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“The nature of any process or event belonging to the space-time geometry

of the universe has its own ways of revealing itself in the language of

human conceptual frameworks when the human begins to reason”

Danish Shamoon



Abstract

The complex spatial arrangements that are found as biophotonic architectures on

a termite wing membrane have been observed to scatter a coherent laser beam in

a complex manner. This particular behavior has been explored experimentally and

numerically in the form of a multivariate analysis with particular sets of variables

and an explanation for such behavior with theoretical validation has been presented.

A literature survey of closely related topics and some areas of applications have also

been highlighted.
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Chapter 1

Introduction

1.1 Warm up

This study attempts to explain a natural process and explore some of its associated

processes using the jargon of many disciplines like biophotonics, signal processing,

pattern generation algorithms, mathematics and numerical methods.

So far, in learning and exploring the dazzling mysteries of this universe we know that

processes occur at all length scales within or beyond our reach. Be it the atomic

scale or the cosmic scale, interactions exist among various groups of various entities

at various levels. The motivation for this study was the observed scattering pattern

of a laser beam (Figure 2.2) when it passes through a wing of an insect. The pattern

on the screen is a consequence of the wave-matter interaction. Hence, a variety of

methods that can account for this particular behavior are employed and a general

framework of concepts to which it belongs is developed.

1.2 Introduction to Biophotonics

Biophotonic architectures consist of several hundreds or thousands of ‘objects’ not nec-

essarily identical, in a complex arrangement (a quasi-periodic spatial arrangement, full

characterization of which is not necessarily understood) [1], [2], [3], [4]. The complex

1
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networks of ‘objects’ found in biological organisms are in general multifunctional [5].

The interaction of light with these complex arrangements and its possible use by the

living organism is just one aspect in the manifold of its functions. The designs found

in biophotonic architectures have evolved through ages to acheive the amazingly ef-

ficient and smart present state which even the best artificial designs today cannot

possess. This is why biomimetics is a booming research area today [6] as more and

more engineers and scientists are beginning to understand and exploit some aspects

of these smart natural designs in various applications.

The particular problem that I wish to study belongs to a particular class of prob-

lems that have been explored experimentally to some extent [7] in as early as 1970s

and theoretical models also proposed around the same period using mathematical

justifications dating back to 1930s (Wiener-Kitchine Theorem). However, due to the

diversity in observed quasi-periodic natural arrangements getting even wider today

with latest imaging techniques, the problem apart from the optical functionality, i.e.

purely the emergence of spatio-temporal pattern in nature itself is a growing research

area. So, the particular problem that is the subject of this study is the phase modula-

tion of the light in far-field as a result of its interaction with biophotonic architectures.

Wave-matter interaction at a length scale comparable to the scale of the wavelengths

present in the incident wave results in the modulation of the emerging (either trans-

mitted or reflected) wave in a wide variety of ways. The simplest set of examples is

the far-field diffraction pattern of a single slit, a double slit or an N-slit experiment.

A rather complex illustration for visible monochromatic as well as visible band of

wavelengths can be found in this study. Studies particular to the colorful patterns

can be referred from [4], [5]. (See also Figure 1.1, 1.2 adapted from the same references)

Thus, I attempt to characterize the complex arrangement present in the biophotonic

architecture using a simple optical technique and its theoretical validation through this

study. It is important to mention that extraction of a similar information otherwise

requires the use of SEM or sphisticated live imaging methods.
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Figure 1.1: A variety of biophotonic architectures. For details, see [5]

1.3 The Approach for addressing the particular

problem

In order to study the long range structural correlations in biophotonic architectures,

I wish to explore and exploit the information in the transmitted complex far-field

pattern of the laser beam passing through a transparent wing of a termite species. I

also use numerical methods involving image processing and similar tools to address

the problems which are difficult to tackle experimentally.

The experimental and numerical results are presented in the form of a multivariate

analysis with transmitted intensity distribution in the far-field (in case of experimental

result) or the power spectrum (in case of numerical result) being the response variable.

The input variables are of two types. One that defines the 2D spatial organization of
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Figure 1.2: Stable colourful patterns in insect wings. For details, see [4]
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the objects with the identity specific variables which make the sample and the other

that are external to the sample. In a multivariate analysis, the input variables are

systematically and selectively controlled to examine the response variable. It should

be noted that former type of input variables can be easily altered to a much greater

extent in a numerical method whereas it can’t be easily achieved in experimental

method.

