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Abstract

Gravitational lensing, bending of light rays due to gravitational potential, can lead

to formation of highly distorted and multiple images of distant objects. Though

the theoretical understanding of the phenomena came from predictions of Einstein’s

General theory of Relativity, it is since thirty years ago that it has been possible to

observe it with the aid of a number of highly sensitive telescopes. Subsequently, it

was understood that gravitational lensing can be used as a tool to map the grav-

itational potential of clusters and galaxies in detail. In the last three decades the

focus has firmly been on generic and stable image configurations (cusps and folds)

or on statistical determination in the limit of weak distortions. However, with im-

provement in sensitivity and sky coverage, rare image configurations are likely to be

detected with upcoming instruments like LSST(Large Synoptic Survey Telescope).

In this project we intend to identify and map different types of singularities in image

plane for a given lens potential. We have also studied generic image forms for each

type of singularity.





Chapter 1

Strong Gravitational Lensing

Gravitational lensing is a phenomena in which light rays are deflected by gravity.

Though in the framework of Newtonian relativity, this deflection is possible, the

actual value of the shift can be calculated correctly only using Einstein’s General

Theory of Relativity (GTR). Prediction of GTR was that a light ray which passes

close to the limb of the sun would be deflected by 1.7
′′
. Arthur Stanley Eddington

estimated such a shift observationally during a solar eclipse in 1919[3]. His mea-

surement showed that GTR is a more favored theory for gravity over the Newtonian

framework. He [3] also noted the possibility of formation of multiple images as a re-

sult of this phenomena. Einstein [4] formulated the mathematical theory of lensing

due to the potential of massive stars, however, believed that owing to the limited

resolution of the telescopes, there is not much hope of observing it directly. Zwicky

[5] realized the possibility of the detection of gravitational lensing by the potential

of the galaxies (called nebulae at that time). He calculated the probability of this

detection and found that it is on the order of one percent for a source at a reasonably

high redshift. It took almost half a century to detect the first gravitational lens QSO

0957+561 A, B using radio spectroscopy in 1979 [6].

Once observation of the gravitation lenses became possible, focus shifted on using it

as a tool. The very important application of Gravitational Lensing is the magnifi-

cation effect which enables these lenses to act as cosmic telescopes ([5]). This helps

in inferring source properties which are below the detection limit of current obser-

vations. This phenomena has also led to accurate determination of mass of galaxies

which act as lenses. Light from different images of the same source travel different

paths and hence the time delay between them can be used to give an accurate dis-

1
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tance to the lensed object provided that the lens geometry is known. Time delay can

further be used for determination of cosmological parameters like the Hubble’s con-

stant. Since Gravitational Lensing depends only on the projected two dimensional

mass distribution of the lens it offers an ideal way to detect and quantify the amount

of dark matter.

The critical curves and caustics produced as a result of lensing has been used as a

key to represent the distribution of the gravitating mass of the gravitational lenses.

In principle by observing the higher order caustics formed in the image of distant

quasars lensed by a foreground galaxy cluster it is possible to infer the cluster po-

tential very accurately. This is because not many instances of higher order caustics

are known. The upcoming instruments like LSST(Large Synoptic Survey Telescope)

are likely to increase the number of lensed systems by atleast an order of magnitude

and hence the number of higher order caustics will also increase. This project aims

to assess the probability of estimating the gravitational potential of distant galaxy

clusters by identification of these higher order caustics. This report discusses the

gravitational lensing and the formation of caustics from a theoretical point of view.

We have developed a numerical technique to estimate the caustics of different order

for an arbitrary potential. We also have investigated image configurations corre-

sponding to different lensing potentials using this numerical scheme.

1.1 Effect of gravity on radiation

A simple argument as explained below can demonstrate to us that how clock rates

are affected by gravity. Consider the case, when in a weak gravitational field (hence,

Newtonian gravity can be applied) a laser is being pointed towards the ground from

a certain height L. Let us for the sake of argument, consider that the photons

which carry the energy of this laser are converted to electron-positron pair. We shall

consider the case of a single photon here, rest have similar fate. When this pair

reaches the ground it gains an additional energy as it is comes to a place with less

gravitational potential, hence, hν = Edown = Eup + mgL. Let us consider now that

this pair is converted back to photon and sent up to the same height L. Now if we

assume that the frequency of the photon has remained unchanged in this process

then it means that every time the photons go up they gain an additional energy of
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mgL. This violates the law of conservation of energy. If we rather consider that

the frequency of photon should change as it travels through gravitational fields, this

phenomena can be explained provided this change is given as

hνdown = hνup +mgL (1.1)

= hνup +
hνup
c2

gL

= hνup

(
1 +

gL

c2

)
In general, in a weak gravitational field having potential φ, we get

ν = νo(1−
φ

c2
) (1.2)

This simple analysis demonstrates the effect of gravity on the propagation of light

rays. In this section we shall discuss this formally with help of General Theory of

Relativity (GTR).

1.1.1 Line element in presence of weak gravitational field

Non-Relativistic action function for a particle in weak gravitational field φ has the

form:

A = −mc
∫ (

c− v2

2c
+
φ

c

)
. (1.3)

Comparing this with the general action expression A = −m
∫
ds, we may get the

interval as

ds2 = (c2 + 2φ)dt2 − dr2, (1.4)

when vdt = dr. This suggests that for the weak gravitational potential, g00 =

(1 + 2 φ
c2

), a result which shall be used often in the following sections.

