
i 
 

Chromatin interaction network as mediator of 

error mitigation in genome 

 

 

A dissertation submitted for partial fulfillment of BS-MS dual 

degree in Science 

 

Meenakshi Bagadia 

MS09083 

 

 

 

 

 

Indian Institute of Science Education and Research Mohali 

Knowledge City, Sector 81, SAS Nagar, Manauli, PO 140306 

April 2014 

 

 

 



ii 
 

Certificate of Examination 

 

This is to certify that the dissertation titled “Chromatin interaction network as mediator of 

error mitigation in genome” submitted by Meenakshi Bagadia (Reg. No.  MS09083) for 

the partial fulfillment of BS-MS dual degree program of IISER Mohali has been 

examined by the thesis committee duly appointed by the institute. The committee finds 

the work done by the candidate satisfactory and recommends that the report be accepted. 

 

 

 

 

 

 

 

 

 

Dr. Somdatta Sinha    Dr. Chanchal Kumar  Dr. Kuljeet Singh Sandhu 

         (Co-supervisor)                        (Supervisor)  

 

 

 

Dated:  

 

 

 

 

 

 

 

 



iii 
 

Declaration 

 

The work presented in this dissertation has been carried out by me under the guidance of 

Dr. Kuljeet Singh Sandhu at the Indian Institute of Science Education and Research 

Mohali. 

This work has not been submitted in part or in full for a degree, a diploma, or a fellowship 

to any other university or institute. Whenever contributions of others are involved, every 

effort is made to indicate this clearly, with due acknowledgement of collaborative 

research and discussions. This thesis is a bonafide record of original work done by me 

and all sources listed within have been detailed in the bibliography. 

 

 

 

 

 

Meenakshi Bagadia 

(Candidate) 

Dated: April 25
th 

, 2012 

 

In my capacity as the supervisor of the candidate‟s project work, I certify that the above 

statements by the candidate are true to the best of my knowledge. 

 

 

 

 

 

Dr. Kuljeet Singh Sandhu 

(Supervisor) 

 

 



iv 
 

Acknowledgement 

 

I would like to express my gratitude to my supervisor Dr. Kuljeet Singh Sandhu for the 

useful comments, remarks and engagement through the learning process of this master 

thesis. He is an excellent teacher and guide who inspired me to excel academically as well 

as personally. His support and guidance throughout the project has been invaluable to me 

and his enthusiasm for his work has always inspired me. 

 

I would like to thank Dr. Chanchal Kumar for supporting and co-supervising this work. It 

was always encouraging to have him. 

 

I would like to give respect to the thesis committee consisting of Dr. Somdatta Sinha, Dr 

Chanchal Kumar (Co-Supervisor) and Dr. Kuljeet Singh Sandhu (Supervisor) for giving 

valuable suggestions during different phases of the project.  

 

I would also like to thank the Department of Mathematics and Department of Biological 

Sciences, IISER Mohali for providing me the opportunity to work in an interdisciplinary 

area. I would also like to thank Library, IISER Mohali for providing the facilities which 

allow us to do healthy research.  

 

I would especially like to thank Nitesh Tayal, an ex- MS student under Dr. Kuljeet Singh 

Sandhu. He has always been helping me whenever I faced problem during my work.  

 

I am also thankful to all the members of Computational Biology Lab Adhikar, Arashdeep, 

Ashutosh, Kanwal Puneet, Preeti, Priya, Rivi and Srishti. I would like to thank them for 

building up a positive environment and making my stay in lab a wonderful experience.  

 

At last, I would like to thank my friends, who have supported me throughout entire 

process, both by keeping me harmonious and helping me putting pieces together. I will be 

grateful for their love and support.  

 

   Meenakshi 

 



v 
 

Contents 

 

1. Certificate of Examination.............................................................................................ii   

2. Declaration..................................................................................................................iii 

3. Acknowledgement.........................................................................................................iv 

4. List of figures................................................................................................................vi 

5. Abstract........................................................................................................................vii 

6. Stochastic variation in gene expression..........................................................................1 

6.1. Introduction.............................................................................................................1 

6.2. Materials and Methods............................................................................................3 

6.3. Results.....................................................................................................................7 

7. Disproportionate concentration of gene products..............................................................12 

7.1. Introduction...........................................................................................................12 

7.2. Materials and Methods.........................................................................................13 

7.3. Results...................................................................................................................15 

8. Discussions...................................................................................................................17 

9. Conclusion....................................................................................................................19 

10. Future prospective.......................................................................................................20 

11. Bibliography.................................................................................................................21 

12. Appendix......................................................................................................................23 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

List of Figures 

 

Figure 1.1:  Exploring ChINs 

Figure 1.2: Correlation between expression noise and degree. 

