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Abstract

In social networks, communities are defined by a group of highly intra-connected and

sparsely inter-connected nodes in a network. Detecting Communities, dynamics of its

formation and and understanding its relevance in social network analysis has been

of great interest across several disciplines such as sociology, mathematics, computer

science, physics and Epidemiology.

The current thesis is an attempt to understand distances between communities

and use the results thus obtained in analysing the reservation system that is prevalent

in India from the past 7 decades.

We model the the problem in network theory terms and study the distinct commu-

nity formation that takes place in the Indian society based on caste-based homophily.

Reservation system has been in practice since the independence and instead of social

upliftment this system is believed to have caused a social disparity amongst the so-

cially forward and the socially backward classes. We model the reservation system and

show that it has played an important role in reducing the distance between the up-

lifted and the downtrodden, hence drawing a bridge between the disconnected classes.

We define the term spread of influence in terms of the average shortest path and

study the changes in the average shortest path when bridges are added between the

clusters. We present our results empirically and make an attempt to give a theoretical

explanation for it.
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Chapter 1

A network is a set of nodes or vertices joined together in pairs by links or edges.

Many systems could be represented in the form of a network, for example technolog-

ical networks like the World Wide Web, the Internet and biological systems like the

metabolic network, neural network, gene regulatory network and social networks like

the friendship network. Network theory is a “language for talking about networks that

is precise enough to describe not only what a network is but what kinds of different

networks there are in the world”[J.03]. Over the past six decades network theory has

been applied in many different domains starting from sociology to biology to physics.

In 1937, a psychologist Jacob Moreno, a German psychology researcher, first devel-

oped the concept of social networks. He developed a network model to analyze human

social groups by studying a group and finding whether the psychological state of an

individual is dependent on the relationships between the group. Moreno developed

the “Sociogram”, a diagrammatic representation of the relationships between individ-

uals in a social group. Then after a huge gap of twenty years, a paper by Catwright

and Harary(1956) claimed that the Sociograms developed by Moreno could be ana-

lyzed using graph theory. This marked the very beginning of network analysis. Then

in the late 1960s, Stanley Milgram, a Harvard sociology professor, performed an ex-

periment to investigate the unresolved hypothesis of “the small world phenomenon”

which proved to be major step in network theory. This theory claimed that the world

is in a sense small, as when viewed as a network of social acquaintances, one could

reach any other individual in a few steps through the network of friends. This led to

the phrase “six degree of separation”[Mil67]. Then the question of “What would it

take for any world to be small?” came up and people felt the need to model this using

some mathematical tools. Then Erdős and Rényi introduced the theory of random

graphs using which one could explain a lot of facts of the network theory by randomly

constructing networks.

1



In this chapter we shall give an overview of network analysis by discussing some ba-

sic concepts about network theory followed by discussing the community structures

in networks and the algorithms to detect them. Later we shall discuss the types of

networks studied and in the end give an introduction to the social networks.

1.1 Preliminaries

Suppose we have a network N = (V,E) where V is the set of vertices or nodes and E

is the set of links or edges. The network N is directed if the edges in the network have

a direction i.e. they start from one node and terminate at another and N is undirected

if there is an edge between two nodes without a source and destination. Let u ∈ V ,

the degree ku of the node u is defined as the number of links the node u has to other

nodes. For a directed network, the number of incoming links to a node is called the

indegree of the node and the number of outgoing nodes is called the outdegree. A path

between two nodes u ∈ V and v ∈ V in a network is defined as the sequence of edges

from u to v. The eccentricity of a node u is the maximal shortest path from u to all

the other nodes. The diameter of a network N is the maximum eccentricity across all

nodes and the radius is the minimum eccentricity across all nodes.

A network N is represented in form of a matrix, A and its element aij is defined as:

aij =

1 if there is an edge from i to j

0 otherwise
(1.1)

This matrix is called an adjacency matrix. This matrix fully specifies the topology of

the network.[FRP04] We can calculate the degree of a node using ku =
∑

v Auv.

1.1.1 Degree Distribution

The degree distribution is the probability distribution of the degree of the nodes over

the whole network i.e. if D(k) is the degree distribution of the network N it gives the

fraction of nodes of N which have degree k.

Let x : V −→ {1, 2, . . . , (n− 1)} be the degree of a node.

Let P (x = d) : {1, 2, . . . , (n− 1)} −→ Q be the probability that a node has degree d.

Define:

P (x = d) =
Number of nodes with degree d

Total number of nodes
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such that
∑(n−1)

d=1 P (x = d) = 1.

With this we can find the probability density function, hence the distribution D(k).

1.1.2 Connected Components

A connected component of an undirected graph, N is an induced subgraph formed by

the equivalence class with an equivalence relation defined on the set of nodes. For two

nodes v1, v2 ∈ V equivalence relation is defined as v1 ∼ v2 i.e. v1 is reachable from v2

if there is a path from v1 to v2. This is an equivalence relation as:

• Reflexive There is a trivial path from a vertex to itself

• Symmetric If there is a path from v1 to v2 then the same sequence of edges could

be taken as a path from v2 to v1 (Since the graph is undirected).

• Transitive If there is a path from v1 to v2 and from v2 to v3 then both the paths

can be joined to get a path from v1 to v3

For a directed graph, N we can define a strongly connected component(SCC) and a

weakly connected component(WCC). A strongly connected component is an equiva-

lence class with equivalence relation v1 ∼ v2 if and only if there exists a path v1 → v2

and a path v2 → v1 in N .A weakly connected component is the maximal subgraph of a

directed graph such that for a pair of vertices v1 and v2 there is a directed path from

v1 to v2 and an undirected path from v2 to v1

Figure 1.1: A graph that is connected and a graph that contains connected components

1.1.3 Communities

A community is a subset of vertices which are densely intra-connected and sparsely

inter-connected with other subsets.A densely connected subgraph is defined as the

3



graph which has more than expected number of edges and similarly a sparsely con-

nected graph has less than expected number of edges.[M.E04] In other words, ifH ⊂ N

and u ∈ V . Then we can write ku(H) i.e. the degree of u in the subgraph H as[FRP04]

ku(H) = kinu (H) + koutu (H)

where kinu (H) =
∑

v∈H auv and koutu (H) =
∑

v/∈H auv. Then we can say that H is a

community if

kinu (H) > koutu (H)∀u ∈ V

Communities are observed in may real-world network like the group of web sites re-

lated to a particular topic is a community in the World Wide Web network and the

biological units performing similar functions in any biological system.