1.1.2 Maxwell’s Equations in weak gravitational field

Propagation of light in classical mechanics is governed by the Maxwell’s equations.

In this section we find the Maxwell’s equations in a weak gravitational field. Elec-

tromagnetic field tensor is defined in flat space as

Fik =
∂Ak
∂xi
− ∂Ai
∂xk

(1.5)
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It is important to note that this definition remains invariant even in curvilinear

coordinates because of the fact that Γ’s are anti symmetric tensor.

Fik = Ak;i − Ai;k =
∂Ak
∂xi
− ∂Ai
∂xk

(1.6)

As a result the first pair of Maxwell’s relations remain unchanged.

∂Fik
∂xl

+
∂Fli
∂xk

+
∂Fkl
∂xi

= 0 (1.7)

However, as the second pair of Maxwell’s equation involve the current four vector,

they need to be modified.

In case of a general coordinate with a the charge density ρ, the current four vector

is given as

ji =
ρc
√
g00

dxi

dx0
. (1.8)

Therefore the remaining Maxwell relations can be written as

∂i
[
F ik√−g

]
√
−g

=
4π

c
ji. (1.9)

1.1.3 Effective refractive index

Considering the case of static gravitational field i.e. g0α = 0 and defining the quan-

tities as follows:

Eα = F0α , D
α = −√g00F 0α (1.10)

Bαβ = Fαβ , H
αβ =

√
g00F

αβ (1.11)

and using γαβ = −gαβ we can derive the following relations

Dα =
Eα√
g00

(1.12)

Bαβ =
Hαβ√
g00

. (1.13)

The above two equations represent the Maxwell’s equations in 3 dimensional form

in a static gravitational field. Comparing above equations with the case of electric

amd magnetic fields inside an dielectric medium we may write, µ = ε = 1√
g00

and

refractive index of gravity n = g00 = (1 + 2 φ
c2

). This indicates that the problem of

lensing by a static gravitational field can be addressed in terms of ordinary optics.

We shall use this formalism throughout the lensing theory. We shall only consider

the cases of the static gravitational field here.
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1.2 Theory of Gravitational Lensing

The order of magnitudes of distances between a source and a lens is generally much

larger than that of the diameter of the galaxy or the cluster which act as a lens.

As a result of which it is only important to study the defection within a thin zone

close to the lens. Also, as we consider weak gravitational field we may use the

effective Newtonian potential of the lens mass distribution here. In such a case,

it is possible to assume that the the lensing mass is concentrated in a region and

then estimate the gravitational field for that at different points (Gauss’s law). First

we shall consider the case of lensing by a point mass. Incidentally, the first ever

theoretical understanding of the lensing by Einstein was also done by considering a

point mass of a star. We shall develop the basic formalism here using the point mass

approximation.

Thin screen approximation

Figure 1.1: Thin screen approximation. Ref:[7]

We consider the case of a locally Minkowskian space time weakly perturbed by
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the gravitational potential φ. Using the formalism developed in the previous section

effective refractive index of gravitational field is

n =

[
1 + 2

| φ |
c2

]
. (1.14)

This apparently slows down the light rays in the gravitational field and former travels

with a velocity v of

v =
c

n
(1.15)

This reduction in speed amounts to a delay in arrival time of signal through the

medium relative to that in vacuum. The total time delay, called the Shapiro’s delay,

can be calculated as

∆t =
∫ observer

source

dl

v
− dl

c
(1.16)

=
2

c3

∫
dl | φ | .

It is easy to see that the effective refractive index is a function of the position and

hence n has a finite gradient. Like in optics, this non vanishing gradient causes

deflection of light rays in the gravitational field. Deflection angle is equal to the

integral along the light path of the gradient of n perpendicular to light path. However,

as we are considering the case of a weak gravitational potential, the deflection angle

is small the above integration can be done along an unperturbed ray instead of the

deflected ray but with the same impact parameter:

~̂α = −
∫
~∇⊥n dl =

2

c2

∫
~∇⊥Φ dl. (1.17)

Clearly, what remains is to calculate the gravitational potential for a given mass

distribution. As the extent of the lens is very small compared to both the source-

lens and the lens-observer distance, it is often customary to assume that all the

deflection due to gravity occurs only at the lens position. This is analogus to the

thin lens approximation considered in ordinary optics and makes the above integral

quite straight forward. Figure 1.1 shows a light ray deflecting close to the lens plane.

In mathematical terms, mass distribution of the lens can then be projected along the

line of sight and replaced by a mass sheet (often called the lens plane) orthogonal to

the sight line. The important quantity that comes into the deflection integral then

is the surface mass density of this mass sheet defined as Σ(ε) =
∫
ρ(ε, z)dz. Here ε



1.2. THEORY OF GRAVITATIONAL LENSING 7

is the two-dimensional vector in the lens plane. The net deflection angle is equal to

the contributions from all the mass elements in the lens plane and is given as:

~̂α =
4G

c2

∫ (ε− ~ε′)Σ(~ε′)

| ε− ~ε′ |2
d2ε′ (1.18)

Figure 1.2: Lensing Geometry[7]

Lensing Geometry

Figure 1.2 demonstrates the overall geometry of a gravitational lens system. The

angle between the arbitrarily chosen optic axis and the source position S is ~β and

between the optic axis and image I is ~θ. The quantities Dd, Dds and Ds represent the

angular diameter distances between the observer and the lens, lens and source, and

observer and source. It is customary to define reduced deflection angle as: ~α = Dds

Ds

~̂α.

