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groups

Harjit Singh Sandhu

A dissertation submitted for the partial fulfilment
of BS-MS dual degree in Science

Department of Mathematical Science

Indian Institute of Science Education and Research Mohali
April 2014



2



Certificate of Examination

This is to certify that the dissertation titled Conjugacy classes in Möbius
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Abstract

Let Hn+1 denote the n+1-dimensional (real) hyperbolic space and let Sn denote the

conformal boundary of the hyperbolic space. M(n) denotes the group of conformal

diffeomorphisms of Sn and Mo(n) be defined as identity component which consists

of all orientation preserving elements in M(n). Conjugacy classes of isometrics in

Mo(n) depends on the conjugacy of T and T−1 in Mo(n). For an element T ∈M(n),

T and T−1 are conjugate in M(n), but they may not be conjugate in Mo(n). T is

called real if T and T−1 are conjugate to each other in M0(n). Let T be an element

in Mo(n), so to T there is an associated element To in SO(n + 1). If the complex

conjugate eigenvalues of To are given by {eiθj , e−iθj}, 0 < θj 6 π, j = 1, · · · , k,

then θ1, · · · , θk are called the rotation angles of T . T is called a regular element if

the rotation angles of T are distinct from each-other. After classification of the real

elements in Mo(n) we have parametrized the conjugacy classes of regular elements in

Mo(n). In the parametrization, when T is not conjugate to T−1, then enlarge the

group and consider the conjugacy class of T in M(n). So each such conjugacy class

can be induced with a fibration structure.

xi



xii



Contents

List of Figures vii

Notation ix

Abstract xi

1 Hyperbolic Geometry 1

1.1 Lorentzian n-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Lorentz Transformation . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 The Time-Like Angle between Time-Like Vectors . . . . . . . . 5

1.2 Hyperbolic n-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Lorentzian Cross Products . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Hyperbolic Geodesics . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The Hyperbolic Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Area of Hyperbolic Triangles . . . . . . . . . . . . . . . . . . . . 13

2 Inversive Geometry 19

2.1 Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Inversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Conformal Transformations . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Angle Between Curves . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Sterographic Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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Chapter 1

Hyperbolic Geometry

The theory and proofs in this chapter are based on Ratcliffe, J.G.: Foundation of

Hyperbolic Manifolds, Graduate Texts in Mathematics 149. Springer, Berlin (1994).

In the first half of the nineteenth century Hyperbolic geometry was created in

order to prove the dependence of Euclid’s fifth postulate on the first four. Around

300 B.C. Euclid wrote his famous elements. In thirteen volume work he brilliantly

organized and presented the fundamental propositions of Greek geometry and number

theory. Now in this chapter we will study the hyperbolic geometry defining a new

inner product on Rn which we call the Lorentzian inner product, then we will proceed

to the positive half of the sphere of unit imaginary radius in Rn+1 which we call

hyperbolic n-space Hn.

1.1 Lorentzian n-Space

Let x, y be vectors in Rn.The Lorentzian inner product of x, y is the real number given

by

x ◦ y = −x1y1 + x2y2 + · · ·+ xnyn (1.1)

Lorentzian n-space is the inner product space consisting of the vector space Rn with

the Lorentzian inner product and is denoted by R1,n−1.

Let x be a vector in Rn. The Lorentzian norm (length)of x is defined by the

complex number

‖x‖ = (x ◦ x)1/2 (1.2)
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‖x‖ is either zero, positive, or positive imaginary. The absolute value of positive

imaginary ‖x‖ is denoted by ‖|x‖|.

Figure 1.1: The light cone C2 of R1,2

Image Courtesy: Ratcliffe, J.G.: Foundation of Hyperbolic Manifolds, Graduate

Texts in Mathematics 149. Springer, Berlin p. 55 (1994).

We define a vector x̄ ∈ Rn−1 by

x̄ = (x2, x3, · · · , xn) (1.3)

Then

‖x‖2 = −x1
2 + |x̄|2 (1.4)

If vectors x, y ∈ Rn, then

x ◦ y = −x1y1 + x̄ȳ (1.5)
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The hypercone Cn−1 is defined by equation |x1| = |x̄| which is set of all x ∈ Rn

such that ‖x‖ = 0. The hypercone Cn−1 is called the light cone of Rn. If ‖x‖ = 0,

then the vector x is said to be light-like. A light-like vector x in Rn is said to be

positive (or negative) iff x1 > 0 (or x1 < 0).

If ‖x‖ > 0, then x is said to be space-like. So x is space-like iff |x1| < |x̄|. The exterior

of Cn−1 in Rn is the open subset of Rn consisting of all the space-like vectors.

If ‖x‖ is imaginary, then x is said to be time-like. It can be easily seen that x is time-

like iff |x1| > |x̄|. We say that time-like vector x is said to be positive (or negative)

iff x1 > 0 (or x1 < 0). The interior of Cn−1 in Rn is the open subset of Rn consisting

of all the time-like vectors. A vector is said to be space-like if ‖x‖ > 0 then x is

space-like iff |x1| < |x̄|.

Theorem 1. Let x, y be nonzero nonspace-like vectors in Rn with the same parity.

Then x ◦ y ≤ 0 with equality iff x, y are linearly dependent light-like vectors.

Theorem 2. If x, y are nonzero nonspace-like vectors in Rn, with the same parity,

and t > 0, then

• the vector tx has the same likeness and parity as x;

• the vector x+ y is nonspace-like with the same parity as x, y; moreover x+ y is

light-like iff x, y are linearly dependent light-like vectors.

A convex subset of Rn is the set of all positive (or negative) time-like vectors.

1.1.1 Lorentz Transformation

Definition 1.1. A function φ : R→ R is a Lorentz transformation iff

φ(x) ◦ φ(y) = x ◦ y ∀x, y in R.

Let {v1, v2, · · · , vn} is a basis of Rn then it called Lorentz orthonormal iff v1 ◦ v1 =

−1 and vi ◦ vj = δij otherwise. The standard basis {e1, e2, · · · , en} of Rn is Lorentz

orthonormal.

Theorem 3. A function φ : Rn ∈ Rn is a Lorentz transformation iff φ is linear and

{φ(e1), φ(e2), · · · , φ(en)} is a Lorentz orthonormal basis of Rn.
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A real n × n matrix A called Lorentzian iff the associated linear transformation

A : R ∈ R, given by A(x) = Ax, is Lorentzian. The set of all Lorentzian n × n

matrices together with matrix multiplication forms a group O(1, n − 1), called the

Lorentz group of n × n matrices. There exists an isomorphism between the groups

O(1, n− 1) and the group of Lorentz transformations of Rn.

Theorem 4. Let A be a real n × n matrix, and let L be the n × n diagonal matrix

defined by

L = diag(−1, 1, · · · , 1).

Then the following are equivalent:

• The matrix A is Lorentzian.

• The equation ALAt = L is satisfied by the matrix A.

• The equation AtLA = L is satisfied by the matrix A.

• The columns of A creates a Lorentz orthonormal basis of Rn.

• The rows of A creates a Lorentz orthonormal basis of Rn.

Suppose a Lorentzian matrix given by A. So AtLA = L, clearly (detA)2 = 1.

Therefore detA = ±1. The set of all A in O(1, n− 1) with detA = 1 be SO(1, n− 1).

So index two subgroup of O(1, n − 1) is SO(1, n − 1). This group SO(1, n − 1) is

known as the special Lorentz group.

The set of positive and negative time-like vectors are the two connected components of

all time-like vectors in Rn. A Lorentzian matrix A is said to be positive (or negative)

iff A transforms positive time-like vectors into positive (or negative) time-like vectors.

For example, the matrix L is negative. So, a Lorentzian matrix is either negative or

positive.

The set of all positive matrices in O(1, n−1) is given by PO(1, n−1). So PO(1, n−1)

is a subgroup of index two in O(1, n−1). PO(1, n−1), the group of positive matrices

is called the positive Lorentz group. Similarly, the set of all positive matrices in

SO(1, n− 1) is given by PSO(1, n− 1). So PSO(1, n− 1) is a index two subgroup of

SO(1, n− 1). The group PSO(1, n− 1) is called the positive special Lorentz group.

Definition 1.2. Two vectors x, y in Rn are Lorentz orthogonal iff x ◦ y = 0.
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Theorem 5. Let x, y 6= 0 Lorentz orthogonal vectors in Rn. If x is time-like, then y

is space-like.

Definition 1.3. Let V be a vector subspace of Rn. Then V is said to be

• time-like iff V is time-like, or

• space-like iff every nonzero vector in V is space-like, or

• else light-like.

Theorem 6. For each dimension m, the natural action of PO(1, n− 1) n the set of

m-dimensional time-like vector subspaces of Rn is transitive.

