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Abstract

The notion of an absolute value of a field K is a generalization of the notion of

ordinary absolute value of the field C of complex numbers. A real valued function φ

defined on a field K into non-negative real numbers is called absolute value of K if

φ(x) = 0 ⇔ x = 0, φ(xy) = φ(x)φ(y) and φ(x + y) ≤ φ(x) + φ(y) ∀x, y ∈ K. In this

thesis, we study absolute values and its basic properties and some significant results

like Ostrowski’s Theorem, Approximation Theorem and Independence Theorem. We

also discuss Archimedean and non-Archimedean absolute values, completion of fields

with respect to absolute values. A non-Archimedean absolute value gives rise to what

is called (additive) valuation. A detailed exposition of discrete valuations is brought

out. We also study Hensel’s Lemma and some of its applications.
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Chapter 1

Archimedean and

Non-Archimedean Absolute Values

1.1 Introduction

The development of absolute values has a long history. It has its roots in the theory

of p-adic numbers developed by Kurt Hensel in the first decade of 20th century.

Motivated by the work of Hensel on the field of p-adic numbers, it was the Hungarian

mathematician Josef Kürschàk who gave the formal definition of absolute value during

the Cambridge International Congress of Mathematicians in 1912. According to him,

the notion of an absolute value of a field K is a generalization of the notion of ordinary

absolute value of the field C of complex numbers. An absolute value of field K is

a mapping φ fromK into real numbers satisfying the following axioms for all a, b ∈ K :

Definition A real valued function φ defined on a field K is called an absolute value

on K if it satisfies the following three conditions:

(I) φ(x) ≥ 0, φ(x) = 0⇐⇒ x = 0.

(II) φ(xy) = φ(x)φ(y)

(III) φ(x+ y) ≤ φ(x) + φ(y) ∀ x, y ∈ K.
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Definition The absolute value sending every non-zero x ∈ K to 1 is called the

trivial absolute value.

Properties

For an absolute value φ, the following holds:

(1) φ(ξ) = 1 for any root of unity ξ ∈ K; in particular φ(1) = φ(−1) = 1 and

φ(−x) = φ(x),∀ x ∈ K.
(2)φ(x−1) = φ(x)−1 for all x 6= 0 ∈ K.
(3) φ(x− y) ≥| φ(x)− φ(y) | ∀ x, y ∈ K.

Examples (1) The ordinary absolute values of R and C.
(2) Let p be a prime number and 0 < c < 1 be a real number. Any non-zero rational

number x can be uniquely written as x = prm/n, r,m, n ∈ Z, n > 0, (m,n) = 1, p -
mn.

Define φp(x) = cr. It can be easily checked that φp(x + y) ≤ max{φp(x), φp(y)} for

all x, y ∈ Q and thus φp is an absolute value on Q. It is called a p − adic absolute

value of Q.

Remark If R is an integral domain with quotient field K and φ is a mapping from

R into R+ ∪ {0} satisfying the three properties of an absolute value, then φ can be

uniquely extended to an absolute value of K in an obvious way.

Proposition 1.1 The set {φ(n.1) | n ∈ Z} is bounded if and only if φ satisfies the

ultrametric inequality φ(x+ y) ≤ max {φ(x), φ(y)} ∀ x, y ∈ K.

Proof. Suppose first that φ(x+ y) ≤ max {φ(x), φ(y)} for all x, y ∈ K. Clearly the

set {φ(n.1) | n ∈ Z} is same as {φ(0), φ(1), φ(2), · · · }. For any n ∈ N, φ(n)

≤ max {φ(n− 1), φ(1)}.Since φ(1) = 1,it follows using induction that φ(n) ≤ 1 ∀ n ∈
N.

Conversely suppose that {φ(n.1) | n ∈ Z} is bounded by a constant c. Consider
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(φ(x+ y))n for x, y ∈ K and n a positive integer,

(φ(x+ y))n = φ((x+ y)n) = φ(
n∑

m=0

nCmx
myn−m)

≤
n∑

m=0

φ(nCm)(φ(x)mφ(y)n−m)

≤ (n+ 1)c max {φ(x), φ(y)}n

Taking nth root and letting n −→∞, using the fact that lim
n→∞

(n+ 1)1/n = 1.

we see that φ(x+ y) ≤ max {φ(x), φ(y)} . �

Definition An absolute value φ on a field K is said to be non-Archimedean if it

satisfies ultrametric inequality i.e. φ(x + y) ≤ max {φ(x), φ(y)} for all x, y ∈ K,

otherwise it is called Archimedean.

Strong triangle law Let φ be a non-Archimedean absolute value of a field K.

If x, y ∈ K and φ(x) 6= φ(y), then φ(x+ y) = max{φ(x), φ(y)}.

Proof. Assume that φ(x) < φ(y).By definition of non-Archimedean absolute value

φ(x+ y) ≤ max{φ(x), φ(y)} = φ(y)

Again by definition of non-Archimedean

φ(y) = φ(x+ y − x) ≤ max{φ(x+ y), φ(x)} (1.1)

and the maximum in (1.1) has to be φ(x+ y) in view of the assumption φ(x) < φ(y).

Hence φ(x+ y) = φ(y).

Note If characteristic of a field K is non-zero, then K has no Archimedean absolute

value in view of Proposition 1.1.

Remark If φ is an absolute value on a field K and 0 < λ ≤ 1 is a real number,
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then φλ is also an absolute value of K.

Proof. It is enough to show that for all x, y ∈ K.

(φ(x+ y))λ ≤ (φ(x))λ + (φ(y))λ

without loss of generality, we can assume that φ(x) ≥ φ(y).

(φ(x+ y))λ ≤ (φ(x) + φ(y))λ = (φ(x))λ(1 + φ(y)/φ(x))λ (1.2)

Since 0< λ ≤ 1 and φ(y)/φ(x) ≤ 1, we have

(1 + φ(y)/φ(x))λ ≤ 1 + φ(y)/φ(x) ≤ 1 + (φ(y))λ/(φ(x))λ.

The above inequality together with (1.2) implies that

(φ(x+ y))λ ≤ (φ(x))λ + (φ(y))λ.

Proposition 1.2 An absolute value φ is non-archimedean iff φλ is an absolute value

for every real λ >0.

Proof. Suppose first that φ(x+ y) ≤ max{φ(x), φ(y)} ∀ x, y ∈ K. So, (φ(x+ y))λ ≤
(max{φ(x), φ(y)})λ = max{φ(x)λ, φ(y)λ} ≤ φ(x)λ + φ(y)λ ∀ λ > 0 and hence φλ is

an absolute value.

Conversely suppose that φλ is an absolute value ∀ λ > 0. In view of Proposition 1.1,

it is enough to show that the set {φ(n.1)/n ∈ Z} is bounded. Fix a positive integer

n, for any λ > 0,we have

(φ(n.1))λ ≤ φ(1)λ + φ(1)λ + · · ·+ φ(1)λ = nφ(1) = n (1.3)

This is possible only when φ(n.1) ≤ 1, otherwise the L.H.S. of (1.3) will approach ∞
as λ tends to∞. Thus we have shown that the set {φ(n) | n ∈ Z} is bounded and φ is

non-Archimedean by Proposition 1.1. �

Proposition 1.3 If φ is a function defined on a field K satisfying φ(x) > 0 for every

non-zero x ∈ K,φ(0) = 0, φ(xy) = φ(x)φ(y) for all x, y ∈ K and φ(x + y) ≤
2 max{φ(x), φ(y)}. Then φ is an absolute value on K.
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Proof. We first verify that for any finitely many elements x1, · · · , xm of K, we have

φ(x1 + x2 + · · ·+ xm) ≤ 2m
m∑
i=0

φ(xi) (1.4)

Choose an integer r such that 2r−1 ≤ m < 2r. On taking xi = 0 for m < i ≤ 2r and

using the hypothesis φ(x+y) ≤ 2 max{φ(x), φ(y)}, we see that φ(x1+x2+· · ·+xm) =

φ(x1 + · · · + x2r) ≤ 2rmax(1≤i≤m){φ(xi)} which implies (1.4). Taking each xi = 1,

the above inequality shows that for each positive integer m, we have

φ(m) ≤ 2m (1.5)

For any elements x, y ∈ K, we now verify φ(x+ y) ≤ φ(x) + φ(y).

Let n be a positive integer. Using (1.4),(1.5) and multiplicative property of φ, we see

that

(φ(x+ y))n = φ((x+ y)n) = φ(
n∑
i=0

nCix
iyn−i)

≤ 2(n+ 1)
n∑
i=0

φ(nCi)φ(x)iφ(y)n−i

≤ 2(n+ 1)
n∑
i=0

2(nCi)φ(x)iφ(y)n−i

= 4(n+ 1)(φ(x) + φ(y))n.

Taking the nth root of the first and the last term of this inequality and letting n tend

to infinity, we obtain φ(x+y) ≤ φ(x)+φ(y). �

Definition Two absolute value φ1 and φ2 of K are called equivalent if ∃ a real

number ρ > 0 such that φ1(x) = φ2(x)ρ for all x ∈ K.

The following theorem was proved by Alexander Ostrowski in 1916. The proof given

below is due to Artin.

Theorem 1.4 Ostrowski’s Theorem (a) Every Archimedean absolute value on Q is

equivalent to the usual one(ordinary absolute value).

(b)Every non-trivial non-Archimedean absolute value of Q is equivalent to a p-adic

absolute value.
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Proof: (a) Let φ be a non-trivial Archimedean absolute values on Q. So, ∃ some

natural number a > 0 for which φ(a) > 1. Since, for any n ∈ N,

φ(n) = φ(1 + 1 + · · ·+ 1) ≤ φ(1) + φ(1) + · · ·+ φ(1) = n (1.6)

we may set

φ(a) = aα (1.7)

where α is a real number 0 < α ≤ 1. We show that any natural number N , φ(N) =

Nα. Taking an arbitrary natural number N , we decompose it in power of a.

N = x0 + x1a+ · · ·+ xk−1a
k−1 where 0 ≤ xi ≤ a− 1, 0 ≤ i ≤ k− 1, xk−1 ≥ 1. Clearly

N satisfies the inequality

ak−1 ≤ N < ak.

Now formula (1.6) and (1.7) yield

φ(N) ≤ φ(x0) + φ(x1)φ(a) + · · ·+ φ(xk−1)φ(a)k−1

≤ (a− 1)(1 + aα + a2α + · · ·+ a(k−1)α)

= (a− 1)
akα − 1

aα − 1
< (a− 1)

akα

aα − 1
= (a− 1)

aαa(k−1)α

aα − 1
.

Set C = (a− 1) aα

aα−1
; C does not depend on N . We have shown above that

φ(N) < CNα.

Replacing N by Nm in this inequality, for m a natural number, then φ(N)m =

φ(Nm) < CNmα, i.e. φ(N) < C1/mNα. Letting m tend to infinity, we arrive at

φ(N) ≤ Nα (1.8)

To prove equality in (1.8), we write N = ak − b, where 0 < b ≤ ak − ak−1. Then

φ(N) ≥ φ(ak)− φ(b) = akα − φ(b). By virtue of (1.8), φ(b) ≤ bα ≤ (ak − ak−1)α, so

φ(N) ≥ akα − (ak − ak−1)α = akα(1− (1− 1

a
)α) > C1N

α,
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where C1 = (1− (1− 1
a
)α) does not depend on N .

If N is replaced by Nm in the preceding inequality, then

φ(N)m = φ(Nm) > C1N
mα

which gives φ(N) > C
1/m
1 Nα and as m −→∞, this yields

φ(N) ≥ Nα (1.9)

comparing (1.8) and (1.9), we see that φ(N) = Nα for every natural number N .

Now let x = ±N1/N2 be an arbitrary rational number different from zero, then

φ(x) = φ(N1/N2) = φ(N1)/φ(N2) = Nα
1 /N

α
2 = |x|α

So φ is equivalent to usual absolute value.

(b)We now turn to the case when φ(n) ≤ 1 for all numbers n. If for every prime p, we

have φ(p) = 1, then by the multiplicative property of absolute value, we have φ(n) = 1

for all n ∈ N. Thus also φ(x) = 1 ∀ rational x 6= 0. But this would contradict the

assumption that φ is non trivial.Thus for some prime p, we have φ(p) < 1. Claim

is that if q 6= p is a prime,then φ(q) = 1. Suppose to the contrary φ(q) < 1,then ∃
positive exponents k and l so that φ(p)k < 1/2, φ(q)l < 1/2.

Since pk and ql are relatively prime, there are integers u and v such that upk+vql = 1.

As φ(u) ≤ 1, φ(v) ≤ 1, we would have

1 = φ(1) = φ(upk + vql) ≤ φ(u)φ(p)k + φ(v)φ(q)l < 1/2 + 1/2.

This contradiction proves the claim. Set φ(p) = ρ < 1. Let x = pm(a/b) be a non-zero

rational number, p - ab, a, b ∈ Z. Then φ(x) = ρm.

So,φ is a p-adic absolute value in this case. �

Definition An absolute value φ on a field K defines a metric on K if the distance

between two points x, y ∈ K is defined as φ(x−y). This metric and the corresponding

topology are said to be induced by φ. Clearly equivalent absolute values on a field

induce the same topology.The following theorem shows that the converse also holds.
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Theorem 1.5 For any non-trivial absolute values φ1, φ2 of a field K, the following

statements are equivalent:

(i) φ1 is equivalent to φ2.

(ii) φ1 and φ2 induce the same topology on K.

(iii) The topology induced by φ1 is stronger than the one induced by φ2.

(iv) For any x ∈ K, φ1(x) < 1 implies φ2(x) < 1.