From simple geometry we can see that

~β = ~θ − ~
α(~θ). (1.19)

This equation forms the foundation of Gravitational Lensing and is known as the

lens equation. Observationally, one has the information of the image positions

θ. Solving the lens equation, the source position β is inferred. For a circularly

symmetric lens the magnitude of the deflection angle is

ˆα(ε) =
4GM(ε)

c2ε
(1.20)
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where ε is the distance from the center of the lens and M(ε) is the mass enclosed

within the radius ε,

M(ε) = 2π
∫ ε

0

∑
(ε′)ε′dε′. (1.21)

It is clear that by measuring the deflection angle from observations one can estimate

the mass responsible for lensing.

Critical Density

Unlike optical lenses, gravitational lenses do not always have a definite focal length.

Result is that for gravitational lenses, light from the source is not directed towards the

observer, or focused at the observer. For the focusing effect to occur, the lens must

have a particular density, namely the critical density. To understand the concept of

critical density let us consider a special case of lens having constant surface mass

density, the reduced deflection angle then becomes

α(~θ) =
Dds

Ds

4G

c2ε
(Σπε2) =

4πGΣ

c2
DdsDd

Ds

θ (1.22)

where ε = Ddθ. Now, to make all the light rays come to observer, we essentially need

β = 0, i.e. α(θ) = θ. The surface mass density required for this to happen is called

the critical mass density Σcr, hereby,

Σcr =
c2

4πG

Ds

DdDds

. (1.23)

Clearly, a typical lens in general will show a different behavior. The light rays with

different impact parameter will be deflected at different angles. Multiple images

occur if the lens is super critical i.e. Σ > Σcr.

Einstein Radius

Writing the lens equation for a circularly symmetric lens with an arbitrary mass

profile we get

β(θ) = θ − Dds

DdDs

4GM(θ)

c2θ
(1.24)

For a source at the axis (β = 0) the image is a ring with a radius

θE =

[
4GM(θ)

c2
Dds

DdDs

]1/2
(1.25)
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if the lens is super critical. Hence, for a source at the center the image is a ring, this

ring is called as the Einstein ring and the radius θE is called the Einstein radius.

The value of θE in case of the lensing by a star of mass M ∼M� and D ∼ DdDds

Ds
= 10

kpc θE = 0.9 micro arc seconds while for a galaxy of mass M ∼ 1011M� and D ∼ 1

Gpc θE = 0.9 arc seconds. It is important to note that Einstein radius is not only

the property of the lens but it also depends on the different distances involved in the

problem. For a given lens mass and Ds deflection is largest when Ds = Dds.

1.2.1 Properties of images

Magnification

The most important property of images formed as a result of lensing is that they

are highly magnified. This is because surface brightness is preserved in the case of

gravitational deflection while the apparent solid angle of the source changes.

Hence

magnification =
image area

source area
(1.26)

Clearly, using the lensing geometry, for a circularly symmetric lens, the magnification

factor is

µ =
θ

β

dθ

dβ
. (1.27)

In absence of symmetry we can see it as a mapping of a solid angle element of the

source δβ2 to the solid angle element of the image δθ2.

Achromatism

We have defined the effective refractive index of the light rays in the gravitational

field considering parallelism with ordinary optics. However, as the effective refractive

index here depends only on the geometry of the space-time or the gravitational

field, it has no dependence on the wavelength of radiation considered. Hence, the

gravitational lenses, unlike optical lenses, have no chromatic aberration.
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1.2.2 Imaging by a point mass lens

In this section we discuss the simple case of imaging by a point mass lens. For a

point mass Einstein radius is

θE =
4GM

c2
Dds

DdDs

(1.28)

The lens equation then becomes:

β = θ − (θE)2

θ
. (1.29)

As above is a quadratic equation, it has two solutions and two images are formed

with positions at

θ± =
1

2
(β ±

√
β2 + 4θ2E). (1.30)

The magnification of the two images are

µ± =

1−
(
θE
θ±

)4
−1 =

u2 + 2

2u
√
u2 + 4

± 1

2
, (1.31)

where u is the angular separation of the source from point mass in units of Einstein

radius. The two images are located on either side of the source, with one image

inside the Einstein ring and the other outside. For θ < θE, µ− < 0 i.e Image inside

the Einstein ring has negative magnification. The interpretation of negative µ is that

parity of the image is flipped with respect to the source. The net magnification of

the images is

µnet =| µ+ | + | µ− |=
u2 + 2

u
√
u2 + 4

(1.32)

1.2.3 Imaging by a Singular Isothermal sphere

In this section we consider lensing by galaxies where the model for mass distribution

in galaxies is that of a singular isothermal sphere. The density is given by:

ρ(r) =
σ2
v

2πG

1

r2
. (1.33)

