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Chapter 1

An Introduction to Elliptic Curve

1.1 Definition of an Elliptic Curve

An elliptic curve is a non-singular cubic curve of genus one in two variables over

a field K with points having coordinates in field K together with a special point,

point at infinity O.

Definition 1.1 An Elliptic curve E defined over a field K is the set of points (x, y) ∈
K̄ × K̄ satisfying a Tate Weierstrass equation of the form;

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1.1)

along with a point at infinity O and where a1, a2, a3, a4, a6 ∈ K.

If k is a subfield of K, then

E(k) = O ∪
{

(x, y) ∈ k × k | y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

}
If the characteristic of field is different than 2 or 3, then by the change of variables

we can simplify the equation (1.1) of an Elliptic curve.

1. when char(K) 6= 2, then we can divide by 2 and complete the square on the

left hand side of the equation (1.1),(
y +

a1x

2
+
a3

2

)2

= x3 +

(
a2 +

a2
1

4

)
x2 +

(
a4 +

a1a3

2

)
x+

(
a6 +

a2
3

4

)
Then after putting Y =

(
y +

a1x

2
+
a3

2

)2

, A =

(
a2 +

a2
1

4

)
, B =

(
a4 +

a1a3

2

)
and C =

(
a6 +

a2
3

4

)
. The equation (1.1) can be written as;

E : Y 2 = X3 + AX2 +BX + C char(K) 6= 2 (1.2)

1
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where A, B, C are constants and lie in K.

2. If char(K) 6= 2, 3. Then by putting X = x1 −
A

3
in equation (1.2), we get

Y 2 =

(
x1 −

A

3

)3

+ A

(
x1 −

A

3

)2

+B

(
x1 −

A

3

)
+ C

= x3
1 −

A3

27
− x2

1A+
x1A

2

3
+ x2

1A−
A3

9
− 2A2x1

3
+Bx1 −

AB

3
+ C

= x3
1 + x1

(
A2

3
− 2A2

3
+B

)
+

(
C − A3

27
− AB

3
− A3

9

)
For some constants A1 and B1 we can write the equation as

E : Y 2 = x3
1 + A1x1 +B1 char(K) 6= 2, 3 (1.3)

where A1, B1 ∈ K and are constants.

Definition 1.2 An elliptic curve E : y2 = x3 + Ax + C is non-singular if and only if

the polynomial in x has distinct roots i.e. it’s discriminant ∆ = −16(4a3 + 27b2) is

non-zero, otherwise we call it a singular curve.

The rational points on singular cubic curves and on non-singular cubic curves behave

differently. The set of rational points on a non-singular cubic curve is finitely

generated but the group of rational points on singular curve is not finitely generated.

1.2 Weierstrass Normal Form

A cubic curve is said to be in Weierstrass form if it has the form

y2 = 4x3 − g2x− g3

or more generally,

y2 = x3 + Ax2 +Bx+ C

Now, we will show that every cubic with a rational point can be transformed into a

Weierstrass normal form and the rational points on the original curve corresponds

to rational points on the transformed curve.



1.2. WEIERSTRASS NORMAL FORM 3

Let C be any cubic curve

C : ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0

Here, we want to choose the axis in the projective plane such that the equation of

the curve will have simple form. For this, let O be a given rational point on the

curve C, and take Z = 0 to be the tangent line at the point O. Then the tangent

line intersects the curve at another point and take X = 0 be the tangent at that

point. After that choose Y = 0 be any line passing through the point O where O
is not an inflection point, In the case of an inflection point, we take X = 0 to be

any line not containing O. After choosing the axis let x =
X

Z
and y =

Y

Z
. This

transformation is called projective transformation.

Figure 1.1: Projective transformation

After transforming the cubic by projective transformation we get the curve,

C : AX3+BX2Y+CXY 2+DY 3+EX2Z+FXY Z+GY 2Z+HXZ2+IY Z2+JZ3 = 0 = f(X, Y, Z)

As O = [1, 0, 0] is a point on the curve C so A = 0 and the point [0, 1, 0] ∈ C so

D = 0. Then,
df

dX
[1, 0, 0] = 0

df

dY
[1, 0, 0] = B

df

dZ
[1, 0, 0] = E

Therefore, the equation of the tangent at the point [1, 0, 0] is given by

(X − 1)
df

dX
[1, 0, 0] + Y

df

dY
[1, 0, 0] + Z

df

dZ
[1, 0, 0] = 0
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Since, we know that Z = 0 is also the equation of tangent. By comparing the

coefficients of the equation we get B = 0. Thus, the equation for C becomes;

x1y
2
1 + (ax1 + b)y1 = cx2

1 + dx1 + e.

Now, multiply by x1

(x1y1)2 + (ax1 + b)x1y1 = cx3
1 + dx2

1 + ex1.

Let x1y1 = y2 to obtain,

y2
2 + (ax1 + b)y2 = cx3

1 + dx2
1 + ex1.

After putting y2 = y3 −
1

2
(ax1 + b) we get;

y2
3 −

1

4
(ax1 + b)2 = cx3

1 + dx2
1 + ex1.

Now, let x1 = λX and y3 = λ2Y to get

λ4Y 2 − (aλX + b)2

4
= λ4X3 − dλ2X2 + EλX

After cancelling λ4 and rearranging the above equation, the equation becomes;

Y 2 = X3 + AX2 +BX + C

Example 1.3 : Consider the cubic curve

u3 + v3 = α

where α is a rational number.

Let u =
U

W
and v =

V

W
. Then homogeneous form of the curve is U3 +V 3 = αW 3

and it contains the rational point [1,−1, 0]. The point [1,−1, 0] is an inflection point

as αW 3 = 0. For F: U3 + V 3 − αW 3 = 0,

dF

du
= 3 ;

dF

dV
= 3;

dF

dW
= 0;

Then the equation of tangent at this rational point is 3(U − 1) + 3(V + 1) = 0 ⇒
U + V = 0. By substituting U + V = Z in the equation U3 + V 3 − αW 3 = 0, we

get Z3− 3V Z2 + 3V 2Z − αW 3 = 0. Put Z = 1, to get 1− 3V + 3V 2 = αW 3. After
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multiplying α2 on both sides of the equation and then multiplying by (12)3 on both

sides, we get;

(36α(2V − 1))2 + 432α2 = (12αW )3

Now, let X = 12αW and Y = (36α(2V − 1)). Then the equation becomes;

Y 2 = X3 − 432α2

where X =
12α

u+ v
and Y = 36α

u− v
u+ v

.

1.3 Why Elliptic Curves are called Elliptic

In this section, we will show why Elliptic curves are called Elliptic and how the

problem of parametrising the arc-length of an ellipse leads to elliptic curves.

Let E be an Elliptic curve, then by definition it is the set of solutions (x, y) to an

equation of the form:

y2 = x3 + Ax2 +Bx+ C .

The equation of an Ellipse is;

x2

a2
+
y2

b2
= 1

where a > b. Then, to calculate the arc-length of the ellipse, first express the ellipse

equation in terms of x, and then calculate it’s derivative.
dy

dx
= − b

a2

x√
1− x2

a2

.

Let L be the arc-length of an ellipse then,

L =

∫ √
1 +

(
dy

dx

)2

dx

=

∫ √
1 +

(
b2x2

a2(a2 − x2)

)
dx

=

∫ √
a4 − (a2 − b2)x2

a2 − x2
dx

=

∫ √
1− (1− b2/a2)(x/a)2

1− (x/a)2
dx (dividing by a2)
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Now put t = x/a and k = 1− (b2/a2), then dt = dx/a

L =

∫ √
1− k2t2

1− t2
dt

=

∫
1− k2√

(1− t2)(1− k2t2)
dt

Indefinite integrals of the type
∫
R(x; y)dx, where R(x; y) is a rational function of

x and y and y2 is a polynomial of degree three or four in x without multiple roots,

are called elliptic integrals. The elliptic integrals are multiple- valued functions,

their inverse function is a single-valued meromorphic function on the whole complex

plane. The elliptic functions are doubly periodic with two periods ω1 and ω2, where
ω1

ω2

6= real.

1.4 Group Law on Elliptic Curve

Elliptic Curves have the property that given any two points or even one point, we

can define one another point. The basic idea behind the addition on elliptic curve is

that a line will intersect the curve three times by Bezout’s theorem. Moreover, all

three points of intersection of the line and an elliptic curve need not to be distinct.

So, for given two points say P and Q we can draw a line passing through P and

Q and can find the third point, which is the intersection point of the line with a

curve. In the case of a given single point say P we can draw a tangent line at P ,

here tangent line meet the curve with multiplicity two at the point P and the third

point is the intersection point of the elliptic curve with the tangent line at the point

P . But we can see that the set of points obtained by the intersection of the line

and a curve is not a group as it does not have identity element. Therefore, the first

thing we need to do to make it into a group is to find the identity element. For that

we define O (the point of infinity ) to act as the zero or the identity element of the

group and group law by + .

Definition 1.4 Group Law: Let P and Q ∈ E, and l be the line passing through P

and Q (If P = Q, then l be the tangent line to E at P ), and P ∗ Q be the third

point of intersection of l with the curve E. Let ĺ be the line through P ∗ Q and O.

Then ĺ intersects E at P ∗ Q, O and a third intersection point R = P + Q. Thus

P +Q = O ∗ (P ∗Q).
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Figure 1.2: The Group Law on an Elliptic Curve

Theorem 1.5 The points on elliptic curve E form an additive abelian group as it

satisfies the following properties with O acting as the identity element;

1. Commutativity : P +Q = Q+ P , ∀P,Q ∈ E .

2. Existence of identity: P +O = P , ∀P ∈ E .

3. Existence of inverse: Given Q ∈ E, ∃−Q ∈ E such that Q+ (−Q) = O .

4. Associativity: (P +Q) +R = P + (Q+R), ∀P,Q,R ∈ E .

Proof

1. The commutativity for elliptic curve is trivial as line passing through the point

P and Q is same as the line passing through the points Q and P . Therefore,

P +Q = Q+ P , ∀P,Q ∈ E.

2. For verifying O as the identity element, first draw a line passing through P and

O. Then from the intersection of the line and curve we get a third intersection

point P ∗ O. Now join that intersection point with O and we get (P ∗ O) ∗ O
and (P ∗ O) ∗ O = P as a third intersection point. Hence proved.
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Figure 1.3: O is the Identity element

Figure 1.4: Inverse of a point

3. To prove existence of inverse, we draw a tangent line to the cubic at O and

let S be the point where the tangent line meet the curve. Then for a given

point Q, draw a line passing through Q and S. Then the third intersection

point Q ∗ S, which we get is equal to −Q. To prove that draw a line through

Q and −Q, then the third intersection point of the line and the curve is S.

After that join S and O and then the third intersection point is S ∗O and here

S ∗ O = O. The reason is that the line passing through S and O is tangent

to the cubic at O, so it will meet the cubic curve twice at O and once at S.

Therefore, Q+ (−Q) = O.

4. To prove that associativity holds, we will show that (P +Q)∗R = P ∗ (Q+R)

where P,Q,R ∈ E. To get (P +Q)∗R, start with two points P and Q, draw a

line passing through P and Q and get the third intersection point P ∗Q. After
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that draw a line passing through P ∗ Q and O, the third intersection point

which we get is (P ∗Q) ∗ O = P +Q. Now, to add P +Q and R. We draw a

line passing from P + Q and R and the line meets the curve at (P + Q) ∗ R.

