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Abstract 

An efficient and base free palladium catalyzed allylic etherification method was developed 

for the synthesis of allyl aryl ethers, which are useful synthons of pharmaceutically 

interesting chroman derivatives, using organoboron salts as a coupling partner under mild 

conditions. Using this protocol a wide range of allyl aryl ethers were obtained in good to 

excellent yields using a variety of allyl acetates and organoboron salts.  
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CHAPTER 1 

Introduction: 

1.1 Overview: 

 Tsuji and co-workers, in 1965, developed the Pd-catalyzed methodology for the α-

allylation of the carbonyl compounds with allyl acetate. In this protocol the formation of the 

product takes place via π-allylpalladium complex as an intermediate species (Scheme 1).
[1]

 

 

Scheme 1 

Later in 1973, Trost and co-workers developed a methodology, where the activation 

of the allylic position of the olefins was achieved by Palladium (Scheme 2).
[2]

 

                    

 

Where N is nucleophile.   

Scheme 2 

In 1985 Ehud Keinan, Abraham Nudelman and co-workers have developed the 

methodology for the palladium catalyzed allylic etherification of the allyl acetates in good to 

excellent yields at room temperature under mild conditions using tin alkoxides as 

nucleophiles. This methodology has been applied for the protection of the hydroxyl groups of 

carbohydrates and for selectively glycosidation of the allylic glycons as discussed authors in 

their work (Scheme 3).
[3]
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Scheme 3 

Later in 1999 Hamada and co-workers reported the Pd catalyzed asymmetric allylic 

substitution of the allyl acetates with oxygen and nitrogen nucleophiles using chiral 

monodentate phosphine (9-PBN) as a ligand. Their main focus was on the asymmetric allylic 

amination of the allyl acetates using Pd(0) and chiral phosphine ligand, further elaboration 

was done by using the oxygen based nucleophiles. When they used methanol as a nucleophile 

the product ether was obtained at 60 
o
C in good yields but with poor enantiomeric excess. 

The same strategy was carried out by using trimethyl borate as nucleophile instead of the 

methanol, in this case the excess of the trimethyl borate (10 eq.) gave moderate to high 

enantioselectivity but with poor yield (Scheme 4).
[4] 

 

 

Scheme 4 

Lee and co-workers reported Zn(II) alkoxides mediated palladium catalyzed allylic 

etherification as a mild and efficient method for the stereoselective formation of C-O bonds. 
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Zn(II) alkoxides promotes the addition of the oxygen nucleophiles (which is basically derived 

from the aliphatic alcohols) to η
3
-allylpalladium complexes (Scheme 5).

[5]
  

 

Scheme 5 

Muzart and co-workers reported the transition metal free Tsuji-Trost type of the 

reaction in presence of water as a solvent. In this work the authors has used acetylacetone, 

phenol, morpholine as nucleophiles. First reaction was carried out using palladium catalyst, 

but later it was found that reaction can be preceded in absence of the palladium catalyst 

(Scheme 6).
[6]

  

 

Scheme 6 

Recently Gaumont and co-workers reported the allylic substitution reaction using new 

SILP (supported ionic liquid phase) catalyst based on chitosan-supported ionic liquid. In the 

case of the amine as nucleophile the recyclability and reusability of the catalyst was shown, 

but in the case of phenol as a nucleophile, the product was obtained only in 68% yield. 

Chitosan is enantiopure biopolymer which has strong affinity towards the transition metals. 

Due to high absorption capacities towards the transition metals such as Pd and Pt on the 

surface of chitosan makes it more advantageous for the catalytic support (Scheme 7).
[7]
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Scheme 7                                   

Chan and co-workers have done the asymmetric allylic etherification using 

palladium–(S,pR)-ferro NPS-Catalyst. Ferro NPS ligand was synthesized from the Ugi’s 

amine. The application of this ligand with palladium was discussed in their work. It was 

found that in presence of the ligand (L5) the ether product was isolated in good to excellent 

enantiomeric excess as well as in excellent yields (Scheme 8).
[8]

  

 

Where [{Pd(η
3
-C3H5)Cl}2] was used as catalyst. 

 

Scheme 8 

Sebesta and co-workers reported the allylic substitution with heteroatom nucleophiles. 

