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Notation

I Identity Matrix (in appropriate dimensions).
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Chapter 1

Introduction

In this thesis, we will address the problem of finding closed form solutions of a second

order linear homogeneous differential equation. The content of this thesis is based

on the paper by Jerald J. Kovacic[?]. In that paper, Kovacic develops an algorithm

to determine whether or not a given second order linear homogeneous differential

equation defined over C(x), the field of rational functions in one variable x defined

over the field of complex numbers, admits two linearly independent closed form

solutions. The algorithm is implemented successfully in computer algebra systems

and presently available in MAPLE and MACSYMA.

The rest of the thesis is arranged as follows. In chapter 2, we provide basic

definitions and terminologies from differential algebra and from the Galois theory

of linear differential equations. Then, we reduce the problem of finding closed form

solutions of second order homogeneous linear differential equations to the problem of

finding such solutions for equations of the kind y′′ = ry, where r ∈ C(x). The latter

has the added advantage that its differential Galois group can be identified with

an algebraic subgroup of SL(2,C). In chapter 3 we prove the Lie-Kolchin Theorem

and classify the algebraic subgroups (up to conjugation) of SL(2,C) into 4 distinct

classes. In chapter 4, we use the classification of the Galois group of the differential

equation y′′ = ry, where r ∈ C(x), and obtain conditions that the poles of r must

satisfy. In Chapter 5, we study the algorithm in detail and in Chapter 6 we provide
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several examples to illustrate how the algorithm works. In Chapter 7, we study the

proof of correctness of the algorithm.
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Chapter 2

Liouvillian solutions

In this chapter, we define the notion of a closed form solution of a linear homoge-

neous differential equation. We then define the Galois group of a linear differential

equation and show that for differential equations of the form y′′ = ry for r ∈ C(x),

the Galois group can be identified with an algebraic subgroup of SL(2,C).

Definition 2.1. A differential field F is a field with a map ′ : F −→ F such

that following conditions are satisfied :

(x+ y)′ = x′ + y′.

(xy)′ = xy′ + x′y ∀x, y ∈ F .

The map ′ is usually called a derivation.

The subfield C = {x ∈ F : x′ = 0} of F is called the field of constants of F .

A field extenstion E of a field F is said to be a differential field extension if

the derivation map of E restricted to F is the same as the derivation map of

F .

A differential field extension E of C(x) (equipped with the derivation d
dx

) is

called Liouvillian differential field if there exist a tower of differential
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fields

C(x) = F0 ⊂ F1 ⊂ · · · ⊂ Fn = E

such that for each i = 1, 2, · · ·n
either Fi = Fi−1(α) where

α′

α
∈ Fi−1

or Fi = Fi−1(α) where α′ ∈ Fi−1

or Fi is finite algebraic over Fi−1.

Consider a linear differential polynomial L(Y ) = Y (n)+an−1Y
(n−1)+· · ·+a0Y ,

where ai ∈ C(x) and Y (i) denote the ith derivative of Y . We say that L(Y ) =

0 admits a Liouvillian (or a closed form) solution if there is a Liouvillian

extension E of C(x) and an element z ∈ E such that L(z) = 0.

Lemma 2.2. If one solution of the differential equation

z′′ + az′ + bz = 0 where a, b ∈ C(x)

is Liouvillian then every solution of this differential equation is also Liouvillian .

Proof. Let η be a solution of z′′ + az′ + bz = 0 where a, b ∈ C(x). One can easily

see that ζ = η
∫

1
η2
e−

∫
adx is a solution of above differential equation. Also ζ and

η are linearly independent and ζ is Liouvillian if and only if η is Liouvillian. This

completes the proof.

Lemma 2.3. The differential equation z′′ + az′ + bz = 0 where a, b ∈ C(x) can be

reduced to

y′′ = ry, r ∈ C(x)

without changing the Liouvillian nature of solutions.

Proof. Use the substitution y = e
1
2

∫
az and write r = −b+ 1

4
a2 + 1

2
a′.

While solving the second order linear homogeneous differential equations we first

reduce it using ?? to y′′ = ry where r ∈ C(x). If r ∈ C the solutions are easy to find

and they are Liouvillian. So we only need to consider the case when r ∈ C(x) \ C.
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Notation: From now on The DE means the differential equation

y′′ = ry, r ∈ C(x) \ C.

Definition 2.4.

A set of two linearly independent solutions of a second order linear differential

equation is called a fundamental system of solutions of the given differential equation.

Let η, ζ be a fundamental system of solutions of the DE. A differential automorphism

σ of F = C(x)(η, ζ, η′, ζ ′) is a field automorphism of F such that σ(a′) = σ(a)′ ∀a ∈
F . The group of all differential automorphisms of F that leave C(x) invariant is

called the Galois group of F over C(x) (denoted by Gal(F )).

Lemma 2.5. Gal(F ) is isomorphic to a subgroup of SL(2,C).

Proof. Let η, ζ be a fundamental system of solutions of the DE. We note that, for

σ ∈ Gal(F ), σ(η) and σ(ζ) are two linearly independent solutions of the DE. Now,

we can write σ(η) = aση + cσζ and σ(ζ) = bση + dσζ for some aσ, bσ, cσdσ ∈ C. The

map ϕ : Gal (F ) −→ GL (2,C) defined as ϕ(σ) =

(
aσ bσ

cσ dσ

)
can be readily seen to

be an injective group homomorphism. Moreover, W ′ (the derivation of Wronskian

W = ηζ ′ − η′ζ) can be easily seen to be 0. Thus W is a constant. Also W 6= 0. As

a result,W is kept fixed by Gal(F ). Hence W = σW ∀σ ∈ Gal(F ).

W = σW = (aσdσ − bσcσ)W = det(c(σ))W

Hence det(cσ) = 1. Therefore, Gal(F ) ⊂ SL(2,C).

From now on, we shall be considering any subgroup of SL(2,C) which is isomor-

phic to Gal(F ) the same as the Galois group of F over C(x).

Definition 2.6. An algebraic subgroup of a group G, is a subgroup of G which is closed

in Zariski topology.

Theorem 2.7. Gal(F ) is an algebraic subgroup of SL(2,C).
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Proof. Let Y, Z, Y1, Z1 be indeterminates over C(x) and η, ζ be a fundamental system

of solutions of the DE. Now, consider the substitution homomorphism:

φ : C[x, Y, Z, Y1, Z1] −→ C[x, η, ζ, η′, ζ ′]

Let P = ker(φ). Since C[x, Y, Z, Y1, Z1]/P ∼= C[x, η, ζ, η′, ζ ′], we obtain that P is a

prime ideal.

For A =

(
a b

c d

)
∈ SL(2,C), we define a map

ψA : C[x, Y, Z, Y1, Z1] −→ C[x, Y, Z, Y1, Z1]

defined by

(
Y Z

Y1 Z1

)
7−→

(
Y Z

Y1 Z1

)(
a b

c d

)
. It is easy to prove that ψA

is an isomorphism of rings. Now,one can easily prove A ∈ Gal(F ) if and only if

ψA(P ) ⊂ P . Define the following two maps :

ψ : C[x, Y, Z, Y1, Z1] −→ C[x, Y, Z, Y1, Z1, X1, X2, X3, X4]

defined by

(
Y Z

Y1 Z1

)
7−→

(
Y Z

Y1 Z1

)(
X1 X2

X3 X4

)
and

ρ : C[x, Y, Z, Y1, Z1]⊗ C[X1, X2, X3, X4] −→ C[x, Y, Z, Y1, Z1, X1, X2, X3, X4]

where ρ is the natural isomorphism. Let BP = {gα : α ∈ J} be a basis of P over

C. We may extend BP to a basis B = {gα : α ∈ J or α ∈ I} of C[x, Y, Z, Y1, Z1] over C

for some indexing sets I and J . Clearly, B is a basis of C[x, Y, Z, Y1, Z1, X1, X2, X3, X4]

over C[X1, X2, X3, X4]. And thus, ρ−1(B) = {ρ−1(gα) : α ∈ J or α ∈ I} is a C[X1, X2, X3, X4]

basis of C[x, Y, Z, Y1, Z1] ⊗ C[X1, X2, X3, X4]. For α ∈ I ∪ J , we clearly have

ρ−1(gα) = gα ⊗ 1. Also, it can be easily seen that ψA = EvalA ◦ ψ.

Let g ∈ P . Say ψ(g) = ρ(
∑

α∈J∪I gα ⊗ fα).

By definition of ρ,we get ψ(g) =
∑

α∈J∪I gαfα.

Since ψA = EvalA◦ψ we have,ψA(g) =
∑

α∈J∪I gαfα(a, b, c, d). But as g ∈ P ,ψA(g) ∈
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P . Thus we have gαfα(a, b, c, d) = 0 for α ∈ I Hence fα(a, b, c, d) = 0 for α ∈ I.

Now,we assume, fα(a, b, c, d) = 0 for α ∈ I. Let g ∈ P such that ψ(g) =
∑

α∈J∪I gαfα.

Thus ψA(g) ∈ P . Hence A ∈ Gal(F ).

Now, we have a collection of polynomials {fα(x1, x2, x3, x4)} such that fα(a, b, c, d) =

0 if and only if A =

(
a b

c d

)
∈ Gal(F ). Hence, Gal(F ) is an algebraic subgroup

of SL(2,C).

7
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Chapter 3

Algebraic subgroups of SL (2,C)

3.1 Z Spaces

In this chapter we shall classify the algebraic subgroups of SL (2,C). Most of the

theorems in this chapter can be found in Chapter 5 of [?].

Let F be a field and V be an n-dimensional vector space over F . We define an

algebraic manifold in V as the set of all common zeros of a collection of polynomials

in n indeterminates.

Lemma 3.1. An algebraic manifold M in V (an n-dimensional vector space over F )

is the set of zeros of an ideal (i.e. the set of all common zeros of elements of the

ideal) in F [x1, x2, · · · , xn].

Proof. Let {v1, v2, · · · , vn} be a basis of V over F .

Let S be a set such that

M =

{
n∑
i=1

aivi : ai ∈ F, f(a1, a2, · · · , an) = 0 ∀f ∈ S

}
.

Consider, I = 〈S〉 (the ideal generated by S in the ring F [x1, x2, · · · , xn] ).
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Write,

N =

{
n∑
i=1

aivi : ai ∈ F, f(a1, a2, · · · , an) = 0 ∀f ∈ I

}
.

As S ⊂ I, we have N ⊂M .

Let v =
∑n

i=1 aivi ∈ M . Thus we have, f(a1, a2, · · · , an) = 0 ∀f ∈ S which

implies, f(a1, a2, · · · , an) = 0 ∀f ∈ I (because S generates I). Therefore,v ∈ N .

Hence,M = N

Definition 3.2. 1. A chain U1 ⊂ U2 ⊂ · · · ⊂ Un ⊂ Un+1 · · · of sets satisfies

ascending chain condition if there exists m ∈ N such that Um = Um+j ∀j ≥ 1.

2. A ring R is said to be Noetherian if every chain of proper ideals satisfies

ascending chain condition.

Theorem 3.3. Let R be a Noetherian commutative ring. Then the polynomial ring,

R [x] is also Noetherian.

Proof. The proof can be found in N. Jacobson[?].

Corollary 3.4. F [x1, x2, · · · , xn] is Noetherian.

Proof. We prove it by induction on n.

For n = 1, since F is a field, it does not have any non-zero proper ideal. Thus F is

Noetherian. And by Theorem ?? we get, F [x1] is Noetherian.

Now, if F [x1, x2, · · · , xn−1] be Noetherian, then by Theorem ??, F [x1, x2, · · · , xn] is

Noetherian.

Remark:

1. Algebraic manifolds in V satisfy the descending chain condition.

2. Union of finite number of algebraic manifolds in V is a algebraic manifold in

V (because finite union of ideals is an ideal.).

3. Intersection of arbitrary number of algebraic manifolds in V is a algebraic

manifold in V (because arbitrary intersection of ideals is an ideal.).
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4. We have a topology on V in which closed sets are algebraic manifolds. This

topology is called as the Zariski topology on V .

Definition 3.5. A T1-space is a topological space in which singletons are closed sets.

Lemma 3.6. The Zariski topology on a vector space V over F is T1.

Proof. Let {v1, v2, · · · , vn} be a basis of V over F . For v =
∑n

i=1 aivi ∈ V, ai ∈ F ,

define fi(x1, x2, · · · , xn) = xi − ai for 1 ≤ i ≤ n. The only zero of the collection

{f1, f2, · · · , fn} is v. Thus, {v} is an algebraic manifold. And hence singletons are

closed in Zariski topology. Therefore this topology is T1.

Definition 3.7. A Z-space is a T1-space which satisfies the ascending chain condition

on open sets.

Lemma 3.8. 1. Every subspace of a Z-space is a Z-space.

2. If a T1-space is a continuous image of a Z-space,it is itself a Z-space.

3. A Hausdorff Z-space is finite.

Proof. 1. Let A be a Z-space with topology τ (a collection of closed sets in

A) and B be a subspace of A with subspace topology say τ ′ i.e. for any

C ′ ∈ τ ′, there exists C ∈ τ such that C ∩B = C ′.

Since A is a Z-space, we have {x} ∈ τ ∀x ∈ A.

Now, for a fixed x ∈ B, {x} ∈ τ which implies {x} ∈ τ ′. Therefore τ ′ is T1.

