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Abstract

In this thesis, we try to analyze self adjoint operators on a Hilbert space H. This
thesis talks about the spectrum, the spectral decomposition and the perturbation of
self adjoint operators. The need to study perturbation comes from the setting of
Quantum mechanics. If we consider the Hilbert space H = £?(R), then the elements
of H are the states of the system. Each observable is represented by a self adjoint
linear operator acting on the state space. Each eigenstate of an observable corresponds
to an eigenvector of the operator, and the associated eigenvalue corresponds to the
value of the observable in that eigenstate. If the operator’s spectrum is discrete, the
expectation of observables can attain only those discrete eigenvalues. We denote the

Hamiltonian by

H=-A+V

where A is the Laplacian and V is the potential operator. In the later part of
the thesis, we start the theory perturbation in different instances. First we see that
the essential spectrum of a bounded operator is invariant under perturbation by a
compact operator. Then we see that a small relatively bounded symmetric operator
when added to a self adjoint operator gives us a self adjoint operator. Towards the
end, we study a special case of rank one perturbations of self adjoint operator. The

key result says that the absolutely continuous part of the spectrum stays invariant.
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Chapter 1

Bounded operators on a Hilbert

space

In this chapter, we look at the introductory theory to Hilbert spaces, bounded op-
erators on a Hilbert space, their spectra and the spectral decomposition of a normal
operator.

A crucial result in this chapter says that if we have a spectral measure or a resolution
of identity for a bounded operator T', then we can make sense f(7) for a bounded

function f on o(7). For more detailed theory, see [1].

1.1 Bounded operators

Definition 1.1. Let H be a complex vector space. A map from H X H to C is called
an inner product if the following hold:

(a) (2,y) = (y, z)

() @+ 2,y) = (5,9) + (2,9)

(¢c) (az,y) = a(z,y)

(d) (z,x) >0 with (z,x) =0 if and only if x =0

forx,y € H,a € C. 'H equipped with such a map is called an inner product space. It

1s called a Hilbert space if the space is complete with respect to the norm

|z ||= (z,z)"2.

The following are a few examples of Hilbert spaces, taken from [3].

Examples:



(a) Euclidean Space C": The space C" is a Hilbert space with inner product defined
by
(T,y) = 2191 + 2202 + . + Tun

where x = (21,22, ..., ) , ¥ = (Y1, Y2, ..., Yn) and 7; denotes the complex conjugate of

Yi-
(b) Space L£?[a,b]: Here a,b € R. L*[a, ] is the set of all square integrable functions
with the inner product defined by

b
(z,y) = / z(t)y(t)dt.

Definition 1.2. A Banach algebra is a complete normed vector space V with a unit
element e(such that xe = ex = x for x € V) over the field C in which multiplication

1s defined in a way such that it is associative and it satisfies
(x +y)z =22+ yz,

2y +2) = vy + 72,
a(zy) = (ax)y = z(oy),
and the multiplicative inequality

ey 1<l [l y |

forx,y,z €V and a € C.

Definition 1.3. Let B(H) be the set of all bounded linear operators on H. We define

a norm on B(H) as:

T ||=sup{|| Tz |- 2 € H, | = |< 1}

It is easy to see that B(H) forms a Banach Algebra.

Theorem 1.1. Let H be a Hilbert space and f be a bounded-sesquilinear(i.e. linear

in the first variable and conjugate linear in the second) functional

fiHxH—C.
p



Then there ezists a a unique S € B(H) that satisfies

flr,y) = (z,9y) (v,y € H)

Also, | S [[=l f I

Idea of the proof: Since f is bounded, the map

r— f(x,y)

is a bounded linear functional on H. Thus by Riesz representation theorem, there

exists a unique Sy € H such that

fHxH—=C

Definition 1.4. Let H be a Hilbert space and T’ be a bounded operator. The spectrum
of T, denoted by o(T) is the the set of all A € C such that \I — T is not invertible.

Definition 1.5. The spectral radius is defined as
AT) = sup{| A |: A € o(T)}

Remark:
(a) o(T) is compact and non empty.
(b) v(T') satisfies
oT) = lim || 7

Classification of spectra: How do we find values in (T)? If Al — T is not bounded
below (or not injective in particular), then it must not be invertible. Hence, A € o(T").

We define few types of spectral values:

Definition 1.6. If for T € B(H), A — T is not injective, or for some x, (A —
T)x =0, then we say that \ is an eigenvalue. The set of all eigenvalues is called the

eigenspectrum, or the point spectrum o,(T).



Examples: We take the simplest example in R”. Take 7" to be an operator that

acts on the basis {vy, v, ..., v, } in the following way:
T(UZ) = )\{U,’

for A; € R. We see that (A\;/ — T)v; = 0. Hence the collection of \;s is the point

spectrum of T

Definition 1.7. If for T € B(H), T — A\ is not bounded below, then we can find a
sequence {x,} in H such that || z, ||= 1¥n and || T(x,) — Az, [|[— 0 as n — oo.
Such a k is called an approximate eigenvalue and the collection of all approximate

eigenvalues is called the approzimate eigenspectrum, denoted by o, (T).

Examples: Consider the bilateral shift 7' on [*(R) defined by
T(, a_i, do, ai, ) = (, a:l, Qag, al...)

where " defines the zero-th position. It is easy to see that T" doesn’t have an eigenvalue.

However, but for | A |= 1, every A is an approximate eigenvalue. Let

Tp = 1/\/%(,0, 1, )\_1,)\_2, ...,)\1_n,0, )

Then || z, ||= 1 and
| Tx, — Axy, ||= /2/n — 0.

Definition 1.8. An operator can be bounded below( and hence, injective) but may not
be surjective. If T — NI is injective, but does not have a dense range, then X € o,.(T),

the residual spectrum of T.

Examples: The unilateral right shift on (?(N) given by
T(al, as, ) = (0, ai, g, )

is an example. This shift operator is an isometry, therefore bounded below by 1. But

it is not invertible as it is not surjective(nor has dense range).

Definition 1.9. Now, if for some A\, T — Al is injective, has a dense range, but is

not surjective, then set of such X is said to be continuous spectrum, denoted by o.(T).



1.2  Adjoint

Definition 1.10. Let H be a Hilbert space and let T € B(H). Then the adjoint T* of

T 1s the operator
T H—H
such that (Tx,y) = (x, T*y) for z,y € H.

Remark: In the previous theorem, let f(x,y) = (Tx,y) for T' € B(H). Then the
unique S we get is the adjoint of T'. Also, we see that || T* ||=|| S ||=|| T ||
The following is an example of an adjoint, taken from [3].
Examples: Let H be a Hilbert space and {uy, us, .., u,} be an orthonormal basis for
H. For A € B(H), we can write the matrix

[A] = (eiy)
where ; ; = (A(u; ), u;). Since A* € B(H) and

(A% (uy), ws) = (u, A(wi)) = (A(ws), uy)

for 4,5 = 1,2, ..n. It follows that [A*] = (k;;) with respect to the same basis.

Proposition 1.1. The map T — T* is an involution on B(H), i.e. the following
properties hold

(T+8)=T"+5"
(a(T))" =aT™
(ST)  =T*5"
T =T
The proofs of the above properties are trivial. We just have to play around with

the properties of the inner product. Now we define different types of operators.