In network analysis it is important to study communities in a network as the net-

Figure 1.2: Network Representation of a community[New06]

work might have some properties at a community level which are different from the

properties of the network globally, position of a node in the community and at the

border might affect its role in the network.

The process of community detection can be seen as a mapping of a network into a

tree, commonly known as dendogram amongst sociologist as shown in the figure 1.3.

[FRP04]

Community Detection Methods

In this section we shall discuss the methods to detect communities in a given network.

We shall start by discussing some traditional approaches and then move on to some

recent work which is again divided into global approaches and local approaches.

Suppose we have a network N which can be divided into communities such that every

4



Figure 1.3: A simple network and the corresponding dendogram[FRP04]

node is in one of the communities.

1. Traditional Approach

Traditional approaches partioned the vertex set into communities while minimiz-

ing the number of inter-community edges. Spectral Bisection and Kernighan-Lin

are the two main algorithms which followed this approach. These algorithms

give the best possible division of vertices although it the user has to specify

the size of the community and the number of communities required beforehand.

Now, we shall discuss both the algorithms in detail.

• Spectral Bisection:

Let G = (V,E) be an undirected graph on |V | = n vertices and A be an

n× n adjacency matrix of G.Let D be a diagonal matrix where

dij =

degree of node i i = j

0 otherwise

The Laplacian matrix of G is an n× n symmetric matrix defined as

L = D − A

Lemma 1.1. The Laplacian matrix is positive semi-definite.

Proof Let G1,2 be a graph on two vertices with one edge.Then

LG1,2 = DG1,2 − AG1,2 =

[
1 −1

−1 1

]
(1.2)
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Let x be a vector. Then

xTLG1,2x = (x(1)− x(2))2 (1.3)

Now, for a graph G=(V,E) on n vertices we define

LG =
∑

(u,v)∈E

LGu,v (1.4)

It follows that for all x ∈ RV

xTLG1,2x =
∑

(u,v)∈E

(x(u)− x(v))2 (1.5)

For eigenvector w and eigenvalue λ, we have

wTLGw = λwTw ≥ 0 (1.6)

So, every eigenvalue of LG is non-negative hence LG is positive semi-

definite.

From equation (1.3) it follows that if all entries of a vector x are same then

xTLGx = 0 which implies that LGx = 0 so such vectors are eigenvectors

for eigenvalue 0.

Lemma 1.2. Let G = (V,E) be a graph with λ1 = 0 ≤ λ2 ≤ · · · ≤ λn,

the eigenvalues of the Laplacian of G. Then λ2 > 0 if and only if G is

connected.

Now,let the eigenvalues of L be ordered as λ1 = 0 ≤ λ2 ≤ · · · ≤ λn. All

rows and column of L sum to 0, so the eigenvector corresponding to the

eigenvalue λ1 is 1n = (1, 1, . . . , 1). The number of connected components

in the graph is given by the multiplicity of λ1.

If the graph G separates into perfect communities i.e. there are no edges

between the communities then the matrix L will be a block diagonal. Each

diagonal block will form a Laplacian of a particular component and will

have a corresponding eigenvector v(k) with eigenvalue zero, where

v(k) =

1 i ∈ Gk

0 otherwise

6



Thus, it will have g degenerate eigenvectors with eigenvalue zero.

If the graph does not divide into perfect communities then L will not be in

the form of a block diagonal but it will still have the eigenvector 1n with

eigenvalue zero and g-1 eigenvectors with eigenvalue slightly greater than

zero (all eigenvalue of a graph Laplacian are non-negative). So, by taking

the linear combination of eigenvectors with eigenvalue slightly greater than

zero one can approximately find the block diagonals.

If we want to divide the graph in just two communities then we look at

the eigenvector,v(2) corresponding to the second lowest eigenvalue(λ2) and

partition the graph as all eigenvectors corresponding to non-degenerate

eigenvalues of a real symmetric matrix are orthogonal and all eigenvectors

other than that corresponding to eigenvalue zero will have both positive

and negative elements.[M.E04]

Let G1 and G2 be the two partitions of the graph G. The algorithm to

divide the graph G into G1 and G2 is as follows:[APL90]

– Step 1: Compute the eigenvector v(2) and the median of its components

vm.

– Step 2: Partition the vertices of G as for a node i ∈ V , if v
(2)
i > vm

put i in G1 otherwise put it in G2 .

This method gives a partition of the network. It can be intuitively observed

by looking at a vibrating string. When a string is plucked it vibrates at

a certain frequency . A sring of length l produces a standing wave at a

wave length 2l
n

for n ∈ N. We can view the points of the vibrating string as

vertices and the string between the two points as an edge, looking at this we

can find the Laplacian matrix of this chain graph and the second smallest

eigenvalue corresponds to standing wave equal to one whole wavelength.

This results in a wave with half points above the equilibrium point and half

points below it.The value of the entry for each vertex in the corresponding

eigenvector determines the “height” of the vertex above or below the line.

Using the sign of this “height as the tool of determining which subgraph

to place the vertices in, it is apparent that about half of the vertices would

go into each subgraph.[APL90]

The eigenvector v(2) is known as the Fiedler vector and the corresponding

eigenvalue λ2 is known as the algebraic connectivity of the graphG. Smaller

7



value of λ2 corresponds to a better partition. Fiedler showed that the two

subgraphs obtained are connected.

Theorem 1. Let G be a connected graph and let v(2) be the eigenvector

corresponding to eigenvalue λ2. For real number r ≥ 0 define V1(r) ={
i ∈ V : v

(2)
i ≥ −r

}
. Then the subgraph induced by V1(r) is connected.

