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Abstract

This project consists of two parts, Part one consists of study of simplicial

homotopy theory, In particular, Dold-Kan correspondence between category

Simp(A) of simplicial objects in abelian category and category Ch≥0 of non-

negative chain complexes. Part two is a study of dimension subgroups.
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Introduction

A fundamental developement in mathematics during the last century has been the

simplicial homotopy theory and its applications in various areas of subject.

In Chapter 1, we have given some basic definitions and properties of simplicial objects and

simplicial maps.

In Chapter 2, first of all we construct a simplicial set from a topological space which

gives rise to a functor from category of topological spaces to category of simplicial sets.

We next, have given conditions for two n-simplexes being homotopic. It comes out that

being homotopic is an equivalence relation on Kn. After that geometric realisation of a

simplicial set is given which gives rise to a functor from the category of simplicial sets

to the category of topological spaces. The main result of this Chapter is that singular

simplex functor is adjoint to geometric realisation functor which provides an equivalence

between the category of Kan-complexes and category of CW-complexes.

The main result of Chapter 3 is Dold-Kan correspondence which gives an equivalence

between the category Simp(A) of simplicial objects in an abelian category A and the

category of chain complexes in A. Using the Dold-Kan correspondence, construction of

Eilenberg-Maclane spaces of all type is given.

In Chapter 4, we study dimension subgroups, including the counter-example of a group G

due to Rips 1972, showing that D4(G) 6= γ4(G).
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Chapter 1

Simplicial objects

In this Chapter we will give some basic definitions which will serve as a base for the

simplicial homotopy theory.

Definition 1.1 A category C is a collection of objects together with

(i) a class of disjoint sets, denoted by Hom(A,B) for each pair A,B ∈ C, (an element

f ∈ Hom(A,B) is called a morphism from A to B.

(ii) For each triple (A,B,D) of objects in C there is a map

Hom(B,D)×Hom(A,B) −→ Hom(A,D)

which satisfies two axioms.

(a) Associativity: if f : A→ B, g : B → D, h : D → E are morphisms then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(b) Identity morphism: For every object B in C, there exists a morphism IB : B −→ B

such that for any

f : A −→ B, g : B −→ D

IB ◦ f = f, g ◦ IB = g.

Example 1.2 ∆-Category:

Objects of this ∆-Category are sequence of integers {0, 1, · · · , n}, n ≥ 0 denoted by

[n] and morphism between any two objects [n] and [m] is a non-decreasing map
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α : [n] −→ [m]

i.e., α(i) ≤ α(j) for i < j.

Define face map δi and degeneracy map σi in ∆ as follows:

δi : [n] −→ [n+ 1] by

δi(j) = j if j < i

δi(j) = j + 1 if j ≥ i.

σi : [n] −→ [n− 1] by

σi(j) = j if j ≤ i

σi(j) = j − 1 if j > i.

Remark 1.3 For example, when we compute the face and degeneracy maps, then it

comes out that there are two distinct face maps from [0] to [1] and one degeneracy map

from [1] to [0]. There are three distinct face maps from [1] to [2] and two distinct degeneracy

maps from [2] to [1].

Lemma 1.4 [8, page 7] Every morphism α : [n] −→ [m] in ∆ can be written uniquely in

the following form

α = δi1 · · · δisσj1 · · ·σjt

with 0 ≤ is < · · · i1 ≤ m and 0 ≤ j1 < · · · jt ≤ n. It follows that α has a unique epi-monic

factorization, α = δσ, where δ = δi1 · · · δis and σj1 · · ·σjt

Proof Let is < · · · i1 be elements of [m] not in α([n]). Let j1 < · · · jt be the elements of

[n] such that α(ji) = α(ji + 1). Then α = δi1 · · · δisσj1 · · ·σjt . In particular, α factorizes as

[n] � [p] ↪→ [m]

where p = n− t = m− s.
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Definition 1.5 A simplicial object K in a category C is a contravariant functor

K : ∆ −→ C.

It may be noted that a simplicial object is essentialy in a category C is given by sequence

of objects in C, {Kn}n≥0 along with face maps

di : Kn −→ Kn−1

and degeneracy maps

si : Kn −→ Kn+1

satisfying the following simplicial identities

didj = dj−1di for i < j,

sisj = sj+1si for i ≤ j,

disj = sj−1di for i < j,

disi = Id = di+1si,

disj = sjdi−1 for i > j + 1.

Example 1.6 The n− simplex ∆[n] is a simplicial object with

∆[n]k = {(i0, · · · , ik)|0 ≤ i0,≤ · · · ,≤ ik ≤ n, k ≤ n}.

face map dj : ∆[n]k −→ ∆[n]k−1 and degeneracy map sj : ∆[n]k −→ ∆[n]k+1 is given by

dj(i0, · · · ik) = (i0, · · · ij−1, ij+1, · · · ik),

sj(i0, · · · ik) = (i0, · · · ij , ij , · · · ik).

Definition 1.7 A cosimplicial object in a category C is a sequence of objects, Kn ∈ C
together with maps di : Kn −→ Kn+1, si : Kn −→ Kn−1, which satisfy cosimplicial

identities:

djdi = didj−1 for i < j for 0 ≤ i ≤ n,
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sjsi = sisj+1 for i ≤ j for 0 ≤ i ≤ n,

sjdi = disj−1 for i < j for 0 ≤ i ≤ n,

sidi = Id = sidi+1 for 0 ≤ i ≤ n,

sjdi = di−1sj for i > j + 1 for 0 ≤ i ≤ n.

Definition 1.8 Let K be a simplicial object in category C. Then an element x ∈ Kn is

said to be an n-simplex.

Definition 1.9 An n-simplex x ∈ Kn is said to be degenerate if there exists y ∈ Kn−1

such that x = siy for some i, 0 ≤ i ≤ n.

Definition 1.10 A simplicial object K is said to be reduced if K0 has only one element.

Definition 1.11 A simplicial map f : K −→ L between two simplicial objects in a

category C consists of a collection of maps,i.e., {fn}, fn : Kn −→ Ln for n ≥ 0, such

that the maps fn are compatible with face and degeneracy map

fndi = difn+1 for 0 ≤ i ≤ n

fnsi = sifn−1 for 0 ≤ i ≤ n

Cartesian product: The cartesian product of two simplicial objects K and L in a

category C is defined as follows:

(K × L)n = Kn × Ln, for n ≥ 0,

di(x, y) = (di(x), di(y)), for 0 ≤ i ≤ n,

si(x, y) = (si(x), si(y)) for 0 ≤ i ≤ n.