Imidazolium-tagged ferrocenyl diphosphanes was used as ligand along with palladium 

catalyst. In their work phthalimide and phenol were used as nucleophiles (Scheme 9).
[9]

  

 



5 

 

 

Scheme 9 

 Very recently, Varma and co-workers reported the synthesis of allyl ethers in water 

using magnetically recoverable heterogeneous Pd catalyst under ambient conditions. They 

have prepared the catalyst by sonication of nano-ferrite with dopamine in aqueous 

suspension, then this dopamine functionalized nano-ferrite was treated with PdCl2 under 

basic medium to get the Pd(II) catalyst which is basically supported on amine functionalized 

magnetic Fe3O4 nanoparticles (Scheme 10).
[10]

  

 

 

Scheme 10 
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1.2 Synthetic applications of allyl ethers: 

There are many reports known where allyl ethers have been used as synthetic building 

blocks for the synthesis of the important molecules. 

Barluenga and co-workers developed the metal free methodology for the synthesis of 

chromans and tetrahydroquinoline derivatives via intramolecular arylation reactions of 

alkenes promoted by iodonium ion (Scheme 11).
[11] 

 

 

Scheme 11 

 In 2009 Lipshutz and co-workers reported the aminations of allyl ethers applying 

micellar catalysis under solvent free conditions. Methyl formate was used as an additive. PTS 

was used to form nanomicelle and reaction was performed in water (Scheme 12).
[12]

  

 

Scheme 12 

In the same year 2009 the same authors published the palladium catalyzed Suzuki-

Mayaura coupling reaction in water as solvent at room temperature using allyl ethers and 

boronic acids (Scheme 13).
[13]

  

 

Scheme 13 
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Recently, Hajra and co-workers reported the copper catalyzed enantioselective 

aziridoarylation of allyl ethers for synthesis of trans-3-Amino-4-aryl chromans. The 

combination of copper catalyst and chiral bis-oxazoline ligand gave chroman derivatives in 

moderate yields and good to excellent enantiomeric excess (Scheme 14).
[14]

  

 

Scheme 14 

1.3 Synthetic application of CF3 containing borate salts and copper reagents: 

In 2011 Dilman and co-workers reported a new methodology for the nucleophilic 

trifluoromethylation of the aldehydes and N-tosylimines using an organoboron reagent (acts 

as source of the nucleophilic trifluoromethyl group). They have synthesized the organoboron 

reagent by the reaction of TMS-CF3 with trialkoxyborates in presence of the KF at room 

temperature (Scheme 15).
[15] 

 

 

 

Scheme 15 

Later in 2013 the same group reported the nucleophilic fluoroalkylation of 

(bromomethyl) pinacolboranes using fluoroalkyl silicon reagents. Then the intermediate 

organoboron salt was converted to boronic acids containing fluoroalkyl group at elevated 

temperatures (Scheme 16).
[16]
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Scheme 16 

In 2012 Szabo’s group has reported the trifluoromethylation of the propargyl halides 

and propargyl trifluoroacetates using CF3 anion transfer copper reagent, which basically 

provides CF3 anion as a nucleophile, which leads to formation of allenyl or propargyl 

trifuoromethyl derivatives (Scheme 17).
[17]

  

 

 

Scheme 17 
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CHAPTER 2 

Experimental Section: 

2.1 General Methods: All reactions were performed under inert atmosphere. All the reagents 

used were purchased from the commercially available sources and used as such. 
1
H, 

13
C, 

19
F 

and 
11

B NMR spectra were analyzed in deuterated solvents using 400 MHz, 100 MHz, 376 

MHz, 128 MHz Bruker FT-NMR spectrometers. Chemical shift values were analyzed in parts 

per million keeping TMS and BF3.OEt2 as background reference. Merck silica gel 60 F254 

TLC plates were used to perform the thin layer chromatography using EtOAc/Hexane 

mixture as an eluent. Neutral alumina and acidic silica gel columns were used for the 

chromatographic separation. 

2.2 General procedure for the synthesis of borate salts: A solution of NaBH4 (1 mmol) in 

THF was stirred with aromatic alcohols (3.8 mmol) at room temperature for 15-80 h. The 

solvent THF was removed under high vacuum, giving quantitative yields of 

tetraaryloxyborates. 

