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Abstract

In this thesis, we try to analyze self adjoint operators on a Hilbert space H. This

thesis talks about the spectrum, the spectral decomposition and the perturbation of

self adjoint operators. The need to study perturbation comes from the setting of

Quantum mechanics. If we consider the Hilbert space H = L2(R), then the elements

of H are the states of the system. Each observable is represented by a self adjoint

linear operator acting on the state space. Each eigenstate of an observable corresponds

to an eigenvector of the operator, and the associated eigenvalue corresponds to the

value of the observable in that eigenstate. If the operator’s spectrum is discrete, the

expectation of observables can attain only those discrete eigenvalues. We denote the

Hamiltonian by

H = −∆ + V

where ∆ is the Laplacian and V is the potential operator. In the later part of

the thesis, we start the theory perturbation in different instances. First we see that

the essential spectrum of a bounded operator is invariant under perturbation by a

compact operator. Then we see that a small relatively bounded symmetric operator

when added to a self adjoint operator gives us a self adjoint operator. Towards the

end, we study a special case of rank one perturbations of self adjoint operator. The

key result says that the absolutely continuous part of the spectrum stays invariant.
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Chapter 1

Bounded operators on a Hilbert

space

In this chapter, we look at the introductory theory to Hilbert spaces, bounded op-

erators on a Hilbert space, their spectra and the spectral decomposition of a normal

operator.

A crucial result in this chapter says that if we have a spectral measure or a resolution

of identity for a bounded operator T , then we can make sense f(T ) for a bounded

function f on σ(T ). For more detailed theory, see [1].

1.1 Bounded operators

Definition 1.1. Let H be a complex vector space. A map from H×H to C is called

an inner product if the following hold:

(a) (x, y) = (y, x)

(b) (x+ z, y) = (x, y) + (z, y)

(c) (ax, y) = a(x, y)

(d) (x, x) ≥ 0 with (x, x) = 0 if and only if x = 0

for x, y ∈ H, a ∈ C. H equipped with such a map is called an inner product space. It

is called a Hilbert space if the space is complete with respect to the norm

‖ x ‖= (x, x)1/2.

The following are a few examples of Hilbert spaces, taken from [3].

Examples:
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(a) Euclidean Space Cn: The space Cn is a Hilbert space with inner product defined

by

(x, y) = x1y1 + x2y2 + ...+ xnyn

where x = (x1, x2, ..., xn) , y = (y1, y2, ..., yn) and yi denotes the complex conjugate of

yi.

(b) Space L2[a, b]: Here a, b ∈ R. L2[a, b] is the set of all square integrable functions

with the inner product defined by

(x, y) =

∫ b

a

x(t)y(t)dt.

Definition 1.2. A Banach algebra is a complete normed vector space V with a unit

element e(such that xe = ex = x for x ∈ V) over the field C in which multiplication

is defined in a way such that it is associative and it satisfies

(x+ y)z = xz + yz,

x(y + z) = xy + xz,

α(xy) = (αx)y = x(αy),

and the multiplicative inequality

‖ xy ‖≤‖ x ‖‖ y ‖

for x, y, z ∈ V and α ∈ C.

Definition 1.3. Let B(H) be the set of all bounded linear operators on H. We define

a norm on B(H) as:

‖ T ‖= sup{‖ Tx ‖: x ∈ H, ‖ x ‖≤ 1}

.

It is easy to see that B(H) forms a Banach Algebra.

Theorem 1.1. Let H be a Hilbert space and f be a bounded-sesquilinear(i.e. linear

in the first variable and conjugate linear in the second) functional

f : H×H → C.
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Then there exists a a unique S ∈ B(H) that satisfies

f(x, y) = (x, Sy) (x, y ∈ H)

Also, ‖ S ‖=‖ f ‖.

Idea of the proof: Since f is bounded, the map

x→ f(x, y)

is a bounded linear functional on H. Thus by Riesz representation theorem, there

exists a unique Sy ∈ H such that

f : H×H → C.

Definition 1.4. Let H be a Hilbert space and T be a bounded operator. The spectrum

of T , denoted by σ(T ) is the the set of all λ ∈ C such that λI − T is not invertible.

Definition 1.5. The spectral radius is defined as

γ(T ) = sup{| λ |: λ ∈ σ(T )}

Remark:

(a) σ(T ) is compact and non empty.

(b) γ(T ) satisfies

γ(T ) = lim
n→∞

‖ T n ‖1/n

Classification of spectra: How do we find values in σ(T )? If λI − T is not bounded

below(or not injective in particular), then it must not be invertible. Hence, λ ∈ σ(T ).

We define few types of spectral values:

Definition 1.6. If for T ∈ B(H), λI − T is not injective, or for some x, (λI −
T )x = 0, then we say that λ is an eigenvalue. The set of all eigenvalues is called the

eigenspectrum, or the point spectrum σp(T ).
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Examples: We take the simplest example in Rn. Take T to be an operator that

acts on the basis {v1, v2, ..., vn} in the following way:

T (vi) = λivi

for λi ∈ R. We see that (λiI − T )vi = 0. Hence the collection of λis is the point

spectrum of T .

Definition 1.7. If for T ∈ B(H), T − λI is not bounded below, then we can find a

sequence {xn} in H such that ‖ xn ‖= 1∀n and ‖ T (xn) − λxn ‖→ 0 as n → ∞.

Such a k is called an approximate eigenvalue and the collection of all approximate

eigenvalues is called the approximate eigenspectrum, denoted by σa(T ).

Examples: Consider the bilateral shift T on l2(R) defined by

T (..., a−1, â0, a1, ...) = (..., ˆa−1, a0, a1...)

whereˆdefines the zero-th position. It is easy to see that T doesn’t have an eigenvalue.

However, but for | λ |= 1, every λ is an approximate eigenvalue. Let

xn = 1/
√
n(..., 0, 1, λ−1, λ−2, ..., λ1−n, 0, ...).

Then ‖ xn ‖= 1 and

‖ Txn − λxn ‖=
√

2/n→ 0.

Definition 1.8. An operator can be bounded below( and hence, injective) but may not

be surjective. If T − λI is injective, but does not have a dense range, then λ ∈ σr(T ),

the residual spectrum of T.

Examples: The unilateral right shift on l2(N) given by

T (a1, a2, ....) = (0, a1, a2, ...)

is an example. This shift operator is an isometry, therefore bounded below by 1. But

it is not invertible as it is not surjective(nor has dense range).

Definition 1.9. Now, if for some λ, T − λI is injective, has a dense range, but is

not surjective, then set of such λ is said to be continuous spectrum, denoted by σc(T ).
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1.2 Adjoint

Definition 1.10. Let H be a Hilbert space and let T ∈ B(H). Then the adjoint T ∗ of

T is the operator

T ∗ : H → H

such that (Tx, y) = (x, T ∗y) for x, y ∈ H.

Remark: In the previous theorem, let f(x, y) = (Tx, y) for T ∈ B(H). Then the

unique S we get is the adjoint of T . Also, we see that ‖ T ∗ ‖=‖ S ‖=‖ T ‖.
The following is an example of an adjoint, taken from [3].

Examples: Let H be a Hilbert space and {u1, u2, .., un} be an orthonormal basis for

H. For A ∈ B(H), we can write the matrix

[A] = (αi,j)

where αi,j = (A(uj), ui). Since A∗ ∈ B(H) and

(A∗(uj), ui) = (uj, A(ui)) = (A(ui), uj)

for i, j = 1, 2, ..n. It follows that [A∗] = (kj,i) with respect to the same basis.

Proposition 1.1. The map T → T ∗ is an involution on B(H), i.e. the following

properties hold

(T + S) = T ∗ + S∗

(α(T ))∗ = ᾱT ∗

(ST )∗ = T ∗S∗

T ∗∗ = T

The proofs of the above properties are trivial. We just have to play around with

the properties of the inner product. Now we define different types of operators.

Definition 1.11. An operator T ∈ B(H) is called

(a) a normal operator if TT ∗ = T ∗T .

(b) a self adjoint operator if T ∗ = T .

(c) a unitary operator if TT ∗ = I = T ∗T .

(d) a projection if T 2 = T .

(e) a compact operator if {Txn} has a Cauchy subsequence for any bounded sequence

{xn}.
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Having defined the operators, the following two theorems talk about the spectrum,

its properties and the relations between various components of it.