Example 1.12 : Let C be a category and A ∈ C be an object. Let K = {Kn} with

Kn = A. Define face and degeneracy maps on A to be the identity maps on A; these face

and degeneracy maps satisfies simplicial identities, and so K = {Kn} becomes a simplicial

object.
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Chapter 2

Simplicial objects in topology

In this Chapter we will develop the simplicial homotopy theory. Using simplicial homotopy

theory we will see equivalence between Kan-complexes and CW-complexes which allows

us to work with simplicial homotopy theory in place of classical homotopy theory.

Definition 2.1 We define simplicial set to be a simplicial object in the category of Sets.

Notations Category of simplicial sets is denoted by Set∆ and the category of topological

spaces is denoted by Top.

2.1 Construction of simplicial set from a topological space

Let X be a topological space and

∆n = {(t0, · · · , tn) | Σn
i=0ti = 1, ti ≥ 0, ti ∈ R}

be the standard n-simplex.

Define:-

Singn(X) = {γ : ∆n −→ X | γ is a continuous map}

to be the collection of all singular n-simplices. We define the face and degeneracy map as

follows:

(diγ)(t0, · · · , tn−1) = γ(t0, · · · , ti−1, 0, ti, · · · tn−1) 0 ≤ i ≤ n− 1

(siγ)(t0, · · · , tn+1) = γ(t0, · · · , ti−1, ti + ti+1, · · · tn+1) 0 ≤ i ≤ n

5



So, it remains to show that these face and degeneracy map satisfy simplicial identities.

(sisjγ)(t0, · · · , tn+2) = (sjγ)(t0, · · · , ti−1, ti + ti+1, · · · tn+2)

= γ(t0, · · · , ti−1, ti + ti+1, · · · tj , tj+1 + tj+2 · · · tn+2)

= (sj+1siγ)(t0, · · · , tn+2).

Thus,

sisj = sj+1si, for i ≤ j.

Therefore Sing(X) becomes a simplicial set.

In particular, Sing defines a functor from category of topological spaces to category of

simplicial sets.

Sing : Top→ Set∆

2.2 Kan complexes

Definition 2.2 Collection of n, (n− 1)-simplices,

x0, · · · , xk−1,−, xk+1, · · ·xn

satisfying compatibility condition if

dixj = dj−1xi, ∀ i < j, i, j 6= k.

Definition 2.3 A simplicial set K is said to be a Kan-complex if, for every collection of

n, (n− 1)-simplices,

x0, · · · , xk−1,−, xk+1, · · ·xn

satisfying compatibility condition there exists an n-simplex y such that

diy = i, ∀ i 6= k.

Notation λnk is the standard n-simplex ∆n with the interior and the kth face removed.

Lemma 2.4 [7] A simplicial set is a Kan-complex if and only if, for any 0 ≤ k ≤ n, and

any simplicial morphism λnk → K can be extended to a morphism ∆n → K.
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Example 2.5 0-simplex ∆0 is a Kan-complex.

Definition 2.6 A map f : K → L of simplicial sets is said to be a Kan fibration if for

every collection of n, (n− 1)-simplices

x0, · · · , xk−1,−, xk+1, · · ·xn

of K which satisfy the compatibility condition and for any n-simplex y ∈ Ln satisfying

diy = f(xi), ∀ i 6= k

there exists an n-simplex x ∈ Kn such that

f(x) = y, and dix = xi, ∀ i 6= k.

Lemma 2.7 [7] Let L be a simplicial set generated by single element l0 Then a map

f : K → L is a Kan-fibration if and only if K is a Kan-complex.

Proof Let f : K → L be a Kan fibration So we need to show that K is a Kan-Complex.

Suppose

x0, · · · , xk−1,−, xk+1, · · ·xn

are n, (n− 1)-simplices satisfying compatibility condition and y is an n-simplex of L such

that

diy = f(xi), ∀ i 6= k

Since f is a Kan-fibration so there exists an n-simplex x ∈ Kn such that dix = xi, ∀ i 6= k

and f(x) = y. Thus K is a Kan-complex.

Conversely, supppose K is a Kan complex. Now just using the definition we get the desired

result.

Definition 2.8 A simplicial group is a simplicial object in the category of groups.

Lemma 2.9 [10] A simplicial group G is a Kan-Complex.
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Proof Suppose

x0, · · · , xk−1,, xk+1, · · ·xn+1

be n+ 1, n-simplices satisfying compatibility condition. Our aim is to find g ∈ Gn+1 such

that

dig = xi, ∀ i 6= k.

We will proceed by induction on r to find gr ∈ Gn+1 such that digr = xi, ∀ i ≤ r, i 6= k.

Set g−1 = 1 ∈ Gn+1. Suppose we have found gr−1 ∈ Gn+1 such that

digr−1 = xi ∀ i ≤ r − 1, i 6= k.

Now we will find gr if r = k, then we will take gr = gr−1.

If r 6= k, Consider the element y = xr
−1(drgr−1) ∈ Gn. Since we have digr−1 = xi for

i ≤ r − 1.

diy = di(xr)
−1didrgr−1

= (dixr)
−1dr−1digr−1

= (dixr)
−1dr−1xi

= (dixr)
−1dixr = 1.

Thus we have diy = 1, ∀ i < r, i 6= k.

Now di(sry) = sr−1(diy) = 1, for i < r, i 6= k.

Now take gr = gr−1(sry)−1

digr = digr−1di(sry)−1 = digr−1 = xi, ∀ i < r, i 6= k

drgr = dr(gr−1(sry)−1) = (drgr−1)(dr(sry)−1) = xr

Thus simplicial group G becomes a Kan-complex.

2.3 Simplicial homotopy theory

Definition 2.10 Let K be a simplicial set. Then we say two n-simplices x, x′ ∈ Kn are

homotopic if

dix = dix
′, ∀ 0 ≤ i ≤ n,

and there exist an element y ∈ Kn+1 with the property that dny = x, dn+1y = x′ and

djy = sn−1djx = sn−1djx
′ ∀ 0 ≤ j < n.
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Remark 2.11 In above definition the (n+ 1)-simplex y is called a homotopy from x to

x′, and we write x ∼ x′.

Lemma 2.12 [1, page 115] Let K be a simplicial set which satisfies the Kan condition.

Then the relation of being homotopic is an equivalence relation on Kn, ∀ n ≥ 0

Proof (i) Reflexive:- Let x ∈ Kn and y = snx ∈ Kn+1

Since dix = dix, ∀ 0 ≤ i ≤ n
and dny = dnsnx = x, dn+1y = dn+1snx = x

and djy = djsnx = sn−1djx. Thus we have x ∼ x

(ii) Symmetric and Transitive:- Let x, x′, x′′ ∈ Kn Such that x
′ ∼ x and x′′ ∼ x′.