Figure 1.3: Correlation between noise and distance from nearest boundary 

Figure 1.4: Correlation between mRNA decay rate and transcriptional noise 

Figure 1.5: Box plot showing the functional consequence of genes with noise and 

degree respectively 

Figure 1.6: Association of noise and degree with ESC differentiation and bivalent 

histone modification 

Figure 2.1: Visualisation of temporal control of gene expression by simulation and 

experimental observation 

Figure S1: Data normalisation 

Figure S2: Noise distribution 

Figure S3: Degree distribution 

Figure S4: Average path length (APL) of genes with low and high noise 

Figure S5: Correlation between abundant corrected noise and degree 

 

 

 

 

 

 

 



vii 
 

Abstract 

 

Our cells continuously experience several kinds of non-genetic errors, which need to be 

mitigated in order to keep the robustness of the cellular system. Here we studied two 

types of error. 

1)  First, even if all cells are precisely in same conditions, there is stochastic variation in 

gene expression among the cells, which is termed as intrinsic noise. If the expression of 

an essential gene is altered to a significant level, then it may be lethal for the cell. Thus 

for the stable functioning of the cell it is necessary to keep the expression noise minimum 

for essential genes. How exactly cells achieve this is not clear. We hypothesize that 

physical attachment of genes to the sub-nuclear compartments like transcription factories 

might reduce its mobility and consequently the noise in its transcription. 

2) Second, altered expression at certain loci could disproportionate the required 

concentrations of functionally related gene-products, which are generally positioned in 

the genomic neighbourhood. This error can be mitigated by simultaneous alteration in the 

expression of neighbouring genes, termed as transcriptional ripple. The underlying 

mechanism is not understood. We propose that physical interactions among neighbouring 

genes influence their transcriptional states. To simulate the phenomenon, we made 

perturbation transmission model inspired by communicating vessels principle, which 

essentially captures the ripple-effect and can be used study the phenomenon and its 

functional consequences at genome scale. 

Keywords: gene expression, transcriptional noise, chromatin interaction, transcriptional 

ripple, communicating vessel model 
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Chapter 1 Stochastic variation in the gene 

expression 
 

Introduction 

An individual in a population is unique. Most of the population variation is due to genetic 

difference. However, it has been studied that genetically identical individuals can be very 

different and most important source of this variability are random fluctuation in the 

expression of individual genes. Fundamentally, this is because the gene expression 

involves a set of discrete and random biochemical reactions that control the abundance of 

gene products. Because DNA, RNA, proteins are present in very low numbers, even small 

fluctuations can generate huge population variation thus gene expression must be thought 

as a stochastic process, with the randomness in transcription and translation leading to 

cell-cell variation in mRNA and protein levels
1,2

. 

We here refer noise in gene expression as the stochastic variation in mRNA concentration 

among the isogenic cells. The noise can be intrinsic as well as extrinsic.  Even when cells 

are at same identical state, the reactions leading to transcription and translation of a gene 

of particular interest would occur at different times, in different orders in different cells
3
.  

Such stochastic variability is termed as intrinsic expression noise. Whereas extrinsic 

expression is variation in the level of gene expression due to different environmental 

conditions. Here we are mainly interested in intrinsic transcriptional noise. 

Why it is important to study the expression noise? Consider an essential gene, which 

needs to be transcribed consistently in the cell. If the expression level of such a gene is 

highly varied, then it might be harmful for the cell. So it is necessary to minimize the 

expression noise for essential genes. 

The project aimed to decipher the determinants of the transcriptional heterogeneity in the 

cells, with the hypothesis that transcriptional noise is modulated by relative mobility of 

gene loci in the three dimensional nuclear space. 

