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Chapter 1

Introduction

1.1 Background

The study of periodic orbits in dynamical systems is a basic problem with a long
history. In variety of examples one would like to find periodic orbits and to study
their general structure. This is of great importance, for instance, in taking the semi-
classical limit of dynamical systems. We are interested in the case of flows in three
dimensional manifolds. Periodic orbits of such a flow is an embedding of S1 into the
3-manifold, hence the flow is 3-dimensional, periodic orbits are called knots and the
collection of these orbits forms a link, which is often non-trivial. Thus one can ask
which knot type arises as orbits for a certain flow [13].

We start with the first introduction to the topic of flows on homogeneous spaces
and proceed further to finding knots in S3.

1.2 Homogeneous Spaces

Let G be a locally compact second countable group, for example:

1. R.

2. The general linear group GL(n,R) consisting of all non singular n× n matrices
with real entries.

3. Closed subgroups of known locally compact groups, quotient of locally compact
groups by closed normal subgroups.

Let S be a locally compact Hausdorff space. A left action of G on S is a continuous
map (x,s) 7→ xs from G × S to S such that:
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1. s 7→ xs is a homeomorphism of S for each x ∈ G and,

2. x(ys) = (xy)s for all x,y ∈ G and s ∈ S.

A space equipped with an action of G is called a G-space. A G-space is transitive
if for every s,t ∈ S there exists x ∈ G such that xs = t.

The standard examples of transitive G-spaces are the quotient spaces G/H (where
H is a closed subgroup of G), on which G acts by left multiplication,

H =
{
g ∈ G | gx0 = x0

}
is the stabilizer of x0.

By homogeneous space we shall mean a transitive G-space S that is isomorphic
to quotient space G/H that is, if S is a transitive G-space pick s0 ∈ S, define φ :
G 7→ S by φ(x) = xs0, and let

H =
{
x ∈ G | xs0 = s0

}
.

Then H is a closed subgroup of G and φ is a continuous surjection of G onto S that is
constant on the left cosets of H. Hence φ induces a continuous bijection Φ : G/H → S

such that Φ ◦ q = φ, where q is the natural quotient map. The only additional thing
needed to identify S with G/H is the continuity of Φ−1, which is always not the
case, for example, consider the case where G = R with discrete topology, acting by
translation on R with the usual topology. But it is valid if it is σ-compact.

Proposition 1.1. In the above context if G is σ-compact then Φ is a homeomorphism.

Proof. It is sufficient to show that φ maps open sets in G to open sets in S. Suppose
U is open in G and x0 ∈ G; pick a compact symmetric neighbourhood V of 1 such
that xoV V ⊂ U . Since G is σ- compact set, there is a countable set {yn} ⊂ G such
that the sets ynV cover G. Then S = ⋃∞

1 φ(ynV ) are all homeomorphic to φ(V ) since
s 7→ yns is a homeomorphism of S, and they are compact and hence closed. By
the Baire category theorem for locally compact Hausdorff spaces, φ(V ) must have an
interior point, say φ(x1) (x1 ∈ V ). But then φ(x0) is an interior point of φ(x0x

−1V ),
and x0x

−1V ⊂ x0V V ⊂ U , so φ(x0) is an interior point of φ(U). Thus φ(U) is open
[8].

Thus if the map Φ is a homeomorphism, we shall identify S with G/H. Henceforth,
we consider homogeneous spaces G/H, where G is an arbitrary locally compact group
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and H is an arbitrary closed subgroup. The question here is to address whether there
is G-invariant Radon measure on G/H, that is, a Radon measure λ such that λ(xE)
= λ(E) for every x ∈ G. The answer is not always affirmative. We obtain a necessary
and sufficient condition for the existence of invariant measure [8].

Suppose that f : X 7→ R is a real-valued function whose domain is an arbitrary
set X. The support of f, denoted by supp(f), is the set of points in X where f is
non-zero

supp(f) = {x ∈ X | f(x) 6= 0}.

The support of f is the smallest subset of X with the property that f is zero on its
complement. Functions with compact support on a topological space X are those
whose support is a compact subset of X.

Let G be a locally compact group, we denote the space of compactly supported
continuous functions on G by Cc(G), we set

C+
c (G) = {f ∈ Cc(G) : f ≥ 0 and f 6= 0}.

1.3 Measures on homogeneous spaces

Definition 1.2. A Haar measure on G, a locally compact Hausdorff topological group
is a non-zero Radon measure µ : Σ→ [0,∞), with Σ a σ-algebra containing all Borel
subsets of G, such that

1. µ(G) = 1,

2. µ(αS) = µ(S) for all α ∈ G, S ∈ Σ. Here αS = {α t | t ∈ S}.

Theorem 1.3 (Uniqueness Theorem). If λ and µ are Haar measures then there exists
c ∈ (0,∞), such that λ = cµ.

Proof. For detailed proof see [8].

Definition 1.4. If G is as above with left Haar measure µ. We will now examine the
extent to which µ fails to be a right in variant. If, for x ∈ G, we define µx(E) =
µ(Ex), then µx is again a left Haar measure, by the associative law: y(Ex) = (yE)x.
By the uniqueness theorem there is there is a 4(x) > 0 such that µx = 4(x)µ, and
4(x) is independent of the original choice of µ. The function 4 : G 7→ (0,∞) thus
defined is called the modular function of G.
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Proposition 1.5. If K is any compact subgroup of G then 4|K ≡ 1.

Thus Rn/Zn admits an Rn-invariant measure, and Rn\ (0) admits a measure in-
variant under the action of group SL(n,R) of n × n with determinant 1. In particular
if G is a unimodular locally compact group and Γ is a discrete subgroup of G then
G/Γ admits a G-invariant measure, if the quotient G the quotient G/Γ is compact
then automatically the measure is finite, but in general the invariant measure may
not be finite. These observations apply in particular to G = SL(n.R) [8].

Theorem 1.6. Every locally compact group G possesses a left Haar measure µ

Proof. We will start by constructing µ as a linear functional on Cc(G). imagine
a function φ ∈ C+

c (G) that is bounded by 1, equals 1 on a small open set and is
supported on a very slightly larger open set U . If f ∈ C+

c (G) is sufficiently slow
varying so that it is essentially constant on the left translates of U , f can be well
approximated by a linear combination of left translates of φ. f ≈ ∑

cjLxj
φ. If µ

were a Haar measure on G, we would have
∫
fdµ ≈ (∑ cj)

∫
φdµ. This approximation

will get better and better if support of φ shrinks to a point, and if we introduce a
normalization to cancel out the factor of

∫
φdµ on the right we will obtain

∫
fdµ as a

limit of the sums∑ cj. To understand clearly consider the case G = R: φ is essentially
the characteristic function of a small interval, f ≈ ∑

cjLxj
φ is approximation of f

by step functions and ≈ (∑ cj)
∫
φdµ is essentially a Riemann sum for

∫
fdµ . To be

more precise if f , φ ∈ C+
c (G), we define (f : φ) to be the infimum of all finite sums∑n

1 cj such that f ≤ ∑n
1 cjLxj

φ for some x1, . . . ,n ∈ G. This makes sense because
the support of f can be covered by some finite number N of left translates of the set
where φ ≥ 1

2‖φ‖sup and it follows that (f : φ) ≤ 2N‖f‖sup/‖φ‖sup.