Suppose y′ is a homotopy from x′ to x and y′′ is a homotopy from x′′ to x′.

dix
′ = dix = dix

′′ ∀ 0 ≤ i ≤ n.

Since y′ is a homotopy from x′ to x. So,

diy
′ =


sn−1dix

′; for 0 ≤ i < n

x′; for i = n

x; for i = n+ 1

Since y′′ is a homotopy from x′′ to x. So,

diy
′′ =


sn−1dix

′′; for 0 ≤ i < n

x′′; for i = n

x; for i = n+ 1

Now we want to construct a homotopy from x′′ to x′. For 0 ≤ j < n, Choose zj =

sn−1sn−1djx
′. Now using simplicial identities for 0 ≤ j < n, we have sn−1sn−1dj = djsnsn.

Thus, for 0 ≤ i < j < n,

9



dizj = disn−1sn−1djx
′

= didjsnsnx
′

= dj−1disnsnx
′

= dj−1sn−1sn−1dix
′

= dj−1zi.

For 0 ≤ j < n,

dn+1zj = dn+1sn−1sn−1djx
′ = sn−1dnsn−1djx

′ = sn−1djx
′

dnzj = dnsn−1sn−1djx
′ = sn−1djx

′

Since y′ and y′′ are homotopies from x′ to x and x′′ to x. So we have n+2, (n+1)-simplices

z0, z1, · · · , zn−1,−, y′, y′′

which satisfies the compatibility condition. Since K is a Kan-complex so there exists an

(n+ 2)-simplex z such that

djz = zj for 0 ≤ j < n− 1

dn+1z = y′, dn+2z = y′′.

Now using simplicial identities we can check that (dnz) is a homotopy from x′′ to x′. If

we take x′′ = x then we see that relation is symmetric. Thus being homotopic is an

equivalence relation.

2.3.1 Homotopy groups

Let K be a simplicial set and take a 0-simplex ko ∈ K0 and consider L to be the sub

simplicial set generated by ko. Thus for every n ≥ 0 there is exactly one element in Ln

which is

kno = sn−1 · · · s0ko.

If K is a Kan-complex then (K, k0) is said to be a Kan-pair.
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Definition 2.13 Let (K, k0) be a Kan pair. Then

πn(K, k0) = {x ∈ Kn|dix = kn−1
0 }/∼

where ∼ is an equivalence relation defined earlier.

Remark 2.14

π0(K, k0) = K0/∼

π0(K) is called path connected component of K. K is said to be path connected if there

is only one class in π0(K).

We will define composition of two elements in πn(K, k0)[7]. Let [a], [b] ∈ πn(K, k0). Let x

and y denotes representatives for the classes [a],[b] respectively. Then the following n+ 1,

n-simplices

k0
n, · · · , kn0 , x,−, y

satisfy compatibility condition. Since K is a Kan-complex so there exists an (n+1)-simplex

z such that

dn+1z = y, dn−1z = x and diz = kn0 , ∀ 0 ≤ i < n− 1.

So, we define [a]∗ [b] to be the equivalence class of dnz. Suppose there is another z′ ∈ Kn+1

which satisfy dn+1z
′ = y, dn−1z

′ = x, and diz
′ = k0

n, ∀ 0 ≤ i < n− 1. Then look at the

n+ 2, (n+ 1)-simplices

k0
n+1, · · · , kn+1

0 , sndn−1z,−, z, z′.

These simplices satisfy compatibility condition. Since K is a Kan-complex, So there exists

ω ∈ Kn+2 with the property that dn+1w = z, dn−1ω = sndn−1z,and diω = kn+1
0 , ∀ 0 ≤

i < n− 1.

Claim dnω is a homotopy from dnz to dnz
′.

Justification

di(dnz) = dn−1(diz) = dn−1k0
n = kn−1

0

di(dnz
′) = dn−1(diz

′) = kn−1
0 .

Thus di(dnz) = di(dnz
′), ∀0 ≤ i ≤ n− 1.

dn(dnω) = dn(dn+1ω) = dnz

11



dn+1(dnω) = dn(dn+2ω) = dnz
′

di(dnω) = dn−1(diω) = dn−1k
n+1
0 = kn0

sn−1di(dnz) = sn−1dn−1(diz) = kn0

Thus sn−1di(dnz) = di(dnω) ∀ 0 ≤ i < n− 1.

Thus dnω is a homotopy from dnz to dnz
′. so dnz ∼ dnz′.

Suppose instead of y, we pick y′ as a representative of [b]. Then [a] ∗ [b] = [dnz
′] such that

diz
′ = kn0 , ∀ 0 ≤ i < n−1. and dn−1z

′ = x, dn+1z
′ = y′ Since y′ and y belongs to the same

homotopy class so there is a homotopy ω from y′ to y. Consider n+ 2, (n+ 1)-simplices

kn+1
0 , · · · , kn+1

0 , sn−1x, z
′−, ω.

These simplices satisfy compatibility condition. Since K is a Kan-complex, so there exists

u ∈ Kn+2 with the property that

diu = kn+1
0

dn−1u = sn−1x

dnu = z′′

dn+2u = ω

Now take the (n+ 1)-simplex α = dn+1u

diα = di(dn+1u) = dn(diu) = kn0 ∀ 0 ≤ i < n

dn−1α = dn−1(dn+1u) = dn(dn−1u) = dnsn−1x = x ∀ 0 ≤ i < n

dnα = dnz
′, dn+1α = dn+1(dn+1u) = dn+1(dn+2u) = y.

Thus our choice of representative is independent. Thus composition is well defined.

Lemma 2.15 [7, page 15] Let (K, k0) be a Kan pair, then the set πn(K, k0) forms a group

for n ≥ 1, where composition is defined above.

12



Proof Existence of Identity

[k0
n] is the left identity of πn(K, k0).

Let

[a] ∈ πn(K, k0)

Claim [kn0 ] ∗ [a] = [a]

Justification Consider the (n+ 1), n-simplices

k0
n, · · · , k0

n,−, a

These simplices satisfy compatibility condition. Choose z = sna. Then we have diz =

k0
n ∀ 0 ≤ i ≤ n− 1, dn+1z = a

Thus [kn0 ] ∗ [a] = [dnz] = [a].

Associativity:-

Let x, y, z be the representatives of [a], [b], [c] ∈ πn(K, k0) respectively.

Suppose that [a] ∗ [b] = [dnω] and [b] ∗ [c] = [dnω
′].

Consider the n+ 1, n-simplices

kn0 , · · · , kn0 , dnω,−, z

satisfy the compatibility condition and K is a Kan-complex so there exist u ∈ Kn+1 such

that

diu = kn0 , ∀ 0 ≤ i < n− 1

dn−1u = dnω

dn+1u = z.

