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Notation

R Field of real numbers

Z Ring of integers

Q Field of rational numbers

H Hyperbolic space

q Quadratic form

b Bilinear form

h Hermitian form

s Sesquilinear form

D(q) Elements represented by q

A Algebra

D Division algebra

H Quaternion algebra

∗ Involution on a ring

σ Involution on an algebra

k(C) Function field associated to the conic C

k((t)) Field of formal Laurent series over field k
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Abstract

In the algebraic theory of quadratic forms a fundamental result due to Springer was

given in 1952. Let k be a field with chark 6= 2, Springer proved that if a quadratic

form q over k acquires an isotropy in odd degree extension of k then q has an isotropy

over k. Springer’s theorem has been generalized in various way, similar problems

have been posed for hermitian forms over finite dimensional central simple algebra

over k with involutions. The weak version of Springer’s theorem for hermitian forms

was proved by Bayer-Fluckiger and Lenstra [3]. The strong version of Springer’s

theorem for hermitian forms is still an open question. We will see an example of

anisotropic hermitian form over central division algebra with involution of type of

second kind(unitary involution) which becomes isotropic over an odd degree extension.

ix



x



Contents

Notation vii

Abstract ix

1 Quadratic and Bilinear Forms 1

1.1 Bilinear forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Structure theorem on Bilinear forms . . . . . . . . . . . . . . . . . . . . 2

1.3 Introduction to Quadratic forms and matrices . . . . . . . . . . . . . . 5

1.3.1 Properties of Quadratic Forms . . . . . . . . . . . . . . . . . . . 7

1.4 Diagonalization of Quadratic forms . . . . . . . . . . . . . . . . . . . . 8

1.5 Orthogonal Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Quadratic forms over Field extensions and Springer’s Theorem 13

2.1 Isotropy and Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Hyperbolic Plane and Hyperbolic Spaces . . . . . . . . . . . . . . . . . 14

2.3 Witt’s Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Springer’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Central Simple Algebras and Involutions 19

3.1 Central Simple Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Quaternion Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Involutions on Algebras and their classifications . . . . . . . . . . . . . 22

4 Hermitian Analogue of Springer’s Theorem 27

4.1 Hermitian Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Witt groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Morita equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Exact sequence of Witt groups . . . . . . . . . . . . . . . . . . . 32

4.3 Hermitian Analogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xi



4.4 General aspects of hermitian analogue . . . . . . . . . . . . . . . . . . 40

xii



Chapter 1

Quadratic and Bilinear Forms

The study of bilinear forms was arised due to classification of matrices over a field

k. The classification of alternating and symmetric matrices can be parametrized by

bilinear forms. If A and B are matrices then they are congruent if A = P TBP for some

invertible matrix P . To study the congruence class of matrices and diagonalization can

be reduced to bilinear forms. The study of quadratic forms arose from the investigation

of homogeneous polynomial of degree 2. We will use a coordinate free approach to

study these forms. In this chapter we are assuming that chark 6= 2.

1.1 Bilinear forms

Definition Let V be a finite dimensional vector space over a field k. A bilinear form

on V is a map b : V × V → k satisfying for all v, v′, w, w′ ∈ V and c ∈ k,

b(v + v′, w) = b(v, w) + b(v′, w);

b(v, w + w′) = b(v, w) + b(v, w′);

b(cv, w) = cb(v, w) = b(v, cw).

The bilinear form is called symmetric if b(v, w) = b(w, v) for all v, w ∈ V and is

called alternating if b(v, v) = 0 for all v ∈ V . If b is an alternating form, expanding

b(v+w, v+w) shows that b is skew symmetric, i.e. b(v, w) = −b(w, v) for all v, w ∈ V .

We define the dimension of the bilinear form to be the integer dim(V ). We write

it as dim(b). We say that b is a bilinear form over k if b is a bilinear form on a finite

dimensional vector space over k and the vector space which supports b is denoted by Vb.
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Definition Let V ∗ := Homk(V, k) denote the dual space of V . A bilinear form b

on V is called nondegenerate if l : V → V ∗ defined by v 7→ lv : w 7→ b(v, w) is an

isomorphism.

Let b be a bilinear form on V and {v1, v2, v3, · · · , vn} be a basis for V . Then b

is determined by the matrix (b(vi, vj)) and the form is nondegenerate if and only if

(b(vi, vj)) is invertible. Conversely any matrix B in the n × n matrix ring Mn(k)

determines a bilinear form on V .

Definition An isometry f between two bilinear forms bi, i = 1,2, is a linear isomor-

phism

f : Vb1 → Vb2

such that

b1(v, w) = b2(f(v), f(w)) for all v, w ∈ Vb1 .

If such an isometry exists, we write b1 ' b2 and say that b1 and b2 are isometric.

1.2 Structure theorem on Bilinear forms

Let b be a symmetric or alternating bilinear form on V . We say v, w ∈ V are orthogonal

if b(v, w) = 0. Let W,U ⊂ V be subspaces. Define the orthogonal complement of W

by

W⊥ := {v ∈ V | b(v, w) = 0 for all w ∈ W}.

This is a subspace of V . We say W is orthogonal to U if W ⊆ U⊥, equivalently

U ⊆ W⊥. If V = W ⊕ U is a direct sum of subspaces with W ⊆ U⊥, we write

b = b |W ⊥b |U and say b is the (internal) orthogonal sum of b |W and b |U .

Definition The subspace V ⊥ is called the radical of b and denoted by rad b. The

orthogonal complement of V itself is called ”radical” of (V, b) and is denoted by radV

= V ⊥.

The form b is nondegenerate if and only if rad b = 0.

If K/k is a field extension, let VK := K ⊗k V , a vector space over K. We have
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the standard embedding V → VK by v 7→ 1⊗ v. Let bK denote the extension of b to

VK , so bK (a ⊗ v, c ⊗ w) = acb(v, w) for all a, c ∈ K and v, w ∈ V . The form bK is

of the same type as b. Moreover, radbK = (radb)K , hence b is nondegenerate if and

only if bK is nondegenerate.

Let q be a quadratic form on V . We say that q is totally singular if its polar

form bq is zero. If chark 6= 2, then q is totally singular if and only if q is the zero

quadratic form. If chark = 2 this may not be true. Define the quadratic radical of q

by

rad(q) := {v ∈ radb(q) | q(v) = 0}.

This is a subspace of rad(bq). We say that q is regular if rad(q) = 0. If chark 6= 2,

then rad(q) = rad(bq). In particular, q is regular if and only if its polar form is non-

degenerate. If chark = 2, this may not be true.

By above definition we have a result that every anisotropic quadratic form is regular.

So we can conclude that the bilinear space (V, b) is regular. ⇔ rad V = 0.

Proposition 1.1. Let b be a symmetric or alternating bilinear form on V . Let W be

a subspace such that b |W is nondegenerate. Then b = b |W ⊥b |W⊥. In particular, if

b is also nondegenerate, then so is b |W⊥.

For proof see [4] (chapter 1).

Corollary 1.1. Let b be a symmetric bilinear form on V . Then

b = b |rad(b) ⊥b |V1 ⊥ · · ·⊥b |Vn ⊥b |W

with Vi a 1-dimensional subspace of V and b |Vi non-degenerate for all i ∈ [1, n] and

b |W a nondegenerate alternating subform on a subspace W of V .

If chark 6= 2, then, in the corollary 1.1, b |W is symmetric and alternating hence

W = {0}. In particular, every symmetric bilinear form b has an orthogonal basis, i.e.,

a basis {v1, ..., vn} for Vb satisfying b(vi, vj) = 0 if i 6= j. The form is non-degenerate

if and only if b(vi, vi) 6= 0 for all i.

Let a ∈ k. Denote the bilinear form on k given by b(v, w) = avw for all v, w ∈ k by

〈a〉b or simply 〈a〉. In particular, 〈a〉 ' 〈b〉 if and only if a = b = 0 or ak∗2 = bk∗2 in

k∗/k∗2. Denote
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〈a1〉 ⊥ 〈a2〉 · · · ⊥ 〈an〉 by 〈a1, a2, · · · , an〉b or simply by 〈a1, a2, · · · , an〉.

We call such a form a diagonal form. A symmetric bilinear form b isometric to a

diagonal form is called diagonalizable. Consequently, b is diagonalizable if and only if

b has an orthogonal basis. Note that det 〈a1, a2, · · · , an〉 = a1a2.....an k
∗2 if ai ∈ k∗

for all i. From corollary 1.1 we conclude that every bilinear form b on V satisfies

b ' r〈0〉 ⊥ 〈a1, a2, · · · , an〉 ⊥ b′

with r = dim(radb) and b′ an alternating form and ai ∈ k∗ for all i. In particular, if

chark 6= 2, then every symmetric bilinear form is diagonalizable.

Definition Let b be a bilinear form on V over k. Let

D(b) := {b(v, v) | v ∈ V with b(v, v) 6= 0},

the set on non-zero values of b and

G(b) := {a ∈ k∗ | ab ' b },

a group called the group of similarity factors of b. Also set

D(b) := D(b) ∪ {0}.

