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Abstract

In this work, I briefly describe the theory of magnetic trapping of neutral atoms and

Bose-Hubbard model. In addition to that I append my calculations for different type of

magnetic traps and their trapping potentials. This report is divided into 2 parts: the

first half explains the magnetic trapping of neutral atoms, how a series of potential wells

generated using three dimensional traps is useful to create a quantum register is described.

The second half briefly describes the Bose-Hubbard model for a bosonic lattice. It explains

two phases in a bosonic lattice which have contrasting properties, i.e. superfluid phase

and Mott insulator phase. Furthermore, I calculate the wave functions and energies for a

double well potential. The overlap of wave functions renders a finite tunneling probability

from one site to the other.



Chapter 1

Magnetic Trapping of Neutral

Atoms

The energy of interaction of a neutral atom in a magnetic field is very much weaker

than the thermal energy of atoms at room temperature. Therefore, cooling of atoms

is important to achieve trapping using magnetic field. It was in 1985 when magnetic

trapping of neutral atoms was first achieved [1]. Since then this area of research has had

both scientific and technological advancement resulting in the development of novel traps.

However, in order to understand the mechanism of trapping, it is essential to go over the

spin properties which determine the interaction of atomic systems with external magnetic

field.

1.1 Hyperfine Structure of Rubidium(87)

The energy level splittings in the 5S orbital of 87Rb are discussed in this section.

The coupling between the the orbital angular momentum L of the outermost electron and

its spin angular momentum S results in the fine structure. The total angular momentum

is given by

J = L + S. (1.1)

The transitions 52P3/2 → 52S1/2 and 52P1/2 → 52S1/2 are fine-structure doublet compo-

nents. Each of these two transitions have additional hyper-fine structure.

The hyper-fine structure is a result of coupling between the total angular momentum J
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and the total nuclear angular momentum I. The total atomic angular momentum F is

defined as

F = J + I. (1.2)

The magnitude of the total atomic angular momentum F can lie between

|J − I| ≤ F ≤ J + I (1.3)

Figure 1.1: Hyper-fine structure for the state(52S1/2) of 87Rb atom.

In case of first group neutral alkali atoms, the ground state of the outermost electron

corresponds to L = 0. Consequently, J = 1/2 and F can either be I + 1/2 or I − 1/2. For
87Rb, I = 3/2, therefore we have F = 1 or F = 2. The situation might be different for

other alkali atoms (eg. in the case of 85Rb isotope, I = 5/2).

For the excited state in the D2 line (52P3/2), F ∈ {0, 1, 2, 3} and in case of D1 line, the

excited state F is either 1 or 2.

In the absence of external magnetic field, the magnetic dipole interaction between nucleus

and the electrons can remove the degeneracy between the two configurations F = I± 1/2.

The interaction Hamiltonian can be represented as

Hhf = AI · J, (1.4)
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where A is the coupling constant. The Hamiltonian Hhf can be expressed in terms of the

quantum numbers I, J and F using the relation [12]

I · J =
1

2
[F (F + 1)− I(I + 1)− J(J + 1)], (1.5)

where J=1/2 for the ground state of the alkali atoms. The splitting of the energy of

the two hyperfine states F = I ± 1/2 can now be calculated easily, and is given by

∆E = A

(
I +

1

2

)
. (1.6)

However, in the presence of magnetic field, there is an extra magnetic interaction

term added in the hamiltonian [12]:

H = AI · J + 2µBJzB, (1.7)

where µB = |e|~/2me is the bohr magneton and application of magnetic field in done in

the direction of z. F and mF now become the good quantum numbers for the hamiltonian

H. The interaction energy between the atom and the applied external magnetic field can

be calculated using perturbation analysis [12]:

〈F,mF |2µBJzB|F,mF 〉 = gLµBmFB, (1.8)

where mF is the eigenvalue of Fz or the magnetic quantum number and

gL =
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
, (1.9)

is the Lande g factor [12].

1.2 Magnetic Interaction and Trapping

A particle with total angular momentum F and magnetic moment µB experiences a

potential

Vmag = −µ ·B = −gFµBmFB (1.10)

The magnetic moment precesses(Larmor precession ωL = µBB/~)about the magnetic

field. Depending on the orientation of µ relative to the direction of magnetic field B, two

cases can be distinguished:
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• Strong field seeking state:

If the magnetic moment and the magnetic field are aligned in the same direction,

Vmag < 0. Therefore, Vmag decreases linearly with the magnitude of magnetic field.

This is the reason why an atom trapped in a strong field seeking state is attracted

towards the increasing fields.