Similarly for r ≤ 0, let V2(r) =
{
i ∈ V : v

(2)
i ≤ |r|

}
. Then the subgraph

induced by V2(r) is also connected.[M.F73]

Corollary: For a graph G = (V,E) if v
(2)
i 6= 0∀i ∈ V , then the subgraphs

induced by both V1 =
{
i ∈ V : v

(2)
i > 0

}
and V2 =

{
i ∈ V : v

(2)
i < 0

}
are

connected.[M.F73]

In worst-case this algorithm takes O(n3) time.[M.E04]

• Kernighan-lin Algorithm:

This is a greedy optimization heuristic method which assigns the divisions,

a cost function T and optimize it over all possible divisions. In this al-

gorithm we have to specify the size of the communities in which we want

to divide the network and give an initial configuration of the community,

which could be randomly chosen.

Let G = (V,E) be a graph, the algorithm find a partition of G into G1 and

G2. Let C be a weighted connectivity matrix describing the edges of G.

Let us define for each a ∈ G1, an External cost Ea as

Ea =
∑
v∈G2

cav

and an Internal cost Ia as

Ia =
∑
x∈G1

cax

Similarly we define Eb and Ib for b ∈ G2. Let Dz = Ez − Iz for all z ∈ G
be the difference between the external and internal cost.

Now, we want to find a partition of G such that the gain in the cost function

is maximized. Let h be the total cost due to connections between G1 and

G2 that do not involve a or b. Then

T = h+ Ea + Eb − cab

8



Exchange a and b the new cost T ′ is

T ′ = h+ Ia + Ib − cab

so, we have

Gain = T − T ′

= Da +Db − 2cab

The algorithm finds an optimal series of swaps between nodes in G1 and G2

such the Gain is maximized.[KL70] The worst-case time for this algorithm

is O(n2) so it is faster than spectral bisection. [M.E04]

2. Recent Approach

• Girvan and Newman Algorithm: This algorithm detects communities in a

network by progressively removing edges from the original network. The

measure taken to remove the edges is the edge betweenness value.

E.B of an edge e ∈ E =
∑

(i,j)∈V

|de(i, j)|

where |de(i, j)| is the number of shortest path between i and j that run

along the edge e. The algorithm is as follows:

(a) Calculate the edge betweenness value of all the edges as

– For each node i, perform BFS on the graph.

– Determine the shortest paths from i to all the other nodes and

based on that calculate the betweenness value.

(b) Remove the edge with the highest edge betweenness value(say e =

(i, j)). If two edges have the same value then remove one randomly or

remove both of them.

(c) Now recalculate all the edge betweenness value and again remove the

edge according to the highest value. Repeat this process as long as

there are edges in the graph

In this method the user need not know the size or any property of the community

in the network. To know which partition of the network is best we shall optimize

9



modularity as discussed in the next section. This algorithm takes O(m2n) time as

O(mn) time to calculate the edge betweenness value and recalculates it m times.

Modularity

Modularity is a measure to quantify the quality of a community. Modularity can be

positive or negative, higher the modularity value better is the community structure.

Modularity is defined as the number of edges falling within groups minus the expected

number of edges in an equivalent network where edges are placed at random.

Let N = (V,E) be a network with n vertices and m edges and two groups G1 and G2.

Define a vector s with n elements as

si =

1 if vertex i ∈ G1

−1 if vertex i ∈ G2

Let A be the adjacency matrix. Let ki be the degree of vertex i.

Lemma 1.3. Let e be the number of edges between i and j if edges are placed at

random. Then

E[e] =
kikj
2m

(1.7)

where m = 1
2

∑
i ki

Proof Let e ∈ E be an edge of the network N

P (e is an edge of node i) =
ki

2m

P (e is an edge of node j) =
kj
2m

P (e is an edge of node i and j) =
kikj

(2m)2

E[e] =
2m∑
a=1

kikj
(2m)2

E[e] =
kikj
2m

Let Q be the modularity of the network N and Qij be the modularity for an edge

(i, j) ∈ E

10



Qij = Aij −
kikj
2m

for all i and j (1.8)

Observe

1

2
(sisj + 1) =

1 if i and j belong to the same group

0 if otherwise

Then,

Q =
1

4m

∑
i,j

[(
Aij −

kikj
2m

)
(sisj + 1)

]
(1.9)

Since,

2m =
∑

i ki =
∑

i,j Aij

We have

Q =
1

4m

∑
i,j

[(
Aij −

kikj
2m

)
(sisj)

]
(1.10)

In matrix notation

Q =
1

4m
sTBs (1.11)

where B is a real symmetric matrix known as the modularity matrix with elements

Bij = Aij −
kikj
2m

The rows and column of the matrix B sum up to zero so it has (1, 1, 1, . . . , 1) as

an eigenvector with eigenvalue zero. Now, write s as a linear combination of the

normalized eigenvectors ui of B such that s =
∑n

i=1 aiui with ai = uTi .s. Then we

have

Q =
1

4m

∑
i

aiu
T
i B
∑
j

ajuj

=
1

4m

n∑
i=1

(uTi .s)
2βi

where βi is the eigenvalue corresponding to the eigenvector ui.

Let β1 ≥ β2 ≥ · · · ≥ βn be the eigenvalues of the matrix B arranged in decreasing

order. We want to maximize the modularity by choosing an appropriate division of the

network or equivalently by choosing the index vector s such the most weight is put with

the eigenvector having the maximum eigenvalue. If there were no other constraints,
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we could have chosen s to be parallel to u1 as β1 is the maximum eigenvalue. But as

we defined, s can have values +1 or −1. So, keeping the constraints in mind, we try

to choose s such that it is as parallel to u1 as possible. To do so, we have to maximize

the dot product uT1 .s. It can be easily seen that the maximum is achieved when we

put

si =

1 if corresponding element of u1 is positive

−1 otherwise

In other words, nodes with corresponding elements positive in u1 go in one group and

others in another. This method can be used to find the division of a network without

knowing the size of the community beforehand.[New06]

1.1.4 Types of Networks

In this section we shall discuss the types of networks studied so far.