Now, let C ′1 ⊃ C ′2 · · · ⊃ C ′n ⊃ C ′n+1 · · · be a chain of closed sets in B. Thus

there exists C ∈ τ such that C ∩ B = C ′. And therefore C1 ⊃ C1 ∩ C2 · · · ⊃
Cn ∩ Cn−1 · · · ∩ C1 ⊃ Cn+1 ∩ Cn · · · ∩ C1 · · · is a descending chain of closed

sets in A. Thus we have there exists m such that Cm ∩ Cm−1 · · · ∩ C1 =

Cm+j ∩ Cm+j−1 · · · ∩ C1 ∀j ≥ 1. And hence there exists m such that (Cm ∩
Cm−1 · · · ∩ C1) ∩ B = (Cm+j ∩ Cm+j−1 · · · ∩ C1) ∩ B ∀j ≥ 1. Therefore, there

existsm such that (Cm∩B)∩(Cm−1∩B) · · ·∩(C1∩B) = (Cm+j∩B)∩(Cm+j−1∩
B) · · ·∩ (C1∩B) ∀j ≥ 1. As a result there exists m such that C ′m∩C ′m−1 · · ·∩
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C ′1 = C ′m+j ∩ C ′m+j−1 · · · ∩ C ′1 ∀j ≥ 1. Hence there exists m such that C ′m =

C ′m+j ∀j ≥ 1.

2. Let A be a Z-space and φ : A → B be onto a continuous map where B

is a T1 space. Let C ′1 ⊃ C ′2 · · · ⊃ C ′n ⊃ C ′n+1 · · · be a chain of closed

sets in B. Since, φ is continuous, φ−1(C ′i) is a closed set in A ∀i. Also,

φ−1(C ′1) ⊃ φ−1(C ′2) · · · ⊃ φ−1(C ′n) ⊃ φ−1(C ′n+1) is a chain of closed sets in

A. Thus, there exists m such that φ−1(C ′m) = φ−1(C ′m+j) ∀j ≥ 1 and as φ is

onto,φ(φ−1(C ′i)) = C ′i. Therefore, there exists m such that C ′m = C ′m+j ∀j ≥
1. And hence, B is a T1-space.

3. Let X be a Hausdorff Z-space which is not finite. Define Vi = ∩j 6=iUi,j
where Ui,j is a neighborhood of xi ∈ X which is disjoint from the neighborhood

Uj,i of xj ∈ X. Now, we shall prove Vi∩Vj = ∅fori 6= j by using contradiction.

Let i ≥ j. And Vi ∩ Vj 6= ∅ which implies x ∈ Vi and x ∈ Vj
But Ui,j ∩ Uj,i = ∅ (By definition). Since,i ≥ j, Vi ⊂ Ui,j and Vj ⊂ Uj,i. we

have Vi ∩ Vj = ∅. Now, consider the ascending chain V1 ⊂ V1 ∪ V2 · · · ⊂
V1 ∪ V2 ∪ · · · ∪ Vn ⊂ · · · of open sets in X which is not stationary.

This is a contradiction to X being a Z-space. So,X is not infinite.

Hence, a Hausdorff Z-space is finite.

Lemma 3.9. A Z-space is the union of a finite number of disjoint open and closed

connected sets.

Proof. First we consider the following construction for a Z-space X:

1. Define, Y1 = X.

2. If Yi is disconnected open and closed subspace of X , then Yi is a disconnected

Z-space. Thus we can write, Yi = A ∪ B with A and B being disjoint open

and closed sets. Now, define Y2i = A and Y2i+1 = B.
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3. If Yi is connected open and closed set then define Y2i = Yi and Y2i+1 = ∅.

Continue the above construction as long as the collection Li = {Yj : 2i ≤ j < 2i+1}
contains only connected or empty sets for some i.

Now we claim that ∪Y ∈LiY = X ∀i and Yi1 ∩ Yj = ∅ for Yi1 6= Yj ∈ Li. We shall

prove it by using induction on i.

For i = 1, Y1 = X.

Let ∪Y ∈LiY = X ∀i and Yi1 ∩ Yj = ∅forYi1 6= Yj ∈ Li for i < n. Clearly, from the

step 2 and step 3 of the construction as we go from Ln−1 to Ln the union doesn’t

change.

Therefore, ∪Y ∈Ln−1Y = ∪Y ∈LnY = X. Also, Yi1 ∩ Yj = ∅ for Yi1 6= Yj, Yi1 , Yj ∈ Ln
(because this happens for elements of Ln−1 and the construction just breaks elements

of Ln−1 into disjoint elements of Ln). Thus, if the construction stops at Ln then

we get the collection Ln = {Yj : 2j ≤ j < 2i+1, Yj 6= ∅} satisfying the condition that

Ln is finite set and ∪Y ∈LnY = X and y ∈ Ln is both open and closed connected

set. Therefore, only case left to complete the proof of lemma is the case when there

exists Y ∈ Ln such that Y is not connected ∀n. Define Xn = Y such that Y ∈ Ln
is disconnected.

Now we claim that for i < j either Xi ⊃ Xj or Xi ∩Xj = ∅. By definition of Xi ,

there exists i1, i2 such that Xi = Yi1 and Xj = Yi2 and i1 < i2.

Let Xi + Xj and Xi ∩Xj 6= ∅. It implies that there exists x ∈ Xi ∩Xj = Yi1 ∩ Yi2 .
Therefore, Yi1 and Yi2 does not belong to same Lk for some k.

And by construction, Yi1 ⊃ Yi2 which implies Xi ⊃ Xj. And this is a contradiction.

Now, consider the ascending chain of open and closed sets

X1 ⊂ X1 ∪X2 ⊂ · · · ⊂ X1 ∪X2 · · · ∪Xn ⊂ · · · .

By ascending chain condition on open sets, there exists n such that ∪ni=1Xi = ∪mi=1Xi ∀m >

n. It implies, Xn+j ⊂ ∪ni=1 ∀j ≥ 1. And thus, there exists j such that Xj contains

infinitely many X ′is for i > n. Also Xj $ X.

Define W0 = X and W1 = Xj and for given Wi we can get Wi+1 $ Wi. Clearly, we
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have the chain

W0 % W1 $ W2 · · · $ Wn $ Wn+1 · · ·

which is not stationary. Hence our assumption was wrong. Thus there exists Y ∈ Li
such that Y is not connected for some i and ∪Y ∈LiY = X which Y ’s are open and

closed connected sets.

Lemma 3.10. Let V and W be m-dimensional and n-dimensional vector spaces over

F with Zariski topology. Let r1, r2, · · · , rn be rational functions in m-variables say

x1, x2, · · · , xm. Let S be the set where the denominators of r1, r2, · · · , rn vanish and

T = V − S. Then the mapping:

φ : T −→ W

(x1, x2, · · · , xm) 7−→ (y1, y2, · · · , yn)

such that yi = ri(x1, x2, · · · , xm) is continuous.

Proof. Let A be a closed set in W . Then there exists S = {gj : j ∈ J} for some

indexing set J such that

A = {(y1, y2, · · · , yn) : gj(y1, y2, · · · , yn) = 0 ∀j ∈ J}

One can easily see that

φ−1(A) = {(x1, x2, · · · , xm) : gj(r1, r2, · · · , rn)(x1, x2, · · · , xm) = 0 ∀j ∈ J}

which is a closed set in T . Thus φ is continuous.

Definition 3.11. A group G is a T1 group if it is a T1 space such that Lx : G −→ G

mapping y 7−→ xy , Rx : G −→ G mapping y 7−→ yx and Inv : G −→ G mapping

y 7−→ y−1 are continuous maps. A Z-group is a T1-group which is also a Z-space.

Lemma 3.12. GLn(F ) is a T1 group.
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Proof. GLn(F ) ⊂ Mn(F ) is a group under matrix multiplication and has the sub-

space topology due to the Zariski topology on Mn(F ) over F which makes it a

Z-space.

Consider the map, Inv : GLn(F ) −→ GLn(F ) mapping A ∈ GLn(F ) to A−1.

We define, ri,j(A) =
1

detA
Cij , 1 ≤ i, j ≤ n where Cij denotes the cofactor of (i, j)th

element of A.

By lemma ??, Inv is continuous.

Now, consider the map LA : GLn(F ) −→ GLn(F ) mapping B ∈ GLn(F ) to AB for

A ∈ GLn(F ). We define, ri,j(B) =
∑n

k=1 aikbkj where aij, bij mean the ijth entry of

A and B respectively. Clearly, by lemma ?? LA is a continuous map. Similarly, RA

can be shown to be a continuous map as well. Hence, GLn(F ) is a T1 group.

Definition 3.13. The component of the identity G0 in a group G which also has a

topology is the maximal closed connected subset of G that contains the identity of

the group G.

Lemma 3.14. The component of the identity in a T1-group is a closed normal group.

Proof. Let G be a T1-group and G0 be the component of the identity in G. As,

Inv : G −→ G is continuous, the set G−1
0 = {x−1 : x ∈ G0} being the continuous

image of a connected set, is connected. Note that 1 ∈ G−1
0 . Now as G0 is maximal

connected set, G−1
0 ⊂ G0. Since, Lg for g ∈ G0 is continuous,gG0 (being continuous

image of a connected set) is connected ∀ g ∈ G0. Also g ∈ G0 ∩ gG0 implies that

gG0 ⊂ G0 ∀g ∈ G0. Hence G0 is a group. Now since x−1G0x = Rx(Lx−1(G0)) for

g ∈ G, we have 1 ∈ x−1G0x. Now it follows that x−1G0x is connected and therefore

x−1G0x ⊂ G0. Hence, G0 is a closed normal subgroup of G.

Lemma 3.15. The component of the identity in a Z-group is a closed normal subgroup

of finite index.

Proof. Let G be a Z-group and G0 be the component of the identity in G and suppose

that [G : G0] is not finite. By lemma ??, G can be broken into finitely many open

and closed connected sets. We shall prove that G0 is equal to one of them. Clearly,
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G0 is contained in exactly one of the open and closed connected sets say A. Now,

as G0 is maximal connected set, A ⊂ G0. Hence, A = G0.

Now, as [G : G0] is not finite, we have infinitely many cosetsG0, x1G0, · · · such that xi ∈
G are the representatives. Also each xiG0(being continuous image of a connected

set) is open and closed connected set, which contradicts the lemma ??. Therefore

[G : G0] <∞.

3.2 C-group

Definition 3.16. A C-group G is a T1 group in which the conjugation map φx : G −→
G mapping a ∈ G to a−1xa for fixed x ∈ G.

e.g. GLn(F ) ⊂Mn(F ) under the subspace topology.

Lemma 3.17. Let G be a C-group whose component of the identity G0 has a finite

index k. Then any finite conjugacy class of G has at-most k elements.

Proof. Suppose there exists x ∈ G such that m = |Cx| > k and m < ∞ where

Cx = {a−1xa : a ∈ G}
As the mapping φx : a 7→ a−1xa is continuous and inverse image of a closed set is

closed and singletons are closed in T1 topology, the inverse image of each conjugate

must be closed. Also, as |Cx| = m < ∞, each conjugate is open as well. (In

the subspace topology on Image(φx)). As, singletons are connected in G,φx(a
−1)

is also connected. But φx(a
−1) = φ−1

x (a−1xa) and therefore, the inverse image of

each conjugate is open and closed connected set which results in a decomposition

of G into more than k open and closed connected sets. Therefore, there exists a

coset of G0 which contains more than one open and closed set which contradicts the

connectedness of that coset. Hence any finite conjugacy class of G has at most k

elements.

Lemma 3.18. In a connected C-group, any non-central element has an infinite con-

jugacy class.
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Proof. Let G be a connected C-group. As G is connected, the component of the

identity in G is G. By lemma ??, any finite conjugacy class has at most 1 element,

but any conjugacy class of a non central element contains at least 2 elements. So

any conjugacy class of a non-central element has to be infinite.

Lemma 3.19. Arbitrary union of connected sets each having a fixed point in common

with a fixed connected set in a T1 topology is connected.

Proof. Let X = ∪j∈JXj where J is (fixed) indexing set. Let Y be the fixed connected

set such that Y ∩Xj ⊃ {x} ∀j ∈ J . Let X be not connected. It implies X = A∪B
where A and B are non-empty disjoint open sets. As,x ∈ X and A ∩ B = ∅,we

may assume that x ∈ A. Since, B 6= ∅, there exists y ∈ B and therefore y ∈ Xk for

some k. But, as Xk is connected either Xk ⊂ A or Xk ⊂ B which is a contradiction

to the fact that x ∈ A ∩Xk and y ∈ B ∩Xk. Therefore X is connected.

Theorem 3.20. If G is a connected C-group, then the commutator subgroup G
′

is also

connected.

Proof. Define Dk as the set of all products of k-commutators in G. Clearly, {1} =

D0 ⊂ D1 ⊂ · · · and
⋃∞
i=1Di = G

′
. We shall prove that Dk is connected (by using

induction on k).

Clearly, D0 is connected.

Let Di−1 is connected for i < n. Consider the map

φb1,b2,··· ,bn,a2,··· ,an : a1 7→ a−1
1 b1−1a1b1a2b−2b2−1a2b2 · · · a−1

n bn−1anbn

for fixed b1, b2, · · · , bn, a2, · · · an ∈ G.

Clearly, φb1,b2,··· ,bn,a2,··· ,an is continuous (being just the composition of right multi-

plication and conjugation). Therefore, the Image(φb1,b2,··· ,bn,a2,··· ,an) is connected.

Also, the image has a point in common with Dk−1(when a1 = b1).

But Dk =
⋃
b1,b2,··· ,bn,a2,··· ,an∈G φb1,b2,··· ,bn,a2,··· ,an(G).

Therefore, by lemma ?? Dk is connected. Hence G
′

=
⋃∞
i=1Di is connected as

well.
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Lemma 3.21. Let G be a C-group, H a closed subgroup of G. Suppose that the

component of the identity of H is solvable. Suppose either H is of finite index in G

or H is normal and G/H is abelian. Then the component of the identity in G is

solvable.

Proof. We prove it for the two cases separately.

