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Abstract

Observations of the high-redshift Universe with the 21 cm hyperfine line of neutral

hydrogen promise to open an entirely new window onto the early phases of the cosmic

structure formation. The study of the HI 21 cm power spectrum provide a promising

tool to map large scale HI distribution in post-reionization era (z ≤ 6). The majority

of the recent or upcoming radio interferometric experiments are aimed at measuring

the HI 21 cm signal statistically and map out the large scale HI distribution at high

redshifts. Ooty Radio telescope (ORT) is currently being upgraded, after the planned

upgrade it may be used as an interferometer. The upgraded ORT can detect signal

at frequency ν = 326.5 MHz which corresponds to an HI signal at redshift z = 3.35.

In the thesis, we develop visibility correlations formalism for upgraded ORT, power

spectrum for redshifted HI signal is measured using N-body simulations[2]. We will

investigate different observation strategies using the telescope for statistical detection

of HI signal above good noise level within optimized integration time and suitable

number of beams.
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Chapter 1

Introduction

The study of formation and evolution of the cosmic structure has been an important

subject in cosmology. The complex objects that surround us today grew out of the

remarkably smooth medium that emerged from the Big Bang. The tiny density fluc-

tuations in this smooth universe grew via gravitational instability and finally formed

a cosmic web of sheets and filaments.

This hypothesis has been successful in explaining observations of both the early

Universe and local structures. But two significant gaps remain in the story: the cosmic

“dark ages” between the last scattering surface of the CMB & the formation of the first

luminous structures and the era of “first light” that stretches from the formation of

these sources to the full reionization of the intergalactic medium (IGM). Observations

from these epochs can offer us to study the transition between the linear and nonlinear

regimes of gravitational growth, the characteristics of the first stars and quasars, and

their influence on the Universe around them. They provide an opportunity to connect

our detailed pictures of the early Universe with the galaxies around us.

Observations of the high-redshift Universe with the 21 cm hyperfine line of neutral

Hydrogen promise to open an entirely new window onto the early phases of the cosmic

structure formation. Observations of redshifted 21 cm radiation can in principle be

carried out over a large redshift range starting from the cosmological Dark Ages

through the Epoch of Reionization to the present epoch [7][18], allowing us to study

both the evolution history of neutral Hydrogen as well as the growth of structures

in the universe [18][2][41]. Redshifted 21 cm observations also hold the potential of

allowing us to probe the expansion history of the Universe [11][38].

In the following chapters we describe the upgradation of Ooty Radio telescope(ORT).

ORT is being upgraded from analog to digital backend in nearly two independent
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phases viz. phase I & II after which the telescope may be used as an interferome-

ter. We also describe the visibility formalism for the corresponding phases and use

this formalism to quantify angular and frequency domain fluctuations of background

radiation using multi-frequency angular power spectrum Cl(∆ν). Finally, we discuss

the prospects of HI detection with upgraded ORT.

1.1 Evolution of cosmic structure

The exceedingly complex objects that surround us today are believed to have grew

out of the remarkably simple and smooth universe that emerged from the Big Bang.

The tiny density fluctuations that we observe in the cosmic microwave background

(CMB) grew through gravitational instability until they collapsed into the “cosmic

web” of sheets, filaments, and halos. The main goal of study of formation of large

scale structures is to understand the formation and physical properties of galaxies and

their clustering starting from given initial perturbations with a given spectrum. On

large scales the clustering properties are dictated by gravity alone. However on small

scales non- gravitational effects contribute significantly.

In standard big-bang cosmology[26][39], the assumption of homogeneity and isotropy

of Universe on large scales requires the Friedmann-Lemaitre-Robertson-Walker (FLRW)

metric,

ds2 = −c2dt2 + a2(t)

[
dx2

1− kx2
+ x2(dθ2 + sin2θdφ2)

]
(1.1)

Here a(t) is the scale factor, (x, θ, φ) are the comoving coordinates and k is the

curvature constant. k can three values i.e. +1, 0 or -1 corresponding to which Universe

can be closed, flat or open respectively. t is the cosmic time.

The comoving coordinates (x) are different from the observationally measured

coordinates, also known as physical coordinates (r). These two are related as, r(t) =

a(t)x. Therefore, proper velocity of a particular object is given by

ṙ(t) = ȧ(t)x + a(t)ẋ = vh + vp (1.2)

Where vp is called peculiar velocity of objects. In absence of peculiar velocities,

we can write above relation as:

vh =

[
ȧ(t)

a(t)

]
a(t)x =

[
ȧ(t)

a(t)

]
r(t) ≡ H(t)r(t) (1.3)
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This is known as Hubble Law with H(t) being Hubble’s parameter. At present

time, i.e., at t = t0, H(t) = H0 = 71.9+2.6
−2.7 Km/s/Mpc [20][25]. For FLRW metric,

Einstein’s field equations can be solved to give

ȧ+ k2

a2
=

8πG

3
ρ̄+

Λ

3
and, (1.4)

2
ä

a
+
ȧ+ k2

a2
= −8πGp+ Λ (1.5)

Where Λ is the cosmological constant, G is the gravitational constant, p is the

pressure and ρ̄ is the energy density. These two equations alongwith the equation of

state p = p(ρ̄), completely determine the three functions, a(t), ρ(t),& p(t).

The constituents in our Universe can be classified as radiation and relativistic

matter with energy density ρ̄rad, non-relativistic matter with energy density ρ̄nr, and

dark energy cosmological constant ρ̄Λ. The total energy density is the sum of all the

components, i.e. ρ̄ = ρ̄rad + ρ̄nr.

It is possible to define critical density ρc in terms of the Hubble constant,

ρc =
3H2

0

8πG
(1.6)

Dimensionless density parameter Ωi can also be defined for ith component of mat-

ter, i.e.

Ωi ≡
ρ̄i
ρc

(1.7)

Eq.1.4 can be modified to get the following form,

ȧ+ k2

a2
= H2

0

[
Ωrad

(a0

a

)4

+ Ωnr

(a0

a

)3

+ ΩΛ

]
(1.8)

H2(a) = H2
0

[
Ωrad

(a0

a

)4

+ Ωnr

(a0

a

)3

− Ωk

(a0

a

)2

+ ΩΛ

]
(1.9)

Where Ωk = Ωrad + Ωnr + ΩΛ − 1, is the density parameter due to curvature with

k = a2
0H

2
0 Ωk and ΩΛ = Λ

3H2
0
. According to observations, Ωk = Ωtot − 1 ≈ 0 [20], this

means that universe is nearlly flat .

3



1.2 Redshifted HI detection

Galaxies are believed to form when gas in highly over-dense haloes cools and collapses

to form stars in significant numbers [12][28]. The formation of first stars in turn

leads to emission of UV radiation that starts to ionize the inter-galactic medium

(IGM) [24][44]. The period of transition of the IGM from a completely neutral to a

completely ionized state is known as the epoch of reionization (EoR). Observations

indicate that the process of reionization was completed before z ∼ 6 [4][17]. Prior to

the EoR, almost all the Hydrogen in the universe is in atomic form. Through the EoR

Hydrogen is ionized till we are left with almost no HI in the inter-galactic medium

and almost all the HI resides in the inter stellar medium (ISM) of galaxies.

In the post reionization era (z < 6) much of the inter-galactic medium (IGM) is

highly ionized and does not contain a significant amount of neutral Hydrogen. Most

of the neutral Hydrogen resides in relatively rare damped Lyman-α systems (DLAS)

[40]. These systems which are seen as Damped Lyman-α absorption lines (DLAs) in

quasar spectra are known to contain the bulk of the HI. The observations of DLAs

indicate that at redshifts 1 ≤ z ≤ 6, the neutral hydrogen content of the universe is

almost constant with a density parameter ΩHI ∼ 0.001∗. At low redshifts, HI content

can be estimated directly through emission in hyperfine transition. The collective

emission from the undetected regions is present as a very faint background in all radio

observations at frequencies below 1420 MHz. The fluctuations in this background

radiation carry an imprint of the HI distribution at the redshift z where the radiation

originated. The possibility of observing the HI emission from the post-reionization

era, holds the potential of providing us with a new observational probe of large-scale

structures [3][9][10][41].

It has been proposed that the Baryon Acoustic Oscillation (BAO) in the redshifted

21 cm signal from the post-reionization era z ≤ 6 is a very sensitive probe of dark

energy [13][42]. The BAO peak wavelengths can be used as a cosmological standard

ruler: observation of the angular size of the peak wavelengths across a range of red-

shifts allows accurate measurement of the expansion history. The oscillations also

produced density structure in the atomic gas and dark matter which is still detectable

today [13]. By scanning across frequency, 21 cm observations will probe the HI dis-

tribution at different times in cosmic history which will allow us to construct 21 cm

∗ΩHI ≡
ρHI(z)

ρc(z = 0)
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tomography of the IGM. A compact interferometers with wide field of view are needed

to cover the BAO length-scale.

Realizing this great potential, the majority of the recent or upcoming radio-

interferometric experiments such as LOFAR, MWA, SKA, PAPER etc. are aimed

at measuring the HI 21 cm signal statistically and map out the large scale HI distri-

bution at high redshifts. Ooty Radio telescope is currently being upgraded, after the

planned upgrade it may be used as an interferometer and will have multibeaming fea-

ture. The upgradation will lead to improved sensitivity and an increased field of view.

The ORT holds the potential of measuring the z = 3.35 power spectrum, opening

the possibility of probing large-scale structure formation at an hitherto unexplored

redshift. ORT can also probe the BAO length scale.

1.3 Ooty Radio Telescope

The Ooty Radio Telescope is one of the largest telescopes in the world, operating at

326.5 MHz. It is an equatorially mounted, off-axis parabloic reflector type phased

array of 1056 dipoles. It is a parabolic cylindrical antenna which is 530 m long in

north-south direction and 30 m wide in east-west direction.

The legacy system is a phased array of 1056 dipoles. The E-W tracking is done

by rotation of the cylindrical reflector along its axis and N-S tracking is done by

electronically phasing the array. The feed system consists of 22 modules with each

module serving 48 dioples. The signal from each module is carried over to receiver

room via 30MHz Intermediate Frequency (IF) line. The legacy system is able to

produce 12 phase switched beams and 12 total power beams separately.

The array is currently being upgraed to improve sensitivity and the Field of View

(FoV). After the upgradation, it may be used as an interferometer and will have

multibeaming feature. ORT is being upgraded in two nearly independent stages,

Phase I and Phase II.

Phase I consists of 40 antenna elements where each element is the combination

of 24 dipoles. The signal from these antenna elements is amplified, conditioned and

directly digitized in the field and sent to the receiver room over 4 full duplex fibre

optic links. The receiver system consists of pooler/bridge systems to pool this data

from the four fibre optic links from the field. The data is collected in distributed

manner using two server class machines. In Phase I, Each antenna element is 11.5m

along the length of the cylinder and 30m wide. The smallest baseline corresponds to
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Figure 1.3.1: The Ooty Radio Telescope.

antenna separation of 11.5m and longest baseline corresponds to 448.5m. The system

has frequency bandwidth of 18 MHz.

Phase II consists of 264 antenna elements where each antenna is the combination

of 4 dipoles. The signal from these antenna elements is amplified, conditioned and

directly digitized in the field and sent over to the receiver room over 44 fibre optic links

which are connected to the pooler/bridge systems, which produce the final output in

8 independent sets of 11 GigE links. These 88 Gigabit ethernet links are connected to

a unmanaged set of ethernet switches which are to be linked to a High Performance

Cluster (HPC). Currently HPC used is a set of many-core processors with Intel’s Sandy

Bridge architecture. Each node will receive data from the bridge subsystem through

a set of 11 GigE links. Each node have a quad 8-core processor board with Intel Xeon

Phi coprocessor. In Phase II, each antenna element is 1.9 m along the length of the

cylinder and 30 m wide. The smallest baseline corresponds to the antenna separation

of 1.9 m and longest baseline corresponds to 505.0 m. The system has frequency

bandwidth of 30 MHz.

We discuss about the Ooty Radio Telescope’s design and structure, visbility corre-

lation formalism, and possibility of HI detection with the upgraded system in following

chapters.
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Chapter 2

Ooty Radio Telescope

The Ooty Radio Telescope is one of the largest telescopes in the world, operating at

327 MHz. It consists of a parabolic cylindrical antenna which is 530 m long in north-

south direction and 30 m wide in east-west direction. It is an equatorially mounted

phased array of 1056 dipoles placed along the focal line of the reflector. The East-West

steering (R.A) is done by the mechanical rotation of the telescope about its N-S axis

and steering of beam in north-south direction(Declination) is achieved by introducing

appropriate delays between the dipoles.