Theorem 7. Let x, y be positive (or negative) time-like vectors in Rn. Then x ◦ y ≤
‖x‖‖y‖ with equality iff x, y are linearly dependent.

1.1.2 The Time-Like Angle between Time-Like Vectors

Let x, y be positive (or negative) time-like vectors in Rn. If a unique non-negative

real number η(x, y) is such that

x ◦ y = ‖x‖‖y‖ cosh η(x, y).

The η(x, y) is called the Lorentzian time-like angle between x, y. Therefore, η(x, y) = 0

iff x, y are positive scalar multiples of each other.

1.2 Hyperbolic n-Space

A sphere of radius r in Rn+1 is of constant curvature 1/r2 and hyperbolic n-space is of

negative constant curvature, the duality between hyperbolic geometries and spherical

geometries indicates that hyperbolic n-space should be a sphere of imaginary radius.

Since imaginary lengths are possible in Lorentzian (n + 1)-space, we will take model

for hyperbolic n-space the sphere of unit imaginary radius

F n = {xεRn+1 : ‖x‖2 = −1}.
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The set F n is disconnected. The set F n is a hyperboloid of two sheets given by the

equation x2
1 − |x̄|2 = 1. The subset of all x in F n such that x1 > 0 (or x1 < 0) is

called the positive (or negative) sheet of F n. The hyperboloid model Hn of hyperbolic

n-space is defined to be the positive sheet of F n. Let x, y be vectors in Hn and the

Lorentzian time-like angle between x, y is given by η(x, y). The hyperbolic distance

between x, y is defined to be the real number.

η(x, y) = dH(x, y) (1.6)

As ‖x‖‖y‖coshη(x, y) = x ◦ y the equation

coshdH(x, y) = −x ◦ y (1.7)

Figure 1.2: The Hyperboloid F 2 inside C2

Image Courtesy: Ratcliffe, J.G.: Foundation of Hyperbolic Manifolds, Graduate

Texts in Mathematics 149. Springer, Berlin p. 61 (1994).

1.2.1 Lorentzian Cross Products

Let the vectors x, y ∈ R3 and let J =

−1 0 0

0 1 0

0 0 1


The Lorentzian cross product of x, y is given by
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x⊗ y = J(x× y) (1.8)

Theorem 8. If w, x, y, z are vectors in R3, then

• x⊗ y = −y ⊗ x

• (x⊗ y) ◦ z =

∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣
• x⊗ (y ⊗ z) = (x ◦ y)z − (z ◦ x)y

• (x⊗ y) ◦ (z ⊗ w) =

∣∣∣∣∣x ◦ w x ◦ z
y ◦ w y ◦ z

∣∣∣∣∣
Theorem 9. If x, y are linearly independent, positive (negative), time-like vectors in

R3 , then ‖x⊗ y‖ = ‖x‖‖y‖sinhη(x, y) and x⊗ y is space-like.

Theorem 10. If x, y are space-like vectors in R3, then

• |x ◦ y| < ‖x‖‖y‖ iff x⊗ y is time-like,

• |x ◦ y| = ‖x‖‖y‖ iff x⊗ y is light-like,

• |x ◦ y| > ‖x‖‖y‖ iff x⊗ y is space-like

Theorem 11. The hyperbolic distance function dH is a metric on Hn

Theorem 12. Every positive Lorentz transformation of Rn+1 restricts to an isometry

of Hn, and every isometry of Hn extends to a unique positive Lorentz transformation

of Rn+1.

1.2.2 Hyperbolic Geodesics

Definition 1.4. A hyperbolic line of Hn is the intersection of Hn with a 2-dimensional

time-like vector subspace of Rn+1.

Let x, y be two distinct points of Hn. Then x, y span a 2-dimensional time-like subspace

V (x, y) of Rn+1, and so

L(x, y) = Hn
⋂
V (x, y)
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is the unique hyperbolic line of Hn containing both x, y. L(x, y) is a branch of a

hyperbola.

Definition 1.5. Three points x, y, z of Hn are hyperbolically collinear iff there is a

hyperbolic line L of Hn containing points x, y, z.

• If x, y, z are points of Hn and

η(x, y) + η(y, z) = η(x, z),

then x, y, z are hyperbolically collinear.

Definition 1.6. Two vectors x, y in Rn+1 are Lorentz orthonormal iff ‖x‖2 = −1 and

x ◦ y = 0 and ‖y‖2 = 1

Theorem 13. Let α : [a, b]→ Hn be a curve. Then the following are equivalent:

• The curve α is a geodesic arc.

• There are Lorentz orthonormal vectors x, y in Rn+1 such that

α(t) = (cosh(t− a))x+ (sinh(t− a))y.

• The curve α satisfies the differential equation (α′′ − α) = 0.

Theorem 14. A function λ : R → Hn is a geodesic line iff there are Lorentz or-

thonormal vectors x, y in Rn+1 such that

λ(t) = (cosht)x+ (sinht)y.

• The geodesics of Hn are its hyperbolic lines.

1.3 The Hyperbolic Triangles

Define the angle between two hyperbolic lines in H2 as the interior angle between their

tangents at the point of intersection. Let x, y, z be three hyperbolically non-collinear

points in H2. Let L(x, y) be the unique geodesic in H2 containing x, y. Let H(x, y, z)

be the closed half-space of H2 such that L(x, y) is its boundary and z is in its interior.

The hyperbolic triangle with vertices x, y, z is given by

T (x, y, z) = H(x, y, z)
⋂
H(y, z, x)

⋂
H(z, x, y)

8



Let [x, y] be the segment of L(x, y) joining x, y. The sides of T (x, y, z) are denoted

by [x, y], [y, z], [z, x]. Let a, b, c be the hyperbolic lengths of [z, y], [z, x] and [x, y]

respectively.

Suppose f : [0, a] → H2, g : [0, b] → H2 and h : [0, c] → H2 are the geodesic arcs

from y to z, z to x, and x to y respectively. The angle α between the sides [z, x] and

[x, y] of T (x, y, z) is the interior angle between h′(0) and −g′(b), which is the interior

angle between the tangents at the point of intersection of the sides. In the similar way

as above, angles between the other pair of sides are obtained. Now we shall allow the

vertices of a triangle to belong to the circle at infinity. If two geodesics intersect at the

circle at infinity then angle between them is defined to be zero. If all the three vertices

of a hyperbolic triangle lie on the circle at infinity, it is called an ideal triangle.

Ideal triangles in the hyperbolic plane

Figure 1.3: An ideal triangle with real vertices

The area of a set X in H2 is defined by

Area(X) =

∫ ∫
X

dxdy

y2
(1.9)

The area in the unit-disk model D2 is∫ ∫
X

2dxdy

1− x2 − y2
(1.10)

The hyperbolic area is invariant under the isometries of H2.

Theorem 15. Any ideal triangle in the hyperbolic space has area H2.

9



Figure 1.4: An ideal triangle with one vertex at infinity

Theorem 16 (Gauss Bonnet Theorem). Let ∆ be a hyperbolic triangle with angles

α, β, γ. Then

Area(∆) = −(α + β + γ)

Theorem 17. Let α, β, γ be the angles of a hyperbolic triangle T (x, y, z), then

(1) η(z ⊗ x, x⊗ y) = π − α,

(2) η(x⊗ y, y ⊗ z) = π − β
(3) η(y ⊗ z, z ⊗ x) = π − γ

Theorem 18. Let x, y be space-like vectors in R3. If x⊗ y is time-like, then

|||x⊗ y||| = ‖x‖‖y‖ sin η(x, y).

Proof Since x⊗y is time-like, the vector subspace of R3 spanned by the vectors x, y

is space-like. We have

‖x⊗ y‖2 = (x ◦ y)2 − ‖x‖2‖y‖2

= ‖x‖2‖y‖2 cos2 η(x, y)− ‖x‖2‖y‖2

= −‖x‖2‖y‖2 sin2 η(x, y).

Theorem 19. If α, β, γ are the angles of a hyperbolic triangle, then

α + β + γ < π.

10



Proof Let α, β, γ be the angles of T (x, y, z). The vectors x ⊗ y,z ⊗ y, z ⊗ x are

linearly independent. Let

u = x⊗y
‖x⊗y‖ , v = z⊗y

‖z⊗y‖ , w = z⊗x
‖z⊗x‖ .

However

(x⊗ y)⊗ (z ⊗ y) = ((x⊗ y) ◦ z)y

and

(z ⊗ y)⊗ (z ⊗ x) = ((x⊗ y) ◦ z)z

It is clear that both u⊗ v and v ⊗ w are time-like vectors.

cos(η(u, v) + η(v, w))

= cos η(u, v) cos η(v, w)− sin η(u, v) sin η(v, w)

= (u ◦ v)(v ◦ w) + ‖u⊗ v‖‖v ⊗ u‖
> (u ◦ v)(v ◦ w) + ((u⊗ v) ◦ (v ⊗ u))

= (u ◦ v)(v ◦ w) + ((u ◦ w)(v ◦ v)− (v ◦ w)(u ◦ v))

= u ◦ w
= cos η(u,w).