What follows, G is a locally compact group with left Haar measure dµ, H is a
closed subgroup of G with left Haar measure dξ : G 7→ G/H, q is the canonical
quotient map qµ = µH and 4G and 4H are the modular functions of G and H. We
define a map P : Cc(G) 7→ Cc (G/H) by

Pf(µH) =
∫
H
f(µξ)dξ.

This is well defined by the left -invariance of dµ: if {y = µη} with η ∈ H then
∫

H
f(yξ)dξ =

∫
H

f(µξ)dξ.

Pf is continuous. Moreover, if φ ∈ Cc(G/H) we have
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P[(φ ◦ q)f] = φPf.

We now show that P maps Cc(G) onto Cc(G/H ) [8].

Lemma 1.7. If E ⊂ G/H is compact, there exists a compact K ⊂ G with q(K) = E.

Proof. Pick an open neighbourhood V of 1 in G with compact closure. Since q is an
open map, the sets q(xV ) (x ∈ G) are an open cover of E, so there is finite subcover
qxjV (j = 1, . . . , n). Let K = q−1E ∩ ⋃n1 xjV . Since q−1(E) is closed, K is compact
and q(K) = E [8].

Lemma 1.8. If F ⊂ G, there exists f ≥ 0 in Cc(G) such that Pf = 1 on F.

Proof. Let E be a compact neighbourhood of F in G/H, and by using lemma 1.3 we
can obtain a compact set K ⊂ G such that q(K) = E Choose non-negative g ∈
Cc(G) with g ≥ 0on K and φ ∈ Cc(G) supported in E such that φ = 1 on F and set

f = φ ◦ q

Pg ◦ q

with the understanding that the fraction is zero wherever the numerator is zero. f is
a continuous function since Pg ≥ 0 on support φ, its support is contained in support
g and Pf = (φ/Pg)Pg = φ [8].

Proposition 1.9. If φ ∈ Cc(G/H), there exists f ∈ Cc(G) such that Pf = φ and f ≥ 0
if φ ≥ 0.

Proof. If φ ∈ Cc(G/H ), by lemma 1.8 there exists g ≥ 0 in Cc(G) such that Pg = 1
on support φ. Let = f (φ ◦ q)g. We have Pf = φ(Pg = φ).

The following condition describes a necessary and sufficient condition for G/H to
admit a measure invariant under the action of G; by a measure we shall mean a Radon
measure, namely a measure defined on all Borel subsets which assigns finite measure
to every compact set. For any closed subgroup H of G, including G itself, we denote
by 4H the modular homomophism of H. Then we have the following:

‘
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Theorem 1.10. G/H admits a G-invariant measure if and only if 4G(h) = 4H(h) for
all h ∈ H; when it exits the invariant measure is unique up to scaling. In this case, µ
is unique up to a constant factor, and if this factor is suitably chosen we have

∫
G

f(x)dx =
∫

G/H
Pfdµ =

∫
G/H

∫
H

f(xξ)dξdµ(xH).

Proof. [8] Suppose a G-invariant measure µ exists. Then f 7→
∫
Pf dµ is a nonzero

left invariant positive linear functional on Cc(G), so
∫
Pf dµ = c

∫
f(x)dx for some c

> 0 by the uniqueness of Haar measure on G. In view of the above proposition, this
formula completely determines µ, so µ is unique up-to the arbitrary constant factor
in Haar measure. Replacing µ by c−1µ we may assume c = 1, so that our condition
given in theorem satisfies. This being the case if η ∈ H and f ∈ Cc(G) we have

4G(η)
∫
G

fxdx =
∫
G

f(xη−1)dx

=
∫

G/H

∫
H

f(xξη−1)dξdµxH

= 4H(η)
∫

G/H

∫
H

f(xξ)dξdµxH

= 4H(η)
∫

f(x)dx

so that 4G(η) = 4H(η).
Conversely, suppose 4G | H = 4H. We claim that if f ∈ Cc(G) and Pf = 0 then∫

Pf(x) dx = 0. Indeed, by lemma 1.3 there exists φ ∈ Cc(G) such that Pφ = 1 on
q(suppf). We have

0 = Pf(xH) =
∫

f(xξ)dξ =
∫

f(xξ−1)4H(ξ−1)dξ =
∫

f(xξ−1)4G(ξ−1)dξ,

so
0 =

∫
G

∫
H
φ(x)f(xξ−1)4G(ξ−1)dξdx

=
∫

H

∫
G
φ(x)f(xξ−1)4G(ξ−1)dxdξ

=
∫

H

∫
G
φ(xξ)f(x)dxdξ

=
∫

G
Pφ(xH)f(x)dx =

∫
G

f(x)dx.
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This means that if Pf = Pg then
∫

G f =
∫

G g. Thus it follows from the proposition
that the map Pf 7→

∫
G f is a well defined G-invariant positive linear functional on

Cc(G/H ). The associated Radon measure is then the desired measure µ.

Corollary 1.11. If H is compact, G/H admits a G-invariant Radon measure.

Proof. To prove this we use the proposition given below. For detailed proof see [8].

1.4 Introduction to Dynamical Systems

Definition 1.12. Let G be a locally compact group. A closed subgroup Γ of G is called
a lattice in G if Γ is discrete and G/Γ admits a finite G-invariant measure.

For example: In G=SL(n,R), Γ = SL(n,Z) is a lattice in G.

1.4.1 Flows

Let G be a locally compact group and Γ a lattice in G. For a closed subgroup H of G
the H -action on G/Γ is called the flow induced by H on G/Γ. We are interested in
actions of cyclic subgroups (equivalently of elements of G), or one-parameter flows,
namely actions induced by (continuous) one-parameter subgroups gt where gt ∈ G for
all t ∈ R.

1.4.2 Example

G = SL(2,R), Γ a lattice in G, and

H =

et 0

0 e−t

 .
This corresponds to what is called the geodesic flow associated with the surface H2/Γ
where H2 is the Poincare upper half-plane. In particular when Γ = SL(2,Z) it corre-
sponds to the geodesic flow associated with the modular surface.

