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Chapter 1

Introduction

The universe is expanding and its expansion rate changes with time. The
rate is initially decelerating because of the dominance of matter density and
later it starts accelerating. A number of observations now support the idea
that the universe is spatially flat and there is accelerated expansion. Many
cosmologists believe that the dark energy is responsible for this accelerated
expansion. The cosmological constant models is the simplest model but it has
severe fine tuning problem. To overcome these difficulties, other dark energy
models have been proposed. Two of these models, XCDM parametrisation
with constant w and w as a function of redshift and non-flat universe model
have been used. observational data are used to constrain their parameter
sets. Finally, the basic definition of dark energy term is used to consider
the model of accelerating universe driven by scalar fields whose dynamics is
determined by the potential. Then, the new form of dark energy density is
obtained and will be fitted with observations for various cosmological models.

In this thesis, we describe background cosmology, Friedmann’s equations,
distance measures in cosmology and their observational consequences. In the
following chapter, we explain data analysis techniques used in the analysis. In
chapter 3, we discuss why we used these particular data sets: measurements
of the Hubble parameter H(z), Supernova (SN) apparent magnitudes, and
the baryonic acoustic oscillations (BAO) peak length scale, as functions of
redshift z; for constraining the cosmological parameters. In chapter 4, we
constrain the different models of cosmology using various observations. We
used the particle physics Quintessence scalar field model to determine w
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theoretically and then constrain its value with the observations.

1.1 Dynamics of the Friedmann Model

A universe which is spatially homogeneous and isotropic at each instant of
time is described by the Friedmann-Robertson-Walker metric given by

ds2 = dt2 − a2(t)
(

1
1−kr2dr

2 + r2(dθ2 + sin2θdφ2)
)

(1.1)

The Friedmann metric contains the constants k and a which are determined
by the Einstein’s equations

Gk
i = Rk

i − δki R

2
= 8πGT ki (1.2)

The assumption of isotropy requires T µ0 must be zero and the spatial compo-
nents T ki must have a diagonal form with all have equal value. Homogeneity
requires all the components to be independent of the spatial coordinate. Such
a stress tensor can be written as

T ki = dia[ρ(t),−p(t),−p(t),−p(t)] (1.3)

ρ is the enrgy density and p is pressure density. Solving Einstein’s equation
with the above definition of stress tensor give two independent equations

ȧ2 + k

a2
=

8πGρ

3
(1.4)

2ä

a
+
ȧ2 + k

a2
= −8πGp (1.5)

these equation along with the equation of state p = p(ρ) determine three
unknowns in the above equations. The value of k from the above equations
is

k

a2
=

8πGρ

3
− ȧ2

a2
=
ȧ2

a2
[

ρ

(3H2/8πG)
− 1] (1.6)
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The various variables in the equation is defined as

H(t) =
ȧ

a
, ρc = 3H2(t)/8πG, Ω(t) =

ρ

ρc
(1.7)

Using the above definition to rewrite the equation and evaluating at t = t0,
we get

k

a2
0

= H2
0 (Ω − 1) (1.8)

The subscript 0 defines the value of parameters at t = t0 i.e. at present time.
Substituting the value of (ȧ2 +k)/a2 from equation (1.12) into (1.13), we get

ä

a
=

4πG

3
(ρ+ 3p) (1.9)

For normal matter, ρ + 3p > 0, ä < 0. In other words a will be smaller in
the past and will become zero at sometime. The time coordinate is chosen
in such a way that time t at which a becomes zero is taken to be 0 i.e. a and
t are zero. In that case, the present age of the universe satisfy the inequality
t0 < tuniv where

t0 = H−1
0 = 9.8 × 109h−1s (1.10)

The value of h varies from 0.5 to 1.0.

1.2 Solving the Einstein’s Equation

We can write eq. (2.12) as ρa3 = (3/8πG)a(ȧ2 + k). Differentiating this
equation and using eq.(2.13), we get

d(ρa3)

dt
= −3a2p (1.11)

If we take the equation of state to be p = wρ,we get

ρ ∝ a−3(1+w) (1.12)

9



In particular, w = 0 for non relativistic matter and w = 1/3 for radiation.
Therefore, the corresponding densities varies as

ρNR ∝ a−3 and ρR ∝ a−4 (1.13)

By Solving eq.(1.19) for ȧ and a , we get

ȧ ∝ a
−1(1+3w)

2 and a ∝ t
2

3(1+w) (1.14)

for non relativistic case, a ∝ t2/3 and for radiation a ∝ t1/2

The total energy density of the universe can be expressed as

ρtotal = ρr(a) + ρn(a) + ρv(a) = ρc
(

Ωr(
a0

a
)4 + Ωn(a0

a
)3 + Ωv

)

(1.15)

substituting this into Einstein’s equation, we get

ȧ2 + k

a2
= H2

0

(

Ωr

(

a0

a

)4
+ Ωn

(

a0

a

)3
+ Ωv

)

(1.16)

We can write the value of k from eq.(1.16) and move it to right hand side.
Introducing a dimensionless time coordinate τ = H0t and writing a = a0q(τ),
the equation becomes

(

dq
dτ

)2
+ V (q) = E (1.17)

Where

V (q) = −
(

Ωr

q2 + Ωn

q
+ Ωv

)

and E = (1 − Ω) (1.18)

For the models Ω = Ωn + Ωv = 1, we can take E = 0 and the equation to

be solved is dq/dτ =
√

V (q). At high redshift, the universe is dominated by
radiation and q̇ is independent of the other cosmological parameters. At low
redshift,the presence of cosmological constant constant makes a difference
and velocity changes from decreasing to increasing function.
In the early evolution of the universe,the radiation term will dominate the
dynamics and the solution is given by

q =
√

2H0t
4

√

Ωr (1.19)
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Figure 1.1: The ”velocity” of the universe plotted against the ”position” for
different cosmological models. Here, a represents Ωnr

Therefore for small a, we have a ∝ t1/2.
As the universe evolves, the matter density will catch up with the radiation
density and the first two terms of the eq.(1.23) become important. When
both radiation and matter densities are taken into consideration and other
terms are ignored, eq.(1.26) has the solution

Ht =
2
√

2

3

(

(q − 2)
√
q + 1 + 2

)

(1.20)

If Ωv > Ωn,then the vacuum density will dominate over other densi-
ties.Keeping only the Ωv and Ωn terms in eq.(1.18) and solving it, we get

q = 3
(

Ωn

Ωv

)1/3
sinh2/3

(

3
√

ΩvH0t
2

)

(1.21)

when
√

ΩH0t << 1, this reduces to the matter dominated evolution with
a ∝ t2/3 and when it is much greater than 1, the growth is exponential with
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Figure 1.2: The scale factor of the universe plotted against the time for
different cosmological models with all three parameters

a ∝ exp(
√

ΩH0t). In this case, the age at any given redshift t(z) is given by

t(z) = H−1
0

2

3
√

Ωv

sinh−1
(√

Ωv

Ωn
(1 + z)−3/2

)