Then join a line passing through (P +Q)∗R and O to get a third intersection

point (P +Q) +R. Now, for P ∗ (Q+R), first take two points Q and R, draw

a line through them and take the third intersection point Q ∗ R, now to get

Q+R, draw a line passing through Q∗R and O and this line will intersect the

curve at third point (Q ∗R) ∗O which is Q+R. Now join Q+R to P , to get

third intersection point P ∗ (Q+R). P,Q,R, P ∗Q,Q ∗R,Q+R,O all these

points lie on the curve. The intersection of the line through P and Q+R, and

the line through P+Q and R lie on the curve. Thus,(P+Q)∗R = P ∗(Q+R).

Hence, we have proved that (P +Q) +R = P + (Q+R), ∀P,Q,R ∈ E.

�

Figure 1.5: Associative Law

Theorem 1.6 Let E : y2 = x3+Ax2+Bx+C be an elliptic curve. Let P = (x1, y1)and

Q = (x2, y2) be two points on the curve with P,Q 6= O. Then P+Q = R = (x3,−y3)

as follows;

1. If x1 6= x2, then x3 = m2 − x1 − x2, −y3 = m(x1 − x3) − y1, where m =
y2 − y1

x2 − x1

.
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2. If x1 = x2 but y1 6= y2, then P +Q = O.

3. If P = Q and y1 6= 0, then

x3 = m2 − 2x1, −y3 = m(x1 − x3)− y1, where m =
3x2

1 + Ax1 +B

2y1

.

4. If P = Q and y1 = 0, then P +Q = O.

Proof Let P = (x1, y1) and Q = (x2, y2) be two points on elliptic curve E in the

Weierstrass form. An elliptic curve in Weierstrass form is symmetric about the

x−axis. So to find P +Q,

1. Draw a line l passing through P and Q.

2. Line l will intersect the curve at the third point P ∗Q = (x3, y3).

3. Then reflect the point P ∗Q about the x−axis.

4. So, P +Q = R = (x3,−y3)

Figure 1.6: Addition of points on an Elliptic curve in the Weierstrass form

Moreover, the negative of a point can be obtained by reflecting the point about

the x−axis. So, if we have a point P = (x1, y1), then −P = (x1,−y1). It is due

to the fact that the line through P and −P is a vertical line, so the third point of

intersection is the point at infinity. And the line passing through O and O again

meets the curve at O, that’s because the line at infinity meets the curve with a

multiplicity of three at O. Therefore, P + (−P ) = O.
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Let P = (x1, y1), Q = (x2, y2) and P ∗ Q = (x3, y3). Let l : y = λx + υ be the

equation of the line joining the points P = (x1, y1) and Q = (x2, y2) and λ be the

slope of the line l.

1. Assume x1 6= x2, then λ =
y2 − y1

x2 − x1

. As P and Q lies on the line l so

υ = y1−λx1 = y2−λx2. The line l intersects the curve at three points and we

know that two of them are P and Q as they lie on both the curve E and the

line l, so to find the third point of intersection, put the equation of the line l

in the curve E. From which we get

y2 = (λx+ υ)2 = x3 + Ax2 +Bx+ C.

This equation can be arranged into;

x3 + (A− λ2)x2 + (B − 2λυ)x+ (C − υ2) = 0.

The three roots of this cubic equation in x are x1, x2, x3, which are the x−coordinates

of the three points of intersection. Thus, we can write the cubic in this form

x3 + (A− λ2)x2 + (B − 2λυ)x+ (C − υ2) = (x− x1)(x− x2)(x− x3)

= x3 − (x1 + x2 + x3)x3 + . . . .

Now, to get x3 equate the coefficients of x2 on both sides,

x1 + x2 + x3 = −(A− λ2) =⇒ x3 = λ2 − A− x1 − x2.

Then, by plugging the value of x3 into the equation of line l, we get

y3 = λx3 + υ = λ(x3) + (y1 − λx1) = λ(x3) + (y2 − λx2)

= λ(x3 − x1) + y1 = λ(x3 − x2) + y2.

To get the y−coordinate of P +Q = R, reflect (x3, y3) about the x−axis. So,

R = (x3,−y3) = (λ2 − A− x1 − x2, λ(x1 − x3)− y1).

2. If x1 = x2 but y1 6= y2 then l is a vertical line and third intersection of a

vertical line with curve is point at infinity. The reflection of O across the axis

gives O again. Hence, P +Q = O.
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3. If on the curve y2 = x3 +Ax2 +Bx+ C = f(x), P = Q = (x1, y1) and y1 6= 0

then the line l is a tangent line at point P with slope

λ =
dy

dx
=
f ′(x)

2y
=

(
3x2

1 + 2Ax1 +B

2y1

)2

Then, substitute the value of λ intoR = (x3,−y3) = (λ2 − A− x1 − x2, λ(x1 − x3)− y1)

to get P + P = 2P = (x3,−y3), i.e.,

x coordinate of 2P = 2(x1, y1) = λ2 − 2x1

=
f ′(x1)

2y1

=

(
3x2

1 + 2Ax1 +B

2y1

)2

=

(
x4 − 2Bx− 8Cx+B2 − 4Ac

4x3 + 4Ax2 + 4Bx+ 4C

)
∵ y2

1 = x3
1 + 2Ax2

1 +Bx1 + C.

Here, y coordinate of 2P = λ(x1 − x3)− y1.

Moreover, formula for x(2P ) is called the duplication formula.

4. If P = Q and y1 = 0, then the line l is the vertical line. Hence, P +Q = O.

�

1.5 Divisors

Divisors can be consider as a device for keeping track of zeroes and poles of a

function.

Definition 1.7 A divisor group denoted by Div(E) is a free abelian group generated

by the points of the elliptic curve E. The divisor D ∈ Div(E) is defined as

D =
∑
P∈E

nP [P ],

where nP ∈ Z and nP = 0 for all but finitely many P ∈ E. (The brackets [ ] denotes

the elements of Div(E))
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• The degree of a divisor D is given by

degD =
∑
P∈E

nP .

• The sum of a divisor D is given by

Sum(D) =
∑
P∈E

nPP.

The divisor of degree 0 forms a subgroup of Div(E) and it’s denoted by Div0(E).

Div0(E) = {D ∈ Div(E) : degD = 0} .

Polynomial and Rational Functions

Definition 1.8 The polynomials on elliptic curve E : y2 = x3 +ax+b are the elements

of the quotient ring and is given by

K[E] = K[x, y]/(y2 − x3 − ax− b)

where (y2 − x3 − ax− b) is an ideal generated by the polynomial y2 − x3 − ax− b ∈
K[x, y]. Thus we can say that polynomials on E are the elements of K[x, y], the

ring of polynomials in x and y.

Whenever we have a polynomial f ∈ K[E] with power of y greater then one,

then a power of y greater than one that appears in f can be replaced by the term

x3 + ax + b without changing the equivalence class of f . So f can be written in

canonical form, f(x, y) = v(x) + yw(x) with v, w ∈ K[x] i.e. polynomials in one

variable.

Definition 1.9 Let f ∈ K[E] be the polynomial in canonical form f(x, y) = v(x) +

yw(x). Then conjugate of f is defined as f(x, y) := v(x)− yw(x) and is denoted by

f̄ . The norm of f is defined by Nf := ff . So,

Nf = (v(x) + yw(x))(v(x)− yw(x))

= v2(x)− y2w2(x)
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As, y2 = x3 +ax+ b so f can be written as Nf = v2(x)−s(x)w2(x), so Nf ∈ K[x]

i.e. a polynomial in only one variable.

Definition 1.10 :

A rational function on an elliptic curve E over a field K is an element of the quotient

ring denoted by K(E) of the integral domain

K[x, y]/(y2 − x3 − ax− b).

The rational function r ∈ K(E) is of the form
f(P )

g(P )
at a finite point P ∈ E where

f and g ∈ K[E] and g(P ) 6= 0. In the case when g(P ) = 0 at a point P then we

denote r(P ) = O.

Theorem 1.11 For each P ∈ E, ∃ a rational function u, zero at P and with the

property that if r is any rational function not identically zero then r = uds for some

integer d and some rational function s that is finite and non-zero at P . Furthermore,

the number d does not depend on the choice of the function u.

Proof There are three cases:

1. Assume P is not a point of order 2 and that P is not O. For P = (a, b), we

will show that there exist a rational function u(x, y) = x − a. Suppose r has

a zero at P then r = f
g

with f(P ) = 0 and g(P ) 6= 0. If we can decompose

f = uds in the above equation, then we can simply divide by g and get the

corresponding result for r.

Let f(x, y) = v(x) + yw(x).If f(P ) = 0, then since the characteristic is not

two and y(P ) = b 6= 0, we can solve the linear equations

v(a) + bw(a) = 0

v(a)− bw(a) = 0,

to conclude that v(a) = 0,w(a) = 0. Since v and w are polynomials in one

variable, we get

f(x, y) = (x− a)s1(x, y)

for some polynomial s1. If f(P ) 6= 0 then we can multiply f by (f)/(f) to get

f(x, y) =
v2(x)− s(x)w2(x)

f(x, y)
,
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where s(x) = x3 + Ax+B Now f(P ) = 0 and f 6= 0 implies

v2(x)− s(x)w2(x) = 0 for x = a,

and the polynomial on the left is a polynomial in one variable. Again we

conclude that

f(x) = (x− a).s1(x, y),

where this time s1 is some rational functional that is finite at P . In either

case, if s1(P ) = 0, we can continue the process. If f(x, y) = (x − a)ds1(x, y),

then N(f)(x) = (x − a)2dN(s1)(x). We know that N(s1)(x) does not have a

pole at P so 2d must be less than the degree of N(f) as a function of x alone.

Thus if r has a zero at P = (a, b), then we can take u(x, y) = x− a. If r has

a pole at P , then 1/r has a zero at P , and u is same with negative d. If r has

neither a zero nor a pole at P , then we can take d = 0 and s = r and in the

generic case we take u(x, y) = x− a.

2. Assume that P is a point of order two say P = (w1, 0). We will show that

we can take u(x, y) = y in this case. As above if r has a zero at P , we

can assume r = f/g and f(P ) = 0. Now f(w1, 0) implies v(w1) = 0 where

f(x, y) = v(x) + yw(x). Hence we can write v(x) = (x − w1)v1(x) for some

polynomial v1. Since the roots of s(x) are distinct, (x− w2) and (x− w3) do

not vanish at P , so we get

f(x, y) = (x− w1)v1(x) + yw(x)

=
(x− w1)(x− w2)(x− w3)v1(x) + yw1(x)

(x− w2)(x− w3)

=
y2v1(x) + yw1(x)

(x− w2)(x− w3)

= y

[
yv1(x) + w1(x)

(x− w2)(x− w3)

]
where w1(x) = (x − w2)(x − w3)w(x). Now if the function in brackets still

vanishes at P , we can do the process over again to the polynomial w1(x) +

yv1(x). This process also terminate since in every step we factor x − w1(x)

from v, which we can contain only finitely many such factors. Hence in the

case of order two, we can take u(x, y) = y.
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3. When P = O, we show that u(x, y) = x/y works. Suppose r = f/g and

r(O) = 0. This means that deg(f)−deg(g) = d < 0. Since deg(y)−deg(x) = 1,

deg(ydf) = deg(xdg), and (y/x)d will be finite and non-zero at identity. Since

r = (x/y)d
[
(y/x)dr

]
we see that we can take u(x, y) = x/y at identity.

4. uniqueness of number d:

Suppose that u and ū are both rational functions satisfying the condition of

the theorem. This mean we can write u = (ū)es and ū = uf t, so u = uef (tes).

If ef 6= 1, then dividing this equation by u and plugging in P , we get 1 = 0.

We therefore must have e = f = 1. Thus if r is any rational function not

identically zero that vanishes at P , we can write r = uds = (ū)dt.