We can show that every element of G is either conjugate to a diagonal or an upper
triangular unipotent matrix, or is contained in a compact subgroup of G; in the latter
case it acts as a "rotation" of the plane, with respect to a suitable choice of the basis.

7



1. Case I when a element of SL(2,R) is conjugate to a diagonal matrix D =r 0
0 1/r

: Take g =
a b

c d

 a element of SL(2,R), then if g is conjugate to a

then gag−1 ∈ SL(2,R)
a b

c d

r 0
0 1/r

 d −b
−c a

 =
adr − bc/r −abr + ab/r

cdr − dc/r −bcr + ad/r

 ,
the determinant of above matrix turns out to be (ad − bc)2, which is 1.

2. Case II when a element of SL(2,R) is conjugate to a triangular matrix T =1 x

0 1

, taking g as above and calculating as in above case

a b

c d

1 x

0 1

 d −b
−c a

 =
ad− acx− bc −ab+ a2x+ ba

cd− c2x− dc −bc+ acx+ ad

 ,
the determinant of T also turns out to be (ad − bc)2 = 1.

3. Case III In this case where the conjugate has to be a compact subgroup of G

we can choose C =
cos θ − sin θ

sin θ cos θ

 as a representative, then similarly as above

a b

c d

a b

c d

 d −b
−c a cos



=
ad cos θ + ac sin θ + bd sin θ − bc cos θ −ab cos θ − a2 sin θ − b2 sin θ + ab cos θ
cd cos θ + c2 sin θ + d2 sin θ − dc cos θ −bc cos θ − dc sin θ − bd sin θ + d2 cos θ

 ,
the determinant of C also turns out be (ad − bc)2 = 1.
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Chapter 2

Lattice Invariants

In this chapter we lay the foundations to study flow on homogeneous spaces taking
Sl(2,R)\SL(2,Z) as an example.

Definition 2.1. A Lattice L is the collection of all integer linear combination of a pair
of linearly independent vectors,i.e

L =
m

x1

y1

+ n

x2

y2

 : m,n ∈ Z


Another interpretation of the lattice L can be the image of multiplication by a

matrix as follows: m
n

 7→ m

x1

y1

+ n

x2

y2

 =
x1 x2

y1 y2

m
n


such that the condition of linear independence is not violated, i.e.the determinant of
the matrix is non zero x1x2 − y1y2 6= 0 This lattice can also be given by a different
matrix kx1 + lx2 mx1 + nx2

ky1 + ly2 my1 + ny2

 =
x1 x2

y1 y2

 k l

m n


where k, l,m, n ∈ Z such that kn−ml = ±1
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2.1 Group Theoretic Approach

Another approach to understand the structure of lattices can be in terms of group
theory. We know that the collection of GL(2,R) of 2× 2 matrices with non-zero de-
terminant forms a group. The subset GL(2,Z) of GL(2,R) which consists of matrices
with integer entries and the determinant as ±1 is a subgroup. As it is the group of
invertible matrices over ring of integers,since determinant is multiplicative therefore
only invertible integers are ±1. So if we look at the definition of lattices above, we can
identify the collection of lattices with the set

{
GL(2,R)/GL(2,Z)

}
which is in-fact a

coset space [9].

2.2 Fundamental Parallelogram

Let u, v, be the vectors in the plane. Then 0,u, v, u + v form the vertices of a funda-
mental parallelogram. The area of this fundamental parallelogram of the lattice L is
then

Area = lu.lv. sin θ,

θ is the angle between the vectors u =
x1

y1

, v =
x2

y2

 .
= |u|.|v|.

[
1−

(
~u.̇~v

|u|.|v|

)2]1/2

=
[
|u|2.|v|2 − |~u.~v|2

]1/2

=
[
(x2

1 + y2
1)(x2

2 + y2
2)− 2x1x2y1y2 + x2

1x
2
2 + y2

1y
2
2 + x2

1y
2
2 + x2

2y
2
1

]1/2

= x1y2 − x2y1

which is the determinant of the matrix in the previous section. The interesting thing to
note is that the area of the any parallelogram not just the fundamental parallelogram
is always the determinant of the matrix of the vectors taken. Below is the discussion
of the argument. Given P be the parallelogram we have to show the area of this
parallelogram is the same as the area of the fundamental parallelogram.

P =
{

(ax1 + bx2, ay1 + by2) : 0 ≤ a, b ≤ 1
}
.
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So, let us take
u = ax1 + bx2

v = ay1 + by2

i.e.
u
v

 =
x1 x2

y1 y2

a
b

 ,
As seen earlier the same lattice can also be given by different matrix asax1 + bx2 cx1 + dx2

ay1 + by2 cy1 + dy2

 =
x1 x2

y1 y2

a b

c d


And as we have just seen the area of the parallelogram is related to the determinant

of the matrix therefore we have Area = det(H).det(B)

H =
x1 x2

y1 y2

 , B =
a b

c d


but detB is ±1. Hence the area of the parallelogram is |x1y2−x2y1|, which is same

as the area of the parallelogram.
The subset SL(2,R) of GL(2,R) consisting of matrices of determinant 1 is also a
subgroup. Moreover SL(2,Z) which is the intersection of SL(2,R) and GL(2,Z)
the two subgroups of GL(2,R) consists of 2 × 2 matrices with integer entries and
determinant 1. Thus we can identify the collection of lattices whose fundamental
parallelogram has area 1 with the coset space SL(2,R)/SL(2,Z), and call this space
as space of lattices of co-area 1.

2.3 Lattices in Gaussian Plane

So far we have discussed lattices in plane, now we identify the plane with the Gaussian
complex plane. A Lattice L is then the collection of all integer linear combinations
of a pair of complex numbers ω1,ω2; here ω2 is not in the line Rω1 which passes
through ω1. We can re-write this condition as (ω2/ω1) /∈ R; or simply saying that the
imaginary part of (ω2/ω1) is non-zero. We can express (ω1, ω2) in terms of their real
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and imaginary parts as follows

ω1 = x1 + y1
√
−1 andω1 = x1 + y1

√
−1.

Now we have real and imaginary part of (ω2/ω1) as

x1x2 + y1y2

x2
1 + y2

1

and
x1y2 − y1x2

x2
1 + y2

1

respectively, as explained above and earlier the condition for linear independence is
same as the determinant of the matrix to be non zero of the lattice L :

L =
{
aω1 + bω2 : a, b ∈ Z, ω1, ω2 ∈ C

}

= a

x1

y1

+ b

x2

y2


which is x1x2 - y1y2 6= 0 [9].

