

fv→w ≤ 0 ∀v ∈ V − {s, t}

−
∑

(u→v)∈E

fu→v +
∑

(v→w)∈E

fv→w ≤ 0 ∀v ∈ V − {s, t}

fu→v ≥ 0 ∀(u→ v) ∈ E

In the primal, there are three constraint equations. The third constraint equation

is same as the second constraint equation, just interchanging the minus sign between

the flows. The first constraint equation is for the edges, which is called a capacity

constraint and the next two constraint equations are based on the conservation of the

flow for the vertices.

To construct the dual of this primal max-flow problem, we generate as many

variables as there are constraint equations in the primal problem, that means we

define a dual variable for each of the constraint equation or inequality.

So, to construct the dual, we multiply each inequality by a defined dual variable.[14]

41

Max
∑

(s→v)∈E

fs→v

subject to

fu→v ≤ c(u→ v) ∗ yu→v ∀(u→ v) ∈ E∑
(u→v)∈E

fu→v −
∑

(v→w)∈E

fv→w ≤ 0 ∗ yv ∀v ∈ V − {s, t}

−
∑

(u→v)∈E

fu→v +
∑

(v→w)∈E

fv→w ≤ 0 ∗ y′v ∀v ∈ V − {s, t}

fu→v ≥ 0 ∀(u→ v) ∈ E

Doing the duality transformation carefully, we get the following :-[14]

Min
∑

(u→v)∈E

c(u→ v)yu→v

subject to

ys→v + yv − y
′

v ≥ 1 ∀(s→ v) ∈ E

yu→v + yv − y
′

v − yu + y
′

u ≥ 0 ∀(u→ v) ∈ E(V − {s, t})

yv→t − yv + y
′

v ≥ 0 ∀(v → t) ∈ E

yu→v ≥ 0 ∀(u→ v) ∈ E

yv ≥ 0 ∀v ∈ V

y
′

v ≥ 0 ∀v ∈ V

In the second constraint equation of the dual problem, we do not include the source

and sink node. Since the total flow through a vertex other than s and t, is zero, so

we need to introduce more variables (yu and y
′
u)to convert the equality(= 0) into the

inequality (≥ 0).

When we convert the primal LP into the standard form of the dual, then we get

this expression of the dual. We know that in the standard form we write the primal

as

42

maximize cTx

subject to Ax ≤ b

and x ≥ 0

and the corresponding symmetric dual can be expressed as -

minimize bTy

subject to yTA ≥ c

and y ≥ 0

So, for the dual, matrix A would be an (E ∪ V1 ∪ V1
′ × E) matrix, where V1, de-

notes the vertices according to the second constraint equation and V1
′

are the vertices

according to the third constraint equation of the primal. We know that V1 = V1
′
, we

are just denoting them like this only for our convenience.

Matrix A contains three submatrices - the first submatrix is an E ×E matrix for the

edges of the network which contains 1 on its diagonal positions and 0 at the other

entries.

The second submatrix is a (V1 ×E) matrix for the vertices which satisfies the second

constraint equation of the primal. The elements for this submatrix is 0,1 and -1. For

a vertex v ∈ V , if the flow comes inside v, we put 1, if the flow leaves out from v, we

put -1 and 0 otherwise.

The third submatrix is just the opposite of the second submatrix. According to the

third constraint equation, if the flow comes inside v, we put -1, if the flow is leaving

from v, we put 1 and 0 otherwise.

The matrix y would be an (E ∪ V1 ∪ V1
′ × 1) matrix, which also contains three sub-

matrices, one for the edges and next two for the vertices V1 and V1
′
.

matrix c would be a (1× E) matrix, which contains 0 and 1 only.

Now, consider a column of the matrix A, for an edge (u→ v), it contains 1 in the

first submatrix at the diagonal position for that particular edge and second submatrix

contains -1, at the position of vertex u, 1 at the position of vertex v and 0 for the

other entries, third submatrix of A contains 1, at the position of vertex u, -1 at the

position of vertex v and 0 for the other entries. So when we multiply the yT matrix

to the matrix A, we get the expression shown in the second constraint equation of the

dual.