Definition 1.11. An operator T € B(H) is called

(a) a normal operator if TT* = T*T.

(b) a self adjoint operator if T* =T.

(¢) a unitary operator if TT* =1 =T*T.

(d) a projection if T?> =T.

(e) a compact operator if {T'z,} has a Cauchy subsequence for any bounded sequence



Having defined the operators, the following two theorems talk about the spectrum,

its properties and the relations between various components of it.

Theorem 1.2. Let H be a Hilbert space and let T € B(H). Then

(a) k € o(T) iff k € o(T*).

(b) 0,(T) C 04(T) and o(T) = 0,(T) U{k : k € 0,(T*)}.

(¢) 0c(T) = 0a(T) \ (0,(T) U 0p(T)).

Theorem 1.3. Let T € B(H) be a normal operator(i.e. TT* =T*T). Then
(a) If k € 0,(T), then k € a,(T*). Also, if for x € H, Tx = Az, then T*z = Ax.
(b) If x1 and x4 are eigenvectors corresponding to distinct eigenvalues, then (xy1,xs) =
0.

(¢) o(T) = aa(T).

(d)T is self adjoint iff o(T) C R.

(e)T is unitary iff o(T) C S*.

1.3 Gelfand theory

Definition 1.12. Let A be a Banach algebra with an involution x — x* which satisfies
| wa® [|=[l = |1
Then A is called a C* algebra.
Since for T € B(H),
| T2 ||*= (T2, Ta) = (T"Tz,2) <|| T°T ||| |
for all z € H, we get that || T ||?<|| T*T ||. Now since || T* ||=|| T ||, we get that
T < T [T =l T [I*.

Hence, | T*T ||=|| T ||> V T € B(H), and we see that B(H) is a C* algebra.

Definition 1.13. Let A be a commutative Banach algebra. Let A be the set of all
complex homomorphisms on A. The Gelfand transform & of x € A is a function
Z: A — C defined as

z(h) =h(z) (heA).



Let A be the set of all ;2 € A. We define the Gelfand topology of A to be the
weak topology induced by A. Note that this topology makes every & continuous and

is the weakest with this property.
Remark: A C C(A).

Proposition 1.2. Let A be a commutative Banach algebra and let A be the set of
complex homomorphisms of A. Then

(a)Every mazimal ideal of A is the ker(h) of some h € A.

(b)If h € A, the ker(h) is a mazimal ideal of A.

Remark: Note that A, with the Gelfand topology is called the maximal ideal space
of A.

Lemma 1.1. Let A be a commutative Banach algebra and let A be the set of all
complex homomorphisms of A. Then X € o(x) <= h(x) = X for some h € A.

Theorem 1.4. Let A be the maximal ideal space of A. Then

(a) A is a compact Hausdorff space.

(b) The Gelfand transform is a homomorphism of A onto a subalgebra A of C(A),
whose kernel is radA(i.e. the intersection of all maximal ideals of A).

(¢) R(7) = o(a). Hence || & o= (z) <|| 2 |.

Proof: We will prove (b) and (c) only. Let y,z € A, € C,h € A. Then

az(h) = h(az) = ah(z) = az(h)

~

z+y(h) = h(z +y) = h(z) + hy) = (@ +§)(h)

and
(2y)'h) = h(zy) = h(z)h(y) = &(h)j(h) = (29)(h).

Hence, x — 2 is a homomorphism whose null space consists of those x € A which
satisfy h(z) =0 V h € A. Now by previous proposition, null space of x — & is the
intersection of all maximal ideals of A, i.e. rad(A).

If X € R(z), then A\ = h(x) for some h € A. By the above lemma, A € o(x).



Theorem 1.5. (Gelfand-Naimark): Suppose A be a commutative C* algebra. Let

mazximal ideal space of A be A. The Gelfand transform is an isometric isomorphism

of A onto C(A) satisfying for all x € A, h € A,

or equivalently

Corollary: z is self adjoint if and only if Z is a real valued function.

In the following theorem, we narrow down to a special case. Also, we talk about

the inverse of the Gelfand transform.

Theorem 1.6. If A is commutative C*-algebra which contains an element x such that

polynomials in x and x* are dense in A, then
Uf=/fo#

defines an isometric isomorphism V¥ of C'(o(x)) onto A which satisfies
Uf = (Lf)

for every f € C(o(x)). Moreover, if f(A\) =\ on o(z), then Vf = x.

In the next section, we define the resolution of the identity, which later we use to

define f(T') for a bounded function f and T' € B(H).

1.4 Resolutions of Identity

Definition 1.14. Let M be a o—algebra in a set ). Let H be a Hilbert space. A
resolution of identity E is a map from M to B(H) such that

(a) E(6) =

(b) B(S) =

(c) E(w) is a self adjoint projection for all w

(d) E(w Nuw") = B(W)EW")



(e) If w and W' are disjoint, then E(wUw') = E(w) + B(w)
(f) For x,y € H, we define a function E,, by:

B y(w) = (Ew)z,y)

We see that E,, is a complex measure on M.

Remarks:
(a) Fyz(w) = (E(w)z,z) =|| E(w)z ||* since F(w) is a self adjoint projection.

(b) Each E, . is a positive measure on M with total variation

| Ey o |= Ex,x(Q) =[x H2

(¢) Any two F(w) commute.
(d) If w and w" are disjoint, then R(E(w)) L R(E(W))
(e) E is finitely additive, but not countably additive in general.

Even though E is not countably additive, E(.)x for every x € #H. This happens
because (E(w)x,y) is a measure. In other words, w — E(w)z is a countably additive

H-valued measure on M.

Examples:
(a)If T is a finite dimensional operator, then T' = Y, A\Ej where \; are the n
eigenvalues.

(b)If T is a compact operator, then T' = >"7 | A\;Ey, where )y are the eigenvalues.

Proposition 1.3. Suppose E is a resolution of the identity. If w, € M and E(w,) =0
forn=1,2,3... and if w = U2 w,, then E(w) = 0.

The algebra L>(E): Let E be a resolution of identity on M and let f be a
complex M-measurable function on (). Since C is second countable space, there
exists a countable collection {D;} of open discs which form a base for the topology of
C. Define V as



By the previous proposition, E(f~1(V)) = 0.

The essential range of f is the compliment of V' (by definition). If the essential range
is bounded, we say that f is essentially bounded. The essential supremum is the
largest absolute value of points in essential range. We denote the essential supremum
as || f [loc-

Let B be the algebra of all bounded complex M-measurable functions on €2, with the

norm

I f lI=sup{| f(p) |: p € 2}

It is trivial to see that B is a Banach Algebra. Let N be an ideal defined by

N={feB: [ lw=0}

We know by previous proposition that N is closed. Hence, we can define B/N, which
we denote by L>®(E).

Theorem 1.7. If E is a resolution of the identity, then there exists an isometric*
isomorphism U from the L>(E) onto a normal subalgebra A of B(H), which is related
to E by the formula

(Wﬂ%@zLﬂM@ (t.y €M, | € I®(E))

This justifies the notation
v(f) = [ sar

Moreover,

Hwnxwzzjfﬁd@@ (x €M, € L(E)).