�

Definition 1.12 Uniformizing Variable or Uniformizer:

A function u that satisfies the above theorem at point P is called the uniformizing

variable or uniformizer at P .

Definition 1.13 Order of the function :

If r is a rational function and r = uds and u is a uniformizing variable at P , then

order of r at P is d and we write

ordP (r) = d

Definition 1.14 For a non-zero rational function r ∈ K̄(E), we define divisor by

div(r) =
∑
P∈E

ordP (r)[P ].

Definition 1.15 1. The multiplicity of a zero =order of the function

2. The multiplicity of a pole= −(order of the function).

Theorem 1.16 Let r be a rational function on E. Then∑
P∈E

ordP (r) = 0.

Definition 1.17 A divisor D ∈ Div(E) is said to be a principal divisor denoted by

prin(E) if there exist a rational function f ∈ K̄(E)∗ such that D = div(f).
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Definition 1.18 Two divisors D1, D2 ∈ Div(E) are said to be linearly equivalent

(D1 ∼ D2) if D1 −D2 = div(f) for some f ∈ K(E).

Definition 1.19 The Divisor class group or Picard group of E is given by

cl(E) = Div(E)/prin(E)

Proposition 1.20 Let E be an elliptic curve and f be a rational function ∈ K̄(E)∗.

Then

1. if div(f) = 0 then f is a constant.

2. deg(div(f)) = 0.

Theorem 1.21 Let E be an elliptic curve over a field K and the divisor D =
∑

P∈E nP [P ] ∈
Div(E). Then there exist a rational function f ∈ E such that div(f) = D if and

only if deg(D) = 0 and sum(D) = O.
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Chapter 2

Elliptic Curve over Complex

Numbers

2.1 Introduction

An Elliptic Curve over complex numbers C is isomorphic to a torus C/L, where L is

a lattice in C and addition of complex numbers (modulo the lattice L)corresponds

to addition of points on the elliptic curve. To prove this, first we will show that

every lattice L gives rise to an elliptic curve E over C and then we show that

every elliptic curve E over C arises from a lattice L. In order to prove that map

φ : C/L −→ E(C) is isomorphic to an elliptic curve, we will define doubly periodic

functions(elliptic functions) on C,i.e. Weierstrass ℘ - function and general properties

of elliptic functions.

2.2 Elliptic Functions

Definition 2.1 A lattice L in C is a discrete subgroup of the form L = Zω1 + Zω2

generated by ω1 and ω2 which are linearly independent over R.

Definition 2.2 Eisenstein series

Let L be a lattice, then the weight−k Eisenstein series for L is the sum

Gk(L) =
∑
ω∈L−0

1

ωk
(2.1)

where k > 2 is an integer.

19
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Theorem 2.3 For any lattice L, the sum Gk(L) =
∑

ω∈L−0

1

ωk
converges absolutely

for all k > 2.

2.3 The Weierstrass ℘ - function

Definition 2.4 The Weierstrass ℘ function of a lattice L is given by the infinite sum

℘(z) = ℘(z;L) =
1

z2
+
∑
ω∈L−0

(
1

(z − ω)2
− 1

ω2

)
(2.2)

Properties of Weierstrass ℘ -function :

For any lattice L,

1. The ℘(z) converges absolutely and uniformly on compact sets, where z /∈ L.

2. The function ℘(z; L) is a meromorphic even function whose only poles are

double poles at points in L .

3. ℘′(z; L) = −2
∑

ω∈L
1

(z − ω)3
is a meromorphic odd function whose only poles

are triple poles at each ω ∈ L.

4. ℘(z + ω) = ℘(z) for all ω ∈ L.

Theorem 2.5 The Laurent series expansion for ℘(z;L) at z = 0 is given by

℘(z;L) =
1

z2
+
∞∑
j=1

(2j + 1)G2j+2 z
2j (2.3)

where Gk(L) denotes the Eisenstein series of weight k.

Proof For |z| < |ω|

1

(z − ω)2
− 1

ω2
=

1

ω2

 1(
z − ω
ω

)2 − 1

 =
1

ω2

 1(
1− z

ω

)2 − 1

 (2.4)

As for all |x| < 1, the power series expansion

1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 . . . =

∑∞
n=0(n+ 1)xn
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So, we can write equation 2.4 as

1

(z − ω)2
− 1

ω2
=

1

ω2

∞∑
n=1

(n+ 1)
( z
ω

)n
=
∞∑
n=1

(n+ 1)zn

ωn+2
(2.5)

Therefore,

℘(z) =
1

z2
+
∑
ω∈L−0

(
1

(z − ωk)2
− 1

ω2

)

=
1

z2

∑
ω∈L−0

∞∑
n=1

(n+ 1)zn

ωn+2

=
1

z2
+
∞∑
n=1

(n+ 1)zn
∑
ω∈L−0

1

ωn+2

=
1

z2
+
∞∑
n=1

Gn+2(L)zn

=
1

z2
+
∞∑
n=1

G2n+2(L)z2n.

In the last step sum is taken over the even integers 2n as ℘ is an even function,

therefore coefficients of the odd terms are zero. �

2.4 Lattice defines Elliptic curve

Theorem 2.6 For a lattice L and for all z /∈ L, the differential equation for Weier-

strass ℘ function is given by

℘′(z)2 = 4℘(z;L)3 − g2(L)℘(z)− g3(L) (2.6)

where g2(L) = 60G4(L) and g3(L) = 140G6(L).

Proof We have proved earlier that;

℘(z) =
1

z2
+
∞∑
n=1

(2n+ 1)G2n+2(L)z2n.

℘′(z) =
−2

z3
+
∞∑
n=1

(2n+ 1)G2n+2(L)z2n−1.
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So, We can write the first few terms of the laurent series for ℘(z) and ℘′(z);

℘(z) =
1

z2
+ 3G4(L)z2 + 5G6(L)z4 + . . .

℘(z)3 =
1

z6
+G4(L)

1

z2
+ 15G6(L) + . . .

℘′(z) =
−2

z3
+ 6G4(L)z + 20G6(L)z3 + . . .

℘′(z)2 =
4

z6
− 24G4(L)z−2 − 80G6(L) + . . .

Now, let f(z) = ℘′(z)2 − 4℘(z; L)3 + 60G4(L)℘(z) + 140G6(L). The function f

is holomorphic at z = 0 and f(0) = 0. The function f is holomorphic because

℘(z) and ℘′(z) have poles only at points of L. Moreover, f is a compact set as all

values attained by f are attained on the closure of a fundamental parallelogram.

So, f is a bounded set. Then by Liouville’s Theorem we can conclude that f is a

constant function and the fact that f(0) = 0 implies that f is identically zero i.e

f(z) = 0. Hence, we have proved that for a lattice L, ℘(z) and it’s derivative satisfy

the equation;

℘′(z)2 = 4℘(z; L)3 − 60G4(L)℘(z)− 140G6(L) (2.7)

With y = ℘(z) and x = ℘′(z), the equation(2.11) corresponds to the curve

y2 = 4x3 − g2(L)x− g3(L). (2.8)

This equation can be transformed into Weierstrass equation by putting g2(L) =

−4A and g3(L) = −4B.

Now in order to prove that the above curve is an elliptic curve, we need to show

that it’s discriminant is non zero. For that we can show that the projective curve

defined by equation is not singular i.e. it’s discriminant is non-zero.

The projective curve of the above curve is given by the equation;

zy2 = 4x3 − g2(L)xz2 − g3(L)z3. (2.9)

Suppose if all the partial derivatives of the above equation vanish simultaneously at

some point, 12x2 − g2(L)z2 = 0, 2zy = 0, y2 = 2xzg2(L) − 3g3(L)z2 So, z = o ⇒
x = 0 ⇒ y = 0. (0, 0, 0) is not allowed in the projective space, so we can assume

that z = 1. Plugging z = 1 in the equation 2zy = 0 gives y = 0. As y = 0 and
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z = 1, the equation become 2xg2(L) − 3g3(L) = 0 and we get x =
−3g3(L)

2g2(L)
. As a

result, the equation 12x2 − g2(L)z2 = 0 gives g3
2 − 27g2

3 = 0.

Thus, we can say that every lattice L gives us an equation which defines an elliptic

curve over C provided ∆ = g3
2 − 27g2

3 6= 0. �

Proposition 2.7 For every lattice L, ∆(L) = (g3
2 − 27g2

3) 6= 0 .

2.5 The isomorphism from a torus to its corre-

sponding elliptic curve

Thus, E : y2 = 4x3 − g2(L)x − g3(L) is the equation of the elliptic curve and we

have a map from z ∈ C/L to the points with complex coordinates (℘(z), ℘′(z)) on

an elliptic curve.

Theorem 2.8 Let L be a lattice and E : y2 = 4x3 − g2(L)x − g3(L) be an elliptic

curve. Then the map

φ : C/L −→ E(C)

z 7−→ (℘(z), ℘′(z))

0 7−→ O

is an isomorphism between the additive groups C/L and E(C).

Definition 2.9 For a lattice L, j−invariant is defined by

j(L) = 1728
g2(L)3

δL
= 1728

g2(L)3

g3
2 − 27g2

3

where δL is always non-zero.

The elliptic curve E : y2 = 4x3 − g2(L)x − g3(L) corresponding to lattice L

is isomorphic to the elliptic curve y2 = x3 + Ax + B where g2(L) = −4A and

g3(L) = −4B. So,

j(L) = 1728
g2(L)3

g3
2 − 27g2

3

= 1728
(−4A)3

(−4A)3 − 27(−4B)3
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This shows that the j−invariant of a lattice is the same as that of the corre-

sponding elliptic curve.

Definition 2.10 If there exist λ ∈ C∗ with λL = L
′

then two lattices L and L
′

in C
are said to be homothetic. Moreover, multiplication by λ induces an isomorphism

λ :
C
L
−→ C

L
′ .



Chapter 3

Riemann Roch Theorem

Riemann-Rock theorem is important for computing the dimension of the space of

the meromorphic functions with prescribed zeros and allowed poles. Riemann-Roch

theorem can be used to study the elliptic curves and to show that every elliptic

curve has a Weierstrass equation. Here, we will discuss canonical divisor in order to

state Riemann Roch theorem.

Let f be a non-zero meromorphic function on C with finitely many zeros and

poles. Let S be the finite set of poles and zeros of the function f . Then, we define

div(f) =
∑
s∈C

ords(f)[s]

deg(div(f)) =
∑
s∈C

ords(f) = 0

Let τ(D) be the space of meromorphic functions with poles bounded by D then

τ(D) = {f ∈ C(C) /div(f) +D > 0}

Theorem 3.1 Riemann Inequality:

Let M be a Riemann surface of genus g. Then for any divisor D, the Riemann

Inequality is given by the equation

dim(τ(D)) > deg(D) + 1− g

where τ(D) is the space of meromorphic functions with poles bounded by D.

Definition 3.2 The divisor class group of a Riemann surface denoted by Cl(M) is

defined as

Cl(M) = Div(M)/div(C∗(M)).

25
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Canonical Divisor

Let ΩM be the space of meromorphic differential form on M and for every ω ∈
Ω(M) there exists a unique function f ∈ C(M) such that ω = fdz and the divisor

associated with ω is given by

div(ω) =
∑
s∈M

ords(ω)[s] ∈ Div(M).

If ω1, ω2 ∈ ΩM are nonzero differentials, then ω1 = fω2 for some function f ∈ C(M)

and

div(ω1) = div(f) + div(ω2)

Definition 3.3 Canonical divisor is the divisor class of meromorphic 1−form on

M .