(1.22)

At low redshift, we can ignore the radiation completely. The evolution now
depends on the value of Ωv and k. Let us take the case Ωv = 0 first. solving
the eq.(1.23), we get

t(z) = H−1
0

Ω

2(1 − Ω)3/2

(

2(1−Ω)1/2(Ωz+1)1/2

Ω(1+z)
− cosh−1(Ωz−Ω+2

Ωz+Ω
)
)

(1.23)
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Figure 1.3: Plot of q as a function of time in the radiation dominated universe

1.3 Hubble Distances and Redshift of Galax-

ies

Hubble showed that the galaxies are moving away from us and measured
distance r and showed that

v ∝ r (1.24)

It means farther the galaxy, the faster it is receding from us. This phe-
nomenon was observed as a redshift of a galaxy’s spectrum. This red-
shift appeared to have a larger value for fainter, presumably farther away,
galaxies.Redshifted means going away and blueshifted means coming close.
Consider two galaxies separated by the distance r, then the relative velocity
v ∝ r, this is called Hubble’s law and mathematically given as

~v = H0~r (1.25)

Where H0 is the Hubble constant which relates the distance of the galaxy to
its recession velocity. It can also be used to determine the size of observable
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Figure 1.4: The age of the universe at a redshift z for model Ωn + Ωv = 1
with Ωn = (0.2, 0.35, 0.5) from top to bottom.

universe and its age. It indicates the rate at which universe is expanding.
The general form of this law is

v(t) = H(t)r(t) (1.26)

H(t) is the value of Hubble constant whose current value is H0. The current
value of Hubble constant is H ±σH= 68 ± 2.8 kms−1Mpc−1.
Cosmological principle states that no position in the space is special. We
can infer from above that the hubble law is the violation of Cosmological
Principle because according to it,all galaxies are receding from us and this
will placed us at the special location in the universe. But it is also true for
the observer observing from any other location in the universe. In this way,
Cosmological principle is preserved.
We define some important quantities below:

1. Physical or Proper Distance : The actual distance between the two
points in space is physical distance. It is donated by ~r(t)
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2. Comoving or Co-ordinate distance: This is just the label of the
point in space and it is independent of time. It is denoted by ~x.

Physical and coordinate distance are related through

~r(t) = a(t)~x (1.27)

Where a(t) is time dependent scalar which describes the expansion(or
contraction) of the universe.

3. Scale factor a(t) is a dimensionless function of time that carries
important information about the cosmological expansion of Universe.
The current value of the scale factor is denoted by a(t0) = a0 and its
value is often set to 1. The evolution of the scale factor is governed by
general relativity. Differentiating the above equation with respect to
time, we get

v(t) = ȧ(t)~x (1.28)

=⇒ ȧ(t)

a(t)
a(t)~x =

ȧ(t)

a(t)
~r(t) (1.29)

Using eq.(1.15), we can write H(t) as

H(t) =
ȧ(t)

a(t)
(1.30)

Where over-dot represent time-derivative.Current evidences suggest that
universe is accelerating which means ȧ(t) is increasing over time (ä is
positive).

4. Redshift : When the galaxies move relative to us, we observe change
in the wavelength of the light emitted by those galaxies. To describe
this, it is convenient to define a redshift denoted by z. The redshift is a
dimensionless quantity defined as the change in the wavelength of the
light divided by the rest wavelength of the light:

z =
λ0 − λe
λe

(1.31)
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Where λe is the wavelength of the emitted wave and λ0 is the wave-
length of the observed wave. Redshift is a quantity which is related to
a(t) as

1 + z =
a(t0)

a(t)
=

1

a(t)
(1.32)

Where we take the convention a(t0) = a0 = 1.
The redshift we observe for a distant object depends only on the relative
scale factors at the time of emission and the time of observation. It
does not depend on how the transition between a(te ) and a(t0 ) was
made.

1.4 Friedmann model

The form of relations (1.30) and (1.31) at z = 0 and a = a0 gives the age
of universe. There are two Friedmann models that are of special interest in
cosmology.

1. Ωv = 0 model which makes transitions from radiation-dominated to
matter-dominated evolution. At the latter matter-dominated phase,
it is characterized by a single parameter Ωn. At z = 0 and a = a0,
eq.(1.31) becomes

H0t0 =
Ω

2(1 − Ω)3/2
{2(1 − Ω)1/2

Ω
− cosh−1{2 − Ω

Ω
} (1.33)

2. k = 0 model, where both matter and vacuum density is non-zero. As
radiation density is negligible, this model essentially has Ωv + Ωn = 1.
At z = 0 and a = a0, eq.(1.32) becomes

H0t0 =
2Ω−1/2

v

3
ln

1 +
√

Ωv√
Ωn

(1.34)

when both Ωv and Ωn are present and are arbitrary, the age of the universe
is determined by the integral

H0t0 =
∫ ∞

0

dz

(1 + z)
√

(1 + z)2(1 + Ωnz) − z(2 + z)Ωv

(1.35)
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Figure 1.5: Curves of age in the Ωn-H0t0 plane for (2) model.The x-axis is
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1.5 Cosmological length scales

Let an observer located at r = 0 receive at time t = t0 radiation from
a source located at rs. This radiation must have been emitted at some
earlier time te such that the events (te, rs) and (t0, 0) are connected by null
geodesics. Taking the propagation of the ray to be along θ = constant and
φ = constant, the equation for null geodesics can be written as

0 = ds2 = dt2 − a(t)2 dr2

1 − kr2
(1.36)

Integration of the above equation will give the relation between rs and te

∫ te

t0

dt

a(t)
=

∫ rs

0

dr√
1 − kr2

(1.37)

the left-hand side is a definite function of time in a given cosmological model.
As the redshift z is also a unique function of time, we can express the left
hand side as function of z and hence rs can be expressed as the function of
z. The function rs is of considerable use in observational astronomy, as it
relates the radial distance of an object to the redshift at which the light is
emitted. It is convenient to define a quantity called the hubble radius by

dH(t) = dH(z) =
(

ȧ
a

)−1
(1.38)

So,dt can also be written as

dt =
dt

da

da

dz
dz = −dH(z)

dz

1 + z
(1.39)

It is now possible to write Eq.(2.36) as

1

a0

∫ z

0
dH(z)dz = S−1

k (rs) (1.40)

Where S−1
k = sinh−1x, x, sin−1x for k = −1, 0,+1 respectively.So, rs can be

written as

rs(z) = Skα, α =
1

a0

∫ z

0
dH(z)dz (1.41)
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The quantity rs plays an important role in

1. Relating the luminosity of distant objects with the observed flux.

2. The measurement of angular sizes of distant objects.

Let F be the flux received from a source of luminosity L when the photons
from the source reach us with a redshift z. The flux can be expressed as