43

Now, we simplify this by introducing the variables dv = yv − y
′
v for each v ∈

V − {s, t}. We get the following modified dual LP :

Min
∑

(u→v)∈E

c(u→ v)yu→v

subject to

ys→v + dv ≥ 1 ∀(s→ v) ∈ E

yu→v + dv − du ≥ 0 ∀(u→ v) ∈ E(V − {s, t})

yv→t − dv ≥ 0 ∀(v → t) ∈ E

yu→v ≥ 0 ∀(u→ v) ∈ E

Adding the variables for t and s, their values as follows, dt = 0, ds = 1, we get

the more homogeneous and symmetric dual LP, so we don’t have to treat s and t

separately.

Min
∑

(u→v)∈E

c(u→ v)yu→v

subject to

ys→v + dv − ds ≥ 0 ∀(s→ v) ∈ E

yu→v + dv − du ≥ 0 ∀(u→ v) ∈ E(V − {s, t})

yv→t + dt − dv ≥ 0 ∀(v → t) ∈ E

yu→v ≥ 0 ∀(u→ v) ∈ E

ds = 1, dt = 0

Which simplifies to the following LP:

Min
∑

(u→v)∈E

c(u→ v)yu→v

subject to

du − dv ≤ yu→v ∀(u→ v) ∈ E

yu→v ≥ 0 ∀(u→ v) ∈ E

44

ds = 1, dt = 0

Thus we have obtained the dual of the max-flow problem. Now our problem is

reduced to check whether the optimal solution to this dual LP represents a min-cut.

Let us first start with the other direction. Given a cut (S,T), with s ∈ S and t ∈ T ,

we get a feasible solution of this dual LP by setting -

du = 1 ∀u ∈ S
du = 0 ∀u ∈ T
yu→v = 1 ∀(u→ v) ∈ (S, T)

yu→v = 0 ∀(u→ v) ∈ E − {S, T}

As for the other direction, we consider the optimal solution for the dual LP and

let its target function value be

α∗ =
∑

(u→v)∈E

c(u→ v)y∗u→v

The (*) represents the values of the variables in the optimal LP solution. Using the

optimal solution, we generate cuts for each z ∈ [0, 1] as follows -

for any z ∈ [0, 1], we define Sz = {u|d∗u ≥ z} and Tz = {u|d∗u < z}. This is a valid cut

as s ∈ S (as d∗s = 1) and t ∈ T (as d∗t = 0). An edge (u → v) is in the cut only if

d∗u > d∗v.

Let us consider the following experiment :- we pick z ∈ [0, 1] at random and

consider the cut (Sz, Tz). Notice further, that actually we have defined a probability

measure on the set of cuts where, P(C) = length of the interval of z ∈ [0, 1], such that

(Sz, Tz) = C. Now, for this experiment the probability of u ∈ S and v ∈ T is exactly

d∗u − d∗v. In other words, we can say that P(C) is the probability that z falls inside

the interval [d∗v, d
∗
u]. So, for this experiment, the edge (u → v) is in the cut with the

probability d∗u − d∗v (only if d∗u > d∗v) which is bounded by y∗u→v (by the inequality

du − dv ≤ yu→v in LP).

Now we define an indicator variableXu→v which is one if, the edge is in the generated

cut and zero otherwise[14]. Observe that

1. X =
∑
Xu→vc(u→ v) is the random variable that to a cut associates its cost.

2. E[Xu→v] = P [Xu→v = 1] ≤ y∗u→v

45

⇒

E[
∑

Xu→vc(u→ v)] =
∑

(u→v)∈E

c(u→ v)E[Xu→v]

≤
∑

(u→v)∈E

c(u→ v)y∗u→v

= α∗

Since expectation of a random variable (Z) is the weighted average of the values that

the random variable can have. So there must be a value z that is assigned to the

random variable (Z) such that z ≤ α∗. But earlier we said that α∗ is the optimum

solution for the dual, means that there is no cut which has the capacity less than the

α∗. Hence by both of the arguments we can say that α∗ is the minimum cut. Hence

by the strong duality max-flow is equal to the optimal solution of the dual (i.e. α∗).

4.2 Strong Duality

Theorem 4.2.1. If the primal LP problem (P) has an optimal solution x∗ and the

dual (D) has an optimal solution y∗ then, cTx∗ = bTy∗.