(v) For any x ∈ K, φ1(x) ≤ 1 if and only if φ2(x) ≤ 1.

For the proof of above proposition, we need the following Lemma.

Lemma 1.6 Let G be an arbitrary group and let φ and ψ be homomorphisms from G

into the multiplicative group of positive real numbers. Suppose that φ is non-trivial

and ψ(a) < 1 holds whenever φ(a) < 1 holds. Then there exists a positive number α

such that ψ(a) = (φ(a))α holds for every a ∈ G.

Proof. Since φ is non-trivial, there exits an element c ∈ G such that φ(c) 6= 1. As

φ(c−1) = φ(c)−1, replacing c by its inverse if necessary we may assume that φ(c) > 1.

Then by hypothesis, we have ψ(c−1) < 1 and hence ψ(c) > 1 holds. Let us set

φ(c) = µ, ψ(c) = γ and determine a positive real number α by γ = µα, we shall

now show that ψ(b) = φ(b)α holds for any element b ∈ G. Let b be an element of G

such that φ(b) > 1. As µ > 1, for any given positive integer m, an integer n = n(m)

satisfying the inequalities

µn−1 < φ(b)m < µn+1 (1.10)

we clearly have lim
m→∞

n(m) =∞.

Since µn−1φ(b)−m = φ(cn−1b−m) < 1, it follows from the hypothesis that ψ(cn−1b−m) <

1, i.e.,

γn−1 = ψ(cn−1) < ψ(b)m (1.11)

Similarly φ(b)m < µn+1 gives φ(bmc−n−1) < 1 which implies that ψ(bmc−n−1) < 1.

So

ψ(bm) < ψ(c)n+1 = γn+1 (1.12)

Combining (1.11) and (1.12), we see that

γn−1 < ψ(b)m < γn+1 (1.13)

8



Taking logarithm, on dividing it follows from (1.10) and (1.13) that

(n− 1) log µ

(n+ 1) log γ
<

log φ(b)

logψ(b)
<

(n+ 1) log µ

(n− 1) log γ

Taking the limit as n→∞ , we have

log φ(b)

logψ(b)
=

log µ

log γ
=

1

α

Thus we have shown that if φ(b) > 1, then ψ(b) = φ(b)α.

If φ(b) ≤ 1, we have φ(b−1) ≥ 1. Recall that φ(c) > 1. So φ(b−1c) > 1. Then by what

has been proved above ψ(cb−1) = φ(cb−1)
α

which implies that ψ(b) = φ(b)α in view of

the equality ψ(c) = φ(c)α. �

Proof of Theorem 1.5 Clearly (i) =⇒ (ii) and (ii) =⇒ (iii).

We now prove (iii) =⇒ (iv).There exists ε > 0 such that

{y ∈ K | φ1(y) < ε} ⊆ {y ∈ K | φ2(y) < 1} (1.14)

If x ∈ K is such that φ1(x) < 1, then φ1(xn) < ε for some n ∈ N. Then by (1.14) ,

φ2(xn) < 1; consequently φ2(x) < 1. This proves (iii) =⇒ (iv)

Assertion (iv) =⇒ (i) in view of Lemma 1.6 and thus equivalence of (i) - (iv) is

established.

It may be remarked that from the equivalence of (i) - (iv), we observe that for

any x ∈ K,φ1(x) < 1 iff φ2(x) < 1. We now prove the equivalence of (iv) and (v).

First we show that (iv)⇒(v).

In view of the above remark, it is enough to show that φ1(x) = 1 iff φ2(x) = 1.

Suppose that φ1(x) = 1 and φ2(x) 6= 1 , then we must have φ2(x) > 1 , which implies

φ2(x−1) < 1 and hence φ1(x−1) < 1 which is impossible as φ1(x−1) = 1. Interchanging

the roles of φ1, φ2 we see that φ2(x) = 1 =⇒ φ1(x) = 1.

(v) =⇒ (iv) Let x ∈ K be such that φ1(x) < 1; we need to show that φ2(x) < 1. By

virtue of (v), φ2(x) ≤ 1 but φ2(x) 6= 1 , otherwise φ1(x−1) ≤ 1 i.e., φ1(x) ≥ 1 which is

not so. Therefore φ2(x) < 1. �
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1.2 Approximation Theorem

The first instance where the Approximation Theorem had been formulated and

proved, including Archimedean absolute values was Artin−Whaples paper of 1945.

Hasse’ in the first edition of his book ZahlenTheorie which was completed in 1938

but was published in 1949 has proved the Approximation Theorem for Algebraic

Number Fields and Algebraic Function Fields.

Theorem 1.7 Let φ1, φ2, · · · , φn be nontrivial, pairwise nonequivalent absolute values

of a field K. Then for arbitrary chosen elements x1, x2, · · · , xn of K and a positive

real number ε, there exists an element x ∈ K satisfying the inequalities φi(x−xi) < ε

for 1 ≤ i ≤ n.

For the proof of Approximation theorem we need the following two lemmas.

Lemma 1.8 Let φ be an absolute value of a field K. For an element a ∈ K , the

following hold :

(i) If φ(a) < 1 , then lim
n→∞

an = 0

(ii) If φ(a) < 1 , then lim
n→∞

(
an

1 + an
) = 0

(iii) If φ(a) > 1 , then lim
n→∞

(
an

1 + an
) = 1

(Recall that lim
n→∞

xn = x if lim
n→∞

φ(xn − x) = 0).

Proof. (i) is obvious .

(ii) Since we have 1− φ(a)n ≤ φ(1 + an) ≤ 1 + φ(a)n

we obtain by squeeze principle lim
n→∞

φ(an + 1) = 1

hence

lim
n→∞

φ(
an

1 + an
) = lim

n→∞

φ(an)

φ(1 + an)
= 0

and (ii) is proved .

(iii) Note that lim
n→∞

φ(
an

1 + an
− 1) = lim

n→∞
φ(
−a−n

1 + a−n
) = lim

n→∞

φ(a−n)

φ(1 + a−n)
The last limit is zero by virtue (ii).
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Lemma 1.9 Let φ1, φ2, · · · , φs be a finite number of mutually non-equivalent absolute

values of a field K. Then there exists an element a of K such that

φ1(a) > 1, φ2(a) < 1, · · · , φs(a) < 1

.

Proof We prove the lemma when s = 2 . Since φ1(x) and φ2(x) are not equivalent, by

virtue of Proposition 1.2, there exist b, c ∈ K such that φ1(b) < 1, φ2(b) ≥ 1, φ1(c) ≥
1, φ2(c) < 1.Then the element a = b−1c satisfies φ1(a) > 1, φ2(a) < 1 thereby proving

the lemma in this case .

For general s, we utilize induction on s. Assuming that the lemma holds for s − 1,

we choose b, c of K such that the following inequalities will be satisfied

φ1(b) > 1, φ2(b) < 1, · · · , φs−1(b) < 1; φ1(c) > 1, φs(c) < 1

For proving the lemma, we construct a sequence {an} of elements of K such that

lim
n→∞

φ1(an) > 1 and lim
n→∞

φi(an) < 1 for 2 ≤ i ≤ s

Consider the following two cases :

(i) φs(b) ≤ 1 . Set an = cbn (n = 1, 2, · · · ) , then we have φ1(an) > 1, φs(an) < 1 and

lim
n→∞

φi(an) = 0 for 2 ≤ i ≤ s− 1. Also lim
n→∞

φs(an) = 0 or φs(c) < 1.

(ii) φs(b) > 1 . We set an = cbn

1+bn
. Then by Lemma 1.8,we have

lim
n→∞

φ1(an) = φ1(c) > 1,

lim
n→∞

φs(an) = φs(c) < 1, lim
n→∞

φi(an) = 0 for 2 ≤ i ≤ s− 1

Proof of Approximation Theorem. Choose δ > 0 such that

δ(φi(x1) + · · ·+ φi(xs)) < εfor1 ≤ i ≤ s (1.15)

In view of Lemma 1.9 for each i we can choose an element yi ∈ K, 1 ≤ i ≤ s , such

that φi(yi) > 1 , φj(yi) < 1(i 6= j) , 1 ≤ i, j ≤ s.

Set zin = yi
n

1+yin
, then by Lemma 1.8, φj(zin) −→ 0 as n −→∞ for i 6= j,
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φi(zin − 1) −→ 0 as n −→ ∞. Given δ > 0, choose r sufficiently large such that

φi(zir − 1) < δ, φj(zir) < δ for i 6= j, 1 ≤ i, j ≤ s. Set zi = zir for 1 ≤ i ≤ s so that

φi(zi − 1) < δ, φj(zi) < δ, j 6= i, 1 ≤ i, j ≤ s (1.16)

Then the element x = x1z1 + · · ·+ xszs satisfies the desired condition. We verify

for i = 1.

φ1(x− x1) = φ1(x1(z1 − 1) + x2z2 + · · ·+ xnzn)

≤ φ1(x1)φ1(z1 − 1) + φ1(x2)φ1(z2) + · · ·+ φ1(xn)φ1(zn)

< δ(φ1(x1)+φ1(x2)+· · ·+φ1(xn)) ≤ ε (in view of (1.15) and (1.16)). �

Corollary 1.10 (Independence Theorem) Let φ1, φ2, · · ·φn be a finite number of

mutually non-equivalent non-trivial absolute values of a field K. Then for 1 ≤ r ≤
n, there exists an element a ∈ K such that the inequalities

φ1(a) > 1, · · · , φr(a) > 1, φr+1(a) < 1, · · · , φn(a) < 1 hold.

Proof Choose xi ∈ K such that φi(xi) > 3/2 for 1 ≤ i ≤ r and φj(xi) <

1/2 for r + 1 ≤ j ≤ n. Then by Approximation theorem, ∃ a ∈ K such that

φi(a − xi) < 1/2 for 1 ≤ i ≤ n. Now φi(a) ≥ φi(xi) − φi(a − xi) > 1 for

1 ≤ i ≤ r and φi(a) ≤ φi(a − xi) + φi(xi) < 1/2 + 1/2 for all r + 1 ≤ i ≤
n. �

Remark The Approximation theorem is equivalent to saying that the diagonal set

{(x, x, x, · · · , x)/x ∈ K} is dense in the product topology K1×K2× · · · ×Kn where

Ki = K for each i, with the topology given by φi.

12



1.3 Completions

Definition Topological Field A topological field is a set F , which contains a field

structure and a topology satisfying the following axioms:

(i) The mapping (x, y) −→ x+ y of F × F −→ F is continuous ;

(ii) The mapping x −→ −x of F −→ F is continuous ;

(iii) The mapping (x, y) −→ xy of F × F −→ F is continuous ;

(iv) The mapping x −→ x−1 of F ∗ −→ F ∗ is continuous ;

where F × F carries the product topology.

Proposition 1.11 Let K be a field with a absolute value φ . Then K is a topological

field with respect to the topology induced by φ.

Proof Let x, y, x′, y′ be elements of K. The continuity of the mapping (x, y) −→ x+y

follows immediately from the inequality

φ((x′ + y′)− (x+ y)) ≤ φ(x′ − x) + φ′(y′ − y)

For proving continuity of (x, y) −→ xy , it is clearly enough to verify that

φ(x′y′ − xy) ≤ φ(x′ − x)φ(y′ − y) + φ(x)φ(y′ − y) + φ(y)φ(x′ − x) (1.17)

Write x′y′ + xy = (x′ − x)(y′ − y) + xy′ + x′y

i.e., x′y′ − xy = (x′ − x)(y′ − y) + xy′ + x′y − 2xy

i.e., x′y′ − xy = (x′ − x)(y′ − y) + x(y′ − y) + y(x′ − x)

which quickly yields (1.17). Futhermore, let a be a non-zero element of K and suppose

a′ is another element such that φ(a′−a) < φ(a)
2

. Then φ(a′) ≥ φ(a)−φ(a′−a) > φ(a)
2

.

So a′ 6= 0 and

φ(a′−1 − a−1) =
φ(a′ − a)

φ(a′)φ(a)
<

2φ(a′ − a)

φ(a)2

The above ineuality shows that the mapping x −→ x−1 is continuous on K∗. Thus K

is a topological field. �
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Definition: A sequence {an} of elements of K is called a Cauchy sequence if to

any ε > 0, there corresponds a positive integer N such that φ(an − am) < ε for all

n,m ≥ N . The sequence {an} converges to an element a of K if for any ε > 0 ,there

exists a positive integer N such that φ(an − a) < ε for all n ≥ N .

A convergent sequence is a Cauchy sequence but the converse is not always true.

When every Cauchy sequence of elements of K is convergent to an element of K, we

say that the field K is complete w.r.t. φ or that (K,φ) is complete field. We now

show that every field K with a non-trivial absolute value can be densely embedded

into a field complete w.r.t. an absolute value extending the given one.

Theorem 1.12 There exists a field K̂,complete under an absolute value φ̂ and an

embedding i : K −→ K̂, such that φ(x) = φ̂(i(x)), ∀ x ∈ K. The image i(K) is

dense in K̂. If (K̂ ′, φ̂′) is another such pair, then there exists a unique continuous

isomorphism f : K̂ −→ K̂ ′ preserving the absolute value such that i′ = f ◦ i.

Proof Step I Existence of (K̂, φ̂) Let C be the set of all Cauchy sequences {xn} of

elements of K with component-wise addition and multiplication. C is commutative

ring with 1 = {1}n. The set N = {{xn}n∈N | lim
n→∞

xn = 0} is an ideal of C. Note that

{φ(an) | n ∈ N} associated with a Cauchy sequence {an} is always bounded.

