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Abstract

The aim of this thesis is to understand and explore radio frequency dressed state

potentials for Bose-Einstein condensate. The basic understanding of micro traps use

to produce magnetic trapping were first developed. Particularly the U and Z shape

wire, which produces 3-dimensional trapping of neutral atoms, were studied in detail.

Later on the these trap are combined with rf field of varying polarization. The rf-

induced potentials greatly enhances the flexibility and robustness of trapping atoms.

For example the double well potential, ring potential and state dependent potential

are illustrated. These studies have been used recently in the experiments on matter

wave interferometery on an atom chip [1]. In the last section the physics of single

particle in periodic potentials is studied. To produce periodic potentials, two different

magnetic trap designs are proposed.

xiii



xiv



Chapter 1

Introduction

This chapter covers background material related to theoretical and experimental con-

cepts behind Bose-Einstein Condensation. The aim of this chapter is to only serve

as an overview rather than giving detailed and rigorous proofs. For a more detailed

and general reference in this field one can see review papers [2, 3, 4, 5, 6] and book [7].

1.1 Overview of path to BEC

The laser cooling is one of the initial stages to the path for creating BEC, taking

atoms from room temperature (few hundred kelvins) to temperature ∼ 50µK. This

technique is discussed in the following section. A short description of sub-Doppler

cooling, magneto-optical trap and evaporative cooling is also provided in the subse-

quent sections.

1.1.1 Laser Cooling

This section mostly cover the qualitative description of laser cooling with an overview

of Doppler and sub Doppler cooling. In the presence of a laser beam when an atom

absorbs a photon, the energy of the photon is converted into the internal state of the

atom. The state of the atom is changed from ground state to excited state. This

absorption leads to a transfer of momentum to the atom in the direction of photon’s

initial momentum. Shortly afterwards, atom jumps back to ground state emitting a

photon due to spontaneous emission. As we know, due to spontaneous emission, the

momentum is released in the random direction. This results in zero net change in the

momentum of the atom due to averaging over many absorption and emission cycles.

Therefore shining a laser beam on the atom results in change in momentum of the

atom in the direction of the laser beam. The magnitude of momentum (of photon) is

extremely small, but as on resonance an atom scatters many photons leading to large
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forces as a whole. In this process we have assumed that laser is on resonance with

the atom. The maximum force on the atom per photon can be given by

F =
∆p

∆t
=
h̄k

2τ
(1.1)

where h̄k is the momentum transfer to the atom during each absorption-emission cycle

which is equal to twice the excited-state lifetime (for the case when atomic transition

is saturated such that atom spends half of its time in the excited state).

Doppler Cooling

The above process is used for slowing atoms with light but eventually for cooling one

needs to slow down a range of velocity distribution for atoms. One way to do this

is to use a force which is both dissipative and velocity-dependent. This technique

is also know as Doppler Cooling and was first suggested in the paper [8]. Here we

explain this technique for one dimensional case i.e. pair of laser beam along only one

of the Cartesian axes but it can be easily generalized to three dimensions. Consider

an atom moving in the the presence of light such that the light is slightly red-detuned

from resonance. As seen in the atom’s frame, due to Doppler shift, it sees the light

it is moving towards as closer to resonance and the light it moves away is seen as

further from resonance. Hence an atom moving in opposite direction to the light

is slowed down as scattering of photon is more in this case. The scattering force

explained in previous section becomes velocity dependent due to Doppler effect while

the spontaneous emission provides the dissipation. Let I be the beam intensity, the

the total force is given by

F = h̄k
Γ

2

[

I0
1 + 2I0 + 4(∆− kv)2/Γ2

− I0
1 + 2I0 + 4(∆ + kv)2/Γ2

]

(1.2)

where I0 = I/Isat, Γ is the natural line width, and ∆ is the detuning from resonance.

For the case of red detuning and in the regime v ∼ 0, the force can be written as

F = −αv (1.3)

where α is given by

α = −4h̄k2s
2∆/Γ

[4∆2/Γ2 + 2s+ 1]2
(1.4)

This cooling technique is also sometimes called as ”optical molasses”, first reported

in [9]. It is important to note that the force in equation 1.3 is an average and each

absorption-emission cycle (spontaneous process) produces heating. This results in
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lower limit in Doppler cooling upto which atoms can be cooled, given by

TD =
h̄Γ

2kB
(1.5)

here, TD is known as the Doppler temperature.

1.1.2 Sub-Doppler Cooling

There are two important assumptions in the Doppler Cooling which should be taken

into account. (due to the observation of sub-Doppler temperatures in experiments)

The first is the consideration of atom as two level system rather than multi-level and

the second is not taking into account polarisation of the light field. These topics will

be qualitatively dealt with in this section.

To start with consider a light of particular polarisation is shined on multi level

atom (at rest). There will be population redistribution between the sub-levels that

have same energy difference as that of the light field. In other words atom’s dipole

will orient relative to the polarisation of the field. Introducing a spatially varying po-

larisation pattern in turn distribute the population level such that the atomic dipole

follows the light field. Since there is finite time lag between the orientation of dipole

with the polarisation due to time taken for optical pumping between the sub levels.

This give rise to sub-Doppler Cooling effects, sometime also know as polarisation gra-

dient cooling.

