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Abstract

Endocytosis is a highly complex mechanism which the cell uses not only to take up nu-
trients but also in cell-cell communication. After the endocytosis process is complete, the
internalized cargo undergoes a series of dynamics processes like fission, fusion and degra-
dation, which defines the endocytic pathway. In this work, our aim is to analyze some of
these processes from a physicist’s point of view. In the first part of our work, we focus
on a specific type of endocytosis which is called receptor mediated endocytosis. In this
process, the cargo which is to be endocytosed is coated with ligands and these ligands bind
to specific receptors on the cell membrane. This binding releases chemical energy which
is required to overcome the cost of bending the elastic membrane. It is possible to write
down a free energy for this process and show the importance of the size of the cargo in the
endocytosis process. We are trying to understand the role of interactions, either via the cell
membrane or direct interactions between cargo particles, in the endocytosis process.
In the second part of our work, we consider several such cargo as they are internalized and
their subsequent dynamics. Here, we do simulation of these cargo particles. In our model
we have rates of the different events like endocytosis, exocytosis, fission, fusion, degrada-
tion etc. We do Brownian dynamics and our particles are point particles. All the different
events that we mentioned about are included as reactions with specific rates. Here our goal
is to understand the importance of each of these rates in the trafficking process as well as
the distribution of cargo in the endosomal compartments.
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Chapter 1

Introduction

Figure 1.1: Cartoon representation of a cell (Reproduced from Pearson Benjamin Cum-
mings).

1.1 The cell

The cell is the basic building block of life [1]. LIfe is reliant on the cosumption and diss-
sipation of energy and these are processes that are occuring all the time inside the cell. A
cell is defined by the cell membrane which separates the internal enviornment of the cell
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from the external, the cytoplasm which is the liquid internal environment of the cell, and
the numerous functional and structural entities like the cytoskeleton and the cellular or-
ganelles which exist within this liquid environment. The membrane, cytoskeleton and the
extracellular matrix together provides the structural integrity of the cell.

1.2 What is endocytosis ?

Endocytosis is one of the most important processes that is used by cells to internalize
molecules and macromolecules. However, its importance is not limited to only the up-
take of nutrients because endocytosis is required for performing a large number of other
functions such as cell adhesion and migration and the signalling of cell surface receptors.
What is an important mechanism for the cell to sustain the various life processes can be its
demise - the endocytic process is also used by bacteria and viruses to invade cells ! Un-
derstanding the mechanisms that regulate endocytosis is also extremely vital in the cellular
uptake of nanoparticles which are routinely used in targeted drug delivery. This is also the
main focus of this project work.

The endocytic process can be separated into the following basic mechanisms :

• selection and segregation of the cargo at the cell surface

• subsequent invagination and pinching off from the cell membrane

• transport of these membrane wrapped cargo, called vesicles, to compartments within
the cells where they fuse with the target membrane thus releasing the cargo.

The mechanisms by which specific cargo are internalized differ in their morphological and
biochemical details. (Fig.1.2)

1.3 Endocytosis and the cell membrane

As we have discussed in detail the cell membrane plays a key role in the endocytic mecha-
nism. Here, we briefly talk about the cell membrane.

1.3.1 Cell membrane

The cell membrane is a lipid bilayer membrane behaving as a fluid in physiological tem-
peratures. The lipids can diffuse freely within each leaflet of the bilayer. The fluidity of
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Figure 1.2: Pathways of endocytosis (Reproduced from Canton and Battaglia [2])
.

the membrane implies that it cannot resist shear stresses. Therefore there is no deforma-
tion energy cost in shearing the membrane. The lipid bilayer is often modeled as a two-
dimensional surface embedded in three-dimensional space. The energy associated with the
surface is described by a Hamiltonian which depends on the surface geometry. It costs en-
ergy to bend the membrane and this energy cost is given by quadratic expressions of the
curvature. Now at each point on the surface one can define two principal curvatures, k1
and k2. It is more convenient to work with the mean curvature, k1 + k2, and the gaussian
curvature k1k2 rather than individual principal curvatures. Including surface tension, the
complete Hamiltonian is then according to Helfrich [3, 4] :