Thus [dnu] = [dnω]c = ([a] ∗ [b]) ∗ [c]

Now consider n+ 2, (n+ 1)-simplices

k0
n+1, · · · , kn+1

0 , ω,−, u, ω′

which satisfy compatibility condition and K is a Kan-complex so there exists v ∈ Kn+2

with the property that

div = kn+1
0 0 ≤ i < n− 1

13



dn−1v = ω

dn+1v = u

dn+2v = ω′

.

dn−1(dnv) = dn−1(dn−1v) = dn−1(ω) = x

dn+1(dnv) = dn(dn+2v) = dn(ω′) = x

di(dnv) = dn−1(div) = kn0

Thus [dn(dnv)] = [a] ∗ [dnω
′] = [a] ∗ [bc]

[a] ∗ ([b] ∗ [c]) = [a] ∗ [dnw
′] = [dn(dnv)] = [dndn+1v] = [dnu] = [a ∗ b] ∗ c.

Thus the composition is associative.

Using the fact that K is a Kan-complex we can prove the existence of inverse of every

element. Thus the set πn(K, k0) is a group and πn(K, k0) is called nth Simplicial homotopy

group with respect to 0-simplex k0.

Definition 2.16 A simplicial set K which satisfy compatibility condition is said to be

contractible if all of its simplicial homotopy groups are trivial.

2.3.2 Relative homotopy

Let K be a Kan-complex and L ⊂ K be its sub Kan-complex. Pick a 0-simplex l0 ∈ L0.

Then the triple (K,L, l0) is said to be a Kan-triple.

Definition 2.17 Let K be a simplicial set and L be a sub-simplicial set. Two n-simplices

x, x′ ∈ Kn are said to be homotopic relative to L if

dix = dix
′, ∀ 1 ≤ i ≤ n,

d0x ∼ d0x
′ in L

and there exist an (n+ 1)-simplex ω ∈ Kn+1 such that

d0ω = y, dnω = x, dn+1ω = x′

14



diω = sn−1dix = sn−1dix
′ ∀1 ≤ i ≤ n.

Here y ∈ Kn is a homotopy from d0x to d0x
′ and ω ∈ Kn+1 is said to be relative homotopy

from x to x′ and we write x ∼L x′.

Definition 2.18 Let (K,L, l0) be a Kan-triple. Then we define

πn(K,L, l0) = {x ∈ Kn| d0x ∈ Ln−1, dix = l0
n−1, ∀ 1 ≤ i ≤ n}/∼L.

First of all we will define composition of elements of πn(K,L, l0)[7]. Take [a],[b] ∈ πn(K,L, l0)

for n ≥ 2.

Let x and y be representatives of the classes [a], [b] respectively. Since [a],[b] ∈ πn(K,L, l0)

so d0x, d0y ∈ Ln−1 and since πn−1(Ln−1, l0) is a group. So

[d0x][d0y] = [dn−1z] for z ∈ Ln

diz = ln−1
0 ∀0 ≤ i ≤ n− 3

dn−1z = d0x

dnz = d0y

Consider n+ 1, n-simplices

z, ln0 , · · · , ln0 , x,−, y

. One can check that these n-simplices are satisfying compatibility condition and since K

is a Kan-complex so there exists a u ∈ Kn+1 such that

diu = ln0 , ∀1 ≤ i < n− 1

dn−1u = x

dn+1u = y

d0u = y

So we define [a][b] = [dnu].

Lemma 2.19

πn(K,L, l0)

is a group for n ≥ 2.
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Theorem 2.20 [8, Theorem 3.7] Let (K,L, l0) be a Kan-triple. Then there is a long exact

sequence

· · · −→ πn+1(K,L, l0)
d−→ πn(L, l0)

i−→ πn(K, l0)
j−→ πn(K,L, l0) −→ · · ·

where d[x] = [d0x] and maps i and j are maps induced from inclusion.

Proof We need to prove that Im(d) = Ker(i). Let [x] ∈ πn+1(K,L, l0) i.e., x ∈ Kn+1

such that d0x ∈ Ln and dix = ln0 ∀ 1 ≤ i ≤ n+ 1. Now consider n+ 2, (n+ 1)-simplices

−, l0n+1, · · · , ln+1
0 , x.

These (n + 1)-simplices are satisfying compatibility condition, since (K,L, l0) is a Kan-

triple so there exists an (n+ 2)-simplex ω such that

diω = ln+1
0 , ∀ 1 ≤ i ≤ n+ 1

dn+2ω = x.

Claim: d0ω is a homotopy from ln0 to d0x.

Justification:

dil
n
0 = did0x = ln−1

0 , ∀ 0 ≤ i ≤ n.

dn(d0ω) = d0(dn+1ω) = d0l
n+1
0 = ln0

dn+1(d0ω) = d0(dn+2ω) = d0x

di(d0ω) = ln0 for 1 ≤ j < n.

sn−1(dil
n
0 ) = ln0

sn−1(did0x) = ln0

So di(d0ω) = sn−1(dil
n
0 ) = sn−1(dix) for 1 ≤ j < n.

Thus [d0x] ∼ [ln0 ], so i[d0x] = [ln0 ].

Thus iod = Iπn(K,l0). Thus Im(d) ⊆ Ker(i).
Let [a] ∈ Ker(i). Suppose y is the representative of the class [a]. Since y ∈ Ker(i), so

i[y] = ln0 . Since i is an inclusion map thus ln0 ∼ y.

Let ω be the homotopy from y to ln0 . Consider n+ 2, (n+ 1)-simplices

ω, l0
n+1, · · · , ln+1

0 ,−.
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These (n+ 1)-simplices satisfy compatibility condition so there exists an (n+ 2)-simplex

u such that

diu = ln+1
0 , ∀ 1 ≤ i ≤ n+ 1

d0u = ω.

d0(dn+2u) = dn+1(d0u) = dn+1ω = y.

This implies that [y] = d[dn+2u]. Thus [y] ∈ Im(d). =⇒ Ker(i) ⊆ Im(d).

Definition 2.21 Let K and L be simplicial objects in category C. Then two simplicial

maps f and g are simplicially homotopic if there exist a collection of morphisms {hi},
where

hi : Kn −→ Ln+1 for 0 ≤ i ≤ n.

with the property that

d0h0 = f, dn+1hn = g

dihj = hj−1di for i < j

dihj = dihi−1 for i = j 6= 0

dihj = hjdi−1 for i > j + 1

and

sihj = hj+1si for i ≤ j

sihj = hjsi−1 for i > j

The collection {hi} is said to be homotopy from f to g and we write f ' g.