Case 1: Let [G : H] be finite. Say G0 and H0 are the components on the identity in G

and H resp. Clearly, H0 ⊂ G0. Since [G : H] is finite and H is closed, every

coset of H is both open and closed. Hence G0 is contained in exactly one of

the cosets (because G0 is connected.) But G0∩H 6= ∅ and therefore, G0 = H0.

Hence, the component of the identity in G is solvable.

Case 2: Let H be normal in G and G/H be abelian. Let G0 and H0 be the components

on the identity in G and H respectively. As H is normal in G,(ab)H =

(aH)(bH) for a, b ∈ G Therefore, (ab)H = (ba)H i.e. a−1b−1ab ∈ H i.e. G
′ ⊂

H which implies G
′
0 ⊂ H. Now we claim that G0 is a C-group. G0 is a

closed normal subgroup of G (By lemma ??). Clearly, G0 is a T1 space. The

map, InvG : G −→ G mapping x 7→ x−1 is continuous. Now consider the

map InvG0 : G0 −→ G0 mapping x 7→ x−1 and let Y be a open set in G0.

Then there exists Y
′ ⊂ G such that Y

′
is open in G and Y

′ ∩ G0 = Y .

Define Y
′−1

=
{
x−1 : x ∈ Y ′

}
. Clearly, Y

′−1
= Inv−1

G (Y
′
) is open in G and

Inv−1
G0

(Y ) = Y
′−1 ∩ G0 which is open in G0. Therefore, the map InvG0 :

G0 −→ G0 is continuous.

Now, the map φG,x : G −→ G mapping a 7→ a−1xa is continuous(for fixed x ∈
G). For x ∈ G0, x

−1G0x ⊂ G0. Consider the map φG0,x : G0 −→ G0 mapping

a 7→ a−1xa for x ∈ G0. Let Y be a open set in G0. Then there exists Y
′ ⊂ G

such that Y
′

is open in G and Y
′ ∩ G0 = Y . Now,φ−1

G0,x
(Y ) = φ−1

G,x(Y
′
) ∩ G0.

and therefore, φG0,x is continuous.

Note that the map φa2 : G −→ G mapping a1 7→ a1a2 is continuous for

a2 ∈ G. Consider the map, ψa2 : G0 −→ G0 mapping a1 7→ a1a2 is continuous
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for a2 ∈ G0. Let Y be a open set in G0. Then there exists Y
′ ⊂ G such that

Y
′

is open in G and Y
′ ∩G0 = Y

ψ−1(Y ) = {a1 ∈ G0 : a1a2 ∈ G0}

= {a1 ∈ G : a1a2 ∈ Y } ∩G0

=
{
a1 ∈ G : a1a2 ∈ Y

′ ∩G0

}
∩G0

=
{
a1 ∈ G : a1a2 ∈ Y

′
}
∩G0 ∩ {a1 ∈ G : a1a2 ∈ G0}

= Y ′′ ∩G0

where Y
′′

is open in G.

Therefore, ψa2 is continuous for a2 ∈ G0. Similarly the map, ψa1 : G0 −→ G0

mapping a2 7→ a1a2 is continuous for a1 ∈ G0 is continuous. Hence, G0 is a

C-group.

Now,by theorem ??, G
′
0 is connected. Thus, G

′
0 ⊂ H0(because 1 ∈ G0

′). Since,

H0 is solvable, G
′
0 has to be solvable as well. Hence G0 is solvable.

Lemma 3.22. In a C-group G, the normalizer of a closed subgroup is closed.

Proof. Let S be a closed subgroup of G. As G is a C-group, for fixed s ∈ S

the map φs : G −→ G mapping a 7−→ a−1sa is continuous. Now φ−1
s (S) =

{a ∈ G|a−1sa ∈ S} is closed since S is closed for all s ∈ S. The set S1 = ∩s∈Sφ−1
s (S) =

{a ∈ G|a−1Sa ⊂ S} is intersection of closed sets and thus closed. Also, the set S2 =

(InvG)−1∩s∈S φ−1
s (S) = {a ∈ G|aSa−1 ⊂ S} is also closed. Hence the normalizer of

S being just the intersection of S1 and S2 is closed.

Lemma 3.23. Any commutative set of n×n invertible matrices over an algebraically

closed field can be put in simultaneous triangular form.

Proof. Let G be a commutative set of n×n invertible matrices over an algebraically

closed field F. We shall prove the lemma by using induction on n.
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For n = 1, G is already in simultaneous triangular form. So let us assume that for

any m such that 2 ≤ m < n any commutative set of m×m invertible matrices over

F can be put in simultaneous triangular form. Choose A1 ∈ G and let V = F n.

As A1 is invertible, det(A1) 6= 0. So, there exists a non-zero eigenvalue say c with

eigenvector α ∈ V = Fm. Now, for any B ∈ G, αBA1 = αA1B = cαB. Thus,

the set W = {α ∈ V |αA1 = cα} is invariant under right multiplication by elements

of G. Now, choose a basis of W say {v1, v2, · · · , vr} and extend it to a basis say

{v1, v2, · · · , vr, vr+1, · · · , vn} of V . With respect to this basis any matrix Ai ∈ G

is of form

[
Bi 0

∗ Ci

]
where Bi is a r × r matrix with r < n. Consider the sets

G1 = {Bi|Ai ∈ G} and G2 = {Ci|Ai ∈ G} of r × r and (n − r) × (n − r) matrices

respectively. Now, we shall prove that these two sets are commutative. For Ai, Aj ∈
G, we have AiAj = AjAi.

Therefore,

[
Bi 0

∗ Ci

][
Bj 0

∗ Cj

]
=

[
Bj 0

∗ Cj

][
Bi 0

∗ Ci

]
.

It clearly implies that

[
BiBj 0

∗ CiCj

]
=

[
BjBi 0

∗ CjCi

]
. ThusBiBj = BjBi and CiCj =

CjCi. Hence G1 and G2 are both simultaneously triangulizable. If conjugation

by M and N respectively triangulizes G1 and G2, then conjugation by

[
M 0

0 N

]
triangulizes G. Hence, G can be put in simultaneous triangular form. Hence the

proof is complete.

Theorem 3.24. (Lie Kolchin Theorem) Any solvable connected (in the Zariski

topology) multiplicative group of non singular matrices over an algebraically closed

field can be put in simultaneous triangular form.

Proof. Let G be a solvable multiplicative group of non singular matrices over an

algebraically closed field F . Also let G is connected in Zariski topology. First we

assume that G is reducible. We shall use induction on size of matrices in G. For a

faithful homomorphism ρ : G −→ GL(V ), the vector space V admits a non-trivial

invariant subspace say W . Now, choose a basis of W say {vi : i ∈ N, i ≤ r} . Then

extend it to a basis of V say {vi : i ∈ N, i ≤ n} . We now write A ∈ G in the chosen
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basis of V . As W is invariant under G, A has the form

(
B 0

∗ C

)
, where ∗ indicates

the unimportant matrix , B is a r × r matrix and C is a (n− r)× (n− r) matrix.

Now we consider the sets G1 = {B : A ∈ G} and G2 = {C : A ∈ G} and the maps

φ : G −→ G1 mapping A 7→ B and ψ : G −→ G2 mapping A 7→ C. Clearly, φ and

ψ are well defined maps. It is easy to check that G1 and G2 are groups. Now,for

A1 =

(
B1 0

E1 C1

)
and A2 =

(
B2 0

E2 C2

)
,we have, φ(A1A2) = B1B2 = φ(A1)φ(A2)

and ψ(A1A2) = C1C2 = ψ(A1)ψ(A2). Thus, φ and ψ are group homomorphisms.

Now,consider the r2 functions in n2 variables as sij = aij for 1 ≤ i, j ≤ r where A =

(aij). By lemma ??, φ is a continuous function. Similarly, for the choice, sij = aij

for r ≤ i, j ≤ n, ψ is a continuous map. Thus, G1 and G2 are connected solvable

matrix groups. Hence by induction hypothesis, G1 and G2 can be simultaneously

put in triangular form. If conjugation by M and N respectively triangularizes G1

and G2, then conjugation by

[
M 0

0 N

]
triangularizes G. Therefore we may assume

G to be a irreducible solvable multiplicative group of non singular matrices over

an algebraically closed field F . Also let G be connected in the Zariski topology.

We complete the proof by using the induction on the length of the derived series

say n. If n = 1 then G is abelian. Hence by Lemma ??, G can be put in

simultaneous triangular form. Now, let the hypothesis be true for groups whose

length of commutator series is less than n. Let length of commutator series of G

be n. Then the length of commutator series of G
′

is n− 1. And G
′

is a irreducible

solvable multiplicative group of non singular matrices over an algebraically closed

field F . Also by theorem ??, G
′

is connected in Zariski topology. Hence G
′

can be

put in simultaneous triangular form. Let V be a faithful representation of G. As G

is irreducible V does not have any non-trivial invariant subspace.

Consider W =
{
α ∈ V |αT = c(T )α ∀T ∈ G′

}
. Now, we shall prove W is non-empty

and invariant under the action of G. As G
′

can be put in simultaneous triangular

form, there exists α(6= 0) ∈ W .Now, for T ∈ G
′

and S ∈ G,STS−1 ∈ G
′
. For

α ∈ W , αSTS−1 = c(STS−1)α which implies αST = C(STS−1)αS i.e. αS ∈ W .
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Thus, W is invariant under G. As G is irreducible, W = V . Thus, all matrices in

G
′

are diagonal.

Now, we shall prove that G
′ ⊂ Centre(G). For T ∈ G′ , STS−1 ∈ G′ ∀S ∈ G.But

det(xI − T ) = det(S−1(xI − T )S) = det(xI − STS−1). Thus the set of eigenvalues

of T and the set of eigenvalues of STS−1 are same. And thus, any T ∈ G′ has only

finitely conjugates. Hence, by lemma ??,G
′ ⊂ Centre(G).

Now we shall prove that every matrix in G
′

is a scalar matrix. So let us assume that

there exists T ∈ G
′
which is not scalar. As T is invertible, det(T ) 6= 0. Thus

all eigenvalues of T are non-zero. Let c be an eigenvalue of T . Consider the

subspace W1 = {α ∈ V |αT = cα} of V . Now, as TS = ST ∀S ∈ G, we have

αST = αTS = cαS which implies αS ∈ W . Therefore, W is invariant under G.

Thus W = V . So, we have T = cI, which is a contradiction to the fact that T is

not scalar. Hence, all matrices in G
′

are scalar.

Now, for T ∈ G′ , det(T ) = 1 and T = cI. Thus, c is a nth root of unity. As, there

are only finitely many nth roots of unity, we get |G′ | <∞. As |G′ | ≥ 2 implies that

G
′

is disconnected, we have that G
′
= I. Thus G is a abelian group. And by lemma

??, G can be put in simultaneous triangular form. Hence, any irreducible solvable

connected (in the Zariski topology) multiplicative group of non singular matrices

over an algebraically closed field can be put in simultaneous triangular form.

Remark: The connectedness (in Zariski topology) can not be dropped from the

hypothesis of theorem ?? beacuse of the following example:

G =

{(
1 0

0 1

)
,

(
i 0

0 −i

)
,

(
−1 0

0 −1

)
,

(
0 i

i 0

)}
with discrete topology and usual

multiplication. G is a solvable matrix group over the field C.

Let A =

(
a b

c d

)
upper triangularises G. Thus,

(
a b

c d

)(
i 0

0 −i

)(
d −b
−c a

)
is

upper triangular. Therefore 2cd = 0. And

(
a b

c d

)(
0 i

i 0

)(
d −b
−c a

)
is upper

triangular implies that c2 = d2. Thus we get, c = d = 0 making A is non invertible.

Hence G can not be simultaneously triangularised.
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Corollary 3.25. Any solvable matrix group over an algebraically closed field has a

normal subgroup of finite index which admits simultaneous triangular form.

Proof. Let G be a solvable matrix group over an algebraically closed field F . Let

G0 be the component of the identity of G. Then clearly, G0 is a connected solv-

able matrix group which is of finite index in G. And by theorem ??, G0 admits

simultaneous triangular form.

Theorem 3.26. Let G be a subgroup of SL(2, F ), where F is an algebraically closed

field. Let G be closed in Zariski topology and the component of the identity of G be

solvable. Then exactly one of the following holds:

1. G can be put in simultaneous triangular form.

2. Case 1 does not hold and G is conjugate to a subgroup of

D† =

{(
c 0

0 c−1

)
: c ∈ C, c 6= 0

}
∪

{(
0 c

−c−1 0

)
: c ∈ C, c 6= 0

}
.

3. Cases 1 and 2 do not hold and G is finite.

4. G = SL(2, F ).

Proof. Let G 6= SL(2, F ) and let G0 be the component of the identity in G. By

theorem ??, G0 can be put in simultaneous triangular form. Now, we assume that

G0 can be put in simultaneous diagonal form. Without loss of generality we can

assume

G0 =

{(
a 0

0 a−1

)
: a ∈ X ⊂ F

}
for some set X. As G0 is closed in G, G0 satisfies a collection of polynomials in

a finite number of variables, say m. Since we can write G0 =

{(
a 0

0 a−1

)}
such

that a ∈ X (⊂ F ) satisfies a collection of polynomials, either G0 is finite or X = F .
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Let W be the set of characteristic vectors of G0 invariant under G where the action

is left multiplication. Clearly, v1 = (1, 0)t , v2 = (0, 1)t ∈ W and these the only

characteristic vectors in V = F 2. Also, W is invariant in G. So only two cases

are possible, either G.v1 = αv1 and G.v2 = βv2 or there exists g ∈ G such that

g.v1 = αv2 and g.v2 = βv1. A simple computation shows that if G.v1 = αv1 and

G.v2 = βv2 then G = G0 and if there exists g ∈ G such that g.v1 = αv2 and

g.v2 = βv1 then [G : G0] = 2 and G is a subgroup of D†.