Let K be a canonical divisor on M and K = div(ω), then div(f) > −div(ω) for

each function f ∈ τ(K).

Now, Let f0 ∈ C∗(M) then

τ(D + div(f0)) = {g ∈ C(M) : div(g) +D + div(f0) > 0}

Theorem 3.4 Riemann Roch Theorem:

Let M be a Riemann surface of genus g. Then for any divisor D and any canonical

divisor K,

dim(τ(D))− dim(τ(K −D)) = deg(D) + 1− g.

Proposition 3.5 Let D ∈ Div(C), If deg(D) < 0, then τ(D) = {0} and dim(τ(D)) =

0.

Proof Let f ∈ τ(D) and f 6= 0 then div(f) ≥ −D =⇒ deg(div(f)) ≥ deg(−D) =

−deg(D) but deg(div(f)) = 0. Therefore, deg(D) must be greater than or equal to

zero. �
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Corollary 3.6 Let M be a Riemann surface of genus g. Let D be a divisor and K be

a canonical divisor then,

1. dim(τ(K)) = g .

2. deg(K) = 2g − 2.

3. If deg(D) > 2g − 2, then

dim(τ(D)) = deg(D)− g + 1.

Proof

1. LetD = 0, then by the Riemann-Roch theorem, we get, dim(τ(0))−dim(τ(K)) =

1− g. But dim(τ(0)) = 1 so dim(τ(K)) = g.

2. After putting D = K in the Riemann-Roch theorem, we get dim(τ(K)) −
dim(τ(0)) = deg(K) + 1− g. Since dim(τ(K)) = g and dim(τ(0)) = 1, we get

deg(K) = 2g − 2.

3. If deg(D) > 2g − 2, then deg(K − D) < 0. Therefore, dim(τ(K − D)) = 0,

hence dim(τ(D)) = degD − g + 1.

. �

Now, Consider an elliptic curve E : y2 = x3 + ax + b then 4a3 − 27b2 6= 0. Any

rational function on E is an element of C(E). So, every f ∈ C(E) can be written

in the form

f =
a(x) + b(x)y

c(x)

for suitable polynomials a(x), b(x, c(x) ∈ C(E). As, y2 = x3 + ax+ b, so every even

power of y can be replaced by a polynomial in x and any odd power of y can be

replaced by a polynomial in x times a power of y not higher than one by the above

relation.

Divisor of a line:

Let l be a line on an elliptic curve and the points P,Q,R ∈ l ∩ E are distinct then

divisor of line l is given by

Div(l) = [P ] + [Q] + [R]− 3[O]
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Now, let D = [P ]+[Q]+D1 and assume that D and D1 are equivalent. Thus, we can

write D − D1 = Div(l) as deg(div(l)) = 0. After plugging D into the equivalence

relation we get,

D1 = D1 + 3[O]− [R]

As, D ∼ D1, So without loss of generality we can write D ∼ −[s] + n[O] where

n denotes the number of poles with multiplicity and s ∈ l ∩ E. Now, consider a

line x − a = 0 passing through s = (a, b) and −s = (a,−b). Then, div(x − a) =

[s] + [−s]− 2[O]. Thus, we can write D ∼ −[s] + (degD + 1)[O].

dim τ(D) = dim τ ((degD + 1)[O]− [s])

= deg(D) + 1− 1

= degD

Let ω is the invariant differential associated to the elliptic curve E and ω =
dy

x
.

As ω doesn’t have zeros and poles anywhere so div(ω) = 0. So K = 0, from this we

get deg(τ(0−D)) < 0. Hence, dim(τ(0−D) = 0. As, we know that an elliptic curve

is a curve of genus 1. Hence, the Riemann-Roch theorem holds for elliptic curve. �

Remark

• Let P be a point on an elliptic curve then dim(τ(P )) = 1, therefore τ(P )

contains the constant functions, which have no zeroes and poles.

• Consider the point at infinity O on the elliptic curve E. Then, dim(τ(2(O)) =

2. Thus, the basis for τ(2(O)) are 1, x.

• Thus, the basis for τ(3(O)) are 1, x, y.

• 1, x, y, x2, xy, x3, y2 are the basis for τ(6(O)) but dim(τ(6(O)) = 6 as y2 can

be written in terms of x.
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Elliptic Curve over Finite Fields

In this chapter we will discuss that E has only finitely many points with coordinates

in F and those finitely many points form an abelian group where F be a finite field

and E be an elliptic curve defined over F. After that, we will discuss the problem

of estimating the number of points on elliptic curve over finite field and then Hasse

theorem which provides a lower and upper bound on the number of points of the

elliptic curve over F. And later on, about the endomorphisms of the Elliptic curve

over finite field.

4.1 Rational Points over Finite field

Consider the curve C : y2 = f(x), where f(x) is a polynomial with coefficients in Fp
and suppose p 6= 2. Then we can find the rational points of the curve C, as x and

y are in Fp therefore we can take each of the non-zero values from 1 to p− 1 of the

field Fp as the possibility for the value of x and then plug into the polynomial f(x).

If f(x) = 0, then y = 0 is the only solution. If f(x) 6= 0 then for half of the values

of x there exist a solution as f(x) is a square in F∗p(the quadratic residue) and for

half of the values of x solution does not exist as f(x) is non-square( the quadratic

nonresidue). So, we get approximately p solutions from the p possible values of x

and one solution is at point at infinity. Thus, the group E(Fp) is a finite group

and #E(Fp) ≈ p + 1. And Hasse theorem gives us the precise number of points of

Elliptic curve over finite field.

29
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Theorem 4.1 Let E be an elliptic curve over the finite field Fp. Then the group of

points E(Fp) is always either a cyclic group or a product of two cyclic groups. i.e.,

E(Fp) ' Zn or E(Fp) ' Zn1 ⊕ Zn2

where n, n1, n2 > 1 and n1 divides n2.

Example 4.2 Let E : y2 = x3 + x+ 1 be the elliptic curve over F5. For counting

the number of points on E(F5), we take each of the five possible of values of x and

calculate x3 +x+1 and then check for the square roots y of x3 +x+1 mod 5. Doing

this, we get 9 points on the curve including the point at infinity, i.e, E(F5) = 9

x x3 + x+ 1 y points

0 1 ±1 (0, 1), (0, 4)

1 3 − −
2 1 ±1 (2, 1), (2, 4)

2 1 ±1 (3, 1), (3, 4)

4 4 ±2 (4, 2), (4, 3)

O O O

Therefore, by the above theorem, E(F5) is either a cyclic group of order nine or a

product of two cyclic groups of order three. To find out, let’s start with the point

P = (0, 1) on E. By using the formula’s given in theorem 1.5 we get

2P = (4, 2), 3P = (2, 1), 4P = (3, 4), 5P = (3, 1),

6P = (2, 4), 7P = (4, 3), 8P = (0, 4), 9P = O,

Thus, E(F5) is a cyclic group of order 9 and P = (0, 1) is the generator of the cyclic

group. The points Q = (2, 1) and R = (2, 4) are of order 3 and all other non-zero

points of E(F5) except Q and R have order 9.

Theorem 4.3 Hasse Theorem:

Let E be an elliptic curve over finite field Fp. Then the number of points on elliptic

curve satisfies

| p+ 1−#E(Fp) | 6 2
√
p.
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4.2 Endomorphism

In this section, we will discuss maps between the elliptic curves.

Definition 4.4 Isogenies Let E1 and E2 be two elliptic curves over a finite field K.

Then an isogeny of elliptic curves E1 and E2 is a morphism φ which maps the

identity point of E1 to the identity point of E2. i.e.,

φ : E1 −→ E2 such that φ(O) = O.

Moreover, An isogeny is surjective and it’s kernel is a finite subgroup of E1.

Two elliptic curves are said to be isogenous if ∃ an isogeny from E1 to E2 and

φ(E1) 6= O.

Definition 4.5 Degree of Isogeny φ Let E1 and E2 are elliptic curves defined over

finite field K. Then the degree of φ : E1 −→ E2, denoted by deg(φ) is the degree of

the extension field K̄(E1)/φ∗K̄(E2), where φ∗ : K̄(E2) −→ K̄(E1) and deg[0] = 0.

The maps between Elliptic curves forms a group as Elliptic curves forms an abelian

group. The set of isogenies from E1 to E2 are given by

Hom(E1, E2) = {isogenies E1 −→ E2} .

Let φ and ψ are two isogenies from E1 to E2 and P be any point on E1. Then sum

of two isogenies is defined as

(φ+ ψ)(P ) = φ(P ) + ψ(P ),

Therefore, (φ + ψ) is a morphism, so it’s also an isogeny . Thus, we can say that

Hom(E1, E2) is a group.

If E1 = E2 then we can also compose isogenies. So, Hom(E,E) = End(E) where

End(E) is called the endomorphism ring of E such that (φψ)(P ) = (ψφ)(P ) and

(φ+ ψ)(P ) = φ(P ) + ψ(P ).
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Definition 4.6 Endomorphism An endomorphism of an elliptic curve E over a field

K is a morphism φ : E(K̄) −→ E(K̄) given by rational functions R1(x, y), R2(x, y)

with coefficients in K̄ such that

φ(x, y) = (R1(x, y), R2(x, y))

and φ(O) = O.

Let E : y2 = x3 + ax+ b be an elliptic curve over a field K. Then for all (x, y) ∈
E(K̄), any higher power of y greater than one can be replaced by a polynomial in

x times a power of y not higher than one. Therefore, any rational function R(x, y)

on points in E(K̄) can be written as

R(x, y) =
p1(x) + p2(x)y

p3x+ p4(x)y
.

Now, after multiplying the numerator and denominator by p3(x)− p4(x)y, we get

R(x, y) =
p1(x) + p2(x)y

p3x+ p4(x)y

p3(x)− p4(x)y

p3(x)− p4(x)y

=
p1(x)p3(x) + (p2(x)p3(x)− p1(x)p4(x))y − p1(x)p4(x)y2

p2
3(x)− p2

4(x)y2

After replacing y2 term by x3 + ax+ b we get,

R(x, y) =
q1(x) + q2(x)y

q3(x)

Let φ be an endomorphism given by

φ(x, y) = (R1(x, y), R2(x, y)),

As φ is a homomorphism by definition, so

φ(x,−y) = φ(−(x, y)) = −φ(x, y).

Therefore, R1(x,−y) = R1(x, y) and R2(x,−y) = −R2(x, y). As, we have discussed

earlier that R(x, y) =
q1(x) + q2(x)y

q3(x)
and R1(x,−y) = R1(x, y). So q2(x) = 0 for

R1(x, y). Now, as R2(x,−y) = −R2(x, y), so q1(x) must be equal to zero in order

to satisfy the above condition for R2(x, y). Thus, we can write

φ(x, y) = (r1(x), r2(x)y),
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where r1(x) and r2(x) are rational functions. Since, r1(x) and r2(x) are quotients

of two polynomial functions. So, what happens if one of the rational function is

not defined at a point. Let r1(x, y) =
p(x)

q(x)
, where p(x) and q(x) are polynomials

in x such that p(x)and q(x) have no common root. In case of q(x) = 0, we define

φ(x, y) = O .

Definition 4.7 Degree of Endomorphism:

The degree of an endomorphism map φ : E(K̄) −→ E(K̄) given by φ(x, y) =(
p(x)

q(x)
, y
p2(x)

q2(x)

)
is given as

deg(φ) = Max {degp(x), degq(x)}

For φ = 0 we define deg(0) = 0.

Definition 4.8 Separable Endomorphism:

An Endomorphism is said to be separable if the derivative r′1(x) is not identically

zero i.e, at least one of the p′(x) and q′(x) is not zero.