The limit on the lowest temperature can be achieved is set by the single photon

recoil velocity. Therefore, we can define recoil temperature TR to be:

TR =
(h̄k)2

2mkB
(1.6)

1.1.3 Magnetic-Optical trapping

So far we have discussed the cooling techniques to cool the atoms on the order of their

recoil limit (few nK). And the forces in the above techniques were dissipative rather

than confining. Now our aim is to produce the force which will trap the atoms while

they are being cooled in the experimental apparatus. One of the ways to achieve this

is by adding magnetic field (say, one that is produced by anti-Helmholtz coils) to the

three interesting pairs of laser beams used for Doppler Cooling. This kind of trap

set-up which utilizes a combination of laser and magnetic field for trapping atoms is

also know as Magneto-Optical trapping (MOT) [10].
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It is useful to consider a simple one dimensional model. Take an atom that has

a F = 0ground state, and a F ′ = 1 excited state. The magnetic field produced by

the anti-Helmholtz coils is quadrupole (in one dimension): zero at the origin, and

increases linearly with z. Its direction is such that it always points away from the

origin. The atom is illuminated from either side with circularly polarised light in

other words red-detuned slightly from resonance. To begin with we will consider just

the +z side of the origin. Therefore as we move away from the origin, the Zeeman

shift brings the mF = 1 sub-level closer to resonance, and the mF = +1 level further

away. Hence an atom will scatter more photons from the σ− polarised beam coming

from the right than it will from the σ+ beam coming from the left. This results in

a force pushing it to the left, towards the origin. Now for the -z side of the origin,

the magnetic field points in the opposite direction. The light from the left and right

is now σ− and σ+ polarised, respectively. Thus the same analogy goes for the -z

side resulting in a force that pushes the atom to the right. Therefore, this position

dependent restoring force that always pushes atom towards the origin can be used to

trap the atoms.

1.1.4 Evaporative Cooling

This method is usually employed as the final cooling stage for preparation of BEC.

In this section the principle of evaporative cooling is briefly sketched, for more details

we refer to the review paper [11]. This method begins with initially removing atoms

exceeding a certain energy. Later the thermalization occurs by elastic collisions of

atoms that are left in the trap. As the atoms are evaporated, average energy per

atom decreases and hence the gas cools. One way to remove atoms from the trap is

by changing trapped states to untrapped states by applying an oscillating magnetic

field. All these techniques are routinely used in labs for creating BEC. We will now

turn our attention to the theoretical aspects of Bose-Einstein Condensation relevant

to the work in this thesis.

1.2 Bose-Einstein Condensation (BEC)

The first experimental observation of BEC was performed more than a decade ago.

Since then it opened up and is use to study a variety of research areas. The devel-

opment after the first BEC goes from studying its fundamental properties to its use

in atom interferometry and also to simulate more complex condensed matter system.

These are just few of the various fields where BEC is used. This section tries to

provide only a short introduction of the theory behind BEC, that too qualitative in

most places.
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It is easy to think of Bose-Einstein Condensate as a giant matter wave as the

phase transition to BEC occurs when there is a macroscopic occupation of a single

particle quantum state (usually, ground state). To begin with a more quantitative

way to describe phase transition, an atom’s spatial extent can be described by its

deBroglie wavelength λdB, for the case of uniform gas of atoms with the number

density n,temperature T, is given by

λdB =
h

p
=

h√
2πmkBT

(1.7)

where m is the mass of the atom, h is the Plank’s constant, kB is the Boltzmann

constant. Using equation 1.7 that deBroglie wavelength at room temperature is much

shorter than the inter particle separation between the atoms, n−1/3. But as the tem-

perature is decreased, the wavelength increases and at the point where n−1/3 ≈ λdB,

the wavelength of the atoms start to overlap and system undergoes phase transition

to a Bose-Einstein Condensation. A single wavefunction of the system is created by

the overlap of all atoms. In terms of phase space density of the gas, this transition is

attained at ρ = 1 where ρ = nλ3dB.

Take N non-interacting Bosons trapped in an external 3D harmonic trap where the

potential in terms of trap frequency can be written as,

Vext =
m

2
(ω2

x + ω2
y + ω2

z) (1.8)

The energy levels are given by

ǫ(nx, ny, nz) =

(

nx +
1

2

)

h̄ωx +

(

ny +
1

2

)

h̄ωy +

(

nz +
1

2

)

h̄ωz (1.9)

Since in the condensed state, all the atoms occupy ground state of the system. There-

fore,

Φ(~r1, ~r2, . . . , ~rN) =
∏

i

φ0(~ri) (1.10)

where

φ0(~r) =
(mωho

πh̄

)

exp
(

−m

2h̄
(ω2

x + ω2
y + ω2

z)
)

(1.11)

where ωho is the geometric mean of the trap frequencies.

At thermal equilibrium, the average number of particles in a given state can be

found using,

〈n(ǫ)〉 − 1

e(ǫ− µ)/kBT − 1
, (1.12)
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where
∑

i〈n(ǫ)〉 = N and µ is the chemical potential of the gas. The transition

temperature is given by

KBTc = h̄ωho

(

N

ζ(3)

)1/3

(1.13)

where ζ(3) ≈ 1.202 (Reimann Zeta function). At temperature T, the number of the

atoms in the condensate, N0, is given by

N0 = N

[

1−
(

T

Tc

)3
]

. (1.14)

Till now we have assumed gas of bosons to be noninteracting. However experiments

are performed with alkali atoms and interaction have to be taken into account. The

main effect of these transition if on the density distribution of the cloud and the

properties of the condensate rather than the transition temperature or the condensate

fraction. The BEC experiments were carried out with alkali gases of low densities

(1012 − 1015/cm3), therefore only two-body collision are important and that too s-

wave. The interaction between the two particles can be written as

U(r) =
4πh̄2as
m

δ(r) (1.15)

where as is the scattering length, m is the mass of the particle. Depending on strength

of interaction there are two possible cases: Weakly interacting bosons and Strongly

interacting bosons. Firstly we will study the theory of weakly interacting bosons.