H =

∫
dA

[
σ +

κ

2
(k1 + k2 − c0)2 + κ̄k1k2

]
(1.1)

where the integral extends over the entire membrane surface and dA represents the intrin-
sic area element. The parameters σ, κ, c0 and κ̄ are the surface tension, bending rigidity,
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spontaneous curvature and the gaussian curvature modulus respectively. A number of ex-
perimental and theoretical studies [5, 6, 7, 8] have shown that the energy associated with
the membrane is dominated by bending. Therefore for all practical purposes we may set
σ = 0. Also for symmetric membranes (identical on both sides) c0 = 0.

The curvature model has been used extensively to study a host of physical phenomena
involving membranes : vesicle shapes [8, 9, 10, 11, 12, 13], vesicle adhesion [14, 15], col-
loidal wrapping [16, 17] or tether pulling [18, 19, 20, 21, 22]. For example, in aqueous
solution bilayers typically form closed surfaces or vesicles. It is energetically favorable to
do so. The shape of a vesicle with surface area A and volume V is determined by minimiz-
ing H + PV + ΣA where P denoted the pressure difference between the two sides and Σ

denotes the lateral tension. In thermal equilibrium vesicles attain the shape that corresponds
to the minimum bending energy and the curvature model is successful in explaining these
minimal shapes. Recently, Liu et. al. [23] have developed a mechanochemical model to ex-
plain the temporal and spatial progression of endocytic events leading to vesicle scission. In
their model the central idea is that the membrane curvature is coupled to the accompanying
biochemical reactions.

1.4 Understanding cellular uptake of nanopaticles : Sim-
ulations

Computer simulation provides an important tool to understand the cellular processes and
to computationally test hypotheses about such processes in a quantitative manner. To un-
derstand the endocytosis of nanoparticles (NP), the first step would be to model the cell
membrane. There are a number of excellent reviews [24, 25, 26, 27, 28] that discuss the
simulation techniques that have been developed for the study of biological membranes.
However if one is interested in understanding the endocytic pathway in full detail, then ex-
plicit modeling of cell membrane is difficult and we may choose to perform rate dependent
stochastic simulations. We first give a brief outline of studies on simulation of membranes
and of nanoparticle uptake. We then discuss a possible model for the endocytic pathway.
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1.4.1 Mesoscopic simulation of membranes

An all atom molecular dynamics (MD) simulation [29] is the most accurate simulation
method. However this is computationally prohibitive more so when we would like to inves-
tigate membrane dynamics where lengths scales of the order of tens of nanometers have to
be studied over a few microseconds of time where groups of atoms are replaced by parti-
cles or beads, so one does coarse grained simulations. The cell membrane is a lipid bilayer
membrane. Lipids are amphiphiles and they spontaneously self assemble into complex
structures such as two-dimensional membranes. Any coarse grained simulation would have
to keep these basic properties intact. There are indeed quite a number of coarse grained
methods that do so and we discuss a few of the more relevant ones.

Figure 1.3: Snapshots of a cross section through a rigid nanoparticle translocating across a
planar lipid bilayer membrane immersed in solvent. (Reproduced from Shillcock [28]).

A three-bead model [30] using non-additive, pairwise potentials between amphiphiles was
proposed which resulted in self-assembling and formation of planar bilayer structure. An-
other example [31] considers an amphiphile as a three particle linear chain consisting of
one hydrophilic head particle and two hydrophobic tail particles. A long range attractive
potential between tail particles drive self-assembly.