We now show that N is maximal ideal of C. Indeed let us suppose that I is an ideal

of C, different from N , such that C ⊇ I ⊃ N . If {an} is an element of I which is not

contained in N . So, ∃ ε◦ > 0 such that given any m, ∃ n > m with φ(an) ≥ ε◦. Since

{an} is Cauchy sequence, for given ε◦ ∃ n◦ such that φ(an − am) < ε◦/2 ∀ n,m ≥ n◦

and ∃ n1 ≥ n◦ such that φ(an1) ≥ ε◦. Also φ(an1−am) < ε◦/2 ∀m > n◦. So,∀m > n◦,

φ(am) ≥ φ(an1)− φ(an1 − am) ≥ ε◦ − ε◦/2 = ε◦/2 (1.18)

Let {bn} denote the sequence in K defined by bn = 1 ∀ n ≤ n◦ and bn = a−1
n ∀ n > n◦.

We now verify {bn} is a Cauchy sequence. Let ε > 0 be given, ∃ N such that

φ(an − am) < εε2◦/4 ∀ n ≥ N (1.19)

∴ for m,n ≥ max{n◦, N}, We have by virtue of (1.18) and (1.19)

φ(bn − bm) = φ(a−1
n − a−1

m ) =
φ(an − am)

φ(an)φ(am)
< ε.

14



So {bn} is Cauchy sequence and {anbn} ∈ I is a constant sequence ∀ n ≥ n◦. Since

{a−1
1 , a−1

2 , a−1
n · · · 0, 0, 0, 0} ∈ N ⊆ I. Therefore the constant sequence {1, 1, 1 · · · } ∈

I. Hence I = C. So, N is a maximal ideal of C. We denote the field C/N by K̂.

We now define φ̂ on K̂. Let ξ be any element of K̂ having a sequence {an} as a

representative. Then for any ε > 0, ∃ a positive integer N such that for n,m ≥ N,

| φ(an)− φ(am) |≤ φ(an − am) < ε.

Hence {φ(an)} is a Cauchy sequence in non negative real numbers and converges to a

non negative real number, its limit does not depend upon the choice of representative

{an} of ξ. We define φ̂(ξ) = lim
n→∞

φ(an). One can easily check that φ̂ satisfies the

properties of an absolute value on K̂. The mapping i : K −→ K̂ defined by a −→
class of constant sequence with entry a is obviously an injective homomorphism by

means of which we identify K with a subfield of K̂. Clearly φ̂(a) = φ(a) ∀ a ∈ K.

Step II Density of K in K̂. Let ξ be any element of K̂ with the sequence {an} as

a representative. Let ε > 0 be given, ∃ a positive integer n◦ such that φ(an − am) <

ε/2 ∀ n,m ≥ n◦. Fix any m ≥ n◦, then φ̂(ξ − am) = lim
n→∞

φ(an − am) ≤ ε/2 < ε.

This proves that K is dense in K̂.

Step III Completeness of K̂. Let {ξn} be a Cauchy sequence in K̂. Since K

is dense in K̂ by step II, ∀ n, ∃ an ∈ K such that φ̂(ξn − an) < 1/n. We verify that

{an} is a Cauchy sequence in K. Let ε > 0 be given, ∃ n◦ such that φ̂(ξn − ξm) <

ε/2 ∀ n,m ≥ n◦. It may further be assumed that 1/n◦ < ε/4. Then ∀ n,m ≥ n◦, we

have φ(an − am) ≤ φ̂(an − ξn) + φ̂(ξn − ξm) + φ̂(ξm − am) < 1/n+ ε/2 + 1/m < ε.

Hence {an} is a Cauchy sequence in K whose class is an element ξ of K̂. We show

that (ξn) converges to ξ. Let ε > 0 be given. ∃ N > 2/ε such that φ(an − am) <

ε/2 ∀ n,m ≥ N . Now for any n ≥ N, φ̂(ξn − ξ) ≤ φ̂(ξn − an) + φ̂(an − ξ)
< 1/n+ lim

m→∞
φ(an − am) < ε/2 + ε/2. This proves the completeness of K̂.

Step IV Uniqueness of completion Let (K̂ ′, φ̂′) be any other pair with the same

properties as (K̂, i).For every ξ = {an}+N ∈ K̂, the sequence {i′(an)} is a Cauchy
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sequence in K̂ ′. Let ξ′ be its limit in K̂ ′. Define f(ξ) = ξ′. From uniqueness

of limits, it follows that f is a homomorphism and injective map. We now verify

f is surjective. Let ξ′ ∈ K̂ ′. As i′(K) is dense in K̂ ′, ∃ a sequence {an} ∈ K

such that {i′(an)} converges to ξ′. So, {i(an)} and hence {an} is a Cauchy sequence

which shows that ξ = {an} + N is the pre-image of ξ′. We now show that f is

absolute value preserving. Let ξ = {an} + N ∈ K̂. Then f(ξ) = lim
n→∞

i′(an).

Therefore φ̂′(f(ξ)) = lim
n−→∞

φ̂′(i′(an)) = lim
n−→∞

φ(an) = φ̂(ξ) which completes the

proof. �

Definition A pair (K̂, φ̂) as in Theorem 1.12 called a completion of the absolute

value field (K,φ).

Corollary 1.13 The completion of Q w.r.t. the usual absolute value is R.

Definition The completion of Q w.r.t. p− adic absolute value φp is called the field

of p− adic numbers. We shall discuss these fields in Chapter 2.
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1.4 Normed Spaces

Definition Let (K,φ) be an absolute valued field , and let E be a vector space over

K. A real valued function ‖ x ‖ defined for elements x of E is called a norm if it

satisfies the following conditions:

(i) ‖ x ‖≥ 0 ; ‖ x ‖= 0⇐⇒ x = 0

(ii)for α ∈ K and x ∈ E, we have ‖ αx ‖= φ(α) ‖ x ‖.
(iii) ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖.
The vector space E is then called a normed space. A normed space E has the

structure of a metric space with distance of x, y ∈ E defined as ‖ x− y ‖.

Definition Norms ‖ . ‖1 and ‖ . ‖2 of a vector space E are called equivalent if

there exist constants c1, c2 such that ‖ x ‖1≤ c1 ‖ x ‖2, ‖ x ‖2≤ c2 ‖ x ‖1 ∀x ∈ E.

Remark Equivalent norms induce the same topology.

DefinitionLet φ be an absolute value of a field K. Let E be a finite dimensional

vector space over K with a basis {x1, x2, · · · , xn}. A norm ‖ x ‖◦ is obtained by

setting

‖ x ‖◦= maxi{(φ(αi))}

where x = α1x1 + α2x2 + · · ·+ αnxn (called max norm)

Remark The above norm (max norm) induces the product topology on E. Indeed

once a basis {x1, x2, · · · , xn} of E is fixed, there is a canonical isomorphism from

Kn −→ E mapping (α1, · · · , αn) to α1x1 + · · · + αnxn where E is endowed with a

topology induced by this max norm and Kn with the product topology where on K we

take the topology corresponding to φ. If K is complete w.r.t. φ, then E is complete

w.r.t. the max- norm, because product of two complete metric spaces is complete;

indeed the product topology of two complete metric spaces (X1, d1), (X2, d2) is given

by the metric d((x1, x2), (y1, y2)) = max(d1(x1, y1), d2(x2, y2)).
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Note In case K1 is a field extension of K, every absolute value φ1 of K1 that restricts

to φ on K is a norm of K1 compatible with φ. If K1 is finite extension of K and K is

complete with respect to φ, then it will be shown that K1 admits only one absolute

value φ1 restricting to φ on K. Moreover K1 is complete with respect to φ1.

Theorem 1.14 Let φ be a non-trivial absolute value of field K and let E be a vector

space over K.Then any two norms ‖ . ‖1 and ‖ . ‖2 on E inducing same topology

must be equivalent.

Proof. As φ is non trivial absolute value of K, ∴ ∃ an α ∈ K such that φ(α) = r > 1.

We need to show that ∃ a constant c1 such that

‖ x ‖1≤ c1 ‖ x ‖2 ∀ x ∈ E (1.20)

Suppose to the contrary it is not true, so ∀ positive integer m,∃ xm ∈ E such that

‖ xm ‖1> m ‖ xm ‖2 (1.21)

∃ k ∈ Z, depending on m such that rk ≤‖ xm ‖1< rk+1, i.e., 1≤‖ ym ‖1< r, where

ym = xm/α
k (1.22)

but by (1.21), ‖ ym ‖1> m ‖ ym ‖2 ∀ m. Hence, ‖ ym ‖2< 1/m ‖ ym ‖1< r/m. Thus

ym −→ 0 as m −→ ∞ w.r.t.‖‖2, but ym 9 0 as m −→ ∞ w.r.t.‖‖1, ∵‖ ym ‖1≥ 1

which contradicts the fact that they induce the same topology. Thus (1.20) is proved

interchanging the role of ‖ . ‖1 and ‖ . ‖2 We see that ∃ c2 such that ‖ x ‖2 ≤ c2 ‖ x ‖1

∀ x ∈ E. �

Theorem 1.15 Let K be a field complete with respect to a absolute value φ. Then any

two norms (compatible with φ) of finite dimensional K- vector space E are equivalent.

Proof We shall prove that every norm ‖ . ‖ on E is equivalent to max norm ‖ . ‖◦. We

apply induction on the dimension n of the K vector space E. For n=1, the statement
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is obvious. Assume the theorem is true for n− 1, n ≥ 2, Fix a basis {w1, w2, · · · , wn}
of E over K and for

ξ = α1w1 + · · ·+ αnwn ∈ E

‖ ξ ‖≤ φ(α1) ‖ w1 ‖ +φ(α2) ‖ w2 ‖ + · · ·+ φ(αn) ‖ wn ‖

≤‖ ξ ‖◦ (‖ w1 ‖ + ‖ w2 ‖ + · · ·+ ‖ wn ‖)

= µ ‖ ξ ‖◦

where µ =‖ w1 ‖ + · · ·+ ‖ wn ‖
Hence it now suffices to show that ∃ a constant C such that ‖ ξ ‖◦≤ C ‖ ξ ‖ always

holds. Suppose to the contrary that no such C exists.Then for every positive integer

m, there exists ξ′m ∈ E such that

ξ′m =
∑

αiwi, ‖ ξ′m ‖◦> m ‖ ξ′m ‖ (1.23)

Let j be such that φ(αj) = max1≤i≤n{φ(αi)}.Letting ξm = α−1
j ξ′m. We conclude from

(1.23) that ‖ ξm ‖◦= 1 and thus

‖ ξm ‖< 1/m (1.24)

Now for every m ≥ 1 one of the coefficients of components of ξm equals 1. Thus there

must be an infinite subset T of N and fixed j such that coefficient of jth component

of ξm equals to 1 for all m ∈ T . We fix this number j from now on until the end.

Consider the subspace E1 of E consisting of all vectors whose jth co-ordinate is equal

to 0, equipped with the norm induced by ‖ . ‖. By induction, the restrictions of ‖ . ‖
and ‖ . ‖◦ to E1 are equivalent. For each m ∈ T , we can write ξm = wj + ζm with

ζm ∈ E1.We verify {ζm} is a Cauchy sequence in E1. Let ε > 0 be given ∃ N such

that 2/N < ε. If m,n ≥ N ;m,n ∈ T ,then

‖ ζm − ζn ‖ = ‖ ζm + wj − wj − ζn ‖ ≤ ‖ ξm − ξn ‖

≤ ‖ ξm ‖ + ‖ ξn ‖ < 1/m+ 1/n ≤ 2/N < ε

Consequently {ζm}m∈T is a Cauchy sequence with respect to the restriction of ‖ . ‖ to

E1.By induction it follows that {ξm} is also Cauchy w.r.t. ‖ . ‖◦. Since E1 is complete
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w.r.t. ‖ . ‖◦, {ζm} converges to some ζ ∈ E1. By (1.24), ‖ ξm ‖=‖ wj+ζm ‖< 1/m for

every m ∈ T . So ζm converges to −wj. Therefore, ζ = −wj but −wj /∈ E1. Thus con-

tradiction proves the theorem. �

The following corollaries will be quickly deduced from the above theorem.

Corollary 1.16 If (K,φ) is complete absolute valued field and (K1, φ1) is a finite ex-

tension of (K,φ), then (K1, φ1) is complete.

Corollary 1.17 Let K be a field with absolute value φ. Let (K1, φ1) be a finite extension.

Let (K̂, φ̂) be completion of (K,φ), then K̂1 = K̂K1.

Proof. Since K̂K1 ⊆ K̂1 and K̂K1 is complete being a finite extension of K̂(by the

above corollary), therefore, K̂ ⊆ K̂K1. So, equality holds i.e. K̂1 = K̂K1.

Corollary 1.18 Let φ be an absolute value of K w.r.t. which it is complete. The

extension of φ as an absolute value to a finite extension K1 of K, if it exists, is

unique.

Proof. Let φ1, ψ1 be extension of (φ,K), then by Theorem 1.15, ψ1, φ1 induce

the same topology on K1, therefore by Theorem 1.5, ∃ positive real number λ

such that ψ1 = φλ1 but φ1 and ψ1 coincide on K.So, λ = 1 if φ is non triv-

ial. But if φ is trivial on K, then topology on K is discrete.The topology on

K1 induced by φ1, ψ1 are both discrete. So the absolute values φ1, ψ1 are both

trivial. �

The following theorem gives another proof of corollary 1.18.

Theorem 1.19 Let K be a field complete w.r.t. an absolute value φ and let K1 be a

finite extension of K. Suppose that K1 admits an extension φ1 of φ. Then we have

φ1(α) = (φ(NK1/K(α)))1/r, r = [K1 : K]

and with respect to φ1, K1 is complete.