We say that elements in D(b) are represented by b.

Proposition 1.2. Let b be a symmetric bilinear form. If D(b) 6= φ, then b is diago-

nalizable. In particular, a non-zero symmetric bilinear form is diagonalizable if and

only if it is not alternating.

Corollary 1.2. Let b be a symmetric bilinear form over k. Then b⊥〈1〉 is diagonal-

izable.

Corollary 1.3. Every anisotropic bilinear form is diagonalizable.

For details of above results see [4] (chapter 1).
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1.3 Introduction to Quadratic forms and matrices

An quadratic form over a field k is a polynomial f in n variables over k that is

homogeneous of degree 2.

f(x1, x2, · · · , xn) =
∑n

i,j=1 ai,jXiXj ∈ k[X1, · · · , Xn] = k[X].

for making the coefficients symmetric, we rewrite f as

f(X) =
∑n

i,j=1
1
2
(aij + aji)XiXj

denote a
′
ij = 1

2
(aij + aji), in this way f determines uniquely a symmetric matrix (a

′
ij

which we shall denote by Mf . So in terms of matrix notations

f(X) = X tMfX

where X is viewed as a column vector.

f and g are equivalent n-ary quadratic forms if (f ∼= g) f(x) = g(cx) for some

c ∈ GLn(k). Since

g(cx) = (cx)tMg(cx)

= xtctMgcx

= xt(ctMgc)x

= f(x) = xtMfx.

so Mf = ctMgc.

Example 1.1. Let g(x1, x2) = x1x2 and f(x1, x2) = x21 − x22. clearly both quadratic

forms are equivalent via mapping x1 7→ x1 + x2 and x2 7→ x1 − x2.

Any quadratic form gives rise to a map qf : kn 7→ k, defined by qf (x) = xtMfx ∈ k
called quadratic map defined by q.

In terms of quadratic maps the notion of equivalance of forms f and g amounts to the

existance of a linear automorphism C of kn such that qf (x) = qg(cx) for every column

tuple x.

Quadratic map qf determines uniquely the quadratic form f . If qf = qg as maps from

kn to k then Mf = Mg.
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Definition Let V be a finite dimensional vector space over k. A quadratic form on

V is a map q : V → k satisfying:

1. q(av) = a2q(v) for all v ∈ V and a ∈ k.

2. (Polar Identity) bq : V × V → k defined by

bq(v, w) = q(v+w)−q(v)−q(w)
2

is a symmetric bilinear form.

The bilinear form bq is called the polar form of q. We call dim(V ) the dimension

of the quadratic form and also write it as dim q. We write q is a quadratic form over

k if q is a quadratic form on a finite dimensional vector space over k and denote the

underlying space by Vq.

Let qb : V → k be defined by qb(v) = b(v, v) for all v ∈ V . Then qb is a quadratic

form and its polar form bqb is b+ bt. We call qb the associated quadratic form of b.

Let q1 and q2 be two quadratic forms. An isometry f is a linear map f : Vq1 → Vq2

such that q1(v) = q2(f(v)) for all v ∈ Vq1 . If such an isometry exists, we write q1 ' q2

and say that q1 and q2 are isometric.

Example 1.2. Let q1 = x1x2 and q2 = x21−x22 be two quadratic forms over R2. Then

q1 and q2 are isometric via the map f : R→ R with f(u, v) = ( (u
2+v2)
2

, (u
2−v2)
2

).

Notation

1. Let a ∈ k. The quadratic form on k given by q(v) = av2 for all v ∈ k will be

denoted by 〈a〉q or simply 〈a〉.

2. Let a, b ∈ k. The 2-dimensional quadratic form on k2 given by q(x, y) = ax2 +

xy+by2 will be denoted by [a, b]. The corresponding matrix for q in the standard

basis is

A =

(
a 1

0 b

)
6



while the corresponding matrix for bq is

B =

(
2a 1

1 2b

)

= A + At.

1.3.1 Properties of Quadratic Forms

These are some basic properties of quadratic forms

1. qf (ax) = a2qf (x).

2. ’Polarization’ of qf is

bf (x, y) =
(qf (x+y)−qf (x)−qf (y))

2

thus

=
((x+y)tMf (x+y)−xtMfx−ytMfy)

2

=
(xtMfy+y

tMfx)

2

= xtMfy.

so clearly bf (x, y) is a symmetric bilinear form.

Depolarization of bf (x, y) is qf (x) = bf (x, x) ∀ x ∈ kn.

Let V is any finite dimensional vector space over k and b is a symmetric bilinear

mapping b : V × V → k. Then we call (V, b) or (V, q) is a “quadratic space” and

associated quadratic map is q(x) = qf (x) = bf (x, x) ∀ x ∈ kn.

Quadratic spaces (V, b) determines equivalance class of quadratic forms qf .

7



Theorem 1.1. The following statements are equivalent

1. M is a non singular matrix.

2. x 7→ b(, x) defines an isomorphism V → V ∗, where V ∗ denotes the dual space of

V .

3. For x ∈ V , b(x, y) = 0 ∀ y ∈ V implies x = 0.

Let S is subspace of V then (S, b |(S×S)) is also a quadratic space. Orthogonal

complement of S is defined by

S⊥ = {x ∈ V | B(x, S) = 0}.

Theorem 1.2. Let (V, b) is a regular quadratic space and S is a subspace of V . Then

following holds

1. dim(S) + dim(S⊥) = dim(V ).

2. (S⊥)⊥ = S.

Proof Let q : V → V ∗ be the linear isomorphism defined in theorem 1.1. Then S⊥

is precisely the subspace of V annihilated by the functionals in q(S).

By the usual duality theory in linear algebra, we have

dim(S⊥) = dim(V ∗)− dim(q(S))

= dim(V )− dim(S),

Since q is an isomorphism. This establishes (1).

Applying this twice we get

dim((S⊥)⊥) = dim(V )− (dim(V )− dim(S)) = dim(S)

Since (S⊥)⊥ ⊇ S, from this (2) follows.

1.4 Diagonalization of Quadratic forms

Definition Let q is a quadratic form over k and d ∈ k∗. Then we say that q

represents d if there exists x1, x2, x3, · · · , xn ∈ k such that q(x1, x2, · · · , xn) = d.

We shall write D(q) = Dk(q) to denote the set of values in k∗ represented

by q. If (V, q) is a quadratic space then

D(q) = {d ∈ k∗ | ∃v ∈ V such that qb(v) = d}.

8



If a, d ∈ k∗ then clearly d ∈ D(q)⇔ a2d ∈ D(q). So D(q) consists of a union of cosets

of k∗ modulo k∗2.

we shall call k∗/k∗2 the group of square classes of k. D(q) is a subset of group of

square classes of k and it is closed under inverse as (d−1) = (d−1)2d ∈ D(q).

In general D(q) is not a subgroup of k∗. D(q) may not contain 1 , even if it contains

then it may fail to be closed under multiplication.

Example 1.3. Consider the quadratic form q = x2 + y2 + z2 over Q. Here D(q)

consists of (non-zero) rational numbers which are sum of three squares of rational

numbers. Clearly 1,2,1/2,14 ∈ D(q), but 1/2 × 14 = 7 /∈ D(q).

Hence in view of this example D(q) may not be a subgroup of k∗.

If D(q) is a subgroup of k∗ then we say q is a group form over k.

1.5 Orthogonal Sums

If (V1, b1) , (V2, b2) are quadratic spaces, we may form (V, b) where V = V1 ⊕ V2 and

b is the pairing V × V → k, given by

b((x1, x2), (y1, y2)) = b1(x1, y1) + b2(x2, y2).

clearly b is symmetric and bilinear so (V, b) is a new quadratic space.

We have b(V1, V2) = 0 and b |(Vi×Vi)= bi for i = 1,2. So (V, b) is denoted by V1⊥V2.

Example 1.4. Let q1 = x2 + 2y2 and q2 = 5xy − z2 are two quadratic forms. Then

the orthogonal sum of these will be q1⊥q2 = u2 + 2v2 + 5xy − z2.

Notation Isometry class of the 1-dimensional space corresponding to the

quadratic form dx2 is denoted by 〈d〉.

Corollary 1.4. Let (V, b) is a quadratic space and q is quadratic form associated to

b. For d ∈ k∗, d ∈ D(V ) or D(q) if and only if there exists another quadratic space

(V ′, b′) together with an isometry V ' 〈d〉⊥V ′.

9



Proof If we have V ' 〈d〉⊥V ′, then d ∈ D(〈d〉⊥V ′) = D(V ). Conversely, suppose

that d ∈ D(V ), so there exists v ∈ V with q(v) = d (where q = qb). We first

make a reduction to the case where V is regular. Take any subspace W such that

V = radV ⊕W = radV⊥W . We have D(V ) = D(W ) and W is clearly regular. We

may thus assume that V itself is regular. The quadratic subspace q.v is isometric to

〈d〉 and (q.v) ∩ (q.v)⊥ = 0.

Since

dim(q.v) + dim(q.v)⊥ = dimV

By theorem 1.2, we conclude that V ' 〈d〉⊥V ′.