Figure 1.3: Using FFT in 2D space for far-field approximation of scattering with
associated scaling and calculations

A tool that I repeatedly use in the numerical method is 2D FFT of the sample SEM

image or simply some arbitrary binary image generated by varying the input variables.
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The theoretical aspects with visualization schemes are shown in the Figure 1.3. The

power spectrum calculated from 2D FFT approximates the far-field intensity distri-

bution scattered by a real sample of similar configuration. I demonstrate the close

agreement through the Figure 1.4 in which a,c shows the single wire optical diffraction

pattern (ODP) and its corresponding intensity cut and b,d shows the power spectrum

calculated from the 2D FFT of the microscopic image of the same wire and corre-

sponding intensity cut from the power spectrum. The screen distance units in the

ODP have been scaled with a constant derived theoretically.

Figure 1.4: Verification of the scaling factor and agreement between ODP and
power spectrum



Chapter 2

Experimental Results

Figure 2.1: Schematic of the set-up with various components SH: wing sample
holder; AP1,AP2: iris; C: beam expander; SC: screen and NDF: ND filter wheel [8]

Figure 2.2: Left: A Termite species which develops its wings (∼2cm) during the
rainy season, otherwise it is wingless. Right: Scattering of green laser beam due to
the termite wing. Scale is shown in the image bottom. First lobe is at around 8mm

from the central peak. Screen distance is 20.5cm from the sample.

7
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2.1 Images of sample

Figure 2.3: Images of sample at various magnifications

The images of the termite wing (to be called as sample in the rest of the report)

at various magnifications shown in Figure 2.3 provide the first examination of the

structural complexity present in it at various length scales. The second picture in the

same figure shows the stable colours though faintly visible, similar to the ones shown

in Figure 1.2.
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2.2 Screen distance variation

Low Intensity High Intensity 

  
1 unit 

  
2 unit 

  
3 unit 

 

Low Intensity High Intensity 

  
4 unit 

  
5 unit 

  
6 unit 

 

Low Intensity High Intensity 

  
7 unit 

  
 8 unit 

  
9 unit 

 

  
10 unit 

  
11 unit 

 

Table 2.1: Results for screen distance variation. A unit is equal to an inch and
the screen distance from sample is 1cm less than each reading

Within the fixed parameters of the laser, like beam spot size and wavelength, the

readings were taken by varying the screen at every inch starting from zero to 11 for

low and high intensity of laser source. The characteristic side lobes resolved to the

eyes clearly after crossing close to 4 inches from the sample. The result of screen

distance variation is simply a diverging intensity distribution. Tracking a point on

the first order at all the steps gave a rate of movement 1mm/inch . Extrapolating this

rate towards zero suggests that the divergence of this pattern begins right from the
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beam spot positioned at the sample and emerging from it. This is probably because

the used beam spot was large enough to suppress the characteristic distribution at

distances before 4 inches.

2.3 Beam spot radius variation

Table 2.2: Results for beam spot radius variation. Stepsize is 10 micron (stepsize
is for the direction of beam propagation corresponding to which the radius changes

according to Rayleigh length formula)

Beam spot radius variation was performed by varying the z axis distance by 10 micron

steps near the Rayleigh range of a tightly focused beam at a fixed position of the

sample. The beam spot size variation (Figure 2.2) shows the development of the

characteristic pattern in its early stages which develops from a very different looking

pattern shown at the smallest radius used. However, it must be noted that as the

radius further increases and it incorporates more objects, the pattern may still change

further.

2.4 Beam spot position variation

Position variation was performed at 5 micron step along x axis for two small radii

chosen from the above mentioned experimental data set. The difference between the
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Table 2.3: Results for beam spot position variation at different radii. Stepsize is
5µm along x axis.

z axis positions for the two beam spot sizes was 100 micron, r1 being greater than r2.

Here as well, the pattern changes in various ways as position under the beam spot is

varied.

2.5 Laser source variation

The laser sources were varied in this experiment to check the sensitivity of sample

to other wavelengths. This result is adapted from [8]. The only difference in the red

(around 630nm) and green (around 530nm) diffraction patterns was a very minute

variation in the location of lobes along the radial directions on screen just as it occurs

in a single slit experiment with red and green wavelengths. However, the femto-

second pulses are short duration and broad band i.e. they contain more wavelengths

(centered at 800nm in near IR range). They interacted with the sample in a distinct

way giving additional features to the scattering pattern. This experiment is a more

advanced topic for this report and can form a separate and interesting study as it may

account for time evolution of the observed pattern or allow small modulation of the

refractive index of the sample which cannot be done via monochromatic source alone.

The different features can be seen in the Figure 2.4.
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Table 2.4: Results for laser source variation. Femto-second pulses (First row),
Green laser (Second row) and Red laser (Third row); For details, see [8]

.