Random Network

A Random network is a collection of nodes with edges placed between them at random.

[R84] Let Gn,m be a set of graphs with n labelled nodes and m edges. A graph g ∈ Gn,m

is formed by choosing m out of the N =
(
n
2

)
edges. Therefore there are

(
N
m

)
elements

in Gn,m. So, a random graph gn,m can be defined as an element of Gn,m which is

chosen with a probability 1

(N
m)

. This is known as the G(n,m) model.[Bol98]

Another model is defined on a set of graphs, Gn,p where n is the number of nodes in

the graph and an edge is placed between two nodes with a probability 0 ≤ p ≤ 1.

Probability for graph h(n,m) i.e. a graph on n nodes with m edges is pm(1− p)N−m)

where N =
(
n
2

)
.

The spaces Gn,m and Gn,pare closely related as in if we condition the edges(Gn,p) = m

then we obtain Gn,m.[Bol98] So, from now on we shall assume the random graph to

be the Gn,p model. Now, let us calculate the degree distribution for this network.

First, we shall calculate the expected number of edges in a random graph(Υ(V,E) =

gn,p).

Let e : V × V −→ {0, 1} be an indicator random variable.

defined as

e(i, j) =

1 if there is an edge between i and j

0 otherwise

12



we know by definition of random graphs that P [e = 1] = p.

So,the expected number of edges in Υ(V,E) is

E[e] =
n∑
i=1

n∑
j=i

ep

= p

(
n

2

)
= pN

Define ki to be the degree of a node i.Let 〈k〉 be the mean degree of the graph i.e. the

mean number of edges attached to a node. Then

〈k〉 =
2E[e]

n

where the factor 2 comes as each edge is attached to two nodes. Thus,

〈k〉 =
2p
(
n
2

)
n

=
2pn(n− 1)

2n
= pn(n− 1) ' pn

Now, to find the probability that a node has degree k.

Define x : V −→ {1, 2, . . . , n− 1} be the random variable. Then

Pk = P [x = k] =

(
n− 1

k

)
pk(1− p)n−1−k

So, the probability Pk is given by a binomial distribution, which is a bell shaped

curve.[R84]

Average Shortest Path in a G(n, p):

Figure 1.4: Binomial distribution as obtained in a G(n,p)

Given a graph G(n, p),its degree distribution is binomial. Take a vertex v ∈ G then

expected number of neighbors of v are :
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Let kv : V −→ {1, 2, . . . , (n − 1)} be the degree of v which is binomially distributed

as discussed earlier so,

E[kv] =
n∑
i=0

i

(
n

i

)
pi(1− p)(n−i)

=
n∑
i=1

i

(
n

i

)
pi(1− p)(n−i)

use i
(
n
i

)
= n

(
n−1
i−1

)
E[kv] =

n∑
i=0

n

(
n− 1

i− 1

)
pi(1− p)(n−i)

= np
n∑
i=0

(
n− 1

i− 1

)
pi−1(1− p)(n−1)−(i−1)

= np

Let c = np.

We know for some s,

cs = n

=⇒ slnc = lnn

=⇒ s =
lnn

lnc
=⇒ s = O(lnn)

Let X be the average shortest path of a graph G

Now,

X =
(
1.c+ 2.c2 + 3.c3 + ....+ logn.clogn

) 1(
n
2

)
On solving the above AP-GP, we get that the average shortest path is of the O

(
logn
n

)
[?]
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Scale-free Networks

Most of the systems in nature show a scale free behaviour, following a power law

distribution. Albert and Barabasi have observed and concluded that many of the

real-world networks follow two mechanism

• Growth: Starting with a small number (n0) of vertices, at every time step a new

node with m(≤ n0) edges to pre-existing nodes.

• Preferential attachment: The “Rich gets Richer phenomenon” i.e. a new edge

tend to attach to a well connected node. In other words, the probability P that

a new node is attached to a node i is proportional to the degree of the node i

(ki)

Figure 1.5: Scale free model www.sciencemag.org

P (ki) =
ki∑
j kj

After t time steps, there are t+ n0 nodes and mt edges.

Now, we shall try to derive the distribution of such networks, for that assume ki is

a continuous real variable. Then the rate at which ki changes is proportional to the

probability P (ki)
dki
dt
∝ P (ki)⇒

dki
dt

= mP (ki)

where m is the number of links added at each time step.

Now, substitute the value of P (ki)

dki
dt

= m
ki∑
j kj
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Since mt links are added at each time step t

dki
dt

= m
ki

2mt

=
ki
2t

Separating the variables, we have

dki
ki

= m
dt

2t

Integrating both sides,

ln ki(t) =
1

2
ln t+ cont.⇒ ki = Ct1/2

Let ti be the time of inception of node i.

Then, we have the initial condition, ki(ti) = m, therefore,

ki = m

(
t

ti

)1/2

So, we have that the number of edges attached to the ith node varies as t1/2.

Now, to find the cumulative probability distribution function,

P [ki(t) < k] = P

[
m

(
t

ti

)1/2

< k

]

= P

(
ti >

m2t

k2

)
Assuming we add node at equal intervals to the system, the probability density of ti

is,

p(ti) =
1

n0 + t

16



We know that there are n0 + t nodes and one node is added at each time step.

Consequently,

P

(
ti >

m2t

k2

)
=

∫ n0+t

m2t
k2

p(ti)dti

= 1−
∫ m2t

k2

0

dti
n0 + t

= 1− m2t

k2(n0 + t)

Therefore,

P [ki(t) < k] = 1− m2t

k2(n0 + t)

Now, the probability density function p(k),

p(k) =
dP [ki(t) < k]

dk

=
2m2t

n0 + t
k−3

For t→∞, we have,

p(k) ∼ 2m2k−3

In such networks, the degree distribution is one-sided. It gives a power law form of

distribution which is scale free as it is invariant under the change k −→ bk.