Lemma 1.1. If (V, b) is any quadratic space over k then there exists scalars d1, d2, d3, · · · , dn ∈
k such that V ' 〈d1〉⊥〈d2〉⊥ · · · ⊥〈dn〉.

Theorem 1.3. If (V, b) is a quadratic space and S is a regular subspace then

1. V = S⊥S⊥.

2. If T is a subspace of V such that V = S⊥T then T = S⊥.

for further details see [7] (chapter 1)

Corollary 1.5. Let (V, b) be a regular quadratic space then a subspace S is regular if

and only if there exists T ⊆ V such that V = S⊥T .

Definition Determinant of a nonsingular quadratic form q is defined by d(q) =

det.(Mq) (k∗)2. Where Mq is the matrix associated to the quadratic space (V, q).

If q1 ' q2 then d(q1) = d(q2) and d(q1⊥q2) = d(q1)d(q2) ∈ k∗/(k∗)2. Let (V, b) is

a regular quadratic space to the equivalance class of q. if V ' 〈d1, d2, · · · , dn〉 is a

diagonalization of V then d(q) = d1d2d3 · · · dn(k∗)2 = d(V ). Note that determinant is

an invariant of the isometry class of a nondegenerate bilinear form.

Definition Let k be an ordered field. A quadratic space (V, q) is called positive

definite if q(x) > 0 for all x 6= 0. It is called negative definite if q(x) < 0 for all x 6= 0.

Theorem 1.4. (Inertia theorem of Jacobi and Sylvester)

Let (V, q) be a quadratic space over an ordered field. Then there exists V = V + ⊥ V −

where (V +, qV +) is positive and (V −, qV −) is negative definite. The dimensions of V +

and V − are independent of the chosen orthogonal decomposition.
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Definition Let P be an ordering of k and q a quadratic space over k. We define

signP (q) := dim(V +)− dim(V −). This invariant is called the signature of q.

Let q
′

be a sub-form of a quadratic form q. The restriction of q on (Vq′ )
⊥

(with respect to the polar form bq) is denoted by q
′⊥ and is called the complementary

form of q
′
in q. If Vq = W ⊕U is a direct sum of vector spaces with W ⊂ U⊥, we write

q = q |W ⊥ q |U and call it an internal orthogonal sum. So q(w + u) = q(w) + q(u)

for all w ∈ W and u ∈ U . Note that q |U is a sub-form of (q |W )⊥.

11
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Chapter 2

Quadratic forms over Field

extensions and Springer’s Theorem

A basic result in Artin-Schreier theory is that an ordering on a formally real field

extends to an ordering on a finite algebraic extension of odd degree, equivalently if the

bilinear form n〈1〉 is anisotropic over k for any integer n, it remains so over any finite

extension of odd degree. Witt conjectured that any anisotropic symmetric bilinear

form remains anisotropic under a odd degree extension (if chark 6= 2). This was first

shown to be true by Springer in 1952. This is in fact true without a characteristic

assumption for both quadratic and symmetric bilinear forms. In this chapter we

will generalize the notion of quadratic forms in field extensions and prove Springer’s

theorem for quadratic forms.

2.1 Isotropy and Anisotropy

Definition Let v be a nonzero vector in a quadratic space (V, b). We say that v is an

isotropic vector if b(v, v) = 0. (or equivalently q(v) = 0) and say that v is anisotropic

otherwise. A quadratic form (or quadratic space) is called universal if it represents

all the nonzero elements of k.

Definition The quadratic space (V, b) is said to be isotropic if it contains a (non-

zero) isotropic vector and is said to be anisotropic otherwise (anisotropic spaces are

necessarily regular). We say (V, b) is totally isotropic if all nonzero vectors in V are

isotropic (i.e. b = 0).

13



Example 2.1. Let q1 = x1
2− x22 be a quadratic form on R2 over R. Clearly q1 is an

isotropic form because (x1, x2) = (1, 1) ∈ R2 is an isotropic vector.

Theorem 2.1. Let (V, q) be a 2-dimensional quadratic space then following are equiv-

alent

1. V is regular and isotropic space.

2. V is regular space with d(V ) = -1.k∗2.

3. V is isometric to 〈1,−1〉.

4. V corresponds to the equivalence class of the binary quadratic form x1x2.

For further details see [7].

2.2 Hyperbolic Plane and Hyperbolic Spaces

The isometry class of 2-dimensional quadratic space as in theorem 2.1 are called hy-

perbolic planes and are denoted by H, an orthogonal sum of H will be called hyperbolic

space.

Theorem 2.2. If (V, b) is a regular quadratic space then

1. Every totally isotropic subspace U ⊆ V of positive dimension r is contained in a

hyperbolic subspace T ⊆ V of dimension 2r.

2. V is isotropic iff V contains a hyperbolic plane.

3. V is isotropic ⇒ V is universal.

For proof see [7].

Corollary 2.1. Let q be a regular quadratic form and d ∈ k∗. Then d ∈ D(q) iff

q⊥〈−d〉 is isotropic.

Corollary 2.2. Let q1, q2 be regular forms of positive dimensions then q = q1⊥q2 is

isotropic iff D(q1)
⋂
−D(q2) 6= φ.

Corollary 2.3. For positive integer r following statements are equivalent

14



1. Any regular quadratic form of dimension r over field k is universal.

2. Any quadratic form of dimension r + 1 over field k is isotropic.

for details see [7] (chapter 1).

Remark 2.1. Let q be a quadratic form on V over k. Then the associated polar

form bq is not the zero form if and only if there are two vectors v, w in V satisfying

b(v, w) = 1. In particular, if q is a non-zero binary form, then q ' [a, b] for some

a, b ∈ k.

Let q be a quadratic form on V over k. If q = qb for some symmetric bilinear form

b, then q is isotropic if and only if b is. In addition, if chark 6= 2, then q is isotropic

if and only if its polar form bq is. However, if chark = 2, then every 0 6= v ∈ V is an

isotropic vector for bq.

Definition If (V, b) is a bilinear space over k, define (V, b)K by

(V, b)K = (V ⊗k K, bK)

bK(x⊗ α, y ⊗ β) = αb(x, y)β ; x, y ∈ V, α, β ∈ K.

2.3 Witt’s Theorems

Theorem 2.3. (Witt’s cancellation theorem) If q, q1, q2 are arbitrary quadratic forms

then q⊥q1 ' q⊥q2 ⇒ q1 ' q2.

Proof Let q⊥q1 ' q⊥q2,
Step(1) Cancellation holds if q is totally isotropic and q1 is regular. In fact, let M1,

M2 be the symmetric matrices associated with q1 and q2. The hypothesis implies that

α =

(
0 0

0 M1

)

is congruent to

β =

(
0 0

0 M2

)
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so there exists an invertible matrix

E =

(
A B

C D

)

such that α = EtβE (
0 0

0 M1

)
=

(
A C

B D

)(
0 0

0 M2

)(
A B

C D

)

=

(
∗ ∗
∗ DtM2D

)
In particular, M1 = DtM2D. Since M1 is non singular, so is D and hence M1 and

M2 are congruent. This gives q1 ' q2.

Step(2) Cancellation holds if q is totally isotropic. To see this, diagonalize q1, q2

and assume that q1 has exactly r zero coefficient in the diagonalization, while q2 has

exactly r zero or more. Rewriting the hypothesis, we have

q ⊥ r 〈0〉 ⊥ q′1 ' q ⊥ r 〈0〉 ⊥ q′2

since q′1 is regular, step(1) implies that q′1 ' q′2. By tagging on r terms of 〈0〉. We

conclude that q1 ' q2.

Step(3) (General case) Let 〈a1, a2, · · · , an〉 be a diagonalization of q. Inducting on

n, we are reduced to the case n = 1. The case a1 = 0 has been handled in step(2), so

we assume that q = 〈a1〉, a1 6= 0. The hypothesis now reads 〈a1〉⊥q1 ' 〈a1〉⊥q2. The

cancellation theorem is clearly equivalent to the following result.

Theorem 2.4. Witt’s decomposition theorem Any quadratic space (V, q) splits into

an orthogonal sum

(Vt, qt) ⊥ (Vh, qh) ⊥ (Va, qa)

where Vt is totally isotropic, Vh is hyperbolic (or zero), Va is anisotropic (“ Witt de-

composition”). Furthermore, the isometry types of Vt, Vh, Va are uniquely determined.
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Proof For existance take any subspace V0 such that

V = rad(V )⊕ V0 = rad(V ) ⊥V0.

Then Vt = rad(V ) is totally isotropic, and V0 is regular. If V0 is isotropic, we may

write V0 = V1 ⊥ H1 by theorem 2.2 where H1 ' H. If V1 is again isotropic, we may

further write V0 = H2 ⊥ V 2, where H2 ' H. After a finite number of steps, we achieve

a decomposition

V0 = (H1 ⊥ H2 ⊥ · · ·⊥ Hr) ⊥ Va (r ≥ 0).

where H1 ⊥ H2 ⊥ · · ·⊥ Hr = Vh is hyperbolic (or zero), and Va is anisotropic.