Interaction adds a nonlinear term to the Schrödinger equation which can be effectively

written as,

H =

N
∑

i=1

[

~p2

2m
+ V (~r)

]

+
4πash̄

2

m

∑

i<j

δ(~ri − ~rj), (1.16)

with the energy given by

E = N

∫

dr

[

h̄2

2m
|∆φ(~r)|2+V (~r)|φ(~r)|2+N − 1

2

4πash̄
2

m
|φ(~r)|4

]

(1.17)

Defining ψ(~r) =
√
Nφ(~r), Eq. 1.17 can be written as

E =

∫

dr

[

h̄2

2m
|∆ψ(~r)|2+V (~r)|ψ(~r)|2+4πash̄

2

m
|ψ(~r)|4

]

(1.18)

We need to find out the ground state wavefunction of Eq. 1.18 as we did for non-

interacting case (Eq. 1.11). We use a variational method to do this, define a trial

6



wavefunction for a isotropic harmonic trap,

Ψ(r) =
√
N
(mωr

πh̄

)

exp

(−mωrr
2

2h̄

)

, (1.19)

where Ωr is the parameter to be used in this method, ωho is the trap frequency. Using

Eq. 1.18 and Eq. 1.19, we get

E(ωr, ωho) = Nh̄

[

3

4

(

ωr +
ω2
ho

ωr

)

+Nas

√

mω3
r

2πh̄

]

(1.20)

minimizing this with respect to parameter (here ωho) and rewriting the equation in

terms of aho, where aho =
√

h̄
mωho

, we get

ar
aho

=

[

1 +
Nas
ar

√

2

π

]1/4

. (1.21)

In Eq. 1.18 if we try to minimize E − µN for a fixed µ, then we obtain

(

− h2

2m
∆2 + V (~r) +

4πash̄
2

m
|ψ(~r)|2

)

ψ(~r) = µψ(~r) (1.22)

This equation is also known as time-independent Gross-Pitaevskii equation.

Also the ratio of the kinetic energy to the interaction energy can be written as

Ekin

Eint

∝ aho
N |as|

, (1.23)

which is very small for large N. Therefore we can neglect the kinetic energy term

and this approximation is know as Thomas-Fermi approximation. Eq. 1.22 after

using this approximation becomes,

µψ(~r) =

[

V (~r) +
4πash̄

2

m
|ψ(~r)|2

]

ψ(~r) (1.24)

And the density of the condensate is by

n(r) = |ψ(~r)|2==
m

4πash̄
2 [µ− V (~r)] (1.25)
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Chapter 2

Trapping Neutral Atoms on Chips

The possibility to design strongly confining, complex, multi-parameter potentials

makes atom chips quite unique. These atom chips are used to study 1D quantum

gases [12], atomic beam splitters [13], in quantum information processing [14, 15] and

to study several atom-surface interaction where the features of built-in proximity of

a surface is required. These atom chips are similar to integrated circuits in various

aspects such as miniaturization and integration. The emphasis in this chapter is on

the design of magnetic traps from planar distributions and on experimental aspects

that are specific to atom chip experiments. Atom chips are used to trap and manip-

ulate atoms using optical traps. But we will only study potentials that are created

by magnetic field (static or slowly varying currents) flowing through micro-fabricated

wires. In later chapters, we will see different ways to create or modify traps using

Radio frequency(RF) potentials, that couples to Zeeman or hyperfine transitions.

2.1 Magnetic traps for neutral atoms

2.1.1 Magnetic Interaction

In the precious chapter we introduced cooling as a step before even creating magnetic

traps for atoms. The reason lies in the interaction energy between a neutral atom

and a magnetic field. At room temperature even in the fields of the order of many

Tesla, the magnetic interaction energy is much weaker than the atom’s thermal energy.

To understand the relation between the interaction energy of an atom with a static

magnetic field B, we consider an atom and choose the basis where the total electronic

angular momentum, J , and the total electronic angular momentum, I, are uncoupled

|J,mj ; I,mI〉. The hyperfine interaction Hamiltonian for an atom in the ground state

is then

H = AI · J − µ ·B (2.1)

9



where the first term corresponds to the contribution of the magnetic dipole and the

second term is the interaction with the applied magnetic field with magnetic moment,

µ given by

µ = −(µBgjJ + µNgII) (2.2)

where gJ and gI are the electronic and nuclear Landé g-factors.//

For alkali metals, the ground state has L = 0 and S = 1/2, the total electronic

angular momentum J = 1/2. For 87Rb, which has I = 3/2, the total angular mo-

mentum F at low magnetic field is a good quantum number and we can use the

basis |F,mF 〉. The Zeeman shift in this region can be approximated to be linear with

the magnetic field and therefore the interaction energy of a magnetic dipole with an

external magnetic field can written by

V (r) = −µm.B(r) = gFµBmFB, (2.3)

where mF is the magnetic quantum number, µB is the Bohr magneton, gF is the

effective Landé factor of the atomic hyperfine state.

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
− µN

µB
gI
F (F + 1)− J(J + 1) + I(I + 1)

2F (F + 1)
(2.4)

The second term has a factor µN

µB
which is of the order 10−3 and can be safely neglected.

For 87Rb, the two hyperfine levels which will be used mostly in this thesis are: |F = 2〉
and |F = 1〉 having gF = 1/2 and gF = −1/2, respectively.

Depending on the sign of gFmF , there are two cases possible:

1 gFmF < 0 (strong-field seeking state) : If the direction of the magnetic moment

and magnetic field are parallel i.e (V < 0), an atom is drawn towards the in-

creasing fields. Minima of the potential are found at the maxima of the field. As

the maximum of B corresponds to minimum of potential energy. But according

to Maxwell’s equation, maximum of the magnetic field is forbidden in free space

[16, 17].

2 gFmF > 0 (weak-field seeking state) : If the direction of the magnetic moment

and magnetic field are anti parallel i.e (V > 0), an atom is drawn towards the

minima of the magnetic field. Because a minima of the magnetic field is allowed

by the Maxwell’s equation, these types of traps are most common for neutral

atoms. Although important point to note is that these states are not the state

of lowest energy.
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2.1.2 Majorana spin-flip transition

As magnetic traps only confine weak-field seeking states, there is a loss of atoms from

the traps due to transition from weak-field to strong-field seeking states. These tran-

sitions are commonly known as Majorana transitions [18].