Chapter 3

SEM image analysis

3.1 Introduction

The numerical results presented in this chapter are based on the approach of extracting

relevant information from the image of the sample by image processing methods. Con-

sequently, the extracted information has been further analyzed. The various methods

that I have used are Morphological operations, Image masking and BLOB analysis.

Figure 3.1: The image over which the image processing has been carried out.
Each pixel corresponds to a square of side 1.2987µm, refered to as dx in this report.

13
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3.2 Morphological operations

In this method, the basic operations are dilation and erosion. With respect to a small

reference signal or binary object, dilation induces logical 1 whereas erosion induces

logical 0 in the binary image. What it does to the image and its power spectrum

is shown in Table 3.1. Some specfic combinations of the two can also be used for

extracting the perimeter of the objects. The relevance of using this method and

its results in the context of this study is that it facilitates a unique way of shape,

size and inter-object distance variation simultaneously that may match with some

real spatio-temporal biological patterns. Note that this specific kind of combined

variation scheme is different than most of the single variable variation schemes I have

employed in this text.

SEM Image with resolution 1.2987e-6 m/pixel FFT of the SEM image 

 
X = Reference Image 

 

 
Y = Black and white image of X 

 

 
Z = Perimeter image of Y 

 

 

SEM Image with resolution 1.2987e-6 m/pixel FFT of the SEM image 

 
Dilated Y with a3X3 pixel square  

 

 
Dilated Y with a 4X4 pixel square 

 

Dilated Y with a 5X5 pixel square 
 

 

SEM Image with resolution 1.2987e-6 m/pixel FFT of the SEM image 

Dilated Y with a 6X6 pixel square 
 

Dilated Y with a 7X7 pixel square 
 

Dilated Y with a 8X8 pixel square 
 

 

SEM Image with resolution 1.2987e-6 m/pixel FFT of the SEM image 

Dilated Y with a 9X9 pixel square 
 

Eroded Y with a 2X2 pixel square 
 

Eroded Y with a 3X3 pixel square 
 

 

Table 3.1: Effects of morphological operations



Chapter 3. SEM image analysis 15

3.3 Gaussian masking

Figure 3.2: The radius of the Gaussian mask is 33dx and 123dx respectively.

The image is modulated with a mask in this method as shown in Figure 3.2. A

Gaussian mask is chosen here because it creates the effect of an illuminated sample

with a laser beam spot. I exploit this method to relate and elaborate the patterns

obtained from the experiment using a variable beam spot and scanning over the

sample with different sizes of beam spot. This is a theoretical elaboration of the

results presented in sections 2.3 and 2.4.

3.3.1 Mask radius variation

3dx 12dx 

6dx 15dx 

9dx 18dx 

 

21dx 30dx 

24dx 63dx 

27dx 93dx 

 

Table 3.2: Power spectra for various radii of the mask (Radius mentioned in the
left bottom of each cell). Note that the observed pattern begins appearing as early

as at 18dx radius
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3.3.2 Scanning the mask over image

    

    

    

    

    

    
 

Table 3.3: Power spectra for scanning the mask of radius 63dx from left to right
starting from 1/3,1/2 and 2/3 of the vertical axis length. Note the changing features

in the patterns.

3.4 Binary or Labeled OBjects (BLOB) analysis

BLOB stands for Binary or labeled objects. A binary image is scanned for labeling

objects in it based on 8-pixel connectivity. This primarily counts the number of objects

labeled as per the connectivity and then various properties of the labeled objects such

as centroid coordinates and area can be calculated via inbuilt functions. The objects

may also be modeled as ellipses and then calculations for their orientation and lengths

of major and minor axes be performed.
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3.4.1 Examining distribution of objects’ geometric properties

Figure 3.3: Spatial distribution of orientation of objects. Open interval for left
value and closed interval for right in the legends.

Figure 3.4: Histogram for orientation of objects. Central bar mostly corresponds
to the incorrect object extraction. The correct number of objects of interest having

zero orientation is negligible.

The number of objects counted by the method is 2743 in the cropped SEM image

shown in 3.1. It models these objects as ellipses and further calculates the geometric
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Figure 3.5: Histogram for various geometric properties of the objects

properties. Histograms for object properties are also shown in Figure 3.4 and 3.5. It

must be noted that the extracted objects are not all correct which is illustrated with

the help of Figure 3.6. I call them incorrect objects only in relation to the general

objects present in the sample. However, it must be noted that the binary image of

the sample highlights all the objects that have a threshold illumination in the SEM

image.