By isometric* isomorphism , we mean that WV is a one-one, linear, multiplicative and
that

W(f) =W ()"

The following is a proof taken from [1].
Proof: Let us start by proving the result for simple functions. Let {wy,ws, ...,w,} be
a partition of €, with w; € M and let s be a simple function, such that s = «; on w;.
Let us define ¥ € B(H) as

U(s) = Z o E(w;)

10



We know that each F(w;) is self adjoint, hence

= aB(w0) = ¥(s)
i=1
If we have another partition, say {wll, W, ...,w;}, and another simple function ¢t = j;

Zalﬁj (W) E Zalﬁj wlﬂw)

We see that st is a simple function that equals st = o;8; on w; N wj, hence

on w;, then

U(s)(t) = W(st).

Similarly, we can show the linearity of . Now, if x,y € H,

:zn:az( wlxy Zaz xywz _/SdE%y
=1

Q

Since ¥ is multiplicative.

| W(s)e [P= (B(s)U(s), ) = (U(] 5 )z, ) / s [? dE,,

so that
| (s)z |<]] s [looll || -

Now, if x € R(E(wj)), then
U(s)r = o, E(wj)x = ajz
since E(w;) have orthogonal ranges. We can chose j so that | a;; |[=|| s ||«. Hence,
W (s) =11 [l -

Now let us assume that f € L®(F). Then there is a sequence of simple measurable
functions s; converging to f in the norm of L*(FE). The operators ¥(s;) form a
Cauchy sequence in B(H) and hence converge in the norm to an operator that, that
we denote by W(f). It is easy to see that W(f) does not depend on the choice of {sy}.

11



We get
W) =S Ml -

Thus ¥ is an isometric* isomorphism from the L°°(F) onto a normal subalgebra
A=U(L>(F)) of B(H).

1.5 The spectral theorem

Definition 1.15. A closed subalgebra A of B(H) is called a * — algebra if I € A and
T € A whenever T € A.

Lemma 1.2. SupposeT € A C B(H). Ifo(T) doesn’t separate C, then o(T) = oa(T).

Proposition 1.4. Let H be a Hilbert space and T" be a bounded operator. T' has the

same spectrum relative to all closed * — algebras in B(H) that contain T.

Proof: Let A be a *-algebra in B(#) that contains 7. Let us assume that T
is invertible in B(#). Since TT* is self adjoint, o(7T7T™) is a compact subset of R.
Hence, it does not separate C. Therefore, o(TT*) = o4(TT*) by the previous lemma.

Since T'T* is invertible in B(#), it is invertible in A(because the spectrums are equal).
Therefore, (TT*)™' € A and eventually 7! = T*(TT*)"* € A.

Theorem 1.8. If A is a closed normal subalgebra of B(H) containing the identity
operator I and if A is the mazimal ideal space of A, then the following assertions are
true:

(a) There exists a unique resolution E of the identity on the Borel subsets of A sat-

1sfying
T = / TdE
A
where T' € A, where T is the Gelfand transform of T.

(b) The inverse of Gelfand transform(i.e. the map that takes T to T) extends to an
isometric*-isomorphism ® of L*(E) onto a closed subalgebra B of B(H), B D A

given by
(IDf:/ fdE.
A

12



Proof: We know that the first equation above means

(Tz,y) —/TdELy.
A

We know that B(#) is a C* algebra. Since, A is normal, it is a commutative B*
algebra. By the Gelfand Naimark theorem, T" — T is an isometric *-isomorphism of
A onto C(A).

To see a proof for uniqueness of E, we assume that an E exists and satisfies
(Tz,y) = / TdE,,.
A

Since T ranges over all of C(A), the assumed regularity of complex Borel measures
E, , and the uniqueness assertion of Riesz representation theorem show that each £, ,
is uniquely determined by the above equation. Now, since (E(w)z,y) = E, ,(w), each
E(w) is also uniquely determined.

Now we try to prove the existance of E. If z,y € H, Gelfand-Naimark theorem shows
that T — (Tx,y) is a bounded linear functional on C'(A) of norm atmost || z ||| v ||,
since || T ||lo=|| T'||. By Riesz representation theorem, we get unique Borel measures

ey O A such that
(Tz,y) = / Ty,
A

where x,y € H,T € A. We know that LHS of above equation is a bounded sesquilinear
functional on H. Hence, so is RHS. Now, even if we replace our continuous T with an

arbitary borel function f, the boundedness remains intact. To each f corresponds a
¢ f € B(H) such that

(®f)z,y) = /A Fdtay,

Comparing the above two equations, we see that T =T. Hence, ® is an extension
of the inverse of Gelfand transform(since it is defined on Borel functions).

It is easy to see the linearity of ®.

Gelfand Naimark theorem states that T is self adjoint iff T is real valued. For such a
T

?

/A Tdps, = (Tz,y) = (2, Ty) = Tg,7) /A Tdu,.

13



and this implies that ., = iy .

Hence,
(®2)z,y) = /A Fditay = /A fditye = (@), 2) = (2, (@ f)y)

for all x,y € ‘H. Hence,

Of = (®f)
Now for S, T € A, (SAT) — ST. Hence,

/ STdp,, = (STx,y) :/ Sdjira,.
A A

This holds for all S € C'(A). Hence, we can replace S by any bounded Borel function
f. Thus

[ Ty = [ fdirey, = (@1)700) = (T02) = [ T

where z = (®f)*y. Now the first and last integrals remain equal if T is replaced by
g, a borel function. We get

(@(fg)r.y) = /A Fodin, = /A gdjis. = (Bg)r. 2) = (Bg)z, (BF)'y) = (B()B(g)z. y)

and hence, ®(fg) = ©(f)P(g).
Now we define E: If w is a Borel subset of A, let x,, be its characteristic function.
Now define

E(w) = ®(xw)-

Since ® is multiplicative,

’

Ewnuw)=EWEW).

If w =W above, we get that F(w) is a projection.
When f is real, ®f is self adjoint. Hence each F(w) is self adjoint. It is easy to see
that E(¢) = ®(0) = 0 and check the finite additivity of E. Now, Vz,y € H,

E,y(w) = (Ew)r,y) = /A Nty = fia (@),

Hence (a) and (b) are proved.

14



Now, we narrow down to an operator.

Theorem 1.9. If T € B(H) is normal, then there exists a unique resolution of the

identity E on the borel sets of o(T) satisfying

T - / ME(N).
o(T)

Proof:Let A be the smallest closed subalgebra of B(H) that contains I,T,T*.
Since T' is normal, A is a normal subalgebra and previous theorem can be applied to
A. We know from Gelfand theory that the maximal ideal space of A can be identified
with ¢(T) in such a way that T()\) = A for every A € o(T). The existance of such a

E follows from previous theorem.

Next we try to make sense of f(T") for a given f.
f(T) for bounded f: If F is the spectral decomposition of a normal operator T €
B(#H), and if f is a bounded Borel measurable function on o(7'), it is customary to

denote the operator

W(f) = / L
by f(T).

In the next chapter, we will study about unbounded operators.

15
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Chapter 2

Unbounded operators on a Hilbert

space

In this chapter, we will study the theory of unbounded operators. The first thing we
realize is that not all operators are defined on the whole Hilbert space.
In this chapter, like the previous one, we study tools to understand self adjoint oper-

ators. For a detailed theory, refer to [I].

2.1 Unbounded operators

Definition 2.1. Let H be a Hilbert space. A linear operator T : D(T) — H is a map
from a subspace D(T') of H to H.