Proposition 2.22 [16] Let C be a category of sets or an abelian category. Let K and

L be simplicial objects in C, and f, g : K −→ L two simplicial maps. For i = 0, 1, let

εi : K −→ K × ∆[1] be the induced map by δi : [0] −→ [1] in ∆. Then there is a one

to one correspondence between simplicial homotopies from f to g and simplicial maps

F : K ×∆[1] −→ L.
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2.4 Geometric realisation of a simplicial set

In this section we will define Geometric realisation functor and then we will see the

equivalence between Kan-complex and CW-complex.

Definition 2.23 A point Pn = (t0, · · · , tn) ∈ ∆n is said to be an interior point of ∆n if

either n = 0 or 0 < ti < 1, ∀ i.

The notion of geometric realisation was given by Milnor[9]. The geometric realisation

of | K | of K is a topological space obtained from the disjoint union

| K |= (tnKn ×∆n)/ ∼

where the set Kn is viewed as a topological space with discrete topology. Equivalence

relation is given as follows

(dix, p) ∼ (x, δip); (x, p) ∈ Kn ×∆n−1

(six, p) ∼ (x, σip); (x, p) ∈ Kn−1 ×∆n

where di, si are face and degeneracy maps of K respectively and δi, σi are the maps of

∆− category.

Definition 2.24 An element (x, p) ∈ t(Kn × ∆n) is said to be non-degenerate if x is

non-degenerate and p is an interior point of ∆n).

Proposition 2.25 [7, page 20] Each element (x, p) ∈ t(Kn × ∆n) is equivalent to a

unique non-degenerate element of t(Kn ×∆n).

Proof If xn is non-degenerate, then we are done. If xn is degenerate then there exists

xn−1 ∈ Kn−1 such that xn = sixn−1. So in this way each element xn can be written in

the form

sjr · · · sj1xn−r

with 0 ≤ j1 ≤ · · · jr ≤ n and xn−r ∈ Kn−r is non-degenerate. Similarly for each pn ∈ ∆n

can be written uniquely in the form

δiq · · · δi1pn−q
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where 0 ≤ 11 ≤ · · · iq ≤ n and pn−q is in interior of ∆n−q.

Define morphisms f and g as follows

f : t(Kn ×∆n) −→ t(Kn ×∆n)

by f(xn, pn) = (Kn−r, σj1 · · ·σjrpn) and

g : t(Kn ×∆n) −→ t(Kn ×∆n)

by g(xn, pn) = (δi1 · · · δiqxn, pn−q)
where xn = sir · · · si1kn−r with kn−r non-degenerate and pn = δiq · · · δi1un−q with un−q in

the interior of ∆n−q, look at the map f ◦ g, this composition map takes each element to a

unique non-degenerate element.

Theorem 2.26 [9, page 358] The geometric realisation of a simplicial set K is a CW-

complex with one n-cell for each non-degenerate n-simplex of K.

| − | associates each simplicial set K to a topological space | K |, which gives rise to a

functor | − |: Sets∆ −→ Top.

Any simplicial morphism f : K −→ L induces a morphism | f |:| K |−→| L | which maps

| xn, sn | to | f(xn), sn |.

Definition 2.27 Let C and D be two categories and let S : C −→ D and T : D −→ C be

covariant functors then the pair (S, T ) is said to be an adjoint pair if there is a bijection

from the functor HomD(S(−),−) to the functor HomC(−, T (−)).

Theorem 2.28 [1, page 120] The singular simplex functor Sing : Top −→ Sets∆ and the

geometric realisation functor | − |: Sets∆ −→ Top are adjoint. Further, for a simplicial

set K and a topological space X, there is a one to one correspondence between homotopy

classes of continuous maps | K |−→ X and homotopy classes of simplicial maps K −→
Sing(X). In particular, πi(X,x0) = πi(Sing(X), Sing(x0)).
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Chapter 3

Simplicial objects in homological

algebra

In this chapter we will work on abelian categories. Through out the Chapter, A is an

abelian category and A will denote a simplicial object in abelian category A. We will

prove equivalence between category Simp(A) and category of chain complexes Ch≥0(A)

in A which enables us to construct Eilenberg-Maclane spaces of all type. Let A be an

abelian category and A be a simplicial object in category A. We will denote category of

simplicial objects by Simp(A).

Definition 3.1 A category C is additive if folowing conditions are satisfied:

(i) It has a zero object.

(ii) Every hom-set Hom(A,B) has an addition, endowing it with the structure of an abelian

group, and such that composition of morphisms is bilinear.

(iii) all finitary biproducts exists.

Definition 3.2 An additive category A is said to be an abelian category if the following

conditions are satisfied:

(i) Every morphism in A has kernel and cokernel.

(ii)Every monomorphism is the kernel of its cokernel.

(iii)Every epimorphism is the co-kernel of its kernel.

Definition 3.3 Let A be a simplicial object in category A. Then the associated chain

complex C(A) of A is the complex
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· · · → Cn
∂n−→ Cn−1

∂n−1−−−→ · · · C0 → 0

with Cn = An and differentials defined as

∂n = Σn
i=0(−1)idi : Cn −→ Cn−1, n ≥ 0

where di are the face maps of simplicial object A. Since A is a simplicial object, thus by

using simplicial identities, we get

∂n ◦ ∂n+1 = 0 ∀ n ≥ 0.

Thus C(A) is a well-defined chain complex.

Definition 3.4 The normalised chain complex of a simplicial object A is a chain complex

with

Nn(A) =
n−1⋂
i=0

Ker(di : An −→ An−1) ∀ n ≥ 0

and differentials are defined as

∂n = (−1)ndn ∀ n ≥ 0.

Remark 3.5 Normalised chain complex forms a functor from category of simplicial

objects to category of non-negative chain complexes

N : Simp(A) −→ Ch≥0(A)

For a given simplicial morphism,

f : A −→ B; A,B ∈ Simp(A),

we have a collection of maps

fn : An −→ Bn.

Then N(f) : N(A) −→ N(B) is a morphism of chain complexes

N(f)n = fn |Nn(A): Nn(A) −→ Nn(B).
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Lemma 3.6 [16] Let A be a simplicial object in category A. Let N(A) be associated

normalised chain complex and C(A) is associated chain complex and suppose D(A) is

degenerate sub-complex of C(A) generated by image of degeneracy maps si, i.e.

Dn(A) = Σn
i=0si(Cn−1(A)),

then C(A) = N(A)⊕D(A).

Proof Let y ∈ Nn(A)
⋂
Dn(A). Suppose to the contrary that y 6= 0. Since y ∈ Dn(A)

thus

y = Σsi(xi).