F =
1

(area)

dErec
dtrec

(1.42)

using the fact that

1. I/ω3is invariant where I is the intensity and ω is the frequency of
photon.

2. I[ω(1 + z); z] = I(ω, 0)(1 + z)3

3. The proper area at a = a0 of a sphere of comoving radius rs(z) is
4π2a2

0r
2
s .

we get

F =
1

(4π2a2
0r

2
s)

1

(1 + z)2

dEs
dts

=
1

(4π2a2
0r

2
s)

1

(1 + z)2
L (1.43)

That means F = L/4πr2.It is now convenient to define the distance dL(z),
called the luminosity distance by

dL(z) =

√

L

4πF
= a0rs(z)(1 + z) = a0(1 + z)Sk(α) (1.44)

Another observable parameterfor distant sources is the angular diameter. If
D is the physical size of the object that subtends an angle δ to the observer,
then for small δ, we have D = rsa(te)δ. The angular diameter distance dA(z)
for the source is defined by the relation δ = D/dA, so dA(z) is

dA(z) = rsa(te) = a0rs(te)(1 + z)−1 (1.45)

so we can see that
dA(z) = dL(z)(1 + z)−2 (1.46)
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Figure 1.7: Angular diameter distance in units of cH−1
0 as a function of

redshift for open model with different values of Ωn

We can determine the quantity dL by measuring the flux F for a class of
objects for which the luminosity L is known. If we can also measure the
redshift z for these objects, then a plot of dL against z will allow us to
determine the parameters H0 and q0.
We can write Eq.(1.26) as

dH(z) = H−1
0

(

Ωr(1 + z)4 + Ωn(1 + z)3 + Ωv + (1 − Ω)(1 + z)2
)−1/2

(1.47)

For the matter dominated universe with only Ωn contributing to the energy
density, the above equation can be written as

dH(z) = H−1
0 (1 + z)−1(1 + Ωz)−1/2 (1.48)

The rs can be written as
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Figure 1.8: Luminosity diameter distance in units of cH−1
0 as a function of

redshift for open model with different values of Ωn

rs(z) =
2Ωz + 2(Ω − z)(

√
Ωz − 1 − 1)

H0a0Ω2(1 + z)
(1.49)

Using these, we can express the angular diameter distance in the form

dA(z) = 2H−1
0 Ω−2[Ωz + (Ω − z)(

√
1 + Ωz − 1)](1 + z)−2 (1.50)

And the luminosity distance as

dL(z) = 2H−1
0 Ω−2[Ωz + (Ω − z)(

√
1 + Ωz − 1)] (1.51)
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1.6 Distance Modulus

The apparent magnitude, m, of an astronomical object is defined by the ratio
of the apparent flux of the object to some reference flux,

m = −2.5log10

(

F
Fref

)

(1.52)

The absolute magnitude, M , is defined as the apparent magnitude the object
would have if it were 10 pc away. The difference between them is known as
distance modulus and can be expressed as:

µ = m−M = −2.5log10

(

F
Fref

)

− (−2.5log10

(

F10pc

Fref

)

) (1.53)

Solving and using the definition of F(F = L/4πd2
L),L being the luminosity

and using the fact that Luminosity of the celestial object is constant, we get

µ = 5log10

(

dL

10pc

)

(1.54)

This equation with appropriate scaling will be used in Supernovae analyses
in Chapter 3.
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Chapter 2

Data Analysis Techniques

In this chapter, we discuss the data analysis techniques used in the sub-
sequent chapters.Mainly,we dicuss χ2 minimization method,marginalization
and confidence intervals.

Modeling of Data We choose or design a figure-of-merit function that
measures the agreement between the data and the model with a particular
choice of parameters. The parameters of the model are then adjusted to
achieve a minimum in the merit function yielding best-field parameters. A
fitting parameter should provide

1. Parameters

2. Error estimates on the parameter

3. A statistical measure of goodness-of-fit.

2.1 χ2 Minimization

Suppose that we are fitting N data points (xi, yi) i=1,2,3.... to a model that
has M adjustable parameters aj j=1,2....m.The model predicts a functional
relationship between the measured independent variables.

y(x) = y(x, a1, a2....am) (2.1)
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We want to minimize to get fitted value of aj’s.The method used to do so is
least-square fit minimize over a1...am.

N
∑

i=0

[yi − y(xi, a1, ..., am)] (2.2)

Maximum Likelihood Estimates We identify the probability of the data
given the parameters as the likelihood of the parameters given the data.
Suppose each data point yi has a measurement error that is independently
random and has a distribution as a normal(Gaussian) distribution around the
true model y(x) and suppose that the standard deviation σ of these normal
distribution are same for all the points.Then the probability of data set is
the product of possibilities of each point.

P ∝
N
∏

i=1

exp[−1

2

(

(yi−y(xi))
σ

)2
] (2.3)

Maximizing this is equivalent to maximizing its logarithm or minimizing the
negative of its logarithm.

N
∑

i=1

(yi − y(xi))
2

2σ2
−Nlog∆y (2.4)

Central Limit Theorem: The probability distribution of the sum of a very
large number of very small random deviation almost converges to normal
distribution.
If each data points (xi,yi) has its own known standard deviation σi,then last
equation is modified only by putting a subscript i on σ. The maximum like-
lihood estimate of model parameters is obtained by minimizing the quantity.

χ2 =
N

∑

i=1

(

yi−y(xi,a1,..,am)
σ

)2
(2.5)

χ2 is a sum of N squares of normally distributed quantities, each normalized
to unit variance. Once we have adjusted a1...am to minimize the value of χ2,
the terms in sum are not all statistically independent.
For instance, If we try to fit N data points to a straight line model y = a+bx,
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then the expression used for χ2 is

χ2 =
N

∑

i=1

(

yi−a−bxi

σi

)2
(2.6)

If the measurement errors are normally distributed,then this function will
give maximum likelihood.

2.2 Confidence Intervals

Confidence Intervals for an unknown parameter θ of some distribution are
intervals θ1 ≤ θ ≤ θ2 that contain θ1 not with certainty but with a high
probability.It essentially means that there is certain probability that the value
exist within this range.Mainly 3 confidence intervals are used

1. 1σ interval which means there is 68% probability that the value lies
within this range.

2. 2σ interval which means there is 95% probability that the value lies
within the range.

3. 3σ interval which means there is 99% probability that the value lies
within the range.

2.3 Marginalisation

Marginalisation is a technique in which we integrate the function over the
whole range of a parameter in order to marginalised the dependence of
function on that parameter. Mathematically

∫

P (x, y, z)dz = P (x, y) (2.7)

In the subsequent chapters, when the number of parameters will be more
than 2, we will marginalised over the other Nuisance Parameters in order
to get the plots for the desired ones.
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Chapter 3

Dark Energy and Dark Energy

Models

In this chapter, we discuss the observational evidences for dark energy and
its dependence on redshift.Using supernovae data, we try to constrain the
dark energy density using techniques discussed in the last chapter.