This proves the existence part.

To deduce the uniqueness part, suppose V has another “Witt decomposition” V =

(Vt)
′ ⊥ (Vh)

′ ⊥ (Va)
′. Since (Vt)

′ is totally isotropic and (Vh)
′ ⊥ (Va)

′ is regular, we

have

rad(V ) = rad((Vt)
′) ⊥ rad((Vh)

′ ⊥ (Va)
′) = (Vt)

′.

so (Vt)
′ = Vt. By the cancellation theorem we have now Vh ⊥ Va ' (Vh)

′ ⊥ (Va)
′.

Write Vh ' m. H (orthogonal sum of m copies of H) and (Vh)
′ ' m′ H. By cancelling

H one a time, we conclude that m = m′ since Va, (Va)
′ are both anisotropic. After all

m hyperbolic have been cancelled, we arrive at Va ' (Va)
′. This completes the proof.

2.4 Springer’s Theorem

Theorem 2.5. Let k ⊆ K be an extension of odd degree. If an quadratic form q over

k is anisotropic over k, then qK is anisotropic over K.

Proof Suppose K/k is a counter example with n = [K : k] minimal. Clearly n>1,

and K = k(x) for some x. Let p(t) ∈ k[t] be the minimal polynomial of x over k.

Since qK is isotropic, there is an equation

q(g1(t), g2(t), g3(t), · · · , gd(t)) = p(t)h(t) ∈ k[t].

where d = dim(q) ; m = maxj {deg gj } 6 n − 1; and the gj’s are not all zero. We

may assume that no irreducible polynomial f(t) divides all gj (for otherwise f 2|h and

we could have cancelled out f 2 from above equation). This condition means that Σj
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k[t].gj(t) = k[t], so in particular, the gj’s, can’t have a common zero in the algebraic

closure k of k. Since q itself is anisotropic. The L.H.S. of above equation has degree

2m ≤ 2n − 2. So h(t) has odd degree 6 n − 2. Now we pick any root y in closure

of k of an irreducible odd degree factor of h in k[t]. Plugging y into that equation

we see that (g1(y), g2(y) · · · gd(y)) is an anisotropic vector for qk(y). But by choice,

[k(y) : k] is odd and 6 n− 2, which contradicts the minimal choice of n. Hence qK is

anisotropic over K.

There many ways to prove Springer’s theorem but the given proof can be refer to

[4].

Corollary 2.4. Let K/k be as in theorem 2.5 and let a ∈ k∗ for any quadratic form

qo over k, qo represents a over k if and only if qo represents a over K.

Lemma 2.1. Let b be an anisotropic bilinear form over k . If K/k is purely tran-

scendental, then bK is anisotropic.

Proof First suppose that K = k(t), the field of rational functions over k in the

variable t. Suppose that bk(t) is isotropic. Then there exist a vector 0 6= v ∈ Vbk(t)
such that bk(t)(v, v) = 0. Multiplying by an appropriate non-zero polynomial, we may

assume that v ∈ k[t] ⊗kV . Write v = v0 + t ⊗ v1 + · · ·+tn ⊗ vn, with v1 , · · · ,vn
∈ V and vn 6= 0. As the t2n coefficient b(vn, vn) of b(v, v) must vanish but vn is an

isotropic vector of b, a contradiction.

If K/k is finitely generated, then the result follows by induction on the transcendence

degree of K over k. In the general case, if bK is isotropic there exists a finitely gener-

ated purely transcendental extension K0 of k in K with bK0 isotropic, a contradiction.

Therefore lemma is proved.

Example 2.2. The Field Extension Q(i) over Q which has an even degree 2. The

basis of Q(i) over Q is (1,i). Consider the quadratic form f(x, y) = x2 + y2. As there

is no non-zero solution of f(x, y) over Q so f(x, y) is anisotropic over Q. Clearly

f(x, y) is isotropic over Q(i) because if we take elements (non-zero) x = 1, y = i in

Q(i), then f(x, y) = 0.

This shows that Springer Theorem is not true for even degree extensions.
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Chapter 3

Central Simple Algebras and

Involutions

The foundations of the theory of central simple algebras go back to the great alge-

braists of the dawn of the twentieth century, we merely mention here the names of

Wedderburn, Dickson and Emmy Noether. We may characterize central simple alge-

bras as those nite dimensional algebras which become isomorphic to some full matrix

ring over a nite extension of the base eld. It will be shown in this chapter that the

classification of in- volutions on simple algebras is almost identical with the classifica-

tion of hermitian forms over division algebras. There are many interesting connections

between the theory of quadratic and hermitian forms on the one hand and the theory

of simple algebras and involutions on the other. After having some basic knowledge

about central simple algebras and involutions on it, we will use these results in next

chapter.

3.1 Central Simple Algebras

Definition A finite dimensional algebra over a field k is a k- vector space equipped

with a not necessarily commutative but associative k- linear multiplication.

Definition A finite dimensional algebra A over a field k is called division algebra if

each non-zero element of A has a two-sided multiplicative inverse.

Definition Centre Z(A) of a k-algebra A is the k-subalgebra consisting of elements

x ∈ A satisfying xy = yx for all y ∈ A. A k-algebra A is called simple if it has no
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two-sided ideal other than 0 and A. A is central if centre equals k.

If an algebra is Simple as well as Central, then it is called Central Simple algebra.

Note that if A is a division algebra then Z(A) is a field.

Example 3.1. The field of complex numbers C is a central simple algebra over R.

Example 3.2. The algebra Mn(D) is a central simple algebra over D where D is any

division algebra.

Definition Let R be a ring. An R-module M 6= 0 is called simple if it has no

submodules other than 0 and M . The ring R is called simple if it has no two-sided

ideals other than 0 and R.

Lemma 3.1. (Schur’s lemma) If M is a simple R-module, the endomorphism ring

A = EndR(M) is a skew field.

If A is a k-algebra and α is an invertible element of A, then x 7→ αxα−1 is an

automorphism of A. Automorphisms of this kind are called inner automorphisms.

Theorem 3.1. (Skolem, Noether) Let A be a central simple algebra over k and B a

simple k -algebra. Let σ, τ : B → A be two algebra homomorphisms. Then there exists

an inner automorphism ϕ of A such that τ = ϕσ .

for proof and further details see [8].

Corollary 3.1. If B is a simple subalgebra of the central simple algebra A, then

dim(A) is a multiple of dim(B).

Corollary 3.2. If A is a central simple algebra over k, then dimk(A) is a square.

If A is a central division algebra D of dimension d2, then the maximal commutative

subfields of D are exactly d-dimensional. They coincide with their centralizers.

Corollary 3.3. If A is a central simple algebra over k and K/k a field extension then

AK is a central simple algebra over K.

Definition If A is a central simple algebra over k, every extension field K of k such

that AK splits is called a splitting field of A.

Theorem 3.2. Let A be a central simple algebra over k and K a field extension of

k contained in A. If B denotes the centralizer of K, then AK ∼ B. In particular, if

A is a skew field and K a maximal commutative subfield of A, then K is a splitting

field.
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Theorem 3.3. Let D be a division algebra with center k. Then there is a maximal

commutative sub field which is separable over k. Every central simple algebra has

a separable splitting field. Every central simple algebra over a separably closed field

splits.

Let A be an n2-dimensional central simple algebra over k. Let K be an arbitrary

splitting field and choose an isomorphism i : AK = A⊗k K ∼= M(n,K). We consider

A to be contained in AK . For every matrix a ∈ M(n,K) we have the characteristic

polynomial

χ(X, a) = χK(X, a) = det(XI − a) ∈ K[X]

χ(X, a) = Xn + αn−1X
n−1 + · · ·+ α0.

Definition Let A be a central simple algebra over k. For every a ∈ A the polynomial

χ(X, a) ∈ k[X] is called the characteristic polynomial of a. The coefficient (−1)nα0

is called the reduced norm of a and −αn−1 is called the reduced trace. We will use the

notations n(a) and S(a) for the reduced norm and trace, respectively.

Lemma 3.2. If a ∈ A, then χ(X, a) is independent of the choice of the splitting field

and has coefficients in k.

3.2 Quaternion Algebras

Definition For any two elements a, b ∈ k×, we define the quaternion algebra (a, b)

as the 4-dimensional k-algebra with basis {1, i, j, ij}, multiplication being determined

by

i2 = a, j2 = b, ij = −ji.

Example 3.3. For a = −1 and b = −1. The algebra (−1,−1) is a algebra of

quaternions over R with basis {1, i, j, ij} and multiplication is determined by i2 = −1,

j2 = −1, ij = −ji.

Definition The associated conic C(a, b) of a quaternion algebra (a, b) is the projec-

tive plane curve defined by the homogeneous equation

ax2 + by2 = z2
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where x, y, z are the homogeneous coordinates in the projective plane P2.

Definition A quaternion algebra over k is called split if it is isomorphic to matrix

algebra M2(k) as a k-algebra.