Chromatin interaction network (ChINs) 
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Complexity of chromosomes architecture has been known since the end of nineteen 

century, when chromatin loops were first observed
4
. Although genetic information is 

stored in the linear sequence of base pairs that make up the DNA, but further it has been 

found that DNA is intricately folded in higher-order three- dimensional structure which 

involves the formation of chromatin loops, where distal elements of the chromatin fibre 

come into close physical proximity with each other. Also it has been documented that this 

3-D organization of genome inside the nucleus has consequences for the regulation gene 

expression and/or propagation of genome
4
.  

The chromatin loops describe short range and long range interactions in cis whereas 

chromatin bridges depict long range interactions in trans. Both the interacting partners 

must reach beyond the confines of its chromosome territory for interactions
4
. 

To enable loop formation, the chromatin fibres must physically encounter each other. 

Formation of chromatin loops may be formulated by DNA condensation, super coiling, 

higher affinity protein-protein interactions or additional force applied by strong DNA 

binding proteins
5
.  

With technological and methodological advancements in biology and with the availability 

of whole genome sequencing methods, it has become possible to capture the genome 

wide chromatin interaction profile of a cell using a technique called chromosome 

conformation capture (3C) and the related techniques like circular chromosome 

conformation capture (4C), ChIA-PET 

 

Fig 1.1: Exploring ChINs : Shown are the proximity ligation based methods to identify 

chromatin interaction
5
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Materials and methods:  

 

Data source 

 The genome wide single cell gene expression dataset
7
 of embryonic stem cell of 

mouse consists of expression of 24435 genes across 13 cells from ICM. 

 RNA-pol2 associated chromatin interaction data
8
 consists of pair wise interactions 

of genes which are mediated by RNA-pol2. 

Data normalization 

Normalisation is required before any analysis which involves comparison of two or more 

data sets. Here, the genome wide single cell gene expression data was quantile 

normalised
6
 in R, using the DNAMR library (refer to Fig S1). 

The main principle of quantile normalization is to make the distribution of probe 

intensities for each array in a set of arrays the same. The algorithm for normalising a set 

of data vectors by given them the same distribution is: 

1. Given n arrays of length p, construct matrix X of dimension p x n, where each 

array is a column. 

2. Sort each column of X and represent this new matrix by Xsort 

3. Take average across rows of Xsort  and assign this average to each element in the 

row to get X
‟
sort 

4. Rearrange each column of X
‟
sort

 
to have the same ordering as original X, to get  

X normalized. 

Here is an example of the above algorithm. 
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X                   Xsort                X
‟
sort                                            

Xnormalize 

Calculation of Expression noise  

The expression noise of genes across the cell was calculated in terms of coefficient of 

variance. Mathematically it is defined as,  

                     
  
  

 

 where σX is the standard deviation  and μX is the mean value of  the expression across the 

cells (X) (for further analysis refer Fig S2). 

Another way of defining noise is through fano factor, i.e.  

 

Network construction and analysis  

The undirected network was constructed from the RNA-pol2 associated chromatin 

interaction data, using igraph library on R-package. Number of interactions (degree) of 

each gene was calculated using „degree‟ function on igraph (using a Perl script) (for 

analysis refer to Fig S3)   
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Calculating shortest path 

We were then interested in studying the spatial organization of genes especially the low 

noise genes. For this, first from the noise data, the genes were distributed on the basis on 

low, medium and high noise respectively. Then the interaction network for each noise 

type was extracted from the entire genome interaction network (using Perl script). For 

each gene, shortest path to every other gene from this chosen gene was calculated using 

„shortest.path‟ function on igraph and were averaged to get the average shortest path for 

the chosen gene for each noise type.  Furthermore, average path length of the entire noise 

type was calculated using „average.path.length‟ function on igraph library on R package. 

The analysis was done through boxplot in R.  

The „shortest.path‟ function uses Breadth First Search algorithm. 

Breadth First Search:  

Given a graph G and a vertex s in G, breadth-first search algorithm traverses all the 

vertices reachable from s. Algorithm for BFS is as follows: 

1. Let L0 = {s} 

2. Let L1 to be all the neighbours of L0 

3. Let L2 to be all nodes that do not belong to L0 or L1, and that have an edge to a 

node in L1 

4. Similarly Li+1 to be all nodes that do not belong to an earlier layer and that have an 

edge to a node in Li 

For each i, Li consists of all nodes at distance exactly i from s. There is a path from s to t 

if and only if t appears in some layer. 