One way to ensure whether the trap is stable is to check if atom’s magnetic moment

adiabatically follows the direction of B (because the atom see a field which is changing

in both amplitude and direction). This condition can be written as:

dθ

dt
<
µm|B|
h̄

= ωL (2.5)

i.e. in the atom’s frame of reference, change of the field’s direction must be slow

than the Larmor frequency. Thus Atoms confined in a magnetic trap can escape by

making spin-flip Majorana transitions due to a breakdown of the adiabatic approxi-

mation. This adiabaticity condition is violated in the regions of very small offset field

and lead to spin flip transition from trapped states(weak-field seeking) to untrapped

states(strong-field seeking).

2.1.3 Static Magnetic Traps

Static magnetic traps can be divided in to two categories, one in which trap minimum

is zero magnetic field and another in which there is a finite value of field at the

minimum of the trap [19] .

2.1.4 Quadrupole trap

A straight current carrying wire (Iw) cannot form a magnetic field minimum on its

own. But if a uniform bias field (Bb) is added in orthogonal direction to the wire,

it forms a a 2-dimensional field minimum. This type of trap, commonly known as

quadrupole trap, was originally given by Frisch and Segrè in 1933 [20]. The minimum

of the field

r0 =
(µ0

2π

) Iw
Bb

(2.6)

forms along a line parallel to the wire where the bias field cancels the circular magnetic

field of the wire. Atoms in the weak-field seeking state can be trapped in this 2-

dimensional quadrupole field with the field gradient at r0 is given by,

dB

dr

∣

∣

∣

∣

r0

=
Bb

r0
. (2.7)

Parameters for Quadrupole trap:
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Figure 2.1: Quadrupole trap from single wire and uniform bias field.

Iw = 20A, Bb = 50G, Bmin = 0, B′
min = 63.2G/mm at r0 = 0.79mm

The miniaturization of the magnetic field sources, wires in this case, results in

much larger magnetic fields, field gradients and field curvatures. This is in contrast to

conventional magnetic traps created from large field coils which require hundreds of

amps to achieve similar parameter but the trap volume of the these coil based traps

is large as compared to wire traps.

Due to zero minimum field at the trap center, trapped atom loss due to Majorana

transition. This can be minimized by reducing the temperature of the atoms. Another

way in which this problem is circumvented is by using second class of static magnetic

traps.

2.1.5 Ioffe-Pritchard trap

The other types of traps which can have finite value of field at trap center are known

as Ioffe-Pritchard (IP) traps. The idea for these type of trap was first suggested and

demonstrated by Pritchard [21, 22] and also is related to Ioffe configuration discussed

several years ago for plasma confinement [23]. Although the field was generated from

combination of macroscopic wire which in turn creates a harmonic trap at the trap

center. Nowadays any trap which generates field configuration of this type is termed

as IP trap .

We can see that adding a magnetic field (offset), Bip, along the wire direction lifts

the minimum value of magnetic field from zero to some finite value at the trap center.

There is no confinement along the wire. Note that the finite value turns out to be

exactly equal to Bip (offset field). This also changes the potential form of the trap

12



near the minimum from linear to harmonic. The curvature is given by

d2B

dr2

∣

∣

∣

∣

r0

=
B2

b

r20Bip

(2.8)

and the trap frequency can be written as

ω =
1

2π

√

µBgFmF

M

(

d2B

dr2

)

(2.9)

where M is the mass of the atom.
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Figure 2.2: IP trap created using single wire, uniform bias and offset field.

Parameters for IP trap:

Iw = 20A, Bb = 50G, Bip = 6G, Bmin = 6G, B′′
min = 651.04G/mm2, ω = 131.68Hz

at r0 = 0.79mm

It is interesting to note that the Majorana losses present in the quadrupole traps

can be avoided by using these kind of trap configuration where there is finite value of

field at the minimum. Due to Landau-Zener transition from a trapped to untrapped

state, probability of atom loss for IP traps is given by:

ΓM = 4πω exp

(

−ωLarmor

ωho

)

(2.10)

For parameters given above, the flip rate is practically negligible.

2.1.6 “U” and “Z” - shape wire - magnetic micro traps

The traps described in the previous section constitute only 2-dimensional trapping

whereas for practical purpose we will also need to confine the atoms in the third di-

mension. One of the ways to extend a 2-dimensional to a 3-dimensional trap using

the above tools is to make wires in the shape of U and Z [24, 25]. In this section we

will see how these two wire configuration generate magnetic confinement along the

13



free dimension in the aforementioned wire.

The U trap is formed by bending the straight wire from the ends in the shape of

”U” such that the opposite current flows in the end wires. Whereas if the wires are

bent in the shape of ”Z” and current flows in the same direction, it forms a Z trap.

Current flows equal in all the three ends of the U or Z wires. These bent shaped parts

give rise to 3-dim minimum at the trap center with zero and finite value of field in case

of U and Z trap, respectively. The potential form at the trap center are analogous to

2-dim quadrupole and IP trap discussed above. In the following section, it is shown

how the magnetic field( its derivative and curvature) varies near the trap center (for

U and Z wire). The variation of trap frequency with width, height, current and bias

field in the wire are plotted along different axes.