Theorem 4.9 : Let φ 6= 0 be an endomorphism of an Elliptic curve over a field K

where, φ : E(K̄) −→ E(K̄). Let Kernel of φ is denoted by Ker(φ) and deg(φ) is

degree of the endomorphism map.

1. If φ is a separable endomorphism, then degφ = #Ker(φ).

2. If φ is not a separable endomorphism, then degφ > #Ker(φ).

Proof As φ is an endomorphism, so φ(x, y) = (r1(x), r2(x)y) where r1(x) =
p(x)

q(x)
.

If φ is separable then r′1(x) 6= 0, hence p′q − pq′ is not the zero polynomial. Let M

be the set of x ∈ K̄ such that (pq′ − p′q)(x)q(x) = 0. Let (a, b) ∈ E(K̄) such that

it satisfies these four properties:

1. a 6==, b 6= 0, so (a, b) 6= O, since φ(O) = O.

2. deg(p(x)− aq(x)) = Max {deg(p), deg(q)} = deg(φ)

3. a /∈ r1(M), otherwise φ becomes not separable

4. (a, b) ∈ φ(E(K̄)).
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We can observe thatM is a finite set as pq′−p′q is not a zero polynomial so there exist

only finite number of x ∈ K̄ such that (pq′ − p′q)(x)q(x) becomes zero. Moreover,

φ(x ∈M) is also a finite set. If we look at r1(x) function then we can easily conclude

that r1(x) takes infinitely many distinct values. Moreover, φ(E(K̄) is an infinite set

as for each x we can find a point (x, y) ∈ E(K̄). So, ∃ an (a, b) ∈ E(K̄). Now, we

want to prove that for a separable endomorphism degφ = #Ker(φ). So, we will show

that there are exactly deg(φ) points (x1, y1) ∈ E(K̄) such that φ(x1, y1) = (a, b).

So, r1(x) =
p(x)

q(x)
= a and y1r2(x1) = b. We have assumed that (a, b) 6= O, therefore,

q(x1) 6= 0 and also assumed that b =6= 0 so, y1 =
b

r2(x1)
. This shows that value of

y1 depends on the value of x1, so it’s sufficient to count the values of x1 in order to

calculate the number of elements in the kernel of φ. Since, we have also assumed that

deg(p(x) − aq(x)) = deg(φ) i.e, the polynomial p(x) − aq(x) = 0 has deg(φ) roots

including multiplicities. Now, we need to show that all roots of the polynomial are

distinct. We will show this by contradiction. So, suppose that p − aq has multiple

roots and let x0 is a multiple root. So, p(x0 − aq(x0) = 0 and p′(x0)− aq′(x0) = 0.

After multiplying these two equations, we get ap(x0)q′(x0) = ap′(x0)q(x0). As, we

have assumed that a 6= 0 so x0 must be a root of pq′ − p′q. But x0 ∈ M , thus

a = r1(x− 0) ∈ r1(M), it’s a contradiction to what we have assumed. Hence, p− aq
has no multiple roots and it has deg(φ) distinct roots. That implies that there are

deg(φ) points (x1, y1) such that φ(x1, y1) = (a, b). Hence, degφ = #Ker(φ).

When φ is not a separable endomorphism, r1(x) = 0 =⇒ p′ − aq′ is always a zero

polynomial, thus p(x) − aq(x) = 0 has multiple roots. Since, it has multiple roots,

degφ > #Ker(φ). �

Definition 4.10 : Let E be an elliptic curve over K̄, then for every integer m, the

multiplication-by-m map [m] is an endomorphism of E;

[m] : E −→ E

Where if m > 0, then for a point P ∈ K̄ , [m](P ) = P + P + ...+ P︸ ︷︷ ︸
m terms

and if m < 0,

then [−m](−P ) = −P +−P + ...+−P︸ ︷︷ ︸
−m terms

. and [0](P ) = O. Addition here is the

group law on the elliptic curve.
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Corollary 4.11 Let E be an elliptic curve and m be a non-zero integer then deg([m]) =

m2.

Definition 4.12 Dual Isogeny: Let φ : E1 −→ E2 be an isogeny. Then the dual

isogeny to φ is the isogeny

φ̂ : E2 −→ E1

such that φ̂ ◦ φ = [m].

Definition 4.13 Torsion m-subgroup Let E be an elliptic curve defined over a field

K and n be a positive integer then m-torsion subgroup of E is the collection of all

points of finite order m and is defined as

E[m] =
{
P ∈ E(K̄) : mP = O

}
.

Definition 4.14 Torsion subgroup The torsion subgroup of E is the set of all points

of finite order

Etors = ∪∞m=1E[m].

Theorem 4.15 Let E be an Elliptic curve over a field K and let m > 2 be an integer,

then

1. If either char(K) = 0 or char(K) = p > 0 and p does not divide m, then

E[m] ∼= Z/mZ× Z/mZ.

2. If char(K) = p > 0 and p/m, where m = prn with p does not divide n. Then

either E[m] ∼= Z/nZ× Z/nZ or E[m] ∼= Z/mZ× Z/nZ.

Definition 4.16 Distortion map Let E be an elliptic curve over a finite field Fq, m is

relatively prime to the characteristic of the finite field Fq and the points P,Q ∈ E(Fq)
generate the group E[m]. Then distortion map on E is an endomorphism φ of E

such that φ(P ) /∈< P > .

4.3 Frobenius Endomorphism

Let E be an elliptic curve defined over a finite field Fq where q = pr, p is a prime.

Then we define Frobenius map φq as;

φq :E −→ E

(x, y) −→ (xq, yq)

where φq(O) = O. The map φq basically acts on the coordinates of points in E(F̄q).
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Lemma 4.17 Let E/F̄q and (x, y) ∈ E(F̄q) then φq(x, y) ∈ E(F̄q).

Proof Let p is the characteristic of the field then for elements a, b ∈ Fq, (a+ b)q =

aq+bq. Let E be given by y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6 and if (x, y) ∈ E(Fq)

and ai ∈ Fq then

(yq)2 + a1(xqyq) + a3(yq) = (xq)3 + a2(xq)2 + a4(xq) + a6

as (xq, yq) satisfies the equation of E, so it lies on E. Hence, proved. �

Lemma 4.18 Let E be an elliptic curve defined over Fq. Then the Frobenius map φq

is an endomorphism map of degree q and the map φq is not separable.

Proof By the definition of the Frobenius map, we have φq(x, y) = (xq, yq), and the

map is given by the rational functions (quotients of two polynomials) and deg(φq) =

max(degreeoftwoquotientpolynomials) = q. We will prove for Weierstrass normal

form E : y2 = x3 + ax + b that φq is an endomorphism. For this, let P = (x1, y1),

Q = (x2, y2) be two points on E(Fq) and P +Q = (x3, y3).

1. When x1 6= x2. Then, by addition law, formula we get x3 = λ2 − x1 − x2

and y3 = λ(x1 − x3) − y1 where λ =
y2 − y1

x2 − x3

. As, φq(x, y) −→ (xq, yq) so,

after raising everything to the qth power we get, xq3 = λ
′2 − xq1 − xq2 and

yq3 = λ′(xq1 − x
q
3) − yq1, where λ′ =

yq2 − y
q
1

xq2 − x
q
1

. Since, x1, y1 ∈ Fq, xq1 = x1 and

yq1 = y1. Therefore φq(x3, y3) = (xq3, y
q
3) = (x3, y3). And,

φq(x1, y1) + φq(x2, y2) = (xq1, y
q
1) + (xq2, y

q
2)

= (x1, y1) + (x2, y2)

= (x3, y3)

Therefore, φq(x3, y3) = φq(x1, y1) + φq(x2, y2). Hence, φq is an endomorphism.

2. when x1 = x2 but y1 6= y2 then P + Q = (x3, y3) = O. So, φq(x3, y3) = O
and φq(x1, y1) +φq(x2, y2) = (xq1, y

q
1) + (xq2, y

q
2) = (x1, y1) + (x2, y2) = O. Thus,

we get φq(x3, y3) = φq(x1, y1)+φq(x2, y2) = O. Hence, φq is an endomorphism.

3. When P = O then P +Q = O. Thus, in this case too φq is an endomorphism.
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4. If P = Q, then 2P = (x3, y3). By doubling formula, we get x3 = λ2 − 2x1 and

y3 = λ(x1 − y3) − y1, where λ =
3x2

1 + a

2y1

. Now, by raising to the qth power,

we get xq3 = λ
′2 − 2xq1 and yq3 = λ′(xq1 − y

q
3) − yq1, where λ′ =

3q(xq1)2 + aq)

2qyq1
.

Since, 2, 3, a ∈ Fq, therefore 2q = 2, 3q = 3, aq = a. Therefore, φq(x3, y3) =

(xq3, y
q
3) = (x3, y3). And,

φq2(x1, y1) = 2(xq1, y
q
1)

= 2(x1, y1)

= (x3, y3)

Therefore, φq(x3, y3) = φq(x1, y1) + φq(x1, y1). Hence, φq is an endomorphism.

Now, for separability we need to show that φ′q 6= 0 i.e, derivative of xq should be

non-zero. However as q = 0 in Fq, thus derivative of xq is identically zero. Hence,

φq is not separable. �

Proposition 4.19 Let E be an elliptic curve defined over Fq and φq be a Frobenius

endomorphism

φq :E −→ E

(x, y) −→ (xq, yq)

. Let m,n be non-zero integer and char(K) = p does not divide m then the map

m+ nφq : E −→ E

is separable. Moreover, the map 1− φq is also separable.

Theorem 4.20 Let E be an elliptic curve defined over Fq and φq be a Frobenius

endomorphism

φq :E −→ E

(x, y) −→ (xq, yq)

Since, φ2
q = φq ◦ φq lies in the ring of endomorphism and endomorphism ring is a

ring of characteristic zero. Then,

φ2
q − tφq + q = 0

is an endomorphism of E, where t is called the trace of the Frobenius endomorphism

and is given by the relation t = q + 1−#E(Fq). That is, if (x, y) ∈ E(Fq), then(
xq

2

, yq
2
)
− t(xq, yq) + q(x, y) = O
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Example 4.21 : Let E : y2 + xy = x3 + 1 be an elliptic curve over F2. Then we

can count the number of points as

x = 0 =⇒ y2 = 1 =⇒ y = 1

x = 1 =⇒ y2 + y = 0 =⇒ y = 0, 1.

Therefore, E(F2) is a cyclic group of order 4 as

E(F2) = {O, (0, 1), (1, 0), (1, 1)} .

Thus, we can calculate trace by the equation t = q+1−#E(Fq). So, t = −1. Thus,

satisfies the equation X2 + (X) + 2 = 0.



Chapter 5

Weil Pairing

The Weil Pairing on the n-torsion subgroup of an elliptic curve plays a significant

role in the theory of the elliptic curve. It can be applied to the problem of calculating

the group structure of an elliptic curve over finite fields, For example to prove the

Hasse theorem. Apart from this, Weil pairing has application in cryptography. The

MOV attack uses the Weil pairing to reduce the discrete logarithm elliptic curve

problem to the discrete logarithm problem in the multiplicative group of a finite

field. Other application of Weil pairing are in Decision Diffie- Hellman problem

on elliptic curve, ID-based public cryptosystems and in a digital signature scheme

which gives signatures that are half the size of those produced by Digital Signature

Algorithm.