 

To further scrutinize the observation, we used mRNA degradation data and enrichment of 

H3K4me3/H3K27me3 which are described below. 
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mRNA degradation dataset 

We have database for mRNA half-life of 19977 genes of pluripotent and differentiating 

mouse embryonic stem cell
9
. The data consist of two mouse ESC lines: MC1 and MC2 in 

different environment conditions (LIF+, LIF- and RA+ respectively). The noise and 

degree data was mapped to this data to study the dependence of mRNA decay rate on 

noise and degree.   

Enrichment dataset (H3K4/27me3) 

Next, we were interested in studying the effect of epigenetic. For this, the mm8 assembly 

of mouse was downloaded from UCSC Genome Bioinformatics website. This was made 

unique on the basis of gene names, by taking the gene which is having largest transcript 

length. Then from this data, the region of 5000 base pair near the TSS i.e. TSS±5000 

were calculated. Using the java script borrowed from Dr. Guoliang Li (ex-colleague of 

Dr. Kuljeet Singh Sandhu) and the region profile mouse data
10

, the enrichment of 

H3K4me3 and H3K27me3 were calculated with the bin size of 1000 and 100 base pair. 

For each gene total enrichment of H3K4me3 and H3K27me3 respectively was calculated 

in the region TSS±0.5 kb and TSS±1 kb. In this data, the noise and degree data were 

mapped using unique gene name. Thus, we were then able to study the enrichment of 

H3K4me3 and H3K27me3 with noise and degree in both the regions. 

Using the coordinates of intervals enriched for H3K4Me3 and H3K27Me3 in mouse ES 

cells, the enrichment of H3K4me3 near the promoter region (TSS±0.5kb, TSS±1kb) was 

checked (1 or 0); similar procedure was done for H3K27me3 enrichment. Then genes 

having both the markers H3K4me3 and H3K27me3 were calculated and the fractions of 

genes having both the markers were studied with noise and degree. 

Time course differentiation dataset 

The next dataset was time course differentiation dataset
11

 of three different mESC strains 

(J1, R1, and V6.5). Geometric mean was used for each ES (0 hour) and EB (14 hour) in 

each strain. Fraction of genes having EB/ES ratio >=2 was then calculated for all the three 

germ lines of mouse, namely R1, J1and V6.5.  
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In order to ensure the results, the entire data analysis was done again using new set of 

RNA-pol-2 interaction data
8
. Here the interaction was captured in higher resolution i.e. 

1500 bp.  

Results: 

To test the hypothesis that the association with transcription factories reduces the 

transcriptional noise, we started with two datasets:  the genome wide single cell gene 

expression dataset of embryonic stem cell of mouse and RNA-polymerase 2 associated 

chromatin interaction data. Using the above data, expression noise and number of 

interaction of genes were calculated respectively.  

In Fig 1.2, there was strong negative correlation (ρ = -0.51, p < 2.2e 
-16 

) between 

transcriptional noise and degree highlighting that low noise genes are associated with 

high degree and high noise genes are associated with low degree. Furthermore, in order to 

nullify the impact of relative abundance of mRNA-copies, the observation was also 

scrutinized by calculating the abundance corrected noise using LOWESS in R package 

and plotted against the degree (refer to Fig S5). Furthermore, low noise genes, due to their 

higher degree, were more proximal to each other in the chromatin interaction network 

when compared to high noise genes (refer to Fig S4). 

 

Fig1.2: Correlation between expression noise and degree. 

We further scrutinized our observation using yet another dataset. Topologically 

associated domains (TADs) are large (~1Mb average size) chromatin domains which have 

very dense intra-domain chromatin interactions
12

. The boundaries of these domains are 
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enriched with high transcriptional activity and it has been proposed that the boundaries of 

distant domains collide with each other possibly at the site of transcription factory. 

Therefore, proximity of a gene from these boundaries can be a proxy to an association 

with transcription factory.   For each gene, distance from nearest TAD boundary was 

calculated and plotted with noise.  Fig1.3, shows significantly positive correlation (ρ = 

0.12, p < 2.2e 
-16

) between noise and the distance from the TAD boundary, supporting our 

hypothesis. 