Proof. The absolute value φ1 is a norm on the vector space K1 over K, and coincides

with φ on K. Let {w1, w2, · · · , wr} be a base of K1 over K and for an element
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α = a1w1 + a2w2 + · · ·+ arwr of K1, we set ‖ α ‖◦= maxi{φ(ai)}. Then as norm φ1

is equivalent to ‖ ‖◦ by the Theorem 1.15, whence we see that K1 is complete with

respect to φ1. Suppose now that φ1(α) < 1.Then we can show that (φ(NK1/K(α)) < 1

as follows. Write αn = a
(n)
1 w1 + · · ·+ a

(n)
r wr. Since φ1 is equivalent to max norm and

φ1(αn) −→ 0 as n −→ ∞, it is clear that φ(ai
(n)) −→ 0 as n −→ ∞ for 1 ≤ i ≤ r.

Note that NK1/K(αn) is a homogeneous polynomial of degree r in a
(n)
1 , · · · , a(n)

r and

hence φ(NK1/K(αn)) −→ 0 as n −→ ∞, i.e., φ(NK1/K(α))n as n −→ ∞ which proves

that φ(NK1/K(α)) < 1. We have consequently φ(NK1/K(α)) > 1 when φ1(α) > 1.

Hence we have whenever φ(NK1/K(α)) = 1, then φ1(α) = 1.Now when we are given

an element α ∈ K∗1 , we have NK1/K( αr

NK1/K
(α)

) = 1 and hence we obtain

φ1(
αr

NK1/K(α)
) = φ(αr)/φ(NK1/K(α)) = 1

. =⇒ φ1(α) = (φ(NK1/K(α))1/r. This completes the proof. �

Note If n = 2, NK1/K(αn) = (a
(n)
1 σ1(w1) + a

(n)
2 σ1(w2))(a

(n)
2 σ2(w1) + a

(n)
2 σ2(w2))

= (a
(n)
1 )2NK1/K(w1) + a

(n)
1 a

(n)
2 TrK1/K(w1w2) + (a

(n)
2 )2(NK1/K(w2))

.

Note If (K,φ), (K1, φ1) defined as in the above theorem, then we shall prove in

next chapter by using Hensel’s lemma that the mapping φ1 defined by φ1(α) =

(φ(NK1/K(α)))1/r is indeed an absolute value of K1.
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1.5 The determination of complete Archimedean

valued fields

Suppose K is a complete field with respect to an Archimedean absolute value φ.

Since the set {φ(n.1)/ ∈ Z} is not bounded, char K=0. Thus K contains the field

Q of rational numbers. By Theorem 1.4, φ restricted to Q is equivalent to usual

absolute value of Q. Thus, the complete field K contains completion of Q with

respect to the ordinary absolute value ,i.e., Kcontains R as a closed subfield. We

shall then show that K must be isomorphic to C or R. This result was first proved

by Ostrowski in 1917. the proof given here is due to Hasse. Recall that if K,L are

fields with absolute values φ and ψ. Then (K,φ) is said isomorphic (L, ψ) (as absolute

valued field), if ∃ a field isomorphism f : K onto L preserving absolute values i.e.,

ψ(f(x)) = φ(x)∀x ∈ K.

Lemma 1.20 Let K be a field complete w.r.t. an absolute value φ and E be quadratic

extension of K.Then a real valued function φE : E −→ R defined by

φE(α) =
√
φ(N(α))

where N is the norm NE/K, is an absolute value on E.

Proof For the purpose of showing that φE is an absolute value , it is sufficient to

show that the inequality

φE(α− 1) ≤ 1 + φE(α) (1.25)

holds for every element α ∈ E. Suppose that there exists an element α ∈ E, (α @ K)

such that φE(α − 1) > 1 + φE(α). We set ᾱ to be the conjugate of α (w.r.t. K) and

set (X−α)(X− ᾱ) = X2 + bX+ c; b, c ∈ K, c 6= 0. We now have by our assumption

φE(α− 1) =
√
φ(N(α− 1)) =

√
φ(α− 1)φ(ᾱ− 1) =

√
φ(1 + b+ c)

and

φE(α) =
√
φ(N(α) =

√
φ(αᾱ) =

√
φ(c)

∴
√
φ(1 + b+ c) > 1 +

√
φ(c)
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=⇒ φ(1 + b+ c) > 1 + 2
√
φ(c) + φ(c)

=⇒ 1 + φ(b) + φ(c) ≥ φ(1 + b+ c) > 1 + 2
√
φ(c) + φ(c)

=⇒ (φ(b))2 > 4φ(c) (1.26)

Since c 6= 0, we have φ(b) > 0, we then set a◦ = b and construct a sequence

a1, a2, · · · by defining

an+1 = −b− c/an

We now show an is never zero and the sequence {an} is Cauchy sequence. Since K

is complete, so {an} converges and therefore there exists an element a ∈ K to which

{an} converges and hence we have

a = −b− c/a i.e. a2 = −ba− c

which implies that α = a ∈ K which is contradiction. Thus the proof is complete,

once we show that an 6= 0 and {an} is Cauchy sequence. To show that an 6= 0, it

suffices to show that

φ(an) ≥ φ(b)/2 (1.27)

Clearly φ(a◦) ≥ φ(b)/2, suppose φ(an) ≥ φ(b)/2, then

φ(an+1) ≥ φ(b)− φ(c)/φ(an) ≥ φ(b)− 2φ(c)/φ(b) > φ(b)− φ(b)/2 = φ(b)/2.

The last inequality holds in view of (1.26). Thus an+1 6= 0. It only remains to check

that {an} is a Cauchy sequence. For n ≥ 0, keeping in mind (1.27), we have

φ(an+1 − an) = φ(c/an − c/an−1) = φ(c)φ(an − an−1)/φ(an)φ(an−1)

≤ 4φ(c)φ(an − an−1)/φ(b)2.

Set ρ = 4φ(c)/φ(b)2. By (1.26), ρ < 1, The above inequality gives

φ(an+1 − an) ≤ ρφ(an − an−1) (1.28)

Therefore the series
∑∞

n=1 φ(an−an−1) is majorised by φ(a1−a0)
∑∞

k=0 ρ
k and hence

is convergent. In particular

lim
n−→∞

φ(an+1 − an) = 0 (1.29)
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For any n ≥ 0, k ≥ 1, by virtue of (1.28), we have

φ(an − an+k) ≤ φ(an − an+1)(1 + ρ+ · · ·+ ρk−1).

which tends to zero as n −→ ∞ in view of (1.29), there by proving that {an} is a

Cauchy sequence.

Theorem 1.21 (Ostrowski, 1917)Let K be a field complete with respect to an Archimedean

absolute value φ. Then (K,φ) is isomorphic to (R, |.|λ) or (C, |.|λ) for some λ > 0.

Proof. Since K is complete with respect to Archimedean absolute value. So charac-

teristic of K is zero. We may consider K as an extension of Q. Since the restriction

of φ to Q is the usual absolute value |.| and the completion of Q under the metric

| | is the real number field R. Hence we may assume that K is the extension of R
and restriction of φ to R is usual absolute value |.|. Suppose first that the equation

X2 + 1 = 0 is solvable in K, then we assume that K contains C. For element

a+ b
√
−1 ∈ C, we have by Theorem 1.19

φ(a+ b
√
−1) =

√
|N(a+ b

√
−1)| =

√
a2 + b2 ; a, b ∈ R

Hence K contains C not just as an algebraic subfield but as a field with absoute value.

Now we show that K equals to C. Suppose to contrary K contains C properly. Fix

an element a ∈ k such that a /∈ C. Consider the mapping z −→ φ(z − a) defined

on C. It is continuous on C. Note that for |z| > 2φ(a), φ(z − a) ≥ φ(z) − φ(a) =

|z| − φ(a) > φ(a). So

min{φ(z − a)|z ∈ C} = min{φ(z − a) | |z| ≤ 2φ(a), z ∈ C} (1.30)

Since the set {z ∈ C | |z| ≤ 2φ(a)} is compact subset of C and the mapping z −→
φ(z − a) is continuous on C, therefore the set on the R.H.S. of (1.30) is a compact

subset of positive real numbers. So ∃ zo ∈ C such that φ(zo − a) = min{φ(z − a)|z ∈
C}, set a1 = a − zo and denote φ(a − zo) = φ(a1) by λ. Fix an element z 6= 0 in C
with |z| < λ. We shall show that,

φ(mz − a1) = λ ∀ m ∈ N; (1.31)
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this will give us a contradiction because

φ(mz − a1) ≥ φ(mz)− φ(a1) = m|z| − φ(a1) −→∞ as m −→∞.

We first prove (1.31) for m = 1. Let n be a positive integer and ξ be a primitive

n− th root of unity. Since zn − a1
n =

∏n
i=1(ξiz − a1) we have

n∏
i=1

φ(ξiz − a1) = φ(zn − a1
n) ≤ φ(z)n + φ(a1

n) = φ(z)n + λn

which by virtue of φ(ξiz − a1) = φ(ξiz − a+ zo) ≥ λ implies that

φ(z − a1) ≤ φ(z)n + λn∏n−1
i=1 φ(ξiz − a1)

≤ φ(z)n + λn

λn−1
= |z|( |z|

λ
)
n−1

+ λ.

Since |z| < λ, letting n −→∞ the above inequality implies that φ(z − a1) ≤ λ. Since

φ(z − a1) = φ(z + zo − a) ≥ λ, it follows that φ(z − a1) = λ. Repeating the above

argument replacing a1 by a1−z = a2 (say) we shall obtain φ(z−a2) = φ(2z−a1) = λ.

In this way (1.31) is proved and hence the theorem is this case.

Consider the case when K does not contain
√
−1, By Lemma 1.20, φ can be extended

to an absolute value φ1, of the field K(
√
−1) with respect to which K(

√
−1) is

complete by Theorem 1.15. By case I, K(
√
−1) = C . Since K ⊇ R, we conclude K =

R. �

Remark It is immediate from the above theorem that (K,φ) is complete Archimedean,

and K1 is a finite extension of K, then φ can be extended to an absolute value of K1.

The analogous result, when φ is non-Archimedean will be proved in the next chapter

using Hensel’s Lemma.

Lemma 1.22 (a) R has only one automorphism.

(b) C has only two continuous automorphisms viz. identity and complex conjugation.

Proof (a)Let f be automorphism of R. Then f is identity on Q. Since f maps

squares to squares. So f maps positive real numbers to positive real numbers, i.e.,

25



whenever a < b then f(a) < f(b). Let r be any real number .There exist a sequence

{pn/qn} of rational numbers such that

| r − pn/qn |< 1/n, i.e. r − 1/n < pn/qn < r + 1/n

So, f(r − 1/n) < f(pn/qn) < f(r + 1/n), i.e., f(r)− 1/n < pn/qn < f(r) + 1/n

So, {pn/qn} converges to f(r). Hence f(r) = r.

(b)Let f be an automorphism of C. Then f is identity on Q. It is enough to prove that

f is identity on R. Let r be any real number, there exist a sequence {pn/qn} in Q con-

verging to r. Then the sequence {f(pn/qn)} converges to f(r). But f(pn/qn) = pn/qn.

So f(r) = r. �

Notation Suppose K is a field embeddable in C, i.e., there exists a isomorphism

σ from K into C. In this situation, we denote by φσ an absolute value of K defined

by φσ(x) =| σ(x) | ∀x ∈ K. Note that for isomorphisms σ, ς : K −→ C, φσ ∼ φς

⇐⇒ φσ = φς .

Proposition 1.23 With the above notation, let σ and ς be isomorphisms of a field K

into C with φσ = φς . The following hold:

(1) If σ(K) ⊆ R, then σ = ς

(2) If σ(K) * R, then ς = σ or ς = σ̄.

Proof (1) By definition of completion, the completion of (K,φσ) is (R, | . |).The

completion of (K,φς) is (R, | . |) or (C, | . |). By definition of completion,it has to be

(R, | . |). So, ∃ an automorphism f : R −→ R such that f ◦ σ = ς. By above lemma,

f is identity on R. So σ = ς.

(2) σ(K) * R. By definition, completion of (K,φσ) is (C, | |).The completion of

(K,φς) is (R, | |)or (C, | |). By uniqueness of completion, it has to be (C, | . |). So,

there exists an automorphism f : C −→ C, | f(z) |=| z | ∀z ∈ C such that f ◦ σ = ς.

Such a function f is continuous.Hence, by the above lemma, f = identity or complex

conjugation. So,

σ = ς or σ̄ = ς
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.

Theorem 1.24 Let φ be an Archimedean absolute value of a field K. Then ∃ an

isomorphism σ from K into C such that φ ∼ φσ.

Proof φ restricted to Q is equivalent to the usual absolute value. By Theorem 1.21,

the completion (K̂, φ̂) of (K,φ) is isomorphic to (R, | . |λ) or (C, | . |λ) for some λ

positive. In any case there is an isomorphism σ̂ : K̂ into C such that φ̂(α) = |σ̂(α)|λ

for α ∈ K̂. Now there exists an isomorphism i from K into K̂ such that φ(x) = φ̂(i(x))

∀ x ∈ K.

Consider the mapping σ̂ ◦ i : K −→ C, denote it by σ. Now for any x ∈ K,φ(x) =

φ̂(i(x)) =| σ̂(i(x)) |λ=| σ(x) |λ. So, φ ∼ φσ for some isomorphism σ from K into

C. �

Theorem 1.25 Let (K,φσ) be an Archimedean valued field and K1 be an extension of

K.If σ1 is an isomorphism from K1 into C extending σ or σ̄, then φσ can be extended

as an absolute value φσ1 on K1. Conversely, every absolute value of K1 extending φσ

is obtained in same manner.