Let i be the smallest integer such that si(xi) 6= 0. Then di(y) = xi 6= 0, which is a

contradiction since y ∈ Nn(A). Thus y = 0.

Now let y ∈ Cn(A), if y = 0 then we are done.

If y 6= 0 and dky = 0 ∀ 0 ≤ k < n. Then y ∈ Nn(A) and again y = y + 0.

Now suppose for some k < n, dk(y) 6= 0. Now look at

y′ = y − skdk(y), skdk(y) ∈ Dn(A)

for i < n

di(y
′) = di(y)− sk−1dk−1di(y) = 0

which =⇒ y′ ∈ Nn(A).

Thus y ∈ N(A) +D(A).

Since C(A) = N(A)⊕D(A), thus N(A) ' C(A)/D(A).

Definition 3.7 For a given simplicial object A in an abelian category A, we define

πn(A) = Hn(N(A)).

Theorem 3.8 [16, Theorem 8.3.8] Let A be a simplicial object in category A. Then for

all n ≥ 0,

πn(A) = Hn(C(A)).
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Example 3.9 Classifying space:- Let G be a group, now construct simplicial set BG

as follows

BG0 = {1} BGn = Gn

Define face and degeneracy maps as follows

di(g1, · · · , gn) = (g2, · · · , gn); if i = 0,

di(g1, · · · , gn) = (g1, · · · , gigi+1, · · · gn); 0 < i < n,

di(g1, · · · , gn) = (g1, · · · , gn−1); i = n,

si(g1, · · · , gn) = (g1, · · · , gi, 1, gi+1, · · · gn).

Claim: BG is a simplicial set.

Justification:

didj(g1, · · · , gn) = di(g1, · · · , gi · · · , gjgj+1, · · · , gn); for 0 < i < j < n

= (g1, · · · , gigi+1 · · · , gjgj+1, · · · , gn)

= dj−1di.

Thus BG is a simplicial set.

N1(BG) = Ker(d0 : G1 → {1}) = G

Nn(BG) =

n−1⋂
i=0

Ker(di : BGn −→ BGn−1)

for i = 0, d0 : BGn −→ BGn−1,

Kerd0 = {(g1, · · · , gn) ∈ BGn | gi = 1 for i ≥ 2}

Kerdn = {(g1, · · · , gn) ∈ BGn | gi = 1 for i ≤ n− 1}

So Nn(BG) = {1} for n 6= 1.

So normalised chain complex of BG

· · · → 1 · · · → G
∂1−→ 1

So π1(BG) = H1(N(BG)) = G and πn(BG) = 1 for n 6= 1.
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Definition 3.10 A connected topological space X is said to be an Eilenberg-Maclane space

of type K(G, n) if

πi(X) =

G if i = n

1 i ≥ 1, i 6= n

Remark 3.11 BG is an Eilenberg space of type K(G, 1).

3.1 The Dold-Kan Correspondence

Definition 3.12 If we have two categories C and D, then equivalence of categories consists

of a functor F : C → D, a functor G : D → C and two isomorphisms ε : FG → ID and

η : GF → IC. Here FG : D → D and GF : C → C, denote the respective compositions

of F and G, and IC : C → C and ID : D → D denote the identity functors on C and D,

assigning each object and morphism to itself.

Theorem 3.13 [4] Let A be an abelian category and N be the normalised chain functor

N : Simp(A) −→ Ch≥0(A)

then

N is an equivalence of category of simplicial objects Simp(A) with category of chain

complexes Ch≥0(A).

Proof (a): First of all we will construct a functor

K : Ch≥0(A) −→ Simp(A)

define for C ∈ Ch≥0(A)

Kn(C) =
⊕
η

Cη[p]
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be the finite direct sum of Cη[p] and η runs over all the surjections

η : [n] −→ [p], for p ≤ n, and Cη[p] = Cp

Now for a given morphism α : [n] −→ [m] in ∆, we define

K(C)(α) : Km(C) −→ Kn(C)

by its restriction to each summand Cη.

[7, page 30]

Since η ◦ α : [n] −→ [p] be a morphism and every morphism in ∆ − category has a

unique epimonic factorisation, So let ε ◦ η′ be the unique epimonic factorisation of η ◦ α.

If p = q then η ◦ α = η′. Then K(C)(α, η) is a natural map sending Cp to Cp.

If p = q + 1, and ε = dp. Then we define

K(C)(α, η) = d : Cp −→ Cp−1 ⊆ Kn(C)

. where d is a differential of chain-complex. Otherwise we define K(C)(α, η) = 0.

Now our next step is to show composition of morphisms.

Let α : [l] −→ [m] : β : [m] −→ [n] be two composable morphisms in ∆. Now consider the

map

K(C)(β ◦ α) : Kn(C) −→ Kl(C).

For any η : [n] � [p], p ≤ n, look at the restriction K(C)(β ◦ α).

If q ≤ p− 2 then the way we defined K(C)(α), it comes out that

K(C)(β ◦ α, η) = 0 = K(C)(α, η′) ◦K(C)(β, η)

If q = p− 1 then ε = dp and K(C)(β ◦ α) = dp.

If q′ = p− 1 then K(C)(α, η′) ◦K(C)(β, η) = Id ◦ dp.
If q′ = p then K(C)(α, η′) ◦K(C)(β, η) = dp ◦ Id.
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[7, page 30]

In any of above cases we have

K(C)(β ◦ α, η) = K(C)(α, η′) ◦K(C)(β, η)

Now if q = p, then we have q = q′ = p and η = η′.So,

K(C)(β ◦ α, η) = Id = K(C)(α, η′) ◦K(C)(β, η)

Thus K is a functor

K : Ch≥0(A) −→ Simp(A).

Claim: K is inverse to N .

Justification: For any surjection

η : [n] � [p], p ≤ n in ∆ there is a unique epi-monic factorisation of η. So η = σi1 · · ·σit .
If n 6= p, then we have

Cη = (sit · · · si1)CIdp

where sij are the degeneracy maps of simplicial object K(C), which implies Cη ∈ DK(C).

Now consider the case where n = p

di |CIdn= K(C)(∂i, Idn) = d, if i = n

= 0, else

Thus Nn(K(C)) = CIdn = Cn. So it proves that N is inverse to K.

Now it remains to prove that

KN ≈ IdSimp(A).

For any simplicial object A ∈ Simp(A), we define

ψn : KnN(A) −→ An
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where ψn is defined on its restrictions to summand KnN(A).

For each

η : [n] −→ [p], for p ≤ n

the corresponding summand is Nη(A) = NP (A) which is a subobject of Ap.