Lemma 3.3. For a quaternion algebra (a, b) the following statements are equivalent

1. The algebra (a, b) is split.

2. The algebra (a, b) is not a division algebra.

3. The norm map n : (a, b)→ k has a non-trivial zero.

4. The element b is a norm from the field extension k(
√
a) | k.

The proof of above lemma is given in [9] (chapter 1). Let k be the finite

field with q elements where q is odd. Then any quaternion algebra (a, b) over k is

split.

Lemma 3.4. Let (a, b) be a quaternion algebra over k. Then (a, b) is split over k if

and only if (a, b) ⊗k k(t) is split over k(t). where k(t) is field of rational functions

over k.

A k-algebra which is isomorphic to a tensor product of two quaternion

algebra over k is called biquaternion algebra.

3.3 Involutions on Algebras and their classifica-

tions

Definition Let R be a ring. A map ∗ : R→ R is called an involution if (x+ y)∗ =

x∗ + y∗, (xy)∗ = y∗x∗, x∗∗ = x for all x, y ∈ R. The pair (R, ∗) is called a ring with

involution.

Definition Let A be an algebra over a field k, then

σ : A→ A

is called involution on A if

• σ(α + β) = σ(α) + σ(β)
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• σ(αβ) = σ(β)σ(α)

• σ2 = id ∀ α, β ∈ A.

Example 3.4. Mn(R) is an algebra over R. Then the map

σ : Mn(R)→Mn(R)

given by σ(A) = AT is an involution on Mn(R). Let k be a field of char 6= 2 and let

ks be a separable closure of k. All algebras considered in this section are assumed to

be finite dimensional over k, and all modules are supposed to be of finite type. Let

K be an extension of k, with [K : k] ≤ 2.

Let A be a central simple algebra over K, and let σ : A→ A be a k-linear involution.

Suppose that k is the fixed field of σ in K. Then σ is said to be of the first kind if

K = k, of the second kind if [K : k] = 2. We say that σ is a K/k-involution. Set

Aks = A⊗ ks. Then Aks ' Endks(V ), for some ks vector space V . If σ is of the first

kind, then the extension σks of σ to k is given by conjugation with a symmetric or

an alternating form on V . We say that σ is of orthogonal type in the first case and of

symplectic type in the second.

An involution of the second kind is also called a unitary involution.

Remark 3.1. If A is a k-algebra one does not require the involution to be k-linear.

However, it is obvious that any involution σ maps the center Z(A) onto itself. Since

σ|Z(A) is an automorphism of order at most 2 it maps every sub field of center Z(A)

onto itself. Therefore σ(k) = k. We now distinguish two possibilities

1. σ|k is the identity, that is σ is k-linear. In this case σ is said to be of the first

kind.

2. σ|k is not the identity, that is σ|k is a non-trivial automorphism σ of k. In

this case σ is σ-semilinear, that is σ(λx) = (λ)σ(x) for all x ∈ A, λ ∈ k. The

involution is said to be of the second kind. If K denotes the fixed field of σ, we

get the separable quadratic extension K/k.

Definition Let A is an k- algebra and σ is an involution on A. We define the maps

tr : A→ A by tr(x) = x+ σ(x) for x ∈ A
n : A→ A by n(x) = xσ(x) for x ∈ A.

then σ is called standard involution if the following conditions hold
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1. k is fixed under σ, i.e. fix(σ) ⊃ k.

2. tr(x) ∈ k and σ(x) ∈ k for every x ∈ A.

Let A be a quaternion algebra over the field k. Then the conjugation

involution is the only linear map σ : A→ A such that σ(1) = 1 and σ(x)x ∈ k for all

x ∈ A.

Example 3.5. If A = Mn(R), then the transpose map is an anti-automorphism which

is standard if and only if n = 1, the adjoint map is a standard involution for n = 2

but is not R-linear for n = 3.

Lemma 3.5. If (a, b) is a quaternion algebra over field k and n(x) is the norm of x

then n(x.y) = n(x).n(y) for all x, y ∈ (a, b).

Theorem 3.4. Let A be a central simple algebra of dimension n2 over k and σ an

involution. Then

1. If char(k) 6= 2 then A = A+ ⊕ A−.

2. If σ is of the second kind, then dimk(A
+) = dimk(A

−) = n2.

3. If σ is of the first kind, then either dimk(A
+) = (1/2)n(n+1) or = (1/2)n(n−1).

If char(k) = 2 one has always dimk(A
+) = (1/2)n(n+ 1).

Definition Let σ be an involution of the first kind on a central simple algebra A of

dimension n2. This involution is called of orthogonal type if dim(A+) = (1/2)n(n+1)

and symplectic type if dimk(A
+) = (1/2)n(n− 1). (Hence in characteristic 2 only the

orthogonal type occurs.) Involutions of the second kind are called unitary.

The theory of classification of involutions is well explained in [8] (chapter 8).

Theorem 3.5. Let A be a central simple k-algebra admitting a K/k-involution. Let

B be a simple subalgebra and let σ be a K/k-involution on B. Then σ can be extended

to an involution on A.

We can have a look at proof in [8] (chapter 8).

An involution σ on a skew field k is called of first kind if σ is the identity on Z(k),

the center of k. Otherwise the involution is called of second kind. In the later case

σ|Z(k) is an automorphism of order 2.
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Let us define Z0 := {α ∈ Z(k) | σ(α) = α}. Thus Z(k) = Z0 for involutions of the

first kind and Z(k)/Z0 is a separable quadratic extension for involutions of the second

kind. We say in both cases that σ is an Z(k)/Z0-involution. In particular, σ is a

Z0-linear map.
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Chapter 4

Hermitian Analogue of Springer’s

Theorem

The algebraic theory of quadratic forms and hermitian forms is related in many con-

texts. So the question that, can the main results proved in theory of quadratic forms

be generalzed also to the theory of hermitian forms? In this chapter we will have a

look at generalization of Springer’s theorem for hermitian forms and will give some

examples where it is not true in general. For this hermitian analogue we have used

the theory of Witt groups and involutions on division algebras.

4.1 Hermitian Forms

In this chapter we will use some terminology that is not defined yet in above chapters.

So this chapter will begin with some definitions which will be used in order to prove

some main results of hermitian analogue of Springer’s theorem.

Definition Algebraic Variety is a set of solutions of a system of polynomial equations

over reals or complex numbers. We define the function field of an algebraic variety V

consists of objects which are interpreted as rational functions of V .

Another definition of function field is a special case of transcendental extensions

of fields. For a given field k, a function field over k is a field extension K of k such

that there is atleast one element x ∈ K that is transcendental over k.

p-adic field of char 6= 2 is the quotient field of complete discrete valuation

ring with a finite residue class field k. Therefore such type of field is either a finite
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algebraic extension of a field Qp of p-adic numbers or a field of formal power series

k((t)) with finite constant field k.

Field of formal Laurent series over k with coefficients from k (i.e. The set of all formal

series of the form
∑
n≥N

ant
n where an ∈ k and n ∈ Z. The ring of formal power series

over k is denoted by k[[t]].

In this chapter we will consider p-adic field as local field of characterstic zero.

Let k be a field and K/k is a finitely generated extension. The transcendence

degree tr.deg.(K/k) is defined as the cardinality of a maximal subset of elements of

K algebraically independent over k, such a maximal subset is called a transcendence

basis of K/k. If K is the function field of a variety V over k then dimension of V is

defined to be tr.deg.(K/k).

Definition Let R be a ring with an involution ∗. A sesquilinear mapping or a

sesquilinear form on an R-module M is a map s : M ×M → R which satisfies the

following conditions:

• s(x+ y, z) = s(x, z) + s(y, z),

• s(x, y + z) = s(x, y) + s(x, z),

• s(x, yα) = s(x, y)α, s(xα, y) = α∗s(x, y).

for all x, y ∈ M and α ∈ R. The transpose s∗ of a sesquilinear map is defined by

s∗(x, y) = s(y, x)∗. It is clearly sesquilinear.

Definition Let A be a central simple algebra over a field k and let M be a finitely

generated right A − module. Suppose that σ : A → A is an involution on A. A

hermitian form on M w.r.t. the involution σ on A is a bi-additive map

h : M × M → A

subject to the following conditions:

• h(xα, yβ) = σ(α)h(x, y)β for all x, y ∈M and α, β ∈ A.
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• h(y, x) = σ(h(x, y)) for all x, y ∈M

Definition The rank n of a hermitian form (V, h) is by definition the dimension of

the D-vector space V , n = dim(V ).

4.2 Witt groups

Definition Let ε = ±1. An ε− hermitianform (V, h) over (A, σ) consists of

a right A-module V and a biadditive map h : V × V → A such that

• h(xa, yb) = σ(a)h(x, y)b

• h(y, x) = εσ(h(x, y)).

for all x, y ∈ V and for all a, b ∈ A.

Let V ∗ = HomA(V,A) be the dual of V . The form h induces a map h̃ : V → V ∗

which we call the adjoint of h. The left A-module V ∗ is regarded as a right A-module

through the involution σ on A. Then h̃ : V → V ∗ is A-linear. We say that h is

nondegenerate if h̃ is an isomorphism. A non-degenerate ε hermitian form is also

called an ε- hermitian space.