5.1 Construction of the Weil Pairing

Let E be an elliptic curve over a field K and n be a positive integer. Assume that

char(K) = p does not divide n. Then by the theorem E[n] ∼= Z/nZ × Z/nZ. As,

E[n] is a free Z/nZ module of rank two. Thus, we can construct a pairing given by:

en : E[n]× E[n] −→ µn

Where µn =
{
x ∈ K̄/xn = 1

}
is the group of nth root of unity in K̄. As, we have

assume that char(K) does not divide n, so the equation xn = 1 has no multiple

roots and has n roots in K̄. Therefore, µn is a cyclic group of order n.

For this, Let T ∈ E[n], then by the theorem (1.20) there exist a rational function

f ∈ K̄(E) such that div(f) = n[T ]− n[O]. Here deg(div(f)) = 0 and as t ∈ E[n] so

nT = O. Therefore, sum(div(f)) = O.

39
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Now, Let T ′ ∈ E such that nT ′ = T , then there exist a function g ∈ K̄(E) such

that

div(g) =
∑

R∈E[n]

([T ′ +R]− [R]) .

As we know that #E[n] = n2 so there are n2 points R in E[n]. Moreover, the

total number of points R in
∑

[T ′+R] is equal to total number of points R in
∑

[R]

and n2T ′ = nT = O. This result in sum(div(g)) = 0.

With out loss of generality, we can write

div(g) =
∑

nT ′′=T

[T ′′]−
∑
nR=O

[R].

as g does not depend on the choice of T ′ and Moreover, any two choices of T ’ only

differs by an element R ∈ E[n].

To get the function f ◦n start with a point on E, multiply it with n and then apply

the function f .

Now, take the point P = T ′ +R where R ∈ E[n] and nP = T .

We get divisor of the function f ◦ n as:

div(f ◦ n) = n

 ∑
R∈E[n]

[T ′ +R]

−(∑
R

[R]

)
= div(gn)

as div(gn) = n div(g).

Therefore, f ◦n is a constant multiple of gn and by multiplying f by an appropriate

constant from K̄, we can assume that f ◦ n = gn.

Now, let S ∈ E[n]. Then, for any point P ∈ E(K̄), we have

g(P + S)n = f(nP + nS) = f(nP ) = g(P )n

as S ∈ E[n] so, nS = O.

Therefore, the function g(P + S)/g(P ) ∈ µn. The function g(P + S)/g(P ) is a

continuous function of P and the map S −→ g(P + S)

g(P )
is not surjective so, the map

to the finite discrete set µn is constant.
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Thus, we can define a pairing

en : E[n]× E[n] −→ µn

by setting

en(S, T ) =
g(P + S)

g(P )

for every point P ∈ E such that g(P + S) and g(P ) are defined and both non-zero.

Where S, T ∈ E[n] and the value of en is independent of the choice of g.

5.2 Properties of Weil Pairing

Proposition 5.1 Let E be an elliptic curve defined over field K and n be a positive

integer. Assume that char(K) does not divide n. Then the Weil en pairing satisfies

the following properties:

1. Bilinearity:

If S, T, S1, S2, T1, T2 ∈ E[n], then

en(S1 + S2, T ) = en(S1, T )en(S2, T ),

en(S, T1 + T2) = en(S, T1)en(S, T2).

2. Alternating:

If T ∈ E[n] then en(T, T ) = 1.

So, this along with linearity implies that if S, T ∈ E[n] then en(S, T ) =

en(T, S)−1.

3. Non-degeneracy:

If en(S, T ) = 1 ∀ S ∈ E[n], then T = O.

4. Galois invariant:

If S, T ∈ E[n] then,

en(S, T )σ = en(Sσ, T σ) ∀ σ ∈ GK̄/K .

5. Compatiblity:

If S ∈ E[nm] and T ∈ E[n] then,

enm(S, T ) = en(mS, T ).
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Proof

1. For any point P ∈ E, we have en(S, T ) =
g(P + S)

g(P )
. So,

en(S1 + S2, T ) =
g(P + S1 + S2)

g(P )

=
g(P + S1 + S2)

g(P + S1)

g(P + S1)

g(P )

= en(S2, T )en(S1, T )

As, we can write en(S2, T ) =
g(X + S2)

g(X)
for X = P + S1.

Hence, linearity in first variable is proved.

Now, In order to prove linearity in second variable. Let T1, T2, T3, S ∈ E[n]

where, T3 = T1 + T2. Let fi and gi be the functions for the points Ti where

1 6 i 6 3. Then, there exist a function h ∈ K̄(E) such that

div(h) = [T1 + T2]− [T1]− [T2] + [O].

This is because deg(div(h)) = 0 and Sum(div(h)) = 0 as nT1 = O, nT2 = O,

nT3 = O. Since, div(fi) = n[Ti]− n[O]. So,

div

(
f3

f1f2

)
= n[T3]− n[O]− n[T1] + n[O]− n[T2] + n[O]

= n[T3]− n[T1]− n[T2] + n[O]

= ndiv(h) = div(hn).

Therefore, f3/f1f2 is a constant multiple of hn. Hence, there exist a constant

c ∈ K̄∗ such that

f3 = cf1f2h
n.

As, we know that fi ◦ n = gni . So, we can write

f3 ◦ n = c′.(f1 ◦ n).(f2 ◦ n).(h ◦ n) where c′ ∈ K̄∗.

That is,

g3 = c′g1.g2.(h ◦ n) for some c′ ∈ K̄∗.
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Therefore, by the definition of en and for some point P ∈ E. we get,

en(S, T1 + T2) =
g3(P + S)

g3(P )

=
c′g1(P + S)

c′g1(P )

g2(P + S)

g2(P )

h (n(P + S))

h (n(P ))

Since S ∈ E[n], nS = O. So, h (n(P + S)) = h (n(P )). Thus, en(S, T1 + T2) =

en(S, T1)en(S, T2). Hence proved.

2. First we will prove that for any point T ∈ E[n], en(T, T ) = 1. For that, we

define a translation map τjT such that;

τjT : E −→ E,

P −→ P + jT

So, f ◦ τjT denotes the function P −→ f(P + jT ). Thus,

div(f ◦ τjT ) = n[T − jT ]− n[−jT ]. Therefore, we can compute

div

(
n−1∏
j=0

f ◦ τjT

)
=

n−1∑
j=0

(n[(1− j)T ]− n[−jT ]) = 0

Since, div
(∏n−1

j=0 f ◦ τjT
)

= 0 so,
∏n−1

j=0 f ◦ τjT is constant. For some T ′ ∈ E
satisfying nT ′ = T and as we know that f ◦ n = gn. So,(

n−1∏
j=0

g ◦ τjT ′

)n

=
n−1∏
j=0

f ◦ τjT ′

=
n−1∏
j=0

f ◦ τjT ◦ n.

This proves that
∏n−1

j=0 g ◦ τjT ′ is also constant. Therefore, it takes the same

value at P and P + T ′, so

n−1∏
j=0

g(P + T ′ + jT ′) =
n−1∏
j=0

g(P + jT ′).

After cancelling terms on the both sides, we get g(P + nT ′) = g(P ). As,

nT ′ = T , so we get

en(T, T ) =
g(P + T )

g(P )
= 1
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From bilinearity property,

en(S + T, S + T ) = en(S, S)en(S, T )en(T, S)en(T, T )

Since, en(T, T ) = 1, en(S, S) = 1 and en(S+T, S+T ) = 1. So, en(S, T )en(T, S) =

1. Therefore, en(T, S) = en(S, T )−1. Hence, proved.

3. Let T ∈ E[n] be such that en(S, T ) = 1 for all S ∈ E[n]. Then, g(P + S) =

g(P ) for all S ∈ E[n]. So, there exist a function h ∈ K̄(E) such that g = h◦n.

Then

(h ◦ n)n = gn = f ◦ n

Since, we know that multiplication by n is surjective on E(K̄) which implies

that f = hn. Therefore,

n div(h) = div(f) = n[T ]− n[O]

Thus, div(h) = [T ]− [O]. By theorem, we get T = O. Hence, proved.

4. Let σ ∈ GK̄/K . If f and g are the functions for T . Then, div(fσ) = n[T σ]−n[O]

and similarly (gσ)n = fσ ◦ n, where fσ and gσ are the functions which are

obtained by applying σ to the coefficients of the rational functions f and g.

Therefore,

en(Sσ, T σ) =
gσ(P σ + Sσ)

gσ(P σ)
=

(
g(P + S)

g(P )

)σ
= en(S, T )σ

Hence, proved.

5. Let f and g are two rational functions such that

div(fm) = mdiv(f) = nm[T ]− nm[O]

and

(g ◦m)nm = (f ◦mn)m as f ◦ n = gn.

Therefore, by the definition of the Weil pairing

enm(S, T ) =
g ◦m(P + S)

g ◦m(P )
=
g(Y +mS)

g(Y )
= en(mS, T ).

where mP = Y . Hence, proved.

�
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Corollary 5.2 Let T1, T2 be a basis of E[n]. Then, en(T1, T2) is primitive n-th root of

unity. In particular, if E[n] ⊆ E(K) then, µn ⊆ K∗.

Proof Suppose en(T1, T2) = ζ such that ζd = 1. Then en(T1, T2)d = 1. By

bilinearity property en(T1, T2)d = en(dT1, T2) = en(T1, dT2). So, en(dT1, T2) = 1

and en(T1, dT2) = 1. Let S ∈ E[n]. Then, S = aT1 + bT2, where a,b ∈ Z. Thus, for

all S ∈ E[n]

en(S, dT2) = en(T1, dT2)aen(T2, dT2)b = 1

Then, by non-degeneracy property dT2 = O. And, dT2 = O if and only if n divides

d. Thus, ζ is a primitive n-th root of unity.

If E[n] ⊆ E(K) then the points in E[n] are allowed to have coordinates in K̄.

So, we need to show that these points have all coordinates in K in order to prove

that µn ⊆ K∗. As, T1, T2 be the basis of E[n] so T1 and T2 are assumed to have

coordinates in K. Let σ ∈ GK̄/K . Then, by Galois invariance property of Weil

pairing we have ,

ζ = en(T1, T2) = en(T σ1 , T
σ
2 ) = (en(T1, T2))σ = ζσ

The fundamental theorem of Galois theory implies that ζ lies in purely inseparable

extension of K, but when char(K) does not divide n then n−th root of unity

generates a separable extension of K. Hence, ζ ∈ K. Thus, µn ⊆ K∗. �

Proposition 5.3 Let E be an elliptic curve and α : E −→ E. Then en(αS, αT ) =

en(S, T )deg(α) for all separable endomorphisms α of E. This statement is also true

in the case of a frobenius endomorphism α if the coefficients of E lie in the finite

field Fq.

5.3 Modified Weil Pairing

For cryptographic applications we need to modify the definition of Weil Pairing to

evaluate the pairing at points aP and bP for some integers a, b. As en(aP, bP ) =

en(P, P )ab = 1 because of the alternating property of the Weil pairing .

Definition 5.4 Let E be an elliptic curve over a finite field Fq, P ∈ E[n] and let φ be

an n-distortion map for P . Then the modified Weil pairing denoted by

ẽn is defined by ẽn(P1, P2) = en(P1, φ(P2)).
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where en is the usual Weil-Pairing and P1, P2 ∈ E[n].

Lemma 5.5 Let 3 - n and P ∈ E(Fq) is a point of order n then ẽn(P, P ) is a primitive

n-th root of unity.

Proof Let aP = bφ(P ) for some integers a and b. Then by the property of

endomorphism we get

φ(bP ) = bφ(P ) = aP ∈ E(Fq).