Figure 3.6: Object having near zero orientation and the circular ones are marked
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3.4.2 Examining the effects of different shapes of objects

 
Solid square rotated by 45o 

 
Hollow square 

 
Hollow star (5 pointed) 

   

 
Hollow star (6 pointed) 

 
Hollow diamond 

 
Circular ring 

 
  

 

Table 3.4: Power spectra for various shapes on extracted coordinates (a)

This section presents the beautiful intensity distributions that appear when the ex-

tracted objects from the previous numerical experiment are replaced with identical

shape objects such as rings, squares or triangles etc. The results are shown in Ta-

ble 3.4 and 5.1 that clearly reflect the diversity as well as some common features in

the power spectra for various shapes.





Chapter 4

Pattern generation

4.1 Introduction

This chapter is devoted to exploring the second approach of extracting information

which is to develop a variety of 2D spatial arrangements of objects purely numerically

that is used as a sample in the place of SEM image and then the power spectrum is

calculated as before.

There are many logics for generating patterns. Simple as well as complex patterns

can be generated via inbuilt functions for coordinate generation with a little bit of

additional programming while patterns that emerge as a consequence of interaction

among species, require solutions from non-trivial coupled system of partial differential

equations with the recognition of valid parameter space among other models. I present

insights from both of these methods emphasizing that generation of quasi periodic

patterns can be done in infinite ways and a general, reduced and exhaustive scheme

of its investigation is not yet available to my knowledge.

4.1.1 Pattern formation in biological systems

One can choose to generate patterns based on the mathematical models in the field of

developmental biology under morphology to achieve or only explore a desired set of

spatial wavelengths present in the system. This area is a complete field in itself and

21
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several texts on the topic are available such as [9] and [10]. Solving these models is

much more difficult than generating user defined patterns discussed in the next section

because former must account for many interactions among components via linear or

non-linear stability analyses of mostly the non-linear equations involved which the

latter may skip and allocate a paticular object at a point purely for putting it there.

4.2 User defined pattern generation

4.2.1 2D analogue of N-slit experiment

Table 4.1: 2D analogue of N-slit experiment

In first demonstration, I begin with an approximately circular aperture and approx-

imate its observed diffraction pattern via power spectrum. Then, I increment the
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number of apertures as an integer to the power two with identical spacing and shape

to illustrate the 2D analogue of N-slit experiment. This illustration is given in Ta-

ble 4.1.

4.2.2 Fluctuations in radius and center

Table 4.2: Size distribution variation (first row) and interspacing distribution
variation (second row); dx is 0.375µm

In the second demonstration, I introduce a size variation only in the radii of approxi-

mate circles by ±2dx using a uniform random distribution for 100 circle radii shown in

first row of Table 4.2 and I introduce spacing variation from their centers ±2dx using

a uniform random distribution for 100 circle centers shown in second row of Table 4.2.

Please note that since the spaces are discrete, the radius or position random variable

can now be found as any value from x, x+dx, x+2dx, x-dx or x-2dx if x is the mean

value of that variable.
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Table 4.3: Orientaion distribution variation. Ellipses at reference orientation (first
row), ±10 degree variation (second row), ±20 degree variation (third row)

4.2.3 Fluctuations in orientation

In the third demonstration, I use ellipse for showing the effect of orientation distri-

bution. In the Table 4.3, first row shows the arrangement of ellipses aligned with

major axis along y axis, all in the same orientation. Second row is given ±10 degree

variation about y axis. Third row is given ±20 degree variation about y axis. The

variation is given in the same manner as before.
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4.2.4 Multiple periodicities in one signal

Figure 4.1: Many periodicities in one arrangement

In the fourth demonstration, I provide a perspective to understand the idea of hav-

ing many kinds of periodicities in a single arrangement. This is the key explanation,

though not a rigorous description of the various far-field intensity distributions dis-

cussed so far. I divide an array of 20X20 ellipses into a 4X4 array of 5X5 ellipses

associated with each divided region and having a unique orientation for its ellipses.

The arrangement shown in the left column of Figure 4.1 has periodically alternat-

ing orientation regions. Imagine a horizontal line crossing the vertically orientated

major axis ellipses only; say it encounters an ellipse at every p unit. Move this line

so that now it encounters the other orientation ellipses as well, so that it meets an

ellipse at every q unit. Doing it over whole image gives only two such units p and q

corresponding to which there must be peaks in the power spectrum. Obviously, peak

corresponding to p will be less intense than that for q since q=2p in the shown image.

Now, imagine a line parallel to the diagonal, this line encounters the ellipses with

many different frequencies if it is moved parallel to itself. Another way is to consider

the regions having same orientations for its ellipses as one unit and observe the pe-

riodicity of such units. The take-away point being that the power spectrum consists

of peaks corresponding to all the periodicities in the arrangement. What happens,

if periodicity is perturbed as in the second and third demonstration? The narrow

peaks indicating high periodicity begin to spread depending upon the variables set to

be perturbed. The final output is a result of all important variables that collectively

define the 2D spatial arrangement and is hence complex.