3.1 Observational Evidences

From the last few decades,the evidence for the presence of cosmological
constant or dark energy has been steadily increasing which is believed to
be the reason for the accelerating expansion of the universe. In order to
explain it, we require the ”substance” with value of state parameter w <
−1/3.Newtonian gravity cannot account for the accelerated expansion, it
allows only decelerated cosmological expansion.Let’s consider a homogeneous
sphere with radius a and energy density ρ. The Newton’s equation of motion
for a point particle with mass m on this sphere is

F = −GMm

a2
, mä = −Gm

a2
(
4πa3ρ

3
) =⇒ ä

a
= −4πGρ

3
(3.1)

The difference compared to the Einstein’s equation is the absence of the
pressure term, P. This appears in Einstein’s equation because of relativistic
effects. The condition w < −1/3 means that we essentially require a large
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negative pressure in order to give rise to an accelerated expansion.
Observational facts in the support of the existence of dark energy.

• The age of the Universe compared to that of the oldest star in combi-
nation with estimate of H0.

• Supernovae apparent magnitude observations (SNeIa)

• Cosmic microwave background (CMB) anisotropy observations in com-
bination with the estimation of Ωm0 , the non relativistic matter density
parameter.

• Baryonic acoustic oscillation (BAO) peak length scale measurements.

• Hubble parameter measurements.

• Large-scale-structure (LSS) observations.

Out of the above,we will discuss the supernovae, BAO and Hubble parameters
observations..

3.1.1 Suprenovae Observations

The supernova explosion can be triggered in two ways. In both ways, it is
gravity that gives a Supernovae its energy.

1. By the abrupt re-ignition of nuclear fusion in a compact star. The
compact star may accumulate sufficient material from it’s surroundings,
either by a merger or through accretion, to raise its core temperature
and ignite nuclear fusion, completely disrupting the star.

2. By the collapse of the core of the massive star. Mass flows into the
core of the star by the continued formation of iron from nuclear fusion.
Once the core has gained so much mass that it cannot withstand its
own weight (gravity), the core implodes. If the mass of the star core is
higher then the Chandrasekhar limit (1.38M ),then even neutrons fail
to stop the implosion, thus turning the implosion into an explosion.
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Why Type Ia supernovae?

Type Ia supernovae are among the brightest objects in the universe and
they are all almost the same brightness with the difference that can be
standardized to less than 10 percent. They are excellent standard candles
for measuring the expansion history of the universe. Thus the supernovae’s
apparent brightness shows how far away it is and how much light takes time
to travel, how far back in time it exploded.
The procedure is straight forward; by comparing the brightness to redshift
for numerous Type Ia supernovae, from nearby to very distant, an observer
can tell how the rate of expansion of universe has changed over time. Brighter
supernovae of this type wax and wave more slowly than the fainter ones.
The Type Ia supernovae is used for observation due to following reasons:

1. They are found in all types of galaxies.

2. They show strong emission of Si(II) (λ = 6150Ȧ) unlike other super-
novae which emit the more general hydrogen lines in majority.

3. They are most likely the explosion of white dwarf.

The last point requires elaboration. White dwarfs which form the final
evolutionary stage of less massive stars no longer maintain their internal
pressure by nuclear fusion. For M ∼ MCH , the degeneracy pressure can
no longer balance the gravitational force. As we have a sharp limit for the
white dwarf stars, we can say that all Type Ia supernovae has formed under
homogeneous circumstances and therefore their luminosities are nearly the
same.

Estimation of luminosity distance

Empty universe would expand at constant rate ä = 0. The luminosity dis-
tance in such a universe is larger than in any other universe with a vanishing
cosmological constant. The luminosity distance can only be increased by
assuming expansion has acceleration over time. It is possible only if ΩΛ > 0.
SNIa become brighter than would be in an empty universe. At these high
redshift, the matter density dominates the universe, proceeding as (1 + z)3

in contrast to constant vacuum energy. As we know from eqns (1.40) and
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(1.43)

rs =
∫ z

0
dH(z)dz (3.2)

and
dL(z) = rs(1 + z) = (1 + z)

∫ z

0
dH(z)dz (3.3)

By definition of hubble distance, we know the expression

dH(z) = H−1
0

(

Ωr(1 + z)4 + Ωn(1 + z)3 + ΩΛ + (1 − Ω)(1 + z)2
)−1/2

(3.4)

So far we have used the value of c = 1. But now for data analysis we have
to convert the equation of dL in the units of distance.So,the above equation
can be written as

dL(z) =
c

H0

(1 + z)
∫ z

0
dh(z)dz (3.5)

Where,
dH(z) = H−1

0 dh(z) (3.6)

The units of c is Kms−1 and the units of H0 is Kms−1Mpc−1.So, in the
above equation the units of dL is Mpc. But from Eq.(1.24),the unit of dL
must be in parsec. So, taking all factors in account and putting value of
c = 3 × 105Kms−1 and H0 = 70kms−1Mpc−1, we get

dL = 5 × log10(4285.7(1 + z)
∫ z

0
dh(z)dz) (3.7)

The data comprises of the above derived quantity for the given redshift. So,
for the various cosmological models, distance modulus is calculated for the
particular redshift given in the data and then fit it with observation by χ2

minimization technique.

3.1.2 Baryonic Acoustic Oscillation (BAO) Data

Before the recombination epoch, baryons are tightly coupled to photons.
So, sound waves oscillations will be present in the baryon perturbations.
These perturbations are detected as baryonic acoustic oscillation peak by
the large-scale correlation function measured from a spectroscopic sample of
luminous red galaxies from Sloan Digital Sky Survey(SDSS). The detection
of BAOs(Baryonic Acoustic Oscillations) provides another independent tech-
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nique for probing dark energy.
The data (essentially contains 6 data points)consists of the effective distance
parameter(dz) and acoustic parameter(A(z)) at particular redshift z and the
error associated with the measurement of these two quantities. In the next
section, only A(z) is used for data analysis.

Background

The sound horizon at which baryons were released from the Compton drag
of photons determines the location of the baryon acoustic oscillation peak
length scale. This epoch called the drag epoch, occurs at the redshift zd and
the length scale is

rs(zd) =
∫ ηdrag

0
cs(η)dη (3.8)

Where cs is the speed of sound and η is the conformal time. The drag
epoch is not the same as the recombination epoch when photons are released
from electrons. The observed angular and redshift distribution of galaxies
is determined by the power spectrum P(k‖, k⊥); where k‖and k⊥ are the
components of wavenumbers parallel and perpendicular to the line of sight
respectively. Consider two ratios

θ2
s(z) =

rs(zd)

(1 + z)dA(z)
, δzs(z) =

rs(zd)H(z)

c
(3.9)

The first ratio corresponds to the angle distribution orthogonal to the line
of sight and the second one corresponds to oscillation along the line of
sight. Most current BAO observations cannot measure these two ratios
independently but form a spherically averaged spectrum. It is possible to
determine the quantity

[

θs(z)
2δzs(z)

]1/3
=

rs(zd)
[

(1 + z)2d2
A(z)c/H(z)

]1/3
(3.10)

Effective distance ratio is defined as the denominator of the right hand side
of the above equation.