Examples: Let C(]0, 1]) denote the space of continuous functions on the interval,
and letC ([0, 1]) denote the space of continuously differentiable functions. Define the
differentiation operator - : C1([0,1]) — C([0, 1])by

L (o) — 1 L) = S

dx e—0 €

vV € [0,1].

Since every differentiable function is continuous, ([0, 1]) C C(]0, 1]).

If T is continuous , then T has a continuous extension to D(T). Since D(T) is

complemented in H, we can extend 7' to some member of B(H) over H.

17



Definition 2.2. Let H be Hilbert space. Then H X H s the space of all ordered pairs
(x,y) where x € H,y € H. We can define an inner product on H x H by

({a’ b}> {67 d}) = (CL, C) + (ba d)

where (a, c) is the inner product in H.

Remark: The norm on H x H is given by

I {a, 0} I*=lla * + 16"

Definition 2.3. Let T be an operator on H. Then the graph G(T') of T is the subspace
of H X H
{(z,Tz) : 2 € D(T)}.

Definition 2.4. Let S, T be two operators on H. Then if G(T') C G(S5), we say that

S is an extension of T

Definition 2.5. If G(T') is a closed subspace of H x H, then T is closed.

Often it happens, that our T is not closed, but it may have a closed extension.

The following notions of closability are taken from [3]

Definition 2.6. If a linear operator T has an extension Ty which is a closed linear

operator, then we call T1 a closed linear extension of T and T is closable.

Definition 2.7. A closed linear extension T of T is said to be minimal if every closed
linear extension Ty of T is a closed linear extension of T. We call this minimal closed

extension(if it exists) T as the closure of T.

Remark: If T exists, it is unique.
Now we present an operator that is not closable from [§].
Example of Non Closable operator: Let {e;} be an orthonormal basis of an infinite-
dimensional Hilbert space #H.Let us define a linear operator T as follows: D(T') is the

set of all finite linear combinations of vectors {e;} and

Aej, = key.
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We see that T is not closable.

2.2 Adjoint

Definition 2.8. Let T be an operator in H. The adjoint T* of T is an operator on
H such that

(Tz,y) = (z, T"y)

where x € D(T) andy € D(T*) ={y € H |z — (T'z,y) is continuous }.

Remark: If y € D(T™), then by Hahn-Banach theorem, the functional z — (T'z, y)
can be extended to a continuous linear functional on H. By Riesz representation
theorem([2]), there exists T*y such that

(Tx,y) = (2, Ty).

It is easy to see that Ty is uniquely defined iff D(T') is dense.
Some Trivial Properties: There are some basic properties that one should know
regarding

(a) domains of sums and products
DS+T)=D(S)ND(T)

D(ST) ={x € D(T): Tz € D(S)}

(b) associativity

(R+S)+T =R+ (S+T)
(RS)T = R(ST)

(c) distributivity
(R+S)T = RT + ST

T(R+S)>TR+TS

Note that in the last one, (R + S)x may be in D(T) , however one of Rz or Sx may

not be. Hence, the inequality.
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Proposition 2.1. Let S,T and ST be operators on H with domains dense in H.
Then

T*S* C (ST)*

Now, if S € B(H),
T*5* = (ST)*

Let V' be an operator on H x H given by
V{a,b} = {—b,a} (a,beH).

It is easy to see that V2 = —I. Also, V is a unitary operator.
The next result relates the graph of T with the graph of T

Proposition 2.2. If T is densely defined in H, then
G(T) = [VG(T)~

Theorem 2.1. If T is an operator in H with dense D(T), then T* is closed.

Corollary: Self adjoint operators are closed.

Theorem 2.2. If T is a closed operator defined densely in H, then we can write

H X H as a direct sum of two orthogonal subspaces in the following way:
HxH=VG(T)®G(T").

The following is a result from [9].

Theorem 2.3. Suppose that T : H — H is a densely defined operator on H. Then
(a) If T is closable, then T™ = T*.

(b) T is closable iff T* is densely defined.

(c) If T is closable, then T = T**.

Proof: To prove (a) we use the operator V' defined above as
V{a,b} = {-b,a}
for a,b € H. We see that if T" is closable, then

G(T*) = (VG(T))" = (VG(T))* = VG(T)*" = G(T%)
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by the previous theorems.

To prove (b), we take a sequence {z,} in H such that
z, — 0

Tz, > x

as n — oo. Let y € D(T*). Then

(T, y) = (20, T"y).
Taking the limits as n — oo, we get

(z,y) = (0, T7y) = 0.

Hence, if T* is densely defined, we get that x = 0. Hence, T is closable.
To prove the other way, assume that T is closable and let = L D(T™). By above

argument,
(k,0) € VG(T) = G(T*)* = VG(T)* =VG(T) = VG(T).
This implies that (0, %) = G(T). Since T is closable, T is well-defined and hence
k=1T0=0.

Therefore, D(T*) is densely defined.

Now to prove (c), we assume that 7" is closable and 7™ is densely defined. Then
G(T™) = (UG(T™))~

where U((y,z)) = (—x,y) = =V !(y, x). Therefore

G(T™) =U(V(G(T)")" =G(T) =G(T)

and hence, T = T™**.
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2.3 Symmetric operators

Definition 2.9. An operator T in H is called symmetric if

(Tz,y) = (z,Ty)
where x,y € D(T).

Remarks:

If T is a dense symmetric operator, then
TcT”

Definition 2.10. If T'= T, then T is said to be self adjoint.

Remark:If T is densely defined and (T'z,y) = (x, Sy), then S C T*.

Theorem 2.4. Let T be a densely defined operator in H. Then if T is symmetric, T

exists and is unique.

Sketch of the proof: Let us first define the domain M = D(T) and then T. We
will prove that T is indeed the closure of T
Let M be the set of all x € H for which there is a sequence {z,} € D(T) and y € H
such that

Tp =T
Tz, —vy.

It is easy to see that M is a vector space and D(T') C M. Now, we define the operator
T on M as
y="Tz

for x and y given above.
The only thing that is left is to check T for all the properties by which the closure of

a symmetric operator is defined.

Since, we have defined the symmetric operator, let us see an example of a sym-
metric operator which is not self adjoint.
Examples: In the complex space £2[0,1], let A = id/dt be defined on the set D, of
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absolutely-continuous functions f on [0, 1] having a square-summable derivative and
satisfying the condition f(0) = f(1) =0 . Then A is symmetric but not self-adjoint.

However, if the condition on f is

, then A is a self adjoint.

Having seen that not all symmetric operators are self adjoint, the next section talks

about when a symmetric operator is self adjoint.

2.4 When is a symmetric operator selfadjoint?

Theorem 2.5. Suppose T' is a symmetric operator densely defined in H.
(a) If D(T) =H , then T is self adjoint and T € B(H).
(b) If T is self adjoint and one-one, then T~ is self adjoint and R(T) is dense in H

(c) If R(T) is dense in H, then T is a one-one map.
(d) If R(T) = H , then T is an self adjoint operator and T—' € B(H)

Proof: To prove (a), we see that 7' C T™* (since T is symmetric). If D(T) = H,
that means that D(T™*) = H and therefore, T is self adjoint. Hence, T" is closed since
adjoints are closed. Therefore, by closed graph theorem, 7" is continuous.