These coarse grained simulation methods have been used to study a lot of membrane prop-
erties, both equilibrium and non-equilibrium, and is an important tool to understand in-
teractions of NP’s with the cell membrane. Rigid, spherical-cap inclusions embedded in
a fluid membrane simulated with solvent-free, coarse-grained MD [32] are able to induce
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membrane curvature resulting in membrane invagination which could be important to un-
derstand the endocytic pathway, a significant issue for the development of gene and drug
delivery tools.

Figure 1.4: A cross section through a membrane invagination driven by the presence of
rigid inclusions (Reproduced from Deserno ([32])
.

1.5 Simulating the entire endocytic pathway

This is a non-trivial task. There have been a very few attempts to study such pathways for
nanoparticle uptake. In this project, we will report about our attempt where the various
processes of adsorption of nanoparticles on cell membrane, endocytosis, fate of engulfed
nanoparticles inside the cells are expressed as rates and then stochastic simulations are
performed.
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Chapter 2

Single particle endocytosis

The endocytic process involves three important processes: the cargo needs to bind to the
membrane or receptors present on the membrane which is governed by energetic and en-
tropic balances of the membrane. Further, the membrane needs to bend in order to invagi-
nate the particle so that the scission proteins could come and do their job. Then the particle
wraps itself in a vesicle coated by the same membrane layer and is targeted to other specific
organelles or vesicles. It so happens that when particles are endocytosed, then they are not
often endocytosed individually but as aggregates involving two or more particles. In this
chapter, however we would be considering single particle uptake and working with a min-
imalistic simple model. We would write down the various energy terms and try to come
up with shape equations for the membrane profile. We have reproduced the results by M.
Deserno. ([17]).

2.1 Various energy contributions

When a particle is adsorbed to the cell membrane, it induces deformations in the membrane
which can be studied in the framework of Helfrich hamiltonian. We would assume that
the membrane is fluid. The geometry of this process is depicted by the following figure :
(Fig.2.1).
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Figure 2.1: Figure representing the geometry of the wrapping process. A spherical particle
of radius a wraps to the membrane with a degree of wrapping given by z = 1 − cosα.
Cylindrical geometry is assumed.

This process can be understood as a balance of the following three energy contributions: (i)
When a particle binds to the membrane, some amount of chemical energy is released, called
contact energy per unit areaw and this drives this adhesion (ii) this process is opposed by the
requirement to bend the membrane and (iii) doing extra work of pulling excess membrane
toward the wrapping site against a lateral tension σ. The bending energy per unit area is
given by the standard Helfrich expression [3] that we discussed in Chapter 1.

ebend =
1

2
κ(c1 + c2 − c0)2 + κ̄c1c2, (2.1)

where c1 and c2 are the local principal curvatures of the membrane surface [33], c0 is the
spontaneous curvature of the membrane, and κ and κ̄ are elastic moduli (with units of
energy). Here, we will assume that the membrane is symmetric, i.e., spontaneous curvature
is zero. (c0 = 0). We would also consider that topology of the membrane is not changed
upon these deformations so the second term in Eq.2.1 can be dropped. The reason for
dropping the term is as follows: The product of the two principal curvatures is called the
Gaussian Curvature (KG = c1c2). Its integral over a surface ∫ can be rewritten as a line
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integral of the geodesic curvature over the boundary ∂∫ of ∫ (Gauss-Bonnet theorem).∫
∫
dAKG = 2π −

∫
∂∫
dsKg, (2.2)

for a simply connected surface. ∂∫ of the surface is a circle of radius R. Its geodesic
curvature, Kg is 1

R
. Hence, ∫

∂∫
dsKg = 2π (2.3)

Hence, ∫
∫
dAKG = 0, (2.4)

as long as no topological changes occur. Thus, we can drop the second term in Eq.2.1. The
tension work is per definition given by the lateral tension σ times the excess area pulled
toward the wrapping site [34].