2.1 Antenna Design and Structure

ORT consists of an asymmetric parabolic cylindrical antenna which is 530 m long

in north-south and 30 m wide in east-west direction. The long axis of the telescope

is alinged along north-south direction on a hill whose slope is 11◦ which is equal to

the latitude of the observatory which makes its long axis parallel to earth’s rotation

axis and provides a natural equatorial mounting(see fig.2.1.1) to the telescope. The

reflector is an offset type parabolic reflector, i.e. the feed is located at the focal point

of the reflector, but the reflector is an asymmetric segment of a parabola, so the focus

is offset to the side of the reflector (see fig. 2.1.2). Thus the feed does not obstruct

the field of view.

The parabolic cylinder consists of 24 parabolic frames, each 30 m wide, supported

on 12 to 18 m high towers. The parabolic frames have a focal length a of 16.5 m and

are spaced 23 m apart along the north-south baseline of 530 m. The reflecting surface

is made up of 1100 stainless steel wires running parallel to the axis of the cylinder.

7



Figure 2.1.1: An equatorially mounted array.

Figure 2.1.2: (a) Front feed type antenna (b) Offset feed type antenna.

The wires have a projected spacing of 20 mm in the central portion, 25 mm midway

and 40 mm at the edges of the parabolic surface. The parabolic reflector is illuminated

by a linear and uniform array of 1056 half wavelength dipoles placed along the focal

line at the phase center of a 90◦ corner reflector. The 24 frames are rotated in unison

through a common driveshaft. Equatorial mount provides a Coverage of hour angle

from 04h 05 min east to 05h 30 min west. ORT is able to track a celestial object for

about 9.5 hours continuously by mechanical rotation of the telescope. Figure 2.1.3(a)

represents the geometry of the antenna system and figure 2.1.3(b) shows the sketch

of one of the 24 parabolic frames of ORT.

The array is currently being upgraded after which it may be used as a radio

interferometer. The planned upgradation will lead to improved sensitivity, Field of
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Figure 2.1.3: (a) Geometry of the antenna system. (b) Sketch showing one of the 24
parabolic frames of ORT.[19][35]

View and will have multibeaming feature. We discuss about the basic physics behind

the phasing of arrays and radio interferometry, the electronics and system design of

the legacy system and the current upgradation in detail in following sections.

2.2 Theory of Linear Arrays

Use of antenna arrays is one way of increasing the effective resolution and collecting

area of a radio telescope. An array usually consists of several discrete antenna elements

arranged in a particular configuration. Most often this configuration produces an un-

filled aperture antenna, where only part of the overall aperture is filled by the antenna

structure.

The outputs (voltage signals) from the array elements can be combined in various

ways to achieve different results. If the outputs are multiplied in distinct pairs in a

correlator and processed further to make an image of the sky brightness distribution,

the array is referred to as an interferometer. If the outputs are combined, with ap-

propriate phase shifts, to obtain a single, total power signal from the array – such an

array is generally referred to as a phased array. In this section, we will primarily be

concerned with the study of phased arrays.
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2.2.1 Antenna Patterns

The most important characteristic of an antenna is its ability to absorb radio waves

incident upon it. This is usually described in terms of its effective aperture. The

effective aperture of an antenna is defined as

Ae =
Power density available at the antenna terminals

Flux density of the wave incident on the antenna
m2

The effective area is a function of the direction of the incident wave, because the

antenna works better in some directions than in others. Hence

Ae = Ae(θ, φ)

This directional property of the antenna is often described in the form of a power

pattern. The power pattern is simply the effective area normalized to be unity at the

maximum, i.e.

f(θ, φ) =
Ae(θ, φ)

Amaxe

(2.1)

Field pattern is also used to specify the directional property of an antenna. Con-

sider an antenna receiving radio waves from a distant point source. The voltage at the

terminals of the antenna as a function of the direction to the point source, normalized

to unity at maximum, is called the field pattern f(θ, φ) of the antenna.

The pattern of an antenna is the same regardless of whether it is used as a trans-

mitting antenna or as a receiving antenna, i.e. if it transmits efficiently in some

direction, it will also receive efficiently in that direction. This is called Reciprocity,

and follows from Maxwell’s equations. From reciprocity it follows that the electric

field far from a transmitting antenna, normalized to unity at maximum, is simply the

Field pattern f(θ, φ). Since the power flow is proportional to the square of the electric

field, the power pattern is the square of the field pattern.

A typical power pattern is shown in Figure 2.2.1. The power pattern has a primary

maximum, called the main lobe and several subsidiary maxima, called side lobes.

The points at which the main lobe falls to half its central value are called the Half

Power points and the angular distance between these points is called the Half Power

Beamwidth (HPBW). The minima of the power pattern are called nulls. For radio

astronomical applications one generally wants the HPBW to be small (so that sources

close to each other on the sky are not confused with one another), and the sidelobes
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Figure 2.2.1: A typical power pattern of an antenna.

to be low (to minimize stray radiation). From diffraction theory it can be shown that

the HPBW of a reflecting telescope is given by

ΘHPBW ∼
λ

D

where D is the physical dimension of the antenna.

2.2.2 Array of 2 elements

Consider two isotropic (sources which radiate the same intensity in all directions and

has no preferred direction of radiation) point sources separated by a distance d, as

shown in figure 2.2.2. The net far field in direction θ is given by

E(θ) = E1 e
jψ/2 + E2 e

−jψ/2 (2.2)

Where ψ = kdsinθ + δ, k = 2π/λ and δ is the intrinsic phase difference between

the two sources. E1 and E2 are the amplitudes of the electric field due to the two

sources, at the distant point. The reference point for the phase, referred to as the

phase centre, is taken halfway between the two elements.

If the two sources have equal strength, E1 = E2 = E0, eq. 2.2 becomes

E(θ) = 2E0 cos(ψ/2) (2.3)

The power pattern is obtained by squaring the field pattern. By virtue of the

reciprocity, E(θ) also represents the voltage reception pattern obtained when the

signals from the two antenna elements are added, after introducing the phase shift δ

between them.
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Figure 2.2.2: Geometry of a 2 element array.

For δ = 0 and d� λ , the field pattern of this array shows sinusoidal oscillations

for small variations of θ around zero. Non-zero values of δ simply shift the phase of

these oscillations by the appropriate value.

If the individual elements are not isotropic but have identical directional patterns,

eq. 2.3 is modified by replacing E0 with the element pattern, Ei(θ). The final pattern

is given by the product of the individual element pattern (Ei(θ)) and the array pattern

but with individual elements replaced by the isotropic point sources having the same

relative amplitude and phase. The total phase pattern is the sum of the phase patterns

of the individual elements and the array of isotropic point sources.

2.2.3 Linear array of n elements of equal Amplitude:

Consider the case of a uniform linear array of n elements (isotropic) of equal amplitude

and spacing, as shown in figure 2.2.3. Taking the first element as the phase reference,

the far field pattern is given by

E(θ) = E0(1 + ejψ + e2jψ + ...+ ej(n−1)ψ) (2.4)

Where ψ = kdsinθ+ δ, k = 2π/λ and δ is the progressive phase difference between

the sources.

Eq. 2.4 can be rewritten as

E(θ) = E0
(enjψ − 1)

(ejψ − 1)
= E0

sin(nψ/2)

sin(ψ/2)
ej(n−1)ψ/2 (2.5)

If the centre of the array is chosen as the phase reference point, then the above

result does not contain the phase term of (n − 1)ψ/2. For nonisotropic but similar
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Figure 2.2.3: Geometry of an n element array.

elements, E0 is replaced by the element pattern Ei(θ), to obtain the total field pattern

(see Fig.2.2.4).

The field pattern in eq. 2.5 has a maximum value of nE0 when ψ = 0, 2π, 4π, ....

The maxima at ψ = 0 is called the main lobe, while the other maxima are called

grating lobes. For d < λ, only the main lobe maxima maps to the physically allowed

range of 0 ≤ θ ≤ 2π.

The presence of grating lobes in the response of an array is usually an unwanted

feature, and it is desirable to reduce their levels as much as possible. For non-isotropic

elements, the taper in the element pattern provides a natural reduction of the ampli-

tude of the higher grating lobes. This is illustrated in Figure 2.2.4.

Figure 2.2.4: Array pattern of an array of n identical elements. The solid line is the
array pattern. The broad, dashed line curve is element pattern. The resultant of these
two is shown as the dotted pattern[14].

By suitable choice of the value of δ, this main lobe maxima can be steered to

different values of θ, using the relation kd sinθ = −δ. When all the elements of the

array are in phase (δ = 0), the maximum occurs at θ = 0, this is referred to as a

“broadside” array. For a maximum along the axis of the array (θ = 90◦), δ = −kd is

required, giving rise to an ”end-fire” array.
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The broadside array produces a disc or fan shaped beam that covers a full 360◦ in

the plane normal to the axis of the array. The end-fire array produces a cigar shaped

beam which has the same shape in all planes containing the axis of the array.

For the case of d > λ, the grating lobes are uniformly spaced in sinθ with an

interval of λ/d between adjacent maxima, on θ axis this interval translates to ≤ λ/d.

The uniform, linear array has nulls in the radiation pattern which are given by the

condition ψ = ±2πl/n, l = 1, 2, 3..., using this result in ψ = kdsinθ + δ which yields

θ = sin−1

[
1

kd

(
±2πl

n
− δ
)]

(2.6)

For a broadside array (δ = 0),

θ = sin−1

(
± 2πl

nkd

)
(2.7)

Further, if array is long, i.e. nd� lλ, the above relation becomes

θ ' ± lλ
nd
' 1

Lλ
, (2.8)

where Lλ is the length of array in wavelengths and Lλ = (n− 1)d/λ ' nd/λ for large

n. First nulls in array pattern occur at l = ±1, therefore Beam Width between First

Nulls (BWFN) and Half Power Beam Width (HPBW) for such an array is given by

BWFN =
2

Lλ
rad =

114.6o

Lλ
and HPBW =

BWFN

2
=

57.3o

Lλ
(2.9)

ORT has HPBW of 5.5 arc min in declination and about 2◦ in Right Acsension.

2.3 Signals and Noise

2.3.1 Signals

At radio frequencies, strengths of cosmic sources are usually measured in Jansky

(Jy) named after the famous radio astronomer Karl G. Jansky. For a plane wave

from a distant point source falling on the Earth,

1Jy = 10−26 W/m2/Hz,
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I.e., if the energy per unit frequency passing through an area of 1 m2 held perpendic-

ular to the line of sight to the source is 10−26 watts then the source is said to have

a brightness of 1 Jy. For an extended source, sky brightness B is the energy flow at

Earth per unit area, per unit time, per unit solid angle, per unit Frequency, i.e. the

units of brightness are W/m2/Hz/sr.

The sky brightness is also measured in temperature units. Consider a black body

at temperature T, the radiation from the black body is described by the Planck

spectrum

B(ν) =
2hν3

c2

1

ehν/kBT − 1
W/m2/Hz/sr (2.10)

For radio frequencies (∼ 1 GHz), hν/k << 1, hence

ehν/kBT ∼ 1 +
hν

kBT

This approximation is known as Rayleigh-Jeans Approximation and is valid through

most of radio regime. Applying this approximation to Eq.2.10 we get,

B(ν) ' 2ν2

c2
kBT =

2kBT

λ2
(2.11)

Therefore, Brightness temperature TB can be written as

TB =
λ2

2kB
B(ν) (2.12)

Where B(ν) is the sky brightness of the source. The brightness temperature of an ex-

tended source is also defined by the same relation. In general, brightness temperature

TB has no relation to the physical temperature of the source.

2.3.2 Noise

An antenna absorbs power from the radio waves that fall on it, this power is usually

specified in temperature units. In radio regime, the power per unit frequency due to

thermal fluctuations is well approximated by the Nyquist formula:

P = kBT
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In analogy with this, if a power P(per unit frequency) is available at an antenna’s

terminals the antenna is defined to have an antenna temperature of

TA =
P

kB
(2.13)

Note that the antenna temperature does not correspond to the physical temperature

of the antenna. Similarly the total power available at a radio telescope terminals,

referred to the receiver inputs is defined as the system temperature Tsys.

Tsys =
Total power referred to receiver inputs

kB
(2.14)

The system temperature when looking at blank sky is a measure of the total random

noise in the system and hence it is desirable to make the system temperature as low

as possible. Noise from the various sub systems that make up the radio telescope

are uncorrelated and hence add up linearly. The system temperature can be very

generally written as

Tsys = Tsky + Tspill + Tloss + Treceiver (2.15)

Tsky is the contribution of the background sky brightness. At all frequencies the

sky contributes at least 3K from the cosmic background radiation. The feed antenna

also picks up stray radiation from the ground (which radiates approximately like a

blackbody at 300 K) around the edge of the reflector. This added noise is called

spillover noise(Tspill).