(b)Let y L R(T"). Then the functional

r— (Tz,y) =0
is continuous in D(T). Hence, y € D(T*) = D(T') and
(x,Ty) = (Tz,y) =0 Yz eDT).

Hence, Ty = 0. Now it follows that y = 0, since 7" is one-one. We have proved that
R(T) is dense in H.
Now since R(T') is dense, T~ is densely defined and (T~')* exists. The relations

G(T™Y) = VG(-T)
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and

are easily verified:
(a,b) € G(T™Y) & (b,a) € G(T) < (b, —a) € G(-T) < (a,b) € VG(=T).

Now since T is self adjoint, T and —T are closed. Hence T! is closed by above

relations. Now we can orthogonally decompose T—! and —T as
HxH=VGT Heg(T ")

and
HxH=VG-T)DG(-T)=G(T e Vg(T™").
Therefore
GUTH) =VG(T ) =6(T™)

which shows that T is self adjoint.
(c)Let R(T) is dense and let Tz = 0. Then

(z,Ty) = (Tz,y) =0

for y € D(T'). Therefore x L R(T). Since R(T) is dense, x = 0.
(d)Assume that R(T) = H. Then T is one-one and D(T~ ') = H. Now, if z,y € H,

then for some w, z € D(T), we have x = Tz and y = T'w, so that

(T 'z,y) = (2, Tw) = (Tz,w) = (z, T y)

1

making 77! symmetric. By (a), 77! is self adjoint and bounded and now it follows

from (b) that 7= (T~1)~! is self adjoint.

Theorem 2.6. IfT is an operator that is closed and densely defined in H, then D(T*)
s dense in H. Also T™* =T.

Definition 2.11. A symmetric operator T in H is said to be maximally symmetric

if T has no proper symmetric extension, i.e. there exists no symmetric S such that
TCSandT #S.

Theorem 2.7. Self adjoint operators are mazximally symmetric.
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2.5 Cayley transform

The Cayley tranform was originally described by Arthur Cayley as a map between
skew symmetric matrices and special orthogonal matrices. Here we generalize to lin-

ear operators.

The Cayley Transform: The mapping

t—1
t+1

sets up a one-to-one map between R and the S'\ {1}. By functional calculus, we
know that every self adjoint operator T' € B(#H) is related(via a bijection) to a unitary

operator(whose spectrum doesn’t contain 1) as
U= (T—il)(T+il)™".

Now we can extend the relation 7" <— U to a one-one correspondence between
symmetric operators and isometries.

Let T be a symmetric operator in H. Then
| Tz + iz [|*=|| « || + | Tz |*=| Tz —iz |*  (z € D(T))

Hence, there is an isometry U such that D(U) = R(T +iI) and R(U) = R(T — il)
defined by
UTz+iz) =Tz —ixz (z € D(T))

Since (T'+il)~* maps D(U) onto D(T), U can be written as U = (T — I )(T +4I)~".
If T'€ B(H), then to see that U is unitary, we see that

(T — i) (T +4I) (T — i) (T +il)™)* = (T —il)(T + i) (T +4iI) ") (T —il)*

— (T —iI)(T +il) (T —il) (T +iI) = I.

This U is called Cayley transform of 7.

Lemma 2.1. Suppose U is an operator in H which is an isometry: || Uz ||=|| = || for
every x € D(U).
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(a) If R(I —U) is dense in H, then I — U is one-one.
(b) If any one of the three spaces D(U), R(U) and G(U) is closed, so are other two.

Theorem 2.8. Suppose U is the Cayley transform of a symmetric operator T" in H.
Then

(a) U is closed iff T is closed.

(b) R(I-U) =D(T) , I —-U is one-one , and T can be reconstructed from U by the
formula

T=i(I+U)(I-U)"

(c) U is unitary iff T is self adjoint.

Conversely, if V is an isometry in H, and if [ —V 1is one-one, then V 1is the Cayley

transform of a symmetric operator in H.

2.6 Resolutions of the Identity

Let us recall resolutions of the identity from the last chapter.
Let M be a g-algebra in a set € and let H be a Hilbert space. A resolution of identity
on M is a mapping

E:M— B(H)

such that
) E(¢) =0, E(Q) =1
b) Each E( ) is a self adjoint projection.

(a

(

(c) B(w Nuw") = B(W)EW")

() Ifw Nw' =¢,then B(w Uw") = BE(w) + BW").

(e) For every z € H and y € H, the set function E, , defined by

Epy(w) = (E(w)z,y)

is a complex measure on M.

Theorem 2.9. Let E be a resolution of identity on a set Q.
(a) To every measurable f : Q2 — C corresponds a closed operator V(f) defined densely
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n H, with domain

D(xp(f))—Df—{er;/QjnydEx,m@o}

which s characterized by

W)= [ JaEe, (e DryeH)

and satisfies

Hwnxwzgjfﬁdmx (x € Dy)

(b) The multiplication theorem holds in the following way: If f and g are measurable,
then

(f)¥(g) C ¥(fg)

and
D(Y(f)¥(g)) = DgN Dyy

Hence, U(f)V(g) = Y(fg) if and only if Dy, C D,.
(¢) For every measurable f : Q) — C,

and

(W) =T f*) = V() (f)

The last part of the above theorem basically says that if f is a real valued function,

then W(f) is a self-adjoint operator.

2.7 Spectral decomposition

Definition 2.12. Let f be a complex valued measurable function. The essential range
of f is the set
{zeC:pu{{z:|f(z) —w| <e}) >0 Ve>0}.

Theorem 2.10. Suppose E is a resolution of identity on 2, f : QQ — C is measurable

, and
we={peQ: f(p)=a} (ae(C))
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(a) If o is in the essential range of f and E(w,) # 0, then V(f) — al is not one-one.
(b) If « is in the essential range of f but E(w,) = 0, then ¥(f) — al is a one-one
mapping of Dy onto a dense proper subspace of H, and there exist vectors x, € H,
with || x, ||= 1 such that

lim [V (f)x, — az,) =0

n—o0

(c) a(VU(f)) is the essential range of f.

Theorem 2.11. Suppose

(a) M and M’ are o-algebras in sets Q@ and €Y.

(b) E: M — B(H) is a resolution of identity.

(c) ¢ :Q — Q has the property that (') € M for every w' € M.

IfE' (W) = E(¢~" (W), then E' : M" — B(H) is also a resolution of the identity, and

dE = o ¢p)dE,,
[ fag, = [ (700,

for every M’-measurable f : Q' — C for which either of these integrals exists.

Theorem 2.12. To every self adjoint operator A in H corresponds a unique resolution

E of the identity, on the Borel subsets of the real line such that

(Az,y) = /OO tdE, ,(t) (x € D(A),y € H)

Moreover, E is concentrated on o(A) C (—o0,00) ,i.e. E(c(A)) =1.