Thus, either

η(u,w) > η(u, v) + η(v, w)

2π − η(u,w) < η(u, v) + η(v, w)

We have that η(u,w) = π − α, η(u, v) = β, and η(v, w) = γ. Thus, either π >

α + β + γ or π + α < β + γ. Without loss of generality, assume that α is the largest

angle. If π + α < β + γ, so the contradiction

π + α < β + γ < π + α

α + β + γ < π.

Theorem 20. (Law of Sines) If α, β, γ are the angles of T (x, y, z) and a, b, c are the

lengths of the opposite sides of the hyperbolic triangle, then

sinh a
sinα

= sinh b
sinβ

= sinh c
sin γ
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Proof By taking norms of both sides of equations

(z ⊗ x)⊗ (x⊗ y) = −((z ⊗ x) ◦ y)x,

(x⊗ y)⊗ (y ⊗ z) = −((x⊗ y) ◦ z)y,

(y ⊗ z)⊗ (z ⊗ x) = −((y ⊗ z) ◦ x)z,

It is clear that

sinh b sinh c sinα = |(x⊗ y) ◦ z|,
sinh c sinh a sin β = |(x⊗ y) ◦ z|,
sinh a sinh b sin γ = |(x⊗ y) ◦ z|,

Theorem 21. The First Law of Cosines) If α, β, γ are the angles of T (x, y, z) and

a, b, c are the lengths of the opposite sides of hyperbolic triangle, then

cos γ = cosh a cosh b−cosh c
sinh a sinh b

Proof Since

(y ⊗ z) ◦ (x⊗ z) =

(
y ◦ z y ◦ x
z ◦ z z ◦ x

)
We have that

sinh a sinh b cos γ = cosh a cosh b− cosh c.

Theorem 22. (The Second Law of Cosines) If α, β, γ are the angles of a hyperbolic

triangle and a, b, c are the lengths of the opposite sides, then

cosh c = cosα cosβ+cos γ
sinα sinβ

Proof

x′ = y⊗z
‖y⊗z‖ , y

′ = z⊗x
‖z⊗x‖ , z

′ = x⊗y
‖x⊗y‖

Then

x = y′⊗z′
|‖y′⊗z′‖| , y = z′⊗x′

|‖z′⊗x′‖|

Now since

(y′ ⊗ z′) ◦ (z′ ⊗ x′) =

(
y′ ◦ x′ y′ ◦ z′

z′ ◦ x′ z′ ◦ z′

)
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we have

− sin(π − α) sin(π − β) cosh c = cos(π − γ)− cos(π − α) cos(π − β).

It is interesting to compare the hyperbolic sine law

sinh a
sinα

= sinh b
sinβ

= sinh c
sin γ

with the spherical sine law

sin a
sinα

= sin b
sinβ

= sin c
sin γ

and the hyperbolic cosine laws

cos γ = cosh a cosh b−cosh c
sinh a sinh b

,

cosh c = cosα cosβ+cos γ
sinα sinβ

with the spherical cosine laws

cos γ = cosh c−cos a cos b
sinh a sinh b

,

cos c = cosα cosβ+cos γ
sinα sinβ

Recall that

sin ia = i sinh a and cos ia = cosh a.

Hence, the hyperbolic trigonometry formulas can be obtained from their spherical

counterparts by replacing a, b, c by ia, ib, ic, respectively.

1.3.1 Area of Hyperbolic Triangles

A sector of H2 is defined to be the intersection of two distinct, intersecting, nonop-

posite half-planes of H2. Any sector of H2 is congruent to a sector S(α) given by

hyperbolic coordinates (η, θ) by the inequalities

−α/2 ≤ θ ≤ α/2.

where α is the angle formed by the two sides of S(α) at its vertex e1. Let β = α/2.

Then the geodesic rays that form the sides of S(α) are represented in parametric form

by

(cosh t)e1 + (sinh t)((cos β)e2 + (sin β)e3) for t ≥ 0

13



(cosh t)e1 + (sinh t)((cos β)e2 − (sin β)e3) for t ≥ 0.

These geodesic rays are asymptotic to the 1-dimensional light-like vector subspaces

spanned by the vectors (1, cos β, sin β) and (1, cos β,− sin β), respectively. These two

light-like vectors span a 2-dimensional vector subspace V that intersects H2 in a hy-

perbolic line L. Suppose T (α) be the intersection of S(α) and the closed half-plane

bounded by L and containing the vertex e1.

Figure 1.5: A generalized triangle with two ideal vertices

Image Courtesy: Ratcliffe, J.G.: Foundation of Hyperbolic Manifolds, Graduate

Texts in Mathematics 149. Springer, Berlin p. 84 (1994).

The fascinating fact about H2 is that when viewed from the origin it looks like

the projective disk model with the point e1 at its center. It is clear that the two sides

of the sector S(α) meet the hyperbolic line L at infinity. From this point of view,

it is natural to regard T (α) as a hyperbolic triangle which has two ideal vertices at

infinity. A generalized hyperbolic triangle in H2 can be defined in the similar way

that we defined a hyperbolic triangle in H2 except that some of its vertices can be

ideal. When observed from the origin, a generalized hyperbolic triangle in H2 is a

Euclidean triangle in the projective disk model with its ideal vertices on the circle at

infinity. The angle of a generalized hyperbolic triangle at an ideal vertex is defined

to be zero. An infinite hyperbolic triangle is a generalized hyperbolic triangle with at

least one ideal vertex and an ideal hyperbolic triangle is called an infinite hyperbolic

triangle with three ideal vertices. Every infinite hyperbolic triangle with exactly two

ideal vertices is congruent to T (α) for some angle α. Now we will find a parametric

representation for the side L of T (α) in terms of hyperbolic coordinates (η, θ). The

vector

14



(1, cos β, sin β)× (1, cos β,− sin β) = (−2cosβ sin β, 2sinβ, 0)

is normal with respect to the 2-dimensional vector subspace V whose intersection

with H2 is L. Hence, the equation is satisfied

(cos β)x1 − x2 = 0.

by the vectors in V . Now the points of H2 satisfy the system of equations
x1 = cosh η,

x2 = sinh η cos θ,

x3 = sinh η sin θ

(1.11)

Thus, the points of L satisfy the equation

x1 = sec β cos θ
√
x2

1 − 1.

While solving x1, we see that

x1 = cos θ√
cos2 θ−cos2 β

.

Hence

x2 = cos θ cosβ√
cos2 θ−cos2 β

and

x3 = sin θ cosβ√
cos2 θ−cos2 β

.

Theorem 23. Area T (α) = π − α

Proof Let the polar angle parameterization of L be defined as

x(θ) = (x1(θ), x2(θ), x3(θ)

So we have

AreaT (α) =
∫ β
−β

∫ η(e1,x(θ))

0
sinh ηdηdθ

=
∫ β
−β(cosh η(e1, x(θ))− 1)dθ

=
∫ β
−β x1(θ)dθ − α
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and ∫ β
−β x1(θ)dθ =

∫ β
−β

cos θdθ√
cos2 θ−cos2 β

=
∫ β
−β

cos θdθ√
sin2 β−sin2 θ

=
∫ 1

−1
du√
1−u2 , where u = sin θ sin β

= Arc sinu|1−1 = π.

Hence, we have that

Area T (α) = π − α.

Theorem 24. The area of an ideal hyperbolic triangle is π.

Proof Suppose T be any ideal hyperbolic triangle, take a point x in the interior of

T . Then it is possible to subdivide T into three infinite hyperbolic triangles such that

each of which has only finite vertex given by x. Define α, β, γ be the angles of the

triangles at the vertex x as shown in the figure. Then we have

Area(T ) = (π − α) + (π − β) + (π − γ) = π.

Figure 1.6: An ideal triangle subdivided into three infinite triangles

Image Courtesy: Ratcliffe, J.G.: Foundation of Hyperbolic Manifolds, Graduate Texts

in Mathematics 149. Springer, Berlin p. 86 (1994).

Theorem 25. If α, β, γ are the angles of a generalized hyperbolic triangle T , then

Area(T ) = π − (α + β + γ).
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Proof The formula holds if T has two or three ideal vertices. Let x and y be the

only two vertices of T with angles α and β. On extending the finite side of T , from

Figure, we observe that T is the difference of two infinite hyperbolic triangles Tx and

Ty with only one finite vertex x, y, respectively. Therefore

Area(T ) = Area(Tx)− Area(Ty) = (π − α)− β.