Theorem 1.2. Let H be a Hilbert space and let T ∈ B(H). Then

(a) k ∈ σ(T ) iff k̄ ∈ σ(T ∗).

(b) σp(T ) ⊂ σa(T ) and σ(T ) = σa(T ) ∪ {k : k̄ ∈ σp(T ∗)}.
(c) σc(T ) = σa(T ) \ (σr(T ) ∪ σp(T )).

Theorem 1.3. Let T ∈ B(H) be a normal operator(i.e. TT ∗ = T ∗T ). Then

(a) If k ∈ σp(T ), then k̄ ∈ σp(T ∗). Also, if for x ∈ H, Tx = λx, then T ∗x = λ̄x.

(b) If x1 and x2 are eigenvectors corresponding to distinct eigenvalues, then (x1, x2) =

0.

(c) σ(T ) = σa(T ).

(d)T is self adjoint iff σ(T ) ⊂ R.

(e)T is unitary iff σ(T ) ⊂ S1.

1.3 Gelfand theory

Definition 1.12. Let A be a Banach algebra with an involution x→ x∗ which satisfies

‖ xx∗ ‖=‖ x ‖2 .

Then A is called a C∗ algebra.

Since for T ∈ B(H),

‖ Tx ‖2= (Tx, Tx) = (T ∗Tx, x) ≤‖ T ∗T ‖‖ x ‖2

for all x ∈ H, we get that ‖ T ‖2≤‖ T ∗T ‖. Now since ‖ T ∗ ‖=‖ T ‖, we get that

‖ T ∗T ‖≤‖ T ∗ ‖‖ T ‖=‖ T ‖2 .

Hence, ‖ T ∗T ‖=‖ T ‖2 ∀ T ∈ B(H), and we see that B(H) is a C∗ algebra.

Definition 1.13. Let A be a commutative Banach algebra. Let ∆ be the set of all

complex homomorphisms on A. The Gelfand transform x̂ of x ∈ A is a function

x̂ : ∆→ C defined as

x̂(h) = h(x) (h ∈ ∆).
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Let Â be the set of all x̂;x ∈ A. We define the Gelfand topology of ∆ to be the

weak topology induced by Â. Note that this topology makes every x̂ continuous and

is the weakest with this property.

Remark: Â ⊂ C(∆).

Proposition 1.2. Let A be a commutative Banach algebra and let ∆ be the set of

complex homomorphisms of A. Then

(a)Every maximal ideal of A is the ker(h) of some h ∈ ∆.

(b)If h ∈ ∆, the ker(h) is a maximal ideal of A.

Remark: Note that ∆, with the Gelfand topology is called the maximal ideal space

of A.

Lemma 1.1. Let A be a commutative Banach algebra and let ∆ be the set of all

complex homomorphisms of A. Then λ ∈ σ(x)⇐⇒ h(x) = λ for some h ∈ ∆.

Theorem 1.4. Let ∆ be the maximal ideal space of A. Then

(a) ∆ is a compact Hausdorff space.

(b) The Gelfand transform is a homomorphism of A onto a subalgebra Â of C(∆),

whose kernel is radA(i.e. the intersection of all maximal ideals of A).

(c) R(x̂) = σ(x). Hence ‖ x̂ ‖∞= γ(x) ≤‖ x ‖.

Proof: We will prove (b) and (c) only. Let y, x ∈ A,α ∈ C, h ∈ ∆. Then

α̂x(h) = h(αx) = αh(x) = αx̂(h)

ˆx+ y(h) = h(x+ y) = h(x) + h(y) = (x̂+ ŷ)(h)

and

(xy)(h) = h(xy) = h(x)h(y) = x̂(h)ŷ(h) = (x̂ŷ)(h).

Hence, x → x̂ is a homomorphism whose null space consists of those x ∈ A which

satisfy h(x) = 0 ∀ h ∈ ∆. Now by previous proposition, null space of x → x̂ is the

intersection of all maximal ideals of A, i.e. rad(A).

If λ ∈ R(x̂), then λ = h(x) for some h ∈ ∆. By the above lemma, λ ∈ σ(x).
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Theorem 1.5. (Gelfand-Naimark): Suppose A be a commutative C∗ algebra. Let

maximal ideal space of A be ∆. The Gelfand transform is an isometric isomorphism

of A onto C(∆) satisfying for all x ∈ A, h ∈ ∆,

h(x∗) = h(x)

or equivalently
ˆ(x∗) = x̂.

Corollary: x is self adjoint if and only if x̂ is a real valued function.

In the following theorem, we narrow down to a special case. Also, we talk about

the inverse of the Gelfand transform.

Theorem 1.6. If A is commutative C∗-algebra which contains an element x such that

polynomials in x and x∗ are dense in A, then

Ψ̂f = f ◦ x̂

defines an isometric isomorphism Ψ of C(σ(x)) onto A which satisfies

Ψf̄ = (Ψf)∗

for every f ∈ C(σ(x)). Moreover, if f(λ) = λ on σ(x), then Ψf = x.

In the next section, we define the resolution of the identity, which later we use to

define f(T ) for a bounded function f and T ∈ B(H).

1.4 Resolutions of Identity

Definition 1.14. Let M be a σ−algebra in a set Ω. Let H be a Hilbert space. A

resolution of identity E is a map from M to B(H) such that

(a) E(φ) = 0

(b) E(Ω) = I

(c) E(ω) is a self adjoint projection for all ω

(d) E(ω
′ ∩ ω′′) = E(ω

′
)E(ω

′′
)
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(e) If ω and ω
′

are disjoint, then E(ω ∪ ω′) = E(ω) + E(ω
′
)

(f) For x, y ∈ H, we define a function Ex,y by:

Ex,y(ω) = (E(ω)x, y)

We see that Ex,y is a complex measure on M.

Remarks:

(a) Ex,x(ω) = (E(ω)x, x) =‖ E(ω)x ‖2 since E(ω) is a self adjoint projection.

(b) Each Ex,x is a positive measure on M with total variation

‖ Ex,x ‖= Ex,x(Ω) =‖ x ‖2

(c) Any two E(ω) commute.

(d) If ω and ω
′

are disjoint, then R(E(ω)) ⊥ R(E(ω
′
))

(e) E is finitely additive, but not countably additive in general.

Even though E is not countably additive, E(.)x for every x ∈ H. This happens

because (E(ω)x, y) is a measure. In other words, ω → E(ω)x is a countably additive

H-valued measure on M.

Examples:

(a)If T is a finite dimensional operator, then T =
∑n

k=1 λkEk where λk are the n

eigenvalues.

(b)If T is a compact operator, then T =
∑∞

k=1 λkEk where λk are the eigenvalues.

Proposition 1.3. Suppose E is a resolution of the identity. If ωn ∈M and E(ωn) = 0

for n = 1, 2, 3... and if ω = ∪∞n=1ωn, then E(ω) = 0.

The algebra L∞(E): Let E be a resolution of identity on M and let f be a

complex M-measurable function on Ω. Since C is second countable space, there

exists a countable collection {Di} of open discs which form a base for the topology of

C. Define V as

V = ∪Dj ; E(f−1(Dj)) = 0

9



By the previous proposition, E(f−1(V )) = 0.

The essential range of f is the compliment of V (by definition). If the essential range

is bounded, we say that f is essentially bounded. The essential supremum is the

largest absolute value of points in essential range. We denote the essential supremum

as ‖ f ‖∞.

Let B be the algebra of all bounded complex M-measurable functions on Ω, with the

norm

‖ f ‖= sup{| f(p) |: p ∈ Ω}

It is trivial to see that B is a Banach Algebra. Let N be an ideal defined by

N = {f ∈ B :‖ f ‖∞= 0}

We know by previous proposition that N is closed. Hence, we can define B/N , which

we denote by L∞(E).

Theorem 1.7. If E is a resolution of the identity, then there exists an isometric∗

isomorphism Ψ from the L∞(E) onto a normal subalgebra A of B(H), which is related

to E by the formula

(Ψ(f)x, y) =

∫
Ω

fdEx,y (x, y ∈ H, f ∈ L∞(E))

This justifies the notation

Ψ(f) =

∫
Ω

fdE

Moreover,

‖ Ψ(f)x ‖2=

∫
Ω

| f |2 dEx,x (x ∈ H, f ∈ L∞(E)).

By isometric∗ isomorphism , we mean that Ψ is a one-one, linear, multiplicative and

that

Ψ(f̄) = Ψ(f)∗.