Proof First statement is obvious. Conversely, let φ1 be an absolute value of K1

extending φσ to K1.Then by Theorem 1.21, there is an isomorphism τ1 : K1 into C
and λ > 0 such that φ1(x1) =| τ1(x1) |λ ∀ x1 ∈ K1. Let τ denote the restriction of

τ1 to K, then for any rational number p/q,

| p/q |=| σ(p/q) |= φσ(p/q) = φ1(p/q) =| τ(p/q) |λ=| p/q |λ

So λ = 1, consequently φ1(x1) =| τ1(x1) | ∀ x1 ∈ K1,

which implies that φσ(x) =| τ(x) | ∀ x ∈ τ . Hence, By Proposition 1.23, τ = σ or σ̄.

So, τ1 extends σ or σ̄. �

Corollary 1.26 Let K1/K be an algebraic extension. Then every Archimedean absolute

value of K can be extended to K1.

Proof Let φ be an Archimedean absolute value of K. Then there exists an isomor-

phism σ from K into C such that φ ∼ φσ. Since σ can be extended to isomorphism of
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K1 into C, then by Theorem 1.25, φσ has an extension φσ1 to K1 and hence φ is ex-

tendible to K1. �

Warning The above corollary is not true when K1/K is not an algebraic extension.

For example, Consider K = C and K1 = C(t) where t is transcendental element.

Then the usual absolute value of K cannot be extended to K1.Suppose if φ1 is an

absolute value of K1 extending the usual absolute value of K. Then by Theorem 1.21,

the completion of (K1, φ1) is isomorphic to (C, | |). So there exists an isomorphism

σ : K1 −→ C which is identity on C.But such an isomorphism does not exist.

Remark The analogue of Corollary 1.26 also holds for non-Archimedean values and

will be proved in the second chapter using Hensel’s Lemma.

Corollary 1.27 Let φ be an Archimedean absolute value of K. Let K1 = K(θ) be a

extension of K of degree n.Let r1, 2r2 denote respectively the number of real, complex

roots of the minimal polynomial of θ over K. Then the number of extensions of φ to

K1 are r1 + r2 or n according as the completion of (K,φ) is R or C.

Proof Let σ : K −→ C be an isomorphism such that φ ∼ φσ.The number of

extensions of φσ to K1 is same as the extensions of φ to K1. Let σ1, · · · , σr be

all the isomorphisms from K1 −→ C extending σ such that σ1, · · · , σr are real and

σr+1, σr+2, · · · , σr1+2r2 are complex with σ̄r1+j = σr1+r2+j. By Proposition 1.23, φσi =

φσj ⇐⇒ σj = (σ̄i) which is possible when σ = σ̄, i.e., σ(K) ⊆ R. So if σ(K) * R,

then all φσi , 1 ≤ i ≤ n are distinct and if σ(K) ⊆ R, then {φσ1 , φσ2 , · · · , φσr1 , φσr1+1 , · · · , φσr1+r2}
are all the distinct extensions of φσ to K1. �
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Chapter 2

Real Valuations

2.1 Real Valuations via Non-Archimedean abso-

lute values

Let φ be a non-Archimedean absolute value of a field K. Define v : K −→ R ∪ {∞}
by setting v(0) = ∞, v(x) = −log φ(x) for non-zero x ∈ K. Then v satisfies the

following properties for all x, y ∈ K.

(1) v(x) =∞ if and only if x = 0

(2) v(xy) = v(x) + v(y),

(3) v(x+ y) ≥ min{v(x), v(y)}.

Definition A mapping v : K −→ R ∪ {∞} satisfying the above three properties

is called a real valuation or classical valuation of K. The pair (K, v) is called a valued

field. Conversely if v is a real valuation of a field K, then v gives rise to a non-

Archimedean absolute value φ on K defined by φ = e−v.

The trivial valuation of K is defined to be the one for which v(x) = 0 for every non-

zero x ∈ K.

Definition Two real valuations v, v′ are said to be equivalent if there exists a real

number ρ > 0 such that v′(x) = ρv(x) for every x ∈ K.
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Remark Let K be a field. There is a natural one to one correspondence between

the set of equivalence classes of real valuations of K and the set of equivalence classes

of non-Archimedean absolute values of K given by v −→ φ = e−v;φ −→ v = −logeφ .
Also it is clear that under this one-to-one correspondence, the trivial absolute value

corresponds to the trivial valuation of K.

Definitions and Notations Let v be a valuation of a field K.

Valuation Ring The set Ov = {x ∈ K | v(x) ≥ 0} is a subring of K called the

valuation ring of v. Since v(x−1) = −v(x), for any element x ∈ K either x ∈ Ov or

x−1 ∈ Ov. So, Ov has K as a field of quotients.

Maximal Ideal The setMv = {x ∈ K | v(x) > 0} is an ideal of Ov. AsMv consists

exactly of all the non-units of Ov,Mv is maximal ideal and infact is the only maximal

ideal of Ov. Thus Ov is a local ring.

Residue field Ov/Mv is called the Residue Field of v or Residue Class Field of

v and the image of an element α ∈ Ov under the canonical homomorphism from Ov
onto Ov/Mv is called the v − residue of α and will be denoted by ᾱ.

Value GroupThe group v(K∗) is called the value group of v.

Remark If R is an integral domain with quotient field K and v is a mapping on

R satisfying the three conditions of valuation, then v gives rise to a valuation on K

in a natural manner.

Notations Let R be a U.F.D. and π be a prime element of R, then we denote

by vπ the π − adic valuation of K defined for any non-zero x ∈ R by vπ(x) = r,

where x = πry, y ∈ R, π - y. Its valuation ring Ovπ is the localization of R at prime

ideal πR. In view of the following remark the residue field of vπ is isomorphic to the
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quotient field of R/πR. In the particular case when R = Z and p is a prime number,

vp will denote the p− adic valuation of Q.

Remark Let R be a commutative ring and P be a prime ideal of R. Let RP ={
x
y
| x ∈ R, y ∈ R \ P

}
and MP =

{
x
y
| x ∈ P, y ∈ R \ P

}
. Prove that RP/MP

∼=
quotient field of R/P.

Proof We define a map f : RP −→ quotient field of R/P by defining the image

of an element x
y
∈ RP , x ∈ R, y ∈ R \ P by f(x/y) = (x+ P )(y + P )−1.

Clearly f is well defined, a ring homomorphism and x
y
∈ kerf ⇐⇒ f(x

y
) = x+P

y+P
=

P ⇐⇒ x ∈ P. So, kerf = MP . Thus RP/MP
∼= quotient field of R/P .

Strong triangle law Let v be a valuation of a field K. If x, y ∈ K are such that

v(x) 6= v(y). Then v(x+ y) = min {v(x), v(y)} .

Proof Assume that v(x) < v(y). By definition of valuation

v(x+ y) ≥ min{v(x), v(y)} = v(x) (2.1)

Again by definition of valuation

v(x) = v(x+ y − y) ≥ min{v(x+ y), v(y)}

and the above minimum has to be v(x + y) in view of the assumption v(x) < v(y).

Hence v(x+ y) = v(x) in view of equation (2.1).

Topology defined by a Real valuation Let v be a real valuation of a field K.

Then v induces a metric on K; infact it is the metric given by the corresponding

absolute value on K. A base for the neighbourhood system at a point x is the family

of all sets Nm(x) = {y ∈ K | v(x− y) > m} where m runs over all positive integers.

Note that the topology corresponding to a valuation is discrete ⇐⇒ corresponding

valuation is trivial.
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Remark Let (K, v) is a valued field with v real valuation. A sequence {xn} is Cauchy

in K ⇐⇒ v(xn+k − xn) −→∞ as n, k −→∞⇐⇒ v(xn+1 − xn) −→∞ as n −→∞,

∵ v(xn+k − xn) = v(xn+k − xn+k−1 + xn+k−1 · · · − xn)

≥ min{v(xn+k − xn+k−1), v(xn+k−1 − xn+k−2), · · · , v(xn+1 − xn)}

Notation Let (K, v) be a valued field. We shall denote by (K̂, v̂) the completion of

(K, v) with respect to the topology defined above.

Theorem 2.1 Let (K, v) be a valued field with a real valuation v. Then the value groups

of v and v̂ are same, the valuation ring Ov̂ of v̂ equals to Ov +Mv̂ and the residue

fields of v and v̂ are canonically isomorphic.

Proof Let x ∈ K̂∗ be given. By the density of K in K̂ there exists z ∈ K with

v̂(z − x) > v̂(x). But then by Strong Triangle Law, we have v̂(z) = min{v̂(z −
x), v̂(x)} = v̂(x). So, the value groups of v and v̂ are same. For any given α ∈
Ov̂,∃ a ∈ Ov such that v̂(α−a) > 0, So, Ov̂ = Ov+Mv̂. Also, clearlyMv = Ov∩Mv̂.

Therefore by second theorem of isomorphism, we have Ov̂/Mv̂
∼= Ov/Ov ∩ Mv̂ =

Ov/Mv. �

For the valuations of field K, there is a stronger view of Approximation Theorem

given by

Theorem 2.2 Let v1, v2, · · · , vn be pairwise inequivalent valuations of a field K with

value groups Γ1,Γ2, · · · ,Γn. Then for any x1, · · · , xn ∈ K and γi ∈ Γi, 1 ≤ i ≤
n, ∃ x ∈ K such that vi(x− xi) = γi.

Proof Atmost one of vi can be trivial, say v1 is trivial. Choose yi ∈ K such that

vi(yi) = γi for 2 ≤ i ≤ n (2.2)
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By Approximation Theorem, ∃ z, y ∈ K such that

vi(z − xi) > γi, vi(y − yi) > γi for 2 ≤ i ≤ n (2.3)

Infact y and z can be chosen such that y + z 6= x1. ∵ if y + z = x1, we replace y by

y′ = y+ yo where yo ∈ K is a non-zero element with vi(yo) > γi for each i ≥ 2, such

an element yo exists(in view of Approximation Theorem). Now v1(y+z−x1) = 0 = γ1.

For 2 ≤ i ≤ n, we have by (2.2),(2.3) and Strong Triangle Law

vi(y) = vi(y − yi + yi) = min{vi(y − yi), vi(yi)} = vi(yi) = γi

vi(y + z − xi) = min{vi(y), vi(z − xi)} = γi

So, x = y+z satisfies the desired property. �

Remark The above theorem does not hold for Archimedean absolute values. For

example, let φ = the usual absolute value on K = Q(
√

5), ψ be the absolute value

defined by ψ(a + b
√

5) =| a − b
√

5 |, and ψ5 be the normalized absolute value cor-

responding to the 5 − adic value of K, i.e., Claim: ψ5(x) = (1/5)v5(x). Claim that

there does not exist any x ∈ K such that φ(x) = 1, ψ(x) = 3, ψ5(x) = 1. Suppose

such an element x = a + b
√

5 exists, then | a2 − 5b2 |= 3. Write a = a1
a2
, b =

b1
b2
, (a1, a2) = 1 = (b1, b2), ai, bi ∈ Z. Since ψ5(a) 6= ψ5(b

√
5). ∵ R.H.S. is power of

1/5 multiplied by 1/
√

5 and L.H.S. is a power of 1/5. So, by Strong Triangle Law,

ψ5(a+ b
√

5) = max{ψ5(a), ψ5(b
√

5)} = 1. ψ5(b
√

5) 6= 1.So, 5 - b2 and 5 - a1a2, so we

see a1
2b2

2 − 5a2
2b1

2 = ±3a2
2b2

2 which shows that X2 ≡ ±3(mod 5) is solvable. This

contradiction proves the claim.

We now determine all valuation of K(X) which are trivial on K, where K is a

field and X is an in determinate. For this we first prove the following theorem.

Theorem 2.3 Let R be a P.I.D. with quotient field K. Let v be a real valuation on

K such that the valuation ring of v contains R. Then v is equivalent to vπ for some

irreducible element π of R.
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Proof Let v be a non-trivial real valuation on K. Let Ov be the valuation ring

of K and Mv be the maximal ideal, then Mv ∩ R is a non-zero prime ideal of R.

Therefore, there exists an irreducible element π ∈ R such that Mv ∩ R = πR. For

this π, v(π) > 0.

Consider a ∈ R \ πR, then a /∈ Mv. ∴ a is a unit of Ov and hence v(a) =

0. Also vπ(a) = 0. Now for any x = πma/b; a, b ∈ R, π - ab, v(x) = mv(π)

as v(ab) = 0 as ab /∈ πR. Also vπ(x) = m. ∴ v is equivalent to vπ. Hence

proved. �

Theorem 2.4 Every non-trivial valuation on K(X), trivial on K is either equivalent to

the degree valuation v∞ defined by v∞(f(X)
g(X)

) = deg(g(X))−deg(f(X)) or p(X)−adic
valuation for some irreducible polynomial p(X) ∈ K[X].

Proof

Case I: {v(X) ≥ 0}
Take R = K[X]. Then R ⊆ Ov. So, by Theorem 2.3, v is equivalent to p(X) − adic
valuation for some irreducible element p(X) of K[X].

Case II v(X) < 0,

Then v(Xm) < v(Xn) whenever 0 ≤ n < m. Since v(a) = 0 ∀ a ∈ K∗, we get by

Strong Triangle Law,

v(anX
n + a−1X

n−1 + · · ·+ ao) = v(anX
n) = nv(X) ifan 6= 0

∴ v(
f(X)

g(X)
) = (deg f(X)− deg g(X))v(X)

So v is equivalent to v∞.