Now let x, y, z be the three finite vertices of T with angles α, β, γ. On extending the

sides of T , as in figure, we can have an ideal hyperbolic triangle T ′ which can be

subdivided into four regions, one of which is T , and the others are infinite hyperbolic

triangles Tx, Ty, Tz with only one finite vertex x, y, z, respectively. Hence, we have

Area(T ′) = Area(T ) + Area(Tx) + Area(Ty) + Area(Tz).
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Hence

π = Area(T ) + (α + β + γ).

Figure 1.7: An infinite triangle T expressed as the difference of two triangles

Image Courtesy: Ratcliffe, J.G.: Foundation of Hyperbolic Manifolds, Graduate

Texts in Mathematics 149. Springer, Berlin p. 87 (1994).

Figure 1.8: The ideal triangle found by extending the sides of T (x, y, z)

Image Courtesy: Ratcliffe, J.G.: Foundation of Hyperbolic Manifolds, Graduate

Texts in Mathematics 149. Springer, Berlin p. 87 (1994).
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Chapter 2

Inversive Geometry

The theory and proofs in this chapter are based on Ratcliffe, J.G.: Foundation of

Hyperbolic Manifolds, Graduate Texts in Mathematics 149. Springer, Berlin (1994).

The group of transformations of Euclidean space En generated by reflections in

hyperplanes and inversions in spheres. It turns out that this group is isomorphic to

the group of isometries of hyperbolic space Hn+1.

2.1 Hyperplanes

Definition 2.1. A hyperbolic m-plane of Hn is defined as the intersection of Hn with

a (m+ 1)-dimensional time-like vector subspace of Rn+1.

Then a hyperbolic 1-plane of Hn is the hyperbolic line of Hn. A hyperbolic (n−1)-

plane of Hn is known as a hyperplane of Hn.

Define x to be a space-like vector of Rn+1. Then the Lorentzian complement of a

vector subspace 〈x〉 spanned by x is an n-dimensional time-like vector subspace of

Rn+1. Hence a hyerplane Hn is given by P = 〈x〉L ∩Hn. The hyperplane P is called

the hyperplane of Hn Lorentz orthogonal to x.

Theorem 26. Let x, y be linearly independent space-like vectors in Rn+1. Then the

following statements are equivalent:

• The vectors x, y satisfy the equation |x ◦ y| < ‖x‖‖y‖.

• The vector subspace V spanned by x, y is space-like.
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• The hyperplanes P and Q of Hn Lorentz orthogonal to x, y, intersect.

2.2 Reflections

Definition 2.2. Let a be defined as a unit vector in En and t be a real number.

Consider the hyperplane of En which is by

P (a, t) = {xεEn : a · x = t}. (2.1)

Every point x in P (a, t) satisfies

a · (x− ta) = 0. (2.2)

Therefore P (a, t) is a hyperplane of En with normal unit vector a passing from

the point ta. Any hyperplane has exactly two representations P (−a,−t) and P (a, t).

The reflection ρ of En in the plane P (a, t) is given by the formula

ρ(x) = x+ sa, (2.3)

where s is a real scalar so that x+ 1
2
sa is in P (a, t). This leads to a direct formula

ρ(x) = x+ 2(t− a · x)a. (2.4)

Theorem 27. If ρ is the reflection of En in the plane P (a, t), then

• ρ2(x) = x for all x in En; and

• ρ(x) = x iff x is in P (a, t);

• ρ is an isometry.

Theorem 28. Every isometry of En is a composition of at most n+ 1 reflections in

hyperplanes.

Proof Let φ : En → En be an isometry and define v0 = φ(0). ρ0 be the identity if

v0 = 0, or the reflection in the plane P (v0/|v0|, |v0|/2) otherwise. So ρ0(v0) = 0 and

then ρ0φ(0) = 0. The map φ0 = ρ0φ is an orthogonal transformation.

Let φk−1 is defined as an orthogonal transformation of En which fixes e1, · · · , ek−1.
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Suppose vk = φk−1(ek) − ek and ρk be the identity if vk = 0, or the reflection in the

plane P (vk/|vk|, 0) otherwise. So ρkφk−1 fixes ek. Also, for each j = 1, · · · , k − 1, we

see that

vk.ej = (φk−1(ek)− ek).ej
= φk−1(ek).ej

= φk−1(ek).φk−1(ek)

= ek.ej

= 0.

Thus ej is in the plane P (vk/|vk|, 0) and then is fixed by ρk. Hence, we observe that

φk = ρkφk−1 fixes e1, · · · , ek. So by induction we have that there are maps ρ0, · · · , ρn
such that each ρi is either the identity or a reflection and ρn · · · ρ0φ fixes 0, e1, · · · , en.

Thus ρn · · · ρ0φ is a identity and hence φ = ρ0 · · · ρn.

Figure 2.1: The reflection of the point φk−1(ek) in the plane P

Image Courtesy: Ratcliffe, J.G.: Foundation of Hyperbolic Manifolds, Graduate

Texts in Mathematics 149. Springer, Berlin p. 101 (1994).

2.3 Inversions

Let En be a euclidean space with a point a inside it and let r be a positive real

number. A sphere of En with radius r centered at a is defined as

S(a, r) = {xεEn : |x− a| = r}. (2.5)

The reflection (or inversion) σ of En inside the sphere S(a, r) is given by

σ(x) = a+ s(x− a) (2.6)
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where s is a positive scalar such that

|σ(x)− a||x− a| = r2. (2.7)

This leads to direct formula

σ(x) = a+ (
r

|x− a|
)2(x− a) (2.8)

There is a fair geometric construction of the point σ(x). Firstly we assume that x

is inside the sphere, S(a, r) then erect a chord of S(a, r) passing through x which is

perpendicular to the line joining x to a. Let u and v be the endpoints of the chord.

So σ(x) is the point x′ of intersection of the lines tangent to S(a, r) at the points u

and v in the plane including a, u, and v. We can clearly see that the right triangles

T (a, x, v) and T (a, v, x′) are similar to each other.

|x′ − a|
r

=
r

|x− a|
(2.9)

Figure 2.2: The construction of the reflection of a point x in a sphere S(a, r)

Image Courtesy: Ratcliffe, J.G.: Foundation of Hyperbolic Manifolds, Graduate

Texts in Mathematics 149. Springer, Berlin p. 102 (1994).

Now let us assume that x is outside the sphere S(a, r). Let y is the midpoint of

the line segment [a, x] and let C be the circle centered at y of radius |x − y|. Then

the circle C intersects S(a, r) at two points namely u, v and σ(x) is the point x′ of

intersection of the line segments [a, x] and [u, v].
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Figure 2.3: The construction of the reflection of a point x outside the sphere S(a, r)

Image Courtesy: Ratcliffe, J.G.: Foundation of Hyperbolic Manifolds, Graduate

Texts in Mathematics 149. Springer, Berlin p. 103 (1994).

Theorem 29. If σ is the reflection of En in the sphere S(a, r), then

• σ(x) = x iff x is in S(a, r);

• σ2(x) = x for all x 6= a; and

• for all x, y 6= a,

|σ(x)− σ(y)| = r2|x− y|
|x− a||y − a|

. (2.10)

Proof (1) AS

|σ(x)− a||x− a| = r2,

We observe that σ(x) = x iff |x− a| = r

(2) We see that

σ2(x) = a+
(

r
|σ(x)−a|

)2

(σ(x)− a)

= a+
(
|x−a|
r

)2 (
r
|x−a|

)2

(x− a)

= x.

(3) We see that

|σ(x)− σ(y)| = r2| (x−a)
|x−a|2 −

(y−a)
|y−a|2 |

= r2
[

1
|x−a|2 −

2(x−a).(y−a)
|x−a|2|y−a|2 + 1

|y−a|2

]1/2

= r2 |x−y|
|y−a||x−a| .
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2.4 Conformal Transformations

Let U be an open subset of En and let φ : U → En be a C1 function. Then φ is

differentiable and has continuous partial derivatives. Let φ′(x) be the matrix ( ∂φi
∂xj

(x))

of partial derivatives of φ. Then the function φ is said to be conformal iff there exists

a function

κ : U → R+,

called the scale factor of φ and κ(x)−1φ′(x) is an orthogonal matrix for every x in U .

The scale factor κ of a conformal function φ is uniquely determined by φ, as [κ(x)]n =

|detφ′(x)|.

Theorem 30. Let A be a real n × n matrix. Then there is a positive scalar k such

that k−1A is an orthogonal matrix iff A preserves angles between nonzero vectors.

Proof Suppose there exists a k > 0 such that k−1A is an orthogonal matrix. Then

A is nonsingular matrix. Suppose x, y be nonzero vectors in En. Then Ax and Ay

are nonzero, and A preserves angles, because

cos θ(Ax,Ay) = Ax.Ay
|Ax||Ay|

= k−1Ax.k−1Ay
|k−1Ax||k−1Ay|

= x.y
|x||y| = cos θ(x, y).

Conversely, assume that the matrix A preserves angles between nonzero vectors.