The following is a proof taken from [1].

Proof: Let us start by proving the result for simple functions. Let {ω1, ω2, ..., ωn} be

a partition of Ω, with ωi ∈M and let s be a simple function, such that s = αi on ωi.

Let us define Ψ ∈ B(H) as

Ψ(s) =
n∑
i=1

αiE(ωi)
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We know that each E(ωi) is self adjoint, hence

Ψ(s)∗ =
n∑
i=1

ᾱiE(ωi0) = Ψ(s̄)

If we have another partition, say {ω′1, ω
′
2, ..., ω

′
n}, and another simple function t = βi

on ωi, then

Ψ(s)Ψ(t) =
∑
i,j

αiβjE(ωi)E(ω
′

j) =
∑
i,j

αiβjE(ωi ∩ ω
′

j)

We see that st is a simple function that equals st = αiβj on ωi ∩ ω
′
j, hence

Ψ(s)Ψ(t) = Ψ(st).

Similarly, we can show the linearity of Ψ. Now, if x, y ∈ H,

(Ψ(s)x, y) =
n∑
i=1

αi(E(ωi)x, y) =
n∑
i=1

αiEx,y(ωi) =

∫
Ω

s dEx,y

Since Ψ is multiplicative.

‖ Ψ(s)x ‖2= (Ψ(s)∗Ψ(s)x, x) = (Ψ(| s |2)x, x) =

∫
Ω

| s |2 dEx,x

so that

‖ Ψ(s)x ‖≤‖ s ‖∞‖ x ‖ .

Now, if x ∈ R(E(ωj)), then

Ψ(s)x = αjE(ωj)x = αjx

since E(ωi) have orthogonal ranges. We can chose j so that | αj |=‖ s ‖∞. Hence,

‖ Ψ(s) ‖=‖ s ‖∞ .

Now let us assume that f ∈ L∞(E). Then there is a sequence of simple measurable

functions sk converging to f in the norm of L∞(E). The operators Ψ(sk) form a

Cauchy sequence in B(H) and hence converge in the norm to an operator that, that

we denote by Ψ(f). It is easy to see that Ψ(f) does not depend on the choice of {sk}.
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We get

‖ Ψ(f) ‖=‖ f ‖∞ .

Thus Ψ is an isometric∗ isomorphism from the L∞(E) onto a normal subalgebra

A = Ψ(L∞(E)) of B(H).

1.5 The spectral theorem

Definition 1.15. A closed subalgebra A of B(H) is called a ∗ − algebra if I ∈ A and

T ∗ ∈ A whenever T ∈ A.

Lemma 1.2. Suppose T ∈ A ⊂ B(H). If σ(T ) doesn’t separate C, then σ(T ) = σA(T ).

Proposition 1.4. Let H be a Hilbert space and T be a bounded operator. T has the

same spectrum relative to all closed ∗ − algebras in B(H) that contain T .

Proof: Let A be a ∗-algebra in B(H) that contains T . Let us assume that T

is invertible in B(H). Since TT ∗ is self adjoint, σ(TT ∗) is a compact subset of R.

Hence, it does not separate C. Therefore, σ(TT ∗) = σA(TT ∗) by the previous lemma.

Since TT ∗ is invertible in B(H), it is invertible in A(because the spectrums are equal).

Therefore, (TT ∗)−1 ∈ A and eventually T−1 = T ∗(TT ∗)−1 ∈ A.

Theorem 1.8. If A is a closed normal subalgebra of B(H) containing the identity

operator I and if ∆ is the maximal ideal space of A, then the following assertions are

true:

(a) There exists a unique resolution E of the identity on the Borel subsets of ∆ sat-

isfying

T =

∫
∆

T̂ dE

where T ∈ A, where T̂ is the Gelfand transform of T .

(b) The inverse of Gelfand transform(i.e. the map that takes T̂ to T) extends to an

isometric∗-isomorphism Φ of L∞(E) onto a closed subalgebra B of B(H), B ⊃ A

given by

Φf =

∫
∆

fdE.
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Proof: We know that the first equation above means

(Tx, y) =

∫
∆

T̂ dEx,y.

We know that B(H) is a C∗ algebra. Since, A is normal, it is a commutative B∗

algebra. By the Gelfand Naimark theorem, T → T̂ is an isometric ∗-isomorphism of

A onto C(∆).

To see a proof for uniqueness of E, we assume that an E exists and satisfies

(Tx, y) =

∫
∆

T̂ dEx,y.

Since T̂ ranges over all of C(∆), the assumed regularity of complex Borel measures

Ex,y and the uniqueness assertion of Riesz representation theorem show that each Ex,y

is uniquely determined by the above equation. Now, since (E(ω)x, y) = Ex,y(ω), each

E(ω) is also uniquely determined.

Now we try to prove the existance of E. If x, y ∈ H, Gelfand-Naimark theorem shows

that T̂ → (Tx, y) is a bounded linear functional on C(∆) of norm atmost ‖ x ‖‖ y ‖,
since ‖ T̂ ‖∞=‖ T ‖. By Riesz representation theorem, we get unique Borel measures

µx,y on ∆ such that

(Tx, y) =

∫
∆

T̂ dµx,y.

where x, y ∈ H, T ∈ A. We know that LHS of above equation is a bounded sesquilinear

functional on H. Hence, so is RHS. Now, even if we replace our continuous T̂ with an

arbitary borel function f , the boundedness remains intact. To each f corresponds a

Φf ∈ B(H) such that

((Φf)x, y) =

∫
∆

fdµx,y.

Comparing the above two equations, we see that ΦT̂ = T . Hence, Φ is an extension

of the inverse of Gelfand transform(since it is defined on Borel functions).

It is easy to see the linearity of Φ.

Gelfand Naimark theorem states that T is self adjoint iff T̂ is real valued. For such a

T , ∫
∆

T̂ dµx,y = (Tx, y) = (x, Ty) = (Ty, x) =

∫
∆

T̂ dµy,x
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and this implies that µx,y = µy,x.

Hence,

((Φx̄)x, y) =

∫
∆

f̄dµx,y =

∫
∆

fdµy,x = ((Φf)y, x) = (x, (Φf)y)

for all x, y ∈ H. Hence,

Φf̄ = (Φf)∗.

Now for S, T ∈ A, ˆ(ST ) = ŜT̂ . Hence,∫
∆

ŜT̂ dµx,y = (STx, y) =

∫
∆

ŜdµTx,y.

This holds for all Ŝ ∈ C(∆). Hence, we can replace Ŝ by any bounded Borel function

f . Thus ∫
∆

fT̂ dµx,y =

∫
∆

fdµTx,y = ((Φf)Tx, y) = (Tx, z) =

∫
∆

T̂ dµx,z

where z = (Φf)∗y. Now the first and last integrals remain equal if T̂ is replaced by

g, a borel function. We get

(Φ(fg)x, y) =

∫
∆

fgdµx,y =

∫
∆

gdµx,z = ((Φg)x, z) = ((Φg)x, (Φf)∗y) = (Φ(f)Φ(g)x, y)

and hence, Φ(fg) = Φ(f)Φ(g).

Now we define E: If ω is a Borel subset of ∆, let χw be its characteristic function.

Now define

E(ω) = Φ(χω).

Since Φ is multiplicative,

E(ω ∩ ω′) = E(ω)E(ω
′
).

If ω = ω
′

above, we get that E(ω) is a projection.

When f is real, Φf is self adjoint. Hence each E(ω) is self adjoint. It is easy to see

that E(φ) = Φ(0) = 0 and check the finite additivity of E. Now, ∀x, y ∈ H,

Ex,y(ω) = (E(ω)x, y) =

∫
∆

χωdµx,y = µx,y(ω).

Hence (a) and (b) are proved.
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Now, we narrow down to an operator.

Theorem 1.9. If T ∈ B(H) is normal, then there exists a unique resolution of the

identity E on the borel sets of σ(T ) satisfying

T =

∫
σ(T )

λdE(λ).

Proof:Let A be the smallest closed subalgebra of B(H) that contains I, T, T ∗.

Since T is normal, A is a normal subalgebra and previous theorem can be applied to

A. We know from Gelfand theory that the maximal ideal space of A can be identified

with σ(T ) in such a way that T̂ (λ) = λ for every λ ∈ σ(T ). The existance of such a

E follows from previous theorem.