Any lossy element in the feed path will also contribute noise (Tloss) to the sys-

tem. This follows from Kirchoff’s law which states that good absorbers are also good

emitters, and that the ratio of emission to absorption in thermodynamic equilibrium

is given by the Planck spectrum at the absorber’s physical temperature. The receiver

also adds noise to the system, which is characterized by Trec. The noise added after

the first few stages of amplification is usually an insignificant fraction of the signal

strength and can often be ignored.

2.3.3 Signal to Noise ratio

Since the signals in a radio telescope are random in nature, the output of a total power

detector attached to a radio telescope too will show random fluctuations. But given

that the signal from a source is also random in nature, it is very difficult to decide
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whether the increase in power is due to an astrophysical source or just a random

fluctuation. In order to make this decision, rms noise in the fluctuations need to

be calculated. Supposing a telescope with system temperature Tsys, gain G, and

bandwidth ∆ν, the rms noise after integrating a signal of bandwidth ∆ν Hz for τ

seconds is Tsys/
√

∆ντ . The increase in system temperature is just GS, where S is

the flux density of the source. The signal to noise ratio is hence

snr =
GS
√

∆ντ

Tsys
(2.16)

This equation determines the sensitivity of a radio telescope. For sufficiently large

signal to noise ratio, one can be confident of having detected the source.

2.4 Legacy System

The legacy receiver system of ORT can be divided into two parts: Front End and

Back End. All the elctronics at the antenna is referred to as Front end and all the

electronics in receiver room is referred to as back end.

2.4.1 ORT Front end

ORT front end consists of Antenna system (cylindrical parabolic reflector) and the

feed system. The antenna system has already been discussed in section 2.1. The

feed system consists of an array of 1056 half wavelength dipoles and 22 modules, each

module corresponds to 48 dipoles[31].

ORT Module

In a module, the outputs of 48 dipole antennas are combined to produce a single

output. Each dipole in a module is followed by a Low Noise Amplifier (LNA) and a

4-bit phase shifter. A series of power combiners is used to combine the signal from 48

dipoles(after passing through LNA and phase shifters), the combined signal is fed to a

RF amplifier(326.5 MHz) and passed to a mixer which downconverts the signal to 30

MHz IF signal. This IF signal is then transmitted to the receiver room[31]. Fig.2.4.1

shows the block diagram of an ORT module.
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Figure 2.4.1: Block diagram of a Module[31].

Low Noise Amplifier (LNA)

Low Noise Amplifier (LNA) amplifies the signal from a dipole and passes it to the

phase shifter. LNA comes immediately after the dipole and plays a major role in

determining the system noise temperature, and thus the overall sensitivity of the
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telescope. Adding LNA behind each dipole compensates for the loss of signal in the

transmission through the phase shifter. It should have the lowest achievable noise

figure at the frequency of operation. As all the 1056 LNAs in the array are combined

in phase, it is very important that they should be extremely stable (the Gain and

noise figure remain almost constant for long operating times) for coherent addition

of signals from the 1056 dipoles. The use of LNAs also simplifies the design of RF

transmission units. LNAs have gain of 20 dB at 327 MHz and a noise temperature of

about 50 K[31].

The Phase Shifter

The basic requirement for phasing an array is to combine the signals from the ele-

ments with proper delay and phase adjustments so that the beam can be pointed or

steered in the chosen direction. Some of the earliest methods employed techniques

for mechanically switching in different lengths of cables between each element and

the summing point, to introduce the delays required to phase the array for different

directions. The job became somewhat less cumbersome with the use of electronic

switches, such as PIN diodes∗[31].

Another method of phasing involves the use of phase shifters at each element of the

array. This can be achieved by using ferrite devices or by switching microstrip delay

lines, using electronic switches. The phase increments are usually implemented in

binary steps (for example λ/2, λ/4, λ/8, ...). In this scheme, the value of the smallest

incremental phase difference controls the accuracy of the phasing that can be achieved.

The dipole array employs 4-bit phase shifters for electronic steering of the tele-

scope beam in N-S direction. The phase shifters consist of microstrip lines of 50Ω

characteristic impedance which can be switched using PIN diodes. The phases of the

dioples can be shifted by 4 different values i.e. λ/2, λ/4, λ/8 and λ/16 respectively.

The phase shifters for the two halves of each module consisting of 24 dipoles are such

that the north half and the south half are complementary[31].

Combining Network

The outputs from the 4 phase shifters are combined using a 4-way power combiner to

produce a single output, two such outputs are fed to a 2-way combiner (see fig.2.4.2) to

∗A diode with a wide, lightly doped ’near’ intrinsic semiconductor region between a p-type semi-
conductor and an n-type semiconductor region. It can be used as a RF switch as its switching time
is of order of microseconds.
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give a single combined output. This single output represents the combined output of

8 dipoles. The output from three such parts (combined output of 8 dipoles) is further

fed to a 3-way combiner. The output of 3 way combiner represent the combined

output of 24 dipoles(half-module). Figure 2.4.2 shows a schematic of the combining

network for half module[31].

Figure 2.4.2: A schematic of a half-module of ORT showing a combined output of 24
dipoles[31].

The output from the two halves of the module are combined using a 2-way power

combiner. The combined output of 48 dipoles is first amplified by a RF amplifier

and then fed to a mixer (see fig.2.4.1) which downconverts the signal to a 30 MHz IF

signal.

Mixer

Mixer employs a Local oscillator of frequency 296.5 MHz. It produces an IF signal of

frequency νsig − νLO where νsig is the frequency of input signal (326.5 MHz) and νLO

is the frequency of Local Oscillator. This IF signal is amplified and then carried to

the receiver room via co-axial transmission lines (see fig.2.4.1). In order to maintain

phase symmetry in the array, all the dipoles are connected with equal lengths of the

cables.

All devices in a module viz. LNA, Phase Shifter, 4-way, 3-way & 2-way combiners

are of 50Ω impedance. The overall system noise temperature of the array is 150 K,

assuming sky temperature is 40 K at 327 MHz[31].
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2.4.2 ORT Back End

All the electronic systems in the receiver room are referred to as ORT Back End.

Signals from each module are carried to the receiver room via co-axial transmission

lines, where these signal can be correlated or added in phase to obtain phase switched

beams or total power beams respectively. Fig.2.4.3 shows the block diagram of ORT

receiver system.

Figure 2.4.3: Block diagram of ORT receiver system.
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IF Amplifiers

Signals from each module are amplified first by a post-IF amplifier PA1, to compensate

for the signal loss in the cables between the antenna and the receiver room and then

again in Post-IF amplifier PA2 which comes after the delay lines. PA2 compensates

for the loss by the delay lines (see fig. 2.4.3)[30].

Delay control system (6-bit LO Phase Shifter)

As mentioned earlier, the 48 dipoles in an individual module are phased using the 4-bit

phase shifters. In order to phase all the 1056 dipoles in the desired direction, it is also

necessary to introduce appropriate delay and phase for each module before combining

them. These phase and delays are introduced in the 30MHz IF path for each module

(see fig.2.4.3). There is a limitation that the delays can be introduced only in integral

multiples of IF wavelength since fractional wavelength will introduce a phase shift. For

operation with wider bandwidth (> 2 MHz), it is necessary to set exact delays. The

exact delays can be set in IF provided the phase shifts indroduced are compensated.

For this purpose, 22 numbers of 6-bit phase shifters at LO frequency of 296.5 MHz are

incorporated for each module of ORT. The actual delays are introduced in the IF while

maintaining the phase coherence over the bandwidth by introducing the appropriate

phases for every module at the LO frequency. This feature allows observations over a

wide frequency range 320-334 MHz[30].

Phase Shifter Control and Monitor

The 48 dipoles on each of the 22 modules of the telescope are controlled by a digital

Control & Monitor (C & M) system. The C & M system consists of a synchronous

data link control based on programmable protocol controller on each module and a

central PC. It sets the required bit pattern corresponding to the declination pointing.

The C & M system also has a provision to set the transmit/terminate bit for each

dipole independently. Therefore any dipole can be connected to or disconnected from

the array. In order to reduce the hardware with control and monitor system, the

phase shifters for the two halves of each module consisting of 24 dipoles have been

built such that the north and south halves are complementary. Thus, for phase shifter

part, the control pattern consists of 92 bits[31].
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Multiple Beam Forming

Twelve beams are formed for the north and south halves of the antenna separately

using appropriate delays. Each PA2 output signal from the 11 north and 11 south

modules is divided into 12 equal parts labelled m = 1 to 12 , using a resistive divider

and transformer matching network. All mth outputs from each resistive divider in one

half of the module after being applied with appropriate delays are combined to form

mth beam[31]. Figure 2.4.4 represents the north half of the beam forming network.

Figure 2.4.4: Block diagram of the north half of beam forming network[30].

Phase switched and total power beams

The outputs from the 12 beams for the 11 north and 11 south modules are connected

to 12 correlators which give rise to the phase switched beams. The same signal is also

added in phase to give 12 total power outputs corresponding to 12 beams (see fig.

2.4.3).
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2.4.3 Performance of the Legacy system

The gain and phase stability of ORT feed is very good and gives a signal to noise

ratio of 25.5 per Jy in the phase switched (between the north and the south halves of

ORT) mode for a bandwidth of 4 MHz for 1 second integration time. The feed has the

provision for selecting any one of the dipoles in a module, therefore it is possible to

multiply just one dipole in one half of the telescope with the other half(528 dipoles)

of the telescope and we get snr ∼ 1Jy for 10 msec integration. By tracking a strong

celestial source (flux density > 50 Jy) and by switching in one dipole at a time the

performance of each dipole can be recorded. Such tests have shown that feed has

nearly uniform illumination (within ±0.25 dB) over entire array[31].

2.4.4 Observations with the existing system

Low frequency radio astronomy provides excellent probes for many astrophysical phe-

nomena. The large collecting area of ORT and its sensitivity makes it a powerful

telescope for observations in metre wavelengths. Some of the observations are dis-

cussed in this section.

Pulsars

Pulsars are highly magnetized, rotating neutron stars(highly dense celestial bodies

with mass M ∼ 1M⊙ and radius r ∼ 10 Km) that emit beams of electromagnetic

radiation from their magnetic poles. The time period of rotation of different pulsars

can vary from milliseconds to seconds. Pulsars may be useful to resolve some of the

fundamental problems in astrophysics, including gravitational background radiation,

test for General theory of relativity, stellar evolution etc.

Individual pulses of millisecond pulsars can be seen with the help of ORT. For

detection of weak pulsars higher integration times are required. The abrupt turn off

of pulsar signal is known as nulling. With ORT, nulling of pulsars can be studied

with high dynamic range, i.e. pulse intensity as low as < 1% of peak can be detected

during nulling. Other observations include monitoring the scintillation characteristics

and timing of individual pulsars.
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Spectral line Observations

Spectral lines are extremely useful to study physical conditions and kinematics of gas

in galaxies and clusters of galaxies. Redshifted 21 cm line (1420 MHz) of neutral

hydrogen can be observed at ORT in band 320-334 MHz from the galaxies at redshift

of ∼3.35. Detection of 21 cm emission at these redshifts can tell about the history of

galaxy formation[34][37].

Spectral lines corresponding to the atomic transitions between energy levels cor-

responding to n1 ∼ 274, 273 ... and n1 ∼ 273, 272... respectively lie within the

frequency band observable with ORT. These emission lines can originate from ex-

tremely low density gas at temperature∼5000K. Observing these emission lines is an

excellent probe to study such low density regions[1].

Interplanetary Scintillations (IPS) and Solar Winds

When radio waves of metre wavelengths propagate through interplanetary medi-um,

it disrupts the wavefront of the wave which results in the fluctuation of the inten-

sity of waves from distant compact radio sources. It is possible to derive both solar

wind densities and velocities from the scintillation power spectra obtained using ORT.

Due to high sensitivity of ORT, it is possible to observe a large number of sources

around the sun and map velocities and density of solar wind using the scintillation

characteristics obtained by observing thess sources. Using this technique, any inter-

planetary disturbances detected by IPS can be traced back onto sun[23].

2.5 Interferometry and Aperture Synthesis

2.5.1 Signals in Radio Astronomy

A fundamental property of the radio waves emitted by cosmic sources is that they

are stochastic in nature due to incoherence (random fluctuations in amplitude and

phase), i.e. the electric field at Earth due to a distant cosmic source can be treated as

a random process. Random processes can be simply understood as a generalization

of random variables.
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A commonly used statistic for random processes is the auto-correlation function.