In this orientation the minima of the potential corresponds to the maxima of mag-

netic field. But, the Maxwell equations doesn’t allow a finite divergence of magnetic

field, and hence maxima of magnetic field in free space is forbidden.

• Weak field seeking state:

On the contrary, if the magnetic moment and the magnetic field are aligned in

opposite directions, Vmag > 0. Therefore the lower energies corresponds to lower

magnetic fields. The atom is repelled from the regions with high magnetic field and

attracted towards the lower fields. Hence, it is called a weak field seeking state.

In this case the minima of the potential if found at the minima of the field. The

fact that the minima of the modulus of magnetic field in free space is allowed by

Earnshaw’s theorem, trapping in this state can be done easily. This is the most

common type of traps used to trap neutral atoms.

Majorana losses:

If the Larmor precession of the atom’s magnetic moment about the external magnetic field

is much faster than than the apparent change of magnetic field direction θ (in the rest

frame of the moving atom), an adiabatic approximation can be applied.

dθ

dt
<
µB|B|

~
(1.11)

If the above condition is violated, which generally happens in regions of very small

magnetic field, regions of trap loss are created due to Majorana flips or spin flip transitions

into untrapped states.
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1.3 Side guide

1.3.1 Quadrupole Trap:

Let us consider a system with a long thin wire parallel to the x-axis, passing through

the origin(length = 1m and cross-sectional area = 0.25mm2) and carrying a current I =

2A. In addition to that there is also a homogeneous bias field(Bb) applied in a direction

perpendicular to the length of the wire [Figure 1.2]. The combination of this externally

applied magnetic field and the circular field created by the wire, produces a 2 dimensional

field minima in the form of a quadrupole field [Figure 1.3]. The bias field cancels the

circular magnetic field of the wire along a line parallel to the wire at a distance

zo =
µoI

2πBb
, (1.12)

from the wire.

Figure 1.2: Application of homogeneous bias field perpendicular to the current carrying

wire.
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Atoms in the weak field seeking state can be trapped in this 2-dimensional quadrupole

field and can be guided along the sides of the wire. The field gradient at the center of the

trap is
dB

dz
|zo+∆z =

2πB2
b

µoI
. (1.13)

(a)

(b)

Figure 1.3: Magnetic field variation along Z-axis for quadrupole trap (a) and Ioffe-Prichard

trap (b).
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1.3.2 Ioffe-Prichard Trap:

In the system described above, the field at the trap-center(the region of field minimum) is

exactly zero. Consequently, there can be Majorana transitions between the trapped and

the untrapped spin states.

To avoid these losses, a small magnetic field component, a field offset(Boff ), can be

added along the wire direction. Application of this field ensures that the degeneracy

between the trapped and untrapped states is removed, as there is a non zero field minimum

[Figure 1.3]. This potential is known as a Ioffe-Prichard trap [2] [3] [4].

Furthermore, the form of the potential at the minimum changes to harmonic. The

curvature at the point of trap-minimum is [5]

d2B

br2
=

4π2B2
b

BoffI2
=

B2
b

z2
oBoff

, (1.14)

and in the harmonic-oscillator approximation, the trap frequency is given by [5]

ω

2π
=

1

2π
2

√
µBgFmF

M

(
d2B

dr2

)
(1.15)

(a) (b)

Figure 1.4: Variation of zo with bias-field(a), trap frequency with bias-field(b) at constant

current and field offset in an I-P trap.
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Figure 1.5: Variation of trap frequency with offset field at constant current and bias field

in an I-P trap.

The variation of the trap frequency and zo with bias-field and offset field can be be

observed in the above figure. The dimensions of the wire, its orientation and the direction

of application of bias and offset fields are the same as discussed in the section 1.3.1.

1.4 Bent Wire Traps

Three dimensional trapping can be achieved by extending the two dimensional trap dis-

cussed in section 1.3. To accomplish this, the current carrying wire is bent in the shape of

either ’U’ of ’Z’ (as shown in the figure 1.6)[6][7][8]. If we apply a homogeneous magnetic

field perpendicular to the central part of the wire(along positive-Y direction), it interacts

with the circular magnetic field created due to the wire and results in the formation of a

quadrupole trap same as before.

The x-component of the field produced due to the bent parts of the wire create endcaps

for the wire guide and allows confinement along the its axis, while the y-component

displaces the minimum of this field.

There can be an additional offset field applied in a direction parallel to the cross wire

to adjust the field minimum (in case of the ’Z’-wire) or to vary the position of the trap

center(in the case of a ’U’-wire). This is discussed in a more vivid manner in the following

two subsections.
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Figure 1.6: Wires bent in the shape of Z(left), and U(right) to form 3-dimensional traps.

