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Abstract

This project consists of two parts, Part one consists of study of simplicial
homotopy theory, In particular, Dold-Kan correspondence between category
Simp(A) of simplicial objects in abelian category and category Ch>( of non-

negative chain complexes. Part two is a study of dimension subgroups.
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Introduction

A fundamental developement in mathematics during the last century has been the
simplicial homotopy theory and its applications in various areas of subject.
In Chapter 1, we have given some basic definitions and properties of simplicial objects and

simplicial maps.

In Chapter 2, first of all we construct a simplicial set from a topological space which
gives rise to a functor from category of topological spaces to category of simplicial sets.
We next, have given conditions for two n-simplexes being homotopic. It comes out that
being homotopic is an equivalence relation on K,. After that geometric realisation of a
simplicial set is given which gives rise to a functor from the category of simplicial sets
to the category of topological spaces. The main result of this Chapter is that singular
simplex functor is adjoint to geometric realisation functor which provides an equivalence

between the category of Kan-complexes and category of CW-complexes.

The main result of Chapter 3 is Dold-Kan correspondence which gives an equivalence
between the category Simp(.A) of simplicial objects in an abelian category A and the
category of chain complexes in A. Using the Dold-Kan correspondence, construction of

FEilenberg-Maclane spaces of all type is given.

In Chapter 4, we study dimension subgroups, including the counter-example of a group G
due to Rips 1972, showing that Dy(G) # v4(G).
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Chapter 1
Simplicial objects

In this Chapter we will give some basic definitions which will serve as a base for the

simplicial homotopy theory.

Definition 1.1 A category C is a collection of objects together with

(i) a class of disjoint sets, denoted by Hom(A, B) for each pair A,B € C, (an element
f € Hom(A, B) is called a morphism from A to B.

(ii) For each triple (A, B, D) of objects in C there is a map

Hom(B, D) x Hom(A, B) — Hom(A, D)
which satisfies two azxioms.

(a) Associativity: if f: A— B, g: B— D, h: D — E are morphisms then

ho(gof)=(hog)of.
(b) Identity morphism: For every object B in C, there exists a morphism Ip : B — B
such that for any
ftA—B, g:B—D
IBof:fa gOIB:g.
Example 1.2 A-Category:

Objects of this A-Category are sequence of integers {0,1,---,n}, n > 0 denoted by

[n] and morphism between any two objects [n] and [m] is a non-decreasing map



a:[n] — [m]

e, a(i) <a(j) fori<j.
Define face map ¢§; and degeneracy map o; in A as follows:
di : [n] — [n+ 1] by
6i(j)=J ifj<i
§i(j)=j+1 if j>i.
o;: [n] — [n —1] by
oi(j) =7 if j<i

oi(j)=4—1if 7>1.

Remark 1.3 For example, when we compute the face and degeneracy maps, then it
comes out that there are two distinct face maps from [0] to [1] and one degeneracy map
from [1] to [0]. There are three distinct face maps from [1] to [2] and two distinct degeneracy

maps from [2] to [1].

Lemma 1.4 /8, page 7] Every morphism o : [n] — [m] in A can be written uniquely in
the following form

=0 03,05 0,
with 0 <ig<---i1 <m and 0 < j1 < --- 5 < n. It follows that o has a unique epi-monic

factorization, a = do, where § = 0;, ---9;, and oj, --- 0y,

Proof Let is < ---i; be elements of [m] not in «([n]). Let j1 < ---j; be the elements of

[n] such that a(j;) = a(j;i +1). Then a = §;, - - - ;,04, - - - 0j,. In particular, o factorizes as

[n] = [p] = [m]

where p=n—t=m — s.



Definition 1.5 A simplicial object K in a category C is a contravariant functor

K:A—C.

It may be noted that a simplicial object is essentialy in a category C is given by sequence

of objects in C, { Ky }n>0 along with face maps

di : Kn — Kn,1

and degeneracy maps

S; - Kn — Kn+1

satisfying the following simplicial identities

didj = dj_ldi for i <j,

5i8j = sj418; for i <7,

diSj = ijldi fO’l“ 1< 7,

dis; = Id = diy154,
diSj = dei—l fori>j+1.
Example 1.6 The n — simplex A[n] is a simplicial object with
face map d; : Aln]y — A[n]z—1 and degeneracy map s; : A[n]y — A[n]4q is given by
dj(io, - -+ i) = (doy -~ j—1, 9541, - iK),
5 (i0,- i) = (G0, - 15,05, - i)

Definition 1.7 A cosimplicial object in a category C is a sequence of objects, K™ € C
together with maps d* : K» — K"t s« K" — K"l which satisfy cosimplicial

identities:

dd =d'd fori<j for 0 <i<mn,



sist = st fori<j for 0 <i<n,
Sdt=d's’! fori<j for 0<i<nmn,
s'dt = Id = sttt for 0 <i<n,
Sd=d's fori>j+1 for 0 <1 <n.

Definition 1.8 Let K be a simplicial object in category C. Then an element x € K, is

satd to be an n-simplex.

Definition 1.9 An n-simpler x € K, is said to be degenerate if there exists y € K,_1

such that x = s;y for some i, 0 <1i <mn.
Definition 1.10 A simplicial object K is said to be reduced if Ko has only one element.

Definition 1.11 A simplicial map f : K — L between two simplicial objects in a
category C consists of a collection of maps,i.e., {fn}, fn : Kn —> Ly for n > 0, such

that the maps f, are compatible with face and degeneracy map

fodi =difns1 for0<i<n
fnSi = 8ifn—1 for0<i<n

Cartesian product: The cartesian product of two simplicial objects K and L in a

category C is defined as follows:

(K x L), =K, X Ly, forn>0,
dl(xay) = (dl(x)adl(y))a fOT 0<i<n,
si(z,y) = (si(z),si(y)) for 0<i<n.
Example 1.12 : Let C be a category and A € C be an object. Let K = {K,} with
K,, = A. Define face and degeneracy maps on A to be the identity maps on A; these face

and degeneracy maps satisfies simplicial identities, and so K = {K,,} becomes a simplicial

object.