ψn |Nη(A) is defined to be the composition

Nη(A) = NP (A) ↪→ Ap −→ An.

For any given map α : [m] −→ [n] in ∆, let δ ◦ σ be the unique epimonic factorization of

η ◦ α.

Then the diagram

[7, page 31]

Commutes and ψ is a simplicial map, which is natural in A.

Now our aim is to prove that ψn is an isomorphism.

ψ0 : K0N(A) −→ A0

So K0(N(A)) = N0(A) = A0. Thus ψ0 : A0 −→ A0 is an isomorphism.

Now suppose ψk is an isomorphism for all k < n. Since An = Nn(A)
⊕
Dn(A), So Nn(A)

is in the image of ψn. Because the way we have defined ψn, it comes out that ψn(Nn(A))

is simply the inclusion Nn(A) ↪→ An. Now take some z ∈ Dn(A)

Thus z = six for some 1 ≤ i ≤ n − 1; x ∈ An−1. Since ψn−1 is an isomorphism, so

x ∈ Im(ψn−1) which implies that z = six ∈ (ψn), Thus the map ψn is surjective.

Claim: ψn is injective.

Justification: Let (xη) ∈ Kn(N(A)) such that ψn(xη) = 0.

Now xη ∈ Nη(A) for η : [n] � [p].

If p = n, Then (xη) = xId = 0 as ψn(Nn(A)) is simply the inclusion Nn(A) ↪→ An.

Now suppose p < n then there exist ε : [p] −→ [n] such that ε ◦ η = Idn and η ◦ ε = Idp.

K(ε, η)(xη) = xIdp ∈ Kp(N(A)) and since ψp(xIdp) = 0 and ψp is an isomorphism so xIdp
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= 0, It follows that xη = 0, and thus ψn is injective. Thus

KN ≈ IdSimp(A).

Remark 3.14 Under the correspondence on N , simplicial homotopic maps in Simp(A)

correspondence to chain homotopic maps in Ch≥0(A).

Construction of Eilenberg-Maclane spaces

Dold-Kan correspondence enables us to construct Eilenberg-Maclane spaces of all type.

Let X be a simplicial set in abelian category and let (A,n) be a chain complex concentrated

in degree n, where A is an abelian group, Then by Dold-Kan correspondence we have,

HomCh≥0(N(X), (A,n)) ∼= HomSimp(A)(X,K(A,n))

πi(K, (A,n)) = Hi((A,n),Z) =

A if k = n

1 otherwise

Thus K(A,n) is an Eilenberg-Maclane space of type n.

Till now we have simplicial homotopy theory and have proved that, we can use

simplicial homotopy theory in place of classical homotopic theory. Simplicial homotopy

will be helpful to survey the dimension quotient problem in group theory. The main result

of chapter 3 is Dold-Kan correspondence which enables us to construct Eilenberg-Maclane

spaces of all type n.
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Chapter 4

Dimension subgroups

In this chapter, we will survey some results on dimension subgroups. Using group theo-

retical properties we will see that for all groups second and third term of dimension series

are equal to the second and the third term of lower central series respectively. We will

also see that exponent of fourth dimension quotient is 1 or 2.

Definition 4.1 Let G be a group and R be a commutative ring with identity. The group

ring R[G] of G over R is given by formal sums∑
α(g)g, α(g) ∈ R, g ∈ G

with only finitely many α(g) being non-zero. The addition and multiplication are defined

as follows:

∑
α(g)∈R,g∈G

α(g)g +
∑

β(g)∈R,g∈G

β(g)g =
∑
{α(g) + β(g)}g

{
∑

α(g)∈R,g∈G

α(g)g}{
∑

β(h)∈R,h∈G

β(h)h} =
∑
x∈G
{
∑
gh=x

α(g)β(h)}x (4.1)

Above two operations makes R[G] a ring.

If R = Z then Z[G] is called integral group ring of G.

Definition 4.2 The map

ε : Z[G] −→ Z
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∑
α(g)g 7→

∑
α(g)

is called the augmentation map and Kerε = ∆(G) is called the augmentation ideal of Z[G].

Definition 4.3 Let G be a group and define:

Dn(G) = {g ∈ G | g − 1 ∈ ∆n}

then, we gets a sequence

G = D1(G) ⊇ D2(G) ⊇ · · ·

of normal subgroups of G with the property that

[Dn(G), Dm(G)] ⊆ Dn+m(G) n,m ∈ N

The sequence {Dn(G)}n≥1 which we have obtained is called dimension series of a group

G.

Definition 4.4 Let G be a group and define:

γ1(G) = G, γn(G) = [G, γn−1(G)], n ∈ N.

We get

γ1(G) ⊇ γ2(G) ⊇ · · ·

a series of subgroups of G with the property that

[γn(G), γm(G)] ⊆ γn+m(G), n,m ∈ N

The sequence of subgroups which we have obtained is called lower central series of a group

G.

Remark 4.5

γn(G) ⊆ Dn(G) for all n ∈ N.

Definition 4.6 A filtration of ∆(G) is a sequence

∆(G) = I1 ⊇ I2 ⊇ · · ·

of ideals of ZG with the property that

InIm ⊆ In+m

So, clearly {∆n}∞n=1 is a filtration of ∆(G).
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For any ideal I of ZG, we define

∂(I) = {x ∈ G : x− 1 ∈ I}.

Definition 4.7 A sequence

G = H1 ⊇ H2 ⊇ · · ·

is called an N -series for G if

[Hn Hm] ⊆ Hn+m(G) n,m ∈ N.

Remark 4.8 (i) If { In}∞n=1 is a filtration for ∆(G) then {∂(In)}∞n=1 is an N -series for

G.

(ii) Lower central series is most rapidly decreasing N -series for G.

Lazard’s Problem For a given group G and a given N -series {Hn}∞n=1 of G, does there

always exist a filtration {In}∞n=1 of ∆(G) such that

∂(In) = Hn; ∀ n ∈ N

Definition 4.9 Let G be a group and {Hn}∞n=1 be a N -series for G. If there exist a

filtration {In}∞n=1 of ∆(G) such that

∂(In) = Hn; ∀ n ∈ N

then {In}∞n=1 is called Lazard filtration of ∆(G) relative to given N -series.