The length of the cross-wire in each case is 3mm and that of the each bent component is

6mm each.

1.4.1 U-Wire Trap

In case of the U-wire the contributions of the two bent parts cancel each other out at the

trap center(figure 1.7), which form a 3-dimensional quadrupole trap at the zero field point

i.e. trap center (figure 1.9).

Figure 1.7: Variation of magnetic field components along the cross-wire(X) in a U-Trap.

[Y=0, Z = trapcenter]
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Figure 1.8: Contour plot showing a quadrupole trap formed at the trap center in a U-wire

trap(left): the figure shows the variation of the magnetic field in the plane X = 0. The

zero-point of the magnetic field occurs at Ptc = (0, 0.1599mm, 0.5149mm). The variation

of magnetic field in the plane parallel to the plane of the wire and passing through the trap

center i.e. plane Z = 0.5149mm (right). The current running along the wire is I = 15A,

homogeneous bias field applied perpendicular to the cross-wire has a magnitude of 50G.

(a) (b) (c)

Figure 1.9: The magnetic field along the three mutually orthogonal lines passing through

the trap center of the quadrupole trap: B along the line (Y=Ptc(Y ), Z= Ptc(Z)) (a),

B along the line (X=Ptc(X), Z= Ptc(Z)) (b), B along the line (X=Ptc(X), Y= Ptc(Y ))

(c). The current running along the wire is I = 15A, homogeneous bias field applied

perpendicular to the cross-wire has a magnitude of 50G.
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Effect of offset field and thickness of the wire on the U-trap

The external magnetic field can be rotated so as to apply a parallel component to the

central part of the wire. There is still a quadrupole trap formed at the trap center same as

before, the only difference being that the position of the trap center shifts in the direction

of the applied magnetic field(figure 1.10).

(a) (b)

(c) (d)

Figure 1.10: Shifting of the quadrupole trap center on rotation of applied external

field. The rotation is done in such a manner that the magnetic bias field component

perpendicular to the cross-wire remains the same in magnitude as before and an magnetic

offset field component is introduced parallel to the cross-wire. The translation of the trap

center can be observed in the X-Z plot at Y = Ptcy) and X-Y plot at Z = Ptcz : (a),(b)

for offset field component=10G, and (c),(d) for offset field component=20G.
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In order to construct the wire traps mentioned in the sections 1.3, 1.4.1

and in the ones to be discussed later, we have used a geometry similar to that of micro-

fabricated wires. They have typically a rectangular cross section and an aspect ratio

smaller than 1(width greater than height). We can see the effect of varying the width of

the wire on the quadrupole trap in table 1.4.1 and figure 1.12.

Trap Cross Wire Current Bias Field Trap Center(Ptc) B
′
y(Ptc) B

′
z(Ptc) B

′
x(Ptc))

U1 3mm 15A 50G (0, 0.16mm, 0.515mm) 113.36 G/mm 98.24 G/mm 6.2 G/mm

U2 8mm 15A 10G (0, 3.46mm, 0.25mm) 7.78G/mm 13.9 G/mm 0.23 G/mm

Table 1.1: Magnetic field gradients for two different type of U-traps:U1 → Uniform size of

wires; and U2 → cross-wire having relatively large width.

A magnetic trap is formed due to the interaction of magnetic fields. It’s characteris-

tics(such as the gradient at trap minimum for a quadrupole trap) are dependent upon 2

factors:

• the shape and size of the carrying current conductor(I); and

• the externally applied magnetic field(B).

In the following figure we see how the shape of the conducting wire changes the properties

of the three dimensional quadrupole trap. If there is a U wire [figure1.11] having a much

wider cross-wire as compared to the U-wire discussed above in figure 1.6, the shape of the

trap changes which is manifested in their trap gradients (figure1.12.)

This however, is an approximate result as I have considered a constant flow of current in

the wires which is not actually the case in reality. As we move up from the confluence of

cross and side wire, the current decreases across the cross wire.
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(a) (b)

Figure 1.11: U-wire with a cross wire having large width(a). The zero-point of the

magnetic field occurs at Ptc = (0mm, 3.460mm, 0.252mm). The variation of magnetic

field in the plane parallel to the plane of the wire and passing through the trap center i.e.

plane Z = 0.252mm (b).