 

 

Fig 1.3: Correlation between noise and distance from nearest boundary 

 

Are there any other factors responsible for transcriptional noise?  

Degradation of mRNA might be one of the factors that control the steady state level of 

gene expression. For this, the mRNA decay rate of genes was obtained from microarray 

analysis of RNA samples obtained from mouse embryonic stem (ES) cells. Fig1.4 shows, 

a very weak correlation (ρ=-0.037, p =0.002) between mRNA decay rate and 

transcriptional noise. 
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Fig1.4: Correlation between mRNA decay rate and transcriptional noise. 

 

Functional characterization of transcriptional noise and degree 

We have the distribution of genes based on their functions. This was studied with respect 

to the noise and degree. We saw that genes having  housekeeping functions like 

translation, cell-cycle regulation, metabolism, cytoskeleton etc are associated with low 

noise and high degree, whereas the genes having regulatory functions like development, 

signal transduction etc. are associated with high noise and low degree. 

Interpretation: The cells have evolved a mechanism to minimize transcriptional noise of 

genes important for the cell survival and to ascribe sufficient noise to genes which require 

some plasticity or adaptation to the environment.    
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Fig1.5: Box plot showing the functional consequence of genes with noise and degree 

respectively. 

 

Since our experimental system is mouse embryonic stem cells, we further explored the 

association of transcriptional noise and degree with the development. In time course 

differentiation data, when the fractions of genes with > 2 fold change in expression during 

development was plotted against noise and degree, we observe that it has positive 

correlation with noise and negative correlation with degree(Fig 1.6 (A)), while  the genes 

important for ES cell self renewal are associated with lower noise and higher degree.  

Further, we observed strong positive correlation of fraction of genes having bivalent 

histone modification (H3K4/K27me3) with noise and negative correlation with degree 

(Fig 1.6 (B)).  

Interpretation: The analyses suggests that genes which are required for ES cell 

differentiation exhibit bursty expression in ES cells and that the ES cells can be 

stochastically pre-poised to differentiate into particular lineage. On the other hand, the 

genes involved in ES cell self-renewal seems to be associated with transcription factories  

in order to reduce transcriptional noise of pluripotency related genes  and  keeping the 

potential of self renewal potential of ES cell. The association with bivalent histone 

modifications might suggest two things: 1) Bivalency, i.e., having activation and 

repression potential together, might ascribe noise to transcription. 2) H3K4me3 and 

H3K27me3 marks on a histone might not be present in the same cell, but rather represents 
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active and inactive state of the gene in different cells. This is a speculation and needs 

further evidence. 

(A) 

 

 

 

 

 

 

 

(B) 

 

 

 

 

 

 

 

Fig 1.6: Association of noise and degree with ESC differentiation and bivalent 

histone modification 
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Chapter 2 Disproportionate concentration of gene 

products 
 

Introduction 

Network is a collection of nodes which are connected by edges. This simple notion of 

network is now use to study the complex dynamics of biological system. Here, we use 

networks as a tool to understand the propagation of error or perturbation in the system. 

In cells, when the gene expression of a certain loci is altered, then it might lead to the 

disproportionate concentration of functionally related gene-products. This error needs to 

be mitigated for the robustness of the cell. One of the solutions can be the transcriptional 

ripple i.e. simultaneous alteration in expression of neighbouring genes. For this we 

propose a perturbation transmission model, so that error propagates in the neighbourhood 

to alter the expression and thus balances the required proportion of gene-products. 

The model is inspired by communicating vessel model
14

. In general communicating 

vessels is the name giving to the set of vessels which are connected by a pipe, containing 

homogeneous fluid. Liquid will continue to flow in order to balance the level in all the 

vessels. The same principle can be applied to biological networks for instance chromatin-

chromatin interaction network.  Here the vessels will be the nodes representing 

interacting loci or genes and the connecting pipe can be the interaction frequency between 

the nodes. 

The algorithm
13

 of the model is: 

In each time step, every node transfers a proportion of its available energy through every 

available edge, proportional to 

1. The duration of the time step 

2. Weight of the edge 

3. Difference of the energy states on the two ends of the edge 

In most dynamical system there is always dissipation constant associated with each node.  