The auto-correlation function is defined as

rxx(t, τ) = 〈x(t)x(t+ τ)〉

where the angular brackets indicate taking the mean value. For a particularly

important class of random processes, the auto-correlation function is independent of

changes of the origin of t and is a function of τ alone, these processes are known as

called wide sense stationary (WSS) processes i.e.

rxx(τ) = 〈x(t)x(t+ τ)〉 (2.17)

For τ = 0, r(τ) is simply the variance σ2 of x(t). The Fourier transform of the

auto-correlation function rxx(τ) is called the power spectrum (S(ν)), i.e.

S(ν) =

∫ ∞
−∞

rxx(τ)e−i2πντdτ (2.18)

Equivalently, S(ν) is the inverse Fourier transform of r(τ) or

rxx(τ) =

∫ ∞
−∞

S(ν)ei2πντdν (2.19)

Hence,

rxx(0) = σ2 =

∫ ∞
−∞

S(ν)dν (2.20)

since σ2 is the “power” in the signal, S(ν) describes how that power is distributed

in frequency space, i.e. the “power spectrum”.

A process whose auto-correlation function is a delta function has a power spectrum

that is flat – such a process is called “white noise”. Many radio astronomical signals

have spectra that are relatively flat, therfore these signals can be approximated as

white noise. Radio astronomical receivers however have limited bandwidths, that

means that even if the signal input to the receiver is white noise, the signal after

passing through the receiver has power only in a finite frequency range. Its auto-

correlation function is hence no longer a delta function, but is a sinc function with a

width ∼ 1/∆ν, where ∆ν is the bandwidth of the receiver. The width of the auto-

correlation function is also called the “coherence time” of the signal. The signals for

for which bandwidth ∆ν is typically much smaller than the central frequency ν are
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known as quasi-monochromatic signals and can be represented using complex random

processes.

Given two random processes x(t) and y(t), one can define a cross-correlation func-

tion

rxy(τ) = 〈x(t)y(t− τ)〉

Here we assumed that the signals are WSS so that the cross-correlation function

is a function of τ alone.

The signal received from a distant cosmic source is in general a function both of

the receivers location as well as of time. Similar to temporal correlation functions,

spatial correlation functions can also be defined. If the signal at the observer’s plane

at any instant is E(r), then spatial correlation function is defined as:

V (x) = 〈E(r)E∗(r + x)〉 (2.21)

Note that the angular brackets imply ensemble averaging. In practice one aver-

ages over time and assumes that the two averaging procedures are equivalent. The

function V is referred to as the “visibility function” (or just the “visibility”) and is of

fundamental interest in interferometry.

2.5.2 The need for Interferometry

The resolution of optical instruments is limited due to Rayleigh’s criterion which states

that the angular resolution of a telescope/microscope is ultimately diffraction limited

and this limit is given by

θ ∼ λ/D , (2.22)

where D is some measure of the aperture size. To achieve higher resolutions(smaller

θ) one has to either increase the diameter of the telescope further or decrease the ob-

serving wavelength. To achieve high angular resolutions at metre wavelengths one

needs telescopes with apertures that are hundreds of kilometers in size. Single tele-

scopes of this size are clearly impossible to build. To achieve such resolutions a

technique called aperture synthesis is used which is based on interferometry. There

is a deep analogy between the double slit experiment with quasi-monochromatic light

and the two element radio interferometer.
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2.5.3 Van Cittert Zernike Theorem

The van Cittert-Zernike theorem relates the spatial coherence function (Eq. 2.21) to

the distribution of intensity of the incoming radiation, I(s). It shows that the spatial

correlation function V (r1, r2) depends only on r1 − r2 and if all the measurements

are in a plane, then

V (r1, r2) = F{I(s)} (2.23)

where F implies taking the Fourier transform.

Figure 2.5.1: Geometry for Van Cittert Zernike theorem.

Let us assume that the source is distant and can be approximated as a brightness

distribution on the celestial sphere of radius R (see Figure 2.5.1). Let the electric

field at a point P ′1(x′1, y
′
1, z
′
1) at the source be given by E(P ′1). The field E(P1) at the

observation point P1(x1, y1, z1) is given by

E(P1) =

∫
E(P ′1)

e−ikD(P ′1,P1)

D(P ′1, P1)
dΩ1 (2.24)

where D(P ′1, P1) is the distance between P ′1 and P1.
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Similarly if E(P2) is the field at some other observing point P2(x2, y2, z2) then the

cross-correlation between these two fields is given by

〈E(P1)E∗(P2)〉 =

∫
〈E(P ′1)E∗(P ′2)〉e

−ik[D(P ′1,P1)−D(P ′2,P2)]

D(P ′1, P1)D(P ′2, P2)
dΩ1dΩ2 (2.25)

If we further assume that the emission from the source is spatially incoherent, i.e.

that 〈E(P ′1)E∗(P ′2)〉 = 0 except when P ′1 = P ′2, then we have

〈E(P1)E∗(P2)〉 =

∫
I(P ′1)

e−ik[D(P ′1,P1)−D(P ′1,P2)]

D(P ′1, P1)D(P ′1, P2)
dΩ1 (2.26)

where I(P ′1) is the intensity at the point P ′1. Since we have assumed that the source

can be approximated as lying on a celestial sphere of radiusR we have x1 = Rcos(θx) =

Rl, y1 = Rcos(θy) = Rm, and z1 = Rcos(θz) = Rn; (l,m, n) are called “direction

cosines”. It can be easily shown that l2 + m2 + n2 = 1 and dΩ =
dldm√

1− l2 −m2
. We

then have:

D(P ′1, P1) = [(x′1 − x1)2 + (y′1 − y1)2 + (z′1 − z1)2]1/2 (2.27)

= [(Rl − x1)2 + (Rm− y1)2 + (Rn− z1)2]1/2 (2.28)

= R[(l − x1/R)2 + (m− y1/R)2 + (n− z1/R)2]1/2 (2.29)

' R[(l2 +m2 + n2)− 2

R
(lx1 +my1 + nz1)]1/2 (2.30)

' R[1− 1

R
(lx1 +my1 + nz1)] (using binomial expansion) (2.31)

= R− (lx1 +my1 + nz1) (2.32)

Putting this into Equation 2.26 we get,

〈E(P1)E∗(P2)〉 =
1

R2

∫
I(l,m)e−ik[l(x2−x1)+m(y2−y1)+n(z2−z1)] dldm√

1− l2 −m2
(2.33)

Note that since l2 +m2 + n2 = 1, the two directions cosines (l,m) are sufficient to

uniquely specify any given point on the celestial sphere, which is why the intensity I
has been written out as a function of (l,m) only. Distances in the observing plane are

measured in units of the wavelength λ, and define “baseline co-ordinates” u, v, w such

that u = (x2 − x1)/λ, v = (y2 − y1)/λ, and w = (z2 − z1)/λ. The spatial correlation

function 〈E(P1)E∗(P2)〉 is also referred to as the “visibility” V (u, v, w). Equation
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2.33 (ignoring 1/R2 term) can be written as

V(u, v, w) =

∫
I(l,m)√

1− l2 −m2
e−i2π[lu+mv+nw]dldm (2.34)

This fundamental relationship between the visibility and the source intensity distribu-

tion is the basis of radio interferometry. Equation 2.34 is also referred to as Van Cittert

Zernike theorem. Equation 2.34 resembles a Fourier transform. There are two situa-

tions in which it does reduce to a Fourier transform. The first is when the observations

are confined to the u− v plane, i.e. when w = 0. In this case we have

V(u, v) =

∫
I(l,m)√

1− l2 −m2
e−i2π[lu+mv]dldm (2.35)

i.e. the visibility V(u, v) is the Fourier transform of the modified brightness distribu-

tion I(l,m)√
1−l2−m2 .

The second situation is when the source brightness distribution is limited to a

small region of the sky. In this case n2 = 1 − l2 − m2 ' 1. Equation 2.34 then

becomes

V(u, v, w) = e−i2πw
∫
I(l,m)e−i2π[lu+mv]dldm (2.36)

If we define a modified visibility Ṽ(u, v) = V(u, v, w)ei2πw, we have

Ṽ(u, v) =

∫
I(l,m)e−i2π[lu+mv]dldm (2.37)

2.5.4 Aperture Synthesis

In previous section we saw that the spatial correlation of the electric field in the u− v
plane is related to the source brightness distribution. For a typical radio array the

relationship between the measured visibility and the source brightness distribution

is a simple Fourier transform. Thus, Correlation of the voltages from any two radio

antennas allows the measurement of a single Fourier component of the source bright-

ness distribution. Given sufficient number of measurements, the source brightness

distribution can then be obtained by Fourier inversion. The derived image of the sky

is usually called a “map”, and the process of producing the image from the visibilities

is called “mapping”.

The radio sky (apart from a few rare sources) does not vary. This means that

it is not necessary to measure all the Fourier components simultaneously. Only two
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Figure 2.5.2: The track in the u− v plane traced out by an east-west baseline due to
the Earth’s rotation[14].

antennas can be used to measure all required fourier components, this can be done by

changing the separation between the antennas and measuring the fourier componenent

for each separation. This method of building up all the required Fourier components

and using them to image the source is called “aperture synthesis”. For example, if

one has measured all Fourier components up to a baseline length of say 500 m, then

one could obtain an image of the sky with the same resolution as that of a telescope

of aperture size 500 m, i.e. one has synthesized a 500 m aperture.

In practice, one can use the rotation of Earth to sample the u − v plane quite

rapidly. As seen from a distant cosmic source, the baseline vector between two anten-

nas on the Earth changes continuously because of Earth’s rotation (see Figure 2.5.2).

As the source rises and sets, the Fourier components measured by a given pair of

antennas changes continuously. If an array of N antennas is spread on the Earth’s

surface, then at any given instant NC2 Fourier components can be measured. As

the Earth rotates one samples more and more of the u − v plane. This technique of

using the Earth’s rotation to improve u− v coverage is referred to as “Earth rotation

aperture synthesis”. Full synthesis u− v coverage of GMRT is shown in figure 2.5.3.

However, earth rotation aperture synthesis can not be performed for an equatorial

mount interferometer because its baselines do not change with earth’s rotation and

u− v plane consists of fixed number of points rather than smooth curves.

From the inverse relationship of Fourier conjugate variables it follows that short

baselines are sensitive to large angular structures in the source and that long baselines
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Figure 2.5.3: Full synthesis u− v coverage of full GMRT array at various declinations
indicated in each panel[45].

aresensitive to fine scale structure. An array with the antennas which are closely

packed together can be used to image large, smooth sources, while for a source with

considerable fine scale structure one needs antennas spread out to large distances.

Therefore, the array configuration has a major influence on the kind of sources that

can be imaged.

2.5.5 Two-element Interferometer

From the van-Cittert Zernike theorem (Eq. 2.34, 2.35, 2.37) it follows that if one

knows the mutual coherence function of the electric field, then the source brightness

distribution can be measured. In this section we will discuss how the mutual coherence

function is measured.

Consider a two element interferometer shown in Figure 2.5.4. Two antennas with

baseline vector b, are directed towards a point source of flux density S. The angle

between the direction to the point source and the normal to basline vector is θ. The
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Figure 2.5.4: A basic two-element interferomter[14].

voltages that are produced at the two antennas due to the electric field from this point

source are v1(t) and v2(t) respectively. These two voltages are multiplied together, and

then averaged. Assume that the radiation emitted by the source is monochromatic

and has frequency ν and voltage at antenna 1 be

v1(t) = cos(2πνt)

Since the radio waves from the source have to travel an extra distance bsinθ to

reach antenna 2, the voltage there is delayed by the amount bsinθ/c. This is called

the geometric delay, τg. The voltage at antenna 2 is hence

v2(t) = cos(2πν(t− τg))
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where we have assumed that the antennas have identical gain. The averaged

output of the multiplier is given by

r(τg) =
1

T

∫ t+T/2

t−T/2
cos(2πνt)cos(2πν(t− τg))dt (2.38)

=
1

T

∫ t+T/2

t−T/2
(cos(4πνt− 2πντg) + cos(2πντg))dt (2.39)

= cos(2πντg) (2.40)

assuming that the averaging time T is long compared to 1/ν. The cos(4πνt) factor

hence averages out to zero. As the source rises and sets, the angle θ changes. If we

assume that baseline vector is exactly east west, and that the source’s declination

δ0 = 0, then θ = ΩEt, (where ΩE is the angular frequency of the earth’s rotation) we

have:

r(τg) = cos(2πν × b/c× sin(ΩE(t− tz))) (2.41)

where tz is the time at which the source is at the zenith. The output r(τg), (also called

the fringe), hence varies in a quasi-sinusoidal form, with its instantaneous frequency

being maximum when the source is at zenith and minimum when the source is either

rising or setting (Figure 2.5.5).