Sodium Tetraphenoxyborate (1): 

 

Quantitative yield, 
1
H NMR (400 MHz, CD3OD): δ 7.19-7.15 (m, 8H), 6.82-6.79 (m, 12H); 

13
C NMR (100 MHz, CD3OD): δ 159.4, 131.22, 121.1, 117.1; 

11
B NMR (128 MHz, CD3OD): 

δ 3.71. 

Sodium Tetrakis(2,5-dimethylphenoxy)borate (2): 
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Quantitative yield, 
1
H NMR (400 MHz, CD3OD): δ 6.93-6.91 (m, 4H), 6.58-6.53 (m, 8H), 

2.23 (s, 12H), 2.14 (s, 12H); 
13

C NMR (100 MHz, CD3OD): δ 157.1, 138.2, 132.3, 123.1, 

121.9, 117.1, 21.9, 16.6; 
11

B NMR (128 MHz, CD3OD): δ 3.14. 

Sodium Tetrakis(4-bromophenoxy)borate (3): 

 

Quantitative yield, 
1
H NMR (400 MHz, CD3OD): δ 7.28 (d, J = 9.0 Hz, 8H), 6.72 (d, J = 9.0 

Hz, 8H); 
13

C NMR (100 MHz, CD3OD): δ 159.2, 134.0, 119.2, 112.5; 
11

B NMR (128 MHz, 

CD3OD): δ 4.21. 

Sodium Tetrakis([1,1'-biphenyl]-4-yloxy)borate (4): 

 

Quantitative yield, 
1
H NMR (400 MHz, CD3OD): δ 7.55-7.52 (m, 8H), 7.45 (d, J = 8.8 Hz, 

8H), 7.40-7.36 (m, 8H), 7.28-7.23 (m, 4H), 6.88 (d, J = 8.8 Hz, 8H); 
13

C NMR (100 MHz, 

CD3OD): δ 159.3, 143.3, 134.4, 130.5, 129.8, 128.2, 128.1, 117.6; 
11

B NMR (128 MHz, 

CD3OD): δ 3.91. 

Sodium Tetrakis(4-(tert-butyl)phenoxy)borate (5): 
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Quantitative yield, 
1
H NMR (400 MHz, CD3OD): δ 7.23-7.20 (m, 8H), 6.73-6.71 (m, 8H), 

1.29 (s, 36H); 
13

C NMR (100 MHz, CD3OD): δ 156.8, 143.9, 127.9, 116.5, 35.6, 32.8; 
11

B 

NMR (128 MHz, CD3OD): δ 3.06. 

2.3 General procedure for the synthesis of allyl alcohols: 

To a stirred solution of aldehyde (1 mmol) in Et2O (5 ml) was added vinyl magnesium 

bromide (1.3 mmol) over a period of 15 minutes at 0 
o
C. The mixture was stirred over night 

at room temperature and a saturated solution of NH4Cl was poured into the resulting reaction 

mixture. It was extracted with Et2O, dried over MgSO4 and concentrated in vacuo. The crude 

product was purified by column chromatography.  

1-phenylprop-2-en-1-ol (6): 

 

1.17 g, 92.76% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.39-7.27 (m, 5H), 6.09-6.01 (m, 1H), 

5.38-5.33 (m, J = 17.1 Hz, 1H), 5.22-5.18 (m, 2H), 2.11 (s, 1H); 
13

C NMR (100 MHz, 

CDCl3): δ 142.6, 140.3, 128.6, 127.8, 126.4, 115.2, 75.4.  

1-(4-chlorophenyl)prop-2-en-1-ol (7): 

 

 168 mg, 70.35% yield, 1
H NMR (400 MHz, CDCl3): δ 7.34-7.29 (m, 4H), 6.00 (ddd, J = 

17.1, 10.3, 6.1 Hz, 1H), 5.34 (td, J = 17.1 Hz, 1.32, 1H), 5.22-5.17 (m, 2H), 2.01 (s, 1H); 
13

C 

NMR (100 MHz, CDCl3): δ 141.0, 140.0, 133.5, 128.8, 127.8, 115.8, 74.8. 