The proof of this theorem is somewhat tedious and not very insightful, so we are

not going to prove this theorem.

We are now ready to deal with the max-flow min-cut theorem, that is, the optimal

value of the max-flow is equal, by using the strong duality, to the optimal value of the

dual.

Lemma 4.2.2. Given a network G(V,E), then for any flow f and cut C on the net-

work, val f ≤cap C.[15]

Proof. Let C = (S,T). As S contains sources and intermediates, so clearly

valf = fout(X)− fin(X) = fout(S)− fin(S)

since the contribution of the intermediates to the flow value is zero by conservation law.

For an edge with both end-points in S, its flow is counted in both fout(S) and fin(S)

and thus doesn’t affect the flow value. Therefore, the only edges which positively

affect the val f are the ones which originating in S and terminating in T, which are

precisely the flows over the cut C. Hence, we conclude that

46

valf ≤
∑

x∈S,y∈T

f(x, y) ≤
∑

x∈S,y∈T

c(x, y) = capC

Corollary 4.2.3. Given a network, let f ∗ be the maximum flow and C∗ be the mini-

mum cut on the network. Then val f ∗ ≤ cap C∗.[15]

The corollary is a obvious consequence of the above lemma, so we are not giving

the proof of this corollary.

4.3 Max-flow Min-cut Theorem

Theorem 4.3.1. For any directed graph with arc capacity function and distinct ver-

tices s and t the value of a maximum st-flow equals the minimum (S,T)-cut capacity.

Proof. Let f ∗ be the maximum flow and C∗ be the minimum cut on a given network.

By the lemma (4.2.2) there exists some flow f and cut C such that cap C = val f ≤
cap C∗, but we know that every cut has more capacity than the minimum cut, so in

fact val f = cap C∗. And by corollary (4.2.3) we can say that val f ∗ ≤ cap C∗ = val

f, but no flow can have the value greater than the maximum flow, so val f ∗ = cap

C∗.[15]

47

Bibliography

[1] V. Strassen. Gaussian Elimination is Not Optimal. Numerische Mathe-matik 13,

354-356, 1969.

[2] Predrag S. Stanimirovi and Marko D. Petkovi. Generalized matrix inversion is not

harder than matrix multiplication. University of Niˇ, Department of Mathematics,

Faculty of Science, Visegradska 33, 18000 Niˇ, Serbia.

[3] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis

of computer algorithms. Addison-Wesley Publishing Co., Reading, Mass.-London-

Amsterdam, 1975. Second printing, Addison-Wesley Series in Computer Science

and Information Processing.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to algorithms. MIT Press, Cambridge, MA, third edition, 2009.

[5] DONALD GOLDFARB Robert G. BLAND and MICHAEL J. TODD. Feature

Article, The Ellipsoid Method: A Survey. Cornell University, Ithaca, New York.

[6] Lecturer : Michel X. Goemans. Combinatorial Optimization. Massachusetts

Institute of Technology, Handout 19, May 4th, 2009.

[7] Lecturer : Sanjeev Arora. The Ellipsoid Algorithm for Linear Programming.

Princeton University, COS 521, Fall 2005.

[8] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:

Algorithms and Complexity. University of California - Berkeley, Princeton Uni-

versity.

[9] Adejo B. O. and Okutachi A. M. On increasing the rate of convergence of the el-

lipsoid algorithm for linear programming. Department of Mathematical Sciences,

Kogi State University, Anyigba, Nigeria.

48

[10] Vasek Chvatal. Linear Programming. W. H. Freeman and Company, McGill

University, 1983.

[11] Lecturer : Robert J. Vanderbei. Linear Programming: Chapter 5, Duality. Op-

erations Research and Financial Engineering, Princeton University, October 17,

2007.

[12] Lecture : Adrian Vetta. The Strong Duality Theorem.

[13] Lecturer : Jeff Erickson. Maximum Flows and Minimum Cuts. Fall 2013.

[14] Sariel Har-Peled. CS 573 Algorithms. sarielhp.org/teach/05/b, May 29, 2013.

[15] Lecturer : Shaun Joseph. The Max-Flow Min-Cut Theorem. December 6, 2007.

49