Next we try to make sense of f(T ) for a given f .

f(T) for bounded f: If E is the spectral decomposition of a normal operator T ∈
B(H), and if f is a bounded Borel measurable function on σ(T ), it is customary to

denote the operator

Ψ(f) =

∫
σ(T )

fdE

by f(T ).

In the next chapter, we will study about unbounded operators.
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Chapter 2

Unbounded operators on a Hilbert

space

In this chapter, we will study the theory of unbounded operators. The first thing we

realize is that not all operators are defined on the whole Hilbert space.

In this chapter, like the previous one, we study tools to understand self adjoint oper-

ators. For a detailed theory, refer to [1].

2.1 Unbounded operators

Definition 2.1. Let H be a Hilbert space. A linear operator T : D(T )→ H is a map

from a subspace D(T ) of H to H.

Examples: Let C([0, 1]) denote the space of continuous functions on the interval,

and letC1([0, 1]) denote the space of continuously differentiable functions. Define the

differentiation operator d
dx

: C1([0, 1])→ C([0, 1])by

d

dx
(f)(x) = lim

ε→0

f(x+ ε)− f(x)

ε
∀x ∈ [0, 1].

Since every differentiable function is continuous, C1([0, 1]) ⊂ C([0, 1]).

If T is continuous , then T has a continuous extension to D(T ). Since D(T ) is

complemented in H, we can extend T to some member of B(H) over H.
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Definition 2.2. Let H be Hilbert space. Then H×H is the space of all ordered pairs

(x, y) where x ∈ H, y ∈ H. We can define an inner product on H×H by

({a, b}, {c, d}) = (a, c) + (b, d)

where (a, c) is the inner product in H.

Remark: The norm on H×H is given by

‖ {a, b} ‖2=‖ a ‖2 + ‖ b ‖2 .

Definition 2.3. Let T be an operator on H. Then the graph G(T ) of T is the subspace

of H×H
{(x, Tx) : x ∈ D(T )}.

Definition 2.4. Let S, T be two operators on H. Then if G(T ) ⊂ G(S), we say that

S is an extension of T .

Definition 2.5. If G(T ) is a closed subspace of H×H, then T is closed.

Often it happens, that our T is not closed, but it may have a closed extension.

The following notions of closability are taken from [3]

Definition 2.6. If a linear operator T has an extension T1 which is a closed linear

operator, then we call T1 a closed linear extension of T and T is closable.

Definition 2.7. A closed linear extension T of T is said to be minimal if every closed

linear extension T1 of T is a closed linear extension of T . We call this minimal closed

extension(if it exists) T as the closure of T .

Remark: If T exists, it is unique.

Now we present an operator that is not closable from [8].

Example of Non Closable operator: Let {ei} be an orthonormal basis of an infinite-

dimensional Hilbert space H.Let us define a linear operator T as follows: D(T ) is the

set of all finite linear combinations of vectors {ei} and

Aek = ke1.
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We see that T is not closable.

2.2 Adjoint

Definition 2.8. Let T be an operator in H. The adjoint T ∗ of T is an operator on

H such that

(Tx, y) = (x, T ∗y)

where x ∈ D(T ) and y ∈ D(T ∗) = {y ∈ H | x→ (Tx, y) is continuous }.

Remark: If y ∈ D(T ∗), then by Hahn-Banach theorem, the functional x→ (Tx, y)

can be extended to a continuous linear functional on H. By Riesz representation

theorem([2]), there exists T ∗y such that

(Tx, y) = (x, T ∗y).

It is easy to see that T ∗y is uniquely defined iff D(T ) is dense.

Some Trivial Properties: There are some basic properties that one should know

regarding

(a) domains of sums and products

D(S + T ) = D(S) ∩ D(T )

D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)}

(b) associativity

(R + S) + T = R + (S + T )

(RS)T = R(ST )

(c) distributivity

(R + S)T = RT + ST

T (R + S) ⊃ TR + TS

Note that in the last one, (R + S)x may be in D(T ) , however one of Rx or Sx may

not be. Hence, the inequality.
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Proposition 2.1. Let S, T and ST be operators on H with domains dense in H.

Then

T ∗S∗ ⊂ (ST )∗

Now, if S ∈ B(H),

T ∗S∗ = (ST )∗

Let V be an operator on H×H given by

V {a, b} = {−b, a} (a, b ∈ H).

It is easy to see that V 2 = −I. Also, V is a unitary operator.

The next result relates the graph of T ∗ with the graph of T .

Proposition 2.2. If T is densely defined in H, then

G(T ∗) = [V G(T )]⊥.

Theorem 2.1. If T is an operator in H with dense D(T ), then T ∗ is closed.

Corollary: Self adjoint operators are closed.

Theorem 2.2. If T is a closed operator defined densely in H, then we can write

H×H as a direct sum of two orthogonal subspaces in the following way:

H×H = V G(T )⊕ G(T ∗).

The following is a result from [9].

Theorem 2.3. Suppose that T : H → H is a densely defined operator on H. Then

(a) If T is closable, then T
∗

= T ∗.

(b) T is closable iff T ∗ is densely defined.

(c) If T is closable, then T = T ∗∗.

Proof: To prove (a) we use the operator V defined above as

V {a, b} = {−b, a}

for a, b ∈ H. We see that if T is closable, then

G(T ∗) = (V G(T ))⊥ = (V G(T ))⊥ = V G(T )⊥ = G(T ∗)
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by the previous theorems.

To prove (b), we take a sequence {xn} in H such that

xn → 0

Txn → x

as n→∞. Let y ∈ D(T ∗). Then

(Txn, y) = (xn, T
∗y).

Taking the limits as n→∞, we get

(x, y) = (0, T ∗y) = 0.

Hence, if T ∗ is densely defined, we get that x = 0. Hence, T is closable.

To prove the other way, assume that T is closable and let x ⊥ D(T ∗). By above

argument,

(k, 0) ∈ V G(T ) = G(T ∗)⊥ = V G(T )⊥⊥ = V G(T ) = V G(T ).

This implies that (0, k) = G(T ). Since T is closable, T is well-defined and hence

k = T0 = 0.

Therefore, D(T ∗) is densely defined.

Now to prove (c), we assume that T is closable and T ∗ is densely defined. Then

G(T ∗∗) = (UG(T ∗))⊥

where U((y, x)) = (−x, y) = −V −1(y, x). Therefore

G(T ∗∗) = U(V (G(T )⊥)⊥ = G(T ) = G(T )

and hence, T = T ∗∗.
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2.3 Symmetric operators

Definition 2.9. An operator T in H is called symmetric if

(Tx, y) = (x, Ty)

where x, y ∈ D(T ).

Remarks:

If T is a dense symmetric operator, then

T ⊂ T ∗

Definition 2.10. If T = T ∗, then T is said to be self adjoint.

Remark:If T is densely defined and (Tx, y) = (x, Sy), then S ⊂ T ∗.

Theorem 2.4. Let T be a densely defined operator in H. Then if T is symmetric, T

exists and is unique.

Sketch of the proof: Let us first define the domain M = D(T ) and then T . We

will prove that T is indeed the closure of T .

Let M be the set of all x ∈ H for which there is a sequence {xn} ∈ D(T ) and y ∈ H
such that

xn → x

Txn → y.

It is easy to see that M is a vector space and D(T ) ⊂M . Now, we define the operator

T on M as

y = Tx

for x and y given above.

The only thing that is left is to check T for all the properties by which the closure of

a symmetric operator is defined.

Since, we have defined the symmetric operator, let us see an example of a sym-

metric operator which is not self adjoint.

Examples: In the complex space L2[0, 1], let A = id/dt be defined on the set DA of
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absolutely-continuous functions f on [0, 1] having a square-summable derivative and

satisfying the condition f(0) = f(1) = 0 . Then A is symmetric but not self-adjoint.

However, if the condition on f is

f(0) = f(1)

, then A is a self adjoint.

Having seen that not all symmetric operators are self adjoint, the next section talks

about when a symmetric operator is self adjoint.

2.4 When is a symmetric operator selfadjoint?

Theorem 2.5. Suppose T is a symmetric operator densely defined in H.

(a) If D(T ) = H , then T is self adjoint and T ∈ B(H).

(b) If T is self adjoint and one-one, then T−1 is self adjoint and R(T ) is dense in H
.

(c) If R(T ) is dense in H, then T is a one-one map.