This mass distribution is called the singular isothermal sphere( ρ ∝ r−2 ). As a

result, the mass M(r) ∝ r and the rotational velocity of particles

v2rot(r) =
GM(r)

r
= 2σ2

v = constant (1.34)
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Upon projecting the mass density along the line of sight we get the surface mass

density as

Σ(ε) =
σ2
v

2G

1

ε
, (1.35)

where ε is the distance from the center of the two dimensional profile. Deflection

angle is

α̂ = 4π
σ2
v

c2
, (1.36)

which is independent of ε. The Einstein radius is :

θE = 4π
σ2
v

c2
Dds

Ds

= α. (1.37)

The lens equation gives two solutions

θ± = β ± θE (1.38)

The magnifications of two images are

µ± =
θ±
β

= 1± θE
β

= (1∓ θE
θ±

)−1 (1.39)

On careful consideration it can be seen that a third image with zero flux is situated

at θ = 0. Multiple images are obtained if β < θE. If the source lies outside the

Einstein ring, there is only one image at θ = θ+ = β + θE. This suggests that the

Einstein’s ring defines two different regions in the source plane, and this shall be the

centre of our discussion at a later section.
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Chapter 2

Mathematical formalism of

Gravitational lensing

In this chapter we describe the general analytical formalism of lensing problem and

discuss a few examples.

2.0.4 Effective Lensing Potential

In this section we develop a formalism to describe image formation by an arbitrary

lens model. We define a scalar potential ψ(~θ) which is the scaled, projected Newto-

nian potential of the lens:

ψ(~θ) =
Dds

DdDs

2

c2

∫
Φ(Dd

~θ, z)dz (2.1)

~∇θψ = Dd
~∇εψ =

Dds

Ds

2

c2

∫
~∇⊥Φdz = ~α (2.2)

∇2
θψ =

2

c2
Dds

DdDs

∫
∇2
εΦdz =

2

c2
Dds

DdDs

4πGΣ = 2
Σ(~θ)

Σcr

= 2κ(~θ) (2.3)

The last expression makes use of the Poisson’s equation to relate the Laplacian of

Φ to the mass density. The scaled projected density divided by the critical density

κ(~θ) is called the convergence.

The lens mapping can be described by the Jacobian matrix

A =
∂~β

∂~θ
=

δij − ∂αi(~θ)

∂θj

 . (2.4)

13
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Using ~∇θψ = ~α we get,

A =

δij − ∂2ψ(~θ)

∂θi∂θj

 = M−1 (2.5)

A is also called the inverse magnification tensor (M). The distortion in solid angle

is given by the determinant of A. It can be clearly seen from equation 2.5 that the

matrix of second partial derivatives of potential ψ describes the deviation of the lens

mapping from identity.

Using ∂2ψ(~θ)
∂θi∂θj

= ψij

κ =
1

2
(ψ11 + ψ22) =

1

2
Tr ψij (2.6)

Components of shear tensor can be written as

γ1(~θ) =
1

2
(ψ11 + ψ22) = γ(~θ)cos

[
2φ(~θ)

]
, (2.7)

γ2(~θ) = ψ12 = ψ21 ≡ γ(~θ)sin
[
2φ(~θ)

]
. (2.8)

Jacobian matrix is given by

A =

 1− κ− γ1 −γ2
−γ2 1− κ+ γ1

 (2.9)

= (1− κ)

 1 0

0 1

− γ
 cos2φ sin2φ

sin2φ −cos2φ


Physically convergence means an isotropic magnification of source(for example a

circle transforming to a circle with larger radius) while shear introduces anisotropy

into the mapping(a circle transforming to an ellipse). γ is the magnitude of shear

and φ describes the orientation.

µ = detM =
1

detA
=

1

[(1− κ)2 − γ2]
(2.10)

2.0.5 Formation of images: Fermat’s principle

Time -Delay function

The lens equation can be cast in the form

~∇θ

[
1

2
(~θ − ~β)2 − ψ

]
= 0 (2.11)
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The term in the parenthesis can be recognized as the time delay function,

t(~θ) =
(1 + zd)

c

DdDs

Dds

[
1

2
(~θ − ~β)2 − ψ(~θ)

]
(2.12)

= tgeom + tgrav.

The term tgeom represents the time delay due the geometric path difference relative

to the unperturbed light ray while the term tgrav is the Shapiro’s delay that we have

encountered before. The coefficient in the front ensures that this corresponds to time

delay as measured by the observer. Using Fermat’s principle we can write

~∇θt(~θ) = 0 (2.13)

Like conventional lenses images will form at extrema in the light travel time surface.

These extrema/stationary points of a two dimensional surface are of three types:

maxima, minima and saddle points [? ]

T =
∂2t(~θ)

∂θi∂θj
= (δij − ψij) = A (2.14)

The matrix T describes the local curvature of time-delay surface. The classification

of stationary points is on the basis of following criteria:

• If both the eigen values of T are negative i.e.where detA > 0 and trA < 0 , the

stationary point is a maxima.

• If both the eigen values of T are positive i.e.where detA > 0 and trA > 0, the

stationary point is a minima.

• If both the eigen values of T have opposite signs i.e.where detA < 0 , the

stationary point is a saddle .

Since magnification is inverse of detA images of type1 and 2 have positive magnifi-

cation while images of type 3 have negative magnification or the parity of the image

is reversed. VLBI observations have shown that this is indeed true.