Figure 2.5.5: The output of a two element interferometer as a function of time. The
solid line is the observed qausi-sinosoidal output (the fringe), the dotted line is a pure
sinusoid whose frequency is equal to the peak instantaneous frequency of the fringe.
The instantaneous fringe frequency is maximum when the source is at the zenith (the
center of the plot) and is minimum when the source is rising (left extreme) or setting
(right extreme)[14].
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If the source’s right ascension was known, then one could compute the time at

which the source would be at zenith, and hence the time at which the instantaneous

fringe frequency would be maximum. If the fringe frequency peaks at some slightly

different time, then assumed right ascension of the source is slightly in error from

the actual one. Thus, in principle, from the difference between the actual observed

peak time and the expected peak time, the true right ascension of the source can be

determined.

Similarly, if the source were slightly extended (assuming uniform brightness dis-

tribution), then when the waves from a given point on the source arrive in phase at

the two ends of the interferometer, waves arising from adjacent points on the source

will arrive slightly out of phase. The observed fringe amplitude will be less than that

for a point source of the same total flux. The more extended the source, the lower the

fringe amplitude. For sufficiently large source with smooth brigtness distribution, the

fringe amplitude will be essentially zero. In such circumstances, the interferometer is

said to have resolved out the source.

Further, two element interferometers cannot distinguish between sources whose

sizes are small compared to the fringe spacing, all such sources will appear as point

sources. Thus, the minimum source size that can be resolved by the interferometer is

πν∆θb/c . π =⇒ ∆θ . λ/b (2.42)

i.e., the resolution of a two element interferometer is ∼ λ/b. The longer the baseline,

the higher the resolution. Observations with a two element interferometer hence give

information on both the source position and the source size.

2.5.6 Interferometer response to Quasi-monochromatic radi-

ation

Till now we had assumed that the radiation from the source was monochromatic.

Let us now consider the case of quasi-monochromatic radiation, i.e. the radiation

spectrum contains all frequencies in a band ∆ν around ν, with ∆ν small compared

to ν. If the radiation at some frequency ν arrives in phase at the two antennas in

the interferometer, the radiation at some adjacent frequencies will arrive out of phase.

Hence, averaging over all these frequencies would decrease the amplitude of the fringe.

We have (Eq. 2.40):
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r(τg) =
1

∆ν

∫ ν+∆ ν
2

ν−∆ ν
2

cos(2πντg)dν (2.43)

=
1

∆ν
Re

[∫ ν+∆ν/2

ν−∆ν/2

ei2πντgdν

]
(2.44)

= cos(2πντg)

[
sin(π∆ντg)

π∆ντg

]
(2.45)

The sinc function decreases rapidly with increasing bandwidth. Hence as the band-

width that is accepted by the telescope is increased, the fringe amplitude decreases

sharply. This is called fringe washing. Let us look at the fringe due to a spatially

extended source. Let the direction vector to some reference point on the source be s0,

and further assume that the source is small that it lies entirely on the tangent plane

to the sky at s0, i.e. that the direction to any point on the source can be written as

s = s0 +σ, s0.σ = 0, τg = s0.b. Then, from the van Cittert-Zernike theorem we have:

r(τg) = Re

[∫
I(s)e

−i2πs.b
λ ds

]
(2.46)

= Re

[
e
−i2πs0.b

λ

∫
I(s)e

−i2πσ.b
λ ds

]
(2.47)

= |V|cos(2πντg + ΦV) (2.48)

where V is the complex visibility and is defined as:

V = |V|eiΦV =

∫
I(s)e

−i2πσ.b
λ ds (2.49)

The information on the source size and structure is contained entirely in V , the factor

cos(2πντg) in Eq. (2.48) only contains the information that the source rises and sets as

the earth rotates. Since this is trivial and uninteresting, it can safely be suppressed.

This information can be suppressed by introducing an instrumental delay τi = τg

along the electrical signal path of antenna 1. This will provide r(τg) = |V|cos(ΦV),

i.e. the fast fringe oscillation has been suppressed. Since τg changes with time as the

source rises and sets, τi will also have to be continuously adjusted. The adjustment

of τi is called delay tracking.
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Figure 2.5.6: A 2-element interferometer with fringe stopping and delay tracking[14].

Let us consider the interferometer shown in Figure 2.5.6. The signals from anten-

nas 1, 2 are first converted to a frequency νBB using a mixer which is fed using a local

oscillator of frequency νLO , i.e.νLO = νRF − νBB. Along the signal path for antenna

1 an additional instrumental delay τi = τg + ∆τ and a time varying phase shift Φf is

introduced. We have:

r(τg) = |V|〈cos(ΦV + 2πνBBt− 2πνRF τg)cos(2πνBB(t− τi) + Φf )〉 (2.50)

= |V|cos(ΦV + 2π(νRF − νBB)τg − 2πνBB∆τ − Φf ) (2.51)

= |V|cos(ΦV + 2πνLOτg − 2πνBB∆τ − Φf ) (2.52)

So, in order to compensate for all time varying phase factors, it is not sufficient to

have τi = τg, one also needs to introduce a time varying phase Φf = 2πνLOτg. This

additional correction arises because the delay tracking is done at a frequency different
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from νRF . The introduction of the time varying phase is called fringe stopping.The

delay tracking and fringe stopping corrections apply for a specific point in the sky, i.e.

the position s0. This point is called the phase tracking center.

2.6 Upgraded System

The upgradation of ORT is in progress, after which the linear dipole array may be used

as a radio interferometer. Upgradation is being carried out in two different stages with

two nearly independent systems namely Phase I and Phase II, after which signal from

an antenna element will be digitized directly and transmitted to the receiver room

via fibre optic transmission rather than the analog transmisssion which was present

in the old system, upgradation is being carried out such that the existing analog

system remains as it is[8][27]. After the upgradation ORT will be able to provide

larger instantaneous field of view, this will lead to new astronomical observations

using ORT.

2.6.1 Phase I

In Phase I, 24 dipoles(half-module) are combined to form a single antenna element.

The output signals are amplified, filtered, directly digitized in the field and the dig-

itized data is transmitted via fibre optic cables to the receiver room. While there

are 22 ORT modules(or 44-elements) but it may be noted that only 40 elements are

interfaced to the upgraded digital receiver. The 2 modules at either end of the array

(S11 and N11, north and south) are being used to carry out RF validation of vari-

ous subsystems. Figure 2.6.3 reperesents the schematic view of the ORT 40 element

interferometric array.

The upgraded module for Phase I caters to tapping the combined RF from the

existing ORT RF frontend (see figure 2.6.1), conditioning the tapped RF for direct

RF sampling, and feeding it into the new digital receiver. The RF signal conditioning

is composed of two stages. In stage-1, the first stage of amplification (pre-amplifier) of

the combined RF received from the RF frontend is carried out to compensate for cable

losses during transmission of the RF from feed to base. In addition, a coupled port

is provided to interface the RF frontend output to the existing analog system. The

output of the coupled port is passed to the Data Acquisition System(DAS). Figure

2.6.2 represents a schematic of RF signal conditioning subsystem and Data Acquisition

system at a pillar.
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Figure 2.6.1: ORT sub-module for Phase I. The RF tapping location for the RF digital
receiver is shown[27].

Figure 2.6.2: Data acquisition sub-system(at Pillar) for Phase I[27].

Data acquisition system for Phase I

The conditioned RF signal from an antenna element(half-module) is fed to a 12 chan-

nel Data Acquisition System(DAS) consisting of Analog to Digital Convertors(ADC)

which caters to 10 analog inputs(Each input corresponds to an antenna element(half
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module)) and sends out digitized data using optical fibre link(see figure 2.6.2). There

are 4 Data Acquisition Systems in Phase I namely N08, N03, S08 & S03, which can

handle data from 40 antenna elements (see figure 2.6.3). The remotely digitized data

is ecapsulated in packets by the DAS boxes at the pillar and are sent to receiver room

over a single, full duplex fibre optic link (2.5Gbps) based on Aurora protocol at full

aurora bandwidth of 250MBps (see figure 2.6.2 & 2.6.3).

Figure 2.6.3: Schematic view of the ORT 40 element interferometric array, and its
receiver. Each of the shown pillars handles 10 half module antenna elements, per-
forming digitization, packetization, data transposition and timestamping of the data,
before transmitting them over an optical fibre network to a central processor[27].

Receiver system for Phase I

The receiver system consists of a FPGA(Virtex-5) based pooler card, a pair of FPGA(Virtex-

5) based bridge cards and two server class machines each having 4 Gigabit Ethernet

links and a large memory.

The pooler card accepts the fibre optic inputs from the four DAS boxes (N08, N03,

S03, S11) and generates four serial outputs on copper cables, connected pairwise to

two bridge cards(see figure 2.6.4). Pooler acts as a pass through, routing the incoming

data available over the Aurora links to a single bridge card. The bridge cards convert

the incoming Aurora based data to Gigabit Ethernet(udp protocol) and produces two
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Figure 2.6.4: Data Acquisition system(at receiver room) for Phase I[27].

Gigabit Ethernet(GigE) links correspoding to one Aurora input. Hence, a bridge card

takes two Aurora links as input and produces 4 GigE links as output.

The data is collected in distributed manner using two PCs. The GigE links from

a bridge card are connected to the specific ports of a PC such that the MAC address

of the links from FPGA side matches with the ones expected by the PC side. The

GigE links from the bridge cards directly go into the PC ports not through a switch.

Since, the two bridge cards have identical MAC/IP addresses which can clash if they

are connected through a switch.

The Phase I DAS can operate in two modes, viz. Burst mode and continuous

recording mode. In burst mode, it acquires all raw data from every pillar, with bursts
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of 30 seconds where incoming data is stored continuously in PC RAM upto a prede-

fined limit and then slowly flushes to the disk. It can operate in continuous recording

mode but with lesser number of pillars.

In Phase I, Each antenna element is 11.5m along the length of the cylinder and 30m

wide. The smallest baseline corresponds to antenna separation of 11.5m and longest

baseline corresponds to 448.5m. The system has frequency bandwidth of 18 MHz.

2.6.2 Phase II

In Phase II, 4 successive dipoles are combined to form a single antenna element,

this gives rise to 264 antenna elements. Each element is amplified, filtered, directly

digitized in the field and is brought to the DAS system via fibre optic links.

Figure 2.6.5: ORT sub-module for Phase II. The RF for the digital receiver is obtained
from the coupled ports[33].

In upgraded module for Phase II the 2-way combiners followed by the 4-way

combiners are replaced by stage-1 amplifiers. The stage-1 amplifiers(pre-amplifiers)
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amplify the combined RF signal from 4-way combiners and feed it to the digital

receiver. In addition, a coupled port is provided to interface the RF output to the

existing analog system. This coupled port act as a 2-way combiner and the output

is the combined signal of the two input signals, which is passed further to 3-way

combiners in the analog sub-system. Figure 2.6.5 represents the upgraded sub-module

for Phase II.

Data acquisition system for Phase II

The Signal from an antenna element(4 dioples combined) (see figure 2.6.5) is fed to a

12 channel Data Acquisition System(see fig.2.6.6). Digitized data from 264 antenna

elements is transported to Pooler/Bridge systems using 44 fibre optic links in total(2-

links per module). The final output is available in 8 independent sets of 11 Gigabit

Ethernet links.

Figure 2.6.6: Data Acquisition sub-system(at Pillar) for Phase II[33].

Each fibre link carries data at 92.16 MB/s, therefore the total data output of the

system is 8.11 GB/s. The Pooler/bridge system pools these data into 88 Gigabit

ethernet ports connected to a unmanaged set of ethernet switches which are further

linked to a High Performance Cluster (HPC).

Currently HPC used is a set of many-core processors with Intel’s Sandy Bridge

architecture. Each node will receive data from the bridge subsystem through a set
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of 11 GigE links. Each node has a quad 8-core processor board with Intel Xeon Phi

coprocessor. In a single node, the host processor interfaces with bridge cards through

11 GigE links, performs FFT and incorporates data partitioning & management func-

tions, while the compute-intensive correlator is handled by the Xeon Phi coprocessor.

In Phase II, each antenna element is 1.92 m along the length of the cylinder and

30 m wide. The smallest baseline corresponds to the antenna separation of 1.9 m and

longest baseline corresponds to 505.0 m. The system has frequency bandwidth of 30

MHz.