2.4 Characterization of Lattices

The set of lattices in C can be identified as a integral vector space spanned by the
pairs of complex numbers ω1,ω2 with Im(ω2/ω1) > 0. The set of all lattices L can be
identified with the set of all such pairs

L = {(ω1, ω2)|Im(ω1/ω2) > 0}

where we quotient by the action of modular group SL(2,Z). Let λ ∈ C× = C - 0 act
on L by

λ : (ω1, ω2) 7→ (λω1, λω2).

Now we can identify L/C× with H by the map

(ω1, ω2) 7→ z = ω1/ω2.

Thus we have,
[Note] After we quotient by SL(2,Z) the map (ω1, ω2) 7→ (ω1/ω2), gives a bijection
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between M/C× and H/G
where G is SL(2,Z)/±I. Let F be a complex-valued function on M, the space of
lattices. We say F is of weight 2k if F(λL) = λ−2kF(L) for all lattices L ∈ M, for all
λ ∈ C×. In particular if λ = λ (ω1, ω2), the lattice generated by (ω1, ω2) , we may
write F as a function of the basis elements and

F(λω1, λω2) = λ−2kF(ω1, ω2)

and set λ = ω2 shows that ω2k
2 F(ω1, ω2) depends only on z = (ω1/ω2) , so we may

rewrite
F(ω1, ω2) = ω2(ω1/ω2) for someF : H 7→ C

and then F(z) will be a modular function of weight 2k in terms of z ∈ H.
We may now begin with an Eisenstein series E2k(ω1, ω2) associated to any lattice L
which is indeed a modular form and SL(2,Z)invariant.

E2k(L) =
∑

ω ∈L\0

1
ω2k

where k > 1 to ensure the convergence. In terms of basis ω1, ω2 for lattice can be
written as

E2k(ω1, ω2) =
∑

(a,b) 6=0

1
(aω1 + bω2)2k

which is related to ω22k as

E2k(L) =
∑

(a,b) 6=(0,0)

1
(az + b)2k

Now we show that the Eisenstein series is convergent for k > 1.
Since, the series Ek(L) = 0 for odd integers k since the terms 1

ωk and 1
ω−k cancel

out each other. Therefore we are only interested in Eisenstein series of even weight.
Thus for any lattice L the sum ∑

ω∈L converges absolutely for k > 2.
To prove |∑ 1

|ωk| | converges let F be a fundamental parallelogram for lattice L and D
be the length of longer diagonal of F. Then |z | ≤ D ∀ z ∈ F. Let ω = a1ω1 + a2ω2 ∈
L s.t. |ω| ≥ 2D; ai ∈ Z. If x1 and x2 are real numbers such that

ai ≤ xi ≤ a1 + 1

13



then ω and x1ω1 + x2ω2 differ by an element of F. So

|a1ω1 + a2ω2|+ D ≥ |x1ω1 + x2ω2|

|a1ω1 + a2ω2| ≥ |x1ω1 + x2ω2| − D ≥ |x1ω1 + x2ω2| −
1
2 |a1ω1 + a2ω2|

Since |ω| ≥ 2D,
|a1ω1 + a2ω2| ≥

2
3 |x1ω1 + x2ω2|

|a1ω1 + a2ω2|+ D− |a1ω1 + a2ω2| − 2D ≥ |x1ω1 + x2ω2|

D ≤ |x1ω1 + x2ω2|

Now on comparing the sum to the integral

∑
|ω|≥2D

1
|ω|k

≤
∫∫
|x1ω1+x2ω2|≥D

(3/2)k
|x1ω1 + x2ω2|k

dx1dx2

Now change the variable as u+ ιv = x1ω1 + x2ω2. Then

(3
2)k 1

areaofF

∫∫ 1
(u2 + v2)k/2dudv

If ω1 = a1 + b1 and ω2 = a2 + b2, then we know the area of the fundamental parallel-
ogram with ω1 and ω2 as basis is the determinant |a1b2 − a2b1|. So

(3
2)k 1
|a1b2 − a2b1|

∫ 2

θ=0
π
∫ ∞
r=D

1
rk
r drdθ ≤ ∞

Thus the sum converges for ω ≥ 2D. Since there are only finitely many ω with
|ω| < 2D we have sown the sum converges for k ≥ 4. Continuing with this work
Weierstrass was able to show that:

1. A certain "discriminant"

4(L) = 49E6(L2)− E4(L3)

is non-zero for every lattice.

2. Conversely, given any pair of complex numbers (a, b) so that 4(a, b) = 49b2 -
20a3 6= 0,there is a unique lattice L such that (a, b) = (E4(L),E6(L)).

Let us explain about this discriminant, for this one should know about elliptic curves.

14



Definition 2.2. An elliptic curve over a field k is a non-singular projective algebraic
curve E of genus 1 over k with a chosen base point O ∈ E.

Suppose E = C/L is an elliptic curve over C, viewed as a quotient of C by a lattice
L = Zω1 + Zω2, with ω1/ω2 ∈ H . The Weierstrass ℘-function of the lattice L is

℘ = ℘L(u) = 1
u2 +

∑
k=4,6,8,...

(k − 1)Ek(ω1/ω2)uk−2,

where the sum is over even integers, k ≥ 4 and

Ek(z) =
∗∑

m,n∈Z

1
(mz + n)k .

. The star on top of the sum symbol means that for each z the sum is over allm,n ∈ Z
such that mz + n 6= 0 It satisfies the differential equation

(℘′)2 = 4℘3 − 60E4(ω1/ω2)℘− 140E6(ω1/ω2).

If we set x = ℘ and y = ℘
′ , the above is an (affine) equation of the form y2 = ax3+bx+c

for an elliptic curve that is complex analytically isomorphic to C/L for why the cubic
has distinct roots). The discriminant of the cubic

4x3 − 60E4(ω1/ω2)x− 140E6(ω1/ω2)

is 164(ω1/ω2), where

4(z) = (60E4(z))3 − 27(140E6(z))2. z = ω1/ω2.

Definition 2.3. A generalized Weierstrass equation over k is an equation of the form

E : Y 2Z + a1XY Z + a3

Definition 2.4. For a Weierstrass equation as above, define the following quantities:

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3

b6 = a2
3 + 4a6, b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4

4 = −b8b
2
2 − 8b3

4 − 27b2
6 + 9b2b4b6

15



Then 4 is the discriminant of the generalized Weierstrass equation.

Definition 2.5. Two lattices L and L′ in C are said to be homothetic if there exists λ
∈ C∗ = C − 0 with λL = L and we write L ∼ L

′ . If we denote the set of all
lattices by L, the relation ∼ is an equivalence relation on L, so that we have a notion
of homothety (equivalence) class of lattices.