Now, let G0 does not admit simultaneous diagonal form. But since G0 admits

simultaneous triangular form, G0 has exactly one characteristic vector say α. The

set W = {cα : α ∈ F} is invariant under G. On extending the set {α} to a basis of

V = F 2 we get G in simultaneous triangular form. This completes the proof.
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Chapter 4

The Three Cases

For the DE y′′ = ry, this chapter will give the conditions on r imposed by the galois

group of the DE. The main reference for this chapter is Kovacic [?].

Lemma 4.1. For a fundamental system of solutions η, ζ of the DE, if the field C(x)(η, η′, ζ, ζ ′)

is contained in a Liouvillian field then the component of the identity of the Galois

group of C(x)(η, η′, ζ, ζ ′) over C(x) is solvable.

A proof of above lemma can be found in Galois theory of linear differential

equations[?].

Theorem 4.2. Exactly one of the following cases about the solutions of the DE holds

in the respective cases of Theorem ?? :

Case 1. There is a solution e
∫
ω where ω ∈ C(x).

Case 2. There is a solution e
∫
ω with ω algebraic of degree 2 and case 1 does not hold.

Case 3. All solutions are algebraic over C(x), and both cases 1 and 2 do not hold.

Case 4. There are no Liouvillian solutions.

Proof. Let η, ζ be a fundamental system of solutions of the DE. Let G be the Galois

group relative to the fundamental system η, ζ.
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Case 1: By Case 1 of Theorem ??, G = Gal(F ) can be put in simultaneous triangular

form. So we can assume that G is upper triangular. Thus for σ ∈ G, we have

σ(η) = aση where aσ ∈ C. So for ω = η′

η
, we have σ(ω) = ω, ∀σ ∈ G. Hence,

ω ∈ C(x). And by a simple computation one can see that e
∫
ω is a solution of

the DE.

Case 2: By Case 2 of Theorem ??, G = Gal(F ) is conjugate to a subgroup of D† and

Case 1 does not hold. So, we can assume that G is a subgroup of D†. Thus for

σ ∈ G either σ(η) = aση and σ(ζ) = a−1
σ ζ or σ(η) = −a−1

σ ζ and σ(ζ) = aση

where aσ ∈ C. Hence for ω =
η′

η
and φ =

ζ ′

ζ
we have, either σ(ω) = φ and

σ(φ) = ω or σ(ω) = ω and σ(φ) = φ.

If ∀σ ∈ G, we have σ(ω) = ω and σ(φ) = φ then G is diagonal and hence

triangular. This contradicts the fact that Case 1 does not hold. So, there

exists σ ∈ G such that σ(ω) = φ and σ(φ) = ω. Thus ωφ and ω + φ are kept

invariant by G. Hence, ω is quadratic over C(x). Now, a easy check that e
∫
ω

is a solution of the DE , completes the proof of this case.

Case 3: By Case 3 of Theorem ??, G = Gal(F ) is a finite group and cases 1 and 2

do not hold. Let G = {σ1, σ2, · · · σn}. One can easily check that elementary

symmetric functions of σ1η, σ2η, · · · , σnη are invariant under G. Hence η is

algebraic over C. Similarly, ζ is algebraic over C(x). Also as, η and ζ are

linearly independent. Every solution of the DE is algebraic.

Case 4: By Case 4 of Theorem ??, G = Gal(F ) = SL(2,C). Let one solution of the DE

is Liovillian then by lemma ??, every solution of the DE is Liouvillian. Hence,

C(x)(η, η′, ζ, ζ ′) is contained in a Liouvillian field and thus the component of

the identity of the Galois group of C(x)(η, η′, ζ, ζ ′) over C(x) is solvable. But

the component of the identity of the SL(2,C) is SL(2,C) which is not solvable.

Hence the contradiction proves the statement for Case 4.

Definition 4.3. Since r ∈ C(x), the zeros of the denominator of r in C are called the

poles of r. Order of r at ∞ is defined as the order of ∞ as a zero of r.

26



Theorem 4.4. The following conditions are necessary for the respective cases of

theorem ?? :

Case 1. Every pole of r must have even order or else have order 1. The order of r at

∞ must be even or else be greater than 2.

Case2. r must have at least one pole that either has odd order greater than 2 or else

has order 2.

Case 3. The order of a pole of r cannot exceed 2 and the order of r at ∞ must be at

least 2. If the partial fraction expansion of r is

r =
∑
i

αi
(x− ci)2

+
∑
j

βj
x− dj

,

then
√

1 + 4αi ∈ Q, for each i,
∑

j βj = 0, and if γ =
∑

i αi +
∑

j βjdj, then
√

1 + 4γ ∈ Q.

Proof.

By Case 1 of theorem ??, we know that there is a solution e
∫
ω of the DE where

ω ∈ C(x). Thus ω satisfies the equation ω′ + ω2 = r. This equation is famous

by the name of ”Ricatti equation”. As ω, r ∈ C(x),they have a Lorentz series

expansion around any c ∈ C. To simplify the notation we take c = 0. Let

Case 1: ω = bxµ + · · · ; b 6= 0, µ ∈ Z
r = αxν + · · · ;α 6= 0, ν ∈ Z

(where dots represent the terms having higher degree terms.) On substituting

the Lorentz series expansion of r and ω in Ricatti equation we get, min(µ −
1, 2µ) = ν. We only need to prove that if ν < −3 then ν is even. But, if

ν < −3 then clearly min(µ− 1, 2µ) = 2µ. And thus ν = 2µ.

Now we consider the Lorentz series expansion of r and ω around ∞. Let

ω = bxµ + · · · ; b 6= 0, µ ∈ Z
r = αxν + · · · ;α 6= 0, ν ∈ Z
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(where dots represent the terms having lower degree terms.) On substituting

the Lorentz series expansion of r and ω in Ricatti equation we get, max(µ −
1, 2µ) = ν. We only need to prove that if ν ≥ −1 then ν is even. But, if

ν ≥ −1 then clearly max(µ− 1, 2µ) = 2µ. And thus ν = 2µ. This completes

the proof for Case 1.

Case 2: Let η, ζ be a fundamental system of solutions of the DE. Let G be the Galois

group relative to the fundamental system η, ζ. By Case 2 of theorem ?? G is

conjugate to a subgroup of

D† =

{(
c 0

0 c−1

)
: c ∈ C, c 6= 0

}
∪

{(
0 c

−c−1 0

)
: c ∈ C, c 6= 0

}
.

which is not triangulizable.

So for any σ ∈ G, σ(η) = aση and σ(ζ) = a−1
σ ζ or σ(η) = −a−1

σ ζ and σ(ζ) =

aση where aσ ∈ C. Also ∀σ ∈ G,if we have σ(η) = aση and σ(ζ) = a−1
σ ζ

then G is diagonal which is not possible. So, there existsσ ∈ G such that

σ(η) = −a−1
σ ζ and σ(ζ) = aση. Thus, ∀σ(η2ζ2) = η2ζ2 and σ(ηζ) 6= ηζ.

Hence, η2ζ2 ∈ C(x) and ηζ /∈ C(x). Thus without loss of generality we can

write,

η2ζ2 = xe
∏
i

(x− ci)ei where ci ∈ C and e, ei ∈ Z.

We define, θ = (η2ζ2)′

2η2ζ2
. By some calculation we get, θ = 1

2
ex−1 + · · · (where the

dots represent the terms having non negative exponent of x). Also by some

calculations one can prove the following relation:

θ′′ + 3θ′θ + θ3 = 4rθ + 2r′

Since r ∈ C(x), we can write r = αxν + · · · where α 6= 0, ν ∈ Z. We substitute

the Lorentz series expansion of r at 0 in the above relation. If ν > −2 we get,

e− 6
8
e2 + 1

8
e3 = 0 i.e. e = 0 or 2 or 4 which is a contradiction to the fact that

e is odd. If ν ≤ −2 then, e + ν = 0 which implies ν is odd. This completes
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the proof of Case 2.

Case 3: By Case 3 of theorem ??, every solution of the DE is algebraic over C(x). Let

η be a solution of the DE. Thus, η is algebraic over C. Since the algebraic

closure of field of Lorentz series over C is the field of Puiseaux series over C, η

has a Puiseaux series expansion around any point in C ∪ {∞}. We can write

Puiseaux series of η around 0 ( say η = axµ + · · · with µ ∈ Q), and Lorentz

series of r around 0 ( say r = αxν + · · · with ν ∈ Z.) Now, from the differential

equation y′′ = ry we have

µ(µ− 1)axµ−2 + · · · = αaxν+µ + · · · .

Thus ν ≥ −2, i.e. r has no pole of order greater than 2 . If ν = −2 then the

terms shown must cancel so µ(µ− 1) = α, which implies that
√

1 + 4αi ∈ Q.

We can also write Puiseaux series of η around ∞ ( say η = axµ + · · · with

µ ∈ Q), and Lorentz series of r around ∞ ( say r = αxν + · · · with ν ∈ Z.)

Now, from the DE y′′ = ry we have

µ(µ− 1)axµ−2 + · · · = αaxν+µ + · · · .

Thus ν ≤ −2, i.e. r has the form

r =
∑
i

αi
(x− ci)2

+
∑
j

βj
x− dj

r = (
∑
j

βj)x
−1 + γx−2 + · · · with γ =

∑
i

αi +
∑
j

βjdj

Using the DE,we get
∑

j βj = 0 and µ(µ− 1) = γ. Thus,
√

1 + 4γ ∈ Q. This

completes the proof of the theorem.

Examples:
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1. Airey’s equation

y′′ = xy

has no Liouvillian solution. This happens because necessary conditions fail for

cases 1,2 and 3.

2. In Bessel’s equation

y′′ =
4(n2 − x2)− 1

4x2
y where n ∈ C

only cases 1, 2 and 4 are possible.
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Chapter 5

Algorithm

This chapter shall explain the algorithm given by Kovacic[?] for solving second

order linear homogeneous differential equations of type y′′ = ry.

Algorithm for case 1:

Our aim is to find a solution of the differential equation which is of the form

η = Pe
∫
ω, where P ∈ C[x] and ω ∈ C(x). We first find out candidates for the partial

fraction expansion of ω (using the poles of r). Then we search for P satisfying a

known equation.

Let Γ be the set of poles of r.

Step 1. For each c ∈ Γ ∪ {∞} we define [
√
r]c ∈ C[x] and α+

c , α−c ∈ C depending on

the order of pole of r at c as:

(c1) If c ∈ Γ is a pole of r of order 1, then we define

[
√
r]c = 0, α+

c = α−c = 1.

(c2) If c ∈ Γ is a pole of r of order 2 , then we define

[
√
r]c = 0; α±c = 1

2
± 1

2

√
1 + 4b.

where b is the coefficient of 1/(x− c)2 in the partial fraction expansion of r.
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(c3) If c ∈ Γ is a pole of r of order 2ν ≥ 4 , then

[
√
r]c =

a

(x− c)ν
+ · · ·+ d

(x− c)2

is a part of the Laurent series expansion of
√
r at c. One can choose any sign of

[
√
r]c as this doesn’t affect our results. We define,

α±c =
1

2

(
± b
a

+ ν

)
.

where b is the coefficient of 1
(x−c)ν+1 in r − [

√
r]2c .

(∞1) If the order of r at ∞ is > 2, then we define

[
√
r]∞ = 0, α+

∞ = 0, α−∞ = 1.

(∞2) If the order of r at ∞ is 2, then we define,

[
√
r]∞ = 0

We define,

α±∞ = 1
2
± 1

2

√
1 + 4b.

where b is the coefficient of 1/x2 in the Laurent series expansion of r at ∞.

(∞3) If the order of r at ∞ is −2ν ≤ 0, then

[
√
r]∞ = axν + · · ·+ d

is a part of the Laurent series expansion of
√
r at ∞. One can choose any sign of

[
√
r]c as this doesn’t affect our results. Then

α±∞ =
1

2

(
± b
a
− ν
)
.

where b is the coefficient of xν−1 in r − [
√
r]2∞.
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Remark: In both (c3) and (∞3) the required terms can be found by using unde-

termined coefficients.

Step 2. For each family s = (s(c), s(∞)) (c ∈ Γ), where s(c) and s(∞) are either +

or −, let

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)c .

If d is a non-negative integer, then

ω =
∑
c∈Γ

(
s(c)[
√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

is a candidate for ω. If d is not a non-negative integer, then the family s has to be

discarded.

Step 3. For each family from step 2 which hasn’t been discarded, we search for a

monic polynomial P of degree d with

P ′′ + 2ωP ′ + (ω′ + ω2 − r)P = 0.

If such polynomial is found then Pe
∫
ω is a solution of the DE. If not, then Case

1 cannot hold.

Algorithm for case 2

Let Γ be the set of poles of r.

Step 1. For each c ∈ Γ ∪ {∞} we define Ec as:

(c1) If c ∈ Γ is a pole of r of order 1, then

Ec = {4}.

(c2) If c ∈ Γ is a pole of r of order 2, and if b is the coefficient of 1/(x − c)2 in the

partial fraction expansion of r, then

Ec = {2 + k
√

1 + 4b} ∩ Z, k = 0,±2.
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(c3) If c ∈ Γ is a pole of r of order ν > 2, then

Ec = {ν}.

(∞1) If r has order > 2 at ∞, then

Ec = {0, 2, 4}.

(∞2) If r has order 2 at ∞, and b is the coefficient of x−2 in the Laurent series

expansion of r at ∞, then

E∞ = {2 + k
√

1 + 4b} ∩ Z, k = 0,±2.

(∞3) If r has order ν < 2 at ∞, then

Ec = {ν}.

Step 2. Consider the families s = (e(c), e(∞)) (c ∈ Γ), where e(c) ∈ Ec, and at least

one of the coordinates is odd. Let

d =
1

2

(
e∞ −

∑
c∈Γ

ec

)
.

If d is a non-negative integer, retain the family otherwise discard it.