2.6.3 Performance of the Upgraded System

After Phase I upgrade, there will be 40 antenna elements and each antenna element

will have rectangular aperture dimensions(b × d) equal to 30 m × 11.5 m. ORT will

be able to provide instantaneous field of view of about 1.75◦ in E-W direction and

4.6◦ in N-S direction. The smallest baseline will correspond to antenna separation of

11.5 m and the largest baseline will correspond to 448.5 m. Total bandwidth of the

system will be 18 MHz.The Phase I upgrade of ORT has completed and the system

can be used for observations.

After Phase II upgrade, there will be 264 antenna elements and each antenna

element will have rectangular aperture dimensions(b × d) equal to 30 m × 1.92 m.

Telescope will be able to provide instantaneous field of view of about 1.75◦ in E-W

direction and 27.4◦ in N-S direction with a resolution of 0.1◦. This will provide an

instantaneous coverage of about 3 steradians with an angular resolution of 1.75◦×
0.1◦. The smallest baseline will correspond to antenna separation of 1.9 m and the

largest baseline will correspond to 505.0 m. Total bandwidth of the system will be 30

MHz. The phase II upgrade of ORT will be up and running by the end of 2014.
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Table 2.1: System paramters for Phases I & II for upgraded ORT

Parameter Phase I Phase II

No. of antennas (NA) 40 264

Aperture dimensions (b× d)
30 m × 11.5

m

30 m × 11.5

m

Field of View(FoV) 1.75◦× 4.6◦ 1.75◦× 27.4◦

Smallest baseline (dmin) 11.5 m 1.9 m

Largest baseline (dmax) 448.5 m 505.0 m

Angular Resolution 7’ 6.3’

Total Bandwidth (B) 18 MHz 30 MHz

Single Visibility rms. noise (σ)

assuming Tsys= 150 K, η = 0.6,

∆νc = 0.1 MHz, ∆t = 16 s

1.12 Jy 6.69 Jy

Figure 2.6.7: Comparison between different present interferomters indicated in the
figure in terms of field of view and collecting area.

Figure 2.6.7 and 2.6.8 show a comparison between different present interferometers

(VLA, GMRT, ORT and MWA) in terms of field of view & collecting area and frequeny

bandwidth & collecting area respectively.
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Figure 2.6.8: A comparison between different present interferometers indicated in the
figure in terms of Operating frequency, Bandwidth and collecting area. The vertical
lines represent the corresponding frequency bandwidth of the interferometers.

2.7 ORT Visibilities

The ORT antenna elements(after the upgradation) may be thought of as a linear array

of NA radio antennas, with each antenna located at a separation d along the length of

the cylinder. When viewed from the direction of pointing of telescope, each antenna

has rectangular aperture dimensions b × d where b = 30 m and d = 11.5 m & 1.9

m for Phase I & II respectively. Figure 2.7.1 represents tha antenna layout of ORT

interferometer and aperture (b × d) of antenna elements. The baselines are given by

(Assuming that the aperture lie in x − y plane with x−axis along the length of the

cylinder),

U1 =

(
d

λ

)
î; U1 = 2U1; U3 = 3U1; ... UNA−1 = (NA − 1)U1 (2.53)

The complex visibilities are recorded for these baselines. It can be seen that there

is a huge redundancy(different antenna pairs correspond to same baseline) in the array

due to its linearity and uniform spacing of the antenna elements. Any baseline Un
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occurs Mn = (NA − n) times in the array. The visibility V(U, ν) for a given baseline

U can be written as a fourier transform relationship (Van Cittert Zernike theorem in

vector form) which is given by

V(U, ν) =

∫
d2~θ A(~θ, ν)I(~θ, ν)e−i2πU ·

~θ (2.54)

Where A(~θ, ν) is the primary beam pattern or normalized power pattern (describes

the response of an antenna towards the signals from different directions) of the indi-

vidual antenna and I(~θ, ν) is the specific intensity distribution on the sky. ~θ is the

2-dimensional vector in the plane of sky (l−m plane) with origin at the center of the

field of view.

Normalized power pattern A(~θ, ν) of an antenna can be calculated by considering

the antenna as an emitter instead of a receiver. It can be determined by calculating the

normalized electric field pattern E(~θ, ν) for far-field radiation. The normalized power

pattern is given by A(~θ, ν) = |E(~θ, ν)|2. E(~θ, ν) can be determined by calculating the

fourier transform of the electric field Ẽ(U, ν) at aperture. Since ORT responds only to

a single polarization, therefore vector nature of the field Ẽ(U, ν)can be ignored. Also

assuming that Ẽ(U, ν) is uniform everywhere on the aperture, E(~θ, ν) is given by,

E(~θ, ν) = sinc

(
πdθx
λ

)
sinc

(
πbθy
λ

)
(2.55)

therefore,

A(~θ, ν) = sinc2

(
πdθx
λ

)
sinc2

(
πbθy
λ

)
(2.56)

Figure 2.7.1: (a) Antenna layout when ORT is used as a radio-interferometer. (b)
Aperture (b× d) of the individual antenna elements[8].
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The actual beam pattern is expected to be somewhat broader than that predicted

(Eq.2.56) if the dipole illumination pattern is also taken into account. The primary

beam pattern decides the field of view of the interferometer. ORT has an asymmetric

field of view i.e, beam has FWHM of 1.75◦ corresponding to b =30 m in the E-W

direction and 4.6◦ & 27.4◦ in the N-S direction for Phase I & Phase II respectively.

The specific intensity can be decomposed into two terms viz. uniform background

brightness and angular fluctuation in the specific intensity i.e,[8]

I(~θ, ν) = Ī(ν) + δI(~θ, ν) (2.57)

Using this in Eq. 2.54 and experessing it as a convolution, we get

V(U, ν) = Ã(U, ν)Ī(ν) + Ã(U, ν)⊗∆Ĩ(U, ν) (2.58)

Where Ã(U, ν) and ∆Ĩ(U, ν) are fourier transforms of A(~θ, ν) and δI(~θ, ν) respec-

tively. Ã(U, ν) is also referred as aperture power pattern & is given by the auto-

convolution of the electric field at telescope aperture i.e, Ã(U, ν) = Ẽ(U, ν)⊗ Ẽ(U, ν),

for a rectangular aperture

Ã(U, ν) =
λ2

bd
Λ

(
uλ

d

)
Λ

(
vλ

b

)
(2.59)

where Λ(x) is a triangular function defined as

Λ(x) = 1− |x| for |x| < 1, and Λ(x) = 0 for |x| ≥ 1. (2.60)

It can be seen that the first term Ã(U, ν)Ī(ν) is resolved even before the smallest

baseline U1, therefore it is not necessary to consider the contribution from Ī(ν) and

can be ignored, so the Eq. 2.58 becomes

V(Un, ν) =

∫
d2U ′Ã(Un − U ′, ν)∆Ĩ(U ′, ν) (2.61)

Where each visibility V(Un, ν) is a weighted linear superposition of different fourier

modes ∆Ĩ(U ′, ν). I addition to sky signal each visibility also has a noise contribution

N (Un, ν) i.e,

V(Un, ν) = Vsky(Un, ν) +N (Un, ν) (2.62)

Noise contribution N (Un, ν) is a Gaussian random field with zero mean and it is
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independent of baselines i.e, each baseline will have different noise contribution. The

real part of N (Un, ν) has rms. fluctuation σ given by[36]

σ =

√
2kBTsys

ηA
√

∆νc∆t
(2.63)

Where Tsys is the total system temperature, kB is the Boltzmann constant, A =

b × d is the physical collecting area of each antenna, η is the aperture efficiency (ac-

counts for the dipole illumination pattern upto some extent), ∆ν is the channel width

and ∆t is the integration time. Tsys ∼ 150 K for ORT, for observations with ∆ν =

0.1 MHz and ∆t = 16s we have σ = 1.12 Jy for Phase I and 6.69 Jy for Phase II

respectively.

The N-S axis of the cylindrical reflector of ORT is parallel to the Earth’s rotation

axis, and since all the baselines are alinged parallel to N-S axis of cylinder, the baselines

too are parallel to the rotation axis of earth and do not change with the rotation of

earth. For a particular baseline Um, the visibility measured by any antenna pair (a, b)

is product of the actual visibility V(Um) and the unknown antenna gains ga & gb

i.e, V ′ab = gag
∗
bV(U). As mentioned earlier, the array has considerable redundancy

which means there are many antenna pairs which correspond to same actual visibility

(since visibility depends on baselines only, not on antenna positions). Therefore, this

redundancy can be used to recover true gains of the antennas and the true visibilities.
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Chapter 3

Visibility correlations & HI power

spectrum

3.1 Physics of 21cm HI line

The fundamental quantity of radiative transfer is the brightness (or specific intensity)

Iν of a ray emerging from a cloud at frequency ν. This conventionally expresses the

energy carried by rays traveling along a given direction, per unit area, frequency, solid

angle, and time.

Iν can be quantified by the equivalent brightness temperature, Tb(ν), required of a

blackbody radiator (with spectrum Bν) such that Iν = Bν(Tb). Throughout the range

of frequencies and temperatures relevant to the 21 cm line, the Rayleigh-Jeans formula

is an excellent approximation to the Planck curve (eq. 2.12), i.e. Tb(ν) = Iνc
2/2kBν

2,

where is c is the speed of light and kB is Boltzmann’s constant.

We are interested in the brightness temperature of the 21 cm HI line (ν◦ = 1420.4 MHz).

Because of the cosmological redshift, the emergent brightness T
′

b(ν) measured in a

cloud’s comoving frame at redshift z creates an apparent brightness at the Earth of

Tb(ν) = T
′

b(ν)/(1 + z), where the observed frequency is ν = ν◦/(1 + z). Similarly,

the brightness temperature of the CMB in a comoving frame at redshift z will be

T
′
γ(z) = 2.73(1 + z)K.

An individual gas cloud produces a flux at the Earth of S =
∫
cloud

dΩdνIνcosθ,

where the integral extends over the solid angle subtended by the cloud and the

frequency spread of the signal. We will primarily be dealing with the frequency-

dependent incident energy flux Sν (measured in Janskys, 1Jy = 10−26Wm−2Hz−1).

The apparent angle between center of the cloud and the solid angle is generally
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small (sinθ ≈ θ). Therefore, the flux-density can be described as Sν = Iν∆Ω =

2kBTν
2∆Ω/c2, where all quantities are measured in observer’s frame.

In the Rayleigh-Jeans limit, the equation of radiative transfer along a line of sight

through a cloud of uniform excitation temperature Tex states that the emergent bright-

ness can be written as

T
′

b(ν) = Tex(1− e−τν ) + T
′

R(ν)e−τν (3.1)

where the optical depth τν ≡
∫
dsαν is the integral of the absorption coefficient

(αν) along the ray through the cloud, TR is the brightness of the background radiation

field incident on the cloud along the ray, and s is the proper distance.

For the 21 cm transition, the excitation temperature Tex is referred to as the spin

temperature TS. It quantifies the relative number densities, ni , of atoms in the two

hyperfine levels of the electronic ground state. It is defined using

n1

n0

=
g1

g0

e−E10/kBTs = 3e−T?/TS (3.2)

Where subscripts 1 and 0 denote the triplet and singlet states respectively and

g1 = 3 & g0 = 1 are the corresponding degeracies. E10 = 5.9 × 10−6 eV is the

splitting energy and T? = E10/kB = 0.068 K is the equivalent temperature. Since

TS � T?, approximately 3 out of 4 atoms find themselves in excited state. As a

result, the absorption coefficient must include a correction for stimulated emission

and it depends on TS as well. The optical depth of a Hydrogen cloud is then:

τν =

∫
dsσ01(1− e−E10/kBTs)φ(ν)n0

≈ σ01

(
hν

kBTs

)(
NHI

4

)
φ(ν)

(3.3)

Where σ01 ≡
3c2A10

8πν2

A10 = 2.85× 10−15 s−1 is the spontaneous emission coefficient of the 21 cm tran-

sition, NHI is the column density of HI (the factor 1/4 accounts for the fraction of

HI atoms in the hyperfine singlet state), φ(ν) is the line profile (
∫
φ(ν)dν = 1). The

equation(3.3) in approximate form assumes uniformity thoughout the cloud.
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In general, the line shape φ(ν) includes natural, thermal, and pressure broadening, as

well as bulk motion (which increases the effective Doppler spread). Then the velocity

broadening of a region of linear dimension s is ∆V ∼ sH(z) so that φ(ν) ∼ c/[sH(z)ν].