To prove the lattice is unique we need to define the j function and study its
properties.

Definition 2.6. Let τ ∈ H and consider the lattice Lτ = τZ + Z, the j-function j(τ) is
defined to be

j(τ) = j(Lτ )

Theorem 2.7. The lattices Lτ and L′τ , τ , τ ∈ H, are homothetic if and only if there

exist
a b

c d

 ∈ SL(2,Z) such that τ ′ = aτ + b

cτ + d
.

We will need to proof the lemma given below to prove this theorem.

Lemma 2.8. Let L ⊂ C be a lattice and let ω1 , ω2 and ω′1 , ω′2 be two oriented bases
for L, then

ω
′

1 = ω1 + bω2 and ω
′

2 = cω1 + dω2

for some a b

c d

 ∈ SL(2,Z).

Proof. Write L = Zω1 + Zω2 and L = Zω′1 + Zω′2 . The assumption of the lemma
means that L = L

′ . Then L ⊂ L
′ implies that there exist a′ , b′ , c′ , d′ ∈ Z such

that

ω1 = aω1 + ω2 and ω
′

2cω1 + dω2

and similarly L ⊂ L
′ implies that

ω
′

1 = aω1 + bω2 and ω
′

2 = cω1 + dω2

for some a, b, c, d ∈ Z.
Substituting ω′1 and ω′2 in the first set of equations we have that

ω1 = a
′
ω1 + a

′
bω2 + b

′
cω1 + b

′
dω2
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ω2 = c
′
ω1 + c

′
bω2 + d

′
cω1 + d

′
dω2

so that
1 0

0 1

ω1

ω2

 =
a′ b

′

c
′
d
′

a b

c d

ω1

ω2


Since ω1, ω2 are linearly independently over R we must have that1 0

0 1

 =
a′ b

′

c
′
d
′

a b

c d


Remark 2.9. We will assume that the angle from ω2 to ω1 is positive and between 0
and π.

using this remark,

0 < Im

(
ω
′
1
ω
′
2

)
= Im

(
aω1 + bω2

cω1 + dω2

)
= Im

a
(ω1

ω2

)
+ b

c
(ω1

ω2

)
+ d


so if we let τ = ω1

ω2
= s+ it for some s, t ∈ R we have that

aτ + b

cτ + d
=
(
aτ + b

cτ + d

)(
cτ + d

cτ + d

)
=
(

(ac|τ |2 + (ad+ bc)s+ bd) + ((ad− bc)t)i
|cτ + dτ |2

)

Hence

0 < Im

(
ω
′
1
ω
′
2

)
=

(ad− bc)Im
(
ω1

ω2

)
∣∣∣∣c(ω1

ω2

)
+ d

∣∣∣∣2
which implies that ad-bc > 0.

Finally since the determinant is multiplicative and det
a b

c d

 > 0, have
a b

c d


∈ SL(2,Z) and hence result follows.

Proof. We now prove theorem 2.7 using lemma 2.8

Lτ and L
′

τ are homothetic ⇐⇒ Zτ + Z = Zλτ + Zλ for some λ ∈ C∗
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⇐⇒ τ
′ = aλτ + bλ and 1 = cλτ + dλ for some

a b

c d

 ∈ SL(2,Z)

=⇒ τ
′ = aτ + b

cτ + d
.

Conversely if τ ′ = aτ+b
cτ+d then choosing λ = cτ + d we have

λL
′

τ = Z(aτ + b) + Z(cτ + d) = Zτ + Z = Lτ

so that Lτ and L
′
τ are homothetic.

Theorem 2.10. 1. j(τ) is a holomorphic function on H

2. If τ and τ
′ lie in H, then j(τ) = j(τ ′) if and only if τ ′ = γτ for some γ ∈

SL(2,Z).

Proof. 1. Since 4(τ) = 0 in H, it suffice to show that g2 and g3 are holomorphic
in H. Now, both g2 and g3 are given by series of the form

Σ(a,b)6=(0,0)
1

(a + b τ)k

with k > 2, we have seen that sum converges absolutely.For the sum to define a
holomorphic function we only need to verify that the sum converges uniformly
on compact subsets of H. A very detailed proof can be found in.

2. using theorem 2.7, if τ ,τ ′ ∈ H, then Lτ , L
′
τ are homothetic if and only if τ =

yτ for some y ∈ SL(2,Z). Also from Theorem 1.3.2 we have that j(τ) = j(τ ′) if
and only if Lτ are L′τ are homothetic. Combining both results we are done [4].

Remark 2.11. From the above theorem, since1 1
0 1

 ∈ SL(2,Z) and
1 1

0 1

 ∗ τ = τ + 1,

we must have that j(τ) = j(τ + 1), that is the j-function is Z-periodic. A Z-
periodic holomorphic map that takes τ 7→ q = e2πiτ takes H 7→ D

′ , where D′ = D\0
and D = q ∈ C : |q| < 1 is the open complex unit disk. Indeed, each τ ∈ H is
mapped onto a unique point q in D′ , but each q ∈ D is the image of infinitely many
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points in H. However we see that if τ and τ map onto q, then e2πiτ = e2πiτ ′ , that is
e(2πiτ − τ

′ ) = 1, so that τ and τ ′ differ by an integer.
Hence, we have a well defined function g : D 7→ C with j(τ) = g(e2πiτ ). Since j

is holomorphic on H, g is holomorphic on D so that g has a Laurent series expansion

g(q) = Σn∈Zanq
n for q ∈ D′ .

Finally, j(τ) can hence be expressed as a q-expansion j(τ) = Σn∈Zanq
n.

An elliptic curve E defined over C has the form

E(C) = y2 = 4x3 − Ax −B

then the discriminant in this form is4 = A3 − 27B2 6= 0. This form of discriminant
will be used to prove the theorem below only.

Proposition 2.12. The q-expansion of j(τ) is

j(τ) = 1
q

+ Σn∈Zanq
n = 1

q
+ 744 + . . .

where q = e2πiτ and the coefficients an ∈ Z.