Let (V, h) and (V
′
, h
′
) be two ε- hermitian forms. The orthoqonal sum (V, h)⊕ (V

′
, h
′
)

is by definition the form (V ⊕ V ′ , h⊕ h′), where

(h⊕ h′)(v + v
′
, w + w

′
) = h(v, w) + h

′
(v
′
+ w

′
)

where v, w ∈ V and v
′
, w
′ ∈ V ′ .

Definition Let Ŵ ε(A, σ) be the Grothendieck group of the isomorphism classes of

non-degenerate ε- hermitian forms with respect to orthogonal sums. A form (V, h)

is said to be hyperbolic if there exists a sub A-module W of V such that W = W⊥.

The Witt group W ε(A, σ) is the quotient of Ŵ ε(A, σ) by the subgroup generated by

hyperbolic forms.

If ε = 1, an ε- hermitian form is said to be a hermitian form, and we set W ε(A, σ) =

W (A, σ).
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If A = k and σ is the identity, then W (A, σ) is the usual Witt group of non-degenerate

quadratic forms, denoted by W (k). We have a ring structure on W (k), induced by

the tensor product of quadratic forms. The ideal of even dimensional forms is denoted

by I(k).

The definition of hyperbolic spaces carries over in the obvious way:

If M is finitely generated, then we define

H(M) := (M ⊕M∗,HM)

H = HM : (M ⊕M∗)× (M ⊕M∗)→ R

H((x⊕ f), (y ⊕ g)) = f(y) + λ(g(x))∗.

It is easily shown that H is actually a λ-hermitian form. In particular we have

H((x ⊕f)α, (y ⊕ g)) = (fα)y + λg(xα)∗

=α∗(f(y)) + α∗λ(g(x))∗

=α∗H((x⊕ f, y ⊕ g)

H((x ⊕f), (y ⊕ g)) = (f(y) + λ(g(x))∗)∗∗

= λ(g(x)) + λ(f(y))∗)∗

= λH((y ⊕ g), (x⊕ f))∗.

(4.1)

We now define the Grothendieck group and the Witt group for hermitian forms. The

orthogonal sum (M,h) ⊥ (M ′, h′) := (M ⊕ M ′, h ⊕ h′) defines an addition on the

set of isometry classes of regular λ-hermitian forms. With this operation the set of

isometry classes is a semigroup. The Grothendieck group of this semigroup is denoted

by Ŵ (R) = Ŵ λ(R, ∗). Thus its elements are the differences [M,h] − [M ′, h′], where

[M,h] denotes the element given by the isometry class of the space (M,h). The Witt

group W (R) = W λ(R, ∗) is the factor group of Ŵ (R) by the subgroup generated by

all [H(M)]. We will denote the Grothendieck group by Ŵ .

Every λ-hermitian form which can be written as h = s+λs∗ where s is a sesquilin-

ear form, is called even (or sometimes trace-valued). If R is commutative and ∗ = id,

we speak of bilinear forms, and for λ = 1 of symmetric bilinear forms, and for λ = −1

of skew symmetric bilinear forms. Even skew symmetric bilinear forms, that is those

of form b = s− s∗ are called alternating.
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Theorem 4.1. (Pfister). The Witt group W (K) and the Witt-Grothendieck group

Ŵ (K)do not contain non-zero elements of odd order.

See the proof in [8].

Let (V, h) be a non-degenerate ε- hermitian form over (A, σ). Let E =

EndA(V ). Then E is a central simple algebra over K. The form h defines an involu-

tion τh : E → E by h(ex, y) = h(x, τh(e)(y)) for all x, y ∈ V and for all e ∈ E. We

call τh the adjoint involution of E with respect to h.

Let H(A, σ) denote the category of non-degenerate ε- hermitian forms over (A, σ),

with ε = ±1. Let a ∈ A∗ be such that σ(a) = ε
′
a, where ε

′
= ±1. Then Int(a−1)σ is

again an involution on A. We have an equivalence of categories

φa : Hε(A, Int(a−1)σ)→ Hεε
′
(A, σ)

which attaches to an ε- hermitian space (M,h) over (A, Int(a−1)σ), the εε
′

hermi-

tian space (M,ah) where ah is defined by (ah)(u, v) = ah(u, v).

The adjoint involutions τh and τφ(h) coincide on EndA(M). Further, the equiva-

lence φa, induces an isomorphism

φa : W ε(A, Int(a−1)σ)→ W εε
′
(A, σ)

In particular, if σ and τ are two involutions of A of the same kind and type, there exists

a ∈ A∗ with τ(a) = a and τ = Int(a−1)σ. Therefore φ(a), induces an isomorphism

W (A, τ) ' W (A, σ)

4.2.1 Morita equivalence

Let (V, f) be a hermitian space over (A, σ). Let f : V → V ∗ be the adjoint map. Let

E = End(V ) and let τf be the involution induced by f . For α ∈ E, we have

τf (α) = f̃−1α∗f̃

where α∗ is the transpose of α. We have a left E-module structure on V which

commutes with the right A-module structure. We regard V ∗ as a left E-module via

the involution τf on E. Similarly, given a right E-module M , we regard M∗ as a right

E-module via τf . We have an equivalence of categories, called Morita equivalence
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φf : H(E, τf )→ H(A, σ)

defined as follows :

Let (M, b) be a hermitian space over (E, τf ). The right A-modules M∗ ⊗E V ∗ and

HomA(M ⊗E V,A) are identified via the map

(g ⊗ h)(m⊗ v) = H(g(m)v)

for g ∈M∗, h ∈ V ∗,m ∈M and v ∈ V .

Set

φf (M, b) = (M ⊗E V, fb) .

where fb is the (A, σ) hermitian form on M ⊗E V whose adjoint f̃ b is bf̃ ⊗ f̃ . More

explicitly,

fb(m1 ⊗ v1,m2 ⊗ v2) = [b̃⊗ f̃((m1 ⊗ v1)](m2 ⊗ v2) = (b̃(m1)f̃(v1))(m2, v2)

= f̃(v1)(b̃(m1)(m2)v2) = f(v1, b(m1,m2)v2) for m1,m2 ∈M and v1, v2 ∈ V .

For furhter details see [1] (section 1).

4.2.2 Exact sequence of Witt groups

Let A be a central simple algebra with an involution σ (of either kind). Let K be the

centre of A and let k be the fixed field of σ | K. Let us assume that there exists a

subfield L ⊂ A which is a quadratic extension of K and which is stable by σ. Suppose

that the restriction of σ to L is the identity if σ is of the first kind. Let λ ∈ L be such

that λ2 ∈ K and L = K(λ). Let Â be the commutant of L in A.

Lemma 4.1. There exists µ ∈ A∗ such that σ(µ) = −µ and that Int(µ) restricts to

the non-trivial automorphism σ0 of L/K.

Proof case 1 Suppose that σ is of the second kind. Let σ1 be the restriction

of σ to L. Then σ0σ1 is an automorphism of L which restricts to the non-trivial

automorphism of K over k. So there exists an involution τ on A which restricts to

σ0σ1 on L. There exists µ ∈ A∗ such that τ = Int(µ)σ. We have σ(µ) = εµ with

ε ∈ K∗ such that NK/k(ε) = 1. Suppose that ε 6= −1. Let δ ∈ K∗ such that ε = δ−1δ,

denoting the non-trivial automorphism of K/k. Replacing µ by δ−1µ, we assume that

σ(µ) = µ. Let v ∈ Â∗ such that τ(v) = −v. Then σ(vµ) = −vµ. The restriction of
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Int(vµ) to L is equal to the restriction of Int(v)τσ to L, which is simply σ0 by the

choice of v and of τ .

case 2 Suppose that σ is of the first kind, of symplectic type, and that [A : k] = 4.

Then A is a quaternion algebra, and we take µ ∈ A∗ such that µλ = −λµ, µ2 ∈ k.

case 3 Suppose that σ is of the first kind, of orthogonal type, and that [A : k] = 4.

Let σ1 be the canonical involution of the quaternion algebra A. There exists µ ∈ A∗

such that Int(µ)σ1 = σ. Then σ(µ) = −µ = σ1(µ) since σ is orthogonal and Int(µ) |
L = σ1.

case 4 Suppose that σ is of the first kind, and [A : k] > 4. Recall that Â is

the commutant of L in A. Then Â is central over L and is non-commutative since

[A : k] > 4. Let τ be an involution on A which extends the automorphism σ0 of L/K.

We have τ = Int(µ)σ where µ ∈ A∗ is such that σ(µ) = ±µ. If σ(µ) = +µ, we chose

v ∈ Â∗ with τ(v) = −v. Then σ(vµ) = −vµ, and Int(vµ) restricts to σ0 on L.

This proves the lemma.

Let A, σ,K, k, L, Â, σ0, λ and µ be as defined above. Let τ = Int(µ)σ. Then

τ | L = σ0 if σ is of the first kind. We have τ(µ) = −µ. Let τ1 = τ | Â, and

τ2 = (Int(µ−1)τ) |Â= σ |Â. Then τ1 is of the second kind, and τ2 is of the same kind

as σ. Let Fσ be the fixed field of σ in L, and let Fτ be the fixed field of τ in L.