We now determine a class of valuations of K[X] which are non-trivial on K, where K

is a field and X is an indeterminate. �

Theorem 2.5 Let (K, v) be a real valued field, let µ be a real number, and let w :

K[X] −→ R ∪ {∞} be the mapping defined by,

w(
n∑
i−0

aiX
i) = min{v(ai) + iµ | 0 ≤ i ≤ n}
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w(f(X)
g(X)

) = w(f(X)) − w(g(X)) where f(X), g(X) ∈ K[X], g(X) 6= 0. Then w is a

valuation on K[X] whose restriction to K is equal to v, and whose value group is the

subgroup of R generated by v(K) and µ.

Proof (1) For f(X) = 0, w(f(X)) =∞.

(2) To show that if f =
n∑
i=0

aiX
i, g =

m∑
j=0

bjX
j are polynomials in K[X], then

w(fg) = w(f) + w(g), w(f + g) ≥ min{w(f), w(g)}.

Write fg =
m+n∑
k=0

ckX
k where ck =

∑
i+j=k

aibj. Let io, jo be chosen so that

io = min{i | v(ai) + iµ = w(f)}, jo = min{j | v(bj) + iµ = w(g)}

then

cio+jo = aiobjo +
∑

i+j=io+jo,i 6=io

aibj (2.4)

Since i 6= io, i + j = io + jo implies i > io or j > jo, then v(aiobjo) + (io + jo)µ =

(v(aio) + iµ) + (v(bjo) + joµ) < min{v(ai) + iµ) + (v(bj) + jµ) | i+ j = io + jo, i 6= io}
Hence by(2.4) and Strong Triangle Law, we have

v(cio + jo) + (io + jo)µ = v(aiobjo) + (io + jo)µ = w(f) + w(g)

Thus we have shown that,

w(fg) ≤ v(cio+jo) + (io + jo)µ = w(f) + w(g) (2.5)

On the other hand, for any k, 0 ≤ k ≤ m+ n,

v(ck) + kµ = v(
∑
i+j=k

aibj) + kµ

≥ min
i,j
{v(ai) + v(bj) | i+ j = k}+ kµ

= min
i,j
{(v(ai) + iµ) + (v(bj) + jµ) | i+ j = k}

≥ w(f) + w(g).

So

w(fg) ≥ w(f) + w(g) (2.6)
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By (2.5)and(2.6), we have w(fg) = w(f) +w(g). We now verify the triangle inequal-

ity. Assume without loss of generality that n = max{degf, deg g}. Set ai = 0 if

m+ 1 ≤ i ≤ n. Then

w(f + g) = min
0≤i≤n

{v(ai + bi) + iµ | 0 ≤ i ≤ n}

≥ min
0≤i≤n

{min(v(ai) + iµ, v(bi) + iµ) | 0 ≤ i ≤ n}

= min{w(f), w(g)}.

Definition Let v be a valuation of K.The valuation vx of K[X] extending the

valuation v of K defined by vx(
n∑
i=0

aiX
i) = miniv(ai) is called the Gaussian extension

of v to K[X]. A polynomial f(X) ∈ K[X] is said to be primitive w.r.t. v if vx(f(X)) =

0. Since for polynomials f, g ∈ K[X], vx(f, g) = vx(f)+vx(g), it follows that a product

of primitive polynomials is primitive. This is the analogue for valued fields of the well

known Gauss’s lemma for polynomial with coefficients in a U.F.D.

Proposition 2.6 Let K̄ be the residue field of a valuation v of K. Then the residue

field of vx is the simple transcendental extension K̄(X̄) of K̄.

Proof Note that the vx − residueX̄ of X is the transcendental over K̄, because

if āi ∈ K̄ are such that
∑n

i=0 āiX̄
i = 0̄, ai ∈ Ōv, then vx(

n∑
i=0

aiX
i) > 0. So

v(ai) > 0 ∀ i, i.e., āi = 0̄. We now show that the residue field of vx is K̄(X̄).

Let ξ = f(X)
g(X)

be any element of K[X] with vx(ξ) = 0. Write f(X) = c1f1(X), c1 ∈ K
and vx(f1(X)) = 0, g(X) = d1g1(X), d1 ∈ K, vx(g1(X)) = 0. Since vx(f/g) = 0 ⇒
v(c1) = vx(c1f1) = vx(d1g1) = v(d1).

So, ξ̄ =
¯

( c1
d1

f1(X)
g1(X)

) = ¯( c1
d1

)
¯

(f1(X)
g1(X)

) = ¯( c1
d1

) f̄1(X̄)

ḡ1(X̄)
∈ K̄[X̄]. �
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2.2 Discrete Valuations

Definition Let K be a field and v be a valuation on K. Then v is said to be discrete

if the value group v(K∗) is isomorphic to additive group Z. In view of the following

lemma v is discrete if the value group of v is discrete subset of R w.r.t. usual topology.

Lemma 2.7 Let G be a non-trivial subgroup of (R,+). The following conditions are

equivalent:

(1) G is a discrete subgroup of R.
(2) G is not dense in R.
(3) G has a least positive element.

(4) G is cyclic group.

Proof (1)⇒(2) is trivial. We prove (2)⇒(3):

Suppose (3) does not hold. Let g0 be any positive element of G, ∃ g1 ∈ G such that

0 < g1 < g0. If g1 ≤ go/2, then fine otherwise we can replace g1 by g0 − g1 so that

we can assume without loss of generality that 0 < g1 ≤ g0/2. ∃ an g2 ∈ G such that

0 < g2 ≤ g1/2 ≤ go/2
2. Proceeding in this way ∃ gi ∈ G such that 0 < gi ≤ go/2

i.

If r is any positive real number and (r − ε, r + ε) is any neighbourhood of r, then ∃
an i such that gi < ε. ∴ ∃ an integer m such that mgi ∈ (r − ε, r + ε). Therefore, r

is a closure point of G. This shows that G is dense in R which contradicts (2) and

proves that (2)⇒(3). Now,(3)⇒(4): Let g0 be the least positive element of G. For

any g ∈ G there is an n ∈ Z such that ng0 ≤ g < (n+ 1)g0, 0 ≤ g − ng0 < g0. As g0

is the least positive element of G, g − ng0 = 0 i.e. g = ng0. Hence G = g0Z.
(4)⇒(1): Let G = g0Z, g0 > 0. If r is any real number, then (r− g0/2, r+ g0/2) can

contain at most one point of G. So r is not a limit point of G.

Definition Let v be a discrete valuation of K. Let g0 be the smallest positive element

in the value group of v. An element π of K with v(π) = go is called an uniformizer

of v.

Remark Let K be a field and v be a discrete valuation on K with value group Z. An
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element x ∈ K∗ can be written as uπr, where u is the unit of Ov, v(x) = r. Indeed if

r = v(x), then v(xπ−r) = v(x)− rv(π) = 0. Thus u = xπ−r is a unit of Ov. Also the

maximal ideal Mv is a principal ideal generated by π and every other ideal J 6= 0 of

Ov is a principal ideal generated by some power πn where n = min{v(a) | a ∈ J}. So

Ov is a P.I.D., hence Noetherian. The converse is also true as proved by the following

theorem.

Theorem 2.8 Let v be a non-trivial real valuation of K with valuation ring Ov having

maximal ideal Mv. Then the following statements are equivalent:

(1)v is a discrete valuation.

(2) Every non-zero ideal of Ov is power of Mv.

(3) Ov is Noetherian ring.

(4) Mv is a principal ideal.

(5) Every ideal of Ov is principal.

(6) Every finitely generated fractional ideal of K (relative to Ov) is principal.

(7) The set of non-zero fractional ideals of K is a multiplicative group; and

(8) Mv 6=Mv
2.

Proof (1) ⇒ (2) Let J 6= 0 be any ideal of Ov. By hypothesis v(K∗) ' Z, hence

there exists λ > 0 such that v(K∗) = Zλ. Let t ∈ Mv be such that v(t) = λ. Then

Mv = Ovt, because if v(x) > 0, then v(x) ≥ λ. So x = (x/t)t ∈ Ovt. Let

mλ = min{v(y) | y ∈ J} (2.7)

let x ∈ J be such that v(x) = mλ. Then by view of (2.7) Ovx ⊆ J ⊆ Ovtm, because

if y ∈ J, then v(yt−m) ≥ 0. On writing tm = (tmx−1)x ∈ Ovx, we conclude that

J = Ovtm.
(2)⇒(3): We note that if 0 ≤ k ≤ l are integers, then Mv

l ⊆Mv
k. Since every ideal

of Ov is a power of Mv, then any strictly ascending chain of ideals of Ov is finite, so

Ov is a Noetherian ring.

(3)⇒(4): By hypothesis, every ideal of Ov is finitely generated. Let J be a non-zero

finitely generated ideal of Ov generated by the elements x1, · · · , xn; let us assume

that v(x1) ≤ v(xi) for every i = 2, · · · , n. Then xi = (xix1
−1)x1 ∈ Ovx1 because
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v(xix1
−1) ≥ 0 for every i = 2, 3, · · ·n. Hence J = Ovx1 + · · · + Ovxn = Ovx1. Thus

Mv must be a principal ideal.

(4)⇒(5): Let Mv = Ovt, so v(t) > 0. Let J be any non-zero ideal of Ov. Let

γ = inf{v(x) | x ∈ J}. If there exists y ∈ J such that v(y) = γ, then J = Ovy,
because if x ∈ J, then x = (xy−1)y with v(xy−1) ≥ 0, so x ∈ Ovy. However, if

v(x) > γ for every x ∈ J, there exists y ∈ J such that γ < v(y) < γ + v(t) and also

z ∈ J such that γ < v(z) < v(y); therefore 0 < v(yz−1) < v(t), so yz−1 ∈Mv = Ovt.
So v(yz−1) ≥ v(t), a contradiction.

(5)⇒(6): Let J be a non-zero finitely generated fractional ideal, so there exists

a ∈ Ov, a 6= 0, such that aJ ⊆ Ov, hence by hypothesis aJ = Ovx where x ∈ Ov
and so J = Ova−1x.

(6)⇒(7): Indeed, each non-zero finitely generated fractional ideal J = Ovx has

inverse J−1 = Ovx−1.

(7)⇒(8): If Mv =Mv
2 then Ov =M−1

v Mv =M−1
v Mv

2 =Mv which is impossible.

(8)⇒(1): Let t ∈ Mv, t /∈ Mv
2, for every element x ∈ Ov, x 6= 0, there exists an

integer n ≥ 0 such that nv(t) ≤ v(x) < (n + 1)v(t). If nv(t) < v(x), then x/tn

and tn+1/x ∈ Mv, hence t = x
tn
tn+1

x
∈ M2

v, which is contradiction. This shows that

v(x) = nv(t), hence v(K) ∼= Z. �

It must be emphasized at once that not at all valuation are discrete. A non-trivial

valuation of an algebraically closed field can’t be discrete as the following remark

shows.

Remark Let K be an algebraically closed field and v is a non-trivial valuation of

K, then the group v(K∗) is divisible, i.e., given n ∈ Z, n > 0 and v(z) ∈ v(K∗), then

there exists γ ∈ v(K∗) such that nγ = v(z). Choose y ∈ K∗ such that yn = z. Then

nv(y) = v(z).
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2.3 Complete discrete valued fields

Suppose that K is both complete and discrete with respect to a valuation v with value

group Z. Let {πn | n ∈ Z} be the set of elements of K with

v(πn) = n (2.8)

Then for given ci ∈ Ov, (i ≥ r), the series
∞∑
i=r

ciπi converges in K. If cr is unit Of

Ov then using Strong Triangle Law, we can verify that v(
∞∑
i=r

ciπi) = r.

Notation A sum
∞∑

i=−∞

ai where ai = 0 for all but finitely many negative i will be

denoted by
∑

i>>−∞

ai.

Definition By a system of representation of the residue field Ov/Mv, we mean

a subset C of Ov satisfying the following properties:

(1) zero ∈ C
(2) c1, c2 ∈ C, c1 6= c2 ⇒ c1 ≡ c2(modMv)

(3) For any a ∈ Ov,∃ c ∈ C such that a ≡ c(modMv).

Theorem 2.9 Let K be a field complete, discrete with respect to a valuation v with

value group Z. Let C be a complete system of representatives of the residue field

Ov/Mv containing zero. Let πn ∈ K be such that satisfying (2.8). Then an arbitrary

element a ∈ K can be uniquely written as

a =
∑

i>>−∞

ciπi, ci ∈ C (2.9)

More specifically if π is a uniformizer of K, we may write

a =
∑

i>>−∞

ciπ
i (2.10)

When furthermore v(a) = n in (2.9)and(2.10), we have cn 6= 0, ci = 0 ∀ i < n.
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Proof If a = 0, we take ci = 0. So, suppose v(a) = n. We shall first set ci = 0

for all i < n. As u = aπ−1 is a unit, so ∃ an element cn(6= 0) ∈ C such that u ≡
cn(modMv) Then clearly v(aπ−1

n − cn) > 0 or equivalently v(a− cnπn) > v(πn) = n.

Let a1 = a − cnπn and n1 = v(a1) > n. Here we set ci = 0 for n < i < n1. So

∃ cn1 ∈ C such that a1
πn1
≡ cn1(mod Mv), v(a1 − cn1πn1) > n1. Set a2 = a1 − cn1πn1 ,

say v(a2) = n2 > n1 ≥ n + 1. Set ci = 0 for n1 < i < n2. Choose cn2 such that
a2
πn2
≡ cn2(modMv), v(a2−cn2πn2) > n2. Set a3 = a2−cn2πn2 , say v(a3) = n3 > n2 ≥

n+ 2. Set ci = 0 for n2 < i < n3. Repeating this process and adding zero co-efficient

if necessary, we obtain the existence of the sequence

a ≡ cnπn + cn+1πn+1 + · · ·+ cnmπnm + am+1

where v(am+1) > nm ≥ n+m ∀ m ≥ 1. Letting m −→∞, we have

a =
∞∑
i=n

ciπi =
∑

i>>−∞

ciπi.