Chapter 5

Concluding remarks

5.1 Summary and discussion

The complex spatial organization of the photonic elements referred to as ‘objects’ in

this text constituting the biophotonic architecture can manipulate light in a variety

of complex ways. A particular class of such behavior has been studied in detail via

experimental and numerical methods in the form of multivariate analysis. Intensity

distribution in the far-field or the power spectrum has been taken as the response

variable while there are several input variables that collectively influence or control

the response variable. One or more of the input variables have been varied while

keeping the others constant to study the response variable.

In the first chapter, a glance at the diversity in the appearance of biophotonic ar-

chitectures has been provided. Some of its biological functions for the species or

its biomimetic applications have also been referred. The equivalence of the power

spectrum calculated via the 2D FFT of an image of sample and the far-field opti-

cal diffraction pattern has been theoretically and visually elaborated, accounting the

scaling terms. The agreement between the single wire optical diffraction pattern and

the power spectrum of its image has been explicitly shown.

27
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In the second chapter, I introduced the first hand observations for the particular prob-

lem that has been studied. Images of the sample at various magnifications ranging

from 20x to 215x has been shown while SEM images of the sample at much higher

resolution are also shown. The scattering patterns have been recorded for various

variables external to the sample such as screen distance variation, beam spot size

variation, beam spot position variation (over the sample) and laser source variation.

Note that only one sample has been used which means the input variables that define

the spatial pattern on the wing are unchanged. The key inferences from this chapter

are as follows: Observed pattern is resolved by eyes when it is as close as 4 inch

from the sample and then it only diverges away from the sample by around 2.26◦.

The scattering pattern does not look as it appears with a standard laser beam size

of around 1-2 mm when a tightly focused beam spot is used. It begins to develop

as the spot size is increased. When the beam spot was scanned over the wing, the

pattern continuously changed its features in a non-linear way. Different laser sources

were also used to qualitatively check wavelength sensitivity of the scattering pattern

and it was observed that the red and green diode lasers gave very close patterns while

that for a femto-second pulse contained additional features.

In the third chapter, I employed some numerical methods to extract information from

the SEM image of the sample. I used morphological operations to change the struc-

tural input variables of the sample in a unique way that is not easily employed via

other methods and its results were also interesting as some configurations gradually

dissolved the side lobes leaving only the central spot while other configurations in-

duced higher order lobes. I used image masking to simulate the effect of beam spot

size regulation and showed much clearer results than those in the experiment. BLOB

(binary or labeled objects) analysis gave the distributions of various geometric prop-

erties that have been presented as histograms or spatial distribution diagrams. The

objects were modeled as ellipses for properties like orientation and length of axes.

It was found that most frequent ranges for width were 2.5dx-3.5dx, for length were

8dx-9dx and for area were 16dx-17dx. For orientation, compared to other properties,

a much smoother distribution with an angular deviation of ±30◦ from the vertical axis

of the image was present. Final section in this chapter presented a small numerical
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experiment that shows beautiful power spectra that result when the extracted cen-

troid coordinates are used to put identical shapes like rings, squares or triangles.

In the fourth chapter, I presented a numerical approach for generating the spatial

pattern first, and then doing the power spectra calculation as before for various struc-

tural input variables. Firstly, I presented the 2D analogue of the N-slit experiment.

Then I introduced small fluctuations (±2dx) in the radius and position of the center

separately. Much stronger fluctuations (±10◦ and ± 20◦ ) for orientation have been

shown. The corresponding power spectra have been shown for comparison. Finally, I

explained the signatures of multiple periodicities present in the image into the Fourier

space of power spectrum.

5.2 What more can be done

• One can use a variety of samples consisting of biophotonic architecture as I used

only a termite wing. A similar or more advanced scheme of methods can be

employed for classifying the biophotonic architectures into groups based on the

response variable. An elaborate characterization of this particular complex op-

tical behavior with the derivation of intrinsic structural variables composed of

combinations of the presented varibales of this system in a mathematical model

will be a fruitful study having a broad range of applications.

• Screen distance variation experiment: The Fresnel number is defined for a single

element aperture not a complex aperture in my knowledge. The Fresnel num-

ber for an object of size ∼4µm at green wavelength is ∼30µm. For ∼10µm it

is ∼200µm and for ∼50µm it is ∼5mm. From the numerical results shown in

section 3.3 it is clear that the pattern begins to develop at around the same

diameter (∼50µm). We may consider this to be the effective diameter for the

complex aperture function and then accordingly record intensity distributions

in the range from zero to ∼5mm. So one can explore whether the scattering

pattern develops after the Fresnel number (for complex aperture function) or
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before it, that is in the near-field region. The side lobes before being resolved

were possibly inside the bright region of the beam and may appear much before

if a smaller beam radius is used.