(a) (b) (c)

Figure 1.12: The magnetic field along the three mutually orthogonal lines passing through

the trap center of the quadrupole trap: B along the line (Y=Ptc(Y ), Z= Ptc(Z)) (a),

B along the line (X=Ptc(X), Z= Ptc(Z)) (b), B along the line (X=Ptc(X), Y= Ptc(Y ))

(c). The current running along the wire is I = 15A, homogeneous bias field applied

perpendicular to the cross-wire has a magnitude of 10G.
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As a result of increasing the width of the cross-wire from 0.5mm to 8 mm, there is a

significant decrease in the magnetic field gradients at the trap center of the quadrupole

trap. The gradients for these two different U-trap are tabulated in the table 1.4.1.

Therefore, we infer that the shapes and depths of the traps can be altered by changing

the dimensions of the wires.

1.4.2 Z-Wire Trap

In the Z-wire scenario, the two contributions of the bent parts add up giving rise to a

non-zero magnetic field at the trap center(figure 1.13). This new field contribution adds

up quadratically with the the two dimensional quadrupole field, thereby resulting in an

Ioffe-Prichard trap at the center.

Figure 1.13: Variation of magnetic field components along the cross-wire in the plane

Z = Ptc(Z)(left).Bx,By and Bz are components of magnetic field along X, Y and Z

axis respectively. Contour-plot of magnetic potential due to the Z-wire trap creating

3-dimensional confinement(right). The variation of total magnetic field in the plane Z =

Ptc(Z). The current running along the wire is I = 15A, homogeneous bias field applied

perpendicular to the cross-wire has a magnitude of 50G. The additionally applied offset

field has a magnitude of 5 G. The trap-center is located at Ptc = (0mm, 0mm, 0.556mm)

Unlike in the the case of a three-dimensional U-wire quadrupole trap, there is a non-

zero trap minimum at the trap center in the of an Ioffe-Prichard trap created by a Z-wire

trap. Therefore, in a Z-trap, a well defined curvature exists at the trap center.

15



Figure 1.14: Line joining the field minima along the lines X = a; where a ∈
[−1.2mm, 1.2mm]

As I had already mentioned in section 1.4, an additional offset field in a direction

parallel to the cross-wire is also applied in the Z-trap in order to shift the magnitude of

magnetic field at the trap center(Btc). Another way to say it would be that the externally

applied magnetic field is rotated and adjusted to provide a component along the cross-wire.

In the three dimensional Z-trap, the line corresponds to axial direction and the line

perpendicular to it corresponds to the radial direction.

The Z-trap provides confinement axially as well as radially. The plots for the magnetic

field along the axial and radial directions are shown in the following figure(1.15).

Figure 1.15: Variation of magnetic field along the axial and radial direction for a Ztrap.

The axial and radial trap frequencies for the state F=2, mF=2 in the ground state of

Rb87 atom are calculated using the data derived from the above figure. The axial trap

frequency is 41.24 Hz and similarly the radial trap frequency is 1044.65 Hz.
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The current traveling through the wire affects these trap frequencies. As shown in the

table 1.4.2, the axial and radial trap frequency varies as the current running through the

wire increases.

Current in the Z-Wire(A) Axial Trap Frequency(Hz) Radial Trap Frequency(Hz)

10 34.054 1314.89

15 41.24 1044.65

20 50.177 813.551

25 53.294 708.044

Table 1.2: Variation of trap frequencies for an increasing value of current in the wire. At

constant bias of 50 G and and Bmin at the trap center adjusted to 1.5 G.

Effect of varying the dimensions of the wires:

Earlier in the case of a U-wire trap, we saw that increasing the thickness of the cross-wire

leads to a change in the gradients of the quadrupole trap. In a similar manner, a change

in the wire dimensions in a Z-wire reflects in the harmonic trap frequencies of the trap.

In a Z-wire similar to the one discussed in this section, the width of the wire, its height

and the current running through it are varied. It results in the following data:

Figure 1.16: Variation of trap center distance with height of the wire for different widths

and current in the wire.
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Chapter 2

A magnetic micro-array of traps

used as a Quantum Register

2.1 Array of Traps

A combination of Z and U-wire wires can be used create a series of potential wells. We

call this series an array or a micro-array of traps. If we apply an external magnetic field B

= 20G î + 10G ĵ and send a current of 2A through the wire, each component interacts

with the applied magnetic field and leads to the formation of following sequence of traps.

Figure 2.1: A combination of Z and U wires used to create an array of traps(array-wire).

This array can be visualized as a series of Z-wires connected by horizontal sections of

wires. The height of these sections as well as the cross-wire length is 200 µm and the

length of the side-wires, 100µm.
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Figure 2.2: 3D-plot(left) and contour-plot(top) of magnetic field in the x-y plane and

passing through the trap center on the Z-wire component which lies towards the middle

of the array i.e. Z = 78.16µm.