If bP = O, then aP = O, thus a ≡ 0(modn). If bP 6= O then let bP = (x, y) where

x, y ∈ Fq. Then

(ωx, y) = φ(bP ) ∈ Fq

Since the primitive third root of unity ω /∈ Fq, then x = 0. Therefore, the two

possibilities for bP are (0, 1) and (0,−1). But the order of these two points is 3 and

we have already assumed that 3 - n. So, if aP = bφ(P ) then a, b ≡ 0(modn). Thus

P and φ(P ) are the basis of E[n]. Then by the corollary 5.2 ẽn(P, P ) = en(P, φ(P ))

is a primitive root of unity. �



Chapter 6

Cryptography

6.1 Introduction

Cryptography is the study of mathematical methods required for secure communi-

cation between parties over an insecure channel(in presence of adversary or eaves-

dropper who tries to get any piece of information being exchanged between the

sender and the receiver). Suppose Alice wants to send a message, which is called as

plaintext to Bob and in order to prevent the Eve (Eavesdropper) from reading the

message, she converts it or encrypts it into unreadable form called as ciphertext.

When Bob receives the message, he converts the ciphertext or decrypt the message

to read it. Here Alice uses the encryption key to encrypt the message and Bob uses

the decryption key for decrypting the ciphertext. So, in order to keep the Eve from

reading the message we need to keep the decryption key secret from Eve.

Definition 6.1 A cryptosystem is basically a five tuple (M, C,K, Ek, Dd) where it

satisfies following conditions

• M denotes the message space and an element of M is called a plaintext.

• C denotes the ciphertext space and an element of C is called a ciphertext.

• K denotes the key space and an element of K is called a key.

• For each k ∈ K there exist a bijection map Ek called as an encryption function

where Ek :M−→ C

• For each d ∈ K there exist a bijection map called as a decryption function Dd

where Dd : C −→M.

47
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• The process of transforming the message m ∈M to ciphertext by applying Ek

is called encryption of m and the process of applying the transformation Dd to

a ciphertext c is called decryption(inverse of encryption) of c.

• An encryption scheme consists of a set Ek : k ∈ K of encryption functions

and a corresponding set Dd : d ∈ K of decryption functions such that for every

plaintext element m ∈ M we get Dd(Ek(m)) = m. That is for each k ∈ K
there exist a unique key d ∈ K such that Dd = E−1

k .

• The pair of keys (k, d) is called key pair.

The encryption scheme in which both the encryption and decryption key are same

or one can be easily deduced from the other is called as symmetric encryption.

Figure 6.1: Symmetric encryption

When both the encryption and decryption key are different then the encryption

scheme is known as Public key encryption. In this the encryption key can be

made public so it is called as public key and decryption key is called as secret key

or private key because it is kept secret.

Figure 6.2: Asymmetric encryption
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Main goals of cryptography are to provide Confidentiality, Data Integrity, Au-

thentication and Non-repudiation from both the theoretical and practical aspects.

Definition 6.2 Confidentiality means keeping the information content secret from

all except the ones who are authorized to have it.

Definition 6.3 Data Integrity aims to prevent unauthorized alteration such as in-

sertion, deletion and substitution of data.

Definition 6.4 Authentication deals with the identification of the entities partici-

pating in the communication and the information delivered over a channel.

Definition 6.5 Non- repudiation guarantees that an entity cannot later deny the

previous commitments or actions .

6.2 Classes of attacks and security models

An adversary can attack a cryptosystem in two ways:

1. In Passive attack, an adversary only monitors the communication channel

and is capable of threatening the confidentiality of data only.

2. In Active attack, an adversary attempts to threatens the data integrity,

authentication and confidentiality of data.

A passive attack on encryption scheme can be subdivided into following categories

:

1. In Ciphertext-only attack aim of the adversary is to deduce the decryption

key or plaintext from the corresponding ciphertext by only observing the

ciphertext.

2. In known plaintext attack the adversary posses a quantity of plaintext and

corresponding ciphertext when he mounts the attack.

3. In Chosen plaintext attack(CPA), adversary chooses plaintext messages

and gets encryption assistance to obtain the corresponding ciphertext mes-

sages. The adversary targets to weaken cryptosystem(to recover plaintext

corrsponding to the previous unseen ciphertext) using the obtained plaintext-

ciphertext pairs.
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4. An Adaptive chosen plaintext attack is a chosen plaintext attack but

in this attack the choice of plaintext may depend on the previously received

ciphertext.

5. In Chosen ciphertext attack(CCA), adversary chooses ciphertext and gets

decryption assistance to obtain the corresponding plaintext messages. The

adversary is successful if he gets some secret plaintext information from a

target ciphertext(unseen) which is given to the adversary after the decryption

assistance is stopped.

6. An Adaptive chosen ciphertext attack is a CCA but in this attack the

choice of ciphertext may depend on the previously received plaintext.

The bijection function plays an important role in cryptography. They are used

for encrypting the messages and the inverse transformation is used for decryption.

Mostly functions which are used in cryptography are one way function and trapdoor

function.

Definition 6.6 One-way function A function Ek : M −→ C is said to be a one

way function if for all messages m ∈ M it is easy to calculate Ek(m) but for all

ciphertexts c ∈ C it is computationally infeasible to find any m ∈ M such that

Ek(m) = c. That is, given k it is infeasible to find out the corresponding decryption

key d.

Definition 6.7 Trapdoor one-way function A trapdoor one way function is a one

way function but for any given c ∈ C it is computationally feasible to find an m ∈M
such that Ek(m) = c.

The security of most of the cryptosystems are based on the hardness of the

mathematical problem which are fast to compute but hard to inverse and the

hardness of the problem is determined by the time taken by the algorithm to solve

the problem. The problems which are believed to be secure and practical till date are

Integer factorization problem, Finite field discrete logarithm problem and Elliptic

curve discrete logarithm problem. The problems which are secure today doesn’t

mean they are unbreakable in future.

Definition 6.8 The Integer factorization problem is that given a positive integer

n, we need to find its prime factorization. That is, to write n = pe11 p
e2
2 . . . pekk where

pi are pairwise distinct primes and each ei ≥ 1.
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Example 6.9 Suppose we have two prime numbers, 3 and 7, then it takes no time

to calculate the product, which is 21. But what if we have a number, 21, and we

want to know which pair of primes are multiplied together to obtain this number.

Calculating the product takes milliseconds, whereas factoring will take longer. The

problem becomes much harder if we start with primes that have 400 digits or so,

because the product will have 800 digits.

Definition 6.10 Generalized discrete logarithm problem(GDLP): Given a gen-

erator α of the cyclic group G of order n, find the integer x, where 0 ≤ x ≤ n− 1,

such that αx = β. Integer x can be written as logαβ and it is called as the discrete

logarithm of β.

Example 6.11 Suppose we want to take the number 3 to the 6th power; it is

easy to calculate 36 = 729, but if we have the number 729 and we want to find

out the two integers which we have used, x and y so that logx729 = y, it will take

longer to find all possible solutions and select the used pair. The problem become

much harder with the large values of x and y. The groups which are of most

interest in cryptography are the multiplicative group F∗q of the finite field including

the multiplicative group Z∗p of the integers modulo a prime p.

Definition 6.12 Discrete logarithm problem(DLP): Given a prime p, a genera-

tor α ∈ Z∗p and an element β ∈ Z∗p, we need to find the integer x, where 0 ≤ x ≤ p−2,

such that αx = β(modp).

Definition 6.13 Computational Diffie-Hellman problem (CDH):

Given a cyclic group G, a generator α ∈ G and the group elements αa and αb we

need to find αab, where a, b ∈ [1, |G|].

The CDH problem is based on the assumption that discrete logarithm problem is

hard problem and it is computationally intractable to compute the value of αab .

If cyclic group G is multiplicative group of integers then the CDH problem is :

Given a prime p, a generator α ∈ Z∗p and elements αa mod p and alphab mod p, we

need to find αab mod p , where a, b ∈ [1, |G|].

Definition 6.14 Decision Diffie-Hellman problem (DDH) Given a cyclic group

G, a generator α ∈ G and elements αa, αb and αc we need to determine whether

αc = αab.
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DDH is a computationally hard problem based on the intractability of DLP and it

assumes that the values αc and αab are computationally indistinguishable. It is used

to prove the security of many cryptosystems such as ElGamal public encryption

scheme.

6.3 Security of the cryptosystems

The objective of the adversary which is trying to break a cryptosystem is to deduce

the secret key or private key. If he doesn’t get successful in finding the secret key

then his aim is to gain more information than the communicating parties wants.

The adversaries goals are following:

• Total break :If an adversary is able to deduce the decryption key then the

encryption scheme is said to be completely broken as the adversary now can

decrypt any ciphertext that has been encrypted using that key.

• Partial break: If an adversary is able to decrypt the previous unseen cipher-

text without finding the decryption key with some non-negligible probability or

to deduce some specific information about the plaintext of the given ciphertext

then the cryptosystem is said to be partial broken.

• Distinguishability of ciphertexts In this the adversary is able to distin-

guish between encryptions of two given plaintexts or between an encryption

of a given plaintext and a random string with some probability exceeding 1/2.

In a secure cryptosystem no partial information regarding the plaintext should

get revealed in polynomial time by observing the given ciphertext and ciphertext

distinguishability should be computationally infeasible. Thus a cryptosystem should

satisfy one of these strong notions of security:

Definition 6.15 Polynomially secure: A cryptosystem is said to be polynomial

secure if in polynomial time an adversary selects two messages m1 and m2 and is

not able to distinguish between encryption of m1 and m2 with probability significantly

greater than 1/2.

A scheme that is polynomially secure is often said to have Indistinguishability of

encryptions (IND).



6.4. RSA 53

Definition 6.16 Semantically secure A cryptosystem is said to be semantically

secure if the ciphertext does not reveal any partial information about the plaintext

in expected polynomial time.

In perfect secrecy, an adversary is not able to gain any information about the

plaintext from the ciphertext even in the presence of infinite computational resources

but may learn the length of the plaintext. Thus we can observe that semantic

security is the polynomial bounded version of the perfect secrecy.

6.4 RSA

RSA is the best known public-key cryptosystem, named after its inventors Rivest,

Shamir and Adleman. Its security is based on the intractability of the integer

factorization problem and for that it is necessary to take the value of n = pq to be

large enough such that factoring will be computationally infeasible.

Both Alice and Bob have to create an RSA public key and a corresponding

private key by using RSA paramater generation algorithm for setting up the RSA

cryptosystem.

RSA Key Generation Algorithm:

• Generate two large random distinct prime numbers p and q .

• Compute n = pq and φ(n) = (p− 1)(q − 1). Where φ is an euler function.

• Choose a random integer e where 1 < e < φ(n) such that gcd (e, φ(n)) = 1.

• Compute d where 1 < d < φ(n) such that de ≡ 1 (mod φ(n)).

• The Public keys is (n, e) and private key is d.

Suppose both Alice and Bob have their own private key and public key and let

Bob’s public key is (n, e) and private key is d. For encrypting the message m (less

than n) Alice should follow these steps:

• Alice first obtain the Bob’s authentic public key (n, e).

• message m is encrypted by calculating c = me mod n
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• Alice sends the ciphertext c to Bob.

For decrypting the ciphertext Bob uses his private key d to recover message m by

computing m = cd mod n.

6.5 Elliptic Curve cryptography

Elliptic Curve Cryptography (ECC) is an approach to public-key cryptography based

on elliptic curve theory and the Elliptic curves are used in cryptosystems because

of the reason that they provide security equivalent to classical cryptosystems. The

security of such cryptosystems relies on the difficulty of the elliptic curve logarithm

which is the DLP in a group defined by rational points lying on an elliptic curve over

a finite field. This results in dramatic decrease in key size needed to achieve the same

level of security in conventional Public key cryptography scheme. For example:A

160 bit elliptic curve cryptosystem key has about the same level of security as 1024

bit RSA key. Moreover, ECC is the best known algorithm that solves the ECDLP

in exponential time where other conventional cryptosystems takes sub-exponential

time. ECC keys takes much more effort to break compared to RSA and DSA

keys. ECC device require less storage, less power, less memory, less bandwidth than

other cryptosystems which allows to implement cryptography in platforms that are

constraint such as wireless devices, smart cards, thin- clients.