Chapter 2
Simplicial objects in topology

In this Chapter we will develop the simplicial homotopy theory. Using simplicial homotopy
theory we will see equivalence between Kan-complexes and CW-complexes which allows

us to work with simplicial homotopy theory in place of classical homotopy theory.
Definition 2.1 We define simplicial set to be a simplicial object in the category of Sets.

Notations Category of simplicial sets is denoted by Seta and the category of topological
spaces is denoted by Top.

2.1 Construction of simplicial set from a topological space
Let X be a topological space and
A" = {(to, s ,tn) ’ E;-L:Oti =1,t2>0,¢ € R}

be the standard n-simplex.
Define:-
Sing,(X) ={y: A" — X | v is a continuous map}

to be the collection of all singular n-simplices. We define the face and degeneracy map as

follows:

(dz’Y)(tO; o 7t7’b—1) - 7(t07 o 7ti—1707ti7 o 'tn—l) 0 S 1 S n—1

(siv)(to, - -+ stng1) = Y(to, -+ stici, ti +tigr, - tny1) 0<i<mn



So, it remains to show that these face and degeneracy map satisfy simplicial identities.

(5i5j7)(to, -+ s tng2) = (s557)(to, - s tim1,ti + tig1, - - tng2)
=(to, -+ s tic1sti +tiprs -ty tjpr Ftjgo - thyo)

= (sj418i7)(to, -+ s tny2)-

Thus,

5i8j = 8j418i, for i <j.
Therefore Sing(X) becomes a simplicial set.
In particular, Sing defines a functor from category of topological spaces to category of
simplicial sets.
Sing : Top — Seta
2.2 Kan complexes
Definition 2.2 Collection of n, (n — 1)-simplices,
Lo, 3 T—1, = Th41," " Tn
satisfying compatibility condition if

divj =dj 17, Vi <j, i, #k.

Definition 2.3 A simplicial set K is said to be a Kan-complex if, for every collection of
n, (n — 1)-simplices,

T, 3 Tk—1y, —yLE4+1," " " Tn

satisfying compatibility condition there exists an n-simplex y such that
diy=1, Vi#k.
Notation A} is the standard n-simplex A™ with the interior and the kth face removed.

Lemma 2.4 [7] A simplicial set is a Kan-complex if and only if, for any 0 < k <n, and
any simplicial morphism \j} — K can be extended to a morphism A" — K.



Example 2.5 0-simplex A is a Kan-complex.

Definition 2.6 A map [ : K — L of simplicial sets is said to be a Kan fibration if for

every collection of n, (n — 1)-simplices
L0y " 3 Tk—15 = Tk+1, """ Tn
of K which satisfy the compatibility condition and for any n-simplex y € L, satisfying
diy = f(zi), Vi#k
there exists an n-simplex x € K,, such that

flz) =y, and dix = x;, Vi # k.

Lemma 2.7 [7] Let L be a simplicial set generated by single element lo Then a map
f: K — L is a Kan-fibration if and only if K is a Kan-complex.

Proof Let f: K — L be a Kan fibration So we need to show that K is a Kan-Complex.
Suppose

Lo, " 3 Tk—1y 5 Lk+1, " "Tn
are n, (n — 1)-simplices satisfying compatibility condition and y is an n-simplex of L such
that
Since f is a Kan-fibration so there exists an n-simplex x € K, such that d;x = x;, Vi # k
and f(x) =y. Thus K is a Kan-complex.

Conversely, supppose K is a Kan complex. Now just using the definition we get the desired

result.

Definition 2.8 A simplicial group is a simplicial object in the category of groups.

Lemma 2.9 [10] A simplicial group G is a Kan-Complez.



Proof Suppose
L0y 3 Thk—15, Th+15 """ Tn41
be n + 1, n-simplices satisfying compatibility condition. Our aim is to find g € Gy 11 such
that
dig=m;, Vi+#k.
We will proceed by induction on r to find g, € Gp41 such that d;g, = x;, Vi <r, i #k.
Set g_1 =1 € Gpy1. Suppose we have found g,_1 € G441 such that

dinglzxiViST—l, Z#k

Now we will find g, if r = k, then we will take g, = g,_1.
If » # k, Consider the element y = mfl(drgT,l) € G,. Since we have d;g,_1 = z; for
<r—1.

diy = di(z,) " didygr—1
= (diz,) " 'dr_1digr—1
= (diz,) 'dr_12;
= (dixr)*ldi:vr =1

Thus we have dijy =1, Vi <r, i # k.

Now d;(syy) = sr—1(diy) =1, fori<r, i #k.
Now take gr = gr—l(sry)il

digr = digr—1di(s,y) " =digr—1 =xi, Vi<ri#k
drgr = dr(gr—l(srwil) = (drgr—l)(dr(sry)il) = Zr

Thus simplicial group G becomes a Kan-complex.

2.3 Simplicial homotopy theory

Definition 2.10 Let K be a simplicial set. Then we say two n-simplices z,x' € K,, are
homotopic if
dix = d;x’, ¥V 0<i<n,

and there exist an element y € K, 1 with the property that d,y = x, dpi1y = 2’ and
djy = sn—1djx = sp_1d;x’ V0 < j < n.



Remark 2.11 In above definition the (n + 1)-simplex y is called a homotopy from z to

2, and we write & ~ 2.

Lemma 2.12 [1, page 115] Let K be a simplicial set which satisfies the Kan condition.