1-(4-methoxyphenyl)prop-2-en-1-ol (8): 
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155.5 mg, 86.02% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.31-7.27 (m, 2H), 6.90-6.87 (m, 

2H), 6.08-6.00 (m, 1H), 5.36-5.31 (m, 1H), 55.20-5.15 (m, 2H), 3.80 (s, 3H), 1.96 (s, 1H); 

13
C NMR (100 MHz, CDCl3): δ 159.4, 140.5, 135.0, 127.9, 115.0, 114.1, 75.1, 55.5. 

1-(m-tolyl)prop-2-en-1-ol (9): 

 

166.2 mg, 67.42% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.25-7.15 (m, 3H), 7.11 (d, J = 7.4, 

1H), 6.05 (ddd, J = 17.1, 16.3, 6.00 Hz, 1H), 5.38-5.34 (m, J = 17.1 Hz, 1H), 5.22-5.17 (m, 

2H), 2.36 (s, 3H), 1.9 (s, 1H); 
13

C NMR (100 MHz, CDCl3): δ 142.6, 140.3, 138.4, 128.6, 

127.1, 123.5, 115.1, 75.5, 21.5. 

1-(4-nitrophenyl)prop-2-en-1-ol (10): 

 

194.3 mg, 54.37% yield, 
1
H NMR (400 MHz, CDCl3): δ 8.23-8.19 (m, 2H), 7.57-7.54 (m, 

2H), 5.99 (ddd, J = 17.0, 10.4, 6.5 Hz, 1H), 5.42-5.37 (m, 1H), 5.31 (d, J = 6.5 Hz, 1H), 5.29-

5.26 (m, 1H), 2.14 (s, 1H); 
13

C NMR (100 MHz, CDCl3): δ 149.6, 139..3, 127.0, 123.8, 

117.0, 74.7. 

1-(2-fluorophenyl)prop-2-en-1-ol (11): 

 

315.7 mg, 85.84% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.47-7.42 (m, 1H), 7.29-7.24 (m, 

1H), 7.17-7.13 (m, 1H), 7.06-7.10 (m, 1H), 6.11-6.03 (m, 1H), 5.52 (d, J = 5.6 Hz, 1H), 5.38-

5.33 (m, 1H), 5.22-5.19 (m, 1H), 2.06 (s, 1H); 
13

C NMR (100 MHz, CDCl3): δ 160.1 (d, JC-F 

= 244.9 Hz), 138.9, 129.7 (d, JC-F = 13.1 Hz), 129.3 (d, JC-F = 8.5 Hz), 127.7 (d, JC-F = 4.0 

Hz), 124.4 (d, JC-F = 3.6 Hz), 115.6, 115.4 (d, JC-F = 3.3 Hz), 69.3 (d, JC-F = 2.9 Hz); 
19

F 

NMR (376 MHz, CDCl3): δ -119.2. 
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2.4 General procedure for the synthesis of allyl acetates: 

To a solution of allyl alcohol (1.0 mmol) in DCM (5 ml) was added Et3N (3.0 mmol) at 0 
o
C 

slowly under dry conditions. After stirring for 15 minutes at 0 
o
C, acetic anhydride (3.0 

mmol) was added slowly and resulting solution was stirred over-night. Water was added to 

the reaction mixture and it was extracted with DCM, dried over MgSO4 and concentrated in 

vacuo. The crude product was purified by column chromatography. 

1-phenylallyl acetate (12): 

 

378.8 mg, 96.22% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.38-7.28 (m, 5H), 6.27 (td, J = 5.9, 

1.4 Hz, 1H), 6.01 (ddd, J = 17.1, 16.3, 5.9 Hz, 1H), 5.29 (td, J = 17.1, 1.3 Hz, 1H), 5.25 (td, J  

= 10.5, 1.3 Hz, 1H), 2.1 (s, 3H); 
13

C NMR (100 MHz, CDCl3): δ 170.1, 138.9, 136.3, 128.6, 

128.2, 127.2, 117.0, 76.3, 21.3. 

1-(4-chlorophenyl)allyl acetate (13): 

 

168 mg, 86.97% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.34-7.27 (m, 4H), 6.21 (d, J = 5.8 Hz, 

1H), 5.96 (ddd, J = 17.1, 16.3, 5.9 Hz, 1H), 5.30-5.24 (m, 2H), 2.10 (s, 3H); 
13

C NMR (100 

MHz, CDCl3): δ 170.0, 137.5, 135.9, 134.1, 128.8, 128.7, 117.4, 75.5, 21.3. 