6.5.1 Elliptic Curve Discrete Logarithm Problem

Given E an elliptic curve defined over a finite field Fp and points P and Q ∈ E(Fp),
we need to find an integer m such that Q = mP .

Example 6.17 Let E : y2 = x3 +x+1 be an elliptic curve over the field Fp, where

p = 5 and the points P = (0, 1) and Q = (2, 1) ∈ E(F5) , then it is easy to calculate

the multiple of P . That is, 2P = (4, 2), 3P = (2, 1), 4P = (3, 4), 5P = (3, 1),

6P = (2, 4), 7P = (4, 3), 8P = (0, 4), 9P = O, and find out the value of m such

that Q = mP . But the problem become much harder for large values of p.

6.5.2 Diffie- Hellman Key Exchange(DHK)

In the case of public key encryption, every user has a public key known to everybody

and a private key known only to the user itself to decrypt the ciphertexts. Thus
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private and authenticated communication is possible without having to meet to agree

on a shared secret key. But in the case of symmetric-key cryptography, Alice and

Bob have to meet before and agreed on a secret key for producing authentication

information and verifying the validity of the authentication information. So, without

prior contact the only communication channel which is available for exchanging the

secret key is public. Thus, Diffie and Hellman key exchange provides a solution

to the problem of establishing the secret key between two parties over a channel

controlled by adversary.

Suppose Alice and Bob agree on an elliptic curve E over a finite field Fq

1. Setup: Alice and Bob chooses an elliptic curve E over a finite field Fq such that

DLP is hard in E(Fq) and a point P ∈ E(Fq) whose order is a large prime.

2. Alice chooses a random secret integer a and computes the value of Pa = aP

and sends it to Bob.

3. Bob chooses a random secret integer b and computes the value of Pb = bP and

sends it to Alice.

4. Alice receives bP and computes the secret key aPb = abP .

5. Bob receives aP and computes the secret key bPa = abP .

Figure 6.3: Diffee Hellman Key Exchange

6. Instead of taking abP as the secret key, Alice and Bob can also use some

publically agreed method to extract the key from abP for example they could

take the last 156 bits of the x−coordinate of the point abP or could obtain

the value of secret key by applying a hash function on x−coordinate.
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Diffie-Hellman Key Exchange(Generalized)

Setup: A prime p and a generator α ∈ Z∗p where 2 ≤ α ≤ p− 2 are selected and published.

Alice Adversary Bob

chooses a random secret number x chooses a random secret y.

Calculate XA = αxmodp Calculate XB = αymodp

Alice receives XB Can see XA and XB Bob receives XA

shared key K = Xx
B mod p shared key K = Xy

A mod p.

The security of DHK is based on the intractability of the Diffie-Hellman problem as

the information which is available to adversary is the E(Fq), the points P, aP and

bP. So, adversary have to solve the DHP in order to break the cryptosystem .

Definition 6.18 Diffie-Hellman problem: Given an elliptic curve E over a finite

field Fq and the points P, aP, bP in E(Fq, we need to compute abP.

Definition 6.19 Decision Diffie-Hellman problem Given an elliptic curve E over

a finite field Fq and the points P, aP, bP, Q in E(Fq), we need to determine whether

or not Q = abP.

6.5.3 Tripartite Diffie-Hellman Key Exchange:

Suppose Alice, Bob and chris wants to establish a secret key or common key. For

establishing the common key we can use the standard Diffie-Hellman key exchange

protocol but it requires two rounds of communication and in some cases these two

rounds can be very complicated so single round would be preferable.

Figure 6.4: Two rounds of standard Diffee Hellman Key Exchange protocol

The Tripartite Diffie-Hellman key exchange protocol provides an efficient algo-

rithm for establishing the secret key between more than two parties and it requires

only one round of communication.



6.5. ELLIPTIC CURVE CRYPTOGRAPHY 57

Figure 6.5: Tripartite Diffee Hellman Key Exchange

This algorithm is based on the application of Weil pairing on the elliptic curves.

In this, an elliptic curve E(Fq) and a point P ∈ E(Fq) of order n where n is a large

prime are public paramters.

Tripartite Diffie-Hellman Key Exchange

Alice Bob Chris

Chooses secret integer Chooses secret integer Chooses secret integer

a mod n b mod n c mod n

Calculate aP Calculate bP Calculate cP

Receives bP , cP Receives aP , cP Bob Receives aP , bP

Computes ẽn(bP, cP )a Computes ẽn(aP, cP )b Computes ẽn(aP, bP )c

Secret key = ẽn(bP, cP )a = ẽn(aP, cP )b = ẽn(aP, bP )c

6.5.4 Identity Based Encryption(IBE)

In this section we will discuss about the method by Boneh and Franklin which uses

the Weil Pairing on the elliptic curves to obtain a cryptosystem. In this cryptosystem

each user has a public key which is based on the public identity such as an email

address and a corresponding private key which is assigned by a central trusted

authority(TA) to each user. IBE cryptosystem is semantically secure assuming that

Bilinear Diffie Hellman Problem(BDH) is problem is hard.

Definition 6.20 BDH: Let G1 and G2 are two groups of prime order q, ẽ be the

modified Weil pairing such that ẽ : G1×G1 −→ G2 and P be a generator of G1. Then

for given 〈P, aP, bP, cP 〉 where a, b, c ∈ Zq we need to compute W = ẽ(P, P )ab ∈ G2.

An algorithm A has advantage ε in solving BDH in < G1, G2, ẽ > if

Pr
[
A(P, aP, bP, cP ) = ẽ(P, P )abc

]
≥ ε
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where the probability is over the random choice of a, b, c in Z∗q, the random choice

of P ∈ G∗1.

BDH Parameter Generator We say that a randomized algorithm G is a BDH

parameter generator if

1. G takes a security parameter k ∈ Z+,

2. G runs in polynomial time in k, and

3. G outputs a prime number q, two groups G1, G2 of order q, and a modified

Weil pairing map ẽ : G1 ×G1 → G2. < q,G1, G2, ẽ > is the output of G.

BDH Assumption Let G be a BDH parameter generator. We say that an

algorithm A has advantage ε(k) in solving the BDH problem for G if for sufficiently

large k:

AdvG,A(k) = Pr
[
A(q,G1, G2, ẽ, P, aP, bP, cP ) = ẽ(P, P )abc

]
≥ ε(k)

The BDH is said to be hard in groups generated by the BDH parameter generator

if it satisfies the BDH assumption.

An IBE scheme is described by four randomized algorithms: Setup, Extract,

Encrypt, Decrypt.

1. Setup: Given a security parameter k ∈ Z∗, the setup algorithm does the

following

1: Run G the BDH parameter generator on input k to generate a prime q, two

groups G1, G2 of order q, and the modified Weil pairing map ẽ : G1×G1 → G2.

Choose a random point P ∈ G1.

2: Chooses a random s ∈ Z∗q and set Ppub = sP.

3: Chooses cryptographic hash function H1 and H2 such that H1 : {0, 1} ∗ →
G∗1 and H2 : G2 → {0, 1}n for some n. Here n is the length of the messages that

will be sent and the ciphertext space is C = G∗1×{0, 1}
n. The system param-

eters are publicly available, that is params = 〈q,G1, G2, ẽ, n, P, Ppub, H1, H2〉.
The master-key is s ∈ Z∗q is kept secret.

2. Extract:TA takes as input params, master key, a given string ID ∈ {0, 1}∗

and returns a private key to the user with identity ID by doing the following:
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(1) computes QID = H1(ID). This is a point in the group G1.

(2) computes the private key dID to be dID = sQID where s is the master

key and sends dID to the user ID.

3. Encrypt: To encrypt m ∈ M under the public key ID, we need to do the

following:

(1) compute QID = H1(ID) ∈ G∗1,

(2) choose a random r ∈ Z∗q,
3) compute gID = ẽ(QID, Ppub) ∈ G∗2. (3) Set the ciphertext to be C =

〈rP,m⊕H2(grID)〉, where ⊕ denotes bitwise addition mod 2.

4. Decrypt: To decrypt the ciphertext, let C = 〈U, V 〉 ∈ C using the public key

do the following:

1) use the private key dID ∈ G∗1 and compute V ⊕H2(ẽ(dID, U))

The decryption here works because

ẽ(dID, U) = ẽ(sQID, rP )

= ẽ(QID, P )sr

= ẽ(QID, Ppub)
r)

= grID.

Thus, applying decryption after encryption procedure gives us the original mes-

sage m. That is,

= V ⊕H2(ẽ(dID, U))

= (m⊕H2(grID))⊕H2(grID)

= m

Security The IBE scheme is a semantically secure assuming that BDH is hard

in groups generated by G . and it can be proved by the following theorem.

Theorem 6.21 Let H1, H2 are two hash functions. Then IBE is a semantically secure

assuming BDH is hard in groups generated by G. Concretely, suppose there is an

IND-ID-CPA adversary A that has advantage ε(k) against the IBE scheme. Suppose

A makes at most qE > 0 private key extraction queries and qH2 > 0 hash queries to
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H2. Then there is an algorithm B that solves BDH in groups generated by G with

advantage at least:

AdvG,B(k) =
2ε(k)

e(1 + qE)qH2

Here e ∼ 2.71 is the base of the natural logarithm. The running time of B is O(time(A)).



Bibliography

[1] Joseph H. Silverman, The Arithmetic of Elliptic Curve, second ed, Springer,

1986.

[2] Lawrence C. Washington , Elliptic curves: Number theory and Cryptography,

second ed, Chapman & Hall CRC.

[3] A. Menezes, Scott Vanstone, Paul Van Oorschot Handbook of Applied Cryp-

tology, CRC Press 1996.

[4] Dan Boneh and Matthew Franklin Identity-Based Encryption from the Weil

Pairing., Springer-verlag 2001.

[5] Douglas R. Stinson , Cryptography Theory and Practice, third ed, Chapman

& Hall CRC.

[6] J. Silverman and J. Tate, Rational points on Elliptic Curves, Springer UTM,

1992.

[7] Leonard S.Charlap and David P. Robbins, An Elementary Introduction to

Elliptic Curves, CRD Expository Report 31, Dec 1998.

[8] Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott, Efficient

Algorithms for Pairing-Based Cryptosystems.

61


	An Introduction to Elliptic Curve
	Definition of an Elliptic Curve
	Weierstrass Normal Form
	Why Elliptic Curves are called Elliptic
	Group Law on Elliptic Curve
	Divisors

	Elliptic Curve over Complex Numbers
	Introduction
	Elliptic Functions
	The Weierstrass  - function 
	Lattice defines Elliptic curve
	The isomorphism from a torus to its corresponding elliptic curve

	Riemann Roch Theorem
	Elliptic Curve over Finite Fields
	 Rational Points over Finite field
	 Endomorphism 
	Frobenius Endomorphism

	Weil Pairing
	Construction of the Weil Pairing
	Properties of Weil Pairing
	Modified Weil Pairing

	Cryptography
	Introduction
	Classes of attacks and security models
	Security of the cryptosystems
	RSA
	 Elliptic Curve cryptography
	 Elliptic Curve Discrete Logarithm Problem
	 Diffie- Hellman Key Exchange(DHK)
	 Tripartite Diffie-Hellman Key Exchange:
	Identity Based Encryption(IBE)