Uniqueness Suppose we have two expansions of a, a =
∑

i>>−∞

ciπi, ci ∈ C and

a =
∑

i>>−∞

c′iπi, c
′
i ∈ C with ci 6= c′i for some i. Let io be the minimum of such i

for which ci 6= c′i. Then
∞∑
i=io

ciπi =
∞∑
i=io

c′iπi. ∴ (cio − c′io)πio = −
∞∑

i=io+1

(ci − c′i)πi and

hence v((cio − c′io)πio) ≥ io + 1 ⇒ cio − c′io ∈ Mv, i.e., cio ≡ c′io(mod Mv) which is

not possible. Thus the expansion is unique.

Corollary A complete valued field is uncountable.

Definition Let R = F [X] be the ring of polynomials over any field K in an in-

determinate X. Let v denote X − adic valuation on K = F [X], corresponding to

the prime element X of R. The residue field of v is isomorphic to F [X]/〈X〉 ∼= F.

Since Ov̂/Mv̂
∼= {Ov/Mv} ∼= F. We may take F as complete system representatives

of Ov̂ modulo Mv̂. ∴ by Theorem 2.9, every element of K̂ can be uniquely written

as
∑

i>>−∞

aiX
i, a ∈ F, K̂ is called the field of Laurent Series over F . The valuation
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ring Ôv is called the ring of formal power series over F and is denoted by F [[X]].

It consists of series of type
∞∑
i=0

aiX
i, ai ∈ F.

Remark Let (K, v) be complete discrete valued field. If char(K) is same as the

char of residue field of v, then it was proved in 1936 that ∃ subfield F of Ovwhich

can be chosen as a complete system of representatives of Ov/Mv. So in this situation

K = F ((π)) where π is a uniformizer of v. Thus every complete discrete valued

field whose char is same as that of its residue field is isomorphic to the field of

Laurent Series.

2.4 p− adic numbers

Definition Let Q be equipped with p− adic valuation vp corresponding to the prime

p defined for any integer n, taking vp(n) = the highest power of p dividing n and Qp

be the completion of Q with respect to vp. Then Qp is called the field of p − adic

numbers. The valuation ring of v̂p is called ring of p− adic integers.

Remark Keeping in mind the residue field of v̂p is isomorphic to that of vp in view of

Theorem 2.1 and latter is isomorphic to Z/pZ, So we may choose C = {0, 1, · · · , p−1}
as a complete system of representatives of residue field of v̂p. Therefore in view of

Theorem 2.9, every x ∈ Qp can be uniquely written as
∑

i>>−∞

aip
i where 0 ≤ ai ≤ p−1

for each i. A p− adic integer can be uniquely written as
∞∑
i=0

aip
i, 0 ≤ ai ≤ p− 1 for

each i.

Example (1) 3− adic expansion of −1

−1 ≡ ao(mod 3)⇒ ao = 2
−1−ao

3
≡ a1(mod 3)⇒ −1 ≡ a1(mod 3)⇒ a1 = 2.

−1−a1
3
≡ a2(mod 3)⇒ −1 ≡ a2(mod 3)⇒ a2 = 2.
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∴ −1 = 2 + 2.3 + 2.32 + 2.33 + · · ·
Indeed the sum of series on R.H.S. is

2(1 + 3 + 32 + · · · ) =
2

1− 3
= −1

(2) 3− adic expansion of 1
5

1
5
≡ ao(mod 3)⇒ ao = 2

1/5−ao
3
≡ a1(mod 3)⇒ −3

5
≡ a1(mod 3)⇒ a1 = 0

−3
5

3
≡ a2(mod 3)i.e., −1

5
≡ a2(mod 3)⇒ a2 = 1

−1
5
−1

3
≡ a3(mod 3) i.e. −2

5
≡ a3(mod 3)⇒ a3 = 2

−2
5
−2

3
≡ a4(mod 3) i.e., −4

5
(mod 3)⇒ a4 = 1

−4
5
−1

3
≡ a5(mod 3) i.e., −3

5
≡ a5(mod 3)⇒ a5 = 0, a6 = 1, a7 = 2, a8 = 1, · · ·

So, 1
5

= 2 + 0× 3 + 1× 32 + 2× 33 + 1× 34 + 0× 35 + · · ·

= 2 + (0 + 9 + 54 + 81)(1 + 34 + 38 + · · · )

= 2 +
144

1− 34
= 2− 9

5
=

1

5
.

The following theorem shows that the p − adic expansion of each rational number is

periodic.

Definition A p− adic Expansion of a p− adic integer z ∈ Qp is z =
∞∑
i=0

aip
i is said

to be finite if ai = 0 for all but finitely many i, and is said to be periodic infinte if

there exists m ≥ 0 and k ≥ 1 such that as = at where s ≡ t (mod k) for s, t ≥ m.

Theorem 2.10 Let z be a non-zero p− adic integer. Then

(1) z has a finite p− adic expansion iff z is a natural number.

(2) z has a periodic infinite p − adic expansion iff z is a p − adic integer such that

z ∈ Q \ N.

Proof (1) Clearly finite p − adic expansion has sum equal to a natural number.

Conversely, Suppose z(6= 0) be a natural number. We prove by induction. Assume

that the result is true for all integers y, 0 ≤ y < z. Let k ≥ 0 be such that pk ≤ z <

pk+1 then z = akp
k+y where 1 ≤ ak ≤ p−1 and 0 ≤ y < pk. By induction hypothesis,
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y = ak−1p
k−1 + · · ·+a1p+ao with 0 ≤ ai ≤ p−1. Thus z has finite p−adic expansion.

Proof (2) Suppose that p − adic integer z has periodic infinite series
∞∑
i=0

aip
i say

∃ m ≥ 0 and k ≥ 1 such that as = at where s ≡ t(mod k) for s, t ≥ m. Let

c =
m−1∑
i=0

aip
i, b =

m+k−1∑
i=m

aip
i. So

z =
∞∑
i=0

aip
i =

m−1∑
i=0

aip
i +

∞∑
i=m

aip
i.

z − c =
∞∑
i=m

aip
i = b+

∞∑
i=m+k

aip
i

= b+ pk(
∞∑
i=m

aip
i) = b+ pk(z − c)

i.e.(z − c)(1− pk) = b and z = c+ b
1−pk ∈ Q.

We verify that z /∈ N. If z ∈ Z, then (pk−1) | b which is possible only when ai = p−1

for m ≤ i ≤ m+k−1. In this situation b = pm(pk−1) and so z =
∑m−1

i=0 aip
i−pm < 0.

Coversely, Suppose z ∈ Q \N. We first show that there exists m, k ∈ N and t, u ∈ Z
such that 0 ≤ t < pm, 0 ≤ u < pk and

z = t+
upm

(1− pk)
(2.11)

Let z = a
d

where a, d ∈ Z, d > 0 and (p, d) = 1. Hence there exists k ≥ 1 such

that pk ≡ 1(mod d), hence z = b(pk − 1)−1 for some b ∈ Z. Choose m ∈ N such that

−pm ≤ b < pm. Since (pm, pk−1) = 1, there are t, u ∈ Z such that b = t(pk−1)−upm

and u can be chosen such that 0 ≤ u < pk − 1 if z > 0 and 1 ≤ u < pk if z < 0. This

is possible because we can solve the congruence Xpm + b ≡ 0(mod pk − 1) with u as

desired, say

upm + b = (pk − 1)t (2.12)

We now verify 0 ≤ t < pm. Consider first the case when z > 0. Since u ≤ pk − 2 and

b < pm, it follows that the L.H.S. of (2.12) is strictly less than (pk− 1)pm, comparing
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with the R.H.S. of (2.12), we see that 0 ≤ t < pm. When z < 0, i.e., b < 0, then

keeping in mind that u ≤ pk−1, we have upm+b < (pk−1)pm and hence (2.12) implies

that t < pm. Further using the fact u ≥ 1 and b ≥ −pm, we see that upm + b ≥ 0

and hence t ≥ 0 by (2.12). Thus 0 ≤ t < pm in both cases and hence (2.11) is

proved. Recall that 0 ≤ u < pk, infact u > 0 because otherwise z ∈ N. So there exists

ao, a1, · · · , am+k−1 ∈ {0, 1, , · · · , p − 1} such that t =
m−1∑
i=0

aip
i and u =

k−1∑
i=0

am+1p
i. ∴

we conclude using (2.11) that z = t+ upm

1−pk =
m−1∑
i=0

aip
i +

k−1∑
i=0

am+ip
m+i

1− pk
.

Since 1
1−pk =

∞∑
j=0

(pk)i, we have z =
m−1∑
i=0

aip
i +

k−1∑
i=0

am+ip
m+i(1 + pk + p2k + · · ·+)

=
∞∑
i=0

aip
i,

where for i, j ≥ m, i ≡ j(mod m), ai = aj. �

The proof of the above gives an easy method to write down the p− adic expansion of

a rational number.

Some Examples

(1) 7− adic expansion of −1

−1 ≡ ao(mod 7)⇒ ao = 6
−1−ao

7
≡ a1(mod 7)⇒ a1 = 6

−1−a1
7
≡ a2(mod 7)⇒ a2 = 6

∴ −1 = 6 + 6× 7 + 6× 72 + · · ·
Indeed the sum of series on

R.H.S. = 6 + 6(7 + 72 + · · · )

= 6 + 6(7)(1 + 7 + 72 + · · · )

= 6 +
42

1− 7
= 6 + (−7) = −1.
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(2) 7− adic expansion of 3
5

3
5
≡ ao(mod 7)⇒ ao = 2

3
5
−2

7
≡ a1(mod 7)⇒ −1

5
≡ a1(mod 7) ∴ a1 = 4

−1
5
−a1
7
≡ a2(mod 7)⇒ −3

5
≡ a2(mod 7), ∴ a2 = 5

−3
5
−a2
7
≡ a3(mod 7)⇒ −4

5
≡ a3(mod 7), ∴ a3 = 2

−4
5
−a3
7
≡ a4(mod 7)⇒ −2

5
≡ a4(mod 7), ∴ a4 = 1

−2
5
−a4
7
≡ a5(mod 7)⇒ −1

5
≡ a5(mod 7), ∴ a5 = 4

Similarly a6 = 5, a7 = 2, a8 = 1, · · ·
∴ 3

5
= 2 + 4× 7 + 5× 72 + 2× 73 + 1× 74 + 4× 75 + 5× 76 + 2× 77 + 1× 78 + · · ·

= 2 + 7(4 + 5× 7 + 2× 72 + 1× 73) + 75(4 + 5× 7 + 2× 72 + 1× 73) + 79(4 + 5× 7 +

2× 72 + 1× 73) + · · · Let us cross check the sum of above series; It is

= 2 + 7(4 + 5× 7 + 2× 72 + 1× 73)(1 + 74 + 78 + · · · )

= 2 + 7× 480× 1

1− 74
= 2− 7

5
=

3

5
.

(3) 7− adic expansion of −3
5

−3
5
≡ ao(mod 7),∴ ao = 5

−3
5
−ao
7
≡ a1(mod 7)⇒ −4

5
≡ a1(mod 7). ∴ a1 = 2

−4
5
−a1
7
≡ a2(mod 7)⇒ −2

5
≡ a2(mod 7),∴ a2 = 1

−2
5
−a2
7
≡ a3(mod 7)⇒ −1

5
≡ a3(mod 7),∴ a3 = 4

−1
5
−a3
7
≡ a4(mod 7)⇒ −3

5
≡ a4(mod 7). ∴ a4 = 5.

Similarly a5 = 2, a6 = 1, a7 = 4, · · ·
∴ −3

5
= 5 + 2.7 + 1.72 + 4.73 + 5.74 + 2.75 + 1.76 + 4.77 + · · ·

Indeed the sum of series on R.H.S. is

(5 + 2× 7 + 1× 72 + 4× 73)(1 + 74 + 78 · · · ) =
1440

1− 74
=
−3

5
.
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2.5 Hensel’s Lemma and its applications

In 1904, Hensel proved a remarkable result which shows that under certain condition,

the factorisation of a polynomial F (x) ∈ Z[x] modulo a prime p is related to its

factorisation over the ring of p − adic integers. We now study this result known as

Hensel’s Lemma for complete valued fields.

Theorem 2.11 Hensel’s Lemma Let (K, v) be a complete valued field, where v is

a real valuation with valuation ring Ov having maximal ideal Mv and residue field

K̄ = Ov/Mv. Let F (X), Go(X), Ho(X) be polynomials belonging to Ov[X] satisfying

the following conditions:

(i) F (X) ≡ Go(X)Ho(X)(modMv)

(ii) The leading co-efficient g of Go(X) is a units of Ov.
(iii) Ḡo(X) and H̄o(X) are relatively prime in K̄[X]

Then there exists polynomials G(X), H(X) ∈ Ov[X] satisfying the following condi-

tions.