1-(4-methoxyphenyl)allyl acetate (14): 
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159.7 mg, 78.88% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.34-7.30 (m, 2H), 6.87-6.83 (m, 

2H), 6.59 (d, J = 15.8 Hz, 1H), 6.15 (td, J = 15.8, 6.6 Hz, 1H), 4.7 (d, J = 1.2 Hz, 2H), 3.80 

(s, 3H), 2.09 (s, 3H); 
13

C NMR (100 MHz, CDCl3): δ 171.0, 159.7, 134.1, 129.0, 127.9, 

120.9, 114.1, 65.4, 55.3, 21.1. 

1-(m-tolyl)allyl acetate (15): 

 

100.3 mg, 68.32% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.27-7.23 (m, 1H), 7.16-7.11 (m, 

3H), 6.22 (d, J = 5.9 Hz, 1H), 6.00 (ddd, J = 17.1, 16.3, 5.9 Hz, 1H), 5.31-5.22 (m, 2H), 2.35 

(s, 3H), 2.11 (s, 3H); 
13

C NMR (100 MHz, CDCl3): δ 170.1, 138.9, 138.3, 136.4, 129.0, 

128.6, 127.9, 124.3, 116.8, 76.3, 21.5, 21.4. 

1-(4-nitrophenyl)allyl acetate (16): 

 

183.5 mg, 76.90% yield, 
1
H NMR (400 MHz, CDCl3): δ 8.24-8.20 (m, 2H), 7.53-7.50 (m, 

2H), 6.30 (d, J = 6.2 Hz, 1H), 6.00-5.91 (m, 1H), 5.36-5.30 (m, 2H), 2.15 (s, 3H); 
13

C NMR 

(100 MHz, CDCl3): δ 169.8, 146.1, 135.1, 127.9, 123.9, 118.6, 75.3, 21.2.  

1-(2-fluorophenyl)allyl acetate (17): 

 

334.8 mg, 83.09% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.38 (dt, J = 1.8 Hz, 1H), 7.32-7.26 

(m, 1H), 7.14 (dt, J = 1.2 Hz, 1H), 7.07-7.03 (m, 1H), 6.53 (d, J = 5.9 Hz, 1H),  6.07-5.99 (m, 

1H), 5.31-5.24 (m, 2H), 2.12 (s, 3H); 
13

C NMR (100 MHz, CDCl3): δ 169.8, 160.1 (d, JC-F = 
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247.0 Hz), 135.1, 129.9 (d, JC-F = 8.1 Hz), 128.4 (d, JC-F = 3.7 Hz), 126.3 (d, JC-F = 13.5 Hz), 

124.3 (d, JC-F = 3.6 Hz), 117.4, 115.7 (d, JC-F = 21.3 Hz), 70.5 (d, JC-F = 3.0 Hz),  21.2; 
19

F 

NMR (376 MHz, CDCl3): δ -117.5. 

1-(pyren-4-yl)allyl acetate (18): 

 

305.2 mg, 58.10% yield, 
1
H NMR (400 MHz, CDCl3): δ 8.34 (d, J = 9.3 Hz, 1H), 8.18-8.10 

(m, 5H), 8.03-7.98 (m, 3H), 7.70 (d, J = 15.7 Hz, 1H), 6.50 (td, J = 15.7, 6.4 Hz, 1H), 4.93 

(dd, J = 6.4, 1.4 Hz, 2H), 2.18 (s, 3H); 
13

C NMR (100 MHz, CDCl3): δ 171.0, 131.5, 131.2, 

130.9, 130.8, 128.3, 127.8, 127.5, 127.5, 126.5, 126.1, 125.4, 125.2, 125.1, 124.9, 124.9, 

124.1, 122.4, 65.5, 21.2. 

2.5 General procedure for the synthesis of allyl ethers: 

To a solution of allyl acetate (1.0 mmol) in dry DCM (2 ml) was added sodium tetra-

aryloxyborate (1.5 mmol) and Pd(PPh3)4 (5 mol%) at room temperature under dry conditions. 

Resulting solution was stirred for 12-78 h. After completion of the reaction, reaction mixture 

was concentrated in vacuo. The crude product was purified by column chromatography. 

(cinnamyloxy)benzene (19): 

 

25.4 mg, 99.02% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.44-7.41 (m, 2H), 7.36-7.25 (m, 5H), 

7.00-6.96 (m, 3H), 6.75 (d, J = 15.9 Hz, 1H), 6.44 (td, J = 15.9, 5.8 Hz, 1H), 4.71 (d, J = 5.8 

Hz, 2H); 
13

C NMR (100 MHz, CDCl3): δ 158.7, 130.5, 133.09, 129.6, 128.7, 128.0, 126.7, 

124.6, 121.0, 114.9, 68.6. 