Then the relation of being homotopic is an equivalence relation on Ky, ¥ n >0

Proof (i) Reflexive:- Let z € K,, and y = spx € K41
Since d;x = djx, VO <i<n
and dpy = dpspx = x, dpy1y = dpp1Sp =T

and d;y = d;js,x = sp—1djx. Thus we have x ~ x

(ii) Symmetric and Transitive:- Let z, 2/, 2" € K,, Such that 2/ ~ z and 2" ~ z'.

Suppose 3’ is a homotopy from 2’ to z and y” is a homotopy from z” to 2.
dix' =dix = diz” V0<i<n.

Since 3/ is a homotopy from z’ to x. So,

Sp_1d;x’; for0<i<n
diy' = < o'; fori=n

x; fori=n-+1

Since 3" is a homotopy from z” to x. So,

Sp_1dix”;  for 0<i<n
diy" = < 2" fori=mn
x; fori=n+1
Now we want to construct a homotopy from z” to 2’. For 0 < j < n, Choose z; =

sn_lsn_ldjat/. Now using simplicial identities for 0 < j < n, we have s,,_15,—1d; = d;5,55.
Thus, for 0 <i < j < n,



diZj = disn_lsn_ldjx'
= didjsnsnaz'
= jfldisnsnm'
=d;j_15p-15n—1d;7’

= aj—-1%;-.

For 0 <5 < n,

/ / /
dpnt12j = dpy18n-18n-1d;7° = sy _1dpsp_1d;x’ = sp_1d;x
/ /
anj = dnsn_lsn_ldjx = Sn_ldj.l‘
Since 3’ and y” are homotopies from z’ to x and z” to . So we have n+2, (n+1)-simplices

/ /i
20521y s RAn—1, Y, Y

which satisfies the compatibility condition. Since K is a Kan-complex so there exists an

(n + 2)-simplex z such that

diz==z; for0<j<n-—1

/ !
dny12 =Y, dnp2z =1y .

Now using simplicial identities we can check that (d,z) is a homotopy from z” to z/. If
we take z” = z then we see that relation is symmetric. Thus being homotopic is an

equivalence relation.

2.3.1 Homotopy groups

Let K be a simplicial set and take a O-simplex k, € Ky and consider L to be the sub
simplicial set generated by k,. Thus for every n > 0 there is exactly one element in L,
which is

kg = Sn—1""" Soko.

If K is a Kan-complex then (K, ko) is said to be a Kan-pair.

10



Definition 2.13 Let (K, ko) be a Kan pair. Then
(K, ko) = {x € Kp|diw = kg~ "}/~

where ~ is an equivalence relation defined earlier.

Remark 2.14
7o(K, ko) = Ko/~

mo(K) is called path connected component of K. K is said to be path connected if there
is only one class in 7o (K).

We will define composition of two elements in 7, (K, ko)[7]. Let [a], [b] € m, (K, ko). Let x
and y denotes representatives for the classes [a],[b] respectively. Then the following n + 1,
n-simplices

n n
kO y T ak;Oa':Ea_vy

satisfy compatibility condition. Since K is a Kan-complex so there exists an (n+1)-simplex
z such that
dpt12 =Y, dp—12 =z and diz =k, Y0 <i<n-—1.

So, we define [a]*[b] to be the equivalence class of d,,z. Suppose there is another 2’ € K;, 11
which satisfy d,,112’ =y, dp_12' =z, and d;2' = k", V 0 < i <n — 1. Then look at the
n + 2, (n + 1)-simplices

n+1 n+1 /
kO y T 7k0 7Sndn—1Z7_7zaz'

These simplices satisfy compatibility condition. Since K is a Kan-complex, So there exists
w € K492 with the property that d, 1w = 2,dp—1w = spdp—12,and djw = k:g“, V0O<
1 <n—1.
Claim d,w is a homotopy from d,,z to d,z’.
Justification
di(dnz) = dp—1(diz) = dp—1ko™ = ki
di(dn?') = dp—1(d;2') = kJ~ L.

Thus d;(d,z) = d;(dp2"), VO <i<n-—1.

dp(dpw) = dy(dpt1w) = dpz

11



dp1(dpw) = dy(dprow) = dp2’
di(dnw) = dp—1(diw) = dp_1kp™ = kI
Sp—1di(dpz) = sp—1dn—1(d;z) = k{
Thus sp—1d;(dpz) = di(dyw) V0 <i<n-—1.

Thus d,w is a homotopy from d,z to d,z’. so d,z ~ d,2'.

Suppose instead of y, we pick y’ as a representative of [b]. Then [a] * [b] = [d,2'] such that

diz' =kij, V0O <i<n—1. and d,_12' =z, dp417 =y Since ¢’ and y belongs to the same

homotopy class so there is a homotopy w from ¢ to y. Consider n + 2, (n + 1)-simplices
kg+17 e 7kg+17 Sn—17, Z/_7w'

These simplices satisfy compatibility condition. Since K is a Kan-complex, so there exists

u € K49 with the property that

diu = kT
dp_1u = sp_1@
dpt = 2
dpyou = w

Now take the (n + 1)-simplex a = dp1u
diov = di(dpy1u) = dp(diu) = kg V0 <i<n
dp—10 = dp—1(dps1u) = dp(dp—1u) = dpsp_1x =2V 0<i<n
dpa = dp?', dpi1a = dpi1(dpiiu) = dpyr (dpaou) = y.

Thus our choice of representative is independent. Thus composition is well defined.

Lemma 2.15 [7, page 15] Let (K, ko) be a Kan pair, then the set mp(K, ko) forms a group

for n > 1, where composition is defined above.

12



Proof Existence of Identity

[ko™] is the left identity of m,(K, ko).

Let
[a] € m, (K, ko)

Claim [k{}]  [a] = [a]

Justification Consider the (n + 1), n-simplices

These simplices satisfy compatibility condition. Choose z = spa. Then we have d;z =
k"V0<i<n-—1,dyi1z=a

Thus [kf] * [a] = [dpz] = [al.