Then A is a nonsingular matrix. Since θ(Aei, Aej) = θ(ei, ej) = π/2 for all i 6= j,

the vectors Ae1, · · · , Aen are orthogonal. Let B be an orthogonal matrix such that

Bei = Aei/|Aei| for each i. Then B−1A also preserves angles and B−1Aei = ciei

where ci = |Aei|. Hence, without loss of generality, we may assume that Aei = ciei,

with ci > 0, for each i = 1, · · · , n. As

θ(A(ei + ej), Aej) = θ(ei + ej, ej)

for all i 6= j, we observe

(ciei+cjej).cjej
(c22i+c2j )1/2cj

= 1√
2
.

Hence 2c2
j = c2

i + c2
j and so ci = cj for all i and j. So, the common value of the ci

is a positive scalar k such that k−1A is orthogonal.
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2.4.1 Angle Between Curves

Let α, β : [−b, b] → En be a differential curve such that α(0) = β(0) and α′(0), β′(0)

are both nonzero. The angle between α and β at 0 is defined to be the angle between

α′(0) and β′(0).

Theorem 31. Let U be an open subset of En and let φ : U → En be a C1 function.

Then φ is conformal iff φ preserves angles between differentiable curves in U .

Proof Let us assume that the function φ is conformal. Then there is a function

κ : U → R+ such that κ(x)−1φ′(x) is orthogonal to each x in U . Let α, β : [−b, b]→ U

be differentiable curves such that α(0) = β(0) and α′(0), β′(0) are both nonzero. We

observe

θ((φα)′(0), (φβ)′(0))

= θ(φ′(α(0))α′(0), φ′(β(0))β′(0))

= θ(α′(0), β′(0)).

Hence, the angle between φα and φβ at 0 is the same as the angle between α and β

at 0.

Theorem 32. Every reflection of En in a hyperplane or sphere is conformal and

reverses orientation.

Proof Let ρ be the reflection of En in the plane P (a, t). Then

ρ(x) = x+ 2(t− a.x)a,

ρ′(x) = (δij − 2aiaj) = I − 2A

where A is the matrix (aiaj). Since ρ′(x) is independent of t, without loss of generality

we may assume that t = 0. Then ρ is an orthogonal transformation and

ρ(x) = (I − 2A)x.

Hence I−2A is an orthogonal matrix, and then ρ is conformal. There is an orthogonal

transformation φ such that φ(a) = e1. So

φρφ−1(x) = φ(φ−1(x)− 2(a.φ−1(x))a)

= x− 2(a.φ−1(x))e1

= x− 2(φ(a).x)e1

= x− 2(e1.x)e1.
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Hence φρφ−1 is the reflection in P (e1, 0). Then by chain rule,

det(φρφ−1)′(x) = detρ′(x).

For the computation of determinant of ρ′(x), we may assume that a = e1. So

I − 2A =


−1

1 0

.

0 1


Hence det ρ′(x) = −1, and thus ρ reverses orientation.

Let σr be the reflection of En in the sphere S(0, r). So

σr(x) = r2x
|x|2

and so

σ′r(x) = r2
(
δij
|x|2 −

2xixj
|x|4

)
= r2

|x|2 (I − 2A),

where A is the matrix (xixj/|x|2). As I − 2A is orthogonal, and therefore σr is

conformal; moreover σr reverses orientation, as

detσ′r(x) =
(
r
|x|

)2n

det(I − 2A)

= −
(
r
|x|

)2n

< 0

Let σ be the reflection with respect to S(a, r) and let τ be the translation by a.

So τ ′(x) = I and σ = τσrτ
−1. Thus σ′(x) = σ′r(x − a). Hence σ is conformal and

reverses orientation.

2.5 Sterographic Projection

Identify En with En × {0} in En+1 . The stereographic projection π of En onto

Sn − {en+1} is given by projecting x in En towards (or away from) en+1 unless it

meets the sphere Sn in the distinct point π(x) other than en+1. Since π(x) is a point

on the line which passes through x in the direction of en+1−x, there is a scalar s such

that

π(x) = x+ s(en+1 − x). (2.11)
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The condition |π(x)|2 = l leads to the value

s =
|x|2 − 1

|x|2 + 1
(2.12)

and the direct formula

π(x) = (
2x1

1 + |x|2
, · · · , 2xn

1 + |x|2
,
|x|2 − 1

|x|2 − 1
). (2.13)

Let σ be the reflection of En+1 in the sphere S(en+1,
√

2). So

σ(x) = en+1 +
2(x− en+1)

|x− en+1|2
(2.14)

If x is in En, then we have

σ(x) = en+1 +
2

1 + |x|2
(x1, · · · , xn,−1) = (

2x1

1 + |x|2
, · · · , 2xn

1 + |x|2
,
|x|2 − 1

|x|2 − 1
) (2.15)

Figure 2.4: The stereographic projection π of E2 into S2

Image Courtesy: Ratcliffe, J.G.: Foundation of Hyperbolic Manifolds, Graduate

Texts in Mathematics 149. Springer, Berlin p. 107 (1994).

Suppose ∞ be a point which is not in En+1 and define Ên = En ∪ {∞}. Now π

is extended to a bijection π̂ : Ên → Sn by setting π̂(∞) = en+1, and define a metric

d on Ên by

d(x, y) = |π̂(x)− π̂(y)|. (2.16)

The metric d is known as the chordal metric on En.
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2.5.1 Cross Section

Let u, v, x, y be the points of Ên such that x 6= y and u 6= v. The cross ratio of these

points is defined be the real number

|(u, v, x, y)| = d(u, x)d(v, y)

d(u, v)d(x, y)
(2.17)

The cross ratio is defined as the continuous function of four variables, as the metric

d : Ên × Ên → R is a continuous function.

Theorem 33. If u, v, x, y are points of En such that u 6= v and x 6= y, then

[u, v, x, y] =
|u− x||v − y|
|u− v||x− y|

(2.18)

[∞, v, x, y] =
|v − y|
|x− y|

(2.19)

[u,∞, x, y] =
|u− x|
|x− y|

(2.20)

[u, v,∞, y] =
|v − y|
|u− v|

(2.21)

[u, v, x,∞] =
|u− x|
|u− v|

(2.22)

Theorem 34. If x, y are in En, then

d(x,∞) =
2

(1 + |x|2)
1
2

(2.23)

d(x, y) =
2|x− y|

(1 + |x|2)
1
2 (1 + |y|2)

1
2

(2.24)

Proof (1) We see that

d(x,∞) = |π̂(x)− π̂(∞)|

= |π(x)− en+1|∣∣∣( 2x1
1+|x|2 , · · · ,

2xn
1+|x|2 ,

−2
1+|x|2

)∣∣∣
= 2

(1+|x|2)
1
2

.
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(2) We have

d(x, y) = 2|x−y|
|x−en+1||y−en+1|

= 2|x−y|
(1+|x|2)

1
2 (1+|y|2)

1
2

.

Theorem 35. Every reflection of Ên in an extended hyperplane is a homeomorphism.

Proof Let ρ be the reflection of En in a hyperplane. Then ρ is continuous. As

lim
x→∞

ρ(x) = ∞, we have that ρ̂ is continuous at ∞. Thus ρ̂ is a continuous function.

As ρ̂ is inverse of its own, it is a homeomorphism.

Let σ be defined as the reflection of En in the sphere S(a, r). We extend σ to a map

σ̂ : Ên → Ên by setting σ̂(a) = ∞ and σ̂(x) = (a). Then σ̂(x) = (x) for all x in

S(a, r) and σ̂2 is the identity. The map σ̂ is called the reflection of σ̂ in the sphere

S(a, r).

Theorem 36. Every reflection of Ên in a sphere of En is a homeomorphism.

Proof Let σ be defined as the reflection of En in the sphere S(a, r) and let σ̂ be the

extended reflection of Ên. As σ̂2 is the identity, σ̂ is a bijection with inverse σ̂. The

map σ̂ is continuous, since σ is continuous, lim
x→∞

ρ(x) =∞, and lim
x→∞

ρ(x) = a.Thus σ̂

is a homeomorphism.

2.6 Möbius Transformations

A sphere Σ of Ên is defined to be either a Euclidean sphere S(a, r) or an extended

plane P̂ (a, t) = P (a, t) ∪∞. P̂ (a, t) is topologically a sphere.

Definition 2.3. A Möbius transformation of Ên is a finite compostion of reflections

of Ên in sphere.

Let M(Ên) be defined as the set of all Möbius transformations of Ên. Then

clearly M(Ên) clearly forms a group under composition. Every isometry of En may

be extended in a distinct way to a Möbius transformation of Ên. Hence, we may

regard the group of Euclidean isometries I(En) as a subgroup of M(Ên).

Let k be a positive constant and let µk : Ên → Ên be the function given by µk(x) = k.