Definition 4.10 Let G be a group and {Hn}∞n=1 be an N -series for G, then this N -series

induces a weight function on G

ω(x) =

k, if x ∈ Hk\Hk+1

∞, if x ∈ ∩kHk

Definition 4.11 Let G be a group and {Hn}∞n=1 be an N -series for G. Define Λk to be

the span over Z of the product

(g1 − 1)(g2 − 1) · · · (gs − 1) with the property that
s∑
i=1

ω(gi) ≥ k.
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Clearly Λ1 = ∆(G). Note that each Λk is an ideal of ZG and ΛiΛj ⊆ Λi+j ∀ i, j ≥ 0 ˙

Thus {Λn}∞n=1 forms a filtration of ∆(G) and this filtration is called canonical filtration of

∆(G) induced by the N -series {Hn}∞n=1.

Lemma 4.12 [5] Let G be a group and {Hn}∞n=1 be an N -series for G, if there exists a

Lazard filtration {In}∞n=1 of ∆(G) then {Λn}∞n=1 is the smallest Lazard filtration.

Proof Since {In}∞n=1 is a Lazard filtration of ∆(G) relative to N -series {Hn}∞n=1. So we

have

∂(In) = Hn for all n.

Let g1, g2, · · · gs,
∑s

j=1 ω(gj) ≥ k. Then

(g1 − 1)(g2 − 1) · · · (gs − 1) ∈ Iω(g1)Iω(g2) · · · Iω(gs) ⊆ Ik.

Hence Λk ⊆ Ik for all k. If x ∈ Hk then ω(x) ≥ k and so x− 1 ∈ Λ(k). Thus

Hk ⊆ ∂(Λk) ⊆ ∂(Ik) = Hk.

Theorem 4.13 [5] Let G be a group and {Hn}∞n=1 be an N -series for G and {Λn}∞n=1 be

the canonical filtration of ∆(G) relative to given N -Series, then

1. ∂(Λ2) = H2

2. ∂(Λ3) = H3.

Remark 4.14 By above two theorems, we conclude, in particular, that D2(G) = γ2(G)

and D3(G) = γ3(G). But problem comes at fourth level and Rips gave first counterexam-

ple.

Example 4.15 [Rips:72][13]

Let G be a group with generators

a0, a1, a2, a3, b1, b2, b3, c

and defining relations

b64
1 = b16

2 = b43 = c256 = 1.
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[b2, b1] = [b3, b1] = [b3, b2] = [c, b1] = [c, b2] = [c, b3] = 1.

a64
0 = b32

1 , a
64
1 = b−4

2 b−2
3 , a16

2 = b41b
−1
3 , a4

3 = b21b2.

[a1, a0] = b1c
2, [a2, a0] = b2c

8, [a3, a0] = b3c
32,

[a2, a1] = c1, [a3, a1] = c2, [a3, a2] = c4,

[b1, a1] = c4, [b2, a2] = c16, [b3, a3] = c64.

[bi, aj ] = 1, if i 6= j

[c, ai] = 1, for i = 0, 1, 2, 3

Then γ4(G) = 1, while the element

[a1, a2]128[a1, a3]64[a2, a3]32 = c128 ∈ D4(G) and c128 6= e.

Since we have seen a group G in which

D4(G) 6= γ4(G).

Thus in general, the answer to Lazard’s problem is NO.

Structure of D4(G)(see[13]) Let G be a nilpotent group of class 3 given by its pre-abelian

presentation

< x1, x2 · · ·xm | xd(1)
1 ξ1, · · ·xd(k)

k ξk, ξk+1, · · · γ4(< x1, x2 · · ·xm >) >

with k ≤ m, d(i) > 0, d(k) | · · · d(2) | d(1) and ξi ∈ γ2(< x1, x2 · · ·xm >)

Then D4(G) consists of all elements of the form

ω =
∏

1≤i<j≤k
[x
d(i)
i , xj ]

aij , aij ∈ Z

such that, d(j) |
(
d(i)

2

)
aij , (1 ≤ i < j ≤ m) and

yl =
∏

1≤i<l
x
−d(i)ail
i

∏
l<j≤k

x
d(l)alj
j ∈ γ2(G)d(l)γ3(G) for 1 ≤ l ≤ k.
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Remark 4.16 If in structure of D4(G), m ≤ 3, then

D4(G) = γ4(G)[12].

Theorem 4.17 [12]

Let G =< X | r1, r2 > be a 2-relator group then D4(G) = γ4(G).

Proof G has a pre-abelian presentation of the form

G =< x1, x2, · · ·xn, · · · | xd(1)
1 ξ1, x

d(2)
2 ξ2, ξ3, · · · >

with ξi ∈ γ2 < x1, · · · > and d(2) | d(1).

Then modulo γ4(G), the group D4(G) consists of the elements of the form

ω = [x
d(1)
1 , x2]a12 ,

such that, d(2) |
(
d(1)

2

)
a12,

and

y2 = x
−d(1)a12
1 ∈ γ2(G)d(2)γ3(G).

Therefore, modulo γ4(G), for some z ∈ γ2(G), we have

ω = [x
d(1)a12
1 , x2] = [y−1

2 , x2] = [z−d(2), x2] = [z, x
−d(2)
2 ] = 1.

Example 4.18 4-generator, 3-relator: Let G be a group defined by the presentation

< x1, x2, x3, x4 | x4
1[x4, x3]2[x4, x2] = 1, x16

2 [x4, x3]4[x4, x1]−1 = 1, x64
3 [x4, x2]−4[x4, x1]−2 =

1 >.

then ω = [x1, x
32
2 ][x1, x

64
3 ][x2, x

128
3 ] ∈ D4(G)�γ4(G).

Lemma 4.19 [12] Let G be a group. If x1, x2, x3 ∈ G and there exists ξj ∈ γ2(G), j =

1, · · · 6 and ηi ∈ γ3(G), such that

x4
1 = ξ1, x

16
2 = ξ2, x

32
2 x

64
3 = ξ4

4η1

x−32
1 x128

3 = ξ16
5 η2, x

−64
1 x−128

2 = ξ64
6 η3,
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then

ω = [x1 x32
2 ][x1 x64

3 ][x2 x128
3 ] ∈ D4(G).

Proof Since γ2(G) ⊆ 1 + ∆2(G), we have

1− ω ≡ α1 + α2 + α3 mod∆4(G)

where α1 = (1 − [x1, x
32
2 ]), α2 = (1 − [x1, x

64
3 ]), α3 = (1 − [x2, x

128
3 ]). Now working

Modulo ∆4(G), we have

α1 ≡ (1− x32
2 )(1− x1)− (1− x32

1 )(1− x2)

α2 ≡ (1− x64
3 )(1− x1)− (1− x64

1 )(1− x3)

α3 ≡ (1− x128
3 )(1− x2)− (1− x128

2 )(1− x3)

therefore,

α1 + α2 + α3 ≡ 0

and hence ω ∈ D4(G).

Remark 4.20 Simplicial methods are helpful in study of group rings. For the details

see ([13]).
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