Associativity:-

Let x,y, z be the representatives of [a], [b], [¢] € m, (K, ko) respectively.

Suppose that [a] * [b] = [d,w] and [b] * [c] = [d,w'].

Consider the n + 1, n-simplices
k87 7k617dn°~)7_775

satisfy the compatibility condition and K is a Kan-complex so there exist u € K, 1 such
that
diu=ky, VO<i<n-—1

dp—1u = dyw

dp+1u = 2.
Thus [dpu] = [dyw]e = ([a] * [b]) * [c]
Now consider n + 2, (n + 1)-simplices
k0n+la ) k(T]L+1awa _7uaw/

which satisfy compatibility condition and K is a Kan-complex so there exists v € K19

with the property that
dv=k{T0<i<n-1

13



dp—1v = w
dnt1v = u

dn+2’l) = w/

dn_l(dnv) = dn_l(dn_lv) = dn_l(w) =X
dp1(dpv) = dp(dpsov) = dy (W) = o
dz<dn’l)) = dn_1<di'v) = kg

Thus [d,,(d,v)] = [a] * [d,w'] = [a] * [b]

[a] * ([b] * [c]) = [a] * [dyw'] = [dp(dyv)] = [dndns1v] = [dpu] = [a * b] * c.

Thus the composition is associative.
Using the fact that K is a Kan-complex we can prove the existence of inverse of every
element. Thus the set m, (K, ko) is a group and 7, (K, ko) is called nth Simplicial homotopy
group with respect to 0-simplex kg.

Definition 2.16 A simplicial set K which satisfy compatibility condition is said to be

contractible if all of its simplicial homotopy groups are trivial.

2.3.2 Relative homotopy

Let K be a Kan-complex and L C K be its sub Kan-complex. Pick a 0-simplex [y € Ly.
Then the triple (K, L,lp) is said to be a Kan-triple.

Definition 2.17 Let K be a simplicial set and L be a sub-simplicial set. Two n-simplices

z,x’ € K,, are said to be homotopic relative to L if

dix =dix’, V1 <i<n,
dox ~ dox’ in L

and there exist an (n + 1)-simpler w € Kp4+1 such that
dow =y, dpw =2, dpyiw =21

14



diw = $p_1dix = sp_1d;x’ V1 <i<n.

Here y € Ky, is a homotopy from dox to dox’ and w € K, 11 is said to be relative homotopy

from x to x’' and we write x ~p, x’.

Definition 2.18 Let (K, L,ly) be a Kan-triple. Then we define

ﬂ'n(K,L, l()) = {.75 S Kn| dox € Lp_1, djx = l()nil, V1i<i< n}/NL.

First of all we will define composition of elements of 7, (K, L, lp)[7]. Take [a],[b] € m, (K, L, 1)
for n > 2.
Let x and y be representatives of the classes [a], [b] respectively. Since [a],[b] € 7, (K, L, lo)

so dox, doy € Lp—1 and since my,—1(Lp—1,lo) is a group. So
[dox][doy] = [dn—12] for z € L,

diz=10""V0<i<n-3
dn,lz = dol‘
dnz = doy

Consider n + 1, n-simplices

n n
zal07"' oy Ty —5 Y

. One can check that these n-simplices are satisfying compatibility condition and since K

is a Kan-complex so there exists a u € K, 41 such that

du=1, V1<i<n-—1

dp—1u=2x
dnt1u =1y
dou =y
So we define [a][b] = [dpu].
Lemma 2.19
(K, L, lp)

is a group forn > 2.

15



Theorem 2.20 /8, Theorem 3.7] Let (K, L,ly) be a Kan-triple. Then there is a long exact

sequence

C o Tt (K L) S (L) 5 (K1) L mn(K, L) — -

where d[x] = [doz] and maps i and j are maps induced from inclusion.

Proof We need to prove that Im(d) = Ker(i). Let [x] € m1(K, L, 1) ie., v € Kpt1
such that dox € L,, and djz = [ V 1 <7 <n+ 1. Now consider n + 2, (n + 1)-simplices

n+1 n+1
77l0 7"'7l0 y L+

These (n + 1)-simplices are satisfying compatibility condition, since (K, L,ly) is a Kan-

triple so there exists an (n + 2)-simplex w such that
dw=10" V1i<i<n+1

dptow = x.

Claim: dypw is a homotopy from g to doz.
Justification:
dilyy = didor =171, Y0 <i < n.

dp(dow) = do(dp1w) = dolytt =1
dp+1(dow) = do(dprow) = dox
di(dow) = 1§ for 1 <j<n.
sn—1(dilg) = g
sn—1(didoz) = 1§

So di(dow) = sp—1(dily}) = sp—1(diz) for 1 < j < n.

Thus [dox] ~ [I§], so i[doz] = [I§].
Thus iod = I, (k). Thus Im(d) C Ker(i).
Let [a] € Ker(i). Suppose y is the representative of the class [a]. Since y € Ker(i), so
ily] = lgj. Since 4 is an inclusion map thus I ~ y.

Let w be the homotopy from y to {jj. Consider n + 2, (n + 1)-simplices

n+1 n+1
0 7...,% _

wal )

16



These (n + 1)-simplices satisfy compatibility condition so there exists an (n + 2)-simplex
u such that

diu=10" V1<i<n+1
dou = w.

do(dn+2u> = dn+1(d0u) = dn+1w =Y.
This implies that [y] = d[dnyou]. Thus [y] € Im(d). = Ker(i) C Im(d).

Definition 2.21 Let K and L be simplicial objects in category C. Then two simplicial
maps f and g are simplicially homotopic if there exist a collection of morphisms {h;},

where

hi: K — Lpy1 for 0<i<n.

with the property that

doho = f, dni1hn =g

dihj = hj_1d; fori<j
dihj = dihi—1 fori=j#0
dihj = hjd;_1 fori>j+1

and

Sihj = hj+13i fOT‘ 1 < j
Sihj = hjsi_l fO?” 1>

The collection {h;} is said to be homotopy from f to g and we write f ~ g.