Then µk is a Möbius transformation, since µk is the composite of the reflection in

S(0, 1) followed by the reflection in S(0,
√
k). Since each similarity of En is the
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composite of an isometry followed by µk for some k, every similarity of En extends

in a distinct way to a Möbius transformation of Ên. Hence, we can also consider the

group of Euclidean similarities S(En) as a subgroup of M(Ên).

Theorem 37. If σ is the reflection of Ên in the sphere S(a, r) and σ1 is the reflection

in S(0, 1), and φ : Ên → Ên is given by φ(x) = a+ rx, then σ = φσ1φ
−1.

Proof We see that

σ(x) = a+
(

r
|x−a|

)2

(x− a)

= φ
(
r(x−a)
|x−a|2

)
= φσ1

(
(x−a)
r

)
= φσ1φ

−1(x)

Theorem 38. A function φ : Ên → Ên is a Möbius transformation iff it preserves

cross ratios.

Proof Let φ be a Möbius transformation. Since φ is a composition of the reflections,

we can assume that φ is a reflection. A Euclidean similarity preserves cross ratios,

and so φ(x) = x/|x|2. We observe that

|φ(x)− φ(y)| = |x−y|
|x||y|

We conclude that

[φ(u), φ(v), φ(x), φ(y)] = [u, v, x, y]

if u, v, x, y are all finite and nonzero. Then the remaining cases follow by continuity.

Hence φ preserves cross ratios.

Theorem 39. A Möbius transformation φ of Ên fixes ∞ iff φ is a similarity of En.

2.6.1 The Isometric Sphere

Let φ be a Möbius transformation of Ên with φ(∞) 6= ∞. Suppose a = φ−1(∞)

and σ be the reflection of Ên in the sphere S(a, 1). So φσ fixes ∞. Thus φσ is a

similarity of En. Therefore, there is a point b of En, a scalar k > 0, and an orthogonal

transformation A of En such that

φ(x) = b+ kAσ(x). (2.25)
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And

|φ(x)− φ(y)| = k|x− y|
|x− a||y − a|

. (2.26)

Now assume that x, y are in S(a, r). So |φ(x)−φ(y)| = |x−y| iff r =
√
k. Hence φ

acts as an isometry on the sphere S(a,
√
k), and S(a,

√
k) is distinct with this property

among the spheres of En centered at the point a. S(a,
√
k) is known as the isometric

sphere of φ.

Theorem 40. Let φ be a Möbius transformation of Ên with φ(∞) 6=∞. Then there

is a unique reflection σ in a Euclidean sphere Σ and a unique Euclidean isometry ψ

such that φ = ψσ. Moreover Σ is the isometric sphere of φ.

2.6.2 Preservation of Spheres

The equation defining a sphere S(a, r) or P̂ (a, t) in Ên is given by

|x|2 − 2a · x+ |a|2 − r2 = 0 (2.27)

or

− 2a · x+ 2t = 0, (2.28)

respectively, and these can be given as

a0|x|2 − 2a · x+ an+1 = 0 with |a|2 > a0an+1.

Conversely, any vector (a0, · · · , an+1) in Rn+2 such that |a|2 > a0an+1, where

a = (a1, · · · , an) determines a sphere Σ of Ên satisfying the equation

a0|x|2 − 2a · x+ an+1 = 0.

If a0 6= 0, then we have

Σ = S
(
a
a0
, (|a|2−a0an+1)1/2

|a0|

)
If a0 = 0,then

Σ = P̂
(
a
|a| ,

an+1

2|a|

)
The vector (a0, · · · , an+1) is known as coefficient vector for Σ, and it is distinctly

determined by Σ up to multiplication by a nonzero scalar.
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2.7 Möbius Transformations of Upper Half-Space

Definition 2.4. A Möbius transformation of upper half-space Un is a Möbius trans-

formation of Ên that leaves Un invariant.

Let M(Un) be the set of all Möbius transformations of Un. Then M(Un) is defined

as a subgroup of M(Ên).

The group M(Un) of Möbius transformations of Un is isomorphic to M(Ên−1).

Theorem 41. Every Möbius transformation of Un is the composition of reflections

of Ên in spheres orthogonal to Ên−1.

Two spheres Σ and Σ′ of Ên are said to be orthogonal iff they intersect in En and

at each point of intersection in En their normal lines are orthogonal.

Theorem 42. Two spheres of Ên are orthogonal under the following conditions:

(1) The spheres P̂ (a, r) and P̂ (b, s) are orthogonal iff a and b are orthogonal.

(2) The spheres S(a, r) and P̂ (b, s) are orthogonal iff a is in P (b, s).

(3) The spheres S(a, r) and S(b, s) are orthogonal iff r and s satisfy the equation

|a− b|2 = r2 + s2.

Figure 2.5: Orthogonal circles S(a, r) and S(b, s)

Image Courtesy: Ratcliffe, J.G.: Foundation of Hyperbolic Manifolds, Graduate

Texts in Mathematics 149. Springer, Berlin p. 118 (1994).

Remark: The two spheres Σ and Σ′ of Ên are orthogonal iff they are orthogonal

on a single point of intersection in En.
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2.7.1 Möbius Transformations of the Unit n-Ball

Let σ be the reflection of Ên in the sphere S(en,
√

2). Then

σ(x) = en +
2(x− en)

|x− en|2
(2.29)

Therefore

|σ(x)|2 = 1 +
4en(x− en)

|x− en|2
+ 4|x− en|2 (2.30)

Hence

|σ(x)|2 = 1 +
4xn

|x− en|2
. (2.31)

This suggests that σ maps lower half-space -Un into the open unit n-ball

Bn = {x ∈ En : |x| < 1} (2.32)

Since σ is a homeomorphism of Ên, it maps every component of Ên− Ên−1 home-

omorphically onto a component of Ên − Sn−1. Hence σ maps -Un homeomorphically

onto Bn and vice versa. Let ρ be the reflection of Ên in Ên−1 and we define η = σρ.

Then η maps Un homeomorphically onto Bn. The Möbius transformation η is known

as the standard transformation from Un to Bn.

Definition 2.5. A Möbius transformation of Sn is a function φ : Sn → Sn such

that π−1φπ is a Möbius transformation of Ên, where π : Ên → Sn is stereographic

projection.

Let M(Sn) is given by the set of all Möbius transformations of Sn. Then M(Sn)

forms a group under composition. The mapping ψ → πψπ−1 is an isomorphism from

M(Ên) to M(Sn).

Definition 2.6. A Möbius transformation of the open unit ball Bn is a Möbius trans-

formation of Ên which leaves Bn invariant.

Theorem 43. Let φ be a Möbius transformation of Bn. If φ(∞) = ∞, then φ is

orthogonal. If φ(∞) 6=∞, then the isometric sphere Σ of φ is orthogonal to Sn−1 and

φ = ψσ, where σ is given as the reflection in Σ and ψ is an orthogonal transformation.

2.8 The Conformal Ball Model

By redefining the Lorentzian inner product on Rn+1 to be
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x ◦ y = x1y1 + · · ·+ xnyn − xn+1yn+1. (2.33)

The Lorentz group of Rn,1 is given by O(n, 1). Identify Rn with Rn×{0} in Rn+1.

The stereographic projection ζ of the open unit ball Bn onto hyperbolic space Hn is

given by projecting x in Bn away from −en+1 unless it meets Hn in the distinct point

ζ(x). Since ζ(x) is on the line passing through x in the direction of x + en+1, there

exists a scalar s such that

ζ(x) = x+ s(x+ en+1).

The condition ‖ζ(x)‖2 = −1 leads to the value

s = 1+|x|2
1−|x|2

and the formula

ζ(x) =

(
2x1

1− |x|2
, · · · , 2xn

1− |x|2
,

1 + |x|2

1− |x|2

)
(2.34)

The map ζ is a bijection of Bn onto Hn. The inverse of ζ is defined by

ζ(y)−1 =

(
y1

1 + yn+1

, · · · , yn
1 + yn+1

)
(2.35)

Figure 2.6: The stereographic projection ζ of B2 onto H2
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Image Courtesy: Ratcliffe, J.G.: Foundation of Hyperbolic Manifolds, Graduate

Texts in Mathematics 149. Springer, Berlin p. 122 (1994).

2.8.1 Hyperbolic Translation

Let S(a, r) be defined as a sphere of En orthogonal to Sn−1. We have r2 = |a|2 − 1,

and so a determines r. Suppose σa be the reflection in S(a, r). Then σa leaves Bn

invariant. Suppose ρa be the reflection in the hyperplane a · x = 0. Then ρa also

leaves Bn invariant, and thus the composite σaρa also leaves Bn invariant. Define

a∗ = a/|a|2.