Plots for U Wire

y

x

bB
I

Figure 2.3: U Wire

length of center wire 5 mm

length of side wire 20 mm

width .5 mm

height 1 mm

current 10 A

Bias field 20 G

Axes Field Gradient (B/mm)

x 0.09

y 4.52

z 15.84

+45 deg 22.3

−45 deg 12.31

Trap Center for this wire configuration : {0, 0.26mm, 0.91mm}
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(a) Contour Plot for U trap

-3 -2 -1 0 1 2 3
iHmmL

5

10

15

20

25

30
BHGL

X Axis
Y Axis
Z Axis

(b) Magnetic field along X,Y,Z Axes

Figure 2.4: Field Plot showing trap center for U wire

0.6 0.7 0.8 0.9
WidthHmmL

0.26
0.27
0.28
0.29
0.30

YminHmmL

(a) Umin Vs width

1.2 1.4 1.6 1.8
HeightHmmL

0.4

0.6

0.8

1.0
YminHmmL

(b) Umin Vs height

15 20 25 30 35 40 45
CurrentHAL0.4

0.6
0.8
1.0
1.2
1.4

YminHmmL

(c) Umin Vs Current

20 30
Bias FieldHGL

0.2
0.3
0.4
0.5
0.6

YminHmmL

(d) Umin Vs Bias field

Figure 2.5: Variation of Ymin with U wire parameters for Z trap
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Figure 2.6: Variation of Zmin with parameters for Z trap

0.3 0.4 0.5 0.6 0.7 0.8 0.9
WidthHmmL115

120
125
130
135
140

B¢K G

cm
O

(a) Field gradient Vs Width

12 14 16 18 20
CurrentHAL150

200
250
300
350
400

B¢K G

cm
O

(b) Field gradient Vs Current

Figure 2.7: Variation of field gradient along 45 deg with trap parameter

Plots for Z Wire
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Figure 2.8: Z Wire

16



length of center wire 5 mm

length of side wire 20 mm

width .5 mm

height 1 mm

current 10 A

Bias field 20 G

Axes Trap. freq (Hz)

x 25.23

y 48.22

z 97.34

axial 198.09

radial 326.26

Trap Center for this wire configuration : {0, 0, 1mm}
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(a) Contour Plot for Z trap
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Figure 2.9: Field Plot showing trap center for Z wire
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(b) Magnetic field along axial direction

Figure 2.10: Plot for Z trap
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Figure 2.11: Variation of Zmin with parameters for Z wire
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Figure 2.12: Variation of trap freq. along axial direction with parameters for Z wire
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Figure 2.13: Variation of trap freq. along radial direction with parameters for Z wire

+

18



Chapter 3

Radio-frequency dressed state

potentials

In the previous chapter we have discussed 2 and 3-dimensional magnetic trapping of

neutral atoms with static magnetic fields. We have also seen that weak-field seeking

states (energetically higher than strong-field seeking states) are the ones which are

trapped.

In this section the effect of RF dressing on traps is studied. This procedure is

analogous to coupling of different electronic states of a trapped atom using a laser

beam in optical traps. Therefore to study our problem we will use dressed state pic-

ture originally developed by S. Haroche and C. Cohen-Tanoudji in the 1960s. This

approach can be found in textbook [26]. It gives a full quantum mechanical treatment

of an atom in a field where both field and atom are quantized. We will not use the

quantum treatment but will describe the potential by treating radiation field classi-

cally. These potentials are referred to here as rf-dressed potentials.

By coupling hyperfine levels of the electronic ground state by a magnetic radio-

frequency field or microwave field, dressed state potentials can be studied(in neutron

optics [27]). For example, the RF coupling have been proposed to modify potentials

in [28] and a detuned microwave has been used for Cs atoms [29]. Similarly, adiabatic

potentials from RF has been proposed for neutrons [30] and experimentally performed

for the case of Rb atoms [31].These RF dressed state potentials have also been used

recently for coherent splitting of a BEC and matter-wave interference experiments [1].
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3.1 Interaction of a two level atom with an oscil-

lating field

In this chapter and hereafter in the thesis we will consider atom to be two level, for

simplicity, although the same procedure can be extended for atoms with three level

and higher. The two levels are labelled as |0〉 and |1〉 with energies E1 and E2 (> E1),

respectively. This atom interacts with the oscillating magnetic field such that total

Hamiltonian of the system can be written as H = H0 +H ′ where H ′ and H0 are the

Hamiltonian due to interaction and atom respectively. We will first introduce a semi-

classical approach where the atomic levels are quantised while the field is classical.

Later on we will see the full quantum picture by quantising the field.

3.1.1 A semi-classical approach

The field is taken to be of the form of A cos(ωt) where A is the amplitude and ω is

the frequency. A two level atom state for this atom is taken to be

|ψ〉 = c1e
−iω1t|1〉+ c2e

−iω2t|2〉 (3.1)

where |1〉 and |2〉 are lower and higher energy state with energy h̄ω1 and h̄ω2

respectively. Inserting this state and total Hamiltonian (H = H0 +H ′) in the time-

dependent Schrödinger equation

ih̄
d|ψ〉
dt

= H|ψ〉 (3.2)

we get

ih̄ċ1e
−iω1t|1〉+ ih̄ċ2e

−iω2t|2〉 = H ′(c1e
−iω1t|1〉+ c2e

−iω2t|2〉) (3.3)

On simplifying the above equation, we get

ih̄ċ1 = 〈1|H ′|1〉c1 + 〈1|H ′|2〉c2e−iω0t (3.4)

ih̄ċ2 = 〈2|H ′|1〉c1eiω0t + 〈2|H ′|2〉c2 (3.5)

where ω0 = ω2 − ω1.