Proposition 2.22 [16] Let C be a category of sets or an abelian category. Let K and
L be simplicial objects in C, and f,g : K — L two simplicial maps. For ¢ = 0,1, let
€ : K — K x A[l] be the induced map by 0; : [0] — [1] in A. Then there is a one
to one correspondence between simplicial homotopies from f to g and simplicial maps
F:K x A[l] — L.
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2.4 Geometric realisation of a simplicial set

In this section we will define Geometric realisation functor and then we will see the

equivalence between Kan-complex and CW-complex.

Definition 2.23 A point P, = (to, - ,tn) € A" is said to be an interior point of A" if
eithern=0o0r0<t; <1, V1.

The notion of geometric realisation was given by Milnor[9]. The geometric realisation

of | K | of K is a topological space obtained from the disjoint union

| K |= (Up Ky x A™)/ ~

where the set K, is viewed as a topological space with discrete topology. Equivalence

relation is given as follows

(diz,p) ~ (x,0;p); (x,p) € K, X A1
(siz,p) ~ (z,00p); (z,p) € Kp—1 x A"

where d;, s; are face and degeneracy maps of K respectively and §;, o; are the maps of

A — category.

Definition 2.24 An element (z,p) € U(K, x A") is said to be non-degenerate if x is

non-degenerate and p is an interior point of A™).

Proposition 2.25 [7, page 20] Each element (z,p) € U(K, x A") is equivalent to a

unique non-degenerate element of LI(K,, x A™).

Proof If x,, is non-degenerate, then we are done. If x, is degenerate then there exists
Tp—1 € K,_1 such that x,, = s;x,—1. So in this way each element x, can be written in

the form

Sjr = S In—r

with 0 < j1 <---j, <nand z,_, € K,,_, is non-degenerate. Similarly for each p, € A"

can be written uniquely in the form

51',1 T 5i1pn—q
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where 0 < 1; < ---iy <n and p,—, is in interior of A9,

Define morphisms f and g as follows

frU(Ky x A™) — U(K, x A")

by f(xmpn) = (KN—T’Uj1 T Ujrpn) and

g UK, x A") — U(K,, x A™)

by g($nvpn) = (611 T 5iq$napnfq)
where x,, = s;, - - - 8, kn—r With kn_, non-degenerate and p, = d;, - - - 0 un—q With u,_4 in
the interior of A" 9, look at the map f o g, this composition map takes each element to a

unique non-degenerate element.

Theorem 2.26 [9, page 358] The geometric realisation of a simplicial set K is a CW-

complex with one n-cell for each non-degenerate n-simplex of K.

| — | associates each simplicial set K to a topological space | K |, which gives rise to a
functor | — |: Setsa — Top.
Any simplicial morphism f : K — L induces a morphism | f |:| K |—| L | which maps

| Tn, Sn | to | f(xn)asn |

Definition 2.27 Let C' and D be two categories and let S : C — D andT : D — C be
covariant functors then the pair (S,T) is said to be an adjoint pair if there is a bijection
from the functor Homp(S(—),—) to the functor Homc(—,T(—)).

Theorem 2.28 [1, page 120] The singular simplex functor Sing : Top — Setsa and the
geometric realisation functor | — |: Setspn — Top are adjoint. Further, for a simplicial
set K and a topological space X, there is a one to one correspondence between homotopy
classes of continuous maps | K |— X and homotopy classes of simplicial maps K —
Sing(X). In particular, 7;(X, xq) = m(Sing(X), Sing(xo)).
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Chapter 3

Simplicial objects in homological

algebra

In this chapter we will work on abelian categories. Through out the Chapter, A is an
abelian category and A will denote a simplicial object in abelian category A. We will
prove equivalence between category Simp(.A) and category of chain complexes Ch>q(A)
in A which enables us to construct Eilenberg-Maclane spaces of all type. Let A be an
abelian category and A be a simplicial object in category A. We will denote category of

simplicial objects by Simp(A).

Definition 3.1 A category C is additive if folowing conditions are satisfied:

(i) It has a zero object.

(ii) Every hom-set Hom(A, B) has an addition, endowing it with the structure of an abelian
group, and such that composition of morphisms is bilinear.

(iii) all finitary biproducts exists.

Definition 3.2 An additive category A is said to be an abelian category if the following
conditions are satisfied:

(1) Every morphism in A has kernel and cokernel.

(ii) Every monomorphism is the kernel of its cokernel.

(iii) Every epimorphism is the co-kernel of its kernel.

Definition 3.3 Let A be a simplicial object in category A. Then the associated chain
complex C(A) of A is the complex
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On On—
e Gy I Cpy - Cy— 0

with Cy, = A, and differentials defined as

On =30 o(~=1)'d; : C, — Crmq, 1 >0

(2
where d; are the face maps of simplicial object A. Since A is a simplicial object, thus by
using simplicial identities, we get

87108114-1:0 VTLZO

Thus C(A) is a well-defined chain complez.

Definition 3.4 The normalised chain complex of a simplicial object A is a chain complex
with
n—1
Nu(A) = (| Ker(di : Ay — An_1) V0 >0
=0

and differentials are defined as
O = (—1)"d, ¥V n > 0.

Remark 3.5 Normalised chain complex forms a functor from category of simplicial

objects to category of non-negative chain complexes
N : Simp(A) — Ch>o(A)
For a given simplicial morphism,
f:A— B; A B € Simp(A),

we have a collection of maps
fn: Ay — By,

Then N(f): N(A) — N(B) is a morphism of chain complexes
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Lemma 3.6 [16] Let A be a simplicial object in category A. Let N(A) be associated
normalised chain complex and C(A) is associated chain complex and suppose D(A) is

degenerate sub-complex of C(A) generated by image of degeneracy maps s;, i.e.
Dy (A) = Zi¢8i(Cr-1(4)),
then C(A) = N(A) ® D(A).
Proof Let y € N, (A)(Dn(A). Suppose to the contrary that y # 0. Since y € D,,(A)
thus

y = Xsi(z;).