Critical curves and caustics

Critical curves are curves in θ space (image plane) where detA = 0. Correspond-

ing curves in β space (source plane) are called caustics. It is possible to look at

critical curves and caustics in terms of magnification. These are curves of infinite

magnification i.e. detM = 1
detA
→∞. They are of great importance because



16CHAPTER 2. MATHEMATICAL FORMALISMOFGRAVITATIONAL LENSING

1. They highlight regions of high magnification.

2. They demarcate the regions of different image multiplicity.

Four commonly used circularly symmetric lens models are :

• Point mass

• Constant Density sheet

• Singular Isothermal sphere

• Softened Isothermal sphere

2.1 Circularly Symmetric Lens Models

The image configurations produced by circularly symmetric lenses can be found out

with the knowledge of time delay functions t(θ) vs θ. The figure below shows time

delay function of a circularly symmetric lens for a source at a slightly offset position.

The dotted line shows the location of the center of the lens and β shows the position

of the source.

Figure 2.1: Time delay function vs θ for an offset source [7]
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2.1.1 Softened Isothermal Sphere

First three lens models have been discussed in the previous sections, therefore this

section elaborates the analysis of softened isothermal sphere. The projected scalar

potential in this case is given by

ψ(θ) =
Dds

Ds

4πσ2

c2
(θ2c + θ2)1/2 (2.15)

where θc is the softening radius. Therefore

α(θ) =
Dds

Ds

4πσ2

c2
θ

(θ2c + θ2)1/2)
(2.16)

The lens equation is :

β = θ(1− K

(θ2c + θ2)1/2
) (2.17)

where K = Dds

Ds

4πσ2

c2
Since detA = β

θ
∂β
∂θ

∂β

∂θ
= 1− Kθ2c

(θ2c + θ2)3/2)
(2.18)

detA =

(
1− K

(θ2c + θ2)3/2)

)(
1− Kθ2c

(θ2c + θ2)3/2)

)

Equating detA to zero we get the following critical curves and caustics :

θ =
√
K2 − θ2c , β = θ − Kθ

K
= 0 (2.19)

θ = (Kθ2c )
2/3 − θ2c , β = θ(1− (

K

θc
)2/3 (2.20)

= (K2/3 − θ2/3c )3/2 (2.21)

The graph shown in figure (2.2) plots β vs θ for different values of softening radius.

The green curve(θc = 0) represents the case of singular isothermal sphere discussed

in previous sections. The two extrema points are the critical points as shown in

above calculations. Clearly for any θ < θc there are three images corresponding to

three values of β while for any value of θ > θc only one image can be seen. To

have a better understanding of the position of images with respect to the critical

curves, β vs θ (2.3)) is plotted for a fixed value of softening radius. The gray and

black circles represent the caustic and critical curve respectively. The position of

the images (intersection of green line with the blue curve) can then be located with

respect to these curves.
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Figure 2.2: β vs θ different values of softening radius

Figure 2.3: β vs θ.



Chapter 3

Different lens models: A numerical

study

In this project we study the image configurations for different lens models and in-

vestigate the lens singularities. Our aim is to produce a database of possible lensing

scenarios such that it is possible to identify them with the help of the upcoming sur-

veys like LSST. It is well known that with help of first order singularities in the image,

it is not possible to reconstruct the lensing potential unambiguously. We investigate

the higher order singularities in this chapter. We shall consider the simple lensing

potentials first and then move onto more complex lens models. We first describe

the procedure adopted for this study and then consider different examples. Our

approach is two fold here. First we investigate the possible singularities in a given

lens model.Then we consider different source positions and numerically estimate the

image positions for each of them. Here we summarise the steps

1. To start with, we choose a form of the lensing potential ψ(~θ). Here ~θ is the

angular vector in the sky corresponding to any observation centre. Main re-

sources for this exercise are the functional form of the potential and the lens

equation given by

~β = ~θ −∇ψ (3.1)

We define this potential on a rectangular grid and proceed further. It is im-

portant to note that since we define the potential in a grid, it is possible in

principle to adopt the following steps for any arbitrary potential.

19
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2. We numerically compute the Eigen values and Eigen vectors of ψij = ∂2ψ
∂θi∂θj

. To

do this we need to evaluate second derivative of the potential at each grid point.

As this is the first numerical method we have used here, any numerical error in

this step is expected to carry over and multiply in the further stages. Hence we

have used a second order accurate five point finite difference scheme to estimate

the derivatives. As the projected potential is defined in two dimensions, we have

two sets of Eigen values and Eigen vectors at each grid point. We denote the

Eigen values as λ1, λ2 and the eigen vectors as ê1 and ê2. After these steps

the numerical values of λ’s and ê’s at each grid point are stored in appropriate

arrays.

3. We search for different lens singularities using Eigen values and Eigen vectors.

Specifications are discussed below. Similar mathematical structures are dis-

cussed in [1] in the context of gravitational clustering, interesting readers may

look in it.

• Critical curves and Caustics: Critical curves are defined to be the

curves in the image plane where at least either of the Eigen values of the

matrix ψij is unity, i.e, (1− λ1)(1− λ2) = 0. We search for points where

this condition is satisfied in the image plane by interpolating from the

gridded Eigen values. The corresponding lines in the source plane are

called the caustics.