Therefore, we define Mij = 〈i|H ′|j〉 and can be written as

Mij = h̄Ωij cos(ωt) (3.6)

where Ωij is the Rabi frequency which incorporates the amplitude of the matrix ele-
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ment. The equations can now be rewritten in terms of Rabi frequency as

iċ1 =
Ω12

2
c2(e

−i(ω0−ω)t + e−i(ω0+ω)t) + Ω11c1 cos(ωt+ φ1) (3.7)

iċ2 =
Ω21

2
c1(e

i(ω0−ω)t + ei(ω0+ω)t) + Ω22c2 cos(ωt+ φ2) (3.8)

We will now introduce the so called Rotating Wave Approximation (RWA). There are

two terms in the above equations containing frequencies of ω0 ±ω. If we assume that

the ω0 ≈ ω i.e. detuning is small then terms containing ω0 + ω can be neglected with

respect to ω0 − ω as the former term is rotating faster than the latter. Applying the

RWA to above set of equations and writing them in the form of matrix, we get

i
d

dt

(

c1

c2

)

=
1

2

(

0 Ωe−i(ω0−ω)t

Ω∗ei(ω0−ω)t 0

)(

c1

c2

)

(3.9)

The energies of the state can be calculated solving the above equations as eigenvalue

problem

U = ± h̄
2

√
δ2 + Ω2 (3.10)

where δ = ω− ω0 is the detuning and the eigenstates corresponding to these energies

can be written as

|ψ+〉 =
1

√

2Ω2 + 2δ2 + 2δ
√
δ2 + Ω2

(

δ +
√
δ2 + Ω2

Ω

)

(3.11)

|ψ−〉 =
1

√

2Ω2 + 2δ2 + 2δ
√
δ2 + Ω2

(

−Ω

δ +
√
δ2 + Ω2

)

(3.12)

These results are analogous to a system where two levels are spaced by an energy

δ and is subject to a perturbation of strength Ω. Since the total Hamiltonian is time

independent. If we treat the radiation as a single mode, quantum field, rather than

the classical field as considered in previous section, energy levels may be introduced

to represent the total (atom + field) system and the atom may be regarded as moving

in these time-independent potentials. The following case is best described using the

figure 3.1, we have consider the field to be quantized. The first two columns of the the

figure shows the energy levels of the two parts of the system that are are uncoupled.

These states are called bare states and are shown for both positive detuning. Here the

energy levels of the two-level atom are denoted by |1〉 and |2〉, and radiation field by

|n〉, which form a ladder of states whose energies depend on the number of photons

in the field. Whereas in the last part of the figure, the energy levels are shown taking

interaction into account. These states are called as dressed states, denoted by |i, n〉
where the first index is for atoms and second for field. We will consider detuning to
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be small so that these states are very close to each other, separated by δ as shown in

figure. The interaction is shown using Ω, in the case of Ω = 0 these states are bare

states while for finite interaction there is a increase in separation between the states

from δ to
√
δ2 + Ω2.

We can define a rotation matrix such that it maps the bare states onto the dressed

states. For example, if we define |1, n〉 and |2, n− 1〉 to be the initial two level basis

states, the dressed states can be written as

(

|ψ+〉
|ψ−〉

)

=

(

cos θ/2 sin θ/2

− sin θ/2 cos θ/2

)(

|1, n〉
|2, n− 1〉

)

(3.13)

where θ = arctan(Ω/δ).

Figure 3.1: Dressed State for the case of positive detuning

3.1.2 Avoided Crossing

It is interesting to note that if the detuning is positive instead of the negative then

two energies of the two state would have swapped. When the detuning is zero i.e.

δ = 0 then the two levels are degenerate for zero interaction while for Ω 6= 0 the two

states will not be degenerate for any detuning. Therefore there is an avoided crossing

as shown in figure 3.2.

22



| −ψ 〉

| +ψ 〉

|1,n〉

| 2,n 1− 〉

Figure 3.2: Avoided Crossing

3.2 Simulations of RF potential for Z trap

In this section we will cover the implementation of radio frequency (rf) potentials,

we have discussed so far, on an atom chip. We will see how the spatial degree of

freedom in both the detuning and Rabi frequency of the rf potential is exploited

using the precise control and the strong field gradients of traps. We will study the the

rf potential for a set-up which consist of three current carrying wires in the shape of Z,

an external bias field, together which creates Ioffe-Pritchard type field configuration

and two linear rf fields of same frequency as shown in 3.3. We will show the analytic

expressions for the resulting rf-potentials for this trap as derived in [32, 33, 34]. We

will explicitly show how the shape of the potential depends on the phase shift between

the two rf fields. Also we will see the double well and ring like potential arising from

linear and circular polarized case, respectively. Later we will discuss the more general

case of elliptic polarization of the total rf field and will show how a state dependent

double well arises in this case. Particularly in this case, the rf-potentials also depend

on the g-factor of the trapped atoms and hence can be use to realize a state dependent

potential.

3.2.1 Analytic calculations

For simplicity, we will restrict the calculation of rf potential realized with Z wire by

considering field which approximate the real wire field around the trap center (static).

In the case of realistic scenarios it is shown that wire magnetic fields will only change

the quantitative picture of the rf-potentials whereas qualitatively it remains same.

The magnetic field for a Z trap near its trap center can be written as,

BS(r) = G
√

x2 + y2[cosφex − sinφey] +Boez (3.14)
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Figure 3.3: Atom chip setup for RF-potentials

where φ = arctan y
x
. The above expression can be seen as a quadrupole field with

gradient G in the plane perpendicular the main wire (center) of the Z-wire and a

constant offset field (as seen in previous chapter) with amplitude Bo.