Let i be the smallest integer such that s;(x;) # 0. Then d;(y) = z; # 0, which is a
contradiction since y € N, (A). Thus y = 0.
Now let y € C,(A), if y = 0 then we are done.

Ify#0and dyy =0 V0<k<n. Theny € N,(A) and again y =y + 0.
Now suppose for some k < n, di(y) # 0. Now look at

v =y —sidi(y), skdi(y) € Dn(A)

fori<n

di(y') = di(y) — sp—1dk—1di(y) =0

which =y € N,(A).
Thus y € N(A) + D(A).
Since C(A) = N(A) @ D(A), thus N(A) ~ C(A)/D(A).

Definition 3.7 For a given simplicial object A in an abelian category A, we define

Theorem 3.8 [16, Theorem 8.53.8] Let A be a simplicial object in category A. Then for
alln >0,



Example 3.9 Classifying space:- Let G be a group, now construct simplicial set BG

as follows

BGo = {1} BG,=G"

Define face and degeneracy maps as follows

di(g1,- -+ 9n) = (92, sgn); if i =0,
di(g1:- -+ s gn) = (91, 1 9igi+1, -+ gn); 0 <i<m,

di(g1,-++ s 9n) = (91, ,gn-1); i=mn,

5i(g1, -y 9n) = (91, 955 1, Git1, - 9n)-

Claim: BG is a simplicial set.

Justification:

didj(gr,- -+ gn) = di(g1,- -+ 1 Gi 1 9j95+1, - s9n); for0<i<j<mn
= (91,"' »9i9i+1 " 5, 95954+1, ,gn)

= j—ldi~

Thus BG is a simplicial set.

Nl(BG) = Ke’l“(do : Gl — {1}) =G
n—1
Nu(BG) = (| Ker(d; : BGy — BGy,_1)
i=0
fori =0, dy : BG,, — BGp,_1,

Kerdy={(g1,--- ,9n) € BGp | gi=1 fori>2}
Kerd, ={(g1, "+ ygn) € BGy | gi=1 fori<n-—1}
So N, (BG) = {1} forn#1.

So normalised chain complex of BG

R N - |

So m1(BG) = Hi(N(BG)) = G and 7,(BG) =1 forn# 1.
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Definition 3.10 A connected topological space X is said to be an Eilenberg-Maclane space
of type K(G, n) if

G ifi=n
1 i>1,i#n

mi(X) =

Remark 3.11 BG is an Eilenberg space of type K(G,1).

3.1 The Dold-Kan Correspondence

Definition 3.12 If we have two categories C and D, then equivalence of categories consists
of a functor F' : C — D, a functor G : D — C and two isomorphisms ¢ : FG — Ip and
n:GF — Igc. Here FG : D — D and GF : C — C, denote the respective compositions
of F and G, and I¢ : C — C and Ip : D — D denote the identity functors on C and D,

assigning each object and morphism to itself.

Theorem 3.13 [/] Let A be an abelian category and N be the normalised chain functor

N : Simp(A) — Ch>o(A)

then
N is an equivalence of category of simplicial objects Simp(A) with category of chain
complezes Ch>o(A).

Proof (a): First of all we will construct a functor

K : Ch>o(A) — Simp(A)

define for C € Ch>(A)
Kq(C) = @ Cylp)
n
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be the finite direct sum of Cy[p] and 7 runs over all the surjections

n:[n]— [pl, forp<mn, and Cy,lp] =C,

Now for a given morphism « : [n] — [m] in A, we define

K(CO)(a) : Kp(C) — K, (C)

by its restriction to each summand C,.

l ],,

)"~ [7]
[7, page 30]
Since no « : [n] — [p] be a morphism and every morphism in A — category has a
unique epimonic factorisation, So let € o 7’ be the unique epimonic factorisation of 7 o a.

If p=gq then noa =1n'. Then K(C)(«,n) is a natural map sending C,, to Cp.
If p=gq+1, and € = d,. Then we define

K(C)(a,n) =d:Cp, — Cp_1 C K,(C)

. where d is a differential of chain-complex. Otherwise we define K (C)(«,n) = 0.
Now our next step is to show composition of morphisms.
Let a : [[] — [m] : B : [m] — [n] be two composable morphisms in A. Now consider the

map

K(C)(Boa): Kn(C) — Ki(C).

For any n: [n] = [p], p < n, look at the restriction K (C)(f5 o ).
If ¢ < p — 2 then the way we defined K(C)(«), it comes out that

K(C)(Boa,n) =0=K(C)(an)oK(C)(B,n)

If g=p—1then e =dy, and K(C)(f o) = d,.
If ¢ = p—1 then K(C)(a,n') o K(C)(B,m) = Id o d,.
If ¢ = p then K(C)(a,n") o K(C)(B,n) = dpo Id.
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In any of above cases we have

K(C)(Boa,n) =K(C)(an)oK(C)(B,n)
Now if ¢ = p, then we have ¢ = ¢’ = p and n = r’.So,
K(C)(Boa,n) =1Id=K(C)(a,n') o K(C)(B,n)

Thus K is a functor
K Chzo(.A) — S’zmp(A)

Claim: K is inverse to N.
Justification: For any surjection
n:[n] = [p], p <mnin A there is a unique epi-monic factorisation of n. Son =0, - - 0;,.

If n # p, then we have

Cp = (8i, -+ 5i,)Cr1a,
where s;; are the degeneracy maps of simplicial object K (C'), which implies C;, € DK (C).
Now consider the case where n = p
d,’ |Cldn: K(C)(@Z,Idn) = d, Zf 1=n
=0, else

Thus N, (K (C)) = Cr4, = Cp. So it proves that N is inverse to K.