Dv(z) =
[

(1+z)2d2
A(z)c

H(z)

]1/3
(3.11)
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The effective distance ratio is the central term in BAO measurement. The
observations measures two parameters both of which includes Dv(z). The
one refers to the Radius of BAO defined as

rBAO =
rs(zd)

Dv(z)
(3.12)

The another is called acoustic parameter defined mathematically as

A(z) =
100Dv(z)

√
Ωmh2

cz
(3.13)

Using Eq.(2.45), the angular diameter distance is defined as

dA(z) =

∫ z
0 dH(z)dz

(1 + z)
(3.14)

As dA(z) is used in the units of Mpc, The value of angular diameter dis-
tance must be multiply by the factor c/H0. The value of H0 is taken
as 70 Kms−1Mpc−1 for the contraining the parameter except in the last
section, where the effect variation of h on parameters is also analysed. From
Eq.(2.46), the value of dH(z) is obtained and will be changed according to
the models considered.

dH(z) = H−1
0

(

Ωn(1 + z)3 + Ωv(1 + z)3(1+w)
)−1/2

(3.15)

The value of H(z) will be obtained from Eq.(1.3) and defined as

H(t) = H0

(

Ωn(1 + z)3 + Ωv(1 + z)3(1+w) + (Ω − 1)(1 + z)2
)1/2

(3.16)

3.1.3 Hubble Parameter Measurement (H(z)) data

The value of Hubble Parameter is now available and can be used to constrain
the cosmological parameters. In the standard picture of cosmology, Dark
energy plays a significant role in current accelerating cosmological expansion
but plays less significant role in past when non-relativistic matter dominated.
The data comprises of 28 independent measurements of Hubble parame-
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ter(H(z)) and is available at the redshifts in the range 0.07 ≥ z ≥ 2.3.
The data set essentially comprise of Hubble parameter H(zi) at the redshift
zi and the error associated with the Hubble parameter σH(zi)

The task is to establish that the three models of dark energy are good fit to
data and the data provide tight constraints on the parameters given in the
models. Finally, an attempt is made to tighten the constrain by varying the
value of h.

3.2 Scalar Field Models of Dark Energy

The cosmological constant corresponds to a fluid having constant value of
equation of state (w=-1). The observations which constrain the value of w
close to -1 say little about the time evolution of w. Therefore, we consider
a situation in which equation of state of dark energy changes with time.
Scalar fields arise in particle physics including string theory and can act as
candidate of dark energy. Various scalar field models have proposed so far.

3.2.1 Quintessence

It is described by an ordinary scalar field φ minimally coupled to gravity.
The action for quintessence is given by

S =
∫

d4x
√−g

(

−1
2
(∇φ)2 − V (φ)

)

(3.17)

Where
(∇φ)2 = gνµ∂νφ∂µφ (3.18)

and V (φ) is the potential of the field. In the flat FRW spacetime, the
variation of the action with respect to φ is given by

φ̈+ 3Hφ̇+
dV

dφ
= 0 (3.19)

The energy momentum tensor is derived by varying the action in terms
of gµν .

Tνµ =
2∂S√−g∂gνµ (3.20)
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and

∂(
√−g) = −1

2

√−ggνµ∂gνµ (3.21)

In the flat Friedmann background, we obtain the energy density and pressure
density.

H2 =
8πG

3

(

−1
2
(∇φ)2 + V (φ)

)

(3.22)

ä

a
= −8πG

3

(

(∇φ)2 − V (φ)
)

(3.23)

for ∇φ)2 < V (φ), universe accelerates. This means that flat potential is
required to give rise to an accelerated expansion. The equation of state for
the field φ is given by

wφ =
p

ρ
=

(∇φ)2 − 2V (φ)

(∇φ)2 + 2V (φ)
(3.24)

In order to determine the form of the potential V (φ), we can derive a scalar
field potential that give rise to power law expansion

a ∝ tp (3.25)

The accelerated expansion occurs for p > 1. The potential giving the power-
law expansion corresponds to

V (φ) = V0exp(αφ) (3.26)

The exponential potential possess cosmological scaling solutions in which
the field energy density (ρφ) is propotional to fluid energy density (ρm). The
original quintessence models are described by power law type potential

V (φ) =
V0

φ
(3.27)

There are several form of potential available which is essentially the permuta-
tion of the two forms discussed above. The forms taken here for the analysis
is

• V (φ) = M4+n

φn
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• V (φ) = M4+nexp(αφ2)
φn

Where n is an integer goes from -3 to +3, κ2 = 8πG and M−2 = κ2 .

Where wi is the initial value of w given to solve the equation analytically.
For solving the equations 3.23 and 3.26, we used the substitutions

t0 = xH0
φ

mp
= ψ (3.28)

with initial conditions

φ̇0 =
√

3(1 − Ωm)(1 + wi) and φ0 = 1.0 (3.29)

So, the equations for the exponential potential become

ψ′′ +
3y′ψ′2

y
+
V0exp(αψ

2)

ψn−1

(

2α− n
ψ2

)

(3.30)

(
y′

y
)2 = Ωy−3 +

ψ′2

6
+

V0

3ψn
(3.31)

Where

V0 =
M2

H2
0

=
3(1 − wi)(1 − Ωm)

2
(3.32)

These coupled equations are solved analytically and the value of ψ and ψ̇.
These values are used to determine equation of state parameter w.

w =
ψ′2 − 2V0exp(α2)

ψn

ψ′2 + 2V0exp(α2)
ψn

(3.33)

Likewise for the inverse potential, the equation to be solved is

ψ′′ +
3y′ψ′2

y
+

V0n

ψn+1
(3.34)

(
y′

y
)2 = Ωy−3 +

ψ′2

6
+

V0

3ψn
(3.35)
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The value of w to be obtained will be

w =
ψ′2 − 2V0

ψn

ψ′2 + 2V0

ψn

(3.36)

We have the value of w. All we need to do now is use these values in compute
the quantities

• Distance modulus(SNIa) dL = (1 + z)
∫ z

0 dH(z)dz

• Angular Diameter Distance (BAO)dA = dL

(1+z)2

• Hubble parameter H(z) = dH(z)−1

• dH(z) = (Ωm(1 + z)3 + Ωλ)
−1/2

for the redshift given in the data sets and compute the maximum likelihood
(χ2) for those values.
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Chapter 4

Observational Constraints

In this chapter, We analyse the three data sets one at a time for the different
models of cosmology. The parameters to be constrained are matter density
(Ωm), vaccum energy density (Ωλ), curvature density (Ωk), equation of state
(w) and w’(used in the parametrization of w). We also do a combined analysis
of different data sets.
Finally we use the particle physics scalar field model (Quintessence) to de-
termine w.