The degree of wrapping which is a measure of how much particle has been wrapped by
the membrane is given by, z = 1 − cosα (Fig.2.1). The area of the particle covered by
membrane is given by

Aad =

∫ α

0

∫ 2π

0

a2 sin θdθdφ = 2πa2z, (2.5)

which gives us the contact energy, Ead = −wAad = −2πa2zw. Using Eq.2.1, the bending
energy is given by Ebend = 1

2
κ( 1

a
+ 1

a
)2Aad = 4πzκ since the geodesic curvature of a sphere

of radius R is 1
R

. Finally, the work done against a lateral tension σ is proportional to the
excess area pulled toward the wrapping site, which is 4Aad = πa2z2, hence the tension
energy, Eten = πa2z2σ.

Now, we will introduce the following three dimensionless variables:

Ẽ =
E

πκ
, (2.6)

w̃ =
2wa2

κ
, (2.7)
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σ̃ =
σa2

κ
=
a

λ

2

, (2.8)

where numerical factors of π and 2 have been introduced for mathematical convenience. In
terms of these reduced variables the total energy of the particle-membrane complex is given
by

Ẽ = −(w̃ − 4)z + σ̃z2 + Ẽfree(z, σ̃) (2.9)

where Ẽfree = Efree/πκ is the dimensionless energy of the free part of the membrane.

First we put Ẽfree = 0 and study the behavior of Ẽfree as a function of z. To do that we
minimize Ẽ with respect to z. (Eq.2.9) (Fig.2.2)

-1

 0

 1

 2

 3
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 5

 6

 0  0.5  1  1.5  2

~
E

z

Figure 2.2: Energy Ẽ as a function of the penetration z for rescaled tension σ̃ = 1 when
˜Efree = 0 for different w̃. w̃ = 3 (red), w̃ = 4 (green), w̃ = 5 (blue) and w̃ = 6 (pink).

For w̃ < 4, there is no free energy minimum and particle is not wrapped. It cannot pay the
bending price. Once w̃ > 4, the particle start to adhere by first being partially wrapped as
can be seen by the development of a free energy minimum. Full envelopment occurs only
if w̃ > 4 + 4σ̃. In between, the degree of partial wrapping is z = (w̃ − 4)/2σ̃.
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2.2 Considering all the energy terms

The part of the membrane which is close to the line of contact is very curved and there-
fore we cannot neglect Ẽfree. In this section, we obtain an expression for this part of the
membrane which plays an important role in the overall free energy.

2.2.1 Full energy term and shape equations

The energy of the free membrane is the surface integral over the local bending and tension
contributions and is thus a functional of the shape. Using the geometry from Fig.2.1, the
two principal curvatures are found to be sinψ

r
and ψ̇, where the dot indicates a derivative

with respect to the arclength s. These two principal curvatures can be derived from the
expressions that c1 = ∂nr/∂r and c2 = ∂nh/∂h. Using Fig.2.1, we can identify them. The
energy functional can then be written as [8] [10] [11]

Ẽfree =

∫ ∞
0

dsL(ψ, ψ̇, r, ṙ, ḣ, λr, λh), (2.10)

where the Lagrangian L is defined by,

L = r[(ψ̇ +
sinψ

r
)2 +

2σ̃

a2
(1− cosψ)] + λr(ṙ − cosψ) + λh(ḣ− sinψ) (2.11)

The expression in square brackets contains the bending and tension contributions. The first
term in it is the Helfrich bending energy with the values of both principal curvatures. The
second term is the tension term with the excess membrane deformed by an angle ψ. The
last two additional terms are introduced due to the parametrization constraints ṙ = cosψ

and ḣ = sinψ where λr(s) and λh(s) are Lagrange parameters.