Now it remains to prove that

KN = IdSimp(A)'

For any simplicial object A € Simp(A), we define
Uy KpN(A) — A,
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where 1, is defined on its restrictions to summand K, N(A).

For each
n: [TL] _>[p]v fOTPSTl

the corresponding summand is N,(A) = Np(A) which is a subobject of A,,.
¥n [N, (a) is defined to be the composition

N,(A) = Np(A) = A, — A,.

For any given map « : [m] — [n] in A, let § o o0 be the unique epimonic factorization of
noa.

Then the diagram

KaN(A) N, (A)—n A, 2 4,
ll&'(n] l;{(a’) lA[é) lfmxj
K,N(A) -(—’N,),(A);:— Ay — A,

[7, page 31]

Commutes and v is a simplicial map, which is natural in A.

Now our aim is to prove that 1, is an isomorphism.

Q,Z)Q : KON(A) — Ao

So Ko(N(A)) = No(A) = Ag. Thus g : Ag — Ap is an isomorphism.

Now suppose v, is an isomorphism for all ¥ < n. Since A,, = N, (A) @ D,(A), So N,,(A)
is in the image of 1),,. Because the way we have defined 9, it comes out that ¢, (N, (A))
is simply the inclusion N,,(A) — A,,. Now take some z € D,,(A)

Thus z = s;x for some 1 < i < n-—1; v € A,_1. Since ¥,_1 is an isomorphism, so
x € Im(¢p—1) which implies that z = s;x € (¢,), Thus the map v, is surjective.

Claim: v, is injective.

Justification: Let (z,) € K,,(N(A)) such that ¢, (x,) = 0.

Now x,, € Ny(A) for n:[n]— [p].

If p=mn, Then (z,) = 74 = 0 as 1, (Nn(A)) is simply the inclusion Ny, (A) — A,.

Now suppose p < n then there exist € : [p] — [n| such that eon = Id,, and noe = Id,.
K(e,n)(xy) = 214, € Kp(N(A)) and since 9(21q,) = 0 and ), is an isomorphism so x4,
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= 0, It follows that x, = 0, and thus 1, is injective. Thus

KN ~ IdSimp(A)'

Remark 3.14 Under the correspondence on N, simplicial homotopic maps in Simp(.A)
correspondence to chain homotopic maps in Ch>o(A).

Construction of Eilenberg-Maclane spaces

Dold-Kan correspondence enables us to construct Eilenberg-Maclane spaces of all type.
Let X be a simplicial set in abelian category and let (A, n) be a chain complex concentrated

in degree n, where A is an abelian group, Then by Dold-Kan correspondence we have,

HomChZO(N(X)a (Aa n)) = HomSimp(.A) (X7 K(Au n))

A ifk=n
(K, (A,n)) = Hi((A,n),Z) =
1 otherwise

Thus K(A,n) is an Eilenberg-Maclane space of type n.

Till now we have simplicial homotopy theory and have proved that, we can use
simplicial homotopy theory in place of classical homotopic theory. Simplicial homotopy
will be helpful to survey the dimension quotient problem in group theory. The main result
of chapter 3 is Dold-Kan correspondence which enables us to construct Eilenberg-Maclane

spaces of all type n.
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Chapter 4
Dimension subgroups

In this chapter, we will survey some results on dimension subgroups. Using group theo-
retical properties we will see that for all groups second and third term of dimension series
are equal to the second and the third term of lower central series respectively. We will

also see that exponent of fourth dimension quotient is 1 or 2.

Definition 4.1 Let G be a group and R be a commutative ring with identity. The group
ring R|G] of G over R is given by formal sums

Y alg)g, alg)€R, ge@

with only finitely many «(g) being non-zero. The addition and multiplication are defined

as follows:

Yoo+ D> Blog = D {alg) +B8)}e

a(g)ER,geG B(9)ER,geCG
{ Y. algg D, BW=> {> alg)bh)}x (4.1)
a(g9)ER,geG B(h)ER,heG z€G gh=z

Above two operations makes R[G] a ring.

If R =7 then Z[G] is called integral group ring of G.

Definition 4.2 The map



D alglg > alg)

is called the augmentation map and Kere = A(G) is called the augmentation ideal of Z|G].
Definition 4.3 Let G be a group and define:
Dn(G)={geG|lg—1€A"}

then, we gets a sequence
G = Di(G) 2 D2(G) 2 -+

of normal subgroups of G with the property that

[Dn(G), Din(G)] € Dyim(G) n,m €N

The sequence {Dy(G)}n>1 which we have obtained is called dimension series of a group

G.
Definition 4.4 Let G be a group and define:
71(G) = G, m(G) =[G, 1m-1(G)], neN.

We get
1(G) 27%(G) 2 -

a series of subgroups of G with the property that
[0 (G)s  Ym(G)] € Yn4m(G), n,m €N
The sequence of subgroups which we have obtained is called lower central series of a group
G.
Remark 4.5
W (G) C Dn(G) for all n€N.
Definition 4.6 A filtration of A(G) is a sequence
AG=L22---

of ideals of Z.G with the property that

LI C Inam

So, clearly {A™}>° is a filtration of A(G).
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For any ideal I of ZG, we define

ol)={zeG:z—-1€I}.

Definition 4.7 A sequence
G=H 2H 2

is called an N -series for G if
[H, Hp] C Hyym(G) n,meN.
Remark 4.8 (i) If { I,,}5°, is a filtration for A(G) then {9(I,,)}22 is an N-series for

G.

(ii) Lower central series is most rapidly decreasing N-series for G.