It is obvious that

σaρa(x) = (|a|2−1)x+(|x|2+2x·a∗+1)a
|x+a|2

σaρa(0) = a∗

Let b be a nonzero point of Bn and let a = b∗. Then |a| > 1 and a∗ = b, then

r = (|a|2 − 1)1/2. Obviously S(a, r) is orthogonal to Sn−1. Thus, define a Möbius

transformation of Bn by

τb = σb∗ρb∗ .

Then

τb(x) = (|b∗|2−1)x+(|x|2+2x·b+1)b∗

|x+b∗|2

As τb is the composite of two reflections in hyperplanes orthogonal to the line

(−b/|b|, b/|b|), the transformation τb acts as a translation along this line. We also

define τ0 to be the identity. So τb(0) = b for all b in Bn. The map τb is said to be the

hyperbolic translation of Bn by b.

Theorem 44. Every Möbius transformation of Bn restricts to an isometry of the

conformal ball model Bn, and every isometry of Bn extends to a unique Möbius trans-

formation of Bn.

Theorem 45. A subset S of Bn is a hyperbolic sphere of Bn iff S is a Euclidean

sphere of En that is contained in Bn.
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2.9 The Upper Half-Space Model

Let η be defined as the standard transformation from upper half-space Un to the open

unit ball Bn. Then η = σρ, where ρ is the reflection of Ên in the hyperplane Ên−1

and σ is the reflection of Ên in the sphere S(en,
√

2). We define a metric dU on Un

which is given by

dU(x, y) = dB(η(x), η(y)).

The metric dU is said to be the Poincaré metric on Un. By definition, η is an

isometry from Un, with the metric dU , to the conformal ball model Bn of hyperbolic

n-space. The metric space consisting of Un together with the metric dU is called the

upper half-space model of hyperbolic n-space.

Theorem 46. Every Möbius transformation of Un restricts to an isometry of the

upper half-space model Un, and every isometry of Un extends to an unique Möbius

transformation of Un.

2.10 Classification of Transformations in Unit Ball

Model

Let φ be defined as a Möbius transformation of Bn.Then φ maps the closed ball B̄n

to itself. By the Brouwer fixed point theorem, we have that φ has a fixed point in B̄n.

The transformation φ is called

(1) elliptic if φ fixes a point of Bn;

(2) parabolic if φ fixes no point of Bn and fixes a unique point of Sn−1;

(3) hyperbolic if φ fixes no point of Bn and fixes two points of Sn−1.

Let Fφ be the set of all the fixed points of φ in B̄n,and let ψ be a Möbius trans-

formation of Bn. So

Fψφψ−1 = ψ(Fφ) (2.36)

Hence φ is elliptic, parabolic, or hyperbolic iff ψφψ−1 is elliptic, parabolic, or

hyperbolic, respectively. Therefore, being elliptic, parabolic, or hyperbolic depends

only on the conjugacy class of φ in M(Bn).
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2.10.1 Elliptic Transformations

Theorem 47. A Möbius transformation φ of Bn is elliptic iff φ is conjugate in M(Bn)

to an orthogonal transformation of En.

2.11 Classification of Transformations in Upper-

Half Space Model

Parabolic and hyperbolic transformations can be analyzed easily in the upper half-

space model Un of hyperbolic space. Elliptic, parabolic, and hyperbolic Möbius trans-

formations of Un are defined in the similar way as in the conformal ball model Bn.

Let φ be a Möbius transformation of Un. The transformation φ is said to be

(1) elliptic if φ fixes a point of Un;

(2) parabolic if φ fixes no point of Un and fixes a unique point of Ên−1;

(3) hyperbolic if φ fixes no point of Un and fixes two points of Ên−1.

Remark: Being elliptic, parabolic, or hyperbolic depends only on the conjugacy

class of φ in M(Un).

Theorem 48. A Möbius transformation φ of Un is parabolic iff φ is conjugate in

M(Un) to a fixed point free isometry of En−1.
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Chapter 3

Conjugacy Classes in Möbius

Groups

The theory and proofs in this chapter are influenced from Gongopadhyay, K., Conju-

gacy classes in Möbius groups, Geom Dedicata (2011) 151:245-258 Springer Science+

Business Media B.V. (2010).

3.1 Introduction

The n+1-dimensional hyperbolic space is denoted by Hn+1 and the conformal bound-

ary of the hyperbolic space is denoted by Sn. M(n) denotes the group of conformal

diffeomorphisms of Sn and Mo(n) be defined as identity component which consists of

all orientation preserving elements in M(n). Conjugacy classes of isometrics in Mo(n)

depends on the conjugacy of T and T−1 in Mo(n). An element T ∈ M(n), T and

T−1 are conjugate in M(n), but they may not be conjugate in Mo(n). T is called

real if T and T−1 are conjugate to each other in M0(n). Let T be an element in

Mo(n), so to T there is a related element To in SO(n + 1). If the complex conjugate

eigenvalues of To are given by {eiθj , e−iθj}, 0 < θj 6 π, j = 1, · · · , k, then θ1, · · · , θk
are called the rotation angles of T . T is called a regular element if the rotation angles

of T are different from each-other. After classification of the real elements in Mo(n)

we have parametrized the conjugacy classes of regular elements in Mo(n). In the

parametrization, when T is not conjugate to T−1, then enlarge the group and con-

sider the conjugacy class of T in M(n). So each such conjugacy class can be induced

with a fibration structure.
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3.2 Real Elements in Möbius Groups

Definition 3.1. An element g in a linear algebraic group G is known as real if it is

conjugate in G to its own inverse. Every element in M(n) is real.

The n + 1-dimensional hyperbolic space is denoted by Hn+1 and the conformal

boundary of the hyperbolic space is denoted by Sn. M(n) denotes the group of con-

formal diffeomorphisms of Sn and Mo(n) be defined as identity component which are

all orientation preserving elements in M(n). The group of isometries of Hn+1 is iden-

tified with the group M(n). In the ball model and the upper-half space model of the

hyperbolic space, we denote the isometry group and its identity component by M(n)

and Mo(n), respectively.

Determine the conjugacy classes in M(n) by the minimal polynomial and the

characteristic polynomial of an isometry. In general, an element in M(n) is conjugate

to its inverse. Rather, this does not holds for elements in Mo(n). Take an example

of an unipotent isometry T ∈ Mo(1) which is not conjugate to its inverse. It is clear

by identifying Mo(1) with PSL(2,R). therefore a conjugacy class in M(n) possibly

breaks into conjugacy classes in Mo(n). The inverse of an isometry T is not conjugate

to itself in Mo(n). So to investigate the conjugacy classes in Mo(n) it is necessary to

classify the elements which are conjugate in Mo(n) to their inverse. The classification

of such type of elements essentially helps in classifying the conjugacy classes of Mo(n).

Let V be a real vector space of dimension n+1 provided a non-degenerate quadratic

form Q with signature (n, 1), i.e. corresponding to a suitable coordinate system Q
has the form Q(x) = x2

0 + · · · + x2
n−1 − x2

n. The full group of isometries of (V,Q) is

denoted by O(n, 1) and SO(n, 1) subgroup of O(n) with all isometries of det 1. It is

easy to see that SO(n, 1) is a index 2 subgroup in O(n, 1). It has two components.

• v ∈ V time-like, if Q(v) < 0,

v ∈ V space-like, if Q(v) > 0,

v ∈ V light-like, if Q(v) = 0.

• A subspace W is time-like, if Q|W is non-degenerate and indefinite,

A subspace W is space-like, if Q|W > 0 ,

A subspace W is light-like, if Q|W = 0.

There are two components of hyperboloid {v ∈ V|Q(v) = −1}. One component

with the vector en = (0, 0, · · · , 0, 1) is known as hyperboloid or linear model of the
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hyperbolic space Hn. The index 2 subgroup of O(n, 1) is the isometry group I(Hn), it

preserves the hyperplane Hn. The group M(n) and I(Hn+1) are identified with each

other, by this similar identification Mo(n) = SOo(n + 1, 1). The identity component

of the groups M(n) and SO(n + 1, 1) are same, the difference is due to their second

components. In M(n) the second component consists of the orientation-reversing

isometries of hyperbolic n+ 1-space, Hn+1 having det -1.

Theorem 49. 1. Every element in SOo(n, 1) is real iff n ≡ 0 (mod 4) or n ≡
3 (mod 4).

2. If n ≡ 1 (mod 4), then an element T in SOo(n, 1) is real iff it is either a

hyperbolic isometry with at least one eigenvalue ±1, or, it is not hyperbolic.

3. If n ≡ 2 (mod 4),then an element T in SOo(n, 1) is real iff one of the following

holds.

(a) T is hyperbolic,

(b) T is a non-hyperbolic with at least one eigenvalue -1,

(c) T is non-hyperbolic, it has no eigenvalue -1, and there is at least one eigen-

vector to 1 which is space-like.