• Cusps, Folds and A3 lines: Cusps and folds are special types of critical

curves. A fold is formed when a segment of a critical curve maps to a

smooth curve in a sorce plane. On the other hand cusps form when an

infinitesimal segment of a critical curve maps to a point in the source

plane. Cusps lie on A3 lines which are formed where the following criteria

is satisfied:

∇λ.ê = 0. (3.2)

We numerally investigated the criteria for A3 lines by interpolating these

values at different grid points.

• Unstable fixed points, A4 and D4: All the singularities described till

now are stable singularities. This implies that on changing the parame-

ters of the model lens, the singularities shift though their nature remain
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the same.We have investigated unstable singularities. The advantage of

analysing the unstable singularities lies in the fact that they produce spe-

cial image configurations only for very specific values of the lens param-

eters. Hence observing image configurations near these points gives us

knowledge about the lens parameters. Here we discuss the analysis of two

different unstable singularities.

A4 points are defined to be points where the tangent to the A3 line has

the same direction as the Eigen vector at that point. D4 points are defined

to be the points where two Eigen values of the matrix A are equal. These

points are found at very specific values of the lens parameters. We shall

discuss it with an example in the next section.

4. We consider a single circular source at the background of the lens and simulate

the image configurations for different positions of the source provided a lensing

potential. We then use ray shooting method to calculate the image positions

from the lens equation. We briefly describe the ray shooting method as follows.

Ray shooting method: Ray shooting methodis used to locate points

in the image plane corresponding to a source position and geometry for a par-

ticular lensing potential. The analytical form of the lens equation allow us to

calculate the source position directly if the image position is known. Using this

method we proceed in the following way. We divide the image plane into a rect-

angular grid. For each grid point, we numerically calculate the corresponding

source position using the lens equation. Then we check if the position obtained

in the source plane by this method is consistent with the position of the source

in consideration. If affirmative, we print the source and the image positions,

else we discard the image position. We repeat this for all the grid points in the

image plane. It is important to note that for this method to work the extent of

the image plane has to be large enough to fit all the image configurations inside

it. On the other hand the grid size of the image plane decides the accuracy

to which we can estimate the image positions. If the grid size does not have

sufficient resolution, it is possible to merge two physically separate images. In

principle a nested grid method can be applied. Here we have incorporated a

single (1024× 1024) gird to do the numerical calculations. This works well for



22 CHAPTER 3. DIFFERENT LENS MODELS: A NUMERICAL STUDY

the potential we have studied so far.

3.1 Special cases of lens potentials

In this section we numerically calculate the critical curves and images for different

lensing potentials. We also investigate the parameters of the lensing potentials that

gives rise to the unstable singularities namely the A4 and D4 points.

3.1.1 Softened Isothermal Sphere

We have already discussed the softened isothermal sphere potential before, here we

briefly mention the results for the critical curves and image configurations for different

source positions. This potential is modeled after a galactic dark matter halo.

Effective Potential

ψ(θ) =
Dds

Ds

4πσ2

c2

[
θ2c + θ2

]1/2
, (3.3)

here θc is the softening scale. Note that the angular diameter distances, Dds and Ds

depends on the redshift of the source and the lens. The parameters of this lens are

the softening length θc, redshift to the source and the lens, and the velocity dispersion

σ. Note that as the source passes a caustic, the number of images are increased or

decreased by two. As the source approaches the centre, we see the formation of an

Einstein ring.

Critical curves and images

Figure (3.1) shows the critical curves and caustics for this lens configuration. Image

configurations for three different source positions are shown in Figure (3.2) .

3.1.2 Softened Isothermal lens: elliptical geometry

In an astrophysical situation, ellipsoidal lenses are more generic compared to the

circularly symmetric cases. Here we generalise the softened isothermal lens with

ellipsoidal geometry.
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Figure 3.1: Critical curves and caustics for the softened isothermal sphere potential.
Axis levels are arbitrary.

Effective Potential

ψ(θx, θy) =
Dds

Ds

4πσ2

c2

[
θ2c + (1− ε)θ2x + (1 + ε)θ2y

]1/2
, (3.4)

where ε is the eccentricity of the ellipse.

Critical curves and images

Figure (3.3) shows the critical curves and caustics for this kind of lens configuration.

Cusp and fold formation in the critical curves can be clearly seen. We investigate im-

age formations when the source passes a cusp and fold in Figure (3.4) and Figure (3.5)

respectively. We see that as the source approaches the caustics, the image becomes

elongated (sheared) and breaks into three images as it passes the caustic. In case

when the source passes the fold caustics, at the central position of the source, four

broken arcs replace an Einstein ring along with a small central image. Figure (3.6)

shows an observation of an image configuration by [2] using VLT at a redshift of

3.773. Their lens model is also shown in the same figure. Remarkable similarity of

this image configuration with the third pannel of Figure (3.5) is noticable. Though

it is not shown here, for small ellipticity and a little extended source, ellipse shaped

Einstein ring can be still seen. When the source passes the cusp type caustic, at the

central position an elongated arc like image is formed. Figure (3.7) shows the A3
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lines in the image plane for this lens configuration.