Lazard’s Problem For a given group G and a given N-series {H,}72; of G, does there
always exist a filtration {I,,}5°; of A(G) such that
O(I,)=Hp; YneN

Definition 4.9 Let G be a group and {H,}2°, be a N-series for G. If there ezist a
filtration {1,}>°, of A(G) such that

d(I,) =Hp; YVneN
then {I,}2° is called Lazard filtration of A(G) relative to given N -series.

Definition 4.10 Let G be a group and {H,}2, be an N-series for G, then this N -series

induces a weight function on G

k, Zf x € Hk\Hk—H
w(z) =
oo, if x € NgHy

Definition 4.11 Let G be a group and {H,}32 , be an N-series for G. Define Ay, to be
the span over Z of the product

(g1 —1)(g2—1)---(g9s — 1) with the property that Zw(gi) > k.

i=1
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Clearly Ay = A(G). Note that each Ay is an ideal of ZG and AjAj C Ajyj Vi,57>0 7
Thus {An}52 1 forms a filtration of A(G) and this filtration is called canonical filtration of
A(G) induced by the N-series {H,}52 ;.

Lemma 4.12 [5] Let G be a group and {Hy}32 , be an N-series for G, if there exists a
Lazard filtration {I1,}5°, of A(G) then {A,}02 is the smallest Lazard filtration.

Proof Since {I,,}5°, is a Lazard filtration of A(G) relative to N-series {Hy,}2° ;. So we

have
o(I,) = H, for all n.

Let g1,92, -+ gs, > ;1 w(g;) > k. Then
(g1 =192 = 1)+ (9s = 1) € Lgi)Lur(gn) "~ Lutge) € Ti-
Hence Ay C Iy, for all k. If x € Hy, then w(z) > k and so z — 1 € A(k). Thus

Hy C 0(Ay) CO(Iy) = Hy.

Theorem 4.13 [5] Let G be a group and {H,}22 , be an N-series for G and {A,}22 be
the canonical filtration of A(G) relative to given N-Series, then

1. 9(As) = Ho

2. O(A3) = Hs.

Remark 4.14 By above two theorems, we conclude, in particular, that D2(G) = 72(G)
and D3(G) = v3(G). But problem comes at fourth level and Rips gave first counterexam-
ple.

Example 4.15 [Rips:72|[13]
Let G be a group with generators

ap,at, az, asg, by, ba, b3, c

and defining relations
b8 = bi% = by = *0 = 1.
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[ba, b1] = [bs, b1] = [b3, bo] = [c, b1] =[c, bo] = [c, b3] = 1.
agt = b?, af* = by b3, ab® = biby', a3 = biby.

[a1, ao] = b1c?, [ag, ag] = bac®, [as, ao] = bzc*?,

2 4

[a27 a‘l] = Cy, [0/3, al] =cC, [CLg, GQ] =cC,

(b1, a1] =c*, [b2, ag] =c'®, [b3, a3] =%,

[bi, a;]=1, if i#j
[e, a;))=1, fori=0,1,2,3

Then ~4(G) = 1, while the element

a1, a][a1, a3]*[az, 3] = ¢'*® € Dy(G) and ' #e.

Since we have seen a group G in which

Dy(G) # 74(G).

Thus in general, the answer to Lazard’s problem is NO.
Structure of D4(G)(see[13]) Let G be a nilpotent group of class 3 given by its pre-abelian

presentation
d(1 d(k
< TP, T2 Ty | 331( )517'“%( S ity (< 1, w0y >) >

with k <m, d(i) >0, d(k)|---d(2) | d(1) and & € ya(< x1, T2+ Tpy, >)
Then D4(G) consists of all elements of the form

(i) i
w= H [, xj]", ai; € Z
1<i<j<k

such that, d(j) | (d(;))aij, (1<i<j<m)and

= [ e ] «{ € n(@)"(G) for1<i<k

1<i<i <5<k
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Remark 4.16 If in structure of D4(G), m < 3, then
Dy(G) = n(G)12].

Theorem 4.17 [12]
Let G =< X | r1,m2 > be a 2-relator group then Dy(G) = v4(G).

Proof G has a pre-abelian presentation of the form

G =< L1, T2y Tp,y | 5171'2 527637

with § € 2 < z1,--- > and d(2) | d(1).
Then modulo v4(G), the group D4(G) consists of the elements of the form

W= [x‘lj(l), x9]™2,

such that, d(2) | (d(j))au’
and
yo = 21 1N € 55(G) P y(G).

Therefore, modulo v4(G), for some z € 72(G), we have

d(l)a12 2]

W= [xl y L2 = [y2_17 1'2] = [Z_d(z)a xQ] - [Z, Lo ] =1

Example 4.18 4-generator, 3-relator: Let G be a group defined by the presentation

< 11,79, 73,74 | 2F[3a, 23] [74, T2) = 1, 23034, 23] 24, 1] = 1, 2§24, 2] 24, 1] 2 =

1>.

then w = [z1, 23%][z1, 2§[z2, 23%%] € D4(G)\14(G).

Lemma 4.19 [12] Let G be a group. If x1,x2,23 € G and there ezists § € 2(G), j =
1,---6 and n; € v3(G), such that

16 32 64
=&, 130 =&, 232§ = &m
23128

55 2, 5131 56 13,
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then
w=[o1 aPfer 2[zs 23] € Du(@).

Proof Since 12(G) C 1+ A?(G), we have
1 —w=a; + ay + az modAYG)

where a1 = (1 — [z1, 23?]), a2 = (1 — [z1, 2§Y]), a3 = (1 — [z2, 23?%]). Now working

Modulo A*(G), we have
o = (1 —232)(1 —x1) — (1 — 23%)(1 — 2)
as = (1-— xg4)(1 —x1)— (1— 1:?4)(1 — x3)
ag=(1- ;17:1,,28)(1 —x9) — (1 — x%zg)(l — x3)

therefore,

a1 +as+az3=0

and hence w € Dy(G).

Remark 4.20 Simplicial methods are helpful in study of group rings. For the details
see ([13]).
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