Step 3. For each family retained from step 2 form the rational function

θ = 1
2

∑
c∈Γ

ec
x− c

,

and search for a monic polynomial P of degree d such that

P ′′′ + 3θP ′′ + (3θ2 + 3θ′ − 4r)P ′ + (θ′′ + 3θθ′ + θ3 − 4rθ − 2r′)P = 0.

If such a polynomial is found then define φ = θ + P ′/P and let ω be a solution
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of

ω2 + φω + (1
2
φ′ + 1

2
φ2 − r) = 0.

Then η = e
∫
ω is a solution of the differential equation.

If no such polynomial exists, then case 2 cannot hold.

Algorithm for case 3:

We first apply algorithm for n = 4. If no solution is found then we apply for n = 6.

If no solution is found for n = 4, 6 then we apply this algorithm for n = 12. Here n is

the degree of minimal polynomial of ω over C where ω satisfies the Ricatti equation.

Let Γ be the set of poles of r.

(c1) If c ∈ Γ is a pole of r of order 1, then

Ec = {12}.

(c2) If c ∈ Γ is a pole of r of order 2, and if b is the coefficient of 1/(x − c)2 in the

partial fraction expansion of r, then

Ec = {6 +
12k

n

√
1 + 4b} ∩ Z, k = 0,±1,±2, · · · ,±n

2
.

(∞) If the Laurent series for r at ∞ is r = bx−2 + · · · , where b may be 0, then

E∞ = {6 +
12k

n

√
1 + 4b} ∩ Z, k = 0,±1,±2, · · · ,±n

2
.

Step 2. Consider families s = (e(c), e(∞)) (c ∈ Γ), where e(c) ∈ Ec. Let

d =
n

12

(
e∞ −

∑
c∈Γ

ec

)
.

If d is a non-negative integer, retain the family otherwise discard it.

Step 3. For each family retained from step 2 form the rational function

θ =
n

12

(∑
c∈Γ

ec
x− c

)
,
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and the polynomial

S =
∏
c∈Γ

(x− c).

Now search for a monic polynomial P of degree d which satisfies a certain

differential equation that we write recursively as

Pn = −P
Pi−1 = −SP ′i + ((n− i)S ′ − Sθ)Pi − (n− i)(i+ 1)S2rPi+1

P−1 = 0

We use the second formula to compute Pn−1, Pn−2 · · ·P−1 and compare the result

with last equation.

If such a monic polynomial is found then for a solution ω of

n∑
i=0

SiP

(n− i)!
ωi = 0.

we get η = e
∫
ω as a solution of the differential equation.

If no such monic polynomial exists, then case 3 cannot hold.
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Chapter 6

Examples

Here we consider some differential equations and try to solve them using the

algorithm mentioned in the previous chapter. For a differential equation of type

y′′ + ay′ + by = 0, we first reduce it using lemma ??. Then we apply the algorithm

from the previous chapter. Consider the linear differential equation y′′ = ry where

r =
4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4

4x4

= x2 − 2x+ 3 +
1

x
+

7

4x2
− 5

x3
+

1

x4
.

The only pole of r is at 0 of order 4. By theorem ??, cases 2 and 3 are not

possible so we only need to apply the algorithm of case 1. Thus by using (c3) we

have

[
√
r]0 =

1

x2
.

Also b = −5 and therefore

α+
0 = −3/2 α−0 = 7/2.
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Thus only four families need to be considered in step 2.

s(0) = +, s(∞) = +, d = 1
2
− (−3

2
) = 2

s(0) = +, s(∞) = −, d = −3
2
− (−3

2
) = 0

s(0) = −, s(∞) = +, d = 1
2
− 7

2
= −3

s(0) = −, s(∞) = −, d = −3
2
− 7

2
= −5

In step 2 we consider the first two of these only and get:

d = 2, ω = +[
√
r]0 +

α+
0

x
+ [
√
r]∞ =

1

x2
− 3

2x
+ x− 1

d = 0, ω = +[
√
r]0 +

α+
0

x
− [
√
r]∞ =

1

x2
− 3

2x
− x+ 1.

Now, we first search for a monic polynomial P of degree 2 satisfying

P ′′ + 2ωP ′ + (ω′ + ω2 − r)P = 0.

After some calculation, we get

P = x2 − 1,

so

η = Pe
∫
ω = (x2 − 1)e

∫
(1/x2−3/(2x)+x−1)

= x−3/2(x2 − 1)e−1/x+x2/2−x.

6.1 Airey’s and Webers’s equations

Airey’s equation is y′′ = xy. Since there are no poles (Γ = ∅), and the order at ∞
is −1, by theorem ??, cases 1 ,2 and 3 are not possible. So this equation has no

Liouvillian solution. Thus by theorem ??, we obtain that the Galois group of this

DE is SL (2,C).
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More generally, we consider the case where r is a polynomial of degree two:

y′′ =
(
(Ax+B)2 + C

)
y.

There are no poles and the order at ∞ is −2, clearly cases 2 and 3 of theorem ??

are not possible. Hence we need to follow the algorithm for case 1. We find that

[
√
r]∞ = Ax+B

α±∞ = 1
2

(±(C/A)− 1)

d = α+
∞ or α−∞.

If C/A is not an odd integer then d cannot be an integer so case 1 cannot hold.

So this linear differential equation has no Liouvillian solutions. If C/A is an odd

integer then one can complete steps 2 and 3 and find a solution. So by theorem ??,

we obtain that the Galois group of this DE can be put in simultaneous triangular

form if C/A is an odd integer and is SL (2,C) if C/A is not an odd integer.

A special case of this is Weber’s equation

y′′ = (1
4
x2 − 1

2
− n)y, n ∈ C.

Here A = −1/2, B = 0, C = −1/2− n. Thus C/A = 2n+ 1 is an odd integer if and

only if n is an integer. Hence, Weber’s equation has Liouvillian solutions iff n is an

integer.

6.2 Bessel’s equation

Consider the Bessel’s equation

y′′ =

(
4n2 − 1

4x2
− 1

)
y
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where n ∈ C. The only pole is at c = 0 of order 2. Clearly, case 3 of theorem ?? can

not hold. So we need to apply algorithm for cases 1 and 2. First we apply algorithm

for case 1. Thus

[
√
r]0 = 0, b =

4n2 − 1

4
, α±0 = 1

2
± 1

2

√
1 + 4b = 1

2
± n.

At ∞ the order is 0 and [
√
r]∞ = i(=

√
−1). Also b = 0 and α±∞ = 0.

There are four families to consider.

s(0) = +, s(∞) = +, d = 1
2
− n

s(0) = +, s(∞) = −, d = −3
2
− n

s(0) = −, s(∞) = +, d = 1
2
− n

s(0) = −, s(∞) = −, d = −3
2
− n

If n is not half an odd integer then d cannot be a non-negative integer and case 1

cannot hold.

If n is half an odd integer then case 1 of the algorithm can be carried out and

one can find a Liouvillian solution which comes out to be

η =

(
m∑
j=0

1

(−2i)m−j
(2m− j)!
j!(m− j)!

xj

)
e
∫
−m
x

+i.

Now, as Case 2 is also possible we apply the algorithm for Case 2 when n is not

half an odd integer. As order of pole of r at 0 is 2, we get

E0 = {2, 2 + 4n, 2− 4n}

If 4n /∈ Z then we only need to consider

e0 = 2 e∞ = 0 d = −1 /∈ N ∪ {0}

Thus here Case 2 can not hold.
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If 4n ∈ Z, then we need to consider

e0 = 2 + 4n e∞ = 0 d = −1− 2n

e0 = 2− 4n e∞ = 0 d = −1 + 2n

If d ∈ N ∪ {0}, then n is half an integer. Hence n has to be half an even integer.

Thus n ∈ Z which implies that e0 and e∞ are even. Thus Case 2 can not happen.

Thus by theorem ??, we obtain that the Galois group of this DE can be put in

simultaneous triangular form when n is half an odd integer and is SL (@,C) when

n is not half an odd integer.

6.3 Example for Case 2

Consider the differential equation y′′ = ry where r =
1

x
− 3

16x2
. Clearly, Cases 1

and 3 of theorem ?? do not hold. Thus we only need to apply the algorithm for

Case 2.

As order of pole of r at 0 is 2, we get E0 = {1, 2, 3} As order of r at ∞ is 1, we get

E∞ = {1} We only need to consider the cases,

e0 = 1 e∞ = 1 d = 0 ∈ N ∪ {0}

e0 = 2 e∞ = 1 d = −1

2
/∈ N ∪ {0}

e0 = 3 e∞ = 1 d = −1 /∈ N ∪ {0}

Thus we only need to consider the first case here. Thus we get

θ =
1

2x

By the algorithm we need to find a monic polynomial P of degree 0 satisfying the

equation for Case 2. Clearly, P = 1 satisfies iff

θ′′ + 3θθ′ + θ3 − 4rθ − 2r′ = 0
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Thus φ = θ =
1

2x
. And hence ω =

1

4x
± 1√

x
. As a result, we have η = e

∫
ω as

solutions of the differential equation. By theorem ??, we obtain that the Galois

group of this DE can not be put in triangular form and is conjugate to a subgroup

of

D† =

{(
c 0

0 c−1

)
: c ∈ C, c 6= 0

}
∪

{(
0 c

−c−1 0

)
: c ∈ C, c 6= 0

}
.

6.4 Example for Case 3

Consider the differential equation y′′ = ry where r = − 3

16x2
− 2

9 (x− 1)2 +
3

16x (x− 1)
.

All cases of theorem ?? are possible. So we consider Case 1 and get

α+
0 =

3

4
α−0 =

1

4

α+
1 =

2

3
α−1 =

1

3

α+
∞ =

2

3
α−∞ =

1

3

and d = α±∞ − α±0 − α±1 can never be a non-negative integer. Thus Case 1 fails.

By applying the algorithm for Case 2, we get

E0 = {2, 3, 1} E1 = {2} E∞ = {2}

In this case too, d = e∞− e0− e1 can never be a non-negative integer. Thus Case 2

fails.

Now we apply the algorithm for Case 3. We get,

E0 = {3, 4, 5, 6, 7, 8, 9} E1 = {4, 5, 6, 7, 8}
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Now we go to step 2 and calculate d using the relation d = e∞ − e0 − e1. Only the

following possibilities remain

e∞ = 7 e0 = 3 e1 = 4 d = 0

e∞ = 8 e0 = 3 e1 = 4 d = 1

e∞ = 8 e0 = 3 e1 = 5 d = 0

e∞ = 8 e0 = 4 e1 = 4 d = 0

Now we consider the first possibility, and get,

θ =
3

x
+

4

x− 1
S = x2 − x

Now we need to check whether P = 1 satisfies (#)12. One can easily write a

SAGE program to compute Pi where i = 12, 11, · · · − 1. And in the end one shall

get P−1 = 0. Therefore η = e
∫
ω is a solution of the differential equation where

ω satisfies
∑12

i=0

(x2 − x)
i
Pi

(12− i)!
. By using some program to factorize a polynomial we

obtain that
∑12

i=0

(x2 − x)
i
Pi

(12− i)!
is the cube of a polynomial. So by some results (which

shall be proven later in Chapter 7), we obtain that the Galois group of this DE is

the tetrahedral group.
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Chapter 7

Proofs

This chapter contains the proof of correctness of the algorithm given by Kovacic

[?]. We complete the proof case-wise in different sections of this chapter.

7.1 Case 1

By theorem ??, the differential equation has a solution η = e
∫
θ where θ ∈ C(x).

Since η satisfies y′′ = ry, θ satisfies the Ricatti equation,

θ′ + θ2 = r

For c ∈ C, we write

θ = [θ]c +
α

x− c
+ θ̄c

where [θ]c is the component of partial fraction expansion of θ at c and θ̄c ∈ C [x].

For simplicity of notation, we assume c = 0 and drop the subscript 0. Thus,

θ = [θ] +
α

x
+ θ̄

We assume that necessary conditions for case 1 in theorem ?? hold. Now we shall

prove that the algorithm for the case 1 is correct using the same steps as in the
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algorithm. Our aim is to find out α and [θ].

(c1) Let the order of pole of r at 0 be 1. Therefore we can write,

r =
∗
x

+ · · · .

On substituting in the Ricatti equation we get,

− νaν
xν+1

+ · · ·+ a2
ν

x2ν
+ · · · = ∗

x
+ · · · .

If ν > 1,then 2ν > ν + 1 and since a2
ν 6= 0, we get a contradiction to the above

equality. Thus, ν ≤ 1. Hence [θ] = 0. Now,we substitute θ =
α

x
+ θ̄ in the Ricatti

equation and get,

− α
x2

+ θ̄′ +
α2

x2
+

2αθ̄

x
+ θ̄2 =

∗
x

+ · · · .

It clearly implies, α2−α = 0. If α = 0 then 0 is not a pole of left hand side of above

equation and a pole of r, which is not possible. So, α = 1. Hence,we get

θ =
1

x
+ θ̄.

(c2) Let the order of pole of r at 0 be 2.Therefore we can write,

r =
b

x2
+
∗
x

+ · · · .

One can follow the similar reasoning as in (c1) and get θ̄ = 0 and α2 − α = b. Thus

we get,

θ =
αs(0)

x
+ θ̄ where α± =

1

2
± 1

2

√
1 + 4b and s(0) = + or − .