(d) If R(T ) = H , then T is an self adjoint operator and T−1 ∈ B(H)

Proof: To prove (a), we see that T ⊂ T ∗ (since T is symmetric). If D(T ) = H,

that means that D(T ∗) = H and therefore, T is self adjoint. Hence, T is closed since

adjoints are closed. Therefore, by closed graph theorem, T is continuous.

(b)Let y ⊥ R(T ). Then the functional

x→ (Tx, y) = 0

is continuous in D(T ). Hence, y ∈ D(T ∗) = D(T ) and

(x, Ty) = (Tx, y) = 0 ∀ x ∈ D(T ).

Hence, Ty = 0. Now it follows that y = 0, since T is one-one. We have proved that

R(T ) is dense in H.

Now since R(T ) is dense, T−1 is densely defined and (T−1)∗ exists. The relations

G(T−1) = V G(−T )
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and

V G(T−1) = G(−T )

are easily verified:

(a, b) ∈ G(T−1)⇔ (b, a) ∈ G(T )⇔ (b,−a) ∈ G(−T )⇔ (a, b) ∈ V G(−T ).

Now since T is self adjoint, T and −T are closed. Hence T−1 is closed by above

relations. Now we can orthogonally decompose T−1 and −T as

H×H = V G(T−1)⊕ G((T−1)∗)

and

H×H = V G(−T )⊕ G(−T ) = G(T−1)⊕ V G(T−1).

Therefore

G((T−1)∗) = [V G(T−1)]⊥ = G(T−1)

which shows that T−1 is self adjoint.

(c)Let R(T ) is dense and let Tx = 0. Then

(x, Ty) = (Tx, y) = 0

for y ∈ D(T ). Therefore x ⊥ R(T ). Since R(T ) is dense, x = 0.

(d)Assume that R(T ) = H. Then T is one-one and D(T−1) = H. Now, if x, y ∈ H,

then for some w, z ∈ D(T ), we have x = Tz and y = Tw, so that

(T−1x, y) = (z, Tw) = (Tz, w) = (x, T−1y)

making T−1 symmetric. By (a), T−1 is self adjoint and bounded and now it follows

from (b) that T = (T−1)−1 is self adjoint.

Theorem 2.6. If T is an operator that is closed and densely defined in H, then D(T ∗)

is dense in H. Also T ∗∗ = T .

Definition 2.11. A symmetric operator T in H is said to be maximally symmetric

if T has no proper symmetric extension, i.e. there exists no symmetric S such that

T ⊂ S and T 6= S.

Theorem 2.7. Self adjoint operators are maximally symmetric.
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2.5 Cayley transform

The Cayley tranform was originally described by Arthur Cayley as a map between

skew symmetric matrices and special orthogonal matrices. Here we generalize to lin-

ear operators.

The Cayley Transform: The mapping

t −→ t− i
t+ i

sets up a one-to-one map between R and the S1 \ {1}. By functional calculus, we

know that every self adjoint operator T ∈ B(H) is related(via a bijection) to a unitary

operator(whose spectrum doesn’t contain 1) as

U = (T − iI)(T + iI)−1.

Now we can extend the relation T ←→ U to a one-one correspondence between

symmetric operators and isometries.

Let T be a symmetric operator in H. Then

‖ Tx+ ix ‖2=‖ x ‖2 + ‖ Tx ‖2=‖ Tx− ix ‖2 (x ∈ D(T ))

Hence, there is an isometry U such that D(U) = R(T + iI) and R(U) = R(T − iI)

defined by

U(Tx+ ix) = Tx− ix (x ∈ D(T ))

Since (T + iI)−1 maps D(U) onto D(T ), U can be written as U = (T − iI)(T + iI)−1.

If T ∈ B(H), then to see that U is unitary, we see that

(T − iI)(T + iI)−1((T − iI)(T + iI)−1)∗ = (T − iI)(T + iI)−1((T + iI)−1)∗(T − iI)∗

= (T − iI)(T + iI)−1(T − iI)−1(T + iI) = I.

This U is called Cayley transform of T .

Lemma 2.1. Suppose U is an operator in H which is an isometry: ‖ Ux ‖=‖ x ‖ for

every x ∈ D(U).
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(a) If R(I − U) is dense in H, then I − U is one-one.

(b) If any one of the three spaces D(U), R(U) and G(U) is closed, so are other two.

Theorem 2.8. Suppose U is the Cayley transform of a symmetric operator T in H.

Then

(a) U is closed iff T is closed.

(b) R(I − U) = D(T ) , I − U is one-one , and T can be reconstructed from U by the

formula

T = i(I + U)(I − U)−1

(c) U is unitary iff T is self adjoint.

Conversely, if V is an isometry in H, and if I − V is one-one, then V is the Cayley

transform of a symmetric operator in H.

2.6 Resolutions of the Identity

Let us recall resolutions of the identity from the last chapter.

LetM be a σ-algebra in a set Ω and let H be a Hilbert space. A resolution of identity

on M is a mapping

E :M→ B(H)

such that

(a) E(φ) = 0 , E(Ω) = I

(b) Each E(ω) is a self adjoint projection.

(c) E(ω
′ ∩ ω′′) = E(ω

′
)E(ω

′′
)

(d) If ω
′ ∩ ω′′ = φ , then E(ω

′ ∪ ω′′) = E(ω
′
) + E(ω

′′
).

(e) For every x ∈ H and y ∈ H, the set function Ex,y defined by

Ex,y(w) = (E(w)x, y)

is a complex measure on M.

Theorem 2.9. Let E be a resolution of identity on a set Ω.

(a) To every measurable f : Ω→ C corresponds a closed operator Ψ(f) defined densely
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in H, with domain

D(Ψ(f)) = Df = {x ∈ H :

∫
Ω

| f |2 dEx,x <∞}

which is characterized by

(Ψ(f)x, y) =

∫
Ω

fdEx,y (x ∈ Df , y ∈ H)

and satisfies

‖ Ψ(f)x ‖2=

∫
Ω

| f |2 dEx,x (x ∈ Df )

(b) The multiplication theorem holds in the following way: If f and g are measurable,

then

Ψ(f)Ψ(g) ⊂ Ψ(fg)

and

D(Ψ(f)Ψ(g)) = Dg ∩Dfg

Hence, Ψ(f)Ψ(g) = Ψ(fg) if and only if Dfg ⊂ Dg.

(c) For every measurable f : Ω→ C,

Ψ(f)∗ = Ψ(f̄)

and

Ψ(f)Ψ(f)∗ = Ψ(| f |2) = Ψ(f)∗Ψ(f)

The last part of the above theorem basically says that if f is a real valued function,

then Ψ(f) is a self-adjoint operator.

2.7 Spectral decomposition

Definition 2.12. Let f be a complex valued measurable function. The essential range

of f is the set

{z ∈ C : µ({x : |f(x)− w| < ε}) > 0 ∀ ε > 0}.

Theorem 2.10. Suppose E is a resolution of identity on Ω, f : Ω→ C is measurable

, and

wα = {p ∈ Ω : f(p) = α} (α ∈ (C))
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(a) If α is in the essential range of f and E(ωα) 6= 0, then Ψ(f)−αI is not one-one.

(b) If α is in the essential range of f but E(ωα) = 0, then Ψ(f) − αI is a one-one

mapping of Df onto a dense proper subspace of H, and there exist vectors xn ∈ H,

with ‖ xn ‖= 1 such that

lim
n→∞

[Ψ(f)xn − αxn] = 0

(c) σ(Ψ(f)) is the essential range of f .

Theorem 2.11. Suppose

(a) M and M′ are σ-algebras in sets Ω and Ω′.

(b) E :M→ B(H) is a resolution of identity.

(c) φ : Ω→ Ω′ has the property that φ−1(ω
′
) ∈M for every ω

′ ∈M′.

If E ′(ω
′
) = E(φ−1(ω

′
)), then E ′ :M′ → B(H) is also a resolution of the identity, and∫

Ω′
fdE ′x,y =

∫
Ω

(f ◦ φ)dEx,y

for every M′-measurable f : Ω′ → C for which either of these integrals exists.

Theorem 2.12. To every self adjoint operator A in H corresponds a unique resolution

E of the identity, on the Borel subsets of the real line such that

(Ax, y) =

∫ ∞
−∞

tdEx,y(t) (x ∈ D(A), y ∈ H)

Moreover, E is concentrated on σ(A) ⊂ (−∞,∞) ,i.e. E(σ(A)) = I.