Proof. We will only give a sketch of the proof. Indeed, very detailed proofs can be
found in [12]. As a first step, they show that

Ek(z) = 2ζ(k) + 2 · (2πi)k
(k − 1)! ·

∞∑
n=1

σk−1(n)qn.

where ζ(Z) = ∑∞
n=1 is the Riemann-zeta function and σk(n) = sumd/nd

k. Then, with
the standard values

ζ(4) = π4

490 andζ(6) = π6

945
we have that

g2τ = 60E4 = 4π4

3 (1 + 240A) = (2π)4
(1

2 + 20A
)

g3τ = 60E6 = 8π6

27 (1 + 504B) = (2π)6
( 1

216 + 7
3B

)
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where A = ∑∞
n=1 σ3nq

n and B = ∑∞
n=1 σ5nq

n. Now with the help of these expres-
sions we can compute

(2π)−124 =
( 1

12 + 20A
)3
− 27

( 1
216 + 7

3B
)2

=
( 1

1728 + 5
12 + 100A2 + 8000A3

)
−

( 1
1728 −

7
12 + 147B2

)

=
∞∑
n=1

(∑
d/n

(5d3 + 7d5)
12

)
qn +

∑
n≥1

cnq
n (cn) ∈ Z

But since

5d3 + 7d5 = d3(5 + 7d2) ≡

d
3(d2 − 1) ≡ 0(mod3)

d3(1 − d2) ≡ 0(mod4)

we have that 12/5d3 + 7d5 so that

(2π)−124 = q +
∑
n≥1

knq
n (kn) ∈ Z

Hence

j(τ) = 1728g3
2

4
=

( 1
20A)3

(2π)−124
= 1 + ∑

n≥1 dnq
n

q + ∑
n≥1 dnqn

(kn, dn ∈ Z)

and after division the result follows [4].

Theorem 2.13. j : H 7→ C is surjective.

Proof. Suppose that c ∈ C and j(τ) 6= c for all τ ∈ H. Consider the integral

1
2πi

∫
γ

j
′(τ)

j(τ)− cdτ

for a contour γ. Since by the previous theorem j(τ) is holomorphic on H we have
that j

′ (τ)
j(τ)−c is also holomorphic on H in view of our assumption on c. So from Residue

Theorems we expect this integral to be equal to zero. We prove that this is not the
case. Consider γ to be the contour containing an arc of the unit circle from (−1+ι3)

2

to (1+ι3)
2 , two vertical segments up to any height greater than 1, and a horizontal

segment with Im(τ) = M for some M > 0. As we have seen in Remark 1.3.8, j(τ) =
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j(τ + 1). Therefore, the integrals over the left and right vertical parts of π are the
same, except that they are in opposite directions, so they cancel each other.

Similarly
1 1

0 1

 ∈ SL(2,Z) and
1 1

0 1

 ∗ τ = − 1
τ
implies that j(τ) = j(− 1

τ
).

But,
− 1
τ

= − 1
τ

τ

τ
= − τ

|τ |2
.

So for any τ on the arc of the unit circle since |τ | = 1 we have

j(τ) = j(−τ)

So again, integrating from (−1+i(3))/2 to i is equal to integrating from i to (1+i(3))/2
in the reverse direction. So they cancel out as well. So we are left with

1
2πi

∫
γ

j
′(τ)

j(τ)− cdτ = 1
2πi

∫
δM

j
′(τ)

j(τ)− cdτ

where δM is the horizontal segment. We make a change of coordinates q = e2πiτ . So
if τ = a + iM we have that

q = e2πi(a+iM) = e−2πMe2πia.

Hence, as τ varies on the horizontal segment, that is −1
2 ≥ a ≥ 1

2 , q varies around
a circle K of radius e−2πM about q = 0 in the negative direction. Also since |q| =
e−2πM we see that q 7→ 0 as M 7→ ∞. Hence, every point above the segment δM are
mapped inside K. Now since by assumption j

′ (τ)
j(τ)−c is holomorphic on H, it does not

have any poles in K, except possibly at q = 0. Since,

j(τ) = 1
q

+ . . .

we have that
j
′(τ) =

(
− 1
q2 + . . .

) dq
dτ

and since q = e2piiτ we have dq
dτ

= e2πiq and dτ = dq
2πiq . Therefore

1
2πi

∫
δM

j
′(τ)

j(τ)− cdτ = 1
2πi

∮ − 1
q2 + . . .

1
q

+ . . .
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= 1
2πi

∮ 1
q

+ . . . dq

= 1.

This contradiction shows that j(τ) = c for some τ ∈ H and hence j surjects [4].

Using definition 2.6 and theorem 2.10 and 2.13 we will prove the result mentioned
above.

Theorem 2.14. Let E(C) be an elliptic curve over C given by

y2 = 4x3 − g2x− g3, g2, g3 ∈ C, g3
2 − 27g2

3 6= 0.

Then there is a unique lattice L ⊂ C such that

g2 = g2(L) and g3 = g3(L).

Proof. Since j : H 7→ C is surjective and g3
2 − 27g2

3 6= 0 there exists γ H such that

j(τ) = 1728 g3
2

g3
2 − 27g2

3
,

that is
g3

2(Lτ )
g3

2(Lτ ) − 27g2
3(Lτ )

= g3
2

g3
2 − 27g2

3

As we stated earlier that there exists λ ∈ C∗ such that

g2 = λ−4g2(Lτ ) = g2(λLτ )

g3 = λ−6g3(Lτ ) = g3(λLτ )

Hence, λLτ is the desired lattice and this proves existence. Suppose that there
exists L and L′ such that

g2 = g2(L) = g2(L′) and g3 = g3(L) = g3(L′)

Then we have that j(L) and j(SL)
′
and using theorem it must be that L and L′

are homothetic. Hence there exists α ∈ C∗ such that L = αL′ . But then,

g2(L′) = α−4g2(Lτ ) = g2(αLτ )

g3(L′) = α−6g3(Lτ ) = g3(λLτ )
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Figure 2.1: The space of lattices [10]

and by the definition of j-invariance α is forced to be 1 [4].

Thus we can say that the "space of all lattices " can be identified with collection
of pairs (a, b) of complex numbers which satisfy 4(a, b) 6= 0 via the map

L = (E4(L),E6(L))

We already identified the space of lattices with the coset space GL(2,R)/GL(2,Z).
Thus we now have a representation of this space as

(C2\{4 = 0}) = {(a, b) : 4(a, b) 6= 0}

The picture above represents symbolically C2. The thing to note is that C2 here is
R4, such that this is a four-dimensional picture! The horizontal blue axis corresponds
to those lattices for which g3=0. The vertical green axis corresponds to those lattices
for which g2=0. The yellow curve represents4= 0, but again this is a one-dimensional
curve over the complex numbers, and therefore a surface from the point of view of
real numbers. In context with previous section one can look at flow as transformation
explained below. The idea here is that given a lattice L of co-area 1, there is a natural
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way to shrink it in the y-direction and stretch it in the x-direction such that again
the lattice is of co-area 1, this can be viewed as:x1 x2

y1 y2

 7→
α 0

0 α−1

x1 x2

y1 y2

 =
 αx1 αx2

α−1y1 α−1y2


Since L = -L we may restrict our attention to positive α. In that case we can find a
real number t so that α = expt. Considering t as a "time parameter" we can think of
the transformation as giving a "flow" L 7→ φt(L) in the space of lattices of co-area 1.