The rf field can be written as the superposition of two perpendicular linear field,

in general

Brf = [BAex +BB exp(iδ)ey] exp(ωrf t) (3.15)

where δ is the phase shift between the two components of the rf field. Using the

toolbox we developed in earlier section we can solve 3.14 and 3.15 to calculate rf-

potentials. To give a brief overview of steps, firstly we diagonalize the the static

field term (i.e. field for Z-trap) by applying an unitary transformation Us which will

transform the total spin operator of the atom such that it remains non-zero only in

one direction (say z-component). The final potential can be written as,

Vrf = mF gFµB

√

∆(r)2 + Ω(r)2, (3.16)

where the ∆(r) is the detuning and Ω(r) is the Rabi frequency given by

∆(r) = |Bs(r)|−
h̄ωrf

|gFµB|
(3.17)
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Ω2(r) =
B2

A +B2
B

8B2
S

[

2Bo[Bo

+ |BS|sin(2α) sin γ]+G2(x2+y2)[1−cos(2α) cos(2φ)+sin(2α) sin(2φ) cos γ]
]

(3.18)

here, tan(α) = BB

BA
and γ = − gF

|gF |
δ is the effective phase shift and can be seen to be

dependent on the sign on the g-factor (which becomes important in elliptic polariza-

tion case).

Now we will consider three cases where the rf field is linearly, circularly or ellipti-

cally polarized.

3.3 Linear Polarization

In this case we take the phase shift between the two components i.e. δ = 0, π.

Therefore the Rabi frequency can be written as,

Ω2 =
|Brf |2
8|BS|2

×
[

2B2
o +G2ρ2f(φ)

]

(3.19)

where we have defined, ρ =
√

x2 + y2 and f(φ) = 1−cos(2α) cos(2φ)±sin(2α) sin(2φ).

The sign of the third term in the f(φ) comes from the fact that δ can be 0 or π. This

function has two minima in the range of [0, 2π]. This minima’s are located at α, α+π

(−α, −α + π) for δ = 0 (π). We have plotted rf potential in this case for different
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Figure 3.4: RF-potentials created for the case by linear polarization

rf field amplitudes in case of both positive and negative detuning. In the figure 3.4a,

for the case of positive detuning if |BRF | is less than a critical field, BC , then there is

a minima at x = 0. And when the |BRF | increased such that it becomes greater than

BC , the minima moves away from the origin and a double well is formed. On the

other hand if the rf field frequency is increased such that detuning becomes negative

in that case potential takes the form as shown in the right hand side of figure 3.4b.
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The rf potential always has minima and takes the form of double well irrespective

of strength of rf field. Also, the orientation of the double well is determined by the

direction of the rf field. This is illustrated in the contour plots below where the dark

blue color shows the position of the minima.
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Figure 3.5: Contour Plot for linear rf polarization at different BRF

Therefore, depending on the polarization either the potential remains at the same

position with a slight change in shape or it can shift the minimum position and convert

into a double well potential. This has been particularly used in the paper [1] where

the authors have used the double well potentials to demonstrate the splitting of BEC

into two clouds having access both to tunnelling and isolated regimes. And then they

show the deterministic phase evolution throughout the splitting process by analysing

the interference patterns of the condensates.
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3.4 Circular Polarization

In this case, the phase shift between the components is taken to be π/2, 3π/2 but

with the condition that the amplitudes of both the components are equal. Therefore,

δ = π/2, 3π/2 and BA = BB which in turn implies α = π/4. Putting values of these

angles into 3.18,

Ω2(r) =
|B2

rf

8|BS|2
[

2Bo[Bo ± |Bs| +G2(x2 + y2)
]

=
|B2

rf

8|BS|2
(|BS|±BI)

2

(3.20)

The sign in equation 3.20 depends on the effective phase shift. For γ = π/2,−3π/2

(−π/2, 3π/2) the expression takes +(−) sign. Therefore in addition to the value of

the phase shift between different components of the rf field, the sign of the g-factor

also becomes important in determining the resulting rf potential.

Here again there are two possible scenarios: positive detuning and negative de-

tuning. The rf potential for the first case is shown in the figure 3.6. In the case

when Brf = 0 then independent of γ, the plot obtained is shown in figure 3.6a. It

is interesting to note that when Brf is increased then for the case when sin(γ) = −1

we get the same plot whereas when sin(γ) = 1 then minimum moves away from the

origin (once Brf is more than a critical field strength) making it a ring trap as shown

in fig. 3.6b.
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Figure 3.6: Contour Plot for circular polarization at different BRF

In the second case when detuning is negative there is always a minima at non-zero

x(similar to the case of linear polarization) and is independent of γ. In this case the
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rf potential is ring shaped for any value of rf field strength.

3.5 Elliptic Polarization

In this section, same phase shift between the different component of the rf field is taken

as in the case of circularly polarized rf field but with the condition that BA 6= BB.

Hence in this case the total rf field is elliptically polarized. In the previous section

we saw that rf potential is dependent on the sign of g-factor apart from phase shift.

Similarly for arbitrary polarization also, potential changes with the sign if g-factor.

This feature is used for state dependent manipulation of atoms. To exploit this effect,

we use two states (hyperfine) of 87Rb i.e. |F = 2, mF = 1〉 and |F = 1, mF = −1〉 such
that they have same µ ( = mF gFµB ) value but with different g-factor. If Brf = 0

i.e. only static field is present then these two states will see the same potential. As

the value of rf field (elliptically polarized) is increased the resulting potential will be

different for both the states. In the figure 3.9 an elliptically polarized rf field creates

a double well potential for one state whereas as the atom in the second state sees a

single minimum.
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Figure 3.8: Contour Plot for Elliptic rf polarization at different BRF
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Figure 3.9: State dependent potential created by elliptic polarization
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Chapter 4

Design of circular lattice of

magnetic traps

4.1 Single particle in a periodic lattice

In this section we are going to study the dynamics of an atom in an array of periodic

lattice. This will be useful later once we will propose a design of circular magnetic

trap lattice and use the machinery developed in this section for further analysis.

To begin with we subject the particle to a periodic lattice/potential and discuss

the basics that describe the dynamics of this particle. For the sake of simplicity we

will consider the problem to be one-dimensional, one can generalize to higher dimen-

sion using similar arguments.