Proof: Let U be the Cayley transform of A, let Q = S'\ {1} . and let E’ be
spectral decomposition of U. Since I — U is one-one, 0 = N'(I — U) = R(E'({1})) ,
hence £’'({1}) and hence

(Uz,y) = /Q MELO) (€M)

Define

Define U(f) as earlier:

(W(f),y) = /Q JAE., (e Dpyen)
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Since f is real valued, W(f) is self adjoint and since f(A)(1 — ) = i(1 + \) , the

multiplication theorem gives
U(HI-U)=il+7U)
Thus, R(I —U) C D(¥(f)). Since U is the Cayley transform of A,
A(I-U)=4i(I+7TU)

and D(A) = R(I—U) C D(¥(f)). It can be seen that U(f) is a self adjoint extension
of self adjoint operator A. Hence, W(f) = A. Thus (Az,y) = fQ) far,, (x €
D(A),y € H) By earlier result, o(A) is the essential range of f. Thus o(A) C

(—00,00). Note that f is one-one in Q. If we define
E(f(w)) = E'(w)

for every Borel set w C €2, we obtain the desired resolution F.

In the next chapter, we get to our study of perturbation by compact operators and

relatively ”small” symmetric operators.
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Chapter 3

Perturbation of a self adjoint

operator

In this chapter, we study two types of perturbations. Firstly, we see that perturbations
of bounded operators by compact operators leave essential spectrum invariant([4]).

In the later part of the chapter, we see that relatively bounded symmetric operators
with relative bound less than 1 when added to a self adjoint operator leave the self

adjointness preserved. A more detailed analysis can be found in [5].

Definition 3.1. Let H be a Hilbert space. Then for A € B(H), we define the left
spectrum( or right spectrum) as {\ € C: A—\I is not left invertible(or right invertible)

}.

Proposition 3.1. If A € B(H), then the following are equivalent.
(a) N & o,(A), i.e. inf{|| (A= AD)h|:]| h]|=1}>0.

(b) R(A — M) is closed and dimker(A — AI) = 0.

(c) X & o, (A).

(d) X ¢ o,(A7).
(e) R(A* — \I) = H.

Proposition 3.2. If N is a normal operator, then o(N) = o;(N) = o,.(N). If X is
an isolated point of o(N), then A € 0,(N).

Proof: To prove that o(N) = 0;(N) = 0,.(N), it is sufficient to prove that for any
a € A— a Cx-algebra

a is invertible <= a is left invertible <= a is right invertible.
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Assume that a is left invertible in A. Hence there exists a b € A such that ba = 1.
Hence, for x € A,
|z [|=[ baz [[<[| 0 [||| az || .

This leads to
laz =107 2 || .

Since it is true for all z € A, it is true for x € C*(a) in particular. Since a is normal,
C*(a) is isomorphic to C(o(a)) such that a — z(z(w) = w). Hence, the above

inequality becomes

Fzf I=0e 17

for every f € C(o(a)).
We need to show that 0 ¢ o(a). Let us assume on the contrary that 0 € o(a). Then,
there is sequence {f,} € C(o(a)) such that 0 < f,, <1, f,,(0) =1 and

fn(2) = 0; z€oa(a)|z[=1/n.

Now, since 0 € o(a), || fn ||[= 1. But || zf, ||< 1/n. This contradicts the inequality
and so 0 ¢ o(a), i.e. a is invertible.

Now if we assume that a is invertible, we get that a is both left and right invertible.
Now let us assume that a is right invertible. Then a* is left invertible. By the
preceding argument, a* is invertible and hence so is a.

Let A be an isolated point of o(N) and N = [ zdE(z), then 0 # E({\})H = ker(N—2X\)

and we are done.

3.1 The essential spectrum

Definition 3.2. Let H be a Hilbert space and B(H) be the space of bounded operators
on it. Let Bo(H) be the ideal of all compact operators on H. The quotient B/B, is
called the Calkin algebra.

Definition 3.3. Let H be a Hilbert space and m : B — B/B, be the natural map from
B(H) into the Calkin algebra. For A € B(H), the essential spectrum of A, is defined

as

Similarily, we define the left and right essential spectrum as 0;.(A) = o;(7(A)) and
0re(A) = o,.(m(A)).
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Proposition 3.3. Let A be a bounded operator on H.

(a) 0c(A) = 01(A) Uo,e(A)

(b) 01e(A) = 07 (A7)"

(¢) 01e(A) S ai(A) , 01e(A) € 0,(A), 0c(A) € o(A)

(d) 01(A), 0,e(A), 0.(A) are compact in C.

(e)If K € Bo(H), 01c(A+ K) = 01(A),0,e(A+ K) = 0,e(A),0.(A+ K) = 0.(A)
Proposition 3.4. Let A € B(H).

(a) X € 01.(A) if and only if dimker(A — X) = 0o or R(A — \) is not closed.

(b) X € 0,.(A) if and only if dim[R(A — \)]* = oo or R(A — \) is not closed.

Proposition 3.5. If A € B(H), then
Oap(A) = 01(A) U{X € 0,(A) : dimker(A — \) < oo}.

Proposition 3.6. If N is a normal operator, and A € o(N), then R(N — \) is closed
iff X is an isolated point.

Proposition 3.7. If N is normal, then
(a) 0e(N) = 01e(N) = 0re(N)
(b) o(N)\o.(N) ={X € a(N) : X is an isolated point in o(N) which is an eigenvalue
with finite multiplicity }.

Proof: To prove (a), we just have to apply Proposition to Calkin algebra.
If A is isolated the spectrum of N, then R(N — AI) is closed by the previous result.
So if dimker(N — A)I < oo, then A ¢ 0. (N) = 0,.(N) = 0.(N).
To prove the other side, we assume that A € o(N) \ 0.(N), then R(N — AI) is closed
and dim ker(N — AI) < co. By the previous result, A is an isolated point of o(N).

Now this brings us to a decomposition of the spectrum o(N) as
0(N) = 0.(N) U 0gise(N)

and that o.(N) and 045.(IV) are disjoint, where o45.(/V) is the discrete spectrum of

N and the complement of o.(N). Formally, 4s.(N) is defined as

0dise(N) = {A € a(N) | A'is an eigenvalue of finite multiplicity }
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The following remark has been taken from [6].

Remark 3.1. o.4(A) is always closed, whereas c4isc(A) may not be closed. 0gs.(A)

contains isolated eigenvalues of finite multiplicity.

3.2 Perturbation of a self adjoint operator:

The stability of self-adjointness under the perturbation by a self adjoint operator is an
important problem. A fundamental question that arises is how small a perturbation
should be so that self adjointness stays preserved. We start off with a result that we

will not prove.

Theorem 3.1. Let T be a self adjoint operator. Then there is a 0 > 0 such that any
symmetric closed operator S with 5(5, T) < ¢ is self adjoint, where 5(5, T) is the gap
between S and T defined by

~

0(S,T) = max|( sup dist(u,N)), (sup dist(M,v))].

fJull=1 [[ol=1

Even though the result is remarkable one, the definition of delta makes it compli-

cated. Now, we try a different approach.

Definition 3.4. An operator A is called T-bounded if D(A) D D(T) and
Aul[<alwl +bl Tull  weD(T)

or equivalently
I AulP< a® [ u|® +02 | Tu | ueD(T).

/ / . .
Ofcourse, a ,b are different from a, b in general.

Definition 3.5. The T-bound of A is the greatest lower bound of possible values of b

or equivalently b’

Theorem 3.2. Let T be a self adjoint operator and A be a symmetric T-bounded
operator with T-bound < 1, then T + A is also self adjoint.
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Proof: We know that 7'+ A is symmetric and has the domain D(T"). We may
assume that the above equation holds with constants a’, b such that ' > 0,0 < b < 1.