(E)-1-methyl-2-(3-phenoxyprop-1-en-1-yl)benzene (20): 
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23.4 mg, 91.46% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.33-7.28 (m, 2H), 7.25-7.22 (m, 3H), 

7.09-7.07 (m, 1H), 6.99-6.95 (m, 3H), 6.71 (td, J = 16.0, 1.4 Hz, 1H), 6.42 (td, J = 16.0, 5.8 

Hz, 1H), 4.70 (d, J = 5.8 Hz, 2H), 2.35 (s, 3H); 
13

C NMR (100 MHz, CDCl3): δ 158.7, 138.2, 

136.4, 133.2, 129.6, 128.8, 128.6, 127.4, 124.0, 123.8, 120.9,  114.8, 68.7, 21.5. 

(E)-1-chloro-4-(3-phenoxyprop-1-en-1-yl)benzene (21): 

 

26.41 mg, 96.32% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.36-7.28 (m, 6H), 7.00-6.94 (m, 

3H), 6.69 (td, J = 16.0, 1.5 Hz, 1H), 6.40 (td, J = 16.0, 5.7 Hz, 1H), 4.69 (d, J = 5.7 Hz, 2H); 

13
C NMR (100 MHz, CDCl3): δ 158.6, 135.0, 133.6, 131.7, 129.6, 128.8, 127.9, 125.3, 121.1, 

114.8, 68.44. 

(E)-1-methoxy-4-(3-phenoxyprop-1-en-1-yl)benzene (22): 

 

20.4 mg, 94.24% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.37-7.33 (m, 2H), 7.32-7.27 (m, 2H), 

6.98-6.94 (m, 3H), 6.88-6.84 (m, 2H), 6.68 (d, J = 15.9 Hz, 1H), 6.29 (td, J = 15.9, 6.0 Hz, 

1H), 4.68 (d, J = 6.0 Hz, 2H), 3.81 (s, 3H); 
13

C NMR (100 MHz, CDCl3): δ 159.5, 158.7, 

132.9, 129.6, 129.3, 127.9, 122.2, 120.9, 114.9, 114.1, 68.9, 55.4. 

(E)-1-nitro-4-(3-phenoxyprop-1-en-1-yl)benzene (23): 
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28.02 mg, 93% yield, 
1
H NMR (400 MHz, CDCl3): δ 8.21-8.17 (m, 2H), 7.55-7.52 (m, 2H), 

7.34-7.29 (m, 2H), 7.01-6.94 (m, 3H), 6.82 (d, J = 16.0 Hz, 1H), 6.60 (td, J = 16.0, 5.2 Hz, 

1H), 4.75 (d, J = 5.2 Hz, 2H); 
13

C NMR (100 MHz, CDCl3): δ 158.4, 147.2, 143.0, 130.2, 

129.7, 127.2, 127.1, 121.3, 114.8, 67.9. 

 (E)-4-(3-phenoxyprop-1-en-1-yl)pyrene (24): 

 

18.3 mg, 77.22% yield, 
1
H NMR (400 MHz, CDCl3): δ 8.35 (d, J = 9.3 Hz, 1H), 8.21-8.09 

(m, 5H), 8.05-7.98 (m, 3H), 7.80 (d, J = 15.8 Hz, 1H), 7.38-7.33 (m, 2H), 7.08-7.06 (m, 2H), 

7.03-6.99 (m, 1H), 6.65 (td, J = 15.8, 5.7 Hz, 1H), 4.90 (d, J = 5.7 Hz, 2H); 
13

C NMR (100 

MHz, CDCl3): δ 158.8, 131.5, 131.2, 131.1, 131.0, 130.2, 129.7, 128.3, 127.9, 127.7, 127.5, 

127.5, 126.1, 125.4, 125.2, 125.1, 125.0, 125.0, 124.2, 123.1, 121.1, 115.0, 69.0. 