We are interested in evaluating Hamilton’s equations of motion. So, we switch to a Hamil-
tonian description. The conjugate momentum is defined as pqi = ∂L

∂q̇i
where qi is a gener-

alized coordinate and pqi is the corresponding conjugate momentum. Hence, the conjugate
momenta for the energy functional are :

pψ =
∂L

∂ψ̇
= 2rψ̇ +

sinψ

r
, (2.12)
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pr =
∂L

∂ṙ
= λr, (2.13)

and
ph =

∂L

∂ḣ
= λh, (2.14)

Now, since H =
∑
pq̇i − L, hence

H = ψ̇pψ+ṙpr+ḣph−L =
(pψ)2

4r
−pψ sinψ

r
−2σ̃r

a2
(1−cosψ)+pr cosψ+ph sinψ (2.15)

Using the above equations, the Hamilton’s equations for the membrane are :

ψ̇ =
pψ
2r
− sinψ

r
, (2.16)

ṙ = cosψ, (2.17)

ḣ = sinψ, (2.18)

ṗψ = (
pψ
r
− ph) cosψ + (

2σ̃r

a2
+ pr) sinψ, (2.19)

ṗr =
pψ
r

(
pψ
4r
− sinψ

r
) +

2σ̃

a2
(1− cosψ), (2.20)

and
ṗh = 0. (2.21)

2.2.2 Necessary boundary conditions

Initially the membrane is flat and then it wraps around the spherical particle. Therefore, at
the contact boundary, s = 0, we will have (Fig.2.1):

r(0) = a sinα, (2.22)

h(0) = −a cosα, (2.23)

and
ψ(0) = α. (2.24)
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Since the membrane becomes flat at large distances from the wrapping region, hence we
must have,

lim
s→∞

ψ(s) = 0 (2.25)

lim
s→∞

ψ̇(s) = 0 (2.26)

We numerically solve the set of equations with appropriate boundary conditions using the
shooting method. The total free energy shows that for w̃ < 4, there is no wrapping. For
w̃ = 4, we get partial wrapping. For w̃ > 4, the energy of fully wrapped state is lowered.
(Fig.2.3)

-4
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Figure 2.3: Energy Ẽ as a function of the penetration z for rescaled tension σ̃ = 1 when
˜Efree 6= 0 for different w̃. w̃ = 3 (red), w̃ = 4 (green), w̃ = 5 (blue) and w̃ = 6 (pink).

Also, if ψ(s) vanishes rapidly, we can say that all contributions beyond some large distance
S in arclength will be negligible. So, we can use this condition and say that we choose an
upper arclength S and impose the zero angle condition there. Hence, S and ψ(S) do not
vary during functional minimization, but the parameters r(S) and h(S) are still free. So we
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fix them by imposing additional boundary conditions : [11] [35]

0 =
∂L

∂ṙ
|
s=S

= pr(S) (2.27)

and
0 =

∂L

∂ḣ
|
s=S

= ph(S) (2.28)

Now, according to the Hamilton equation, Eq.2.21, we can say that ph is an integral of
motion and hence the boundary condition Eq.2.28 determines its value to be zero. Hence,
we do not have to worry about ph anymore. Now we need to take care of the condition on pr.
Now, if the angle ψ converges to zero, the expression for the Hamiltonian converges toward
pr (from Eq.2.15). Thus, the requirement of a flat profile implies H = H(S)→ pr(S) = 0,
or we can say that, if the membrane is to become flat, the Hamiltonian must be zero. Using
Eqs. 2.2.1 and 2.15, we can find out a condition for pr at the contact boundary:

apr(0) =

√
z(2− z)

1− z
(1 + 2σ̃z − [aψ̇(0)]2) (2.29)

The only remaining variable for which the contact value is not yet known is pψ, or alterna-
tively ψ̇. It is the condition of asymptotic flatness that will determine ψ̇0.

Therefore, in this chapter we have looked at the various energetics involved when a mem-
brane wraps around a single spherical particle. Although, the shape and size of the nanopar-
ticle will matter, we can see that adhesion and bending are key players in this process. How
particle size can matter can also be understood from the above analysis where we can see
that below w̃ < 4, there will be no wrapping. Recall that w̃ = 2wa2

κ
, therefore w̃ < 4 implies

a <
√

2κ
w

which gives a length scale for the particle size. So particles below
√

2κ
w

will not
be wrapped.
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Chapter 3

Multiscale modeling of nanoparticle
transport across the cell membrane

In the last chapter, we considered single particle endocytosis, wrote down various energy
terms for the process and came up with the shape equations for the membrane profile. In this
chapter, we will study the dynamics of several such nanoparticles as they are internalized
both analytically and using computer simulations. For our simulations, we use the package
called Smoldyn, which considers the particles as point particles and performs overdamped
Langevin dynamics.