Till now we have been investigating the stable lens singularities and hence a

critical choice of the parameters was not necessary. We now investigate the D4 point

for the present lens geometry. To do this we look at the evolution of the caustics and

the critical curves for different distances between the source and the lens and seek

for the particular value of the source to lens distance, for which the condition for D4

point (i.e, λ1 = λ2) is satisfied. As the angular diameter distance Dds depends on the

redshift of the source, we label the different distances as the corresponding different

redshifts of the source. However one need to keep in mind that these redshifts are just

to label different images and depends on other parameters of the lens. Figure (3.9)

shows the critical curves and caustics for three different values of the redshifts. In the

middle figure, we obtain the D4 point. An observation from the cluster Abell 1703

[8] is shown in the Figure (3.10), where image configuration similar to the bottom

panel of Figure (3.8).

3.1.3 Softened Isothermal lens: two ellipse geometry

Next we consider the case when there are two softened isothermal elliptical lenses in

the light path from source to the observer. This can be realised in nature as mergers

of two clusters of galaxies. Therefore we choose the potential to have the following

form.

Effective Potential

ψ(θx, θy) = F1

[
θ2c1 + (1− ε1)θ2x + (1 + ε1)θ

2
y

]1/2
(3.5)

+ F2

[
θ2c2 + (1− ε2)(θ

′

x − θx0)2 + (1 + ε2)(θ
′

y − θy0),2
]1/2

where the parameters F1 and F2 depends on the redshift of the source and the lens,

the velocity dispersions and the particular cosmology in consideration. Generically

the parameters of such a lens can be wide fold, we consider only a set of parameters

here that gives rise to a particulartype of caustics and critical curves. The quantities

θ
′
x and θ

′
y are the rotated coordinates with respect to the coordinates θx and θy by

an angle φ.
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Critical curves and images

Critical curves and caustics are shown in the source and image planes along with

the image formations for three different source positions in Figure (3.11). The pa-

rameters are adjusted so that the critical curve passes through the A4 point of the

configuration. As the source passes through the corresponding point in the caustics,

we see formation of straight arc like configuration. This is a very special signature

of A4 type singularity as shown in the bottom panel of Figure (3.14) . We also

show the A3 lines corresponding to this lens configuration in Figure (3.12) , where

complicated geometry of the lens is reflected. The A4 point is marked by a orange

dot in this plot.

Figure (3.13) shows four interesting A3 line configurations for different sets of

lens parameters. Of particular interest is the bottom right figure, where a pyramid

D4 point is formed. As clear from Figure (3.15)the three A3 lines corresponding

to each eigen value merge at this point. We investigate image formations when the

source passes a caustic at Pyramid D4 point in Figure (3.14).
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Figure 3.2: Image positions for three different source positions are shown for a soft-
ened isothermal sphere lens. Note that as the source passes a caustic, number of
images change by 2. For the central position of the source, an Einstein ring is ob-
served. Axis labels are arbitrary.
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Figure 3.3: Critical curves and caustics for the soften isothermal lens with ellipsoidal
symmetry potential. Axis levels are arbitrary.
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Figure 3.4: Image positions for three different source positions are shown for a soft-
ened isothermal spherical lens as the source passes a fold caustic. For the central
position of the source now four distinct arcs are formed with a central small image.
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Figure 3.5: Image position for three different source positions are shown for a softened
isothermal spherical lens as the source passes a cusp caustic. When the source is over
the cusp, an elongated arc is created.
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Figure 3.6: Image formation as the source passes through a cusp caustic reported
by Cabanac et al. [2]. Top left to clockwise: VLT observed image, lens model with
caustics, simulated image and simulated image in VLT resolution.
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Figure 3.7: A3 lines for softened isothermal elliptical potential is shown. Two colors
(red and magenta) give the A3 lines corresponding to two eigenvalues. Note that the
axis labels are arbitrary. Points where A3 lines of two eigenvalues merge are the D4
points and they are marked using circles.
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Figure 3.8: Image geometry for two different sources are shown for the critical redshift
when the D4 points are formed.
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Figure 3.9: Image position for three different redshift values are shown for a fixed
source position. D4 points are formed in the central frame. For larger redshifts, five
distinct points are formed.
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Figure 3.10: Image formation as the source passes through a D4 point reported by
Orban de Xivry & Marshall [8] is shown for the Abell 1703 in the top panel. Five
images are labelled from 1.1 to 1.5. The corresponding model for the same is shown
in the bottom panel (adopted from same references).



3.1. SPECIAL CASES OF LENS POTENTIALS 35

Figure 3.11: Image configurations for different source positions crossing a caustic at
A4 point are shown for the two ellipse potential.



36 CHAPTER 3. DIFFERENT LENS MODELS: A NUMERICAL STUDY

Figure 3.12: Complicated geometry of the A3 lines for two ellipse potential is shown.
Two colors (red and blue) gives the A3 lines corresponding to two eigenvalues. A4
point is marked with an green dot in the same plot. Note that the axis labels are
arbitrary.
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Figure 3.13: Complicated geometry of the A3 lines for two ellipse potential for four
different sets of parameters are shown. Two colors (red and blue) gives the A3 lines
corresponding to two eigenvalues. In the bottom right figure, four A3 lines of one
type merge forming a Pyramid D4 point. Note that the axis labels are arbitrary.
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Figure 3.14: Image configurations for different source positions crossing a caustic at
Pyramid D4 point are shown for the two ellipse potential. Note that the axis labels
are arbitrary.
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Figure 3.15: A3 lines meeting at the pyramid D4 point. Two colors (red and blue)
gives the A3 lines corresponding to two eigenvalues. Note that the axis labels are
arbitrary.
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Chapter 4

Discussion and Summary

In this project we have analyzed the singularities corresponding to different lensing

potentials and image configurations by them for different source positions. Our aim

was to examine the formation of different singularities, presumably the higher order

singularities, and understand possible image configurations around them. Here we

summarize briefly.