(E)-1-fluoro-2-(3-phenoxyprop-1-en-1-yl)benzene (25): 

 

34.69 mg, 90.0% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.49 (dt, J = 1.8 Hz, 1H), 7.34-7.29 

(m, 2H), 7.25-7.20 (m, 1H), 7.13-7.02 (m, 2H), 7.00-6.96 (m, 3H), 6.91 (td, J = 16.1, 1.4 Hz, 

1H), 6.52 (td, J = 16.1, 5.7 Hz, 1H), 4.73 (d, J = 5.7 Hz, 2H); 
13

C NMR (100 MHz, CDCl3): δ 

160.4 (d, JC-F = 248.4 Hz), 158.6, 129.6, 129.3 (d, JC-F = 8.7 Hz), 127.7 (d, JC-F = 3.8 Hz), 

127.3 (d, JC-F = 5.1 Hz), 125.4 (d, JC-F = 3.7 Hz), 124.3 (d, JC-F = 11.7 Hz), 124.2 (d, JC-F = 

3.7 Hz), 121.0, 115.9 (d, JC-F = 21.9 Hz), 114.8, 68.7; 
19

F NMR (376 MHz, CDCl3): δ -117.8. 

1-bromo-4-(cinnamyloxy)benzene (26): 
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22.7 mg, 84.06% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.42-7.33 (m, 3H), 7.32-7.25 (m, 4H), 

6.86-6.82 (m, 2H), 6.72 (d, J = 15.9 Hz, 1H), 6.39 (td, J = 15.9, 5.8 Hz, 1H), 4.67 (d, J = 5.8 

Hz, 2H); 
13

C NMR (100 MHz, CDCl3): δ 157.8, 136.3, 133.4, 132.4, 128.7, 128.1, 126.7, 

124.0, 116.7, 113.1, 68.9. 

1-(tert-butyl)-4-(cinnamyloxy)benzene (27):  

 

27.5 mg, 91% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.43-7.40 (m, 2H), 7.35-7.24 (m, 5H), 

6.93-6.89 (m, 2H), 6.74 (d, J = 16.0 Hz, 1H), 6.43 (td, J = 16.0, 5.8 Hz, 1H), 4.69 (d, J = 5.8 

Hz, 2H), 1.31 (s, 9H); 
13

C NMR (100 MHz, CDCl3): δ 156.5, 143.6, 136.6, 132.9, 128.7, 

127.9, 126.7, 126.4, 124.8, 114.3, 68.7, 34.2, 31.6. 

4-(cinnamyloxy)-1,1'-biphenyl (28): 

 

30.6 mg, 94.62% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.58-7.52 (m, 4H), 7.45-7.40 (m, 4H), 

7.36-7.25 (m, 4H), 7.06-7.02 (m, 2H), 6.77 (d, J = 16.0 Hz, 1H), 6.45 (td, J = 16.0, 6.0 Hz, 

1H), 4.78 (d, J = 6.0 Hz, 2H); 
13

C NMR (100 MHz, CDCl3): δ 158.3, 140.9, 136.5, 134.1, 

133.2, 128.8, 128.7, 128.3, 128.0, 126.8, 126.8, 126.7, 124.5, 115.1, 68.8. 

2-(cinnamyloxy)-1,4-dimethylbenzene (29): 

 

21.6 mg, 85.97% yield, 
1
H NMR (400 MHz, CDCl3): δ 7.45-7.43 (m, 2H), 7.37-7.33 (m, 2H), 

7.29-7.25 (m, 1H), 7.05 (d, J = 7.8 Hz, 1H), 6.78-6.72 (m, 3H), 6.49-6.42 (m, 1H), 4.73 (d, J 

= 5.9 Hz, 2H), 2.34 (s, 3H), 2.26 (s, 3H); 
13

C NMR (100 MHz, CDCl3): δ 156.8, 136.7, 

136.6, 132.2, 130.5, 128.7, 127.9, 126.6, 125.2, 123.9, 121.1, 112.5, 68.7, 21.5, 16.0. 
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CHAPTER 3 

Results and Discussions: 

Since our group is interested in nucleophilic and electrophilic trifluoromethylation 

reactions, we thought of developing trifluoromethylation of allyl acetates under Tsuji-Trost 

conditions using CF3B(OMe)3K salt as a nucleophilic trifluoromethylating agent (Scheme 

18). We tried this reaction under various reaction conditions with different Pd catalysts using 

cinnamyl acetate as s starting material. Although the starting material was consumed under 

the reaction conditions, the expected trifluoromethylated product was not obtained; instead 

methyl migration was observed (Scheme 18, Table 1).  