4.1 Cosmological Constant Model

For Supernovae data, we have the value of dL with constant value of matter
density. We have the data set comprises of redshift, dm(dm = 5logdL − 5)
and uncertainty associated with each data point. For those given redshifts,
we compute theoretically, the dm and fit it with the χ2 minimization method.
Then we plot χ2 and ΩNR and find for which value of matter density is the
χ2 minimum. Fig.5.1 represents the χ2 v/s ΩNR plot and we find that the
value of χ2 is minimum at Ω = 0.27.

37



 550

 600

 650

 700

 750

 800

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

"dm.txt" using 4:1
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Figure 4.2: χ2 v/s Ωn for flat cosmology with the model Ωn + Ωv = Ω for
BAO data
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Figure 4.3: χ2 v/s Ωn for flat cosmology with the model Ωn + Ωv = Ω for
H(z) data

For BAO data, the minimum χ2 value of 1.51 is obtained for Ωn = 0.286
(Fig.5.2).
The model to be analysed is the Definition of H(z) given by Eq.(4.19) in the
previous section with value of w taken to be -1 and the value of Ω(= Ωv+Ωn)
be 1. The equation to be analysed is

H(t) = H0

[

Ωnr(1 + z)3 + Ωv

]1/2
(4.1)

The minimum χ2 value of 19.588 is obtained at Ωn = 0.266. Fig.5.3 represents
the behaviour of χ2 with Ωn.

4.2 Cosmological Models with w = p/ρ where

w 6= −1

In the previous section, there is only one parameter i.e. ΩNR within the
range 0.1-0.5 and the value of w to be -1.0 so that there is no z dependence
in the second term of Eq.(2.3). As the universe evolves, the contribution of
radiation diminishes gradually. As the value of redshift we are considering is
very low (0.05-1.414), we can ignore the radiation completely. In addition to
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this, we are considering the flat universe i.e.

(Ω = 1 = Ωn + Ωv) (4.2)

and for w = -1
Ωv = Ωλ (4.3)

Now, the value of w changes within the range -1.5 to -0.6. The equation now
to be solved for supernovae data is

dL(z) = rs(1 + z) = (1 + z)
∫ z

0
dH(z)dz (4.4)

The value of dH(z) will be

dH(z) = H−1
0

(

Ωn(1 + z)3 + Ωv(1 + z)3(1+w)
)−1/2

(4.5)

For this equation, we have calculated the χ2 for every combination of Ωn and
w. The minimum χ2 value of 562.344 is obtained for

a = 0.29 & w = −1.05 (4.6)

We represent our result here in Fig.4.4 in the form of contours of 1σ, 2σ and
3σ confidence intervals in the value of χ2 in Ωn-w plane.
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Figure 4.4: 1σ, 2σ and 3σ contours in w-Ωn plane for Supernovae data.

The minimum value of 0.95 for χ2 is obtained for Ωn = 0.268 and w =
-1.184. Fig.4.5 represents the 1-σ, 2σ contours in Ωn-w plane.
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Figure 4.5: 1σ, 2σ and 3σ contours in w-Ωn plane for BAO data set.

For H(z) data set, the minimum value of 19.30 is obtained for χ2 is
obtained for Ωnr = 0.276 and w=-1.06. Fig.4.6 represents the 1σ, 2σ and 3σ
contours in Ωn-w plane.
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Figure 4.6: 1σ, 2σ and 3σ contours in w-Ωn plane for H(z) data.

4.3 Modification in the value of w

The definition of state parameter w comes from the equation of state

p = wρ (4.7)

Considering the existing models, it can be inferred that w in general varies
with redshift. One can generalise the models to the models with varying
value of state parameter w(z). Since a function is equivalent to an infinite
set of numbers (defined by a Taylor-Laurent series coefficients), it is clearly
not possible to constrain the form of an arbitrary function w(z) using finite
number of observations. This problem is solved by parameterizing the state
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parameter by a finite number of parameters and constraining these parame-
ters by observations.
Here, we have used two parametrization

w(z) = w0 + w1
z

(1 + z)p
; p = 1, 2 (4.8)

They are chosen so that the redshift behavior is completely different in both
the parametrization. For p = 1, the asymptotic value of w(z); w(∞) =
w0 +w′(z = 0) and for p = 2, w(∞) = w0. But for both p = 1,2; the present
value is w(0) = w0.
For p=1, the value of dH(z) to be used is

dH(z) = H−1
0

(

Ωn(1 + z)3 + Ωv(1 + z)3(1+w0+w′(z=0) z
1+z

)
)−1/2

(4.9)

For this equation, we calculated the χ2 for every combination of matter
density, w0 and w1. The ranges of Ωn is same as that in previous calculations
and the same range is used for both w0 and w′(z = 0).

We represent the result in the form of contours of 1σ, 2σ and 3σ confidence
intervals in the value of χ2 in Ωn − w0 and w0 − w′(z = 0)plane. For p=2,
the value of dH(z) to be used is

dH(z) = H−1
0 {Ωn(1 + z)3 + Ωv(1 + z)

3(1+w0+w′(z=0) z
(1+z)2 )}−1/2 (4.10)

For this equation we calculated the χ2 for every combination of matter
density, w0 and w1. The ranges of Ωn is same as that in previous calculation.
For the supernovae data, the minimum χ2 value of 562.56 for p=1 is obtained
for

Ωn = 0.35; w0 = −1.12; w′(z = 0) = −0.49 (4.11)

For p=2, The minimum χ2 value of 562.78 is obtained for

Ωn = 0.38; w0 = −1.16; w′(z = 0) = −0.6 (4.12)

We represent the result in the form of contours of 1σ and 2σ confidence
intervals in the value of χ2 in Ωn − w0 and w0 − w′(z = 0) plane. Fig.5.7
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represents the 1σ, 2σ and 3σ contours in Ωn −w plane and w0 −w1 plane for
both values of p for supernovae data. For BAO data, the minimum value of
χ2 is 0.8684, is obtained for p=1 corresponding to

Ωn = 0.291; w0 = −0.66; w′(z = 0) = −1.35 (4.13)

Fig.5.8 represents the 1-σ, 2σ contours in Ωn − w plane. Fig.5.8 represents
the 1σ, 2σ and 3σ contours in w0 − w1 plane. For p=2, the minimum value
of χ2 of 0.85 is obtained corresponding to

Ωn = 0.281; w0 = −0.81; w′(z = 0) = −1.5 (4.14)

Fig.5.8 represents the 1σ, 2σ and 3σ contours in Ωn-w plane and w0 − w1

plane for both values of p for BAO data. For H(z) data, the equation to be
used for p=1 is

H(t) = H0

(

Ωnr(1 + z)3 + Ωv(1 + z)3(1+(w0+w1z/(1+z)))
)1/2

(4.15)

The minimum χ2 value of 19.32 is obtained corresponding to Ωn=0.289, w0=-
0.97 and w1 = -0.49. For p=2, the equation used is