Endocytosis is a highly complex mechanism which the cell uses not only to take up nu-
trients but also in cell-cell communication. After the endocytosis process is complete, the
internalized cargo then undergoes a series of dynamic processes like fission, fusion and
degradation, which define the endocytic pathway. We try to understand the dynamics of
nanoparticle transport across the cell membrane and its subsequent dynamics inside the
cell. In this work, we shall additionally assume that nanoparticles contain cargo molecules
which have to be transported inside the cell. This has very important implications in the
context of drug delivery. For example, experimentally people use polymersomes which
are diblock copolymer vesicles to transport drug molecules inside the cell. These poly-
mersomes have the drug molecules inside them and their sizes are of the order of a few
tens of nanometers. So, they can be thought as good examples of our model system. We
first do a multiscale modeling of transport across the cell membrane. We specifically study
nanoparticle mediated cargo transport and the effect of the release of the cargo from the
nanoparticles both inside and outside the cell. We show quantitatively how diffusion and
the rates of adsorption/desorption from the cell membrane play an important role in cargo
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transport. We draw phase diagrams which indicate regions for optimal transport. We also
incorporate nanoparticle size in our simulations and extract endocytosis rates which are
predicted to be dependent on their size.

3.1 Endocytic Transport

We first consider a very simple system where nanoparticles are getting adsorbed on the
cell surface and then they are endocytosed. From now onwards we ignore the complex
endocytic process of adsorption, wrapping and pinching off and consider only rates of the
various processes. Therefore, nanoparticles are adsorbed to the surface with a rate ka; they
can be desorbed at the rate kd; internalization happens with a rate ke and particles can be
thrown back outside the cell with rate krec. The last process is called exocytosis. The set of
equations is as follows :

Figure 3.1: Model of the system.

Equations governing uptake:
dcex
dt

= −kacex + kdcm (3.1)

dcm
dt

= kacex − (kd + ke)cm + krecci (3.2)

dci
dt

= kecm − krecci (3.3)
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where cex is the concentration of particles outside the cell; cm is the concentration of parti-
cles on the surface and ci is the concentration of internalized particles.

In these equations, all rates are in units of time−1. This set of coupled differential equations
can be solved by Laplace transform. The resulting internalized particle concentration is
given by

ci(t) =
kakecex

0

λ+λ−(λ+ − λ−)
[(λ+ − λ−) + λ−e

−λ+t − λ+e−λ−t] (3.4)

where

λ± =
(kd + ke + ka + krec)±

√
(kd + ke + ka + krec)2 − 4(kdkrec + kake + kakrec)

2
(3.5)

and c0ex is the extracellular concentration of particles at time t = 0. The behavior at t→∞
is simple and we get

ci(t→∞)

c0ex
=

kake
kdkrec + kake + kakrec

(3.6)

Figure 3.2: Snapshot of the system.

To get the steady state features of this system in simulation, we take a cubic box separated
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by a surface. The upper half of the box is the extracellular region while the lower half is the
cell. The flat surface separating the two is the cell membrane. As we have mentioned before,
we discard all structures of the membrane and only consider rates of the various processes.
The simulation starts with a concentration of nanoparticles (point particles in Smoldyn), in
the extracellular region and then there are rates for adsorption, desorption, endocytosis and
exocytosis. In the simulation, the rates are chosen as follows: kd = 1.0 and ke = 1.0. We
do not need to change these as they are in units of 1/time. ka = 1.0 and in Smoldyn, this
rate is in the units of length/time in the code. Therefore to change it into 1/time units
we multiply by the concentration (1/length3) and the surface area (length2). The available
volume for the particles when they are released is ((100 ∗ 100 ∗ 100) − (40 ∗ 100 ∗ 100))
since the inner cell where the particles are internalized has the volume of 40 ∗ 100 ∗ 100.
Therefore the adsorption rate ka = 1.0 ∗ 100 ∗ 100/((100 ∗ 100 ∗ 100)− (40 ∗ 100 ∗ 100))