Proof: Let U be the Cayley transform of A, let Ω = S1 \ {1} . and let E ′ be

spectral decomposition of U . Since I − U is one-one, 0 = N (I − U) = R(E ′({1})) ,

hence E ′({1}) and hence

(Ux, y) =

∫
Ω)

λdE ′x,y(λ) (x, y ∈ H)

Define

f(λ) =
i(1 + λ)

1− λ
(λ ∈ C)

Define Ψ(f) as earlier:

(Ψ(f)x, y) =

∫
Ω)

fdE ′x,y (x ∈ Df , y ∈ H)
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Since f is real valued, Ψ(f) is self adjoint and since f(λ)(1 − λ) = i(1 + λ) , the

multiplication theorem gives

Ψ(f)(I − U) = i(I + U)

Thus, R(I − U) ⊂ D(Ψ(f)). Since U is the Cayley transform of A,

A(I − U) = i(I + U)

and D(A) = R(I−U) ⊂ D(Ψ(f)). It can be seen that Ψ(f) is a self adjoint extension

of self adjoint operator A. Hence, Ψ(f) = A. Thus (Ax, y) =
∫

Ω)
fdE ′x,y (x ∈

D(A), y ∈ H) By earlier result, σ(A) is the essential range of f . Thus σ(A) ⊂
(−∞,∞). Note that f is one-one in Ω. If we define

E(f(ω)) = E ′(ω)

for every Borel set ω ⊂ Ω, we obtain the desired resolution E.

In the next chapter, we get to our study of perturbation by compact operators and

relatively ”small” symmetric operators.
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Chapter 3

Perturbation of a self adjoint

operator

In this chapter, we study two types of perturbations. Firstly, we see that perturbations

of bounded operators by compact operators leave essential spectrum invariant([4]).

In the later part of the chapter, we see that relatively bounded symmetric operators

with relative bound less than 1 when added to a self adjoint operator leave the self

adjointness preserved. A more detailed analysis can be found in [5].

Definition 3.1. Let H be a Hilbert space. Then for A ∈ B(H), we define the left

spectrum( or right spectrum) as {λ ∈ C : A−λI is not left invertible(or right invertible)

}.

Proposition 3.1. If A ∈ B(H), then the following are equivalent.

(a) λ /∈ σa(A), i.e. inf{‖ (A− λI)h ‖:‖ h ‖= 1} > 0.

(b) R(A− λI) is closed and dim ker(A− λI) = 0.

(c) λ /∈ σl(A).

(d) λ̄ /∈ σr(A∗).

(e) R(A∗ − λ̄I) = H.

Proposition 3.2. If N is a normal operator, then σ(N) = σl(N) = σr(N). If λ is

an isolated point of σ(N), then λ ∈ σp(N).

Proof: To prove that σ(N) = σl(N) = σr(N), it is sufficient to prove that for any

a ∈ A− a C∗-algebra

a is invertible⇐⇒ a is left invertible⇐⇒ a is right invertible.
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Assume that a is left invertible in A. Hence there exists a b ∈ A such that ba = 1.

Hence, for x ∈ A,

‖ x ‖=‖ bax ‖≤‖ b ‖‖ ax ‖ .

This leads to

‖ ax ‖≥‖ b ‖−1‖ x ‖ .

Since it is true for all x ∈ A, it is true for x ∈ C∗(a) in particular. Since a is normal,

C∗(a) is isomorphic to C(σ(a)) such that a −→ z(z(w) = w). Hence, the above

inequality becomes

‖ zf ‖≥‖ b ‖−1‖ f ‖

for every f ∈ C(σ(a)).

We need to show that 0 /∈ σ(a). Let us assume on the contrary that 0 ∈ σ(a). Then,

there is sequence {fn} ∈ C(σ(a)) such that 0 ≤ fn ≤ 1, fn(0) = 1 and

fn(z) = 0; z ∈ σ(a), | z |≥ 1/n.

Now, since 0 ∈ σ(a), ‖ fn ‖= 1. But ‖ zfn ‖≤ 1/n. This contradicts the inequality

and so 0 /∈ σ(a), i.e. a is invertible.

Now if we assume that a is invertible, we get that a is both left and right invertible.

Now let us assume that a is right invertible. Then a∗ is left invertible. By the

preceding argument, a∗ is invertible and hence so is a.

Let λ be an isolated point of σ(N) andN =
∫
zdE(z), then 0 6= E({λ})H = ker(N−λ)

and we are done.

3.1 The essential spectrum

Definition 3.2. Let H be a Hilbert space and B(H) be the space of bounded operators

on it. Let B0(H) be the ideal of all compact operators on H. The quotient B/B0 is

called the Calkin algebra.

Definition 3.3. Let H be a Hilbert space and π : B → B/B0 be the natural map from

B(H) into the Calkin algebra. For A ∈ B(H), the essential spectrum of A, is defined

as

σe(A) = σ(π(A)).

Similarily, we define the left and right essential spectrum as σle(A) = σl(π(A)) and

σre(A) = σr(π(A)).
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Proposition 3.3. Let A be a bounded operator on H.

(a) σe(A) = σle(A) ∪ σre(A)

(b) σle(A) = σre(A
∗)∗

(c) σle(A) ⊆ σl(A) , σre(A) ⊆ σr(A), σe(A) ⊆ σ(A)

(d) σle(A), σre(A), σe(A) are compact in C.

(e)If K ∈ B0(H), σle(A+K) = σle(A), σre(A+K) = σre(A), σe(A+K) = σe(A)

Proposition 3.4. Let A ∈ B(H).

(a) λ ∈ σle(A) if and only if dim ker(A− λ) =∞ or R(A− λ) is not closed.

(b) λ ∈ σre(A) if and only if dim[R(A− λ)]⊥ =∞ or R(A− λ) is not closed.

Proposition 3.5. If A ∈ B(H), then

σap(A) = σle(A) ∪ {λ ∈ σp(A) : dim ker(A− λ) <∞}.

Proposition 3.6. If N is a normal operator, and λ ∈ σ(N), then R(N −λ) is closed

iff λ is an isolated point.

Proposition 3.7. If N is normal, then

(a) σe(N) = σle(N) = σre(N)

(b) σ(N) \σe(N) = {λ ∈ σ(N) : λ is an isolated point in σ(N) which is an eigenvalue

with finite multiplicity }.

Proof: To prove (a), we just have to apply Proposition 3.2 to Calkin algebra.

If λ is isolated the spectrum of N , then R(N − λI) is closed by the previous result.

So if dim ker(N − λ)I <∞, then λ /∈ σle(N) = σre(N) = σe(N).

To prove the other side, we assume that λ ∈ σ(N) \ σe(N), then R(N − λI) is closed

and dim ker(N − λI) <∞. By the previous result, λ is an isolated point of σ(N).

Now this brings us to a decomposition of the spectrum σ(N) as

σ(N) = σe(N) ∪ σdisc(N)

and that σe(N) and σdisc(N) are disjoint, where σdisc(N) is the discrete spectrum of

N and the complement of σe(N). Formally, σdisc(N) is defined as

σdisc(N) = {λ ∈ σ(N) | λ is an eigenvalue of finite multiplicity }
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The following remark has been taken from [6].

Remark 3.1. σess(A) is always closed, whereas σdisc(A) may not be closed. σdisc(A)

contains isolated eigenvalues of finite multiplicity.

3.2 Perturbation of a self adjoint operator:

The stability of self-adjointness under the perturbation by a self adjoint operator is an

important problem. A fundamental question that arises is how small a perturbation

should be so that self adjointness stays preserved. We start off with a result that we

will not prove.

Theorem 3.1. Let T be a self adjoint operator. Then there is a δ > 0 such that any

symmetric closed operator S with δ̂(S, T ) < δ is self adjoint, where δ̂(S, T ) is the gap

between S and T defined by

δ̂(S, T ) = max[( sup
‖u‖=1

dist(u,N)), ( sup
‖v‖=1

dist(M, v))].

Even though the result is remarkable one, the definition of ˆdelta makes it compli-

cated. Now, we try a different approach.

Definition 3.4. An operator A is called T -bounded if D(A) ⊃ D(T ) and

‖ Au ‖≤ a ‖ u ‖ +b ‖ Tu ‖ u ∈ D(T )

or equivalently

‖ Au ‖2≤ a
′2 ‖ u ‖2 +b

′2 ‖ Tu ‖2 u ∈ D(T ).

Ofcourse, a
′
, b
′

are different from a, b in general.