It is the amount of energy dissipated by the node. 
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Thus the differential equation for the model is: 

  

  
   ∑[

    
 

  ]    

 

   

 

where, 

S : energy of current node 

l : no of edges of the current node 

wi: weight of the i
th

 node 

Si : current energy of the node on the other end of i
th

 edge 

D0 : amount of energy dissipated by a node in a given time step 

Discrete form of the above equation is: 

 

 [   ]   ∑[
 [ ]    [ ]

 
  ]    

 

   

 

*The notations are same as above. 

The weights wi should be chosen such that   ∑   
 
     , otherwise more energy will 

propagate outwards then the amount contained in the node, thus resulting in negative 

energy. 

Material and Methods: 

 

Data source 

The program was studied in great details for dummy networks. In order to check the 

program for real network perturbation, the paper Ripples from neighbouring 

transcription
14

 was referred. 
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 The time course expression by ERK MAP kinase during cell cycle progression 

from G0/G1 to S phases was taken from 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4739. The data consist 

of expression values of affymetrix ids for the time points 0h, 1h, 4h, 7h, 12h in 

different experiment conditions. 

 

Removal of redundancy 

The affymetrix ids were first converted to gene names using 

http://refdic.rcai.riken.jp/tools/xrefconv.cgi. 38519 ids out of 45695 ids were mapped to 

corresponding gene names. Since there can be many to one map between affymetrix ids 

and gene name. To make the map unique, the ids and symbols were mapped to the data 

which contains their chromosome locations and made unique on the basis on gene names, 

by taking the gene which is having largest transcript length. Now this data with gene 

name with chromosome location was mapped to the original time expression data. For 

simulations we have used only time course data for experiment1. 

Network construction 

From the reference paper, we have early immediate genes which were the source node for 

the program. We start with intra chromosomal interactions. For this the IEG gene with all 

the genes present on this chromosome were extracted and the sub-network from the initial 

genome wide interaction network was constructed. Thus, we have the network for the 

IEG gene of our interest.  

Adjacency list construction 

Next, we converted the network into adjacency list using igraph library in R package. 

Here, the edge weight for all the edges was kept constant. The node energy values were 

the expression values of genes at time 0h. The perturbed value of the IEG gene were the 

expression value at time 1h. The program was then simulated once the inputs were ready 

in required format. 

Example of input data: There are two input parameters for the program; Node energy 

file and Adjacency list file. Following is the example of network for the chromosome 10, 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4739
http://refdic.rcai.riken.jp/tools/xrefconv.cgi


15 
 

where source node is nab2, whose initial value at 0h was 1244.5, which was perturbed to 

4472.6 at 1 hour. 

 

Node energy data: 

Node name Node energy 

nab2 1244.5 

lrp1 1580.8 

stat6 2613 

... ... 

 

Adjacency list data: 

nab2     lrp1:0.00033     ppp1r12a:0.00033     stat6:0.00033     zc3h10:0.00033... 

where lrp1, ppp1r12a, stat6, zc3h10 etc are the nearest neighbour of nab2, the IEG gene. 

The edge weight is taken to be 0.00033 for all the edges, such that sum of all the weight is 

less than 1. 

Results 

With the addition of fibroblast growth factor, there is a steep increase in the expression of 

immediate early gene, which is accompanied by increase in expression of neighbouring 

genes. For example there is steep increase in the expression of IEG gene Ier3, and with 

time the expression of the nearest neighbour gene Nrm also increases. When the 

expression value of Ier3 was changed from 0.22 to 0.82 and was simulated via the model, 

we observe the increase in the expression value of Nrm which qualitatively agrees with 

the experimental results. Similar simulation pattern was observed, with steep increase in 

expression pattern of IEG gene Junb and Nab2. These results indicate that if we presume 

that our hypothesis of cross promoter interactions is true, the transcriptional ripples can be 

simulated using communicating-vessels model.  
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Fig2.1: Visualisation of temporal control of gene expression by (Left panel) simulations 

via perturbation transmission model, (Right panel) Experimental observations from 

literature.  Here Ier3, Junb and Nab2 are the IEG genes on chromosome 17, 8 and 10 

respectively. 