φt =
expt 0

0 exp−t


We can now use the identification given in the previous section to make this a flow on
S3 as follows. Given (a,b) in S3, Let L(a,b) denote the associated lattice of co-area 1
so that

(a, b) = (E4(k.L(a, b)),E6(k.L(a, b)))

where k = k(L(a, b)).
At time t we send (a,b) to the image of φt(L(a, b))under the identification

L 7→ (E4(k(L)L),E6(k(L)L))

Thus the image φt(L(a, b)) again is a lattice of area 1. The resulting flow on S3 is
called the "modular" dynamical system on S3. We can see that there is another flow
which is given by right multiplication i.e.

(ω1, ω2) 7→ (expt ω1, exp−t ω2)
x1 x2

y1 y2

 7→
expt x1 exp−t x2

expt y1 exp−t y2


which is different from the flow we defined in S3.

2.5 Four dimensional object

What we have to do is here that the identification that we discovered earlier, we will
use it to restrict our discussion to those lattices with co-area 1. Now we are about
to discuss that whether can we view the above four dimensional object in a concrete
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way or not. It can be seen that given a lattice L, one can show that there exists a
real number k (depending on L) so that (E4(L,E6(L) lies on "the three dimensional
sphere"

S3 = {(a, b) : |a|2 + |b|2 = 1}

Note that when we replace L by kL in the formula, we get

(E4(kL)),E6(kL))) = (k−4E4(L), k−6E6(L))

Now we have to prove that there is a unique real kL for a given lattice L such that
it lies on S3. Using the above replacement to satisfy this point in S3 we get

|k−4E4|2 + |k−6E6|2 = 1

|k−4 ∑
ω ∈L\{0}

1
ω4 |

2 + |k−6 ∑
ω ∈L\{0}

1
ω6 |

2 = 1

k−8|
∑

ω∈L\{0}

1
ω4 |

2 + k−12|
∑

ω∈L\{0}

1
ω6 |

2 = 1

k−8
(
|∑ω∈L\{0}

1
ω4 |2 + k−4|∑ω∈L\{0}

1
ω6 |2

)
= 1

put k−8 = c−1 , then the remaining expression is c. Thus

|
∑

ω∈L\{0}

1
ω4

2
+ k−4 ∑

ω∈L\{0}

1
ω6 |

2 = c

k−4 =
c−

∣∣∣∣∑ω∈L\{0}
1
ω4

∣∣∣∣2∣∣∣∣∑ω∈L\{0}
1
ω6

∣∣∣∣2
Now put

α = |
∑

ω∈L\{0}

1
ω4 |

2

and
β = |

∑
ω∈L\{0}

1
ω6 |

2

Then we have √
c−1 = c− α

β

c3 − 2αc2 + α2c− β2 = 0
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Let s1, s2, s3 be three roots of the above equation. Then we have

s1s2s3 = β2

s1 + s2 + s3 = 2α

s1s2 + s3s1 + s2s3 = α2

Using the α we get the relation among the roots as

s2
1 + s2

2 + s2
3 = 0

As α,β are non-zero, thus all the three roots cannot be zero and none of them can be
zero.

For a lattice L of co-area 1,let k(L) denote this number and consider the map

L 7→ (E4(kL),E6(kL))

This gives a map SL(2,R)/SL(2,Z) 7→ S3. If two lattices L and L′ have the same
image then k(L)L = k(L′)L′ , so that L′ = kL

kL′
L is the multiple of L by a real number.

If L and L′ both have co-area 1,we see that the real number must be ± 1, or we can
say that L = ±L′ = L. Now we can say that we have produced a representation of
the space of lattices of co-area 1 as a subset of S3.‘

SL(2,R)/SL(2,Z) ∼= (S3\{4 = 0}) = {(a, b) : |a|2 + |b|2 = 1 and 4(a, b) 6= 0}

This means that if we have to study lattices up to rescaling we have to look at the
complement in the unit sphere of the zero set of 4 i.e. 4 = 49E6(L)2 - 20E4(L)3 .
This unit sphere is 3-dimensional and it intersects the zero set in a one-dimensional
object which turns to be a trefoil knot which is the simplest knot. This knot can be
obtained by the stereographic projection from a point chosen on the sphere, which
then has a projection to the tangent space opposite to the point chosen. Thus under
this projection one can see that the set

{
4 = 0 ⋂ S3

}
is a trefoil knot. Hence the

space of lattices of co-area 1 is identified with the complement of a trefoil knot in
the 3-sphere, which after deleting one point of a trefoil knot is the complement of the
usual 3-space. Figure 2.5 is trefoil knot plotted using sage.
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Figure 2.2: trefoil knot
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Chapter 3

Apprehending Flows

3.1 Periodic orbits

In the quest of finding periodic orbits an example studied by Birman and Williams
is the suspension flow on the complement of figure eight knot in S1. But, remarkably
Robert Ghirst showed that the every possible knot in S1 arises as the periodic orbit
of this flow, without exception. Birman and Williams analysed the flow associated
with the famous Lorenz equations, in which they showed the family of knots arising
as periodic orbits has special properties. The results were based on the fact that all
periodic orbits of the Lorenz flow are described y a simple combinatorial construction,
called the ’template’. In the important case of the hyperbolic flows Birman and
Williams have proved that a template always exist but its explicit construction has
been done in very specific cases. Even within the well-studied class of hyperbolic
flows consisting of the geodesic flows on the unit tangent bundle of surfaces of the
constant negative curvature, the first construction of a template for modular surfaces
was achieved recently. Ghys established the extraordinary fact that the modular
template coincides with the Lorenz template [13].

This work by Ghys has been inspiration for so many of us as it has raised questions
such as to understand which properties of the periodic orbits of the modular surface
hold for the orbits of the geodesic flows on other surfaces.