(c3) Let the order of pole of r at 0 be 2µ ≥ 4. In the proof of Case 1 of theorem ??,

we proved µ = ν. Then,

[
√
r] =

a

(x)ν
+ · · ·+ ∗

(x)2
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is a part of the Laurent series expansion of
√
r at 0. Let r̄ =

√
r − [

√
r]. Using

r = 2r̄[
√
r] + r̄2 + [

√
r]2, Ricatti equation and θ = [θ] +

α

x
+ θ̄ we get,

(
[θ]− [

√
r]
) (

[θ] + [
√
r]
)

= −[θ]′ +
α

x2
− θ̄′ − 2α

x
[θ]− 2θ̄[θ]− α2

x2
− 2α

x
θ̄ − θ̄2

+2r̄[
√
r] + r̄2

Clearly, the coefficients of
1

xi
for i = ν + 2, ν + 3 · · · , 2ν are zero on the right hand

side. Also, since at-least one of the factors of left hand side involves
1

xν
, if the

other factor were non-zero then there exists a highest i < ν such that the coefficient

of
1

xi
is non-zero in the other factor which implies that the coefficient of

1

xν+i
in

the product is non-zero which is not possible, so left hand side must be 0. Hence,

[θ] = ±[
√
r].

Let b be the coefficient of
1

xν+1
in r − [

√
r]2. Now, the coefficient of

1

xν+1
on

the right hand side of the main equation in this case is ±νa ∓ 2αa + b. Hence

α± =
1

2

(
± b
a

+ ν

)
. (c4) If the order of pole of r at 0 is 0 then by (c1), we have

[θ] = 0 and −α+ α2 = 0. Thus, the component of partial fraction expansion of r is

either 0 or
1

x
.

Until now we have proven,

θ =
∑
c∈Γ

(
s (c) [

√
r]c +

α
s(c)
c

x− c

)
+

d∑
i=1

1

x− di
+R

where s (c) = + or − and R ∈ C [x].

Now we consider the Laurent series at ∞. Let

θ = R +
α∞
x

+ · · ·

(∞1) Let the order of r at ∞ be ν > 2. By Ricatti equation, we get R = 0 and

α∞ = 0 or 1.
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(∞2) Let the order of r at ∞ be 2. Therefore we can write,

r =
b

x2
+
∗
x3

+ · · · .

One can follow the similar reasoning as in (c1) and get R = 0 and α2
∞ − α∞ = b.

(∞3) Let the order of r at ∞ be −2ν < 2. By using the similar arguments as in

(c3) we get, R = ±[
√
r]∞ and α±∞ =

1

2

(
± b
a
− ν
)

where a is the leading coefficient

of [
√
r]∞ and b is the coefficient of

1

xν−1
in r − [

√
r]2∞.

Now we know,

θ =
∑
c∈Γ

(
s (c) [

√
r]c +

α
s(c)
c

x− c

)
+

d∑
i=1

1

x− di
+ s (∞) [

√
r]∞

Now, the coefficient of
1

x
in Laurent series expansion of θ around ∞ is α

s(∞)
∞ . Thus,

α
s(∞)
∞ = d+

∑
c∈Γ α

s(c)
c . As d ∈ N ∪ 0, we have α

s(∞)
∞ −

∑
c∈Γ α

s(c)
c ∈ N ∪ 0.

Now, let ω =
∑

c∈Γ

(
s (c) [

√
r]c +

α
s(c)
c

x− c

)
+s (∞) [

√
r]∞ and P =

∏d
i=1 (x− di).Thus,

θ = ω +
P ′

P
. As θ satisfies Ricatti equation we get,

P ′′ + 2ωP ′ +
(
ω′ + ω2 − r

)
P

Now one can easily verify that if P is a solution of above equation then θ satisfies

the Ricatti equation and η = e
∫
θ satisfies the differential equation.

7.2 Case 2

Let G ⊂ D† be the differential Galois group of the differential equation and η, ζ be

a fundamental system of solutions of corresponding to G. As proven in theorem ??
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η2ζ2 ∈ C(x) and ηζ /∈ C(x). Let Γ be the set of poles of r. We can write,

η2ζ2 = g
∏
c∈Γ

(x− c)ec
m∏
i=1

(x− di)fi

where ei, fi ∈ Z, g ∈ C. Now, let Φ =
(ηζ)′

ηζ
=

1

2

(η2ζ2)
′

η2ζ2
=

1

2

∑
c∈Γ

ec
x− c

+

1

2

∑m
i=1

fi
x− di

. Since, Φ =
η′

η
+
ζ ′

ζ
and η, ζ are solutions of the differential equation

one can easily prove,

Φ′′ + 3ΦΦ′ + Φ3 = 4rΦ + 2r′ (7.1)

For simplification of notation, we shall assume c = 0.

(c1) Let order of r at 0 be 1. Also let the Laurent series expansion of r and Φ around

0 be as follows,

r = αx−1 + · · · (α 6= 0)

Φ =
1

2
ex−1 + f + · · · (e ∈ Z, f ∈ C)

On substuting in ?? and comparing coefficients of x−3 and x−2 on both sides we get,

e− 3

4
e2 +

1

8
e3 = 0 and −3

2
ef +

3

4
e2f = 2αe− α. On using the fact that α 6= 0, we

get e = 4.

(c2) Let the order of pole of r at 0 be 2. Also let the Laurent series expansion of r

and Φ around 0 be as follows,

r = bx−2 + · · · (b 6= 0)

Φ =
1

2
ex−1 + f + · · · (e ∈ Z, f ∈ C)

On substuting in ?? and comparing coefficients of x−3 on both sides we get,

e− 3

4
e2 +

1

8
e3 = 2eb− 4b
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Thus e = 2, 2± 2
√

1 + 4b and also since e ∈ Z, any non-integral value of e must be

discarded.

(c3) Let the order of pole of r at 0 be ν > 2. Also let the Laurent series expansion

of r and Φ around 0 be as follows,

r = x−ν + · · · (b 6= 0)

Φ =
1

2
ex−1 + f + · · · (e ∈ Z, f ∈ C)

On substuting in ?? and comparing coefficients of x−ν−1 on both sides we

get,2αe− 2αν = 0. Hence e = ν.

Now to determine fi we use the same calculation as in (c1) (replacing α by 0 as

di is not a pole of r) and get fi = 0, 2 or 4. Thus we can write,

η2 =
∏
c∈Γ

(x− c)ec P 2

where ec ∈ Ec and P ∈ C [x]. Now we set θ =
1

2

∑
c∈Γ

ec
x− c

. Thus Φ = θ +
P ′

P
.

Now, we need to find degree d of P . Let the Laurent series expansion of Φ around

∞ be,

Φ =
1

2
e∞x

−1 + f + · · · (e ∈ Z, f ∈ C)

By using ??, we get, e∞ =
∑

c∈Γ ec + 2d.

(∞1) Let order of r at ∞ be 1. By the same steps as in (c1) we get, e∞ = 0, 2 or 4.

(∞2) Let order of r at ∞ be 2. Also let the Laurent series expansion of r around

∞ be as follows,

r = bx−2 +
∗
x−3
· · · (b 6= 0)

By the same steps as in (c2) we get, e∞ = 2, 2 ± 2
√

1 + 4b. and also since e∞ ∈ Z,

any non-integral value of e∞ must be discarded. (∞3) Let order of r at∞ be ν < 2.

As in (c3), we get, e∞ = ν.

Also since ηζ /∈ C(x), at-least one of the ec must be odd.
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By using ?? and Φ = θ +
P ′

P
we get,

P ′′′ + 3θP ′′ + (3θ2 + 3θ′ − 4r)P ′ + (θ′′ + 3θθ′ + θ3 − 4rθ − 2r′)P = 0.

As above equation is linear homogeneous, it has a monic polynomial solution if and

only if it has a polynomial solution. Now, suppose ω is a root of

ω2 + φω + (1
2
φ′ + 1

2
φ2 − r) = 0. (7.2)

Then we only need to prove η = e
∫
ω is a solution of the differential equation.

On differentiating ??, we get,

(2ω − Φ)ω′ = Φ′ω − 1

2
Φ′′ − ΦΦ′ + r′

If 2ω − Φ = 0 then ω′ + ω2 − r = 0 (from ??). Thus η = e
∫
ω is a solution of the

differential equation where ω =
Φ

2
∈ C(x) which clearly happens in Case 1. Thus,

2ω − Φ 6= 0.

By using ?? and ?? we get,

2 (2ω − Φ)
(
ω′ + ω2 − r

)
= −Φ′′ − 3ΦΦ′ − Φ3 + 4rΦ + 2r′ = 0

Thus, ω′ + ω2 − r = 0 and hence, η = e
∫
ω is a solution of the differential equation.

this completes the proof of correctness of algorithm for Case 2.

7.3 Case 3

7.3.1 Finite subgroups of SL (2, C)

Theorem 7.1. For any finite subgroup G of SL2(C),either

1. G is conjugate to a subgroup of D† = D ∪

[
0 1

−1 0

]
D where D is the group

of all diagonal matrices in SL2(C), or

51



2. G has order 24 (the “tetrahedral” case), or

3. G has order 48 (the “octahedral” case), or

4. G has order 120 (the “icosahedral” case).

Proof. Let case 1 does not happen. Let H be the set of all scalar matrices in G.

Thus |H| = 1 or 2. Choose x ∈ G\H. We denote the centralizer of x in G by

Z(x) and normalizer of Z(x) in G by N(x). Since order of x is finite, x has to

be diagonalisable. Also a simple computation shows that any non-scalar diagonal

matrix in SL2(C) has D as its centralizer in SL2(C). Thus Z(x) = G ∩ g−1Dg for

some g ∈ SL2(C). Let y ∈ G be such that y = h−1dh for some d ∈ D. Then

y ∈ Z(x) implies that Z(y) = G ∩ h−1Dh. Thus, Z(x) = Z(y) iff y ∈ Z(x).

Also,Z(g−1xg) = g−1Z(x)g.

For x, y, g, h ∈ G either Z(g−1xg) ∩ Z(h−1yh) = H or Z(g−1xg) = Z(h−1yh).

(Hint:Let x′ = g−1xg and y′ = h−1yh.

Clearly, Z(x′) ∩ Z(y′) ⊃ H. Let a ∈ Z(x′) ∩ Z(y′)) −H. On computation, we get

x′y′ = y′x′ i.e. y′ ∈ Z(x′). Thus Z(x′) = Z(y′).) From above fact,in the latter case

we get y ∈ Z(hg−1xgh−1). Also, Z(g−1xg) = Z(h−1yh) iff gN(x) = hN(x). Also

for k ∈ G−H, the order of k has to be greater than 2. Thus for y ∈ G there exists

xi ∈ G−H and g ∈ G such that y ∈ g−1Z(xi)g. Hence we can break G as

G = H ∪

 s⋃
i=1

⋃
gN(xj)∈ G

N(xj)

(gZ(xi)g
−1 −H)


where s ∈ N and x1, x2, · · · , xs ∈ G−H.

A simple computation shows that the only matrices in SL2(C) which conjugate

a diagonal matrix to a diagonal matrix are the elements of D†. Thus N(xi) =

G ∩ g−1D†g for some g ∈ SL2(C) Also, [N(xi) : Z(xi)] = 1 or 2.

Let M = [G : H] and ei = [Z(xi) : H]. By the representation of G as a disjoint

union, we get

M |H| = |H|+
s∑
i=1

[G : N(xi)] (ei|H| − |H|)
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M = 1 +
s∑
i=1

M

[N(xi) : Z(xi)] ei
(ei − 1)

1

M
= 1 +

s∑
i=1

1

[N(xi) : Z(xi)]

(
1

ei
− 1

)
Clearly s 6= 0 since G 6= H. Since xi ∈ G − H, we have order(x)¿2 which in turn

implies that ei ≥ 2.

If s = 1 then
1

M
≥ 1

[N (xi) : Z (xi)] e1

=
1

|N(x1)
H
|

Thus G = N (x1). This is a contradiction to the fact that Case 1 does not happen.

Now we have,

0 <
1

M
≤ 1

2

s∑
i=1

1

[N(xi) : Z(xi)]

Thus,

∑s
i=1

1

[N(xi) : Z(xi)]
< 2

Now as, [N(xi) : Z(xi)] = 1 or 2, only following three cases are possible:

s = 2 [N(x1) : Z(x1)] = 2, [N(x2) : Z(x2)] = 2

s = 2 [N(x1) : Z(x1)] = 1, [N(x2) : Z(x2)] = 2

s = 3 [N(x1) : Z(x1)] = 2, [N(x2) : Z(x2)] = 2, [N(x3) : Z(x3)] = 2.

As [N(x2) : Z(x2)] = 2 (for all above cases), G contains a matrix whose square is

−I. So |H| = 2. Now, if s ≥ 2 then M > 2ei (because M = 2ei implies N(xi) = G

which is a contradiction to the fact that G is not conjugate to a subgroup of D† ).

So by first solution we get the equation:

1

M
=

1

2e1

+
1

2e2

which has no solution as existence of any solution would contradict M > 2e1. Now,
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by the second solution, we get the equation:

1

M
=

1

e1

+
1

2e2

− 1

2

whose only solution is e1 = 3, e2 = 2,M = 12 (because e1 ≥ 3 ) . By the third

solution, we get the equation:

2

M
=

1

e1

+
1

e2

+
1

e3

− 1

Without loss of generality, we can assume e1 ≤ e2 ≤ e3. As

1

e1

+
1

e2

+
1

e3

− 1 > 0

we get, e1 < 3 , so e1 = 2 and

2

M
=

1

e1

+
1

e2

− 1

2

Also e2 = 3 Thus the solutions are:

e1 = 2, e2 = 3, e3 = 3, M = 12, |G| = 24

e1 = 2, e2 = 3, e3 = 4, M = 24, |G| = 48

e1 = 2, e2 = 3, e3 = 5, M = 60, |G| = 120

This completes the proof.

Lemma 7.2. Let G be a finite subgroup of SL(2,C) such that G is not conjugate to

a subgroup of D†. Let H = {1,−1}. Then G/H has no cyclic subgroup which is

normal in G/H .