 

 

 

 

 

 

 

A A 

B 

C 
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Chapter 3 Discussion 
 

Any living organism comprises of complex web of gene networks. An even small 

fluctuation in gene network is unavoidable. For example fluctuation in any of the number 

of factors affecting the cell growth can change the other cellular processes, which might 

prove lethal for the cell. For the robustness of the system, this error needs to be mitigated.  

Here we studied two type of fluctuations or error in living cell.  

1. Stochastic variation in gene expression 

This part, aimed to decipher the determinants of the transcriptional heterogeneity in the 

cells with the hypothesis that that transcriptional noise is modulated by relative mobility 

of gene loci in the three dimensional nuclear space. To test this, we started with single 

cell gene expression data and expression noise. The observation suggests that low noise 

genes are associated with high degree and high noise genes are associated with low 

degree. Furthermore, it was observed that low noise, genes due to their high degree are 

spatially proximal to each other, possibly to coordinate or synchronise their self renewal 

function.  To further validate the observation, we studied the TAD dataset.  The 

boundaries of topological domain are expected to be associated with transcriptional 

factories. Thus proximity of a gene from these boundaries can be a proxy to an 

association with transcriptional factories. The observation supports the hypothesis.  

Are there any other factors responsible for transcriptional noise? What about degradation 

of mRNA? From the analysis, we have a very weak correlation between mRNA decay 

rate and Noise. Thus again, supporting the hypothesis.  

Furthermore, we observed that genes with low noise are associated with self renewal of 

cells whereas the genes with high noise are associated with development.   

2. Disproportionate concentrations of neighbouring gene-products 

In chromatin interaction network, error at loci can create the disproportionate 

concentration of neighbouring genes, thus could create deregulation and comprise with 

the robustness of the system. The error can mitigated by transcriptional ripple. The 

underlying mechanism is not understood. We need to simulate and test theoretically. We 

thus proposed a perturbation transmission model inspired by communicating vessel 
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principle, so that error propagates in the neighbourhood and thus minimizing the error. To 

simulate the perturbation, we start with time course expression data by ERK MAP kinase 

during cell cycle progression from G0/G1 to S phases. We observed that the intense 

transcriptional activity at one locus spills over into its physical neighbouring loci, which 

is supports the experimental observation.  

Communicating vessels model essentially captures the qualitative patterns of time-course 

expression curves reported in the literature.  
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Chapter 4 Conclusion 
 

 Association with transcriptional factories can reduce the transcriptional noise of 

genes. 

 Modulation of transcriptional noise might have served as an evolutionary 

constraint that shaped the 3D genome organisation. 

 The perturbation transmission model can be used to study the Ripple Effect in 

transcription. 

 Since networks are interdependent of each others. The model thus might suggests 

the propagation of genetic or epigenetic errors in one network to other interacting  

network  
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Chapter 5 Future prospective 
 

To scrutinize our hypothesis against other structural and functional variables, we will 

perform Principal component regression and screen different variables which might 

determine transcriptional noise. 

As a future perspective, we will explore for the more experimental evidence for 

transcriptional ripples in the genome through large scale analyses of available gene 

expression datasets in GEO database and test our algorithm. Once convinced, we will use 

this tool to study the transcriptional ripples and their genome wide functional 

consequences in the diseased conditions where sites of genetic or epigenetic perturbations 

are known. By integrating the other cellular networks like protein-protein interaction and 

DNA-protein interaction into the framework applying our algorithm on interdependent 

networks, we might be able to understand the, pleiotropic perturbations, if any, in the 

genome. 
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Appendix 

 

               

 

Fig S1: Data normalisation: (A) the QQ plot of raw data, (B) QQ plot of normalised data, 

(C) Box plot of raw data, (D) box plot of normalised data. 
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Fig S2: Noise distribution using (A) density plot showing the cut-off for noise                           

NN = 0; 0 < LN < 1; HN > 3, (B) box plot  

 

 

Fig S3: Degree distribution: low noise genes are associated with high degree and high 

noise genes are associated with low degree. 
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Fig S4: Average path length (APL) of genes with low and high noise. 

 

 

                                                                 

 

Fig S5: Correlation between abundant corrected noise and degree. The noise of 

genes was corrected by their abundance using LOWESS. 
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