• We have developed a software that uses grid based techniques to find the sin-

gularities for different lensing potentials. With this, we can give input to an

arbitrary lensing potential in a grid and a source gemetry. We have looked

at the stable singularities,primarily the cusps and the folds which are formed

in a generic lens mapping. We find the A3 lines for all non circularly sym-

metric lens we have analyzed here. Moving one step ahead, we examined the

nature of image formation at certain higher order unstable singularities like the

singularities of type D4 and A4.

• Ray shootng method is implemented in our software to find out the image

configurations corresponding to different potentials and source positions. Using

this we could observe several interesting image formations and plan to construct

an atlas of possible image configurations to be observed by future surveys.

• We have considered different simple and complicated lens models influenced

by physical scenarios. We discuss in brief our observations with different lens

models here. The simplest lens model chosen for our analysis of folds was a

circularly symmetric softened isothermal lens. As clear from the simulations, a

41
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source on the positive side of a fold caustic has two images close to and opposite

side of the corresponding critical curve. As the source crosses the caustic, the

two images move closer together, merge and then disappear. But since such

lenses aren’t physically realizable we considered the case of lens defined by a

elliptical potential. Here we see the cusp caustics which are isolated points

connected by folds. A source close to but inside the cusp has three images near

the corresponding point on the critical curve. As described for folds, if the

source position changes across one of the two curves meeting at cusp, two of

the three images merge. When the source crosses the cusp point all the three

images merge and a single image remains.

• For a certain sets of lens parameters we investigated the possibility of forming

the unstable fixed points of type A4 and D4 given the lens parameters. Here

we mainly examined the effect of redshift in a ΛCDM cosmological senario.

Although we showed here an example of only one D4 and one A4 point, our

software can be used in principle for any arbitrary case.

• Having developed the software, we played with the lens parameters of a dou-

ble elliptical lens to examine the stable and unstable singularities and image

configuration for different cases.

Figure 4.1: A3 lines (green and red) are shown for two potentials giving A4 (left)
and pyramid D4 points (right) respectively. Critical curves at three redshifts for the
same potentials are also plotted. The A4 and D4 points are marked y a plus sign.
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As already mentioned, the goal of this project was to device a methodology that can

be used to generate a catalogue of image configurations given different lens potentials.

Moreover we are interested in the image configurations near the unstable fixed points,

as those allow us to lift some degeneracies of the lensing potentials. Idea is to look

for these interesting image configurationss in the upcoming large surveys like LSST

and model the lensing potentials. This has already been tried explicitly in Orban de

Xivry & Marshall [8], where they have explored different lensing potentials. For each

potential, they have considered its evolution over different redshifts of the source and

computed the image configurations. This is computationally expensive. We realised,

that change in redshift essentially scales the lensing potential keeping its geometrical

features intact. This means, the unstable fixed points for any lensing potential can

be explored by examining it at any an arbitrary redshift. Figure (4.1) shows the

A3 lines formations near the A4 and pyramid D4 points (unstable singularities).

Different contours in these figures correspond to the critical curves for the particular

lensing potential at different redshifts of the source. These figures clearly demonstrate

that though the critical curves changes with redshift of the source, the A3 lines or

the A4/D4 points remainthe same. Hence, all we need to do is to check the image

configurations near one such A4/D4 point for a particular lensing potential and study

the occurrence of these points for different lenses. This will allow us to explore the

parameter space of the lens considerably faster than the method suggested before.

This is a major understanding of our work.

Future Scope

A major problem in gravitational lensing studies is that the degenaracy in the lens

configurations can give rise to similar image configurations. This is mostly because

the hitherto observed gravitational lenses are presumably around the stable sin-

gularities. Lensing around an unstable singularity is rare as it resuires the right

arrangement of the lens parameters to form one, but is most useful becasue of the

same reason at the same time. Finding such cases reduces the degenaricies in the

lensing parameters drasticaly. In the history of gravitational lensing, though the

generic lens singularities have been studied in great detail, not much progress has

been made in studying the unstable singularities. An important reason for the latter

is the limited number of known lenses. But with the advent of new generation of
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telescopes like the Large Synoptic Survey Telescope (LSST) the number of lenses will

increase by a factor greater than ten. Such surveys will have an improved sensitivity

and the potential to detect these rare images in the sky. As per our study, we plan

to perform the following in future.

• Having developed a systematic technique for finding the stable and unstable

singularities, it helps us to prepare for the image configurations we expect

from the different singularities. We plan to study the parameter space in detail

with the present software and investigate the image configurations around the

natural cases of the galaxy cluster potentials etc.

• Our gridding technique uses a single resolution grid as present, which has lim-

itation of resolution to the image size. This can be overcome with a adaptive

mesh technique, which we shall like to implement.

• In the present version of the implementation, we have only considered the

image positions for different lens geometry and source positions, magnification

of the image is not considered explicitly. In practice magnification of the image

will play a crucial role in modelling different observed image configurations,

therefore we aim to implement it in our software in future.

• We also plan to use our models to study the observed data and draw conclusions

about the potential of the clusters in consideration.
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