H(t) = H0

(

Ωnr(1 + z)3 + Ωv(1 + z)3(1+(w0+w1z/(1+z)2))
)1/2

(4.16)

The minimum value 18.99 of χ2 is obtained for Ωn=0.282, w0=-0.82 and w1

= -1.39. Fig.5.9 represents the 1σ, 2σ and 3σ contours in Ωn − w plane and
w0 − w1 plane for both values of p for H(z) data.
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Figure 4.7: Contours in Ωnr-w plane and w-w’ plane obtained by analysis
of supernovae data. The upper figures correspond to p=1 value and lower
figures to that of p=2.
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Figure 4.9: Contours in Ωnr-w plane and w-w’ plane obtained by analysis of
H(z) data. The upper figures correspond to p=1 value and lower figures to
that of p=2.
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Figure 4.8: Contours in Ωnr-w plane and w-w’ plane obtained by analysis of
BAO data. The upper figures correspond to p=1 value and lower figures to
that of p=2.
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4.4 Open and Closed Universe

As discussed earlier, Luminosity distance is defined as

dL = a0rs(1 + z) (4.17)

Where a0 is the scale factor at t=t0, rs is the distance of radiation and z is
the redshift. From equation 2.39, we can write

1

a0

∫ z

0
dH(z)dz = S−1

k (rs) (4.18)

For k = -1, s−1
k x = sinh−1x, So the equation takes the form

1

a0

∫ z

0
dH(z)dz = sinh−1rs (4.19)

Rearranging it, we get

rs = sinh
(

1
a0

∫ z
0 dH(z)dz

)

(4.20)

Solving Eq.2.16 at t=t0, we get

a0 = H−1
0 (|Ω − 1|)−1/2;

k

a2
0

= H2
0 (Ω − 1) (4.21)

It is clear that k = -1, 0 or 1,depending on whether Ω < 1, Ω = 1 or Ω > 1
respectively. Putting value of a0 and dH(z) from Eq.2.46, we get

dL = H−1
0 (1 − Ω)−1/2Sinh(H0(1 − Ω)1/2H−1

0

∫ z

0
dh(z)dz) (4.22)

Which reduces to

dL = H−1
0 (1 − Ω)−1/2Sinh((1 − Ω)1/2

∫ z

0
dh(z)dz) (4.23)

Where
H−1

0 dh(z) = dH(z) (4.24)
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For K=1, S−1
k x = sin−1x and Ω > 1. So, the above equation modifies to

dL = H−1
0 (Ω − 1)−1/2Sin((Ω − 1)1/2

∫ z

0
dh(z)dz) (4.25)

Solving this numerically, the value of dh(z) is taken to be

dh(z) = [Ωn(1 + z)3 + Ωv + (1 − Ω)(1 + z)2]−1/2 (4.26)

The ranges for Ωn, Ωv and Ω is taken to be (0 - 1.0), (0 - 1.0) and (0.25
- 1.75) respectively. Here, both the matter density and vaccum density are
independent.
For the supernovae data, the minimum value 562.38 of χ2 is obtained for

Ωn = 0.29, Ωv = 0.76 Ω = 1.05 (4.27)

For BAO data, the minimum value of 1.42 of χ2 is obtained corresponding
to

Ωn = 0.39; Ωv = 0.96; Ω = 0.99 (4.28)

For H(z) data, the minimum value of 19.52 for χ2 is obtained corresponding
to

Ωn = 0.27 Ωv = 0.71 Ω = 0.999 (4.29)

Fig.5.11 represents the constraints obtained by analysing the three data sets.
The 1σ, 2σ and 3σ contours are in Ωnr − ΩΛ plane and Ωnr − k plane.
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Figure 4.10: Constraints for non-flat universe. First column represents
constraints in Ωnr-ΩΛ plane and second corresponds to that in Ωnr-k plane.
The first, second and third row corresponds to constraints obtained by the
analysis of Supernovae, BAO and H(z) data respectively.
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4.5 Dark Energy Density as a Function of

Redshift

As discussed earlier, The total density of the universe consists of matter
density, vacuum density and radiation density

ρtotal = ρn + ρr + ρDE (4.30)

The equation used to understand the effect of dark energy on other param-
eters is

ρDE(z) = Ωv(1 + z)3(1+w) (4.31)

Initially,the ρDE is found for fixed value of Ωv (0.3) and constant w (-1.5, -1,
-0.5). From the plot, we can infer that for w = -1, dark energy doesn’t vary
with redshift.
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Figure 4.11: ρ(z) v/s z for constant w (-1.5,-1,-0.5)

Let’s consider the flat universe. Now, in order to vary the remaining
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Figure 4.12: ρ(z) v/s z for 1σ and 2σ allowed intervals. The pink region
corresponds to 1σ confidence interval and red one represents 2σ confidence
intervals

parameters in the equation(Ωn and w for this equation), the values of these
parameters corresponding to 1σ and 2σ confidence intervals of χ2 of the
equation for the previous calculation (eq.(2.7)) is used. For every value of
redshift,the value of these (Ωn and w are used to calculated.
Now, we have the dark energy density calculated for every redshift and the
combination of (Ωn and w for 1σ and 2σ confidence intervals. Now for each
confidence interval,maximum and minimum value of ρDE is calculated and
plotted on the same graph. Fig.5.13 represents the dark energy variation
with redshift.

4.5.1 Quintessence Model and Observational Constraints

Firstly, we take different values of n and fit it with the data for the potentials.
Fig.5.14 represents the contour in Ωnr − w plane for four values of n i.e. -2,
-1, 1 and 2 obtained by analysing supernovae data. Fig.5.15 represent the
constraints obtained for BAO data set. Fig.5.16 shows the constraints given
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by H(z) data. Fig.5.17 represents the combined constraints obtained from
all the three data sets. The combined constraints are obtained by

χ2
comb = χ2

BAO + χ2
H(z) + χ2

SnIa (4.32)