We can re-write the above equation as
| Aul|<|| 6T Fia'u |
for u € D(T). Let ¢ =a' /b and (T Fic )u = v. We get
| AT Fic) v < b o]
Since T is self adjoint, v varies over all of H as u varies over D(T'). Hence, we have
BY = —A(T Fic)™' € B(H)

and || B* ||<b'. Now, since by our assumption, b < 1, (1 — B+)~! exists and belongs
to B(H). Hence, 1 — By maps H bijectively to H. But we see that

T+ATic =(1—By)(T Fic)

and R(T Fic) = H since T is self adjoint. Therefore R(T 4+ A Fic') = H. Hence
T + A is self-adjoint.

Corollary: Let T be a self adjoint operator. If A is a symmetric bounded operator
such that D(A) D D(T), then T + A is self-adjoint.

Definition 3.6. Let T be a symmetric operator. If T** is self adjoint, then we say
that T is essentially self adjoint.

Definition 3.7. Let {u,} € D(T) be a sequence. It is called T-convergent tou € D(T)
if

Up —> U
and

Tu, — Tu.

Theorem 3.3. Let T be an essentially self adjoint operator. If A is a symmetric
T-bounded operator with T-bound < 1, then T + A is essentially self adjoint and
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(T + A) =T+ A. In particular, it is true when A € B(H) is symmetric with D(A) D
D(T).

Proof: We start by proving that A is T-bounded, i.e.
D(A) > D(T)

and
| Au |P<a” || u|? 402 || Tu ||?

for w € D(T). For any u € D(T), there is a sequence {u,} which is T-convergent.
Since A is T-bounded, it is easy to see that {u,} is A-bounded. Now if we replace u
by u,, in the boundedness equation, and take the limit, we get the required equation.

Since {u,} is both T-convergent and A-convergent, we get

(T + A)u, = (T + A)u

so that u € D(T + A) and T + Au = (T + A)u. This shows that

T+ADT+ A.

Now, we apply the previous theorem to the pair 7, A that T + A is selfadjoint(Note
that here we use the assumption b < 1). Thus T + A is closed extension of T'+ A
and therefore of T + A. Hence, we get that T + A =T + A.

The previous theorems are not symmetric with respect to T and T+ A(= S). So
we have the following result:
Theorem: Let S,T be two symmetric operators such tha D(T") = D(S) = D and

(S =Tul[<allwl +b( Tu| + [| Sul])
for u € D, where a, b are non-negative constants with b < 1. Then S is essentially self
adjoint iff T is.

Corollary: Let ST be two operators satisfying the above properties, then S is self
adjoint iff T is.
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Lemma: Let B € B(H) and || B ||< 1. Then
Bu = u <= B*u = u.
Such an operator is called a contraction.

Proof: Since B** = B and || B* [=[ B [[< 1, it is sufficient to show that

Bu =u — B*u = u. But we know that
| B*u—u |[|’=|| B* | + || u |” —2Re(B*u,u) < 2 || u ||* —2Re(u, Bu).
So if Bu = u, we get B*u = .

The following result is about the case of relative bound 1.

Theorem 3.4. Let T be essentially self adjoint and let A be symmetric operator. If
A is T-bounded and equation holds with b = 1, then T + A is essentially self adjoint.

Proof: We start by assuming that T is self adjoint and defining B4 as above.
Since b < 1, we get that | By |[|< 1 and R(1 — B;) may not be H. But we will
show that the range is dense in 4. Then by arguments used before, we will get that
R(T + A Fic) are dense in H and hence T + A is essentially selfadjoint.

To see that R(1 — B+) is dense in H, it suffices to show that a v € H orthogonal
to this range must be zero. Now such a v would satisfy B}v = v. According to the

lemma above, B v = v, i.e.
A(T —id ) o +v =0.
Now set u = (T —ia’ )"'v € D(T). We get
(T + A —id)u=0.

But since T+ A is symmetric and ¢ > 0, this gives u = 0 and hence, v = 0. Hence,
we have proved the theorem under the assumption that T is self adjoint.
Now we take the more general case of T being essentially self adjoint only. We proved

the inclusion T + A D T + A without using the assumption that b < 1. Now T is self
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adjoint, D(A) D D(T) and
I Au < a® [l + || Tu |

Applying what was proved above to A, T, we see that T + A is essentially selfadjoint.
Since

T+AD>T+A
we see that closed symmetric operator 7'+ A is an extension of an essentially self

adjoint operator. Hence, T' 4+ A is self adjoint, i.e. T'+ A is essentially selfadjoint.

In the next chapter, we will study a special case of rank one perturbations.
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Chapter 4

Rank one perturbation of self

adjoint operators

In this chapter, we study a special case of perturbations. We look at the perturbations
of self adjoint operators by rank one operators. The key result says that the absolutely
continuous part of the spectrum stays invariant. A detailed analysis of this can be
found in [6].

4.1 Rank one perturbations

Let ‘H be a Hilbert space and T be a self adjoint operator. Suppose ¢ is a normalized
vector in H. Let P, denote the orthogonal projection onto the subspace gennerated

by ¢. Now we look at the operator
Tn=T+\P,

where \ € R. These T are the rank one perturbations of H.

Proposition 4.1. Let ¢ be a unit vector in H and Ty be as defined above. Then

Vze C*
(V, (T —2)"'9) 1
(0, (T = 2)71¢) A+ (o, (T — 2)1g) ™

Proof: Since T, —T' = AFP,, it can be rewritten as

(¥, (Th = 2)"'¢) =

T)\—Z—T—i-Z:)\PQg
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Taking left inverse of Ty — z and right inverse of T'— z on both sides, we get
(T — 2)71 — (T)\ — 2)71 = )\(T)\ — 2)71P¢(T — Z)il

or equivalently

(Th —2) "= (1= ANTy—2) 'P)(T — 2)"".

Now if (¢, (.)¢) act on both sides and rearrange, we get the desired result.

Corollary: (¢, (T\ — z)~ 1¢) (o, (T— z) Tgy—1°

Definition 4.1. A set X C H is called total in H if the set of linear combinations of

elements of X is dense in H.

Definition 4.2. Let T € B(H) be a self adjoint operator. A wvector ¢ € H is called
cyclic if
{A7¢:0<j < oo}

1s total in H.

Theorem 4.1. Consider a separable Hilbert space H and let T be a self adjoint op-
erator on it. Let ¢ € H be a unit vector. Now, for A\ € R, assume that Ty # 0. Then
(a) If ¢ is cyclic for T, then it is cyclic for T).
(b) Let Hy and H,» be cyclic subspaces generated by Ty and T\ on ¢. Then for
M eR,

H)\ = 7’[)\/.

Proof: We will prove the result for bounded 7" only. Since ¢ is cyclic for T', we
can find by Gram Schmidt process, an orthonormal basis {¢, } for H, so that ¢g = ¢
and in this basis, T is tridiagonal. So there is no loss of generality in assuming that
T is tridiagonal, i.e.

Tun = ApUpy1 + bnun + ap1Up—1.