 

Scheme 18 

Table: 1. Optimization Table. 

 

Encouraged by this preliminary result, we thought of developing the allylic 

etherification reactions using tetraaryloxyborate salt instead of trifluoromethyl 
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trialkoxyborate salt (Scheme 19). It was observed that when tetraaryloxyborate salts were 

used as a source of aryloxy nucleophile, the expected aryloxylated products were obtained in 

good to excellent yields. Another important thing is that the reaction proceeded smoothly at 

room temperature. Few reports are already known for the synthesis of the allyl ethers using 

Tsuji-Trost protocol but involve higher temperatures and bases.  

 

Scheme 19 

 Before going for the optimization, a variety of sodium tetraaryloxy borate salts were 

synthesized by reaction of phenols with NaBH4 according to the literature procedure (Table 

2).
[18]

 In all the cases borate salts were obtained in the quantitative yields. Depending up on 

the phenols the reaction time varied from 15-80 h. As NaBH4 is not soluble in THF, on the 

basis of this completion of the reaction was estimated when the NaBH4 was completely 

dissolved in the solvent THF. As borate salts are not soluble in Et2O, small impurities of the 

phenols were removed by washing the salts with Et2O under dry conditions. Characterization 

of the borate salts were done by NMR spectroscopy.  

 All the allyl alcohols used were synthesized from the reaction of the respective 

aldehydes with the vinyl magnesium bromide by following the literature procedure (Table 

3).
[19]

 These alcohols were used for the synthesis of respective acetates. 

 Allyl acetates were synthesized by the acetylation of allyl alcohols using literature 

procedure (Table 4).
[20]

 Pyrene allyl acetate was prepared without isolating the respective 

allyl alcohol, which was basically prepared by the reaction of pyrene carboxaldehyde with 

vinyl magnesium bromide, after the workup the next step (acetylation) was carried out.  
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Table: 2. Synthesis of tetraaryloxy borate salts. 
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Table: 3. Synthesis of allyl alcohols. 
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Table: 4. Synthesis of allyl acetates. 

 

 

 

 

 

The optimization studies were carried out using allyl acetate derived from 

benzaldehyde and tetraphenyloxy borate salt (Table 5).  
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Table: 5. Optimization studies. 

Table: 5.1. Solvent screening. 

 

 

It is evident from Table 5.1 that the product was obtained in the maximum yield 

(99%, entry 4) when DCM was used as a solvent.  
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Table: 5.2. Screening of number of eq. of borate salt (b) and Pd catalyst. 

 

 

The above Table (Table 5.2) clearly shows that the yield of the product was maximum 

when 1.5 equivalent of borate salt was used (Entry 3) and the reaction worked pretty well 

with 5 mol% of the catalyst.   
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Table: 5.3. Pd catalyst screening.  

 

 

 Among all the Pd catalysts used for the optimization, Pd(PPh3)4 was found to be 

superior when compared to the other catalysts in terms of yield of the product as well as the 

reaction time. So, Entry 1 in the above table was chosen as the best condition. By using Entry 

1 as a standard condition, a variety of allyl acates and borate salts were used for substrate 

scope and the results are summarized in Table 6. Also, this reaction was found to be 

regioselective as only one product was isolated in all the cases.  
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Table: 6. Substrate scope for the allyl etherification. 
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Mechanistic Investigation:  

Since the mechanism of Tsuji-Trost reaction is well explored in the literature, we 

proposed the possible mechanism of our methodology which is depicted in Scheme 20. 

During the experiment, we observed that the secondary allyl acetate was converted in to the 

primary acetate. Although the nucleophilic attack of the borate salt would happen from both 

the terminals of the Pd-π-allyl complex, we observed only the terminal attack of the borate 

salts leading to internal alkenes. Since the borate salt is sterically bulky, we feel the internal 

attack of the salt towards the Pd-π-allyl complex didn’t happen in this particular case. 

 

Scheme 20 

3.1 Conclusion: 

A palladium catalyzed base free method has been developed for the synthesis of allyl ethers 

from allyl acetates using organo-boron salts as nucleophiles at room temperature. A variety of 

allyl ethers of phenol have been prepared using a wide range of organoboron salts as well as 

allyl acetates. The reaction of propargyl acetates under the standard reaction conditions is 

currently under investigation. 
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CHAPTER 4 

Spectral Data 
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