The World Wide Web is a common example of such networks, it has a few highly

Figure 1.6: Scale free networks showing power law distribution

connected nodes(hubs) and a large number of spasely connected nodes, giving a fat-

tail.
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Small World

The Small world phenomenon could be described as “the principle that most of us are

linked by short chain of acquaintances”. The idea of the small world emerged through

a real-world experiment in the late 1960s.This empirical study was undertaken by a

social psychologist Stanley Milgram, who analyzed the average shortest path length

for the social network of people of US(in which there was a link between two nodes if

they know them on name basis). Milgram selected 296 “starter” individuals randomly

from two US cities (Omaha, Nebraska and Wichita, Kansas), asking them to forward

a letter to a “target” person in the town of Sharon, MA, a suburb in Boston. He

gave them the target’s name, address, occupations and some personal information.

He asked these individuals to either forward this letter to the target person if they

knew him or forward it to an acquaintance who was most likely to know the target

person, with the goal of reaching the target as soon as possible. Roughly 20 percent

of the letters arrived at the target with a median of six steps, proving the existence

of short paths in a large network.[Mil67]

Milgram’s experiment demonstrated the existence of abundant shortest paths in a

large social network and the ability of individuals to effectively and collectively find

these short paths without using a ’map’ of the network. It is easy to imagine a social

network with a lot of short paths but how does one choose the right path and how

did a letter from thousands of miles reach the target getting from one acquaintance to

another. It has been observed that the information about the target, his occupation

and location were major factors in finding these short paths.

Further in this section we shall discuss the models based on the two principles of small

worlds, the existence of short paths and the ability to find them. The existence of

short paths is very intuitive. Suppose in a network every individual has atleast 100

friends. So, in two steps one could reach 100× 100 = 10, 000 people and in a matter

of five steps one could reach 10 billion people which is approximately everyone in this

world. Here the growth increases by a factor of 100 at each step, which does not hold

true in real-world network as here we are assuming that every individual in a network

knows 100 new people. In a real-world network we come across a lot of triadic closure

i.e. three people who mutually know each other. With the effect of the triadic closure

the number of people reached by the short paths is limited. This is what makes the

small world phenomenon more surprising.

1. Watts-Strogatz model[Wat98]: This model exhibits both a network having

closed triads and many short paths. Watts and Strogatz defined small world
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Figure 1.7: Small World Phenomenon[Wat98]

as a network having high clustering coefficient and low diameter. This model

starts with a regular lattice(high clustering coefficient and high diameter) and

progressively rewires the network (by picking an edge, disconnecting it from its

end point and rewiring it to a random node) until we obtain a random graph(low

clustering coefficient and small diameter). As the edges are rewired the diameter

is reduced (farther the node being rewired lesser the diameter) and the clustering

coefficient remains high.

Now, we shall analyze this model. Let R be a regular lattice with N sites and

each vertex is connected to 2k nearest neighbours, k on each side. Each link

connecting a node to its k nearest neighbour is rewired with a probability p and

left the same with a probability (1− p).

• Impact on the diameter :

Let dij be the shortest distance between nodes i and j. Let l(N, p) be the

average shortest path defined as:

l(N, p) =
1

N(N − 1)

∑
i

∑
j

dij

Watts & Strogatz have shown that l(N, p) decreases very rapidly with

increasing 0 < p < 1, approaching the limiting case. For p = 0, we have

a linear chain of sites so l(N, 0) ∼ N/4k and for limiting case p → 1, the

graph converges to a random graph with l(N, 1) ∼ ln(N)/ln(2k − 1).

• Impact on Clustering Coefficient:

Let C(p) be the clustering coefficient defined as

C(p) =
1

n

n∑
i=1

Ci
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where, for a node i with degree ki and Ni as the set of neighbour we have,

Ci =
2|ejk : vi, vj ∈ Ni, ejk ∈ E|

ki(ki − 1)

For a regular lattice C(0) = 3(k−2)
4(k−1)

which tends to 3/4 as k grows indepen-

dent of N and for a random graph C(1) = K
N

. For 0 < p < 1 the value of

C(p) remains quite close to C(0) and falls for a relatively high p depicting

the small world phenomenon.

2. Kleinberg Model[Eas10]: In the previous model, a contact probability was

used to rewire the network. In Kleinberg’s model the probability p to rewire the

edges depends on the geographical distance between two nodes.

Let N be the set nodes that are identified with a set of lattice points on a

n × n square where |N | = n, (i, j) : i ∈ 1, 2, . . . , n, j ∈ 1, 2, . . . , n. Define

lattice distance between two nodes v1 = (i, j) and v2 = (k, l) as d(v1, v2) =

|k − i|+ |l − j|.Each node in the network has an edge to all other nodes within

lattice distance p > 1.Then we construct q > 0 directed edges from a node u to

other nodes using independent random trials with a probability proportional to

[d(u, v)]−r for r > 0.

This model can be seen as the nodes as individuals living on the grid who know

their neighbours for some number of steps in all direction and some acquain-

tances distributed broadly across the grid. Taking p and q as constants, we

obtain a family by varying one parameter, r. For r = 0, we have the usual

Watts & Strogratz model in which the rewiring is independent of the node’s

position on the grid. As r increases the long-range contacts of a node become

more are more clustered in its vicinity.

1.2 Social Networks

Social network is a social structure which consists of individuals(social actors) and the

ties between them. Networks have been studied in various different fields as objects of

pure structure whose properties are fixed in time. This assumption doesn’t hold good

for real world networks,where the ties between individuals represent a communication,

sending data, making decisions i.e. something they are doing and so it is not a fixed tie.

A network can be viewed as a “continuously evolving and self constituting system”,

it is a dynamic system in which the structure of a node might affect the behaviour of

20



the whole system. Social network analysis(SNA) is a set of research procedures which

views the social relationships in terms of network theory with the individuals as nodes

and the relation between them as an edge. SNA studies the relations amongst nodes

and the behaviour of the nodes.