Proof. Let xH be a normal cyclic subgroup of G/H. Thus clearly, the sub-group of

G generated by x and −x say K is diagonalizable. Since K has to be normal in G

and thus G = N (x) and hence G must be a conjugate of a subgroup of D†. The

contradiction completes the proof.

Theorem 7.3. Let G be a subgroup of SL(2,C) of order 24 such that G is not conjugate

to a subgroup of D†. Let H = {1,−1}. Then G/H ' A4. Moreover, G is conjugate
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to a group generated by(
ξ 0

0 ξ−1

)
, φ

(
1 1

2 −1

)

where φ = 2ξ − 1 and ξ is a primitive 6th root of unity.

Proof. Since |G/H| = 12 and G/H has no normal cyclic subgroups, G/H must

have exactly 4 sylow-3-subgroups. Also, G/H acts on the set of sylow-3-subgroups

(say X) by conjugation. Thus we get a homomorphism Φ : G/H −→ S4. Let Ki

be the set of elements of G/H which fixes the ith sylow-3-subgroup. Since G/H

acts transitively on X, we get |Ki| = |Kj| ∀i and thus |Im (Φ) | is divisible by 4.

Therefore, the only possible values for |ker (Φ) | are 1 or 2 or 3. By using previous

lemma, we get |ker (Φ) = 1. Now by the composition of signature homomorphism

of S4 and Φ, we get a homomorphism from G/H to {1,−1}. Since G/H must not

have a normal subgroup of order 6, one can easily prove that signature ◦ Φ has

trivial image. Hence, G/H ' A4.

Let τ : G −→ A4 be a homomorphism such that ker (τ) = H. Let A ∈ τ−1 (234).

By appropriate conjugation one can make sure that A is a diagonal matrix. Therfore

without loss of generality we can assume A =

(
ξ 0

0 ξ−1

)
. Since τ (A3) = 1, we have

thatA3 ∈ H. Also τ (A) , τ (A2) 6= 1. Thus we can assume ξ to be a primitive 6th root

of unity. Let B ∈ τ−1 (23) (41). A simple computation shows that τ (AB) 6= τ (BA).

Thus B can not be a diagonal matrix. Hence at-least one of the non-diagonal entries

of B is non-zero. Let B = (Bij). On conjugating G by

(
c 0

0 d

)
where c2 = B21

and d2 =
√

2B12 we get that A remains unchanged and B becomes of the form(
φ ψ

2ψ −χ

)
. As τ(B2) = 1, we have that B2 ∈ H. By direct computation we

get χ = φ. By observation we get τ (BA2) = τ
(
(AB)2). Thus BA2 = ± (AB)2.

By computation we get φ (ξ2 − 1) = ±ξ4 (using ξ 6= 0). Replacing B by −B (if

needed) we may assume φ (ξ2 − 1) = ξ4. Thus 3φ = 2ξ − 1 (using ξ2 = ξ − 1).

By using det(B)= 1 we get φ2 + 2ψ2 = −1. And hence 3ψ = ± (2ξ − 1). We
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get 3ψ = (2ξ − 1) = 3φ by conjugating by

(
1 0

0 −1

)
(if needed). As (234) and

(23) (41) generate A4, A and B generate G. This completes the proof. This finite

subgroup of SL(2,C) is called as the tetrahedral group.

Theorem 7.4. Let G be a subgroup of SL(2,C) of order 48 such that G is not conjugate

to a subgroup of D†. Let H = {1,−1}. Then G/H ' S4. Moreover, G is conjugate

to a group generated by(
ξ 0

0 ξ−1

)
, φ

(
1 1

1 −1

)

where φ = ξ (ξ2 + 1) and ξ is a primitive 8th root of unity.

Proof. Since |G/H| = 24 and G/H has no normal cyclic subgroups, G/H must

have exactly 4 sylow-3-subgroups. Also, G/H acts on the set of sylow-3-subgroups

(say X) by conjugation. Thus we get a homomorphism Φ : G/H −→ S4. Let Ki

be the set of elements of G/H which fixes the ith sylow-3-subgroup. Since G/H

acts transitively on X, we get |Ki| = |Kj| ∀i and thus |Im (Φ) | is divisible by 4.

Therefore, the only possible values for |ker (Φ) are 1, 2, 3 and 6 . By using previous

lemma, we get |ker (Φ) | = 1. Hence, G/H ' S4.

Let τ : G −→ S4 be a homomorphism such that ker (τ) = H. Let A ∈ τ−1 (1234).

By appropriate conjugation one can make sure thatA is a diagonal matrix. Therefore

without loss of generality we can assume A =

(
ξ 0

0 ξ−1

)
. Since τ (A4) = 1, we

have that A4 ∈ H. Also τ (A) , τ (A2) , τ (A3) 6= 1. Thus we can assume ξ to be a

primitive 8th root of unity. Let B ∈ τ−1 (12). A simple computation shows that

τ (AB) 6= τ (BA). Thus B can not be a diagonal matrix. Hence at-least one of

the non-diagonal entries of B is non-zero. Let B = (Bij). On conjugating G by(
c 0

0 d

)
where c2 = B21 and d2 = B12 we get that A remains unchanged and

B becomes of the form

(
φ ψ

ψ −χ

)
. As τ(B2) = 1, we have that B2 ∈ H. By
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direct computation we get χ = φ. By observation we get τ (BA3) = τ
(
(AB)2).

Thus BA2 = ± (AB)2. By computation we get φ (ξ2 − 1) = ±ξ (using ξ 6= 0) or

equivalently, 2φ = ±ξ (ξ2 + 1). Replacing B by −B (if needed) we may assume

2φ = ξ (ξ2 + 1). Thus 2φ2 = −1. By using det(B)= 1 we get −φ2 − ψ2 = 1. And

hence 2ψ2 = −1. We get ψ = φ by conjugating by

(
1 0

0 −1

)
(if needed). As

(1234) and (12) generate S4, A and B generate G. This completes the proof. This

finite subgroup of SL(2,C) is called as the octahedral group.

Theorem 7.5. Let G be a subgroup of SL(2,C) of order 120 such that G is not

conjugate to a subgroup of D†. Let H = {1,−1}. Then G/H ' A5. Moreover,

G is conjugate to a group generated by(
ξ 0

0 ξ−1

)
,

(
φ ψ

ψ −φ

)

where 5φ = 3ξ3 − ξ2 + 4ξ − 2 and 5ψ = 3ξ3 + 3ξ2 − 2ξ + 1 and ξ is a primitive 10th

root of unity.

Proof. The proof thatG/H is isomorphic toA5 can be found in Burnside (1955,127,p.

161-2) [?].

Let τ : G −→ A5 be a homomorphism such that ker (τ) = H. Let A ∈
τ−1 (12345). By appropriate conjugation one can make sure that A is a diagonal

matrix. Therefore without loss of generality we can assume A =

(
ξ 0

0 ξ−1

)
. Since

τ (A5) = 1, we have that A5 ∈ H. Also τ (A) , τ (A2) , τ (A3) , τ (A3) 6= 1. Thus we

can assume ξ to be a primitive 10th root of unity. Let B ∈ τ−1 (12) (34). A simple

computation shows that τ (AB) 6= τ (BA). Thus B can not be a diagonal matrix.

Hence at-least one of the non-diagonal entries of B is non-zero. Let B = (Bij).

On conjugating G by

(
c 0

0 d

)
where c2 = B21 and d2 = B12 we get that A

remains unchanged and B becomes of the form

(
φ ψ

ψ −χ

)
. As τ(B2) = 1,
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we have that B2 ∈ H. By direct computation we get χ = φ. By observation

we get τ (A4B) = τ
(
(BA)2). Thus A4B = ± (BA)2. By computation we get

φ (ξ3 + 1) = ±ξ4 or equivalently, 5φ = ± (3ξ3 − ξ2 + 4ξ − 2). Replacing B by −B
(if needed) we may assume 5φ = (3ξ3 − ξ2 + 4ξ − 2). By using det(B)= 1 we get

5ψ = ± (3ξ3 + 3ξ2 − 2ξ + 1). We get ψ = (3ξ3 + 3ξ2 − 2ξ + 1) by conjugating by(
1 0

0 −1

)
(if needed). As (12345) and (12) (34) generate A5, and since the group

generated by A and B contains H we get A and B generate G. This completes the

proof. This finite subgroup of SL(2,C) is called as the icosahedral group.

Theorem 7.6. Let G be the differential Galois group of the DE y′′ = ry and let η, ζ

be a fundamental system of solutions of the DE with respect to G. If G is tetrahedral

then (η4 + 8ηζ3)
3 ∈ C(x). If G is octahedral then (η5ζ − ηζ5)

2 ∈ C(x). If G is

icosahedral group then (η11ζ − 11η6ζ6 − ηζ11) ∈ C(x).

Proof. If G is the tetrahedral group then ξ is a primitive 6th root of unity. Thus,

ξ2 = ξ−1. Also, we have 3φ = 2ξ−1. An easy computation shows that, (η4 + 8ηζ3)
3

is kept fixed by

(
ξ 0

0 ξ−1

)
and φ

(
1 1

2 −1

)
. And thus (η4 + 8ηζ3)

3 ∈ C(x).

If G is the octahedral group then ξ is a primitive 8th root of unity. Thus, ξ4 = −1.

Also, we have 2φ = ξ (ξ2 + 1). An easy computation shows that, (η5ζ − ηζ5)
2

is kept

fixed by

(
ξ 0

0 ξ−1

)
and φ

(
1 1

1 −1

)
. And thus (η5ζ − ηζ5)

2 ∈ C(x).

If G is the icosahedral group then ξ is a primitive 10th root of unity. Thus , ξ4 =

ξ3−ξ2 +ξ−1. Also, 5φ2 = ξ3−ξ2−3, 5ψ2 = −ξ3 +ξ2−2 and 5φψ = 2ξ3−2ξ2−1 =

5 (φ2 − ψ2). An easy computation shows that, (η11ζ − 11η6ζ6 − ηζ11) is kept fixed

by

(
ξ 0

0 ξ−1

)
and

(
φ ψ

ψ −φ

)
. And thus (η11ζ − 11η6ζ6 − ηζ11) ∈ C(x).

7.3.2 Proof of correctness of algorithm

We need to prove that the algorithms for finding 4th, 6th or 12th degree equations

for ω are correct when the Galois group is tetrahedral, octahedral or icosahedral
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respectively. Also we need to prove that equations obtained for ω are irreducible in

respective cases and finally that the algorithm for finding degree 12 equation for ω

is also correct (in this case the equation need no be irreducible).

First we prove that the equations of degree 4,6 and 12 for ω in respective cases

are irreducible.

Notation: Let G denote the Galois group of the differential equation y′′ =

ry.Since we are assuming case 3 of theorem ?? holds, G must be tetrahedral or

octahedral or icosahedral group. Also let η,ζ be a fundamental system of solutions

of the differential equation with respect to G. Set ω =
η′

η
.

Theorem 7.7. If η1 satisfies the DE and ω1 =
η′1
η1

then degC(x)ω1 ≥ 4 when G is

tetrahedral group, ≥ 6 when G is octahedral group and ≥ 12 when G is icosahedral

group. Moreover, degC(x)ω = 4 when G is tetrahedral group , 6 when G is octahedral

group and 12 when G is icosahedral group.

Proof. Let G1 be the subgroup of G generated by

(
ξ 0

0 ξ−1

)
where ξ is a root

of unity. Clearly, ω is fixed by G1. Thus degree of ω over C(x) must be less than

[G : G1] = 4, 6, 12 in tetrahedral , octahedral, icosahedral case respectively.

Let G be the tetrahedral group. Now, let G1 be the subgroup of G which fixes

η1. Let η1, ζ1 be a fundamental system of solutions of the DE and XGX−1 be the

Galois group with respect to η1, ζ1. We can assume XGX−1 to be triangular. Thus

if A ∈ XGX−1 then A has the form

(
c d

0 c−1

)
Since G1 is a finite group, we

get d = 0 and cm = 1 where m = |G1|. Thus XGX−1, being a subgroup of a

cyclic group, is cyclic. Thus G1/H is isomorphic to a cyclic subgroup of A4. Thus

|G1/H| ≤ 3. Therefore |G1| ≤ 6. And hence, degC(x)ω1 = [G : G1] ≥ 4. A similar

argument in case when G is octahedral and icosahedral group, gives the required

result in those cases.

Definition 7.8. Consider the following recursively defined differential equation,

an = −1
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ai−1 = −a′i − zai − (n− i) (i+ 1) rai+1 (i = n, · · · , 1, 0)

By a solution of this differential equation we mean a function z such that if an, an−1, · · · , a0, a−1

are defined as above then a−1 = 0. We shall denote this equation by (#)n

Theorem 7.9. Let z be a solution of (#)n and let ω be any root of yn−
∑n−1

i=0

ai
(n− i)!

yi =

0. Then η = e
∫
ω is a solution of the DE y′′ = ry.

Proof. Let A =
∑n

i=0

ai
(n− i)!

yi (an = −1) where y is an indeterminate. One can

easily prove
∂k+1A

∂yk+1
(y2 − r) =

∂k+1A

∂yk∂x
+ [(n− 2k) y + z]

∂kA

∂yk
+ k (n− k + 1)

∂k−1A

∂yk−1

by using induction on k. Now, we assume ω′ + ω2 − r 6= 0.

Since, A (ω) = 0 we have
∂A

∂y
(ω)ω′ +

∂A

∂x
(ω) = 0.

Thus
∂A

∂y
(ω) (ω′ + ω2 − r) = −∂A

∂x
(ω) + (nω + z)A (ω) +

∂A

∂x
(ω) = 0

Hence we get,
∂A

∂y
(ω) = 0. Also by assuming

∂k−1A

∂yk−1
(ω) =

∂kA

∂yk
(ω) = 0, one can

easily prove
∂k+1A

∂yk+1
(ω) = 0 (using the above equation).