In this array-of-traps picture, the trap centers for each of the Z wire components are

not exactly at the same distance from the array-wire plane. It varies as one moves from

one end of the array to the other. This can be seen in the figure 2.3. Furthermore, there

is also a variation in the trap frequency across the length of the array.
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Figure 2.3: Variation of trap centers (on the left)and trap frequencies(right) across the

length of the array.

Getting a knowledge of how the trap centers vary across this array is crucial in order

to build a quantum register. Another theory which is important to know for creating a

qubit register is of Rabi oscillations, which we will see in the next section.

2.2 Rabi Oscillations:

This section describes the semi-classical behavior of a quantum mechanical two-level

system driven by a near resonant radiation. It briefly describes the oscillation of population

of states which are known as Rabi Oscillations.

Figure 2.4: A two level system.

|0〉 and |1〉 are orthonormal basis for the system, 〈i|j〉 = δij , i, j = 0, 1. The frequency

of the photon is ω = ωo + ∆. ∆ is the detuning between the frequency of the photon and

resonant frequency ωo.
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In the absence of a driving electromagnetic field, the states |0〉 and |1〉 are the energy

eigenstates of the system. Let Ĥo be the Hamiltonian of the system with no external

applied field [9]. Therefore,

Ĥo|0〉 = 0|0〉 (2.1a)

Ĥo|1〉 = ~ωo|1〉 (2.1b)

A two level quantum state can be expressed as |ψ〉 = c1|0〉 + c2|1〉 where c1 and c2 are

the amplitude for the states |0〉 and |1〉 respectively; and |c1|2 + |c2|2 = 1. The probability

of finding the system in state |i〉 is |〈i|ψ〉|2=|ci|2, for i = 0,1.

An operator Â can be represented by a 2× 2 hermitian matrix [9].

A =

(
〈0|Â|0〉 〈0|Â|1〉
〈1|Â|0〉 〈1|Â|1〉

)
(2.2)

The Hamiltonian Ĥo in case of no external electromagnetic field can be expressed as [9]

Ho = ~

(
0 0

0 ωo

)
(2.3)

However, if there is a driving field present, it induces a dipole moment between the

states |0〉 and |1〉. The electromagnetic field interacts with this dipole and results in

a perturbation. The interaction Hamiltonian can be represented as [9]

Hint = ~

(
0 Ω cos(ωt)

Ω∗ cos(ωt) 0

)
, (2.4)

where ~Ω = µEo, µ is the induced dipole moment and Eo is the amplitude of the

electromagnetic field. As a result of this perturbation, the states |0〉 and |1〉 are no longer

stationary states of the system. Therefore, the two levels are said to be coupled due to the

applied field.

2.2.1 Time Evolution of system under applied field: Rabi Oscillations

If the system starts from state |0〉 at t = 0,under the influence of an external applied field,

the state amplitudes evolve as follows:(
c1(t)

c2(t)

)
= exp i∆t/2

(
cos ΩRt

2 + i ∆
ΩR

sin ΩRt
2

i Ω
ΩR

sin ΩRt
2

)
, (2.5)
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and therefore, the state probability amplitude evolve as

|c2(t)|2 =
Ω2

Ω2
R

sin2

(
ΩRt

2

)
, (2.6a)

|c1(t)|2 =
∆2

Ω2
R

+
Ω2

Ω2
R

cos2

(
ΩRt

2

)
. (2.6b)

The above equations mean that the probability of the system being in state |0〉 and |1〉
oscillates with a frequency ΩR =

√
Ω2 + ∆2 (total Rabi Frequency). They also suggest

that the states |0〉 and|1〉 are not the stationary states of the system anymore; which

they indeed were in the absence of external applied field. Therefore, we can say that the

dynamics of the system are governed by two parameters, the coupling strength which is

proportional to Eo Ω and detuning ∆.

It is only on resonance when the populations oscillate completely between zero and

unity. If there frequency of the photons and transition frequency are detuned, the oscilla-

tions are faster but of lower amplitude. Furthermore, for a fixed detuning, the frequency

of the oscillations can be varied by changing the strength of the applied field.

Now that the evolution of the system beginning in state |0〉 is known, we consider the

system to be at resonance(∆ = 0). Two specific cases are discussed:

• A π pulse: It corresponds to turning the field on at t = 0 and off at t = Tπ = π/Ω.