Definition 3.5. The T -bound of A is the greatest lower bound of possible values of b

or equivalently b
′
.

Theorem 3.2. Let T be a self adjoint operator and A be a symmetric T -bounded

operator with T -bound < 1, then T + A is also self adjoint.
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Proof: We know that T + A is symmetric and has the domain D(T ). We may

assume that the above equation holds with constants a
′
, b
′
such that a

′
> 0, 0 < b

′
< 1.

We can re-write the above equation as

‖ Au ‖≤‖ b′T ∓ ia′u ‖

for u ∈ D(T ). Let c
′
= a

′
/b
′

and (T ∓ ic′)u = v. We get

‖ A(T ∓ ic′)−1v ‖≤ b
′ ‖ v ‖ .

Since T is self adjoint, v varies over all of H as u varies over D(T ). Hence, we have

B± = −A(T ∓ ic′)−1 ∈ B(H)

and ‖ B± ‖≤ b
′
. Now, since by our assumption, b

′
< 1, (1−B±)−1 exists and belongs

to B(H). Hence, 1−B± maps H bijectively to H. But we see that

T + A∓ ic′ = (1−B±)(T ∓ ic′)

and R(T ∓ ic′) = H since T is self adjoint. Therefore R(T + A ∓ ic′) = H. Hence

T + A is self-adjoint.

Corollary: Let T be a self adjoint operator. If A is a symmetric bounded operator

such that D(A) ⊃ D(T ), then T + A is self-adjoint.

Definition 3.6. Let T be a symmetric operator. If T ∗∗ is self adjoint, then we say

that T is essentially self adjoint.

Definition 3.7. Let {un} ∈ D(T ) be a sequence. It is called T -convergent to u ∈ D(T )

if

un → u

and

Tun → Tu.

Theorem 3.3. Let T be an essentially self adjoint operator. If A is a symmetric

T-bounded operator with T -bound < 1, then T + A is essentially self adjoint and
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¯(T + A) = T̄ + Ā. In particular, it is true when A ∈ B(H) is symmetric with D(A) ⊃
D(T ).

Proof: We start by proving that A is T -bounded, i.e.

D(A) ⊃ D(T )

and

‖ Au ‖2≤ a
′2 ‖ u ‖2 +b

′2 ‖ Tu ‖2

for u ∈ D(T ). For any u ∈ D(T ), there is a sequence {un} which is T-convergent.

Since A is T-bounded, it is easy to see that {un} is A-bounded. Now if we replace u

by un in the boundedness equation, and take the limit, we get the required equation.

Since {un} is both T-convergent and A-convergent, we get

(T + A)un → (T + A)u

so that u ∈ D(T + A) and T + Au = (T + A)u. This shows that

T + A ⊃ T + A.

Now, we apply the previous theorem to the pair T ,A that T + A is selfadjoint(Note

that here we use the assumption b
′
< 1). Thus T + A is closed extension of T + A

and therefore of T + A. Hence, we get that T + A = T + A.

The previous theorems are not symmetric with respect to T and T + A(= S). So

we have the following result:

Theorem: Let S,T be two symmetric operators such tha D(T ) = D(S) = D and

‖ (S − T )u ‖≤ a ‖ u ‖ +b(‖ Tu ‖ + ‖ Su ‖)

for u ∈ D, where a, b are non-negative constants with b < 1. Then S is essentially self

adjoint iff T is.

Corollary: Let S,T be two operators satisfying the above properties, then S is self

adjoint iff T is.
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Lemma: Let B ∈ B(H) and ‖ B ‖≤ 1. Then

Bu = u⇐⇒ B∗u = u.

Such an operator is called a contraction.

Proof: Since B∗∗ = B and ‖ B∗ ‖=‖ B ‖≤ 1, it is sufficient to show that

Bu = u→ B∗u = u. But we know that

‖ B∗u− u ‖2=‖ B∗ ‖2 + ‖ u ‖2 −2Re(B∗u, u) ≤ 2 ‖ u ‖2 −2Re(u,Bu).

So if Bu = u, we get B∗u = u.

The following result is about the case of relative bound 1.

Theorem 3.4. Let T be essentially self adjoint and let A be symmetric operator. If

A is T -bounded and equation holds with b
′
= 1, then T +A is essentially self adjoint.

Proof: We start by assuming that T is self adjoint and defining B± as above.

Since b
′
< 1, we get that ‖ B± ‖≤ 1 and R(1 − B+) may not be H. But we will

show that the range is dense in H. Then by arguments used before, we will get that

R(T + A∓ ic′) are dense in H and hence T + A is essentially selfadjoint.

To see that R(1 − B+) is dense in H, it suffices to show that a v ∈ H orthogonal

to this range must be zero. Now such a v would satisfy B∗+v = v. According to the

lemma above, B+v = v, i.e.

A(T − ia′)−1v + v = 0.

Now set u = (T − ia′)−1v ∈ D(T ). We get

(T + A− ia′)u = 0.

But since T + A is symmetric and a
′
> 0, this gives u = 0 and hence, v = 0. Hence,

we have proved the theorem under the assumption that T is self adjoint.

Now we take the more general case of T being essentially self adjoint only. We proved

the inclusion T + A ⊃ T +A without using the assumption that b
′
< 1. Now T is self
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adjoint, D(A) ⊃ D(T ) and

‖ Au ‖2≤ a
′2 ‖ u ‖2 + ‖ Tu ‖2 .

Applying what was proved above to A, T , we see that T +A is essentially selfadjoint.

Since

T + A ⊃ T + A

we see that closed symmetric operator T + A is an extension of an essentially self

adjoint operator. Hence, T + A is self adjoint, i.e. T + A is essentially selfadjoint.

In the next chapter, we will study a special case of rank one perturbations.
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Chapter 4

Rank one perturbation of self

adjoint operators

In this chapter, we study a special case of perturbations. We look at the perturbations

of self adjoint operators by rank one operators. The key result says that the absolutely

continuous part of the spectrum stays invariant. A detailed analysis of this can be

found in [6].

4.1 Rank one perturbations

Let H be a Hilbert space and T be a self adjoint operator. Suppose φ is a normalized

vector in H. Let Pφ denote the orthogonal projection onto the subspace gennerated

by φ. Now we look at the operator

Tλ = T + λPφ

where λ ∈ R. These Tλ are the rank one perturbations of H.

Proposition 4.1. Let ψ be a unit vector in H and Tλ be as defined above. Then

∀z ∈ C+

(ψ, (Tλ − z)−1φ) =
(ψ, (T − z)−1φ)

(φ, (T − z)−1φ)
.

1

λ+ (φ, (T − z)−1φ)−1

Proof: Since Tλ − T = λPφ, it can be rewritten as

Tλ − z − T + z = λPφ
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Taking left inverse of Tλ − z and right inverse of T − z on both sides, we get

(T − z)−1 − (Tλ − z)−1 = λ(Tλ − z)−1Pφ(T − z)−1

or equivalently

(Tλ − z)−1 = (1− λ(Tλ − z)−1Pφ)(T − z)−1.

Now if (ψ, (.)φ) act on both sides and rearrange, we get the desired result.

Corollary: (φ, (Tλ − z)−1φ) = 1
λ+(φ,(T−z)−1φ)−1 .

Definition 4.1. A set X ⊂ H is called total in H if the set of linear combinations of

elements of X is dense in H.

Definition 4.2. Let T ∈ B(H) be a self adjoint operator. A vector φ ∈ H is called

cyclic if

{Ajφ : 0 ≤ j <∞}

is total in H.

Theorem 4.1. Consider a separable Hilbert space H and let T be a self adjoint op-

erator on it. Let φ ∈ H be a unit vector. Now, for λ ∈ R, assume that Tλ 6= 0. Then

(a) If φ is cyclic for T , then it is cyclic for Tλ.

(b) Let Hλ and Hλ′ be cyclic subspaces generated by Tλ and Tλ′ on φ. Then for

λ, λ
′ ∈ R,

Hλ = Hλ′ .

Proof: We will prove the result for bounded T only. Since φ is cyclic for T , we

can find by Gram Schmidt process, an orthonormal basis {φn} for H, so that φ0 = φ

and in this basis, T is tridiagonal. So there is no loss of generality in assuming that

T is tridiagonal, i.e.

Tun = anun+1 + bnun + an−1un−1.