The column density along such segment depends on the neutral fraction xHI of Hy-

drogen, so NHI = xHInH(z)s. Therefore, expression for the optical depth of 21 cm

Hydrogen (eq. 3.3) can be rewritten as:

τν =
3

32π

hc3A10

kBTSν2
0

xHInH
(1 + z)(dv‖/dr‖)

≈ (1 + δ)(1 + z)3/2xHI
TS

[
H(z)/(1 + z)

dv‖/dr‖

] (3.4)

where TS is in Kelvins, (1 + δ) is the fractional overdensity of baryons and dv‖/dr‖

is the gradient of proper velocity along the line of sight (including Hubble expansion

and peculiar velocity). H(z)/(1 + z) corresponds to the uniform Hubble expansion

at higher redshifts. We are primarily interested in brightess temperature fluctuations

(δTb) between spin temperature(TS) and CMB temperature (TCMB) at high redshifts,

which is given by

δTb =
TS − TCMB(z)

1 + z
(1− e−τν0 ) ≈ TS − TCMB(z)

1 + z
τν0

≈ 9xHI(1 + δ)(1 + z)1/2

[
1− TCMB

TS

] [
H(z)/(1 + z)

dv‖/dr‖

]
mK

(3.5)

Observations of 21 cm absorption by DLAS indicate that the spin temperature is

orders of magnitude higher than the temperature of the cosmic microwave background

radiation (CMBR) at the corresponding redshifts. This implies that the emission in

the 21 cm hyperfine transition can be safely assumed to be proportional to the density

of neutral Hydrogen[18].

3.2 HI Power Spectrum

It is known that the excess temperature observed at a frequency ν along a direction

n̂ is given by[16]

T (ν, n̂) = T (z)ηHI(z, n̂rν) (3.6)
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where ν = 1420/(1 + z) is the frequency of observation and rν =
∫ z

0

c

H(z′)
dz′ is

the comoving distance and T (z) is given as

T̄ (z) = 4.0mK(1 + z)2

(
Ωbh

2

0.02

)(
0.7

h

)(
H0

H(z)

)
(3.7)

The quantity ηHI(z, n̂rν) is known as ’21 cm radiation efficiency in redshift space’

and can be written in terms of the mean neutral hydrogen fraction x̄HI and the

fluctuation in neutral hydrogen density field δHI as

ηHI(z, n̂rν) = x̄HI [1 + δHI(z, n̂rν)]

(
1− TCMB

TS

)[
1− H(z)

1 + z

∂v(z, n̂rν)

∂rν

]
(3.8)

The term is square brackets arises from HI peculiar velocities. We have already

assumed that TS � TCMB, we also assume that the HI peculiar velocity field is

determined by the dark matter fluctuations since peculiar velocities mostly trace the

dark matter potential wells. Therefore we can write

ηHI(z, n̂rν) =

∫
d3k

(2π)3
eikrν(k̂�n̂)η̃HI(z,k) (3.9)

where

η̃HI(z,k) = x̄HI(z)[∆HI(z,k) + (k̂ � n̂)2∆(z,k)] (3.10)

Where ∆HI(z,k) and ∆(z,k) are the fourier transform of the fluctuations in the HI

and the dark matter densities respectively. We use the multi-frequency angular power

spectrum Cl(∆ν) to quantify the statistical properties of δI(
−→
θ , ν) (which refers to

brightness temperature fluctuations δTb(
−→
θ , ν)).

Flat Sky Approximation

For the angular scales of our interest (l � 1), flat sky approximation can be used

rather that using spherical harmonics to formulate Cl(∆ν). A small portion of the

sky can be well approximated by a plane. The unit vector n̂ towards the direction of

observation can be decomposed as

n̂ = m + θ; m � θ = 0; |θ| � 1 (3.11)
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where m is a vector towards the center of the field of view and θ is a two-

dimensional vector in the plane of the sky. Therefore, one can define the two-

dimensional Fourier transform of T (ν, n̂) in the flat-sky as

T̃ (ν, U) =

∫
dθe−i2πU�θT (ν, n̂) (3.12)

where U corresponds to an inverse angular scale and is the Fourier conjugate of

θ. Using flat sky approximation, we can write k̂ � n̂ ≈ k̂ � m̂ ≡ k‖, using this with

equations (3.6) and (3.9) we get

T̃ (ν, U) =
T̄

2πr2
ν

∫
dk‖e

ik‖rν η̃HI(k‖m̂ + 2πU/rν) (3.13)

η̃HI power spectrum PHI can be defined as

〈η̃HI(k)η̃HI(k
′)〉 = (2π)3δ3

D(k− k′)PHI(k) (3.14)

Assuming that HI traces the total matter distribution with a bias parameter,

PHI(k, µ) ≡ PHI(k) can be modelled as

PHI(k, µ) = b2x̄2
HI

[
1 + βµ2

]2
P (k) (3.15)

where µ = k̂ � m̂ = k‖/k is the cosine of angle between k & line of sight and β is the

linear distrortion parameter. The µ dependence of PHI(k) arises from the peculiar

velocities.

The correspondence between the all-sky angular power spectra and its flat-sky

approximation is given by〈
T̃ (ν1, U)T̃ ∗(ν1, U

′)
〉

= C2πU(ν1, ν2)δ
(2)
D (U−U′) (3.16)

where δ
(2)
D is the 2-dimensional dirac delta function. Thus allows to estimate the

angular power spectrum Cl under the flat-sky approximation which is given by:

Cl(∆ν) =
T̄ 2

πr2
ν

∫ ∞
0

dk||cos(k||r
′
ν∆ν)PHI(k) (3.17)

where k has magnitude k =
√
k2
‖ + l2/r2

ν and has components k‖ and l/rν along
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the line of sight and in the plane of the sky respectively. Here rν is the comoving dis-

tance corresponding to z = (1420MHz/ν) − 1, r′ν = drν
dν

. The flat sky approxmiation

is not valid for the phase II of the upgraded ORT due to its large field of view.

We have used WMAP 9 power spectrum with ΛCDM cosmology for our calculations

and the corresponding parameters are H0 = 70.0Km/s/Mpc, Ωbh
2 = 0.02264, ΩΛ =

0.721, ns = 0.972, σ8 = 0.821. Fig. 3.2.1 shows the WMAP 9 power spectrum for

z = 0. We have used the value xHI = 2.45×10−2 which corresponds to Ωgas = 10−3[43].

Figure 3.2.1: Shown is the linearly extrapolated matter power spectrum (z = 0),
calculated using WMAP 9 cosmological parameters: H0 = 70.0Km/s/Mpc, Ωbh

2 =
0.02264, ΩΛ = 0.721, ns = 0.972, σ8 = 0.821. The inset shows BAO features.

We see that Phase I and Phase II are sensitive to 0.01 ≤ k ≤ 0.4Mpc−1 and

0.002 ≤ k ≤ 0.5Mpc−1 range respectively. We note that Phases I and II are both

sensitive to the BAO feature which has the first peak at k = 0.045 Mpc−1 , and which

has successive oscillations whose amplitude decays within k = 0.3Mpc−1 which is well

within the k range that will be probed by ORT.

N-body simulations[2] (figure 3.2.2) indicate that it is reasonably well justified to

assume a linear scale independent bias b = 2 for k < 1Mpc−1 with respect to the
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Figure 3.2.2: The power spectrum of fluctuations: the solid line shows the linearly
extrapolated power spectrum, the dashed line shows the non-linear dark matter power
spectrum and the dot–dashed line shows the HI power spectrum. All power spectra
are for z = 3.34[2].

linear power spectrum. For k > 1Mpc−1, the bias b has a non-linear depenedence on

k. We have modelled the non-linear dependence of bias b ≡ b(k) in which b(k) varies

with k as

b(k) =
b0 + b1(k/k0)

1 + b2(k/k1)
(3.18)

where b0 = 2, b1 = 1, b2 = 1, k0 = 1Mpc−1 & k1 = 5Mpc−1. We have em-

ployed both scale independent and scale dependent bias for our calculations of multi-

frequency angular power spectrum Cl(∆ν) (fig. 3.2.3 and 3.2.4). These bias models

still underestimates the power spectrum P (k) at k > 1Mpc−1. Phase I and Phase II

of upgraded ORT are sensitive to angular scales 75 ≤ l ≤ 3000 and 13 ≤ l ≤ 3500

respectively.
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Figure 3.2.3: Cl(0) as a function of l. The different curves correspond to different
values of scale independent bias indicated in figure.

Figure 3.2.4: Cl(0) as a function of l. The red curve corresponds to scale dependent
bias (Eq.3.18) indicated in figure. The green curve corresponds to scale independent
constant bias b = 2.0.
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3.3 Visibility correlations

Visibility correlations can be used to describe the statistical properties of the angular

and frequency domain fluctuations in the background radiation. We assume that

the observed signal δI(~θ, ν) is generated by a statistically homogeneous and isotropic

random process (the process that generates δI(~θ, ν) has no preferred origin or direction

in sky and no preferred origin in frequency). We use the Multi-ferquency angular

power spectrum Cl(δν) in flat sky approximation can be used to describe the properties

of δI(~θ, ν).

The 2-D power spectrum (flat-sky approximation) is defined using

〈∆Ĩ(U, ν)∆Ĩ∗(U ′, ν + ∆ν)〉 = P (U,∆ν)δ2
D(U − U ′) (3.19)

Where δ2
D(U −U ′) is the 2-D Dirac delta function. Cl(δν) refers to δT (~θ, ν) which

is the brightness temperature corresponding to δI(~θ, ν). Therefore,

Cl(∆ν) =

(
∂B

∂T

)−2

P (l/2π,∆ν) (3.20)

Where l corresponds to 2D wave vector 2πU with l = 2π|U |, and B is the Planck

function. Cl(δν) defined above characterizes both angular (l) and frequency depen-

dence (∆ν) of the sky signal. The visibilities V(Un, ν) are related to Cl(δν) through

visibility correlations, which can be written as (combining Eq. 2.61, 3.19 & 3.20)

〈V(Un, ν)V∗(Um, ν + ∆ν)〉 =

(
∂B

∂T

)2 ∫
d2U ′Ã(Un − U ′, ν)×

Ã∗(Um − U ′, ν + ∆ν)C2πU ′(∆ν)

(3.21)

The functions Ã(Un−U ′, ν) and Ã∗(Um−U ′, ν+∆ν) overlap only when |n−m| ≤ 1.

This implies that the two visibilities are correlated only if they correspond to same

baselines or nearest neighbours. In case of same baselines and ignoring the slow ∆ν

dependence of Ã∗(Um−U ′, ν + ∆ν), the two visibility correlation can be expressed as

V2(Un,∆ν) ≡ 〈V(Un, ν)V∗(Um, ν + ∆ν)〉 (3.22)
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Therefore,

V2(Un,∆ν) =

(
∂B

∂T

)2 ∫
d2U ′|Ã(Un − U ′, ν)|2C2πU ′(∆ν) (3.23)

For large baselines, above equation can be approximated as

V2(Un,∆ν) =

(
∂B

∂T

)2 [∫
d2U ′|Ã(Un − U ′, ν)|2

]
Cl(∆ν) (3.24)

Which can be simplified to

Cl(∆ν) = 0.26

(
mK

Jy

)2(
bd

m2

)
V2(Un,∆ν) (3.25)

V2(Un,∆ν) can be determined directly from the measured visibilities and hence

Cl(∆ν), which describes the statistical properties of brightness temperature distribu-

tion on the sky. The above equation provides a reasonably good approximation for

nearly entire basline range covered by ORT.

We now discuss the ∆ν dependence of the signal S2(U,∆ν). We use decorrelation

function κU(∆ν)[16] to quantify this ∆ν dependence. κU(∆ν) can be defined as

κU(∆ν) =
S2(U,∆ν)

S2(U, 0)
(3.26)

This function quantifies how quickly the HI signal decorrelates as the frequency

separation ∆ν increases. The signal is perfectly correlated at ∆ν = 0 where we have

κU(0) = 1, and the correlation falls (κU(∆ν) < 1) as ∆ν is increased.