From equation 2.5, we get:

ψ(Tπ) =

(
0

i

)
, (2.7)

or, equivalently:

|ψ(Tπ)〉 = i|1〉 (2.8)

This state is equivalent to |1〉, and therefore, we can say that the pi-pulse transforms

the state |0〉 into |1〉.

• A π/2 pulse: This corresponds to turning the field on at t = 0 and off at t= Tπ/2=

π/2Ω. Consequently,

ψ(Tπ/2) =
1√
2

(
1

i

)
, (2.9)

or,

|ψ(Tπ/2)〉 =
1√
2

(|0〉+ i|1〉). (2.10)
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This a superposition of the states |0〉 and |1〉. The probabilities of finding the system

in each of the states is 1/2.

Figure 2.5: Plots for the oscillating probabilities of system in either state |0〉 or |1〉(red

and blue lines respectively) for different sets if Rabi Frequencies and detuning.

2.3 Qubit Register

In section 1.1, we saw how the coupling between the total angular momentum J and the

total nuclear angular momentum I is responsible for the Zeeman splitting of the fine-

structure states. The 52S1/2 state further splits into the states F=1(mF = -1,0,1) and

F=2(mF= -2,-1,0,1,2) Zeeman sublevels.

Let us consider two of these states i.e. |F = 1,mF = −1〉 and |F = 2,mF = 1〉 as |0〉 and

|1〉 respectively. The array of traps described above can be used to trap atoms in one of

the two states, i.e. |0〉 of |1〉 and create a quantum register. In order to achieve this, we

first consider an array having 20 components (figure 2.6) and apply a bias-field of 30 G in

the positive X direction.
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Figure 2.6: Top view of a one dimensional micro array (n=20) having individual component

width = 5 µm, thickness of wire = 1µm, array height = 25 µm and conducting current I

= 100 mA. This micro-array is used to create a quantum register.

If the micro-array is introduced in-between two parallel wires running perpendicular

to the plane of the array, carrying a relatively higher current(6A) and far spaced from the

array (900m away from the wire-array center), then there will be a field gradient of 50

G/mm created along the trap. This can be seen in the following figure:

Figure 2.7: Gradient field created due to the additional wires running perpendicular to

the plane of the array, carrying a relatively higher current(6A) and spaced 900m away

from the wire-array center.

The aim of this exercise if to alter the magnetic field offset for each trap along the

array (figure 2.8). This ensures that the energy gap between the two states |0〉 and |1〉
is different for different sites on the array. We would only want to expect a transition at

the very specific site we choose, and a gradient field helps us achieve that goal. Each site

corresponds to a different transition frequency.

Therefore, a transition at a particular chosen site can be achieved by interacting the

atomic system with an electro-magnetic radiations of total frequency corresponding to the

energy difference between the two states at that particular site.
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Figure 2.8: Trap offsets for each array site before and after the application of a gradient

field.

Figure 2.9: Trap frequency for each array site before and after the application of a gradient

field(for 87Rb; state: F = 2, mF = 2).

The ground state levels |0〉 and |1〉 have the same first order Zeeman shift, and are

separated by hyperfine splitting (ωhfs ≈ 6.8 GHz). In the presence of an external magnetic

field, the degeneracy in the hyperfine structure is broken and both levels (F = 1 and F =

2) experience a Zeeman splitting of ± 0.7 MHz/G between adjacent Zeeman levels. The

|0〉 ↔|1〉 transition is a two photon excitation process as seen in the following figure.

The first photon is in the microwave range(≈ 6.8 Ghz) and the second is in the rf range

(0.7 Boff MHz). The microwave frequency is detuned from |1,−1〉 ↔ |2, 0〉 transition by

∆. δ represents the detuning of the total microwave and rf frequencies from the atomic

transition frequency. As ∆ is the detuning from the intermediate level, it is kept larger

than each of the Rabi frequencies for individual microwave and rf transitions (Ω2
MW and

Ω2
rf � ∆2) such that probability for transition to the intermediate level is small.
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Figure 2.10: 87Rb5S1/2 ground state with Zeeman splitting. The lines represent the

microwave and rf radiation. ∆ = ωMW − ω|1,−1〉↔|2,0〉 and δ = ω|0〉↔|1〉 − (ωMW + ωrf ).

The two photon transition Rabi frequency is given by [11]

ΩRabi =
ΩMWΩrf

2∆
(2.11)

Therefore, we can creating getting a quantum register using a magnetic micro-array

of neutral atom traps.
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Chapter 3

Bose-Hubbard Model

Due to the Heisenberg uncertainty relation quantum fluctuations exist even at tempera-

tures close to 0 Kelvin. These fluctuations can be strong enough to cause a phase transition

from one phase to another. An example for this type of quantum phase transition is a

change from a superfluid phase to a Mott insulator phase in a bosonic system where there

is repulsive interaction between the particles and hopping through the lattice potential.