• The extra information contained in the scattered pattern via femto-second pulses

can make a good study.

• The numerical approach can be extended to much larger extent involving cluster

analysis as one example or imposing various distributions like Gaussian, Possion

or any arbitrary distribution to the objects’ geometric properties discussed in

section 3.4 or introducing varying disorder in the structural input variables and

much more.

5.3 Possible applications of this study

Apart from the points mentioned in previous section which also serve as applica-

tions of methodology and results from this study for further research, there are

some practical applications which are twofold. As the title says ‘long range cor-

relations’, it simply means a measure of the correlated far-field optical diffraction

pattern with respect to the spatial brightness distribution of optical field at the

sample. The spatial frequency analysis methods (or simply the power spectra

I used) are already employed in various studies in biophotonics [11], [12], [13]

and biomedical imaging [14], [15]. If a theoretical model is proposed with rele-

vant parameters as highlighted in the first point of previous section. It can have

possible applications in optical probing of real time spatio-temporal changes at

the mesoscopic scale which are of prime importance in many biomedical appli-

cations like tracking cell-differentiation where shape and size changes take place

and physical applications like designing photonic waveguides, regulation of el-

ement size in photonic crystal manufacturing. Such ideas can be conceived in

reference to the power spectra shown in Table 3.1 and 5.1.
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Table 5.1: Power spectra for various shapes on extracted coordinates (b)





Appendix A

MATLAB scripts

The details of the specific uses of commands and functions can be found in

the MATLAB documentation and it must be noted that some experience in

programming is required for using this code as it will be required to replace some

symbols from multiple locations to appropriately run it. Another important

point regarding calculation of power spectra is the transform length, that must

be increased to atleast twice the size of sample image. I used MATLAB version

7.6.0.324 (R2008a).

A.1 For SEM image analysis

clear

% number of pixels to square crop the image file

n=512;

% read the image file here

cima=im2double(imread(image filename));

% set crop limits here

cima=imcrop(cima,[1 1 511 511]);

% adjust background illumination if it is non uniform

bkgrnd=imopen(cima,strel(’disk’,3));

I3=imadjust(imsubtract(cima,bkgrnd));

% create a binary image here

level = graythresh(I3);

33
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bw =im2bw(I3,level);

% label or identify the objects here

[labeled,numObjects] = bwlabel(bw,8);

% calculate various geometric properties of the identified objects here

graindata = regionprops(labeled,’Area’,’Centroid’,’Orientation’,’MajorAxis

Length’,’MinorAxisLength’);

% create separate easy to use variables from the above data structure of prop-

erties

for k=1:numObjects

xx(k,:)=[graindata(k,1).Centroid(1,1)+(0.5*graindata(k,1).MajorAxisLength(1,1)

*cos(deg2rad(graindata(k,1).Orientation(1,1))))...

graindata(k,1).Centroid(1,1)-(0.5*graindata(k,1).MajorAxisLength(1,1)

*cos(deg2rad(graindata(k,1).Orientation(1,1))))];

yy(k,:)=[graindata(k,1).Centroid(1,2)+(0.5*graindata(k,1).MajorAxisLength(1,1)

*sin(deg2rad(graindata(k,1).Orientation(1,1))))...

graindata(k,1).Centroid(1,2)-(0.5*graindata(k,1).MajorAxisLength(1,1)

*sin(deg2rad(graindata(k,1).Orientation(1,1))))];

x(k,1)=graindata(k,1).Centroid(1,1);

y(k,1)=graindata(k,1).Centroid(1,2);

end

for i=1:numObjects

A(i)=graindata(i,1).Area(1,1);

O(i)=graindata(i,1).Orientation(1,1);

M(i)=graindata(i,1).MajorAxisLength(1,1);

m(i)=graindata(i,1).MinorAxisLength(1,1);

end
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A.2 For pattern generation

clear

Ncellmax=20;%#of cells along 1 direction

pxprcell=32;acell=12e-6;%#of pix per cell and square cell parameter

N=Ncellmax*pxprcell;%#of grid pts

dx=acell/pxprcell;dy=acell/pxprcell;%smallest length element

%minor rectangular grid for each cell

xcell=dx*[0:pxprcell-1];ycell=dy*[0:pxprcell-1];

cellcntrx=.5*[max(xcell)-min(xcell)];cellcntry=.5*[max(ycell)-min(ycell)];

[xcell ycell]=meshgrid(xcell,ycell);

a=3e-6;b=5e-6;%a=width along x; b=length along y or length of arc (for curved

structure)

%r1=ri*1e-6;%inner radius for curved structure

zo=cellcntrx+i*cellcntry;%complex notation

[t r]=cart2pol(xcell-cellcntrx,ycell-cellcntrx);z=r.*exp(i*t);%minor grid in polar

co-ords.