(a) F (X) = G(X)H(X)

(b) deg G(X) = deg Go(X) , g is the leading coefficient of G(X)

(c) G(X) ≡ Go(X), H(X) ≡ Ho(X) (mod Mv)

Proof Let r, s denote respectively the degree of Go(X), F (X). Then deg H̄o(X) ≤
s− r. So there exists a polynomial ho(X) ∈ Ov[X] with deg ho(X) ≤ s− r such that

ho(X) ≡ Ho(X) (mod Mv). Replacing Ho(X) by ho(X), we may assume without

loss of generality that degHo(X) ≤ s − r. Since Ḡo(X) and H̄o(X) are coprime ,

∃ C(X), D(X) ∈ Ov[X] such that

Ḡo(X)C̄(X) + H̄o(X)D̄(X) = 1̄

Set

µ = min{vx(F −GoHo), v
x(Go(X)C(X) +Ho(X)D(X)− 1)} (2.13)

clearly µ > 0. Choose z ∈ Ov such that 0 < v(z) ≤ µ. Then the polynomial

Wo(X) = z−1(F (X)−Go(X)Ho(X)) ∈ Ov[x]. We divide the proof into two steps.
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Step I We construct sequences of polynomials Gi(X), Hi(X),Wi(X) ∈ Ov[x] sat-

isfying the following three properties for i = 0, 1, 2, · · ·
(I) degGi(X) = r, deg Hi(X) ≤ s− r, leading coefficient of Gi(X) is g.

(II) Gi(X)−Gi−1(X) ∈ ziOv[X], Hi(X)−Hi−1(X) ∈ ziOv[X]

(III) F (X)−Gi(X)Hi(X) = zi+1Wi(X).

Clearly Go(X), Ho(X) satisfy (I), (III), for i = 0 and condition (II) is void. As

induction hypothesis, suppose that there are polynomials, Gi(X), Hi(X),Wi(X) sat-

isfying (I) - (III) for 0 ≤ i ≤ n − 1. We now construct Gn(X), Hn(X). Since the

leading coefficient of Go(X) is a unit of Ov, by division ∃ Qn(X), Un(X) ∈ Ov[X]

with deg Un(X) < r such that

Wn−1(X)D(X) = Qn(X)Go(X) + Un(X) (2.14)

Let Vn(X) ∈ Ov[X] be a polynomial of least degree such that

Wn−1(X)C(X) +Qn(X)Ho(X)− Vn(X) ∈ z Ov[X] (2.15)

Then leading coefficient of Vn(X) /∈ zOv. We now verify that

Vn(X)Go(X) + Un(X)Ho(X)−Wn−1(X) ∈ zOv[X] (2.16)

On substituting for Un(X) from (2.14), we see that

Vn(X)Go(X) + Un(X)Ho(X)−Wn−1(X)

= Vn(X)Go(X) + (Wn−1(X)D(X)−Qn(X)Go(X))Ho(X)−Wn−1(X)

= Wn−1(X)(D(X)Ho(X)− 1)−Go(X)(Qn(X)Ho(X)− Vn(X))

= Wn−1(X)(C(X)Go(X)+D(X)Ho(X)−1)−Go(X)(Wn−1(X)C(X)+D(X)Ho(X)−Vn(X))

By choice of z, C(X)Go(X) +D(X)Ho(X)− 1 ∈ zOv[x] ; also by view of (2.15),

Wn−1(X)C(X) +Qn(X)Ho(X)− Vn(X) ∈ zOv[x]. So (2.16) is verified.

Claim is that degVn(X) ≤ s− r. Suppose to the contrary degVn(X) > s− r. Keeping

in mind that degWn−1(X) ≤ s by induction , the above supposition show that

deg(Un(X)Ho(X)−Wn−1(X)) ≤ max{deg(Vn(X)Ho(X), degWn−1(X)} ≤ s < deg(Vn(X)Go(X))
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By virtue of (2.16), the above inequality implies that the leading coefficient (Vn(X)Go(X)) ∈
zOv. As leading coefficient of Go is a unit of Ov, we would have leading coefficient

(Vn) ∈ zOv, Which is impossible in view of choice of Vn(X) and hence the claim is

proved.

Define polynomials Gn(X), Hn(X) by

Gn(X) = Gn−1(X) + znUn(X), Hn(X) = Hn−1(X) + znVn(X) (2.17)

Recall that deg Un < r , also by the claim degVn ≤ s− r , so Gn(X), Hn(X) satisfy

condition (I) ; clearly condition (II) is satisfied. To verify condition (III) write

F (X)−Gn(X)Hn(X) = F (X)− (Gn−1(X) + znUn(X))(Hn−1(X) + znVn(X))

= F (X)−Gn−1(X)Hn−1(X)−zn(Vn(X)Gn−1(X)+Un(X)Hn−1(X))−z2nUn(X)Vn(X)

Note that Vn(X)Gn−1(X)+Un(X)Hn−1(X)−Wn−1 ∈ zOv[X] , because Vn(X)Go(X)+

Un(X)Ho(X) −Wn−1(X) ∈ zOv[X] by (2.16) and Gn−1 − Go, Hn−1 − Ho belonging

to zOv[X] in view of condition (II) being satisfied for 1 ≤ i ≤ n− 1.

Step II We show that there exists polynomials G(X), H(X) in Ov[X] with the desired

properties. Write Gi(X) =
r∑
j=0

gijX
j, Hi(X) =

s−r∑
j=0

hijX
j , Since condition (II) is

satisfied, the sequences (gio)i∈N, · · · , (gir)i∈N, (hio)i∈N, · · · , (his−r)i∈N are v - Cauchy,

hence v - convergent. Let go, · · · , gr, ho, · · · , hs−r be their respective v - limits. Set

G(X) =
r∑
j=0

gi(X)j, H(X) =
s−r∑
j=0

hjX
j. Clearly G(X) has degree r with l.c. g. Since

G(X)−Gn(X), H(X)−Hn(X), F (X)−Gn(X)Hn(X) as in znOv[X] for any n ∈ N
, we have F (X) − G(X)H(X) ∈

⋂
n∈Nz

nOv[X]. Hence F (X) = G(X)H(X) as

desired. �

The following theorem is an immediate corollary of Hensel’s Lemma

Corollary 2.12 Let (K, v) be as in the above theorem. If F (X) ∈ Ov[X] has a simple

zero C̄o in the residue class field K̄v , i.e. , F̄ (C̄o) = Ō and F̄ ′(C̄o) 6= Ō , then F (X)

has a zero C ∈ Ov such that C̄ = C̄o.
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We can prove very nice results using Hensel’s Lemma.

Theorem 2.13 If p and q are distinct primes , there exists no isomorphism between

the fields Qp,Qq.

Proof It is enough to show that there exists a polynomial h(X) ∈ Q[X] which is

irreducible in Qp[X], but reducible in Qq[X]. Let r ∈ Z be an integer such that r ≡
0(mod p), r ≡ 1(mod q). Let h(X) = X2 + rX + pq. Using Eisenstein’s irreducibility

criterion in Zp, we deduce that h(X) is irreducible in Qp[X]. Since X2 + rX + pq ≡
X2 +X ≡ X(X+1) (modMvq). By Hensel’s lemma in Qq, X

2 +rX+pq is reducible

in Qq[X]. �

Note For any prime p, there exists no isomorphism between the fields R and Qp.

Since p is a square in R but not a square in Qp.

Theorem 2.14 The only endomorphism of Qp is the identity.

Proof Let f : Qp → Qp be an endomorphism , hence f(r) = r for every rational

number r ∈ Q. If x ∈ Qp , then we may write x = µpvp(x) , where µ ∈ Qp is a unit

of the valuation ring Zp. It follows that f(x) = f(µ)pvp(x) . If we show that f(u) is

unit , this mean that vp(f(x)) = vp(x) for every x ∈ Qp , therefore f is a continuous

mapping in the topology defined by the valuation vp. Since Q is dense in its completion

Qp and f is identity on Q, it follows from continuity of f that f is must be identity

on Qp. �

We still have to show that f(µ) is unit of Qp , for every unit µ. For this, we will

prove the following theorem.

Theorem 2.15 µ ∈ Zp is a unit of Zp if and only if there exist infinitely many integers

n > 0 such that µp−1 has an nth root in Zp.

Proof If there exist an integer n > 0 for which µp−1 has an nth root t ∈ Qp , then

tn = µp−1 implies nv(t) = (p− 1)vp(µ), therefore (p− 1)vp(µ) is a multiple of n. As

it is true for infinitely many integers n, we must have vp(µ) = 0.

Conversely, suppose vp(µ) = 0 , then the image of µ in the residue field of vp
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is not zero, but Zp |< p >∼= Fp. So µ̄p−1 = 1̄. Since Xn − µp−1 ≡ Xn − 1 ≡
(X − 1)(Xn−1 + · · · + X + 1)(mod Mvp). So, µp−1 ≡ 1(mod Mvp). If n is not a

multiple of p, then 1̄ is not repeated root of Xn− 1̄. Thus X− 1̄, Xn−1 + · · ·+X+1̄ are

relatively prime polynomials. Since Qp is complete valued field, by Hensel’s Lemma

, Xn − µp−1 has a linear factor X − C ∈ Zp[X], so µp−1 has an nth root in Zp, for

every n not a multiple of p.

Thus, it is indeed true that if µ is a unit of Zp and f is an isomorphism, then f(µ)

has the same characteristic property of µ and so it is also a unit of Zp.

Remark Let p ≥ 3 be prime. The analogue of Fermat’s Last Theorem does

not hold in Qp. ∃ α, β, γ ∈ Qq, q 6= p , not all zero such that αp + βp = γp. Consider

F (X) = Xp + qp + (−1)p. Then F (X) = Xp − 1 mod q. Since 1 is a simple root of

F (X) modulo q, by Hensel’s Lemma ∃ α ∈ Zp such that αp + qp + (−1)p = 0.

Hensel’s Lemma can also be used to check irreducibility of polynomials over complete

valued fields as shown by the following theorem.

Theorem 2.16 Let (K, v) be complete valued field, where v is a real valuation with

valuation ring Ov having maximal ideal Mv. Let F (X) = aoX
n + · · · + an(ao 6= 0)

be a polynomial ∈ Ov[X] with ao ≡ 0(modMv). If any one of a1, · · · , an−1 is unit of

Ov , then F (X) is reducible in Ov[X].

Proof Let ai be the first unit appearing among the co-efficients of F (X). Set Go(X) =

aiX
n−i + · · · + an, Ho(X) = 1 , then we have Go(X), Ho(X) ∈ Ov[X] and F (X) −

Go(X)Ho(X) = aoX
n + · · ·+ ai−1X

n−1+i ≡ 0(modMv). Hence by Hensel’s Lemma,

there exists G(X), H(X) ∈ Ov[X] such that

F (X) = G(X)H(X), degG(X) = degGo(X) = n− i, 0 < n− i < n

The polynomial F (X) is therefore reducible in Ov[X]. �

Theorem 2.17 Let (K, v) be complete valued field and let f(X) = Xn+a1X
n−1 + · · ·+

an be an irreducible polynomial in K[X]. If the coefficient an belongs to Ov , then all

other co-efficients ai are contained in Ov.
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Proof Suppose that min1≤j≤n{v(aj)} = v(ajo) < 0 , then the polynomial

F [X] = a−1
jo

(f(X)) = boX
n + · · ·+ bn

is contained in Ov[X] and bo ≡ 0(modMv). Since an ∈ Ov, v(bn) > 0 so 0 < jo < n

, and bjo = 1. Since by previous theorem, F (X) is reducible in Ov[X] and therefore

f(X) is reducible in K[X]. This contradiction proves the theorem. �

We now prove one of the most important applications of Hensel’s Lemma viz. if

(K, v) is a complete valued field, then v can be extended to any finite extension of K,

the uniqueness of extension was already proved in Theorem 1.19.

Theorem 2.18 Let (K, v) be complete valued field and let K1, be an extension of degree

n. Then v can be extended (uniquely) to a valuation of K1, which is given by v1(α) =
v(NK1|K(α))

n
, α ∈ K1.

Proof For α, β ∈ K1, clearly v1(α) = ∞ ⇔ NK1|K(α) = 0 ⇔ α = 0 and v1(αβ) =

v1(α) + v1(β). To verify v1(α+ β) ≥ min{v1(α), v1(β)} , we prove that for α ∈ K1,

whenever v1(α) ≥ 0 , then v1(α + 1) ≥ 0. Suppose v1(α) ≥ 0 for some element

α ∈ K1. Then

v(NK1|K(α)) ≥ 0 (2.18)

Let f(X) = Xn + a1X
n−1 + · · ·+ an be the minimial polynomial of α over K. Recall

that NK1|K(α) = ±a[K1:K(α)]
n . (2.18) =⇒ v(an) ≥ 0, ∴ by Theorem 2.17 all ai ∈ Ov.

Now f(X − 1) is the minimial polynomial of α+ 1 over K and the constant term of

f(X − 1) is f(−1), so

NK1|K(α + 1) = ±(f(−1))[K1:K(α)]

Since f(X) ∈ Ov[X], f(−1) ∈ Ov, ∴ NK1|K(α + 1) ∈ Ov ⇒ v1(α + 1) ≥ 0 as

desired. �

Corollary 2.19 Let (K, v) be a complete valued field with respect to a real valuation v.

Then v can be (uniquely) extended to a valuation ṽ of the algebraic closer K̃ of K.
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Proof For arbitrary α, β ∈ K̃ , we define ṽ(α) =
v(NK(α)|K(α))

[K(α):K]
.

Note that for any finite extension K1 of K(α),

ṽ(α) =
v(NK1|K(α))

[K1 : K]

For α, β ∈ K̃, we have to verify

ṽ(α + β) ≥ min{ṽ(α), ṽ(β)}, ṽ(αβ) = ṽ(α) + ṽ(β)

Fix one such pair α, β ∈ K̃ and take K1 = K(α, β) , then by above theorem ṽ/K1 is

valuation of K1. Hence the corollary. �
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