But
∂nA

∂yn
(ω) = −n! 6= 0 which is a contradiction. Thus, ω2 + ω′ − r = 0. And an

easy computation shows that η = e
∫
ω is a solution of the DE.

Theorem 7.10. 1. For k= 4,6 suppose (#)k has a solution z ∈ C(x). Then the

polynomial yk −
∑k−1

i=0

ai
(k − i)!

yi ∈ C(x) [y] is irreducible over C(x).

2. If (#)12 has a solution z ∈ C(x) such that (#)4 and (#)6 do not have solutions

in C(x). Then the polynomial y12 −
∑11

i=0

ai
(k − i)!

yi ∈ C(x) [y] ∈ C(x) [y] is

irreducible over C(x).

Proof. 1. By previous theorems, any root of polynomial yk −
∑k−1

i=0

ai
(k − i)!

yi ∈

C(x) [y] has to have degree 4 or 6 or 12 over C(x). Thus for k = 4 we are done.

And for k = 6, if given polynomial is irreducible then at-least one root must

have degree less than 4, which is not possible. So this polynomial must be

irreducible over C(x).
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2. We only need to prove that if degC(x)ω = n then (#)n has a solution z ∈ C(x).

Let A =
∑n

i=0

ai
(n− i)!

yi ∈ C(x) [y] (an = −1) be the minimal polynomial for

ω over C(x).

Consider B =
∂A

∂y
(r − y2) +

∂A

∂x
+ (ny + z)A where z = an−1 ∈ C(x). One

can easily check that the coefficient of yn and the coefficient of yn+1 in B are

0. Thus degyB < n.

But B (ω) =
∂A

∂y
(ω) (r − ω2) +

∂A

∂x
(ω) + (nω + z)A (ω)

=
d

dx
(A (ω)) + (nω + z)A (ω) = 0

Thus B = 0. The coefficient of yi in B is

1

(n− i)!
[(n− i) (i+ 1) rai+1 + ai−1 + a′i + zai] = 0

where a−1 = 0. And these are the same equations which were needed for z to

be a solution of (#)n.

Notation: Let lδb =
b′

b
denote the logarithmic derivative of b.

Theorem 7.11. If F is any homogeneous polynomial of degree n in solutions of the

DE. Then z = lδF is a solution of (#)n.

Proof. Let F =
∏n

i=1 ηi where η1, η2, · · · , ηn are solutions of the DE. Let ω =
η′i
ηi

and σm,k be the kth symmetric function of ω1, ω2, · · · , ωm. Clearly, σm,k = 0 if either

k = 0 or k > m. By using induction one can easily prove

σ′m,k = (m+ 1− k) rσm,k−1 − σm,1σm, k + (k + 1)σm,k+1.

Now, by using induction on i, we shall prove ai = (−1)n−i+1 (n− i)!σn,n−i.
Clearly, an = −1, an−1 = z = lδF =

∑n
i=1 ωi = σn,1.
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By using (#)n, we get

ai−1 = −a′i + zai − (n− i) (i+ 1) rai+1.

= (−1)n−i (n− i)!σ′n,n−i + σn,1 (−1)n−i (n− i)!σn,n−i
− (n− i) (i+ 1) r (−1)n−i (n− i− 1)!σn,n−i−1.

= (−1)n−i (n− i)!
[
σ′n,n−i + σn,1σn,n−i + (i+ 1) rσn,n−i−1

]
.

= (−1)n−i (n− i+ 1)!σn,n−i+1.

Hence, a−1 = 0.

Thus if F1 and F2 are functions such that lδF1 and lδF2 are solutions of (#)n then

it is sufficient to prove that lδ (c1F1 + c2F2) is a solution of (#)n for any c1, c2 ∈ C.

Let a1
i , a

2
i , a

3
i be the sequences obtained from (#)n for z = lδF1, lδF2, lδ (c1F1 + c2F2)

respectively.

We shall prove (c1F1 + c2F2) (a3
i ) = c1F1a

1
i + c2F2a

2
i . For i = n, it is clear. Now, let

i ≤ n and this is true for all j ≥ i such that j < n.

(c1F1 + c2F2)
(
a3
i

)
= (c1F1 + c2F2)

[
−
(
a3
i

)′ − lδ (c1F1 + c2F2) a3
i

]
− (c1F1 + c2F2)

[
(n− i) (i+ 1) ra3

i+1

]
.

= −
[
(c1F1 + c2F2) a3

i

]′ − (n− i) (i+ 1) r (c1F1 + c2F2) a3
i+1.

= −
[(
c1F1a

1
i + c2F2a

2
i

)]′ − (n− i) (i+ 1) r
(
c1F1a

1
i+1 + c2F2a

2
i+1

)
.

= c1F1a
1
i−1 + c2F2a

2
i−1.

Thus (c1F1 + c2F2) a3
−1 = c1F1a

1
−1 + c2F2a

2
−1 = 0 which completes the proof.

Theorem 7.12. 1. If G is the tetrahedral group then (#)4 has a solution z = lδu

where u3 ∈ C(x).

2. If G is the octahedral group then (#)6 has a solution z = lδu where u2 ∈ C(x).
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3. If G is either the tetrahedral or the octahedral or the icosahedral group then

(#)12 has a solution z = lδu where u ∈ C(x).

Proof. For 1. we may take u = η4 + 8ηζ3

For 2. we may take u = η5ζ − ηζ5.

For 3. we may take u = (η4 + 8ηζ3)
3
, (η5ζ − ηζ5)

2
or η11ζ − 11η6ζ6 − ηζ11

We write u
12
n =

∏
c∈C (x− c)ec ∈ C(x) where n = 4, 6or12 and ec ∈ Z. Now, we

shall determine the possibilities for ec. For simplicity of notation, we will assume

c = 0.

z = lδu =
n

12
lδ
(
u

12
n

)
We write the Laurent series of r and z at 0 as follows:

r = αx−2 + βx−1 + · · · (α, β ∈ C, possibly 0)

z =
n

12
ex−1 + · · · (e = e0 ∈ Z, possibly 0)

Theorem 7.13. If α = 0, β 6= 0 then e = 12.

Proof. Write z =
n

12
ex−1 + f + · · ·

We shall treat e and f as indeterminates. Then

ai = Aix
i−n +Bix

i−n+1 + Cifx
i−n+1 + · · ·

where Ai, Bi, Ci are polynomials in e with coefficients in C. Using (#)n we get,

An = −1 Bn = Cn = 0

Ai−1 =
(
n− i− n

12
e
)
Ai

Bi−1 =
(
n− i− 1− n

12
e
)
Bi − (n− i) (i+ 1) βAi+1

Ci−1 =
(
n− i− 1− n

12
e
)
Ci − Ai ( for i = n, · · · , 1, 0) .
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One can easily verify that the solution of these equations is :

Ai = −
n−i−1∏
j=0

(
j − n

12
e
)
.

Bi = β

n−i−2∑
j=0

(j + 1) (n− j)
n−i−2∏
k=0

(
k − n

12
e
)
.

Ci = (n− i)
n−i−2∏
j=0

(
j − n

12
e
)

(i = n, · · · , 1, 0) .

Since,

0 = a−1 = A−1x
−n−1 +B−1x

−nC−1fx
−n + · · · .

0 = A−1 = −
n∏
j=0

(
j − n

12
e
)
.

and 0 = B−1 + C−1f = β
n−1∑
j=0

(j + 1) (n− j)
n−1∏

k=0,k 6=j

(
k − n

12
e
)

+ (n+ 1)
n−1∏
j=0

(
j − n

12
e
)
f.

We get, e =
12

n
l for some l = 0, 1, · · · , n.

Now suppose l 6= n, then by above equation we get,

B−1 = β (l + 1) (n− l)
n−1∏

k=0,k 6=l

(
k − n

12
e
)

which implies β = 0. This is a contradiction, hence l = n. Therefore, e = 12.

Now we consider the possibility that α 6= 0. As before we write ai = Aix
i−n+· · · .

Lemma 7.14. Ai ∈ Q [α] [e] such that degeAi = n− i and leading coefficient of Ai is

−
(
− n

12

)n−i
.
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Proof. By using (#)n we get,

An = −1

Ai−1 =
(
n− i− n

12
e
)
Ai − (n− i) (i+ 1)αAi+1

Rest of the proof is just an easy calculation.

If α 6= 1

4
, then the DE has Puiseaux series solutions of the form

η1 = xµ1 + · · · where µ1 =
1

2
+

1

2

√
1 + 4α

η2 = xµ2 + · · · where µ2 =
1

2
− 1

2

√
1 + 4α

By theorem ??, we know that lδ
(
ηi1η

n−i
2

)
is a solution of (#)n for every i =

0, 1, · · · , n. Since

lδ
(
ηi1η

n−i
2

)
= (iµ1 + (n− i)µ2)x−1 + · · ·

=
(n

2
−
(n

2
− i
)√

1 + 4α
)
x−1 + · · ·

and A−1 must vanish thus we have,
12

n
e =

n

2
−
(n

2
− i
)√

1 + 4α for i = 0, 1, · · · , n.

Theorem 7.15. 1. If G is tetrahedral group then

e ∈
{

6 + k
√

1 + 4α : k = 0,±3,±6
}
∩ Z.

2. If G is the octahedral group then e ∈
{

6 + k
√

1 + 4α : k = 0,±2,±4,±6
}
∩ Z.

3. If G is either the tetrahedral group or the octahedral group or the icosahedral

group then e ∈
{

6 + k
√

1 + 4α : k = 0,±1, · · · ,±6
}
∩ Z.

Proof. 1. In this case n = 4. If α 6= −1

4
, we use the lemma and remarks after
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that to get,

0 = A−1 =
4∏
i=0

(e
3
− 2 + (2− i)

√
1 + 4α

)
Thus, e ∈

{
6 + k

√
1 + 4α : k = 0,±3,±6

}
∩Z. If α = −1

4
, we compute directly

and obtain, A−1 =
1

243
(e− 6)5.

2. In this case, n = 6. Similar to above case, if α 6= −1

4
, we obtain the result

from the lemma and the remarks. And if α = −1

4
, a direct computation shows,

A−1 =
1

128
(e− 6)7. This completes the proof of this part.

3. In this case n = 12. Similar to the first case, if α 6= −1

4
, we obtain the result

from the lemma and the remarks. And if α = −1

4
, a direct computation shows

A−1 = (e− 6)11. This completes the proof of theorem.

Now we consider the case when, α = β = 0. Using the previous theorem we get,
ne

12
∈ Z.

Let Γ be the set of poles of r. We have proven that,

1. In tetrahedral case, z = lδu is a solution of (#)4 where

u3 = P 3
∏

c ∈ Γ (x− c)ec

with P ∈ C [x] and e ∈
{

6 + k
√

1 + 4α : k = 0,±3,±6
}
∩ Z.

2. In octahedral case, z = lδu is a solution of (#)6 where

u2 = P 2
∏

c ∈ Γ (x− c)ec

with P ∈ C [x] and e ∈
{

6 + k
√

1 + 4α : k = 0,±2,±4,±6
}
∩ Z.
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3. In tetrahedral or octahedral or icosahedral case, z = lδu is a solution of (#)12

where

u = P
∏

c ∈ Γ (x− c)ec

with P ∈ C [x] and e ∈
{

6 + k
√

1 + 4α : k = 0,±1, · · · ,±6
}
∩ Z.

If d = deg P , then the Laurent series of r and z at ∞ are of the form:

z =
n

12

(
12

n
d+

∑
c∈Γ

ec

)
x−1 + · · ·

r = γx−2 + · · ·

Let e∞ =
12

n
d +

∑
c∈Γ ec. By following the same steps done in previous

theorem, we get that e∞ also satisfies the same conditions as ec. Also, d =
n

12

(
e∞ −

∑
c∈Γ ec

)
∈ N ∪ {0}.

Now we shall show that the recursive relations in step 3 are identical with

(#)n.

Let θ =
n

12

∑
c∈Γ

ec
x− c

and S =
∏

c∈Γ (x− c). Thus z = lδu =
P ′

P
+ θ. Also

set Pi = Sn−iPai.Using (#)n we get,

Pn = −P

Pi−1 = Sn−i+1Pai−1

= Sn−i+1P (−a′i − zai − (n− i) (i+ 1) rai+1)

= −S
(
Sn−iPai

)′
+ (n− i)Sn−iS ′Pai + Sn−i+1P ′ai

− S (P ′ + Pθ)Sn−iai − (n− i) (i+ 1)S2r
(
Sn−i−1Pai+1

)
= −SP ′ + (n− i− Sθ)Pi − (n− i) (i+ 1)S2rPi+1

which is precisely the equation in the algorithm. Finally,

ωn =
n−1∑
i=0

ai
(n− i)!

ωi
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can be rewritten as

0 = −SnPωn +
n−i∑
i=0

SnPai
(n− i)!

ωi =
n∑
i=0

SiPi
(n− i)!

ωi

which completes the proof of correctness of the algorithm.

68



Bibliography

[1] I. Kaplansky, An introduction to differential algebra, Hermann; Enlarged 2nd

edition, 1976.

[2] J. J. Kovacic, An algorithm for Solving Second Order Homogeneous Differ-

ential Equations, Academic Press Inc.(London) Ltd., 1986.

[3] G. F. Simmons, Differential Equations With Applications and Historical

Notes, McGraw-Hill ; Second edition, 1991

[4] N. Jacobson, Basic algebra II, W. H. Freeman and company ; Second edition,

1989.

[5] W. Burnside, Theory of groups of finite order, Dover (New York) ; Second

edition, 1955.

[6] C. Smith, A discussion and implementation of Kovacic’s algorithm for

ordinary differential equations, University of Waterloo Computer Science

Department Research Report CS-84-35 , 1984.

[7] Singer and Van Der Put, Galois Theory of linear differential equations,

Springer; XVII ,2003.

69