in units of 1/time. The recycling rate, krec = 1.0 in the code. This rate is again in units of
length/time. So to change to 1/time units we multiply by inverse volume which in this
case is 40 ∗ 100 ∗ 100 and the surface area which is the same as before 100 ∗ 100. Therefore
krec = 0.1 ∗ 100 ∗ 100/(40 ∗ 100 ∗ 100).

We plot the normalized concentration of internalized particles as a function of time for
different recycling rates. As krec is decreased, lesser number of particles which enter the
cell are thrown out. Thus, the saturation levels of normalized uptake in the steady state
are higher. We match our steady state values with those obtained from our deterministic
equation. They are expected to match and that is observed in the figure. In Fig.3.3, the solid
line is the theoretical behavior at t→∞.
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Figure 3.3: ci(t→∞)
c0ex

as a function of time.

3.2 Modeling transport of nanoparticles carrying cargo

We study carrier mediated cargo transport and the effect of the release of the cargo from
the nanoparticles (herewith called nano-carriers) both inside and outside the cell. Our
model environment comprises a single cell and a limited volume of immediately adjacent
nanoparticles as considered in the previous section. We assume the presence of cargo carrier
nanoparticles in the outer side and follow the transport of these carriers and the cargo that
they release in the course of their movement from the outside to the inside via transcytosis
across the cell.

The nano-carrier diffuses in the region outside the cell and may release the cargo molecules
either inside or outside the cell volume. We assume that once the cargo molecules reach
the bottom surface of the cell to the other side, they are absorbed. This marks a successful
transcytosis event. For the sake of simplicity, we assume that only cargo molecules (and
not the nano-carriers) are absorbed to the other side.

We start with N nano-carriers in the volume outside the cell. They diffuse with a diffusion
coefficient Dp. A nano carrier can break up to release the cargo. Since in Smoldyn, the
particles are point particles, this is incorporated as a reaction as follows: 1 Carrier → n

Cargo. This process of degradation has a rate associated with it. This rate can be varied de-
pending on whether the cargo is released outside or inside the cell. Therefore, we consider
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two possible scenarios:

Cargo released outside The cargo is released outside the cell cytoplasm with a rate koc.
Once released the cargo molecules diffuse with diffusion coefficient given by Dd. During
diffusion, they come in contact with the cell membrane and bind/unbind to the cell surface
with adsorption/desorption rates kad, kdd respectively. The adsorbed cargo molecules are
endocytosed with a rate kend. Once inside the cell volume, they diffuse and are adsorbed
on the surface of the cell on the other side with a rate kt. In this state we say that the cargo
molecule is transported from one side to the other side. To incorporate efflux mechanisms,
the freely diffusing cargo molecules inside the cell cytoplasm could be exocytosed to the
source side with a rate kexd.

Cargo released inside The cargo is released inside the cell cytoplasm with a rate kic. The
nano-carriers carrying the cargo molecules are adsorbed/desorbed at the cell surface with
rates kpd, kdd respectively and are subsequently endocytosed with a rate kenp. Once in, they
release the cargo inside the cytoplasm. The cargo molecules diffuse and are adsorbed to the
other side with the rate kt. Note that the nano-carriers may be thrown out of the cytoplasm
with rate kexp.

Hence, we have the following rates:

• koc : Rate of cargo release outside cytoplasm.

• kic : Rate of cargo release inside cytoplasm.