1.2.1 Tools to Analyze

The position of an individual and the strength of its ties to other individuals is very

important tools to analyze the network. The social position can be analyzed by the

centrality measures and the strength of ties mostly involves closeness of bond.

Centrality Index

Centrality index can be defined as a real valued function on the vertex set V (G) of a

graph G. It is a structural index which means that if we have two isomorphic graph

G and H and a mapping Φ : V (G) −→ V (H) then the centrality of v ∈ V (G) is

same as the Φ(v) ∈ V (H). In other words,Centrality index is a measure to find the

relative importance of a vertex in a network. There are four major types of centrality

measures: degree, betweenness,closeness and eigenvector.

1. Degree Centrality:

Degree centrality cD(v) of a node v is defined as the degree of that node v, deg(v)

in case of an undirected graph. For a directed graph, we have the in-degree

centrality ciD(v) = d−(v) and out-degree centrality coD(v) = d+(v). Degree

centrality is a local measure as it takes into account all the neighbours of a

node.[Eas10]

2. Betweenness Centrality:

Betweenness centrality quantifies the number of times a node acts as a bridge

for the shortest path between a pair of nodes. Betweenness centrality is high for

the nodes which have a high probability to occur on a randomly chosen shortest

path between two randomly chosen nodes. Betweenness centrality of a graph G

is defined as

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst

where σst(v) is the number of shortest paths between nodes s and t passing

through the node v and σst is the number of shortest paths between nodes s and

t.[Eas10]
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3. Closeness Centrality:

In a graph distance is measured in terms of shortest path length.Farness of a

node is defined as the sum of all the shortest path lengths from that node to all

other nodes. Closeness centrality is the inverse of farness and for a node v ∈ V
it can be written as

cC(v) =
1∑

u∈V d(v, u)

Closeness centrality can be described as the time taken to spread the information

from one node to all the other nodes sequentially.[Eas10]

4. Eigenvector Centrality:

Eigenvector centrality of a node v assigns a relative score to the node v given

the fact that connections to high scoring nodes will result in a higher score for

v than the same number of connections to low-scoring nodes.

For a graph G(V,E) with adjacency matrix A = (aij) we define eigenvector

centrality as

cE(v) =
1

λ

∑
t∈N(v)

cE(t) =
1

λ

∑
t∈V

avtcE(t)

where N(v) is the set of neighbours of the node v and λ is a constant. We can

write this as

Ax = λx

There might be different values of λ but an eigenvector with all entries positive is

given by the highest eigenvalue. Then vth component of the related eigenvector

gives the centrality score.[Eas10]

These measures give the importance of a node in a network locally and globally.

Strength of Weak Ties

Strength of weak ties is a concept in social network analysis which was first proposed

by a sociologist, Mark Granovetter.He defined strength of a tie as a linear combination

of

• F:Frequency of contact

• E:Emotional Intensity

• I:Intimacy (mutual confiding)
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• R:Reciprocal services

STij = w1F + w2E + w3I + w4R

Granovetter used an empirical example to describe his concept, he did a survey of job

seekers. He asked the ones who had found a job through a contact that how often

they meet those people and how well they know their contact. Around 60 percent

saw their contact occasionally and 30 percent rarely knew them. Then he argued

that if A is friends with B and C then with a high probability B knows C and if A

needs a job then his friends B and C will have same kind of information as A. So, an

acquaintance like D, weak tie is more probable to have some new information. The

more the social distance between A and D more beneficial is the weak tie for A.

Granovetter also argues that a strong tie can never be a bridge but weak ties act

Figure 1.8: Strong and Weak ties

as bridges connecting disconnected social groups. This is because if someone has a

strong tie with someone else then the people around them are most likely to be tied

to them. These weak ties play an important role in diffusion in a network. [Gra73]

1.3 Conclusion

In this chapter we discussed the bascis of network theory and the ways to analyze

it.We discussed communities in networks, its importance and the methods to detect

it. In the next chapter we shall build up a model based on disconnected communities

in a real-world network and study the dynamics of the average distance between these

communities when edges are added between them. We will also try to justify the

concept of strength of weak ties through our model.
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Chapter 2

2.1 Motivation

The Indian society has always been intrinsically linked to the caste system.Caste is

defined to be a Hindu hereditary class of socially equal persons, united in religion and

usually following similar occupations, distinguished from other castes in the hierarchy

by its relative degree of purity or pollution. Caste system is said to have originated

with the Vedas, the mythological text. There were four different castes, The Brahmins

(scholar or priests),the Kshatrias (soldier class),the Vaishias (business men),and the

Sudras (menial working class). The occupational roles were determined according to

the castes and as time progressed this led to the association of castes with economic

status and hence the social status. With such practices, the caste based discrimina-

tion became predominant in the society and created a rift between the upper castes

(higher economic status) and the lower castes(low economic status) and divided the

society into two disconnected clusters. The upper caste or the forward classes pro-

gressed year by year but the lower castes or the backward classes remained the same.

To offset the practice of discriminatory social stratification based on castes,affirmative

action steps were undertaken to uplift the backward classes.In this chapter, we shall

discuss this system from a network theoretic perspective. We shall study the two

social communities, the socially forward and uplifted (FC) and the socially backward

and downtrodden (BC).

Our motivation comes from the existence of a tangible strength associated with every

weak tie, as proposed by Mark S. Granovetter in his famously cited theory of the

Strength of Weak Ties(discussed in the previous chapter). Past studies in network

analytics by Matthew O. Jackson has shown that network formation and subsequent

interaction between the nodes is highly influenced by homophily. In India, associa-

tions amongst the people is seen to be largely determined by caste-based homophily,
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hence for the purposes of our study, we choose to term the network formation pattern

among the Indian population as a caste-based homophilic network.

We establish why and how the reservation system maintains a very good balance be-

tween the two. We shall discuss a mathematical model which will help us quantify

the reservation procedure and show how the reservation system is affecting the so-

cially backward classes.Here we shall consider the number of links between the two

communities as a measure of stability of the large scale social structure. We quantify

the forward breeze effect, which is, to put simply, the change in mind-set of the FC,

on being in contact with the BC. We also quantify the reverse breeze effect, which is

the increased motivation felt by the BC to achieve upliftment, by being influenced by

those close to them and around them. We try to find the optimum number of links

required between the two communities.