We consider an atomic gas of bosons at a low temperature such that a Bose-Einstein

condensate is formed. When the condensate is subjected to a lattice potential in which

the bosons can tunnel through from one site to the other, there are two states in which

the system could be found:

• A superfluid phase, where the dominant kinetic energy is minimized by a delocal-

ized wavefunction.

• A Mott insulator phase, which occurs when the repulsive atom-atom interac-

tions are large as compared to the tunnelling(kinetic energy). The total energy is

minimized when the occupancy of each site in the optical lattice is constant. The

reduction in the atom number fluctuations lead to increased fluctuations in the phase.

This phenomenon can be studied using the Bose-Hubbard model. In the Bose-

Hubbard Hamiltonian, the kinetic energy and interaction energy terms compete

against each other and this competition is fundamental to the quantum phase tran-

sition.
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3.1 Bose-Hubbard Hamiltonian

The starting point of the Hamiltonian is the Gross-Pitaevskii equation [20]:

H =

∫
d3rψ†(r)

[
−~2∆2

2m
+ Vo(r) + VT (r)

]
ψ(r) +

4πas~2

2m

∫
d3r ψ†(r)ψ†(r)ψ(r)ψ(r)

(3.1)

where ψ(r) is the boson field operator for atoms in a given internal atomic state, Vo(r) is

the optical lattice potential and VT (r) is a slow varying external trapping potential. The

optical potential is of the form [19]:

V (x, y, z) = Vo(sin
2(kx) + sin2(ky) + sin2(kz)) (3.2)

with k = 2π/λ being the wavevector, λ being the wavelength of the laser light which in

turn corresponds to the lattice period a = λ/2; as is the s-wave scattering length and m

is the mass of the atoms.

Figure 3.1: 3-D Contour Plot for the trapping potential V (x, y, z)

The energy eigenstates for the above hamiltonian are Bloch wave functions; and

a superposition of these Bloch states yield a set of Wannier functions which are well

localized on individual lattice sites. We can write the wavefunction in the wannier basis

as ψ(r) =
∑

i aiw(r − ri) [20]. The equation 3.1 reduces to[20]:

H = −J
∑
<i,j>

â†i âj +
∑
i

εin̂i +
1

2
U
∑
i

n̂i(n̂i − 1) (3.3)
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where, n̂i = â†i âi are the number operators which count the number of atoms at site i. â†i
and âi are the creation and annihilation operators which follow the canonical commutation

relations
[
â†i , âj

]
= δij .

J = −
∫
d3rw(r − ri)

(
−~2∆2

2m
+ Vlat(r)

)
w(r − rj) (3.4)

is the hopping matrix element between two adjacent sites. It is the measure of tunneling

between the sites of the lattice.

U =
4π~2as
m

∫
|w(x)|4d3x (3.5)

is the on-site interaction matrix element. It is a measure of interaction energy between

atoms at a particular site.

3.1.1 Superfluid Phase

When the tunneling term dominates in the Hamiltonian, the ground state energy is

minimized if the single-particle wavefunctions of the atoms are spread over the entire

lattice.

Figure 3.2: Superfluid state for two wells and two particles. The numbers 0.25 and 0.5

represent the probabilities of occurrence of a state

For 2 atoms and 2 lattice sites the wavefunction is:

1√
2

(φl + φr)⊗
1√
2

(φl + φr) (3.6)

where φl and φr are the wave functions for the left and right side of the potential well

respectively. Similarly, if there are M lattice sites and N atoms. The N-particle ground

state is given by [19]

|ψ〉 =
1√
N

(
1√
M

M∑
i=1

â†i

)N
|0〉 (3.7)
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All atoms occupy the identical Bloch state. The probability distribution for the local

occupation ni of atoms on a single site is poisonian. The state is described by a macroscopic

wavefunction with long range phase coherence throughout the lattice.

3.1.2 Mott Insulator state

If the interaction term dominates in the Hamiltonian, the system instead consist of

localized wave-functions. There is a commensurate filling of atoms in the lattice sites,

this essentially means that each site is occupied by a fixed number of atoms. The many

body ground state is therefore a tensor product of local Fock states for each site.