• kap, kdp : Rate of attachment/detachment of nanoparticle (containing cargo) to the
membrane surface.

• kad, kdd : Rate of attachment/detachment of cargo to the membrane surface.

• kenp, kexp : Rate of endo/exocytosis of nanoparticle.

• kend, kexd : Rate of endo/exocytosis of cargo.

• kt : Rate of transcytosis.

For the situation where the nanoparticle releases the cargo outside the cell, we plot the
uptake of cargo as a function of the time for different rates of endocytosis. The uptake
increases for increasing rates of endocytosis as expected. The exocytosis rate is kept fixed.
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Figure 3.4: Normalized particle uptake versus time for different endocytosis rates of the
cargo.

We first make some simplifying assumptions. Assume that there is no exocytosis of cargo
or nanoparticle i.e. kexp = 0 = kexd and that there is no detachment of cargo or nanoparticle
from the membrane surface once it is bound, i.e. kdp = 0 = kdd. Also note that if the cargo
is released outside the cytoplasm, then kap = 0. Finally assume that the attachment rates of
both cargo and nanoparticle are the same : kap = kad = k. Expressing all rates in units of
k, we have the following rates to vary : koc, kic, kenp, kend. Also, Dd = 10Dp.

We next make a comparative study for cargo released inside and outside the cell. For
different rates of kic/koc, we find that the time for complete transcytosis of cargo would
be vastly different depending on the different rates of endocytosis. Note that in this set of
studies, the exocytosis rates are set to zero. We find that in terms of the time it takes for
all cargo molecules to be endocytosed, effective uptake takes place when cargo is released
inside the cell rather than both inside and outside. This is significant in the context that it
has meritorious applications in drug-delivery mechanism. One can adjust the drug release
process and endocytosis rates while designing the methods for drug targeting and at that
point it becomes important if one already knows the optimal drug release route and rates.
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(a) kic/koc = 102 (b) kic/koc = 104

Figure 3.5: Normalized cellular uptake for different endocytosis rates for different ratios of
kic/koc.

Figure 3.6: Normalized particle uptake for different kic/koc rates.

The phase diagram below indicates regions for optimal uptake of cargo depending on the
rates of diffusion coefficients of nanoparticles and cargo and on the rates of koc and kic

(Fig.3.7).
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Figure 3.7: Phase diagram indicating regions for optimal transport. Color bar is the time
axis.

3.2.1 Size dependent cellular uptake

As we have seen in the last chapter, theoretical studies predict a threshold radius below
which there can be no cellular uptake. Also, the distribution of uptake is asymmetric. To
incorporate size dependence in our simulation system is tricky. As pointed out earlier,
Smoldyn considers point particles. The way we incorporate this is to take the theoretical
plot of the normalized uptake as a function of nanoparticle radius and use the same plot
for the endocytosis rates of nanoparticles [36]. In other words, we choose a distribution
of endocytosis rates which follow the theoretical plot. Obviously we have to distinguish
the particles. This is done by choosing different diffusion coefficients which goes as the
inverse of the radius of the nanoparticles obtained from the theoretical plot. Therefore we
start with a set of nanoparticles each of which has a specific endocytosis rate and a specific
diffusion coefficient. If we now do simulation of such a system and obtain the nanoparticle
uptake as a function of time, then the steady state normalized uptake values for each set
of nanoparticles should have the same distribution as a function of nanoparticle radius as
predicted theoretically.
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Figure 3.8: Size dependent cellular uptake of non-interacting NP’s.

Figure 3.9: Size dependent variation of endocytosis rate.

3.3 Conclusions

Endocytosis is a very important process and it’s necessary that one should know the me-
chanics and dynamics given the fact that it has far reaching applications in drug delivery.
In this work, we have tried to investigate the nanoparticle uptake by a cell taking into ac-
count parameters like nanoparticle size, diffusion coefficients, attachment/detachment and
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endocytosis rates. We have tried to identify the optimal parameters for efficient particle
uptake.
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