2.2 Model Network Structure

In this section, we shall discuss the structure of our network model. The structure

of the network is dynamic and is modelled by a finite undirected graph defined as

G = (V,E) where V is a finite set of nodes and E is the set of edges. Each node v ∈ V
represents an individual in a community, while each undirected edge e = (u, v) ∈ E
represents a tie between two individuals.

We initially define G to consist of two symmetric, disconnected clusters of nodes

representing the two communities under consideration: the socially forward and up-

lifted community and the socially backward and downtrodden community. We note

that due to a history of social segregation and caste-based homophily, there are few

interactions or links between members of different social groups. Each cluster is gen-

erated as an individual Erdös-Renyi graph GER = (n, p′) , where edges between any

two of the n nodes are added with probability p′ independent from every other edge.

As discussed in the previous chapter,in an Erdös-Renyi graph the total number of

edges is given by
n(n−1)p′

2
We define the socially uplifted community cluster as FC | FC ⊂ V and the socially

backward community cluster as BC | BC ⊂ V such that FC ∩ BC = φ, the number

of nodes nG = |V |, the total number of nodes connected from BC to FC as ninter
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Figure 2.1: Disconnected Communities

Figure 2.2: Bridges added between disconnected communities

2.3 Empirical Results

First let us take two clusters, and add edges between two randomly selected nodes

and then calculate the average shortest path of the graph G using the formula:

Average Shortest Path(avg) =
∑
i,j

d(vi, vj)
1

n(n− 1)

The graph obtained:

Figure 2.3: log-log plot

In the plot of log(avg) vs log(ninter) we get a straight line. From the graph we can
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conclude that the graph of avg vs ninter could follow a power law i.e. have a fat-tailed

distribution.

Now, we shall calculate the average shortest path between the clusters FC and BC

using the formula:

Average Shortest Path(avgc) =
∑

i∈G1,j∈G2

d(vi, vj)
1

n2

The graph obtained:

From the graph in figure we observe that the average shortest path between the

[h!]

Figure 2.4: Convergence plot

clusters drop to a very small value of 2 in a small interval of time.We can see from

the plot that avgc drops to 2 when ninter is around 100, which is a very small number

compared to possible number of edges between the clusters which is 2500.

With the above two empirical results we can conclude that in order to get a small

value for the spread of influence or the average shortest path we need a very small

number of bridges between the clusters, and we can see that after this value if more

bridges are added, it will not make a lot of difference to the average shortest path.

2.4 A Different Perspective

To explain our empirical observations and the model,we define an analogy for the

same in this section. Now, our problem is defined as:

• Let the two disconnected communities be a random graph.

• Now, look at the problem as if the nodes of the network were random points on

a square on the Euclidean plane.
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• Select some k pair of points at random on the plane, (Xi, Yi) such that if one

reaches Xi it gets teleported to Yi.

• Define distance between two points as

Dis(A,B) = min
i

[d(A,Xi) + d(B, Yi)] (2.1)

where d(x1, x2) is the Euclidean distance between the points x1 and x2.

• Then what is the expected distance between any two points in this square on

the plane.

Figure 2.5: Convergence plot

2.4.1 Theoretical Observations

Let (X1, Y1) and (X2, Y2) be two random points. Assume that X1 and X2 are inde-

pendent and evenly distributed on an interval (0, n) and same for Y1 and Y2.[Phi07]
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One Dimensional

First let us calculate the probability distribution function F (t) = P ((X1 −X2)2 ≤ t)

P
[
(X1 −X2)2 ≤ t

]
= 1− P

[
(X1 −X2)2 ≥ t

]
= 1− P

[
(X1 −X2) ≥ ±

√
t
]

= 1− P
[(

(X1 −X2) ≥
√
t
)⋂(

(X1 −X2) ≥ −
√
t
)]

= 1−
[
P
[
(X1 −X2) ≥

√
t
]]2

= 1−
[
1− P

[
(X1 −X2) ≤

√
t
]]2

= 1−
[
1−
√
t

n

]2

So, we have

F (t) =

1−
[
1−

√
t
n

]2

0 < t < a2

1 a2 < t

Now the corresponding density function is

f(t) =
dF (t)

dt

f(t) =

 1
n
√
t
− 1

n2 0 < t < n2

0 otherwise

Two Dimensional (Square)

Now, we will calculate the probability density function of the event
[
(X1 −X2)2 + (Y1 − Y2)2 ≤ s

]
we shall take the convolution g of f and f

g(s) =

∫
f(s− t)f(t)dt

g(s) =

−4
√
s

n3 + π
n2 + s

a4
0 < s < n2

− π
n2 − s

a4
n2 < s < 2n2

30



Expected Distance in a Square

The expected distance between two points in a square is

Esquare =

∫ 2n2

0

√
sg(s)ds =

∫ √2n

0

vgv(v)dv

where v =
√
s and gv(v) = g(v2)

ds

dv
= 2vg(v2) So,

Esquare =
n

3
ln(1 +

√
2) +

1

15
(2n+ n

√
2)

2.4.2 Comparison

In this section we shall compare our initial problem and the analogy by sampling data.

The plots obtained by sampling are

Figure 2.6: Shortest distance vs No. of teleportation points

Figure 2.7: Shortest distance vs No. of bridges added
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• Figure 2.6 shows a graph where we have points on a square in the Euclidean

plane and the plot shows the variation of the shortest distance between two fixed

points vs the number of teleportation points.

• Figure 2.7 shows a graph where we have two disconnected clusters and the plot

shows the variation of the shortest distance between two fixed nodes vs the

number of bridges between the clusters.

• Looking at both the graphs we observe that both the plots show a similar vari-

ation. In fig 2.7 the shortest distance becomes 2 at around when 400 edges are

added and similar kind of drop is observed in figure 2.6.