Proof Consider T is an elliptic element of SOo(n, 1). So T fixes a time-like eigen vec-

tor v. The space-like orthogonal complement to the 1-dimensional subspace spanned

by v is W and dim (W ) is n, then we write V = λv ⊕ w for λ ∈ R. So To = T |W
is an element in SO(n). If n 6≡ 2 (mod 4), so there exists an orthogonal map

So : W → W provided that determinant So = 1 and SoToS
−1
o = T−1

o . therefore

there exists S =

(
So 0

0 1

)
in SOo(n, 1) provided that STS−1 = T−1. therefore T

is real in SOo(n, 1). Now consider n ≡ 2 (mod 4), and consider T has no space-like

eigenvalue ±1. So in this case, any choice of So has determinant essentially -1. there-

fore it is not possible to choose any S as above. Thus T can not be real.

Consider T be a hyperbolic. So T has a real eigenvalue r > 0. As a result, V has an

orthogonal decomposition V = Vr ⊕W, such that Vr is a 2-dimensional orthogonally

indecomposable time-like subspace and W is its space-like orthogonal complement of

dimension (n− 1). Denote Tr = T |Vr , To = T |W. Since T is semi simple(i.e. a diago-

nalizable element of finite dimensional vector space V ), and Vr is an eigen space of T ,

by considering any element S which conjugates T to T−1 must preserve Vr. It is clear

that any f in I(H1) provided that fTrf
−1 = T−1

r must have det -1. Therefore T is real
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in SOo(n, 1) iff it is possible choose an So in O(n−1) provided that SoToS
−1
o = T−1

o and

determinant So = −1 (because if T is real then T must be strongly real thus product

of two involutions). This happens only when n− 1 6≡ 0 (mod 4), i.e. n 6≡ 1 (mod 4),

or To has an eigenvalue ±1.

Consider n ≡ 1 (mod 4) and T has no space-like eigenvalue ±1. As shown in above

paragraph, any choice of So would have determinant essentially 1, and thus T can not

be real in SOo(n, 1).

Consider T be a parabolic. Implies that T has a time-like non-degenerate inde-

composable sub-space V1 having dimension 3, and V = V1 ⊕W, such that W is the

space-like (n− 2)-dimensional orthogonal complement of V1. Minimal polynomial of

T |V1 is (x− 1)3. Suppose T1 = T |V1 , To = T |W. Then V1 must be invariant under an

isometry S with property that T is conjugate to T−1. Therefore signature of Q|V1 is

(2, 1), thus suppose T1 as an unipotent isometry in I(H2). It is clear that any isometry

S1 in I(H2) which conjugates T1 to T−1
1 with det -1. Thus T is real for an element

So in O(n − 2) provided that SoToS
−1
o = T−1

o and determinant So = −1 (by similar

argument as in above paragraph). This only happens when n − 2 ≡ 0 (mod 4) i.e.

n 6≡ 2 (mod 4), or So has an eigenvalue ±1. It is clear that when n 6≡ 2 (mod 4) and

T has no space-like eigenvalue ±1, subsequently any element S which conjugates T

to T−1 have determinant essentially -1, and thus it is not possible that T is real in

this case.

Definition 3.2. An element T in SOo(n, 1) is called strongly real if it can be written

as a product of two involutions in SOo(n, 1).

Theorem 50. An element T in SOo(n, 1) is strongly real iff it is real.

Proof Consider T is an isometry of Hn+1 and T is real. It is sufficient to construct

an involution g in SOo(n, 1) provided that gTg−1 = T−1. The construction of g as

done in the above theorem, and the decomposition of V as shown in the above proof.

3.3 Reality properties of conjugacy classes in Mo(n)

Definition 3.3. Let G be a group. An element g in G is called real if there exists h

in G provided that hgh−1 = g−1. An element g in G is an involution if g2 = 1.

Definition 3.4. An element g in G is called strongly real if it can be written as a

product of two involutions in G.
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A strongly real element in G is always real. Conversely, a real element g ∈ G is

strongly real iff there is a conjugating element in G which is an involution.

3.3.1 Reality in SO(n)

Suppose V be an n-dimensional vector space over R which has with a non-degenerate

positive definite quadratic form q. The isometry group is denoted by O(n) and let

SO(n) denote the subgroup O(n) of index two contaning isometries with det 1. We

can identify V with Euclidean space En.

Theorem 51. Let T be an element in SO(n). Then T is strongly real in SO(n) iff

n 6≡ 2 (mod 4) or an orthogonal decomposition of V into orthogonally indecomposable

T -invariant subspaces contains an odd dimensional summand.

Proof Let T ∈ SO(n) and has no eigenvalue ±1. Then V has an orthogonal decom-

position.

V = V1 ⊕ · · · ⊕ Vk,

into two dimensional invariant subspaces. Each Vi with dimension 2, so in this

case for each i = 1, · · · , k, there is an involution fi provided that fiT |Vi
f−1
i = T |−1

V .

Let f = f1⊕f2⊕· · ·⊕fk. Then f is an involution, and fTf−1 = T−1, and determinant

f = (−1)
n
2 . therefore determinant f = 1 iff either of the conditions provided in the

theorem are satisfied. If determinant f = 1, then T = f.fT , the product of two

involutions.

Theorem 52. Consider n is even and T be an element in SO(n). Consider the

minimal polynomial of T is a power of an irreducible quadratic polynomial over R.

Then T is real iff n 6≡ 2 (mod 4).

Proof As the minimal polynomial of T is a irreducible power polynomial over R,

assume that the only eigenvalues over C are {eiθ, e−iθ}. Let χT (x) = (x2−2 cos θx+1)m

be the characteristic polynomial of T . So n = 2m. Let S ∈ O(n) provided that

STS−1 = T−1. Let Vc = V⊗R C be its complexification then identify T with T ⊗R id

and also view it as an operator on Vc. Let Vc = Vθ+V−θ be the decomposition into its

eigenspaces. So S interchanges Vθ and V−θ. It is clear that determinant S = (−1)m.

thus S is an element of SO(n) iff m is even.

Theorem 53. Let T be an element in SO(n). Consider 1 and -1 are not eigenvalues

of T . Then T is real iff n 6≡ 2 (mod 4).
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Proof If ±1 is not an eigenvalue of T , then the only possibility of n is being even.

For T in SO(n) there exists a decomposition of V into T -invariant subspaces

V = V1 ⊕ · · · ⊕ Vk,

where for each i = 1, 2, · · · , k, Vi ' R[x]/(x2 − 2cosθix + 1)mi for mi ≥ 1. Let S

be an element in O(n) provided that STS−1 = T−1. Then S keeps each Vi invariant.

Let Si = S|Vi
, Ti = T |Vi

are restrictions of S and T on Vi. Then SiTiS
−1
i = T−1

i .

therefore det Si = (−1)mi . therefore det S = Πk
i=1detSi = (−1)

n
2 n. thus det S = 1 iff

n
2

= 2m. This completes the theorem.

Theorem 54. Let T be an element in SO(n). Then T is real in SO(n) iff either

n 6≡ 2 (mod 4) or T has an eigenvalue ±1.

Proof Consider S ∈ O(n) be provided that STS−1 = T−1. If T has no eigenvalue

1,−1 and n 6≡ 2 (mod 4), then it can be clearly seen from the above theorem that det

S can not be equal to 1. Thus T is not real.

Consider T has an eigenvalue ±1. If -1 is an eigen value of T , then it should have

an even multiplicity. Therefore an orthogonal decomposition of V into T -invariant

subspaces

V = V1 ⊕ · · · ⊕ Vk ⊕ Λ1 ⊕ Λ−1,

where each Vi is T -invariant and even dimensional, T |Λ1 = I, T |Λ−1 = −I. Con-

sider W = V1⊕· · ·⊕Vk. Then dimension of W is even. By the reality of the orthogonal

group, there exists an orthogonal map Sw : W → W provided that SwTwS
−1
w = T−1

w

with det Sw = I or -1. Since the maps I and −I commutes with every element in

the orthogonal group, after selecting such Sw, the maps S1 : Λ → Λ can be selected

accordingly provided that STS−1 = T−1 and det S = 1, where S = Sw ⊕ S1 ⊕ S−1.

thus T is real in SO(n).

Theorem 55. An element T in SO(n) is real iff it is strongly real.

Proof Let T is an element of SO(n) provided that n 6≡ 2 (mod 4). Then by theorem

(54) T is real and by theorem (51) T is strongly real, so clearly T is real iff T is strongly

real for n 6≡ 2 (mod 4).

T has an eigen value of ±1 iff T is only real by theorem (54). But T has an eigen value

±1 iff orthogonal decompostion of V into orthogonally indecomposable T invariant

subspaces contains an odd dimensional summand. therefore by theorem (51) T is

44



strongly real.

Therefore T is real iff it is strongly real.
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