Figure 3.3.1 shows κU(∆ν) as a function of ∆ν for different baselines U. The

predictions are the same for Phase I and II. We see that κU(∆ν) varies slowly with

∆ν at the small baselines. For U = 10, we have κU(∆ν) = 0.5 at ∆ν ≈ 1MHz,

beyond which κ falls further. The value of κU crosses zero at around ∆ν ≈ 4MHz, and

becomes negative beyond this. At larger baselines, κU(∆ν) has a steeper depenedence

with ∆ν. For U = 200, we see that κU(∆ν) = 0.5 at ∆ν ≈ 0.2MHz, and κU crosses

zero at around ∆ν ≈ 1MHz. We also see that values of κU oscillate around zero

at high ∆ν values. We have defined ∆ν0.9, ∆ν0.5 and ∆ν0.1 as the values of the

frequency separation ∆ν where the decorrelation falls to 0.9, 0.5 and 0.1 respectively

i.e. κU(∆ν0.5) = 0.5, etc. Figure 3.3.2 shows ∆ν0.9, ∆ν0.5 and ∆ν0.1 as a function of

U.
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Figure 3.3.1: Frequency decorrelation function κU(∆ν) as a function of ∆ν at five
different U values indicated in figure. The signal decorrelates more sharply for higher
value of U.

Figure 3.3.2: This figure shows how ∆ν is varying as a function of U for a given
values of frequency decorrelation function κU(∆ν) indicated in the figure.
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We observe that, BAO features are clearly visible in (∆ν, U) space on the contour

of κU(∆ν) = 0.1. The oscillations are also present in κU(∆ν) = 0.5 but have a smaller

amplitude.
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Chapter 4

Prospects of HI detection using

Upgraded ORT

Simulated maps of HI distribution in the post-reionization era are generally used to

study the prospects for detection with existing and upcoming radio telescopes. We

consider detection in the redshifted radiation from the hyperfine transition with a

rest frame frequency of 1420 MHz. Possibility of a statistical detection using visibility

correlations is discussed. We show that the upgraded ORT can potentially detect

signal from the HI distribution at high redshifts and compare the same with the

present and upcoming instruments like GMRT(Giant Meterwave Radio Telescope),

MWA(Murchinson Widefield Array), SKA(Square Kilometre Array) etc.

We have used the WMAP 9 power spectrum for the matter distribution at z = 3.35

(assuming that HI traces the total matter power spectrum) to compute visibility

correlations using the formulation discussed in chapter 3. We estimate the noise level

for upgraded ORT and compare it with the expected signal.

4.1 Noise in Visibility Correlations

The contribution to the measured visibilities V(Un, ν) from the sky signal (Eq. 2.61)

is a combination of three different components

V(Un, ν) = S(Un, ν) +N (Un, ν) + F(Un, ν) (4.1)

where S(Un, ν) is the HI signal which is the object of our study here, F(Un, ν)

is the contribution from other astrophysical sources referred to as the foregrounds
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and N (Un, ν) is the system noise contribution. We treat all of these as uncorrelated

random variables with zero mean. Therefore, we can write the visibility correlation

equation

V2(Un,∆ν) = S2(Un,∆ν) +N2(Un,∆ν) + F2(Un,∆ν) (4.2)

where S2, F2 and N2 respectively are the signal, foreground and the noise contri-

bution to the visibility correlation.

Radiation from different astrophysical sources other than the cosmological HI

signal collectively known as foregrounds. Foregrounds include extragalactic point

sources, diffuse synchrotron radiation from our Galaxy & low redshift galaxy clusters;

free-free emission from our Galaxy (GFF) & external galaxies (EGFF). Extra-galactic

point sources and the diffuse synchrotron radiation from our Galaxy dominate the

foreground radiation at 326.5 MHz. The contribution of free-free emissions from our

Galaxy and external galaxies is very small compared to the above but each of these

is individually larger than the HI signal. All these foregrounds are continuum sources

and the frequency dependence of these various continuum foreground components

can be modelled by power laws. Refer [29][32][15][21][5] for a detailed discussion on

foregrounds.

The baseline range U ≤ 10 of ORT is dominated by the synchrotron radiation,

whereas 10 ≤ U ≤ 300 is dominated by the clustering of the point sources and U ≥ 300

is dominated by the Poisson contribution. The contributions from the Galactic and

extra-galactic free-free emission are considerably smaller across the entire U range.

The total foreground contribution to each visibiity is around 104 − 105 times larger

than the HI signal. In our calculations we have assumed that all foreground are

already removed from the signal (zero foreground contribution) and treated the total

signal consisting of only HI signal and noise.

The real part of N (Un, ν) has rms. fluctuation σ given by (Eq. 2.63)

σ =

√
2kBTsys

ηA
√

∆νc∆t
(4.3)

The noise in the visibilities measured at different antenna pairs is uncorrelated.

As mentioned earlier, the ORT has a high degree of redundancy and there are many

independent antenna pairs corresponding to the same baseline. Further, an observa-

tion spanning a total observing time of tobs provides tobs/∆t different measurements of

each visibility. The noise in the visibilities measured at two different time instants is

uncorrelated. It is possible to avoid the noise contribution N2(Un,∆ν) in the visibility
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correlation V2(Un,∆ν) by correlating only the visibility measurements where the noise

is uncorrelated. For a fixed baseline U we only correlate the visibilities measured by

different antenna pairs or the visibilities measured at different time instants.

The total error in the residual visibility correlation has two parts arising from

the cosmic variance and the system noise respectively. The expected uncertainty or

statistical fluctuations in the visibility correlation is√
(∆V2)2 =

√
(∆S2)2 + (∆N2)2 (4.4)

where (∆S2)2 and (∆N2)2 are the cosmic variance and system noise contributions

respectively.

We have (∆N2)2 = (2σ2)2 and (∆S2)2 = (S2)2 for a single estimate of the visibil-

ity correlation. The system noise contribution reduces to (∆N2)2 = (2σ2∆t/tobs)
2 if

we combine the measurements at different time instants. Moreover, the redundant

baselines provide many estimates of the visibility correlation (∆V2) at the same U

where each estimate has an independent system noise contribution, but signal however

is the the same. We have also bin the data by combining the estimates of V2(Un,∆ν)

at the different U values within a finite bin width of our choice. The different baselines

U provide independent estimates of both the signal and the system noise.

The frequency bandwidth B also provides several independent estimates of the

visibility correlation. The value of ∆ν0.5 (corresponding to κU(∆ν) = 0.5)provides an

estimate of the frequency separation over which the HI signal remains correlated. We

also assume that the frequency bandwidth B provides us with B/(∆ν0.5) independent

estimates of the visibility correlation. Combining all the effects discussed above we

have

(∆N2)2 =

(
2σ2∆t

tobs

)2
∆ν0.5

NPB
and (∆S2)2 =

(S2)2∆ν0.5

NEB
(4.5)

We have binned the data into logarithmic basline bins and NP and NE denote the

number of independent estimates of the system noise and the signal in V2(Un,∆ν)

respectively for each bin.

The system noise contribution (∆N2) dominates over the cosmic variance (∆S2)

in entire baseline range, i.e. (∆N2) has major contribution in the total uncertainty

(∆V2). We observe that 1σ detection is possible with 103 hrs of integration for the

signal with scale independent bias binned with 9 logarithmic bins on baseline scale

for the baseline range of U ∼ 30 − 150 (fig. 4.1.1). 2σ detection is possible for the
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Figure 4.1.1: Shown is the expected signal and system noise as a function of U for the
Phase II of upgraded ORT. The red curves show the expected HI signal S2(Un,∆ν)
for ∆ν = 0 for two different bias models, dashed curve shows the expected signal
with scale independent bias b = 2.0 and solid curve shows the expected signal with
scale dependent bias b(k) (eq. 3.18). while the blue curve shows the 1σ errors for the
observation time indicated in the figure. The data is binned with 9 logarithmic bins,
the green vertical lines show the starting and ending positions of the bins.

signal with scale dependent bias b(k) (eq. 3.18), with 103 hrs of integration for the

baseline range of U ∼ 30− 150 (fig 4.1.1).

We have done a similar analysis to calculate expected signal and noise but with the

bin size used is double the bin size used for figure 4.1.1. We observe that optimizing

the bin size gives better detection possibility. We see that detection with significance

greater than 1.5σ is possible with 103 hrs of integration for the signal with scale

independent bias binned with 5 logarithmic bins on baseline scale for the baseline

range of U ∼ 20 − 200 (fig. 4.1.2). 3σ detection is possible for the signal with scale

dependent bias b(k) (eq. 3.18), with 103 hrs of integration for the baseline range of

U ∼ 10− 200 (fig 4.1.2).

We have compared our results for upgraded ORT with the calculations done by

Bagla et al(2010)[2] for GMRT and MWA. Figure 4.1.3 and 4.1.4 show the expected

signal and system noise calculated for GMRT and MWA respectively. We observe

that HI detection not possible with either GMRT or MWA for 103 hrs of integration

time. This make upgraded ORT a potential candidate for HI signal detection from

post-reionization era at redshift z = 3.35.
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Figure 4.1.2: Shown is the expected signal and system noise as a function of U for the
Phase II of upgraded ORT. The red curves show the expected HI signal S2(Un,∆ν)
for ∆ν = 0 for two different bias models, dashed curve shows the expected signal
with scale independent bias b = 2.0 and solid curve shows the expected signal with
scale dependent bias b(k) (eq. 3.18). while the blue curve shows the 1σ errors for the
observation time indicated in the figure. The data is binned with 5 logarithmic bins.
The green vertical lines show the starting and ending positions of the bins.

Figure 4.1.3: Shown is the expected signal(visibility correlation) as a function of U
for GMRT computed for 103 hrs of integration. The expected signal is shown with a
solid curve and the expected noise in the visibility correlation is shown by a dashed
curve[2].
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Figure 4.1.4: Shown is the expected signal(visibility correlation) as a function of U
for MWA with 103 hrs of integration. The expected signal is shown with a solid curve
and the expected noise in the visibility correlation is shown by a dashed curve[2].

Figure 4.1.5: This figure shows the signal to noise ratio (SNR) as function of baseline
U with data divided in 9 logarithmic bins for different integration times indicated.
Left panel shows SNR calcuated for the signal with scale independent bias b = 2.0.
Right panel shows SNR calcuated for the signal with scale dependent bias b(k)(eq.
3.18). The horizontal line corresponds to SNR = 5.

We have investigated the SNR for detecting the HI signal under the assumption

that it is possible to completely remove the foregrounds. Figure 4.1.5 shows the Signal

to Noise ratio as a function of baselines with data binned in 9 logarithmic bins. The

SNR shown in figure 4.1.5 peaks around U ∼ 100. We see that 3σ detection of the

signal with scale independent bias is possible in the baseline range 40 ≤ U ≤ 100
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with ∼ 3000 hrs of integration with the (fig. 4.1.5 left panel). Whereas 5σ detection

is possible for the signal with scale dependent bias in baseline range 30 ≤ U ≤ 200

with ∼ 3000 hrs of integration (fig. 4.1.5 right panel).

Figure 4.1.6: This figure shows the signal to noise ratio (SNR) as function of baseline
U with data divided in 9 logarithmic bins for different integration times indicated.
Left panel shows SNR calcuated for the signal with scale independent bias b = 2.0.
Right panel shows SNR calcuated for the signal with scale dependent bias b(k)(eq.
3.18). The horizontal lines corresponds to SNR = 3 and 5 as indicated in figure.

We have performed a similar SNR calculation but with data divided in 5 logarith-

mic bins (double the bin size in previous calculation). We observe that optimizing

bin size leads to a detection with better significance level. We see that for the bin

size mentioned above, a 3σ detection of the signal with scale independent bias is pos-

sible in ∼ 2000 hrs of integration (fig. 4.1.6 left panel). Whereas > 2σ detection is

possible for the signal with scale dependent bias in baseline range with ∼ 1000 hrs of

integration and 5σ detection with ∼ 2000 hrs of integration(fig. 4.1.6 right panel).

BAO features in the expected signal have much smaller amplitude compared to

the signal, therefore to make a BAO detection huge integration times and multiple

realizations will be required.

The HI detection prospects with upgraded ORT are very promising. Optimizing

the bin sizes, the realizations can lead to detections with higher significance level in

smaller integration times. From the comparison of HI detection prospects with ORT,

GMRT and MWA we conclude that at present ORT is the only instrument which can

detect HI signal at z 3.35 with 103 hrs of integration. Except the upgraded ORT, only

SKA-mid has the potential to detect HI signal at this particular redshift in smaller
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integration times. Construction of SKA-mid will finish around year 2022. It is ex-

pected that more than a calender year will be required to make a good HI detection

with upgraded ORT, this 8 year window till the completion of SKA-mid provides an

opportunity to make a significant detection with phase II of upgraded ORT. There

is another upgrade planned for ORT which will increase the redshift range probed

by ORT from z = 3.35 to z = 1 − 5. After this upgrade ORT will be able to probe

almost full range of post-reionzation era. This upgrade will also come up before the

completion of SKA-mid construction and will provide opportunity to make a detection

in the redshift range mentioned above.
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