2.5 Solution

In this section we shall calculate the distribution of the distance between two random

points[Mol12] and hence the expected distance between two points on a square on a

Euclidean plane using (2.1).

Consider two random points A1 = (x1, y1) and A2 = (x2, y2) on a square of side L

on the co-ordinate plane (as shown in the figure) where x1, x2, y1, y2 are identically

uniformly distributed over [0, L].

Now, ∆X = (x1 − x2) is also a random variable. We want to find its probability

density, f(∆X).

We can write x1 − x2 as x1 + (−x2) i.e. the sum of independent random variables.

Theorem 2. Let X and Y be two independent random variables with density hX(x)

and hY (y) defined for all x and y. Then the sum Z = X+Y is also a random variable

with density hZ(z) which is calculated by the convolution of fX and fY defined as

hZ(z) =

∫ ∞
−∞

hX(z − x)hY (x)dx

=

∫ ∞
−∞

hX(z − y)hY (y)dx

So, we can calculate f(∆X) as

f(∆X) =

∫ ∞
−∞

f(x)f(x−∆X)dx (2.2)
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where f(x) = 1/L as x is uniformly distributed.

We observe that f(x) 6= 0 for x ∈ [0, L] and so f(x−∆X) 6= 0 for 0 ≤ (x−∆X) ≤ L.

Thus we need to solve (2.1) for (−L,∆X ] when ∆X ≤ 0 and (∆X , L] when ∆X > 0.

After solving (2.1), we have

f(∆X) =


0 ∆X /∈ (−L,L]

∆X+L
L2 ∆X ∈ (−L, 0]

L−∆X

L2 ∆X ∈ (0, L]

(2.3)

Now, we need the probability distribution function of ∆2
X so we shall use the fol-

lowing theorem,

Theorem 3. Let X be a random variable with probability density function f(x) and

let Y = φ(x) be another random variable with probability density function g(y) and

cumulative distribution function G(y). If φ(x) is monotonous and differentiable in

[a, b] then g(y) and G(y) are given by

g(y) =


f(φ(y))

dφ(y)

dy

dφ(x)

dx
> 0∀x ∈ [a, b]

−f(φ(y))
dφ(y)

dy

dφ(x)

dx
< 0∀x ∈ [a, b]

(2.4)

G(y) =


∫ φ(y)

a
f(x)dx

dφ(x)

dx
> 0∀x ∈ [a, b]∫ b

φ(y)
f(x)dx

dφ(x)

dx
< 0∀x ∈ [a, b]

(2.5)

where conditions imply that a function is either increasing or decreasing in [a, b]

Observe that (2.2) is monotonously increasing in ∆X ∈ (−L, 0] and monotonously

decreasing in ∆X ∈ (0, L]. We know that Pr {∆2
X ≤ 0} = 0 and Pr {∆2

X ≥ L2} =

0.So, we have,

g(y) =

0 ∆2
X /∈ (0, L2]

1
L
√

∆X
− 1

L2 ∆2
X ∈ (0, L2]

(2.6)

Next, we shall determine the distribution of u = (∆2
X + ∆2

Y ). Observe that ∆2
X

and ∆2
Y are independent random variables and their distribution is same. Thus the

33



cumulative distribution function of u can be written as

FU(u) =

∫ ∫
A

f(∆2
X)f(∆2

Y )d∆2
Xd∆2

Y (2.7)

where A is the area below u = (∆2
X + ∆2

Y ) inside the square of size L2 × L2.

On solving (2.6) we get,

FU (u) =



πa− 8
3a

3/2 + a2

2 u ∈ [0, L2)

1−
(

2
3 + 2a+ a2

2 −
2(a−1)3/2

3 − 2
√
a− 1− 2a

√
a− 1− 2a arcsin(

(
2−a
a

))
u ∈ [L2, 2L2)

0 u ∈ (−∞, 0)

1 u ∈ (2L2,∞)

(2.8)

Finally, we will calculate FK(l),l =
√
u =

√
∆2
X + ∆2

Y

FK(l) = Pr {K < l} = Pr
{

0 < u < l2
}

, l ∈ (0, L
√

2) (2.9)

and

Pr
{

0 < u < l2
}

=

∫ l2

0

f(u)du (2.10)

Using (2.3) we get

FK(l) =



πl2

L2 − 8l3

3L3 + l4

2L4 l ∈ [0, L)

1−
(

2
3 + 2b+ b2

2 −
2(b−1)3/2

3 − 2
√
b− 1− 2b

√
b− 1− 2b arcsin 2−b

b

)
l ∈ [L,

√
L)

0 u ∈ (−∞, 0)

1 u ∈ (
√
L,∞)

(2.11)

where b = l2

L2

Now, we shall calculate the expected minimum distance between two points.

Theorem 4. Let Y1, Y2, . . . , Yn be independent real-valued random variables with same

distribution say, F .Let Y ′k be the kth smallest variable of (Y1, Y2, . . . , Yn) i.e. say

(Y ′1 , Y
′

2 , . . . , Y
′
n) is a permutation of (Y1, Y2, . . . , Yn) such that Y ′1 ≤ Y ′2 ≤ · · · ≤

Y ′n).Then the distribution function of Y ′k is given by

Gk =
n∑

w=k

(
n

w

)
(F )w(1− F )n−w, k = 1, . . . , n (2.12)
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Applying the above theorem to FK(l) we will get the distribution of the minimum

distance between two random points and hence the expectation.

2.6 Conclusion

In this chapter we discussed the network model based on the reservation system in

India. We observed that on putting a few number of edges between the disconnected

communities the average shortest path decreases drastically. This shows that the

strength of weak ties play a role here as we introduced a few strong ties it resulted in

a large number of weak ties and the average shortest path reduced. We also observe

that once the average shortest path decreases to this number then it decreases very

slowly.

In terms of the reservation system, we can conclude that this system is surely bridg-

ing the gap between the two disconnected communities. In future we would like to

investigate the question that what is the optimum number of bridges to be put in the

network such that there is no significant change in the average shortest path.
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