Ghys shows that the non-compact 3-dimensional homogeneous quotient space

Y = SL(2,R)/SL(2,Z)

is homeomorphic to the 3-sphere S3 with the trefoil knot τ removed. Y carries a
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number of flows and corresponding non-vanishing vector fields and in particular the
diagonal flow

Gt for t ∈ R,

Gt(ySL(2,Z)) =
et/2 0

0 e−t/2

 ySL(2,Z)

This flow corresponds to the geodesic flow on the modular surface X = H/Γ with
PSL(2,Z) and the primitive closed orbits of Gt

3.2 Visualization

We have discussed so far about flows on modular surfaces. To give a gist of what Ghys
and Jos Leys did, here are few visual descriptions of the knots on space of lattices. We
now discuss the topological description of the periodic orbits of the modular flow. To
understand in much simpler way consider a 2×2 matrix M with integral coefficients
and determinant 1. a b

c d


Clearly the matrix M preserves the standard square lattice Z2 in R2. Suppose that
M is hyperbolic, i.e. |a + d| > 2, thus M is diagonalizable over real numbers. So it
follows that there is 2×2 matrix Psuch that

φt = PAP−1 = ±
et 0

0 e−t


for some t. So if we define the lattice L to be the image of Z2 by P, one finds that
L is fixed by φt. In this way, for each integral matrix with determinant 1, we find a
fix point φt for some t, i.e. a periodic orbit for the modular flow. One should note
that the periodic orbit of the flow has period t, which is the logarithm of the absolute
value of an eigen value of M.

Hence, every hyperbolic matrix M defines a periodic orbit of the modular flow .
Its is not difficult to see that if one replaces M by ± NMN−1, where N is some other
integral matrix with determinant 1, one gets the same periodic orbit.

There is a natural bijection between the periodic orbits of the modular flow and
the conjugacy classes of the hyperbolic integral matrices of determinant 1, up-to sign.
Each of these periodic orbits is a closed curve in the space of lattices of area 1, hence
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Figure 3.1: knots corresponding to hyperbolic matrices with trefoil knot in centre,
[10].
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defines the knot in the complement of the trefoil knot. In fig. 3.2 are the beautiful
images produced by Jos Leys and Ghys using ultrafractal software, shows the knots
corresponding to hyperbolic matrices with trefoil knot in centre (yellow).

So this was Ghys and Jos, where they discuss the knots corresponding to a single
matrix. We wished to branch from them and hunt for all the knots appearing in S3.
How we do it?

3.3 Problem

The idea here is to detect cycle in S3 with flow defined above using the Weierstrass
functions, i.e. g2,g3 will define our lattice and with the flow defined we would allow
this flow to traverse through whole S3 and search for cycle and study the pattern of
these cycles. The problem here is that the algorithm which we are trying to implement
works for finite sets, but what we are dealing with, is not a finite set. The idea was
to observe that, can we still find cycles ? .

Let S be any finite set, f be any function from S to itself, and x0 be any element
of S. For any i > 0, let xi = f(xi−1). Let µ be the smallest index such that the
value xµ reappears infinitely often within the sequence of values xi, and let λ (the
loop length) be the smallest positive integer such that xµ = xλ+µ. The cycle detection
problem is the task of finding λ and µ.

3.3.1 Brent’s algorithm

Brent’s algorithm works in linear time. Based on Floyd’s Tortoise and the Hare
algorithm, Brent’s algorithm features a moving rabbit and a stationary turtle. We
initialize both turtle and rabbit at the top of the list, searching for the smallest power
of two 2i that is larger than both λ and µ. For i = 0, 1, 2, . . ., the algorithm compares
x2i−1 with each subsequent sequence value up to the next power of two, stopping when
it finds a match. It has two advantages compared to the tortoise and hare algorithm:
it finds the correct length λ of the cycle directly, rather than needing to search for it
in a subsequent stage, and its steps involve only one evaluation of f .

The idea to use Brent’s algorithm starting with two (obviously, corresponding our
flow) f ,f ′ as a function of time parameter t ∈ R, such that one of the functions plays
the role of turtle and other of the rabbit.
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This is just the idea which we think can be useful if implemented, one can get
much closer look at knots while studying the parameter λ which is length of the cycle
and observe its pattern in S3.

Implementing Algorithm: The following implementation is in reference to Sage
(mathematical software):

Choose any pair of complex numbers (a, b) in S3, such that if a = x1 + y1i and
b = x2 + y2i then, a, b are such that its determinant is 1. For example, we can choose
a = 2 + i and b = 1 + i

def c a l ( ) : \\ to c a l c u l a t e E4 and E6

t = b/a \\ t i s the argument ( a complex number )
\\ to compute q expansion o f o f E4 and E6

g = e i s en s t e in_se r i e s_qexp (4 ,10 ) \\ value o f E4
h = e i s en s t e in_se r i e s_qexp (6 ,10 ) \\ value o f E6
g = g . s ub s t i t u t i n g (q = 2 pi ∗ i ∗ t )
h = h . s ub s t i t u t i n g (q = 2 pi ∗ i ∗ t )

i f (49h^{2} − 20g^{3} != 0 ) : \\ check ing the cond i t i on
\\ i f d i s c r im inant i s 0 or not .

return g , h
else :

return 0

We now identify the lattices as points in S3.

\\ we must f i nd a c such that the we are r e s t r i c t e d to S^{3}.

var = ’ c , alpha , beta ’
eqn = c^{3} −2alpha c^{2} + alpha ^{2}c − beta ^{2} = 0

\\ s o l v i n g to obta in c as d i s cu s s ed in the exp lanat ion .
eqn . s ub s t i t u t e ( alpha = abs2 ( c a l . g ) , beta =norm( ca l . h )

\\ c a l c u l a t i n g the norm o f the complex numbers E4and E6
so l v e ( eqn==0,c )

Thus using c we generate lattice on S3
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def l a t t ( ) : \\ to generate l a t t i c e us ing E4 and E6 as ba s i s
u = random . randint (1 , 1000)
y = random . rand int (1 , 1000)
S = u∗c ^(1/8)∗ c a l . g + y∗ ca l . h∗c ^(1/8) \\ l a t t i c e generated

def fu ( ) : \\ t h i s func t i on d e f i n e s our f low
t=0.1 \\ step counter

for t in range ( 0 : 1 0 0 ) :
v1=vecto r ( ( exp ( t ) , 0 ) )
v2=vecto r ( ( 0 , exp(−t ) ) )
v3=vecto r ( ( l a t t . s . re , l a t t . s . im ) )
\\ r e a l and imaginary part o f element o f l a t t i c e generated
v4=vecto r ( ( l a t t . s . re , l a t t . s . im ) )
\\ another vec to r from the l a t t i c e generated
ma=matrix ( [ v1 , v2 ] ) ; m; m. parent ( )
\\ our f low
na=matrix ( [ v3 , v4 ] ) ; n ; n . parent ( )
\\ element on which f low ac t s .

t=t+0.1
return ma, na

def main ( ) :
t o r = na
har = ma∗na
while to r − har > 0 . 1 :

i f pwr == la :
to r = har
pwr∗= 2
lam = 0

har = ma∗har
l a += 1

mu = 0
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to r = har = na

for e in range ( l a ) :
har = ma∗har

while to r − har > 0 . 1 :
to r = ma∗ tor
har = ma∗har
mu += 1

return la , mu
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