%fluctuation amplitudes

sigma int angle=0;%individual orientation

sigma int fl x=0;sigma int fl y=0;%individual positional

sigma fl a=0;sigma fl b=0;sigma fl r1=0;%individual size/shape

%————————————————————————–

%fluctuation distribution for each cell based on fluctuation amplitudes

%rotang=round(sigma int angle*(rand(Ncellmax)-.5))+(0);

%rotang=repmat(-15:30/(Ncellmax-1):15,Ncellmax,1)+rotang;

%rotang=repmat([235 125;-235 -125],Ncellmax/2,Ncellmax/2);

%rotang=cat(1,repmat(180:-180/((Ncellmax-1)):0,Ncellmax/2,1),
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repmat(-180:180/((Ncellmax-1)):0,Ncellmax/2,1))+rotang;%non random distri-

bution for orientation

fl x=dx*round(sigma int fl x*(rand(Ncellmax)-.5));

fl y=dy*round(sigma int fl y*(rand(Ncellmax)-.5));

fl a=dx*round(sigma fl a*(rand(Ncellmax)-.5));

fl b=dy*round(sigma fl b*(rand(Ncellmax)-.5));

fl z=fl x+i*fl y;fl r1=dx*round(sigma fl r1*(rand(Ncellmax)-.5));

%Wavy pattern and other non random distributions—————————

%[zx,zy]=meshgrid(-4*pi:8*pi/(Ncellmax-1):4*pi,-4*pi:8*pi/(Ncellmax-1):4*pi);

%fl z=cat(1,repmat((-1:2/(Ncellmax-1):1).*3e-6,Ncellmax/2,1),

repmat((1:-2/(Ncellmax-1):-1).*3e-6,Ncellmax/2,1));fl z=fl z’;

%fl z1=((cos(4*zy)+i*sin(9*zx)).*1e-6);fl z2=((cos(9*zy)+i*sin(4*zx)).*1e-6);

%fl z=cat(2,fl z1(1:Ncellmax,1:(Ncellmax/4)),

fl z2(1:Ncellmax,(Ncellmax/4)+1:Ncellmax/2),...

% fl z1(1:Ncellmax,(Ncellmax/2)+1:(3*Ncellmax/4)),

fl z2(1:Ncellmax,(3*Ncellmax/4)+1:Ncellmax));

%fl z=repmat([-3 ;3],Ncellmax/2,Ncellmax).*1e-6 + fl z;

% sigma int angle patch=180;Npatchmax=4;cellprpatch=Ncellmax/Npatchmax;

% rotang patch mag=round(sigma int angle patch*(rand(Npatchmax)-.5));

%for u=1:Npatchmax

% for v=1:Npatchmax

% rotang patch((u-1)*cellprpatch+[1:cellprpatch],(v-1)

cellprpatch+[1:cellprpatch])=rotang patch mag(u,v);

% end

%end

%Shape selection and aperture function————————————-

f = zeros(N,N);

for u=1:Ncellmax

for v=1:Ncellmax
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%Gaussian

%fcell=exp(- (( ( (xcell-(cellcntrx+fl x(v,u)))/...

% ((((a/2)+fl a(u,v)))) ).power2 +...

% ( (ycell-(cellcntry+fl y(v,u)) )/...

% ((((b/2)+fl b(u,v)))) ).power2 ) ));

%circle

fcell = ( ((xcell-(cellcntrx+fl x(v,u)) )/((a/2)+fl a(u,v))).power2 +

((ycell-(cellcntry+fl y(v,u)) )/((b/2)+fl b(u,v))).power2¡=1);

%rectangle

%fcell = ((xcell-(cellcntrx+fl x(v,u)))¡=(a+fl a(u,v))/2 &

(xcell-(cellcntrx+fl x(v,u)))¿=(-a+fl a(u,v))/2 &

(ycell-(cellcntry+fl y(v,u)))¡=(b+fl b(u,v))/2 &

(ycell-(cellcntry+fl y(v,u)))¿=(-b+fl b(u,v))/2);

%triangle

%fcell = ((xcell-(cellcntrx+fl x(v,u)))/(a+fl a(u,v)) +

(ycell-(cellcntry+fl y(v,u)))/(b+fl b(u,v)) ¡=1 &

(xcell-(cellcntrx+fl x(v,u)))¿=0 &

(ycell-(cellcntry+fl y(v,u)))¿=0);

%Curved structure

%theta=(b+fl b(u,v))/(r1+fl r1(u,v)+(a+fl a(u,v))/2);

%fcell=(abs(z+r1+fl z(v,u))¡=(a+fl a(u,v))+r1+fl r1(u,v) & ...