The Hamiltonian of a particle can be written as

H =
p2

2m
+ Vlattice (4.1)

where Vlattice(x) is periodic lattice with period a. According to Bloch’s theorem [35]

the eigenstates, |φn
q (x)〉, can be chosen such that it has two parts: plane wave and

a periodic function with period same as of the potential. Using this theorem and

Schrödinger equation we obtain:

H|φn
q (x)〉 = En

q |φn
q (x)〉 (4.2)

where φn
q (x) = exp(iqx)unq (x) and u

n
q (x) is periodic function with period a. Putting
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this form of eigenstate in the 4.2 yields

[

(p+ h̄q)2

2m
+ Vlatt

]

unq (x) = En
q u

n
q (x)〉 (4.3)

For example, if we consider the potential of the form :

V (x) = V0 sin
2(kx) (4.4)

On putting this equation in Schrödinger equation, we obtain a differential equation

jj-1 j+1

a

JJ

Figure 4.1: Atom in a periodic potential

of the form

d2

dy2
φq(y) +

[(

Eq

ER
− V0

2ER

)

+ 2

(

V0
4ER

)

cos(2y)

]

φq(y) = 0 (4.5)

where ER = h̄2k2/2m and y = kx. Figure 4.2 shows the band structure for the

periodic lattice of form given by (4.4) for different depth.

Similarly, the probability density of the ground state wavefunction is plotted for

different V0. The dashed part in the figures show the potential and thick part shows

the probability of particle in these potential. It can be clearly seen from the plots that

as the depth of potential is increased the amplitude of the wavefunction decreases in

between the adjacent sites.

Note that if there is no potential, Vx = 0, then the solutions are plane waves (as

shown in above figures).

We are interested to analysis particle in periodic potential created by magnetic

traps. First considered the Hamiltonian for a boson in a potential [36] as

H =
∑

j

ǫjn̂j − J
∑

<ij>

b†jbi (4.6)

where bi(b
†
i ) are boson annihilation (creation) operator at site i(i), n̂i = bib

†
i is the

number operator. Here the first term contributes to single particle energy, the second

to the tunneling between nearest neighbours. To study inter site tunneling for periodic

32



-3 -2 -1 1 2 3
qa

2

4

6

8

10
E�ER

(a) V0 = 0

-3 -2 -1 1 2 3
qa

4

6

8

10

12

E�ER

(b) V0 = 5ER

-3 -2 -1 1 2 3
qa

5

10

15

20

E�ER

(c) V0 = 20ER

Figure 4.2: Band Structure of atom in a periodic lattice for different V0

potential, we will ignore terms carrying ǫj . Therefore

H = −J
∑

j

(|xj〉〈xj+1|+|xj+1〉〈xj|), (4.7)

and

H|φq〉 = Eq|φq〉 (4.8)

where |φq〉 =
∑

j exp(iqxj)|xj〉. Form 4.7 and 4.8, the lowest energy band of the

dispersion relation can be shown to have the form:

Eq = −2J cos(qa) (4.9)

4.2 Designing unique circular array of magnetic

traps

Our aim is to calculate dispersion relation for different potential created from mag-

netic field. We also want to study the effect of distance between adjacent sites and

depth of lattice on the tunneling coefficient, For this purpose, we propose two different

designs to create circular array of magnetic traps.
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Figure 4.4: Dispersion relation

4.2.1 Magnetic trap I

Here we consider 11 side wires joined in shape of Z in the x-y plane. Center wire

along z-axis is in the middle of this setup as shown in the fig. 4.5. Current in the side

wire is 10A while in the center wire it is 25A. The trap center is {2.87, 1.23, .39}mm.

Field minimum at trap center is found out to be 4.67G. The trap frequency along

Z and theta direction are 166.13Hz and 767.99Hz, respectively. As number of planar

wires are increased the trap center decreases and traps becomes shallower due to field

cancellation from adjacent wires. To study tunneling we need the distance between

the adjacent traps to be small which can only happen by increasing number of wires

in this plane. In addition there is a 2d minimum between 3d traps as shown in fig.
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Center Wire (z  axis)

Side Wire

y

 x

Figure 4.5: Design of magnetic trap I

(a) Contour Plot for magnetic trap I

(b) Magnetic field along theta

Figure 4.6: Field Plot for magnetic trap I

4.6. So this type of design is not useful for our purpose.

4.2.2 Magnetic trap II

To avoid the problems mentioned in the previous trap, a new design is proposed.

The above problem is avoided by adding circular wires to provide confinement in the

x-direction rather than bending the side wires in the shape of z-wires. The design

which creates circular array of magnetic field is shown in fig. 4.7. We consider the

Center Wire (z  axis)

Circular Wire

Side Wire

y

 x

Figure 4.7: Design of magnetic trap II

length of side wires - 50mm, of center wire - 100mm. Radii of circular wire - 27mm

and 34 mm, respectively. For the case if 4 side wire, the field plots along Z, θ and
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radial direction is shown in fig. 4.8.

(a) Field variation in Z Axis (b) Field variation in theta direction

Figure 4.8: Field variation along radial direction.

(a) Field Plot for magnetic trap II along dif-
ferent axes

4.3 Summary and Conclusion

Two and three dimensional micro traps are studied in detailed particularly U wire

and Z wire. Field gradients and trap frequency variations are shown with the wire

parameter. Later, rf dressed state theory is used to study adiabatic rf potentials.

These rf-induced dressed state potentials are studied in detail for linear , circular and

elliptic polarization. Later on we aimed to utilize this toolbox of rf dressed state to

study circular array of magnetic trap. For this two different design are presented

along with their drawbacks. Also physics of single particle are studied for periodic

potential.

4.4 Future Direction

In the near future the aim is to study dynamics of atom in these new magnetic traps

and variations of tunneling coefficients as a function of number of side wire in the

traps. Study of RF dressed potential with such a circular lattice is one of the future

research direction of this work.
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