All the constraints till now is obtained for inverse potential. Now we obtained
the constraints for exponential potential.
Fig.5.18 represents the contour in Ωnr − w plane for four values of n i.e. -2,
-1, 1 and 2 obtained by analysing supernovae data. Fig.5.19 represent the
constraints obtained for BAO data set. Fig.5.20 shows the constraints given
by H(z) data. Fig.5.21 represents the combined constraints obtained from
all the three data sets.
The initial value of w (wi) varies from -1.0 to -0.33. The lower limit is due
to the property of Quintessence model that the minimum value of w can be
-1.0. The upper limit is due to the fact that we are analysing the data for
dark energy. The value of matter density varies from 0.1 upto 0.5.
The use of wide range of values of w does not create any problem as these
equations are very stable and eventually converges to some particular value.
In this case, the value of w converges to -1.0.
Fig.5.22 represents the theoretical curves of various values obtained by solv-
ing the coupled differential equations against the redshift (z). For the lower
redshift (less than 5.0), the curves for different values of α are same and
will differ for higher redshift. This means at lower redshift the behaviour
of w with redshift is independent of the value of α. This concludes that
the constrain obtained by analysing all data sets will be independent of α
because the highest redshift of the given data is 2.3.
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Figure 4.13: Constraints in Ωnr-w plane obtained by supernovae data for
different values of n
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Figure 4.14: Constraints in Ωnr-w plane obtained by BAO data for different
values of n
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Figure 4.15: Constraints in Ωnr-w plane obtained by Hubble data for different
values of n
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Figure 4.16: Combined Constraints in Ωnr-w plane obtained for different
values of n
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Figure 4.17: Constraints in Ωnr-w plane obtained by supernovae data for
exponential potential
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Figure 4.18: Constraints in Ωnr-w plane obtained by BAO data for
exponential potential
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Figure 4.19: Constraints in Ωnr-w plane obtained by Hubble data for
exponential potential
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Figure 4.20: Combined Constraints in Ωnr-w plane obtained for different
values of n for exponential potential
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Figure 4.21: Theoretical variation of w with redshift for exponential potential
for different values of α(0.4, 0.6, 0.8)
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4.6 Combined Constraints

In this section, we compare the constraints obtained by analysing the data
sets. We also try to constraint jointly by different data and try to find out
whether jointly they put tighter constraints. To constrain the cosmological
parameters from the combined constrains of n data sets, we compute

χ2
comb = Σn

i χ
2
i (4.33)

Where i = 1, 2, 3 is the different data sets taken into consideration. In
this case, we have n = 3 and we can compute the χ2 for all the possible
combination of data sets.
Fig.4.22 represents the joint constraint of Supernovae and BAO data (first
row) and joint constraints of Supernovae and H(z) data (second row) for
spatially flat model. Fig.4.23 represents the joint constraints of BAO and
H(z) data (first row) and joint constraints of all the three data sets (second
row). By looking at the plot, we can conclude that when we jointly determine
the χ2, the constraints obtained will be tighter. As the supernovae and
BAO or H(z) and BAO constraints are complementary to each other, they
significantly tighten the constraints.
Fig.4.24 represents the comparison between the joint constraints obtained
by different combinations of data sets taken two at a time with the joint
constraints obtained by analysing all data sets jointly. If we consider the
distance between the points (the coordinates of minimum χ2) in the plot as
a measurement of consistency, the lower left plot which compare the joint
constraint of all the three data sets with joint constraint of Supernovae and
BAO data has the two point closest to each other. We can conclude that
joint constraint of Supernovae and BAO is the most consistent combination
with the combination of all of them. In other words, adding of constraints by
H(z) data does not have any profound effect on tightening the constraints.
Fig.4.25 represents the joint constraint of Supernovae and BAO data (first
row) and joint constraints of BAO and H(z) data (second row) for non-flat
universe. Fig.4.26 represents the joint constraints of Supernovae and H(z)
data (first row) and joint constraints of all the three data sets (second row).
We can infer that the effect of tightening of constraints is not as effective as
in the case of spatially flat model and the tightening is worst in the last case
(SNIa + H(z)).
Fig.4.27 represents the comparison between the joint constraints obtained
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by different combinations of data sets taken two at a time with the joint
constraints obtained by analysing all data sets jointly. Here the distance
between the points of minimum χ2 do not change significantly but in the
case of comparison of SNIa+BAO constraints with the joint constraints, the
contours are almost overlapping.
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Figure 4.22: The upper left plot represents the constraints obtained by
Supernovae and BAO data on the same graph and the plot right to it
represents joint constraints of Supernovae and BAO data. The lower left
plot represents the constraints obtained by H(z) and BAO data on the same
graph and the plot right to it represents joint constraints of H(z) and BAO
data
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Figure 4.23: The upper left plot represents the constraints obtained by
Supernovae and H(z) data on the same graph and the plot right to it
represents joint constraints of Supernovae and H(z) data. The lower left
plot represents the constraints obtained by Supernovae, H(z) and BAO data
on the same graph and the plot right to it represents joint constraints of all
the three data sets.
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Figure 4.24: The upper left plot represents the comparison of joint constraints
of three data sets with the joint constraints with BAO and H(z) data. The
upper right plot represents the comparison of joint constraints of three data
sets with the joint constraint of Supernovae and H(z) data and the lower
left with the joint constraints of Supernovae and BAO data. The lower right
represents the joint constraint with the constraints from all the three data
sets.
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Figure 4.25: Constraints for non-flat universe.The upper left plot represents
the constraints obtained by Supernovae and BAO data on the same graph and
the plot right to it represents joint constraints of Supernovae and BAO data.
The lower left plot represents the constraints obtained by H(z) and BAO
data on the same graph and the plot right to it represents joint constraints
of H(z) and BAO data
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Figure 4.26: Constraints for non-flat universe. The upper left plot represents
the constraints obtained by Supernovae and H(z) data on the same graph
and the plot right to it represents joint constraints of Supernovae and H(z)
data. The lower left plot represents the constraints obtained by Supernovae,
H(z) and BAO data on the same graph and the plot right to it represents
joint constraints of all the three data sets.
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Figure 4.27: Constraints for non-flat universe. The upper left plot represents
the comparison of joint constraints of three data sets with the joint
constraints with BAO and H(z) data. The upper right plot represents the
comparison of joint constraints of three data sets with the joint constraint
of Supernovae and H(z) data and the lower left with the joint constraints of
Supernovae and BAO data. The lower right represents the joint constraint
with the constraints from all the three data sets.
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Chapter 5

Conclusions

In this thesis, we used three different probes i.e. Supernovae data, BAO data
and H(z) data to constrain a number of spatially flat and non-flat models.
From different combinations of data sets, different constraints have been
obtained for the different models we consider. We can conclude that the
joint analysis of data gives tighter constraints compared to the individual
analysis of data sets. We can also infer that more data and more precise
data is required to tightly pin down the spatial curvature of the Universe in
dynamical dark energy models.

One of the key features is that we used the particle physics scalar field
models to determine the equation of state w and then constrain its value
with the observations. This is important because we can use the established
models of particle physics to constrain the parameters in cosmology.

One can put observational constraints on various cosmology models. We
consider only cannonical scalar field model. Using same technique, we can put
constrains on various scalar field models. Thus, observations play significant
role in determining the viable cosmology.

We also consider the dark energy models with space curvature with con-
stant equation of state. It would be of significant interest to determine the
constraints on space curvature in the non-flat model from CMB anisotropy
measurements. Such an analysis, possibly in combination with that of other
data of the kind considered here could go a long way towards establishing
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whether space curvature contributes significantly to the current cosmological
energy budget.

The analysis can be extended to other cosmologies with scalar field models
like k-essence, tachyon etc. We will analyse other potential forms in scalar
field models determine the constraints on space curvature in the non-flat
model from CMB anisotropy measurements.
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