Figure 3.3: Mott insulator state for 2 wells and two particles

For 2 atoms and 2 lattice sites, the total wavefunction is:

1√
2
φl ⊗ φr +

1√
2
φr ⊗ φl (3.8)

Similarly for, M lattice sites and N atoms, the ground state of the many body system

is given by [19]:

|ψ〉 ∝
M∏
i=1

(
â†i

)n
|0〉, (3.9)

where n is the number of atoms at per lattice site.

In this state phase coherence does not prevail in the system but there are perfect

corelations in the atom number for the lattice sites.

When the strength of the interaction term relative to the tunnelling term is changed,

the system reaches a quantum critical point for the ratio U/J . At this critical point, the

system undergoes a quantum phase transition from a superfluid state to a Mott insulator

state.
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Chapter 4

Double Potential Wells

We consider two of the lattice sites discussed in section 3.1 as a double well problem and

numerically study the variation of wavefunctions and tunnelling probability through the

barrier, with increased lattice separation.

A double well potential can be defined as a quartic potential symmetric about the the

y-axis:

V (x) =
Vo
b4

(x2 − b2)2 (4.1)

where Vo is the potential at the local maxima which occurs at x = 0 and depends upon the

mass of the atom(m) and oscillation frequency of the trap(ω). The next step is to solve

the one dimensional time independent Schrodinger’s equation for the above potential.[
−~2

2m

d2

dx2
+ V (x)

]
|ψ〉 = E|ψ〉. (4.2)

where E is the eigen-energy for the Hamiltonian and ψ is the eigen-vector. The above po-

tential can be solved analytically using WKB approximation [10]. But, I have numerically

solved the equation 4.2.

4.1 Numeric solution for the quartic double well potential

The variables in our calculation are Vo and b. We compute the value of equation 4.2 with

eigen-functions determined by a numerical solution to the Schrodinger’s equation with the

independent variable x in a defined range with parameter E(energy).

For the values Vo = 2 units, and b = 2 units, the wave functions overlap and renders

a finite tunnelling probability (figure 4.1). The energy for the ground state wavefunction
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is 0.90 units, while the energy for the first excited wave function is 0.94 units. These

wavefunctions are not normalized yet.

Figure 4.1: Ground state and first excited state wave functions for b = 2 units and Vo =

2 units.

Now, if we increase the separation between the two minima of the the potential function

(equation 4.1) by increasing the value of b to 6 units, the overlap between the wavefunctions

decreases as seen the following set of figures.

Figure 4.2: Ground state and first excited state wave functions for b = 6 units and Vo =

2 units
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4.2 Tunnelling in a Double Well

The tunnelling probability T is calculated using the overlap integral of the two ground

state wavefunctions for the individual well ψ1 and ψ2.

T ∝
∫
ψ1ψ2dx (4.3)

But the question which arises here is how to find the individual ground state wave

functions for each of the two sites. We know that the ground state wave function for a

single harmonic well is gaussian.

φ =
1

(πxo)1/4
exp

(
− x2

2xo

)
(4.4)

where xo = ~/mω.

Therefore we can assume a gaussian wave function as the ground state for each site of

the potential well.

f1 = A exp
(
−B(x− C)2

)
(4.5a)

f2 = A exp
(
−B(x+ C)2

)
(4.5b)

Using the interpolation function values from the wavefunction calculated in section 4.1

we can find the value of the constants A, B and C, and hence the ground state wave

functions ψ1 and ψ1 after normalizing f1 and f2 respectively.

As we can see from figure 4.2, the overlap between the wavefunctions decreases with

increase in the value of b.

After recovering ψ1 and ψ2, we can calculate the overlap between the wave functions

using equation 4.3 and therefore, the probability for an atom to tunnel across the potential

barrier.
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Figure 4.3: The wavefunctions for different values of b and at constant Vo = 2
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The variation of the tunnelling probability can be easily observed from the plots or

calculated. It varies with b as follows:

Figure 4.4: Variation of overlap of ground state wave functions for each site of the potential

well(T). This is done for Vo = 2, Vo = 1.5, Vo = 1 and Vo = 0.5

As we can see in the above set of figures, the tunnelling probability alos varies with Vo.

It increases as we increase V0. However, for a particular value of Vo, we see an exponential

decay of the tunnelling probability.
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Chapter 5

Future Directions

We have seen in chapter 2 that a micro-array of magnetic traps for neutral atoms can be

used to create a quantum register. The idea of a quantum register has been well explored

by D. Schrader et. al [16], where they have used optical trapping potentials to trap atoms.

Therefore, to produce a quantum register using magnetic traps for neutral atoms is a novel

idea and can be pursued further. There is also an experimental scope for this project.
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