We have A = Â⊕ µÂ. Let π1 : A → Â be the L-linear projections π1(α + µβ) =

α, π2(α + µβ) = β, for all α, β ∈ Â. The maps πi induce homomorphisms

π1 : W (A, τ)→ W (Â, τ1),

π2 : W−1(A, τ)→ W (Â, τ2).

We have a homomorphism

ρ : W (Â, τ1)→ W−1(A, τ)

induced by scalar extension of an (Â, τ1)-form multiplied by λ to an (A, τ)-form. For

all x ∈ A , with τi(x) = x, we have

ρ(〈x〉) = 〈λ〉.

We then have an exact sequence
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W (A, τ)→ W (Â, τ1)→ W−1(A, τ)→ W (Â, τ2).

Since τ(µ) = −µ, we have an isomorphism

φ−1µ : W−1(A, τ)→ W (A, τ)

given by φ−1µ (h) = µ−1h. We replace W−1(A, τ) in the above exact sequence by

W (A, σ) via ϕµ, and rewrite it as

(*) W (A, τ)→ W (Â, τ1)→ W−1(A, σ)→ W (Â, τ2).

where ρ̂ = φ−1µ ρ and π̂2 = π2φµ. Now we are referring to (*) as the exact sequence of

Witt groups.

Corollary 4.1. Let h and h
′

be two non-degenerate hermitian forms over the same

free right A-module V . Then (V, h) and (V, h
′
) are isomorphic.

Let K be a field of characteristic not equal to 2. Let A be a central simple algebra

over K with an involution τ (first or second kind). Assume that there exist λ, µ ∈ A∗

such that τ(λ) = −λ, τ(µ) = −µ, µλ = −λµ and L = K(λ) is a quadratic extension

of K. Let Â be the commutant of L in A. It is easy to see that µÂµ−1 = Â, µ2 ∈ Â,

τ(Â) = Â and A = Â⊕ µÂ. Let τ1 = τ |Â and let τ2 be the involution Int(µ−1)τ1 on

Â. We have the following L-linear projections

π1 : A→ Â, π1(α + µβ) = α

π2 : A→ Â, π2(α + µβ) = β

for α, β ∈ Â. If h : V × V → A is an ε-hermitian space over (A, τ).

we define hi : V × V → Â by hi(x, y) = πi(h(x, y)). Then h = h1 + µh2. It is easily

verified that h1 is an ε-hermitian space over (Â, τ1) and that h2 is a −ε-hermitian

space over (Â, τ2). For x, y ∈ V , we have the following identities:

h1(xµ, y) = −µ2h2(x, y)

h1(x, yµ) = µh2(x, y)µ

h1(xµ, yµ) = −µh2(x, y)µ.

The assignments h 7→ h1 and h 7→ h2 induce homomorphisms

π1 : W ε(A, τ)→ W ε(Â, τ1)

π2 : W ε(A, τ)→ W−ε(Â, τ2)

Lemma 4.2. Let V be an A-module and let h1 : V × V → Â be an ε-hermitian space

over (Â, τ1). Define h : V × V → A by h(x, y) = h1(x, y) − µ−1h1(xµ, y). Then h is

an ε-hermitian space over (A, τ) if and only if h1(x, yµ) + µ−1h1(xµ, y) = 0 for all

x, y ∈ V .
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Proof If h is ε-hermitian over (A, τ), then by (*), for x, y ∈ V , we have h1(x, yµ)µ−1 =

µh2(x, y) = −µ−1h1(xµ, y). Conversely, suppose h1 satisfies the given condition. Us-

ing the relation h1(x, y) = ετ1(h1(y, x)) and τ |Â= τ1, it is easy to see that, for x, y ∈ V ,

h(x, y) = ετ(h(y, x)). From the definition of h it is clear that h(xµ, y) = τ(h(x, y)) for

all x, y ∈ V . Since h1 is τ1-semilinear in the first variable, h is τ -semilinear in the first

variable. Therefore h is an ε-hermitian space over (A, τ). So the lemma is proved.

We now define a homomorphism

ρ : W ε(Â, τ1)→ W−ε(A, τ)

Let f : V × V → Â be an ε-hermitian space on Â.

We define h : V ⊗Â A× V ⊗Â A→ A as follows :

we write V ⊗Â A = V ⊕ V µ, now for x1, x2, y1, y2 ∈ V ,

h(x1 ⊕ y1µ, x2 ⊕ y2µ) = λ(f(x1, x2) + f(x1, y2)µ+ µf(y1, x2) + µf(y1, y2)µ)

In other words, h is defined by λf on V and extended by sesquilinearity on V ⊕V µ.

The map f 7→ h yields a homomorphism

ρ : W ε(Â, τ1)→ W−ε(A, τ).

Theorem 4.2. With the notation above, the sequence

W ε(A, τ)
π1−→ W ε(Â, τ1)

ρ−→ W−ε(A, τ)
π2−→ W ε(Â, τ)2

For proof of theorem 4.2 see [1] (Appendix 2).

4.3 Hermitian Analogue

Proposition 4.1. Suppose (A, σ) is a central simple k-algebra with involution and

K/k is an odd degree field extension. If (A ⊗k K, σK) is hyperbolic, then (A, σ) is

hyperbolic.

This is a weak analogue of Springer’s theorem but the strong version of Springer’s

theorem is still open.

Theorem 4.3. Suppose (A, σ) and (B, τ) are central simple k-algebras with involution

of the first kind. If degB is odd and (A, σ) ⊗ (B, τ) is hyperbolic, then (A, σ) is

hyperbolic.
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Since we have some knowledge of an exact sequence of Witt groups of hermitian

forms over quaternion algebras. A brief summary is given below,

Let H be a quaternion algebra over k and let τ be the canonical involution on H. Let

L = k(λ) be a maximal commutative subfiled of H, with λ2 = a ∈ k∗. Let µ ∈ H

be such that µλ = −λµ and µ2 = b ∈ k∗. Then H = L ⊕ µL. Let τ0 be the

non-trivial automorphism over L over k. We have the L-linear projections

π1 : H → L, π1(α + µβ) = α,

π2 : H → L, π2(α + µβ) = β

for α, β ∈ L . If h : V × V → H is an ε - hermitian form over (H, τ), we define

hi : V × V → L, by hi(x, y) = πi(h(x, y) as in the above section. Then h = h1 + µh2.

Since h(xµ, y) = σ(µ)h(x, y) = −µh(x, y), we have h2(x, y) = −b−1h1(xµ, y). It is

easy to see that π1(h) = h1 : V × V → L is an ε-hermitian form over L and that

π2(h) = h2 : V × V → L is an −ε-symmetric form over L. Further, π1 and π2 induce

homomorphisms

π1 : W ε(H, τ)→ W ε(L, τ0)

π2 : W ε(H, τ)→ W−ε(L)

Let

ρ : W (L, τ0)→ W−1(H, τ)

be the homomorphism defined as follows :

Let f : V × V → L be a hermitian space over (L, τ0). Write V ⊗L H = V ⊕ V µ.

Define

ρ(f) : V ⊗L H × V ⊗L H → H

by

ρ(f)(x1 + y1µ, x2 + y2µ) = λ(f(x1, x2) + f(x1, y2)µ+ µf(y1, x2) + µf(y1, y2)µ),

for x1, x2, y1, y2 ∈ V . Then we have the following

Theorem 4.4. With the notation as above, the sequence

0 −→ W (H, τ)
π1−→ W (L, τ0)

ρ−→ W−1(H, τ)
π2−→ W (L)
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is exact.

For proof see [1]. Now we have the following lemma.

Lemma 4.3. Let H be a quaternion algebra over a field k and let τ be the canonical

involution on H. Let C be the conic associated to H and let k(C) be the function field

of C. Let L be a maximal commutative subfield of H. Then the sequence

W (H, τ)
π1−→ W (L, τ0) −→ W (L⊗ k(C), τ0 ⊗ 1)

is exact.

Proof Let nH denote the norm form of the quaternion algebra H over k and let

nL denote the norm form of the field extension L over k. We have the following

identifications, for the proofs of which we refer to

W (H, τ) = nH .W (k),

W (L, τ0) = nL.W (k),

W (L ⊗ k(C), τ0 ⊗ 1) = nL.W (k(C)).

Since L splits H, nL is a sub-form of nH and nHW (k) is contained in nLW (k).

With these identifications, it is easy to see that the sequence in the lemma coincides

with the sequence

nH .W (k) −→ nL.W (k) −→ nL.W (k(C)),

with the canonical homomorphisms. Hence to prove the lemma, it is enough to

show that the above sequence is exact. By [8] (chapter 4), the kernel of the map

W (k)→ W (k(C)) is nH .W (k). This proves the lemma.
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Proposition 4.2. Let H be a quaternion algebra over a field k and let τ be the

canonical involution on H. Let C be the conic associated to H and let k(C) be the

function field of C. Then the canonical homomorphism

W−1(H, τ)→ W−1(H ⊗ k(C), τ ⊗ 1)

is injective.