Then φ0 is cyclic for T means that (φn, Tφn+1) 6= 0 for any n ≥ 0. Because if T is

tridiagonal, (φk, Tφm) = 0 if | k − m |≥ 2 and if (φn, Tφn+1) = 0 for some n, then

an = 0. Now by induction, we see that

(p(T )φ, φn+1) = 0
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for any polynomial p of degree > n. This contradicts the assumption that φ is a cyclic

vector for T. Now, we have, by definition of Tλ and φ, that (φ0, Tλφ0) = (φ0, Tφ0) +λ

and for any pair (n,m) 6= (0, 0),

(φn, Tλφm) = (φn, Tφm) + λ(φn, Pφφm) = (φn, Tφm).

This shows that φ0 is cyclic for any Tλ.

Now if H′ is the cyclic subspace generated by T on φ, then the orthogonal complement

H∞ of H′ is left invariant by T and Tλ for any λ and on H∞,

T = Tλ

since λPφH∞ = {θ}. Thus we can write T = B ⊕ C amd Tλ = Bλ + C. Now an

argument similar to the one used above would show that cyclic subspace generated

by Bλ on φ agrees with H′ for any λ.

Definition 4.3. Let µ be a measure on R satisfying the condition that∫
R
dµ(x)

1

1 + x2
<∞.

Then the integral ∫
R
dµ(x){ 1

x− z
− 1

1 + x2
}

defines the Borel transform Fµ of µ where z ∈ C \ R.

The above map is an analytic function in C+∪C− and leaves both the components

invariant.

Let Eλ be the resolution of identity related to the operator Tλ for λ 6= 0 . Now

we want to determine the behaviour of the spectral measures Eλ,φ,φ = (φ,Eλ(.)φ)

and associate it with Tλ and φ in terms of properties of measure µ0 = (φ,E0(.)φ).

Therefore, consider the Borel transform

Fλ(z) = (φ, (Tλ − z)−1φ) =

∫
R

1

x− z
dµλ(x).
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Now if we take all the φ with ‖ φ ‖= 1, then all µλ will be probability measures.

Since

(Tλ − z)−1 = (T − z)−1 − λ(Tλ − z)−1Pφ(T − z)−1,

we see that

Fλ(z) =
F0

1 + λF0(z)

Im(Fλ(z)) =
Im(F0)

| 1 + λF0(z) |2
.

Now let us define the following sets so we can relate µλ to µ0:

Sλ,0 = {x ∈ R : (DF0)(x) <∞, lim
ε→0

F0(x+ iε) = −λ−1}

Sλ,∞ = {x ∈ R : (DF0)(x) =∞, lim
ε→0

F0(x+ iε) = −λ−1}

Lλ = {x ∈ R : 0 < Im(lim
ε→0

Fλ(x+ iε)) <∞}

where λ 6= 0 and

DF0(x) = lim
ε→0

∫
R

1

(x− y)2 + ε2
dµ0(y).

We have a result regarding Lebesgue decomposition of µλ by Aronszajn and

Donoghue, but we need to know about the decomposition of the spectrum before

it.

4.2 Components of the spectrum

Now we want to study the decomposition of spectra by decomposing the Hilbert space

H.

Definition 4.4. Let A be a self adjoint operator. Then we define

Hp(A) = span{x | x is an eigenvector of A}.

Hp(A) is the closure of set of all finite linear combinations of eigenvectors of A.
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Lemma 4.1. If ker(A−λi) denote the eigenspace corresponding to the eigenvalue λi,

then

Hp(A) = ⊕i ker(A− λi).

It is easy to see that Hp(A) is a subspace of H.

Definition 4.5. Let H be a Hilbert space. Then we define

Hc(A) = (Hp(A))⊥.

Hence, H = Hp(A)⊕Hc(A). We call Hc(A) to be the continuous subspace of (A).

In the above context, Hp(A) is sometimes called the discontinuous subspace of A.

The restriction of A to D(A)∩Hp(A) is denoted by Ap. Hp(A) is invariant under the

action of Ap which is self adjoint in Hp(A).

Now we denote the restriction of A to D(A) ∩ Hc(A) by Ac. As earlier, Ac is self

adjoint in Hc(A) and leaves it invariant.

Hence, we have a decomposition of A:

A = Ap ⊕ Ac.

Now we define the continuous and the pure point spectrum of A.

Definition 4.6. Let A be a self adjoint operator in H and let A = Ap⊕Ac as defined

above. Then the continuous spectrum of A is defined as

σc(A) = σ(Ac)

while the the pure point spectrum is defined as

σpp(A) = σ(Ap)

Remark 4.1. If σp(A) is the set of all eigenvalues of A, then

σpp(A) = σp(A).

Moreover, the continuous subspace Hc(A) can be further decomposed into abso-

lutely continuous and singularly continuous subspaces.
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Definition 4.7. Let m be the Lebesgue measure on R. Then

Hac(A) = {x ∈ Hc(A) | (x,E(ω)x) = 0 if m(ω) = 0 for some Borel set ω}

Hsc(A) = {x ∈ Hc(A) | there is a Borel set ωx,m(ωx) = 0 but E(ωx)x = x}

Hac(A) and Hsc(A) are subspaces of Hc(A).

Let us denote the restriction of A to D(A) ∩ Hac(A) by Aac and restriction of A to

D(A) ∩Hsc(A) by Asc.

Now we define the absolutely continuous and singularly continuous spectrum by

σac(A) = σ(Aac)

σsc(A) = σ(Asc)

Remark 4.2. Now we have the following decompositions:

H = Hp(A)⊕Hsc(A)⊕Hac(A)

which can be re-written as

H = Hp(A)⊕Hc(A).

Now if we define, Hs(A) = (Hac(A))⊥ as called the singular subspace of A and

like earlier, restriction of A to D(A) ∩Hs(A) is denoted by As, and σs(A) = σ(As) is

called the singular spectrum of A, then we can rewrite above decomposition as

H = Hs(A)⊕Hac(A).

Now we have a decomposition of the spectrum as

σ(A) = σpp(A) ∪ σc(A)

or

σ(A) = σpp(A) ∪ σac(A) ∪ σsc(A)

or

σ(A) = σdisc(A) ∪ σess(A)
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or

σ(A) = σac(A) ∪ σs(A).

Remark 4.3. In general, σpp, σsc, σac are not disjoint.

Now we come back to Lebesgue decomposition of µλ by Aronszajn and Donoghue.

Theorem 4.2. Let Tλ and φ be as above. Then

(a) The part µλ,pp is supported on the set Sλ,0. (b) The part µλ,sc is supported on the

set Sλ,∞.

(c) The part µλ,ac is supported on the set Lλ.

In the following theorem by Simon and Wolff, let F0 denote the Borel transform

of measure µ0.

Theorem 4.3. Simon-Wolff: Let Tλ and φ be as above. Consider the family of

measures µλ for λ ∈ R and assume that for almost every λ, µλ([a, b]) 6= 0. Then the

following are equivalent:

(a)For almost all λ, µλ is pure point in [a, b].

(b)For almost every x ∈ [a, b], (DF0)(x) <∞.

Now we come to the last result of the chapter by Barry Simon [7].

Theorem 4.4. Barry Simon For λ 6= 0, the absolutely continuous parts of Tλ and

T , i.e. Tλ,ac and Tac are unitarily equivalent.

The theorem says that under perturbation by a rank one operator, the absolutely

continuous part of the spectrum remains invariant.

Sketch of the proof: By definition,

Tλ = T + λφ.

If f(x)dx and g(x)dx be absolutely continuous positive measures on R. These mea-

sures are equal iff {x | f(x) 6= 0} and {x | g(x) 6= 0} agree upto a null set.

Now it suffices to show that Lλ and L0 agree upto sets of measure zero. Since

Im(Fλ(z)) =
Im(F0)

| 1 + λF0(z) |2
,

we get

Im(Fλ(z)) > 0⇔ Im(F0(z)) > 0.
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Now Lλ and L0 agree upto the sets where

lim
ε→0

F (x+ iε) =∞

or

lim
ε→0

F (x+ iε) = −1/λ.

These sets are of measure zero and we are done.

Conclusion:

The theory of perturbation doesn’t end here. It is trivial to see that the above result

for invariance of absolutely continuous part of spectrum is also true for perturbation

by finite rank operators. The proof is purely by induction. There are many more tech-

niques in continuation to Borel transform to understand the spectra of a self adjoint

operator. Fourier transform and Wavelet transform are just two of such techniques

and will be a part of my future work.
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