Then ¢ is cyclic for T means that (¢, T¢ny1) # 0 for any n > 0. Because if T is
tridiagonal, (¢x, T¢m) = 0 if | k. —m |> 2 and if (¢, Tpps1) = 0 for some n, then

a, = 0. Now by induction, we see that

(P(T)h; pns1) =0
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for any polynomial p of degree > n. This contradicts the assumption that ¢ is a cyclic
vector for T. Now, we have, by definition of Ty and ¢, that (¢g, Thdo) = (¢o, Tho) + A
and for any pair (n,m) # (0,0),

(an’ TA¢m) = (¢n7 T¢m) + )‘(gbm P¢¢m) = (Qbm Tgbm)

This shows that ¢ is cyclic for any T).
Now if ‘H, is the cyclic subspace generated by 7" on ¢, then the orthogonal complement
Hoo of H, is left invariant by 7" and T} for any A and on H,

T =T,

since APy Ho = {6}. Thus we can write T’ = B @ C amd Ty = B, + C. Now an
argument similar to the one used above would show that cyclic subspace generated

by By on ¢ agrees with H, for any A.

Definition 4.3. Let p be a measure on R satisfying the condition that

1
/}Rdu(x)1+x2 < 00

Then the integral
1 1

/Rdu(x){x—z a 1+x2}

defines the Borel transform F,, of j where z € C\ R.

The above map is an analytic function in Ct UC™ and leaves both the components

invariant.

Let E) be the resolution of identity related to the operator T\ for A # 0 . Now
we want to determine the behaviour of the spectral measures Ey 4 = (¢, Ex(.)¢)
and associate it with 7) and ¢ in terms of properties of measure py = (¢, Eo(.)®).

Therefore, consider the Borel transform

Fu(z) = (6, (T — 2)"') = / L o).

RL — X%
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Now if we take all the ¢ with || ¢ ||= 1, then all u, will be probability measures.

Since
(Th—2) ' = (T —2)"' = NTy — 2) ' Py(T — 2) 7,
we see that P
B = 1R e
_ Im(Fp)
Im(F\(2)) = EESYACIE

Now let us define the following sets so we can relate uy to po:
Syo={z e R: (DF)(z) < 007111% Fo(x +ie) = —=\71}
e—

S/\,oo = {CL' ceR: (DFO)(:L') = OogllrrolF()(iU +Z€) — _)\71}
e—
e—

where A # 0 and
1

DFy(x) =lim | —————=d .
o(x) =lim | ey aloly)

We have a result regarding Lebesgue decomposition of py by Aronszajn and
Donoghue, but we need to know about the decomposition of the spectrum before

it.

4.2 Components of the spectrum

Now we want to study the decomposition of spectra by decomposing the Hilbert space

H.

Definition 4.4. Let A be a self adjoint operator. Then we define

H,y(A) = span{z | x is an eigenvector of A}.

H,(A) is the closure of set of all finite linear combinations of eigenvectors of A.
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Lemma 4.1. Ifker(A— \;) denote the eigenspace corresponding to the eigenvalue \;,
then
Hy(A) = B ker(A —N).

It is easy to see that H,(A) is a subspace of H.

Definition 4.5. Let H be a Hilbert space. Then we define

Hence, H = Hy(A) ® H.(A). We call H.(A) to be the continuous subspace of (A).

In the above context, H,(A) is sometimes called the discontinuous subspace of A.
The restriction of A to D(A) NH,(A) is denoted by A,. H,(A) is invariant under the
action of A, which is self adjoint in #,(A).

Now we denote the restriction of A to D(A) N H.(A) by A.. As earlier, A, is self
adjoint in H.(A) and leaves it invariant.

Hence, we have a decomposition of A:
A=A, A..

Now we define the continuous and the pure point spectrum of A.

Definition 4.6. Let A be a self adjoint operator in H and let A = A, ® A. as defined

above. Then the continuous spectrum of A is defined as

while the the pure point spectrum is defined as
opp(A) = 0(A,)

Remark 4.1. If 0,(A) is the set of all eigenvalues of A, then

opp(A) = 0p(A).

Moreover, the continuous subspace H.(A) can be further decomposed into abso-

lutely continuous and singularly continuous subspaces.
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Definition 4.7. Let m be the Lebesque measure on R. Then
Hae(A) ={z € H(A) | (z, E(w)x) =0 if m(w) =0 for some Borel set w}

Hse(A) = {z € H(A) | there is a Borel set w,, m(w,) =0 but E(w,)r = z}

Hae(A) and Hy.(A) are subspaces of H.(A).
Let us denote the restriction of A to D(A) N Hae(A) by Aue and restriction of A to
D(A) NHye(A) by Age.

Now we define the absolutely continuous and singularly continuous spectrum by
Tac(A) = 0 (Aac)
Tse(A) = 0(Ase)
Remark 4.2. Now we have the following decompositions:
H=H,(A) & Hs(A) ® Hae(A)

which can be re-written as

H = H,(A) B He(A).

Now if we define, H (A) = (Ha.(A))* as called the singular subspace of A and
like earlier, restriction of A to D(A) NHs(A) is denoted by Ay, and o4(A) = o(Ay) is

called the singular spectrum of A, then we can rewrite above decomposition as

H= HS(A) D HQC(A)'

Now we have a decomposition of the spectrum as
0(A) = app(A) Uae(A)
or
0(A) = 0pp(A) Uue(A) Uos(A)

or
U(A> = Udisc(A) U Uess(A)
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or

0(A) = 04c(A) Uag(A).
Remark 4.3. In general, 0., 0sc, 04c are not disjoint.

Now we come back to Lebesgue decomposition of u, by Aronszajn and Donoghue.

Theorem 4.2. Let T and ¢ be as above. Then
(a) The part iy is supported on the set Sxo. (b) The part iy s is supported on the
set S co-

(¢) The part pixqc is supported on the set L.

In the following theorem by Simon and Wolff, let Fy denote the Borel transform

of measure .

Theorem 4.3. Simon-Wolff: Let T, and ¢ be as above. Consider the family of
measures py for X € R and assume that for almost every X\, uy([a,b]) # 0. Then the
following are equivalent:

(a)For almost all X, jy is pure point in [a,b].

(b)For almost every x € [a,b], (DFp)(z) < 0o.

Now we come to the last result of the chapter by Barry Simon [7].

Theorem 4.4. Barry Simon For A # 0, the absolutely continuous parts of Ty and

T, i.e. Thqe and Tye are unitarily equivalent.

The theorem says that under perturbation by a rank one operator, the absolutely
continuous part of the spectrum remains invariant.
Sketch of the proof: By definition,

T\ =T + \o.

If f(z)dz and g(z)dx be absolutely continuous positive measures on R. These mea-
sures are equal iff {z | f(x) # 0} and {z | g(x) # 0} agree upto a null set.

Now it suffices to show that Ly and Ly agree upto sets of measure zero. Since

Im(F())

Im(F\(z)) = | 1+ AFo(2) |?

we get
Im(Fx\(z)) >0 < Im(Fy(z)) > 0.
45



Now L) and Ly agree upto the sets where

lim F(x + i€) = 00

e—0

or
11_{% F(x +1ie) = =1/

These sets are of measure zero and we are done.

Conclusion:

The theory of perturbation doesn’t end here. It is trivial to see that the above result
for invariance of absolutely continuous part of spectrum is also true for perturbation
by finite rank operators. The proof is purely by induction. There are many more tech-
niques in continuation to Borel transform to understand the spectra of a self adjoint
operator. Fourier transform and Wavelet transform are just two of such techniques

and will be a part of my future work.
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