Proof For a field extension E of k, let HE denote the quaternion algebra H ⊗kE
and let τE denote the standard involution on HE. We have the following commutative

diagram

0→ W (H, τ)
π1−→ W (L, τ0)

ρ−→ W−1(H, τ)
π2−→ W (L)

↓ ↓ ↓ ↓

0→ W (Hk(C), τk(C))
π1−→ W (L(C), τ0)

ρ−→W−1(Hk(C), τk(C))
π2−→ W (L(C))

(4.2)

with exact rows (by theorem 4.4 ), where L and τ0 are as in theorem 4.4. Let h

be a (−1)-hermitian form over (H, τ) such that h ⊗ k(C) is hyperbolic over Hk(C) =

H ⊗ k(C). Since L(C) = L⊗ k(C) is a rational function field in one variable over L,

the map W (L)→ W (L⊗ k(C)) is injective by [8]. Therefore, by the above diagram,

there exists f ∈ W (L, τ0) such that ρ(f) = h. Since H⊗k(C) 'M2(k(C)), by Morita

equivalence, we have W (H ⊗ k(C), τ ⊗ 1) = W−1(k(C)) = 0. Thus, by theorem 4.4,

the map W (L⊗ k(C), τ0⊗ 1)
ρ−→ W−1(H ⊗ k(C), τ ⊗ 1) is injective. Since h⊗ k(C) is

hyperbolic, it follows that f⊗k(C) is hyperbolic. Therefore by lemma 4.3 there exists

h′ ∈ W (H, τ) such that f = π1(h
′). Since ρπ1 = 0, we have h = ρ(f) = ρπ1(h

′) = 0.

This proves the proposition.

Corollary 4.2. Let h be (σ, ε)-hermitian space over A. Then the anisotropic part of

h⊗ k(C) extends from k.

Corollary 4.3. Let H, τ are as in proposition 4.2. Let h be a (−1)-hermitian form

over (H, τ). If h⊗ k(C) is isotropic, then h is isotropic.
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Proof Suppose that h ⊗ k(C) is isotropic. Let h ⊗ k(C) = h1 ⊥ h2, with h1

anisotropic and h2 hyperbolic (−1)-hermitian spaces over (H ⊗ k(C), τ ⊗ 1). By the

”excellence result” 4.2 , there exists a (−1)-hermitian space h′ over (H, τ) such that

h′ ⊗ k(C) = h1. Then (h⊥ − h′) ⊗ k(C) is hyperbolic, so that by proposition 4.2 ,

h⊥ − h′ is hyperbolic. Since the rank of h′ is strictly less than that of h, it follows

that h is isotropic.

Theorem 4.5. Let H be a quaternion algebra over a field of characteristic not equal

to 2 and let σ be an involution on H. Let h be a hermitian form over (H, σ). Suppose

that h is isotropic over H⊗kM for some odd degree extension M of k. Then h is

isotropic over H.

Proof Let h be a hermitian form over (H, σ) with h ⊗M isotropic for some odd

degree extension M of k. Let τ be the standard involution on H.

Suppose that σ = τ . Let V be the underlying H-vector space of h. Since τ(h(x, x)) =

h(x, x) for every x ∈ V and τ , the standard involution on H, it follows that h(x, x) ∈ k
for every x ∈ V . Thus the map qh : V → k given by qh(x) = h(x, x) for x ∈ V is a

quadratic form over k. Clearly h is isotropic if and only if qh is isotropic. Thus the

result in this case follows from Springer’s theorem for quadratic forms.

Suppose that σ 6= τ . Let u ∈ H∗ be such that τ = int(u)σ. Then τ(u) = −u. Let

h1 = uh. Then h1 is a (−1)-hermitian form over (H, τ). Moreover h is isotropic if and

only if h1 is isotropic. Let C be the conic associated toH. SinceH⊗k(C) 'M2(k(C)),

by the Morita equivalence, h1 ⊗ k(C) corresponds to a quadratic form q over k(C).

Since h⊗ k(C)⊗M is isotropic, q⊗M is isotropic and hence q is isotropic over k(C).

Thus, by the Morita equivalence h1 ⊗ k(C) is isotropic. By corollary 4.3 , h1 and

hence h are isotropic. This completes the proof of the theorem.

Corollary 4.4. Let H and σ be as in theorem 4.5 . If M is an odd degree extension

of k, then the canonical homomorphism

W ε(H, σ)→ W ε(H ⊗M,σ ⊗ id)

is injective.
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This result was given by Bayer-Fluckiger and Lenstra.

Let A be a central simple algebra over k with an involution σ. According to

Bayer-Fluckiger [3], σ is isotropic if there exists a nonzero a ∈ A such that σ(a)a = 0.

Therefore we can interpret our result in terms of isotropy of involutions.

Corollary 4.5. Let H be as in theorem 4.5. Let A = Mn(H), let n ≥ 1, and let σ

be an involution on A of first kind. If σ is isotropic in an odd degree extension of k,

then σ is isotropic.

Proof The involution σ on A corresponds to a hermitian form h over (H, σ′) for

some involution σ′ on H of the first kind. Further, σ is isotropic if and only if h is

isotropic [3] (Corollary 1.8). The corollary follows from theorem 4.5.

4.4 General aspects of hermitian analogue

In this section we have given an example of an odd degree division algebra D over a

field K with an involution σ of the second kind over k and an anisotropic hermitian

form h over (D, σ) which is isotropic over a degree 2 extension and over an odd degree

extension of k.

Proposition 4.3. Let k be a p-adic field containing all pth roots of unity and let F be

a ramified quadratic extension of k. Then there exists a central division algebra over

F ((t)) of degree a power of p, which has an involution of the second kind.

Let p be an odd prime number and let k be a p-adic field. Let F be a ramified

quadratic extension of k. Let D be a division algebra over F ((t)) of degree a power

of p, with an involution σ of the second kind. Such a division algebra exists by

proposition 4.3. Let λ ∈ k∗ be such that λ is not a norm from F ∗. Let h = 〈1,−λ〉
be the rank 2 hermitian form over (D, σ).

Theorem 4.6. Let k, F,D, σ and h be as above. Then h is anisotropic over D, and

there exist finite extensions K1 and K2 of k((t)) such that K1 is a quadratic extension,

K2 is an extension of odd degree, and h is isotropic over D⊗k((t))Ki for i = 1, 2. In

40



particular, the group U(h) of isometries of h is anisotropic over k((t)) and isotropic

over K1 and K2.

Proof Suppose that h is isotropic over D. Then, there exists u ∈ D∗ such that

λ = uσ(u). By taking the reduced norm on both sides, we get that λp
r

is a norm

from F ((t))∗, where pr is the degree of D. Since p is odd and F ((t)) is a quadratic

extension of k((t)), it follows that λ is a norm from F ((t)). Since λ ∈ k, it follows

that λ is a norm from a unit in F [[t]]. By putting t = 0, it is easy to see that λ

is a norm from F ∗, leading to a contradiction to the assumption on λ. Thus h is

anisotropic over D. Let k1 = k(
√
λ) and K1 = k1((t)). Then, clearly h is isotropic

over D⊗k((t))K1. Let K2 be an extension of k((t)) of odd degree such that D⊗k((t))K2

is a split algebra [1]. Then, by Morita equivalence h⊗K2 corresponds to a hermitian

form over F ((t))⊗k((t))K2, which corresponds to a quadratic form q over K2. Since K2

a finite extension of k((t)), by Hensel’s lemma, every quadratic form over k2 of rank 9

is isotropic. Since p ≥ 3, it follows that the rank of q is at least 12 [6] (Theorem 4.6).

Thus q is isotropic, and, hence, by Morita equivalence, h is isotropic. This completes

the proof of the theorem.

Remark 4.1. Let D, σ be as in theorem 4.6 and let v ∈ D∗ be such that σ(v) = v.

Then the rank one hermitian form 〈v〉 over (D, σ) is anisotropic. If p ≥ 5, then

as in the theorem 4.6 , it follows that 〈v〉 is isotropic over an odd degree extension.

However, there is no quadratic extension or more generally an extension of degree a

power of 2, over which 〈v〉 is isotropic.

Remark 4.2. Let k and F be as in proposition 4.3. Then as in theorem 4.6, one can

show that there exist division algebras over F (t) of degrees powers of p, which have

involutions of second kind. Recently, in [6], it was shown that every quadratic form

over a function field in one variable over a p-adic field, p 6= 2, of rank at least 11 is

isotropic [6] (Theorem 4.5). Using this result one can replace k((t)) in theorem 4.6

by k(t).
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Remark 4.3. In view of theorem 4.6, it appears that the correct analogue of Springer’s

theorem for hermitian form over involutorial division algebras should be the following:

Let D be a central division algebra over K with a K/k-involution σ of any kind. Let

n be the degree of D over K. If a hermitian form h over (D, σ) acquires an isotropy

in a finite extension L of k of degree coprime with 2n, does h have an isotropy already

over k?

In the algebraic theory of quadratic forms these type of questions will be arise in

context of analogues of Springer’s theorem.
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