% abs(z+r1+fl z(v,u))¿=r1+fl r1(u,v) & ...

% angle(z+r1+fl z(v,u))¿-theta/2 & angle(z+r1+fl z(v,u))¡theta/2);

%theta=(b+fl b(u,v))/(r1+(a+fl a(u,v))/2);

%fcell=( exp(- ( ((r-r1)/(.5*(a+fl a(u,v)))).power2 ) ));

% .*exp(-(((t-0)/(.5*(pi/3))).power2)));

%rotang(v,u)=round((rand-.5)*rotang patch(v,u));

%Symmetry operation (rotation) over each cell——————————

fcell = imrotate(fcell,rotang(v,u),’crop’);
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f((v-1)*pxprcell+[1:pxprcell],(u-1)*pxprcell+[1:pxprcell]) = fcell;

end

end

%Symmetry operation over selected regions———————————-

%f1=imrotate(f(1:N/2,1:N/2),3,’crop’);

f4=imrotate(f(N/2+1:N,N/2+1:N),15,’crop’);

%f3=imrotate(f(N/2+1:N,1:N/2),-15,’crop’);

f2=imrotate(f(1:N/2,N/2+1:N),9,’crop’);

%fo=imrotate(f1(1:N/4,1:N/4),3,’crop’);

f1(1:N/4,1:N/4)=fo;

fo=imrotate(f2(1:N/4,1:N/4),3,’crop’);

f2(1:N/4,1:N/4)=fo;

%f=[f1 f2;f3 f4];

%Background noise and final surface modulation / masking

%f=imnoise(f,’gaussian’,0,.009);

%[X Y]=meshgrid(dx*(0:N-1),dx*(0:N-1));

%Z=exp(- (( ( (X-(N*dx/2))/...

% (((br))) ).power2 +...

% ( (Y-(N*dx/2))/...

% (((br))) ).power2 )) );f=f.*Z; % Gaussian Signal Final Modulation

%Z=(((X-(N*dx/2))./(N*dx/4)).power2+((Y-(N*dx/2))./(N*dx/4)).power2¿=1

& ((X-(N*dx/2))./(N*dx/2)).power2+((Y-(N*dx/2))./(N*dx/2)).power2¡=1);

%Z=(((X-(N*dx/2))./(br)).power2+((Y-(N*dx/2))./(br)).power2¿=1);

%f=f.*Z;

%Reults——————————————————————————

tl=1024;%length of transform length

%fCor=corr(f);%pairwise correlation

fr = fftshift(fft2(f,tl,tl));% frMod =(fr.*conj(fr));%power spectrum

frPhase =angle(fr);

xxx=(0:N-1)*(dx);zzz=(-tl/2:tl/2-1)*(2*pi/(tl*dx));
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%subplot(1,3,1),%set(gcf,’windowstyle’,’docked’)

figure,imagesc([xxx(1) xxx(N)],[xxx(1) xxx(N)],f),colormap(hot),axis xy square,...

xlabel(’Length (meter)’),ylabel(’Length (meter)’),title(’Aperture Function (AF)’),

colorbar%[1 1 1;0 0 0]

%figure,imagesc([xxx(1) xxx(N)],[xxx(1) xxx(N)],fCor),colormap(jet),

axis xy square,...

% xlabel(’Length (meter)’),ylabel(’Length (meter)’),title(’Correlation Matrix for

AF’),

colorbar%[1 1 1;0 0 0]

%subplot(1,3,2)

%figure,imagesc([zzz(1) zzz(tl)],[zzz(1) zzz(tl)],(frMod)),colormap(hot),axis xy

square,...

% xlabel(’kx (radian/meter)’),ylabel(’ky (radian/meter)’),title(’Power Spectrum’),

colorbar%,axis([-2e6 2e6 -2e6 2e6])

%subplot(1,3,3)

figure,imagesc([zzz(1) zzz(tl)],[zzz(1) zzz(tl)],log(frMod)),colormap(hot),axis xy

square,...

xlabel(’kx (radian/meter)’),ylabel(’ky (radian/meter)’),title(’log of Power Spec-

trum’),

colorbar%,axis([-2e6 2e6 -2e6 2e6])
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